
© 2013 Zvi M. Kedem 1

Unit 9
Transaction Processing: Recovery

© 2013 Zvi M. Kedem 2

Recovery in Context

Base%Tables
Constraints,%Privileges

Base%Tables
Constraints,%Privileges

Files
Indexes,%Distribution

Files
Indexes,%Distribution

Standard%OS
Standard%Hardware

Standard%OS
Standard%Hardware

ConcurrencyConcurrency

RecoveryRecovery

Derived%Tables
Constraints,%Privileges

Derived%Tables
Constraints,%Privileges

DerivedDerived

ImplementedImplemented

Relies%onRelies%on

Runs%onRuns%on

Application%Data%Analysis%(ER)Application%Data%Analysis%(ER)

Normalization%(NFs)Normalization%(NFs)

Transaction%Processing%(ACID,%Sharding)Transaction%Processing%(ACID,%Sharding)

Queries%(DML)Queries%(DML)

User%Level
(View%Level)
User%Level
(View%Level)

Community%Level
(Base%Level)

Community%Level
(Base%Level)

Physical%LevelPhysical%Level

DBMS%OS%LevelDBMS%OS%Level

Centralized
Or

Distributed

Centralized
Or

Distributed

Queries%(DML)Queries%(DML)

Schema%Specification%(DDL)Schema%Specification%(DDL)

Query%Execution%(B+,%…,%Execution%Plan)Query%Execution%(B+,%…,%Execution%Plan)

© 2013 Zvi M. Kedem 3

Example: Money Transfer

◆  Transfer $5 from account a to b (items on the disk)

1. transaction starts
2. read a into xa (local variable in RAM)
3. xa := xa − 5
4. write xa onto a
5. read b into xb (local variable in RAM)
6. xb := xb + 5
7. write xb onto b
8. transaction ends

◆  If initial values are a = 8 and b = 1

then after the execution a = 3 and b = 6

© 2013 Zvi M. Kedem 4

Example: Money Transfer

◆  Sample values of database variables at various points in a
completed execution

 a b

 8 1
1. transaction starts 8 1
2. read a into xa 8 1
3. xa := xa − 5 8 1
4. write xa onto a 3 1
5. read b into xb 3 1
6. xb := xb + 5 3 1
7. write xb onto b 3 6
8. transaction ends 3 6

© 2013 Zvi M. Kedem 5

Example: Money Transfer

◆  If the state of RAM is lost between instructions 1. and 8., it
is not known which was the last instruction executed

◆  Thus in general, neither of the following naive recovery
procedures will work:
•  re-execute the transaction.

Wrong, because if the transaction crashed after instruction 4,
incorrect values (a = 3,...) will exist in the database.

•  do not re-execute the transaction

Wrong, because if the transaction crashed before instruction 7,
incorrect values (..., b = 1) will exist in the database

© 2013 Zvi M. Kedem 6

Transactions

◆  Transaction is an execution of a user’s program
◆  In the cleanest and most important model a transaction

is supposed to satisfy the ACID conditions
◆  Atomic

•  It is not logically divisible into smaller units of executions
•  It is either executed to completion (was committed), or not

executed at all (was aborted, also called rolled back)

◆  Consistent
•  It preserves the consistency of the database, when running by

itself (without any other transactions executing concurrently)
•  If started on a “correct” database, and “successfully” finished, it

will leave a “correct” database
•  “Correctness” means: satisfies integrity constraints as specified to

the database
•  This is somewhat weak, as correctness presumably should model

real world not just internal consistency

© 2013 Zvi M. Kedem 7

Transactions

◆  Durable
•  Once it completed “successfully,” the values it produced will never

be forgotten and “in effect” will be installed in the database (on the
disk, which is the only thing that counts as a disk is considered
persistent storage, i.e., “data on it cannot be lost accidentally”)

So we assume that disks are perfect: this is OK to understand the
issues

•  Of course they can be overwritten by transactions that come later

◆  Isolated
•  A transaction is given the illusion of running on a dedicated

system, so errors because of concurrent execution cannot be
introduced

•  It does not interact with other transactions running concurrently
•  It does not see what they do, they do not see what it does: as if

each executed on the database by itself

© 2013 Zvi M. Kedem 8

Recovery and Concurrency Management

◆  The job of these recovery/concurrency modules of the
database operating system is to assure the ACID
properties, and handle other related issues

◆  The two modules are quite intertwined and cooperate
during their execution

◆  Recovery is more fundamental and also applicable to a
single user systems

◆  Recovery management will be “helped” by concurrency
management, as we will see in the “Concurrency” unit

© 2013 Zvi M. Kedem 9

Recovery Management

◆  The job of recovery is to make sure that the transaction
satisfies ACD properties, as I is not relevant

◆  So the job is not to allow partial executions and to make
sure that transactions once executed do not
“disappear” (i.e., their “effects” remain, unless these
“effects” become obsolete)

◆  If a failure occurred while a transaction was executing, we
cannot continue, and therefore need to restore the
database to the state before the failed transaction started

◆  If a failure occurred after a transaction finished executing
(we will be more precise about the meaning of “finished
executing”), the state must continue reflecting this
transaction

© 2013 Zvi M. Kedem 10

Storage Model

◆  Again, we need a model
◆  Two level storage

•  RAM
•  Disk

◆  RAM (volatile storage)
•  There will be no errors but all the information on it can disappear

–  Electricity goes down

◆  Disk (stable storage)
•  Atomic reads/writes of blocks
•  No failures

–  This is ideal but implementable in practice, through RAIDs, offline storage on
tapes, DVDs, backing up the disk, etc.

◆  While the hierarchies is much larger (registers, primary
caches, secondary caches, RAM, disk, tape, etc.), we only
need to be concerned about RAM vs. disk

© 2013 Zvi M. Kedem 11

Failure

◆  RAM failure (the state of the computation is lost and we do
not know what are the values of the variables in RAM);
this is the most interesting case, and other cases will be
solved if we solve it, so we will focus on it (because if we
do not know what to do in some case, we can just reboot
and our methods will fix everything)
•  Typical scenario: electricity goes down and the computer shuts

down and then reboots forgetting everything, other than whatever
has been written to the disk

◆  “Global” problem in execution
•  E.g., deadlock: a transaction needs to be removed in the middle of

an execution to let the system proceed

◆  Transaction failure
•  Transaction’s execution may result in violating CHECKs and

CONSTRAINTs; then the transaction needs to be failed, that is
aborted

•  This is still OK as aborted transactions do not have to be correct,
because their effects are going to be removed from the execution

© 2013 Zvi M. Kedem 12

Lifecycle Of A Transaction

1.  Start
2.  Run
3.  Finish
4.  Check for deferred consistency requirements, if any

•  Requirement that can be violated during execution (but not after
it), such as during the movement of money from checking
account to savings account

•  Such deferrals can be specified using SQL DDL

5.  Commit if steps 1 – 4 are done successfully: this means
the transaction’s effects are “durable”
 But a transaction can be aborted for any reason (or no
reason) before commit

◆  Of course an aborted transaction can be re-executed,
especially if this was not “its fault,” but then this is really
another transaction

© 2013 Zvi M. Kedem 13

The Fate Of A Transaction

◆  I either succeeded in moving money from my savings
account to my checking account or not

Start Transaction

Commit Transaction
(Will Exist Forever)

Abort Transaction
(Never Existed)

© 2013 Zvi M. Kedem 14

History (Schedule)

◆  This is a trace of execution of transactions in a system
•  This is somewhat imprecise at this point
•  We will make it more formal as needed

◆  Example at the beginning of the unit was a trace
◆  At different time we will “trace” different actions

•  Most commonly which transaction accessed which item in which
mode

•  E.g. T1 R x; meaning transaction T1 Reads item x
•  E.g. T1 W x; meaning transaction T1 Writes item x

© 2013 Zvi M. Kedem 15

Recoverable Histories

◆  A history is recoverable if for every transaction T that
commits, the Commit of T follows the Commit of every
transaction from which T read
•  We do not formally define here what it means “from which T read,”

but it is pretty obvious intuitively: T read the result of writing by that
other transaction

◆  Histories must be recoverable, otherwise transaction
may operate based on non-existent past

◆  A history that is not recoverable

T1 T2

W x

 R x
 W y
 Commit

© 2013 Zvi M. Kedem 16

Non-Recoverable Histories

◆  Here is what could happen next

T1 T2

W x

 R x
 W y
 Commit

Abort

◆  And now what to do about T2?
•  It operated using a non-existent value of x (here y could have

been x + 1)
•  It cannot be aborted because it has already committed

© 2013 Zvi M. Kedem 17

More On Non-recoverable Histories

◆  We need to understand what is wrong with the following

T1 T2

W x

 R x
 Commit

 Abort
◆  It may seem that there is no problem because T2 only

read
◆  Consider the following case:

•  Initially x = 0 and y = 0
•  T1 is: x := 1
•  T2 is: if x = 0 then y := 1

◆  Then the value of x did matter and depending on whether
T1 existed or not the behavior of T2 is different

© 2013 Zvi M. Kedem 18

Cascading Aborts

◆  A history avoids cascading aborts if every transaction
reads only values produced by transactions that have
already committed

◆  Of course it can read the initial state unless overwritten
previously by another transaction
•  We will assume, to simplify discussion, some transaction T0,

running by itself and creating the initial state of the database
•  T0 is recoverable, automatically

◆  A history that does not avoid cascading aborts

T1 T2

W x

 R x
 W y

© 2013 Zvi M. Kedem 19

Cascading Aborts

◆  Here is what could happen next

T1 T2

W x

 R x
 W y

Abort

◆  Then we must do:

T1 T2

W x

 R x
 W y

Abort
 Abort

© 2013 Zvi M. Kedem 20

Strict Histories

◆  History is strict if
•  Satisfies the condition for avoiding cascading aborts
•  For every transaction, if it writes an item, all the transactions that

previously wrote that item have already committed or aborted

◆  If we need to abort a transaction that wrote a value, the
most convenient thing to implement is just to restore the
value that existed previously

◆  If a history is not strict, this is not good enough

◆  A history that is not strict

T1 T2

W x

 W x

© 2013 Zvi M. Kedem 21

Strict Histories

◆  Here is what could happen next

T1 T2

Wx

 Wx
Abort

◆  Even though T1 aborted, we must not do anything to x!

© 2013 Zvi M. Kedem 22

Strict Histories

◆  Here what could happen next

T1 T2

Wx

 Wx
Abort

 Abort

◆  Because T2 aborted, we must restore the value of x that
existed before T1 wrote, sometime in the past

◆  Very complicated; need to maintain several values for x

© 2013 Zvi M. Kedem 23

Relations

◆  Strict implies no cascading aborts
◆  No cascading aborts implies recoverable

◆  So we like strict, which really means:
•  Every transaction reads only values produced by

transactions that have already committed
•  Every transaction, if it writes an item, all the transactions that

previously wrote that item have already committed or aborted
◆  But note: a transaction can read a value that was read by

an uncommitted transaction
◆  We will assume that the DB OS will make sure that all

histories will be strict
◆  This will be automatically ensured “magically” by

concurrency management (next unit)

© 2013 Zvi M. Kedem 24

Reminder On Virtual Memory: Paging In And Out

 Disk RAM

Access a

Access b

Access c

Access a

◆  “Access” means read or write
◆  4 blocks on the disk and 2 page slots in the RAM cache

a b c d

a b c d a

a b c d b a

a b c d b c

a b c d a c

© 2013 Zvi M. Kedem 25

General Setting And “Principles”

◆  A transaction modifies “items” by changing an “old” value
into a “new” value

1.  At any time before the commit, the old values must be
in stable storage (on the disk)
•  Because old values must be remembered if the RAM fails
•  Note: on the disk but not necessarily in the database

2.  At any time after the commit, the new values must be
in stable storage (on the disk)
•  Because the new values must be remembered if the RAM fails
•  Note: on the disk but not necessarily in the database

3.  The transaction commits exactly when this “fact” is
written in stable storage (on the disk)
•  Because we must remember this if the RAM fails

© 2013 Zvi M. Kedem 26

Simplified Scenario: Immediate Writes To Disk

◆  We will discuss first a simplified scenario, which is the
conceptual foundation to what happens in real systems

◆  We ignore virtual memory and assume that writes to the
database on the disk happen “immediately” after the
values are changed in RAM

◆  We will explain the most common method of managing
recovery: Write Ahead Log

◆  The basic idea
Record how you are going to modify the database
before you actually do it

◆  We return to our old money transfer example and consider
the situation when
•  RAM values “disappear” because the system crashes
•  Disk values “do not disappear”

© 2013 Zvi M. Kedem 27

Example: Money Transfer

◆  Sample values of database variables at various points in a
completed execution

◆  We move 5 from a to b
 a b

 8 1
1. transaction starts 8 1
2. read a into xa 8 1
3. xa := xa − 5 8 1
4. write xa onto a 3 1
5. read b into xb 3 1
6. xb := xb + 5 3 1
7. write xb onto b 3 6
8. transaction ends 3 6

© 2013 Zvi M. Kedem 28

RAM and Disk

◆  We will have the following:

!  Database on disk with two items: a and b
!  RAM with two items xa and xb
!  Log: a sequential file on the disk consisting of records of

the following types:

•  [T starts]; abbreviated as [T s]
•  [T commits]; abbreviated as [T c]
•  [T item old-value new-value]

We only consider one transaction, but in general there are
many so “T” needs to be written in the log

© 2013 Zvi M. Kedem 29

Trace Of Execution: Items And Log

xa xb a b log

 ? ? 8 1

© 2013 Zvi M. Kedem 30

Trace Of Execution: Items And Log

xa xb a b log

 ? ? 8 1
 ? ? 8 1 [T s]

© 2013 Zvi M. Kedem 31

Trace Of Execution: Items And Log

xa xb a b log

 ? ? 8 1
 ? ? 8 1 [T s]
 8 ? 8 1 [T s]

© 2013 Zvi M. Kedem 32

Trace Of Execution: Items And Log

xa xb a b log

 ? ? 8 1
 ? ? 8 1 [T s]
 8 ? 8 1 [T s]
 3 ? 8 1 [T s]

© 2013 Zvi M. Kedem 33

Trace Of Execution: Items And Log

xa xb a b log

 ? ? 8 1
 ? ? 8 1 [T s]
 8 ? 8 1 [T s]
 3 ? 8 1 [T s]
 3 ? 8 1 [T s][T a 8 3]

© 2013 Zvi M. Kedem 34

Trace Of Execution: Items And Log

xa xb a b log

 ? ? 8 1
 ? ? 8 1 [T s]
 8 ? 8 1 [T s]
 3 ? 8 1 [T s]
 3 ? 8 1 [T s][T a 8 3]
 3 ? 3 1 [T s][T a 8 3]

© 2013 Zvi M. Kedem 35

Trace Of Execution: Items And Log

xa xb a b log

 ? ? 8 1
 ? ? 8 1 [T s]
 8 ? 8 1 [T s]
 3 ? 8 1 [T s]
 3 ? 8 1 [T s][T a 8 3]
 3 ? 3 1 [T s][T a 8 3]
 3 1 3 1 [T s][T a 8 3]

© 2013 Zvi M. Kedem 36

Trace Of Execution: Items And Log

xa xb a b log

 ? ? 8 1
 ? ? 8 1 [T s]
 8 ? 8 1 [T s]
 3 ? 8 1 [T s]
 3 ? 8 1 [T s][T a 8 3]
 3 ? 3 1 [T s][T a 8 3]
 3 1 3 1 [T s][T a 8 3]
 3 6 3 1 [T s][T a 8 3]

© 2013 Zvi M. Kedem 37

Trace Of Execution: Items And Log

xa xb a b log

 ? ? 8 1
 ? ? 8 1 [T s]
 8 ? 8 1 [T s]
 3 ? 8 1 [T s]
 3 ? 8 1 [T s][T a 8 3]
 3 ? 3 1 [T s][T a 8 3]
 3 1 3 1 [T s][T a 8 3]
 3 6 3 1 [T s][T a 8 3]
 3 6 3 1 [T s][T a 8 3][T b 1 6]

© 2013 Zvi M. Kedem 38

Trace Of Execution: Items And Log

xa xb a b log

 ? ? 8 1
 ? ? 8 1 [T s]
 8 ? 8 1 [T s]
 3 ? 8 1 [T s]
 3 ? 8 1 [T s][T a 8 3]
 3 ? 3 1 [T s][T a 8 3]
 3 1 3 1 [T s][T a 8 3]
 3 6 3 1 [T s][T a 8 3]
 3 6 3 1 [T s][T a 8 3][T b 1 6]
 3 6 3 6 [T s][T a 8 3][T b 1 6]

© 2013 Zvi M. Kedem 39

Trace Of Execution: Items And Log

xa xb a b log

 ? ? 8 1
 ? ? 8 1 [T s]
 8 ? 8 1 [T s]
 3 ? 8 1 [T s]
 3 ? 8 1 [T s][T a 8 3]
 3 ? 3 1 [T s][T a 8 3]
 3 1 3 1 [T s][T a 8 3]
 3 6 3 1 [T s][T a 8 3]
 3 6 3 1 [T s][T a 8 3][T b 1 6]
 3 6 3 6 [T s][T a 8 3][T b 1 6]
 3 6 3 6 [T s][T a 8 3][T b 1 6][T c]

© 2013 Zvi M. Kedem 40

Recovery Under Various Conditions

 a b log

 8 1

◆  Do nothing

© 2013 Zvi M. Kedem 41

Recovery Under Various Conditions

 a b log

 8 1 [T s]

◆  Do nothing

© 2013 Zvi M. Kedem 42

Recovery Under Various Conditions

 a b log

 ? 1 [T s][T a 8 3]

◆  Write 8 into a

© 2013 Zvi M. Kedem 43

Recovery Under Various Conditions

 a b log

 ? ? [T s][T a 8 3][T b 1 6]

◆  Write 8 into a and write 1 into b

© 2013 Zvi M. Kedem 44

Recovery Under Various Conditions

 a b log

 ? ? [T s][T a 8 3][T b 1 6][T c]

◆  Write 3 into a and write 6 into b

© 2013 Zvi M. Kedem 45

Recovery Procedure

◆  The system crashes (RAM “disappears”)
◆  We look at the log.
◆  If there is [T s] but no [T c], we copy the old values of a

and b from the log onto the database on the disk
◆  If there is [T c] (and therefore also [T s]) we copy the new

values of a and b from the log onto the database on the
disk

◆  We then continue: reboot the database and continue
processing

◆  If we restored old values, we re-execute the transaction

© 2013 Zvi M. Kedem 46

Delaying Writes

◆  It is not necessary to update the database with the new
values by any particular deadlines, as long as the most
recent value is in RAM

◆  A transaction is given the current value of an item
◆  If it is in RAM, from RAM
◆  If it is not in RAM, then it is read from disk into RAM

◆  If there is a need to recover, this is done based on the log
which has everything that is needed

◆  So next, we revisit our example, when one update to the
disk was not done

© 2013 Zvi M. Kedem 47

Example: Money Transfer
With Delayed Writes

◆  Sample values of database variables at various points in a
completed execution

◆  We move 5 from a to b
 a b

 8 1
1. transaction starts 8 1
2. read a into xa 8 1
3. xa := xa − 5 8 1
4. write xa onto a 3 1
5. read b into xb 3 1
6. xb := xb + 5 3 1
7. write xb onto b 3 6
8. transaction ends 3 6

© 2013 Zvi M. Kedem 48

Trace Of Execution: Items And Log
With Delayed Writes

xa xb a b log

 ? ? 8 1

© 2013 Zvi M. Kedem 49

Trace Of Execution: Items And Log
With Delayed Writes

xa xb a b log

 ? ? 8 1
 ? ? 8 1 [T s]

© 2013 Zvi M. Kedem 50

Trace Of Execution: Items And Log
With Delayed Writes

xa xb a b log

 ? ? 8 1
 ? ? 8 1 [T s]
 8 ? 8 1 [T s]

© 2013 Zvi M. Kedem 51

Trace Of Execution: Items And Log
With Delayed Writes

xa xb a b log

 ? ? 8 1
 ? ? 8 1 [T s]
 8 ? 8 1 [T s]
 3 ? 8 1 [T s]

© 2013 Zvi M. Kedem 52

Trace Of Execution: Items And Log
With Delayed Writes

xa xb a b log

 ? ? 8 1
 ? ? 8 1 [T s]
 8 ? 8 1 [T s]
 3 ? 8 1 [T s]
 3 ? 8 1 [T s][T a 8 3]

© 2013 Zvi M. Kedem 53

Trace Of Execution: Items And Log
With Delayed Writes

xa xb a b log

 ? ? 8 1
 ? ? 8 1 [T s]
 8 ? 8 1 [T s]
 3 ? 8 1 [T s]
 3 ? 8 1 [T s][T a 8 3]

© 2013 Zvi M. Kedem 54

Trace Of Execution: Items And Log
With Delayed Writes

xa xb a b log

 ? ? 8 1
 ? ? 8 1 [T s]
 8 ? 8 1 [T s]
 3 ? 8 1 [T s]
 3 ? 8 1 [T s][T a 8 3]

 3 1 8 1 [T s][T a 8 3]

© 2013 Zvi M. Kedem 55

Trace Of Execution: Items And Log
With Delayed Writes

xa xb a b log

 ? ? 8 1
 ? ? 8 1 [T s]
 8 ? 8 1 [T s]
 3 ? 8 1 [T s]
 3 ? 8 1 [T s][T a 8 3]

 3 1 8 1 [T s][T a 8 3]
 3 6 8 1 [T s][T a 8 3]

© 2013 Zvi M. Kedem 56

Trace Of Execution: Items And Log
With Delayed Writes

xa xb a b log

 ? ? 8 1
 ? ? 8 1 [T s]
 8 ? 8 1 [T s]
 3 ? 8 1 [T s]
 3 ? 8 1 [T s][T a 8 3]

 3 1 8 1 [T s][T a 8 3]
 3 6 8 1 [T s][T a 8 3]
 3 6 8 1 [T s][T a 8 3][T b 1 6]

© 2013 Zvi M. Kedem 57

Trace Of Execution: Items And Log
With Delayed Writes

xa xb a b log

 ? ? 8 1
 ? ? 8 1 [T s]
 8 ? 8 1 [T s]
 3 ? 8 1 [T s]
 3 ? 8 1 [T s][T a 8 3]

 3 1 8 1 [T s][T a 8 3]
 3 6 8 1 [T s][T a 8 3]
 3 6 8 1 [T s][T a 8 3][T b 1 6]
 3 6 8 6 [T s][T a 8 3][T b 1 6]

© 2013 Zvi M. Kedem 58

Trace Of Execution: Items And Log
With Delayed Writes

xa xb a b log

 ? ? 8 1
 ? ? 8 1 [T s]
 8 ? 8 1 [T s]
 3 ? 8 1 [T s]
 3 ? 8 1 [T s][T a 8 3]

 3 1 8 1 [T s][T a 8 3]
 3 6 8 1 [T s][T a 8 3]
 3 6 8 1 [T s][T a 8 3][T b 1 6]
 3 6 8 6 [T s][T a 8 3][T b 1 6]
 3 6 8 6 [T s][T a 8 3][T b 1 6][T c]

© 2013 Zvi M. Kedem 59

Recovery Under Various Conditions

 a b log

 8 1

◆  Do nothing

© 2013 Zvi M. Kedem 60

Recovery Under Various Conditions

 a b log

 8 1 [T s]

◆  Do nothing

© 2013 Zvi M. Kedem 61

Recovery Under Various Conditions

 a b log

 ? 1 [T s][T a 8 3]

◆  Write 8 into a

© 2013 Zvi M. Kedem 62

Recovery Under Various Conditions

 a b log

 ? ? [T s][T a 8 3][T b 1 6]

◆  Write 8 into a and write 1 into 6

© 2013 Zvi M. Kedem 63

Recovery Under Various Conditions

 a b log

 8 6 [T s][T a 8 3][T b 1 6][T c]

◆  Write 3 into a and write 6 into b

© 2013 Zvi M. Kedem 64

Recovery Procedure: Same as Before

◆  The system crashes (RAM “disappears”)
◆  We look at the log.
◆  If there is [T s] but no [T c], we copy the old values of a

and b from the log onto the database on the disk
◆  If there is [T c] (and therefore also [T s]) we copy the new

values of a and b from the log onto the database on the
disk

◆  We then continue: reboot the database and continue
processing

◆  If we restored old values, we re-execute the transaction

◆  Next: Elaborate on the protocol with virtual memory and
checkpoints

© 2013 Zvi M. Kedem 65

Write Ahead Log

◆  We will discuss the most common way of handling
recovery

◆  The log will be a sequential file, which will be produced by
the DB OS

◆  It will describe the history of what has happened (more
precisely: what is going to happen)

◆  It will have 4 types of records
•  T starts; this records that transaction “T” started
•  T x a b; this records that transaction “T” modified “x” with the old

value being “a” and the new value being “b”
•  T abort; this records that transaction “T” was aborted
•  T commit; this records that transaction “T” was committed

◆  To simplify discussion, we will assume that no transaction
is aborted: the only failure is the failure of the RAM
•  Once we finish, we will essentially know what to do if transactions

are aborted

© 2013 Zvi M. Kedem 66

RAM and Disk

◆  “Real log” is log on disk + unwritten buffers
◆  “Real database” is database on disk + some more up-to-

date pages in RAM (in virtual memory)
◆  But of course, after a failure we only see what is on the

disk

RAM

Disk
database log

database
(cache: pages in virtual memory)

log
(unwritten buffer)

© 2013 Zvi M. Kedem 67

Assumptions And Remarks

◆  Note that if a write instruction is executed, the appropriate
value is generally written in a buffer in the RAM.

◆  At some later point in time it will be written on the disk
◆  If RAM fails between these two points in time, the new

value does not exist on disk and therefore is lost
◆  We will use the term actually written to indicate that the

value is written on disk (from RAM)
◆  As usual, in virtual memory systems, not every update to a

page is written on the disk, only “sometimes” the disk is
updated

◆  In general, only a small part of the database pages can be
kept in virtual memory

◆  For pages in virtual memory the current value is always in
virtual memory and maybe also on disk

© 2013 Zvi M. Kedem 68

Additional Assumptions On Execution

◆  The log always runs ahead of the execution in RAM
(not strictly necessary, but convenient to assume)

◆  So if xold is replaced by xnew in RAM, then in order
1.  The log record “T x xold xnew” is written in the log buffer (in RAM)
2.  xnew is written in the appropriate virtual page (in RAM)

◆  On the log, values are written in the same sequential
order in which the write instructions are issued
because it is a sequential file

◆  If the transaction executes a read of an item x, it gets the
latest value
•  It obtains it from the virtual memory pool or if not there, from the

database itself

© 2013 Zvi M. Kedem 69

Additional Assumptions On Execution

◆  The log always runs ahead of the execution on the
Disk

◆  So if xold is replaced by xnew, then in order
1.  The log record “T x xold xnew” is actually written in (actually

appended to) the log (but this may not take place if there is a
failure before this is done

2.  xnew is actually written on the disk (but this may actually never
happen even if there are no failures, we will see why later)

◆  On the log, values are actually written in the same
sequential order in which the write instructions are issued
because the log is a sequential file

© 2013 Zvi M. Kedem 70

Temporal Ordering of Constraints On Execution

The write may
never happen

© 2013 Zvi M. Kedem 71

“Tracing” Two Writes
And Their Temporal Ordering Constraints

◆  Originally, x = 10 and y = 20
◆  In the execution:

1.  x := 11
2.  y := 21

◆  Eight actions
a.  x := 11 in RAM
b.  y := 21 in RAM
c.  x := 11 on Disk
d.  y := 21 on Disk
e.  T x 10 11 in RAM
f.  T y 20 21 in RAM
g.  T x 10 11 on Disk
h.  T y 20 21 on Disk

May not have happened

x := 11 in RAM

y := 21 in RAM

x := 11 on Disk

T x 10 11 in RAM

T y 20 21 in RAM

T x 10 11 on Disk

T y 20 21 on Disk y := 21 on Disk

Nothing

May not have happened

© 2013 Zvi M. Kedem 72

Two Transactions (Programs)

◆  Transactions T1 and T2
◆  Initial values: a = 100, b = 300, c = 5, d = 80, e = 60, f =

70
◆  The instructions labeled with roman numerals are really

writing of values into the database (first RAM then later
perhaps on the Disk)

T1 T2
 read(a);
 read(b);
i: b := a + b;
 read(c);
ii: c := 2c;
iii: a := a + b + c + 50;

 read(e);
iv: e := e − 10;
 read(a);
v: a := a + 10;
 read(d);
 read(b);
vi: d := d + b;

© 2013 Zvi M. Kedem 73

A History Of An Execution In RAM

T1 T2
 read(a);
 read(b);
i: b := a + b;

 read(c);
ii: c := 2c;

iii: a := a + b + c + 50;

 read(e);

iv: e := e − 10;

 read(a);
v: a := a + 10;
 read(d);
 read(b);
vi: d := d + b;

© 2013 Zvi M. Kedem 74

Write Instructions For The History

◆  Log records

1. T1 starts
2. T1 b 300 400
3. T2 starts
4. T1 c 5 10
5. T2 e 60 50
6. T1 a 100 560
7. T1 commits
8. T2 a 560 570
9. T2 d 80 480
10. T2 commits

◆  Database items

(i) b 400
(ii) c 10
(iv) e 50
(iii) a 560
(v) a 570
(vi) d 480

© 2013 Zvi M. Kedem 75

Temporal Constraints

◆  There are certain temporal constraints, which we indicate
by “<“

If action1 < action2, where the actions are actual
writes, this means that necessarily, in any execution,
action1 has to come before action2

◆  1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 < 10
•  Because actual write to a sequential file (the log), are processed in

order of issuing of “non-actual” writes

◆  2 < i, 4 < ii, 5 < iii, 6 < iv, 8 < v, 9 < vi
•  Because actual writing to the log is ahead of actual writing to the

database

© 2013 Zvi M. Kedem 76

Temporal Constraints

◆  iii < v
•  Because an “older” value of a could not have existed in RAM after

a “newer” value was produced, therefore
•  If v is actually written, it has been in RAM (for some time) and iii is

not longer in RAM.
◆  Note however that iii need not have taken place!

•  Because, the disk is only “sometimes” updated (when there is no
room in virtual memory or maybe when we “force” update of the
blocks on the disk)

1 2 3 4 5 6 7 8 9 10

i ii iii iv v vi

© 2013 Zvi M. Kedem 77

A Possible Order of Actions

◆  The order of actual writes might be:

log database
1
2
3
4
 ii
 i

 5
6
7
8

 9
 iv
 vi
 v
10

© 2013 Zvi M. Kedem 78

Possible Situation After “write d” Was Issued

 Disk RAM

◆  Actual writes processed in order: 1, 2, 3, 4, ii, i, 5, 6, 7, 8
◆  Notes concerning “write d”:

•  It has already been reflected in the log in RAM
•  It has not yet been reflected in the DB in RAM
•  It has not yet been reflected in the log on Disk
•  It has not yet been reflected in the DB on Disk

DB log
a = 570
b = 400
d = 80

9. T2 d 80 480
DB log

a = 100
b = 400
c = 10
d = 80
e = 60
f = 70

1. T1 starts
2. T1 b 300 400
3. T2 starts
4. T1 c 5 10
5. T2 e 60 50
6. T1 a 100 560
7. T1 commits
8. T2 a 560 570

© 2013 Zvi M. Kedem 79

Disaster Strikes

◆  Assume a RAM failure occurs (“crash”)
◆  The log on the disk is examined: all of it “from the

beginning of time”
◆  Various actions are taken for the variables in the database
◆  There are two possibilities for each transaction in the log

1.  It has a commit record; therefore it has committed
2.  It does not have a commit record; therefore it has not

committed
◆  Recall: we assume no transaction was aborted during

execution

© 2013 Zvi M. Kedem 80

Recovery

◆  Transaction that has not committed

In this case we make sure that the values it produced are
not reflected in the database

We perform undo = copy old values from log to database
(and later, after recovery ends, rerun the transaction—we
need to do it for all “correct” submitted transactions that
have not completed as it is not their fault that they have
been “undone”)

◆  Transaction has committed

In this case, we make sure that the values it produced are
reflected in the database

We perform redo = copy new values from log to database

© 2013 Zvi M. Kedem 81

Consider Our Example

◆  If the last instruction on the log is 8 (as in our example),
then we have to do the following
•  undo T2
•  redo T1

◆  Because we know that
•  T2 has not committed, but the database may be contaminated by

some values produced by T2 and we need to restore the state as
if T2 never existed (in fact in our example no such contamination
took place, but could have)

•  T1 has committed and the log and the database together contain
all the information describing the state after T1 finished

© 2013 Zvi M. Kedem 82

The Algorithm With Some Details Missing
Will Explain Later As Part Of Checkpointing

◆  Undo all transactions for which the log has “start” but no
“commit”

◆  Redo all transactions for which the log has both "start"
and “commit”

◆  Remarks:
•  If the system crashes during the recovery stage, recovery needs

to be started again; this may have to be done repeatedly
•  All such “recoveries” together must be equivalent to a single

recovery: recovery must be idempotent
•  In this algorithm, a large number of transactions need to be

redone, since we do not know how far behind the log the database
updates are

◆  Note: We have to scan the log between (a) the point it was
started: i.e., when the system was turned on last, and (b)
its end
•  We assume that before the system is turned on (in the current

session), the Disk DB is completely up to date

© 2013 Zvi M. Kedem 83

Checkpointing

◆  A technique to obviate the need to look at the complete
log and thus reduce the work during recovery

◆  During the execution in addition to the activities of the
previous algorithm, periodically perform checkpointing in
this precise order:
1. Stop processing (suspend transactions)
2.  Force log buffers on Disk log (“force” means “actually write”)
3.  Force database buffers on Disk database
4.  Write on the log the list of transaction currently running (currently

suspended)
5.  Write CHECKPOINT DONE on the log
6.  Resume processing

◆  Checkpointing in fact synchronizes the database with the
log
•  The database reflects everything actually written in the log by this

time

© 2013 Zvi M. Kedem 84

Checkpointing

◆  We will simplify and assume that we can write in one
block a checkpoint record that both list the transactions
and that checkpointing was done

◆  So we combine steps 4 and 5
◆  During the execution in addition to the activities of the

previous algorithm, periodically perform checkpointing in
this precise order:
1. Stop processing
2.  Force log buffers on Disk log (“force” means “actually write”)
3.  Force database buffers on Disk database
4.  Write and force “checkpoint record” on log

•  List of transactions running at this time
•  The fact that we have done checkpointing

5.  Resume processing

© 2013 Zvi M. Kedem 85

Checkpointing

◆  This is not efficient enough
◆  We should not stop processing for checkpointing because

then transactions (which may be interactive) need to be
suspended

◆  There are a little more complex checkpointing
mechanisms, of incremental nature, that are significantly
more efficient

◆  We do not cover them here

© 2013 Zvi M. Kedem 86

Recovery With Checkpointing

◆  Start scanning the log you see on the disk backwards
from the end until you reach the first checkpoint record
you see, producing 2, initially empty, lists (sets)
•  Undo list
•  Redo list

◆  For every transaction for which you have a commit record,
add it to the redo list

◆  For each transaction for which you have a start record but
not a commit record, add it to the undo list

◆  For each transaction that is listed in the checkpoint record
for which there is no commit record, add it to the undo list

◆  Revised recovery algorithm:
1.  undo all transactions in the undo list
2.  redo all transactions in the redo list (but only from the

checkpoint to the end of the log)

© 2013 Zvi M. Kedem 87

Recovery With Checkpointing

Checkpoint Crash

S C

S C

S

S C

S

T1

T2

T3

T4

T5

Ignore T1
Undo T3 (all the way) and T5
Redo T2 (only from checkpoint on) and T4

S

C

Transaction started

Transaction committed

© 2013 Zvi M. Kedem 88

Recovery With Checkpointing

1.  Going backwards from the end of the log, for each record
belonging to an “undo” transaction perform undo
•  can stop when all “start” records for transaction in the “undo” list

have been seen

2.  Going forwards from the checkpoint record to the end of
the log, for each record belonging to a “redo” transaction
perform redo

◆  If you do not do checkpointing, use the above procedure,
but you have to use the beginning of the log as if it were a
checkpoint record
1.  Undo going from end to beginning
2.  Redo going from beginning to end

© 2013 Zvi M. Kedem 89

Example Log On The Disk After A Crash

T1 starts
T1 a 0 10
T1 commits
T2 starts
T2 b 0 10
T3 starts
T3 c 0 10
T3 c 10 20
checkpoint T2 T3
T4 starts
T2 a 10 20
T4 d 0 10
T5 starts
T6 starts
T6 e 0 10
T6 aborts (needs discussing we will ignore it here)
T2 commits
T5 a 20 500
T4 commits

© 2013 Zvi M. Kedem 90

Practice Recovery On This Log

◆  We ignore (for simplicity of discussion): transaction T6 and
item e

◆  Possible values on the disk after crash:
•  a = 10 or 20 or 500
•  b =10
•  c = 20
•  d = 0 or 10

◆  Undo list: T5, T3
◆  Redo list: T4, T2
◆  Actual writes

•  a := 20
•  c := 10
•  c := 0
•  a := 20
•  d := 10

© 2013 Zvi M. Kedem 91

Practice Recovery On This Log

◆  Final values
•  a = 20
•  b = 10
•  c = 0
•  d = 10

◆  Transactions existed (reflected): T1, T2, T4
◆  Transaction not existed (not reflected): T3, T5

© 2013 Zvi M. Kedem 92

Big Recovery Example

Initial values: a = b = c = d = e = f = g = h = i = j = k = 0
On the log after the crash:
T1 STARTS
T1 a, 0, 1
T2 STARTS
T2 b, 0, 1
T3 STARTS
T3 c, 0, 1
T4 STARTS
T4 d, 0, 1
T4 e, 0, 1
T4 COMMITS
T5 STARTS
T5 f, 0, 1
T6 STARTS
T6 g, 0, 1
T2 d, 1, 2
CHECKPOINT T1, T2, T3, T5, T6
T2 h, 0, 1

T2 COMMITS
T5 h, 1, 2

© 2013 Zvi M. Kedem 93

Big Recovery Example

T7 STARTS
T7 i, 0, 1
T5 COMMITS
T8 STARTS
T8 d, 2, 3
T8 j, 0, 1
T8 COMMITS
T3 d, 3, 4

CRASH

We look at the log

© 2013 Zvi M. Kedem 94

Big Recovery Example

undo list: T3, T7, T6, T1
redo list: T8, T5, T2
Values of database items at different points in time
 a b c d e f g h i j k
initial 0 0 0 0 0 0 0 0 0 0 0
after checkpoint 1 1 1 2 1 1 1 0 0 0 0
after crash possible 1 1 1 2 1 1 1 0 0 0 0
 3 1 1 1
 4 2
undo 0 0 3 0 0
redo 1
 3 2 1
from checkpoint 1 1 1
unmodified 0
after recovery 0 1 0 3 1 1 0 2 0 1 0
After the recovery: effects of committed transactions
 a b c d e f g h i j k
T4 1 1
T2 1 2 1

T5 1 2
T8 3 1

© 2013 Zvi M. Kedem 95

A Few Points

◆  A transaction should be acknowledged, and its definition
stored on the log, when accepted by the system

◆  The system must at some point execute it, unless it fails
on its own

◆  Thus
•  A transaction that was aborted due to a RAM failure must be re-

executed.
•  A transaction that was undone during recovery must be re-

executed.
◆  Note that even a “completed” transaction maybe need to

be redone if the commit record has not been written to the
log, which can happen even if all the new values are
written both to the log and to the database
•  Because we do not know that all the new values have been

reflected on the disk

© 2013 Zvi M. Kedem 96

Problem With Interactive Transactions

◆  Interactive transactions are difficult to handle satisfactorily.
◆  How can you rollback a message to the user?
◆  How can you recall $100 an automatic teller has already

handed out?
◆  Some workarounds

•  Forbid interactive transactions, or break them into smaller units of
consistency that are transactions on their own

•  Send all messages after commit
–  But what if after the crash you do not know if all the messages have been sent

(you cannot simultaneously send messages and record that you have done it,
so danger of inconsistency); do you “send $100” again?

© 2013 Zvi M. Kedem 97

SQL Support

◆  Transaction is started implicitly, by executing a
“reasonable” SQL statement
•  Or BEGIN WORK

◆  Transaction is ended explicitly by issuing one of the two
instructions
•  COMMIT, or
•  ROLLBACK

◆  If the instruction is ROLLBACK, the transaction is aborted
(by DB OS)

◆  If the instruction is COMMIT
•  Every ASSERTION and CHECK that has been declared as

DEFERRABLE (in the SQL DDL specification), and therefore was
not being checked during the transaction, is now automatically
checked

•  If there is a failure of such a consistency requirement, the
COMMIT is automatically converted to ROLLBACK and the
transaction is aborted

•  If everything is OK, the transaction is committed (by DB OS)

© 2013 Zvi M. Kedem 98

SQL Support

◆  DDL statements issue an implicit COMMIT after their
execution

◆  This implies that change to database schema is
committed too

◆  We do not discuss this further here

◆  SAVEPOINT can be added to save partial work
◆  This may be useful for implementing subtransactions

(smaller units of consistency)
◆  We do not discuss this further here

© 2013 Zvi M. Kedem 99

Advanced Material

© 2013 Zvi M. Kedem 100

Refining The Model

◆  It is interesting and important to consider the efficiency
implications of using recovery mechanism

◆  Some systems, such as Microsoft Access do not support
recovery

◆  In systems that do not support recovery mechanism, at
the very least, all the new data needs to be written to the
database before a transaction commits

◆  We will refine the model and study the implications of the
recovery mechanism costs

◆  We will still assume our standard write-ahead logging

© 2013 Zvi M. Kedem 101

Refining The Model

◆  As usual, the physical unit of access to the disk is a block,
which is the same size as page in the virtual memory pool

◆  The logical unit of access to a file is a record, which is
likely to be much smaller than a block

◆  So, what the log could contain is a sequence of tuples of
the form
 transaction_name, record_identifier, old_value, new_value

◆  Such tuples (together with control tuples, such as commit

records) are the records of the sequential log file

◆  Records of the log are buffered in RAM and when a full
page/block is assembled, it is written out to the disk and a
new page/block of the log is started

© 2013 Zvi M. Kedem 102

Refining The Model

◆  Records of the log are likely to be small compared to the
size of the block/page
•  So many of them fit in a block

© 2013 Zvi M. Kedem 103

Scenario

◆  We will consider a stream of frequent transactions, each
of them modifying one tuple of a relation, that is one
record of the file storing the relation

◆  These transactions are submitted by interactive users
(perhaps bank customers at ATM machines)

◆  So, the transactions have to be acknowledged as
successful relatively quickly

◆  So, the transactions have to be committed relatively
quickly

© 2013 Zvi M. Kedem 104

Without Recovery

◆  Each transaction modified only one record
◆  But a block of the database (containing this record) must

be written before commit
◆  So, to commit a transaction a block must be written

© 2013 Zvi M. Kedem 105

With Recovery

◆  Each transaction modified one record
◆  But a block of the log containing information about the

record (transaction_name, record_identifier, old_value,
new_value) must be written before commit

◆  So, to commit a transaction this block must be written
◆  But this block contains information for many

transactions
◆  So a single block write commits many transactions
◆  So the overhead of recovery may result in much more

efficient execution!

© 2013 Zvi M. Kedem 106

Example

◆  We will consider a simple example
◆  Our log, to simplify, will not contain transaction names
◆  The database is a vector of 72 integers
◆  A block contains 18 records, each of one integer
◆  There is room in the RAM for 5 blocks
◆  The whole database can be kept in RAM for processing,

but when a transaction commits, “something” must be
written to the disk

◆  There will be 6 transactions

© 2013 Zvi M. Kedem 107

Initial State Of The Memory Pool

◆  The vector needs 4
blocks, of 18
integers in the RAM
virtual memory pool

© 2013 Zvi M. Kedem 108

Without Recovery Mechanism

◆  We need to write one block to commit each transaction

© 2013 Zvi M. Kedem 109

Initial State Of Memory Pool

◆  Initial database in
RAM

© 2013 Zvi M. Kedem 110

After Transaction 1

◆  We need the new
values to be in
stable storage
before commit

◆  After an update of
position 1, block 1
needs to be written
out to the database
before commit can
be done and
reported to the user

© 2013 Zvi M. Kedem 111

After Transaction 2

◆  We need the new
values to be in
stable storage
before commit

◆  After an update of
position 21, block 2
needs to be written
out to the database
before commit can
be done and
reported to the user

© 2013 Zvi M. Kedem 112

After Transaction 3

◆  We need the new
values to be in
stable storage
before commit

◆  After an update of
position 72, block 4
needs to be written
out to the database
before commit can
be done and
reported to the user

© 2013 Zvi M. Kedem 113

After Transaction 4

◆  We need the new
values to be in
stable storage
before commit

◆  After an update of
position 1, block 1
needs to be written
out to the database
before commit can
be done and
reported to the user

© 2013 Zvi M. Kedem 114

After Transaction 5

◆  We need the new
values to be in
stable storage
before commit

◆  After an update of
position 21, block 2
needs to be written
out to the database
before commit can
be done and
reported to the user

© 2013 Zvi M. Kedem 115

After Transaction 6

◆  We need the new
values to be in
stable storage
before commit

◆  After an update of
position 1, block 1
needs to be written
out to the database
before commit can
be done and
reported to the user

© 2013 Zvi M. Kedem 116

With Recovery Mechanism

◆  We do not need to write one block to commit each
transaction

◆  We write one full log block to commit “many” transactions

© 2013 Zvi M. Kedem 117

Initial State Of Memory Pool

◆  Empty log block
and initial database
in RAM

© 2013 Zvi M. Kedem 118

After Transaction 1

◆  We need the new
values to be in
stable storage
before commit

◆  After an update of
position 1, log block
describing this
update needs to be
written out to the
database before
commit can be
done and reported
to the user

◆  If transactions
come frequently,
we can wait until
log block is full

© 2013 Zvi M. Kedem 119

After Transaction 2

◆  We need the new
values to be in
stable storage
before commit

◆  After an update of
position 21, log
block describing
this update needs
to be written out to
the database before
commit can be
done and reported
to the user

◆  If transactions
come frequently,
we can wait until
log block is full

© 2013 Zvi M. Kedem 120

After Transaction 3

◆  We need the new
values to be in
stable storage
before commit

◆  After an update of
position 72, log
block describing
this update needs
to be written out to
the database before
commit can be
done and reported
to the user

◆  If transactions
come frequently,
we can wait until
log block is full

© 2013 Zvi M. Kedem 121

After Transaction 4

◆  We need the new
values to be in
stable storage
before commit

◆  After an update of
position 1, log block
describing this
update needs to be
written out to the
database before
commit can be
done and reported
to the user

◆  If transactions
come frequently,
we can wait until
log block is full

© 2013 Zvi M. Kedem 122

After Transaction 5

◆  We need the new
values to be in
stable storage
before commit

◆  After an update of
position 21, log
block describing
this update needs
to be written out to
the database before
commit can be
done and reported
to the user

◆  If transactions
come frequently,
we can wait until
log block is full

© 2013 Zvi M. Kedem 123

After Transaction 6

◆  We need the new
values to be in
stable storage
before commit

◆  After an update of
position 1, log block
describing this
update needs to be
written out to the
database before
commit can be
done and reported
to the user

◆  If transactions
come frequently,
we can wait until
log block is full

© 2013 Zvi M. Kedem 124

Committing The Transactions

◆  The block of the log is written out, committing the
transactions

◆  Nothing is done to the four blocks of the database residing
in RAM (at least for a while)

© 2013 Zvi M. Kedem 125

New State Of Memory Pool

◆  Ready for new
transactions

© 2013 Zvi M. Kedem 126

Conclusion

◆  Running with recovery resulted in significant reduction of
block writes

◆  In addition, of course, to supporting recovery well

© 2013 Zvi M. Kedem 127

Key Ideas

◆  ACID properties
◆  Need for recovery
◆  History (schedule)
◆  Recoverable histories
◆  Cascading aborts
◆  Strict histories
◆  Write ahead log
◆  Algorithm for recovery
◆  Checkpointing
◆  SQL support

