
B+ Trees

Robert Soulé

1 B+ Trees

A tree is an abstract data type, consisting of a set of linked nodes. The nodes are hierarchical, and
the top most node is called the root. An internal node is a node that has at least one child. A leaf
node is a node with no children. A B tree is a tree with the following properties:

• It is rooted, meaning it has a root.

• It is directed, meaning that the order of the children matter.

• It is a balanced tree, meaning that all paths from the root to the leaves have the same length.

• For some parameter m:

– All internal nodes have between
⌈
m/2

⌉
and m children.

– The root has between 2 and m children.

A B+ tree is a special case of a B tree. In a B+ tree, the internal nodes contain only keys and
pointers to subtrees. Values are stored at the leaves. The keys serve as separation values for the
subtrees. For example, if an internal node has n children, then it must have n−1 keys, such that all
values stored in the left-most subtree will be no greater than k0. The values stored in the left-most
+ 1 subtree will be between k0 and k1, and so on.

2 What is the value of m?

Remember that we want to minimize the number of block accesses, so we get as much benefit from
reading a single block as possible. Therefore, each node should be as big as possible, while still
fitting in a single block. Recall that each node in the B-tree will contain m pointers (each storing
a block address) and m− 1 keys. In other words:

(m× size of pointer) + ((m− 1) × size of key) ≤ size of block

Let’s work through an example. Suppose we have a 1 terabyte (≈ 240 bytes) disk, and that each
block is 4096 (= 212) bytes.

How many blocks do we have? We simply divide the size of the disk by the size of the blocks:

size of disk/size of block = number of blocks

So, we have:
240/212 = 228blocks

1



How big does each pointer need to be? We calculated that there are 228 blocks, and each
block needs an address. If we number the blocks 0, . . . , 228−1, then we need 28 bits for each pointer
to store the largest address.

How big is the pointer really? In practice, this is determined by the operating system, and
it is usually 32 or 64 bits (or 4 or 8 bytes).

How big is the key? The size of the key depends on what we are storing. Suppose we are
storing integers as the key. The size of an integer can vary from system to system, but it is most
often 32 bits (4 bytes).

What is m? If we assume that each block is 4096 bytes, pointers are 4 bytes, and the keys are
4 byte integers, then we want the largest number such that:

(m× size of pointer) + ((m− 1) × size of key) ≤ size of block

or, in our case:

(m× 4) + ((m− 1) × 4) ≤ 4096

(4m) + ((4m− 4)) ≤ 4096

8m ≤ 4100

m ≤ 512.5

m = 512

So, our value of m is 512.

2


