
© 2014 Zvi M. Kedem 1

Unit 10
Transaction Processing: Concurrency

© 2014 Zvi M. Kedem 2

Concurrency in Context

Base	
 Tables
Constraints,	
 Privileges

Base	
 Tables
Constraints,	
 Privileges

Files
Indexes,	
 Distribution

Files
Indexes,	
 Distribution

Standard	
 OS
Standard	
 Hardware

Standard	
 OS
Standard	
 Hardware

ConcurrencyConcurrency
RecoveryRecovery

Derived	
 Tables
Constraints,	
 Privileges

Derived	
 Tables
Constraints,	
 Privileges

DerivedDerived

ImplementedImplemented

Relies	
 onRelies	
 on

Runs	
 onRuns	
 on

Application	
 Data	
 Analysis	
 (ER)Application	
 Data	
 Analysis	
 (ER)

Normalization	
 (NFs)Normalization	
 (NFs)

Transaction	
 Processing	
 (ACID,	
 Sharding)Transaction	
 Processing	
 (ACID,	
 Sharding)

Queries	
 (DML)Queries	
 (DML)

User	
 Level
(View	
 Level)
User	
 Level
(View	
 Level)

Community	
 Level
(Base	
 Level)

Community	
 Level
(Base	
 Level)

Physical	
 LevelPhysical	
 Level

DBMS	
 OS	
 LevelDBMS	
 OS	
 Level

Centralized
Or

Distributed

Centralized
Or

Distributed

Queries	
 (DML)Queries	
 (DML)

Schema	
 Specification	
 (DDL)Schema	
 Specification	
 (DDL)

Query	
 Execution	
 (B+,	
 …,	
 Execution	
 Plan)Query	
 Execution	
 (B+,	
 …,	
 Execution	
 Plan)

© 2014 Zvi M. Kedem 3

Transactions

◆  Transaction is an execution of a user’s program
◆  In the cleanest and most important model it is supposed

to satisfy the ACID conditions
◆  Atomic
◆  Consistent
◆  Isolated
◆  Durable

© 2014 Zvi M. Kedem 4

Recovery and Concurrency Management

◆  The job of these recovery/concurrency modules of the
database operating system is to assure the ACID
properties, and handle other related issues

◆  Recovery does ACD, but can use help from Concurrency,
though strictly Recovery is needed even if there is no
Concurrency

◆  Concurrency does I while possibly (and in our description,
definitely) supporting ACD

© 2014 Zvi M. Kedem 5

The Concurrency Problem

◆  Here we focus on Isolation in the presence of
concurrently executing transactions

◆  Each transaction should run as if there were no other
transactions in the system

◆  Our execution platform: a single centralized system, with
concurrent execution of transactions

◆  Distributed databases more difficult to handle, as we will
see briefly later in the class

© 2014 Zvi M. Kedem 6

A Toy Example

◆  A database consisting of two items: x, y
◆  The only criterion for correctness is the single integrity

constraint:

 x = y

◆  Consider two simple transactions, T1 and T2
•  T1: x := x + 1; y := y + 1
•  T2: read and print x; read and print y

◆  Both transactions are correct: they preserve the

consistency of the database

© 2014 Zvi M. Kedem 7

An Execution History

◆  An execution history
 T1 T2

 x := x + 1

 read and print x
 read and print y
 y := y + 1

◆  T2 read x after it was incremented
◆  T2 read y before it was incremented
◆  Note that T2 thinks that the database is inconsistent and

people who see the report will be upset

© 2014 Zvi M. Kedem 8

A Toy Example

◆  A database consisting of two items: x, y
◆  The only criterion for correctness is the single integrity

constraint:

 x = y

◆  Consider two simple transactions, T1 and T2
•  T1: x := x + 1; y := y + 1
•  T2: x := 2x; y := 2y

◆  Both transactions are correct: they preserve the

consistency of the database

© 2014 Zvi M. Kedem 9

An Execution History

◆  An execution history
 T1 T2

 x := x + 1

 x := 2x
 y := 2y
 y := y + 1

◆  After the execution:
•  xnew = 2(xold + 1) = 2xold + 2
•  ynew = 2yold + 1

◆  Therefore, if we had x = y, we now have: x ≠ y !

◆  Note, the history was not recoverable, so could not be
permitted in any case, but we will not focus on this now

◆  Ultimately we will have strict histories (at end of unit)

© 2014 Zvi M. Kedem 10

The Problem

◆  The problem was: the transactions were not Isolated:
•  T2 read the old value of y and the new value of x
•  T1 read the old value of x and the new value of y

◆  But sometimes this is not a problem, if the operations
performed are commutative

◆  So assume now, that T1 multiplied x and y by 4 and T2
multiplies x and y by 2

© 2014 Zvi M. Kedem 11

An Execution History

◆  An execution history

 T1 T2

 x := 4x
 x := 2x
 y := 2y
 y := 4y

◆  After the execution:
•  xnew = 2(4xold) = 8xold
•  ynew = 4(2yold) = 8yold

◆  Therefore, if we had x = y, we now have x = y also

© 2014 Zvi M. Kedem 12

Abstraction

◆  In general, DB OS cannot understand what the transaction
does and which operations are commutative

◆  The DB OS can only see patterns of reads and writes
•  Who read/wrote what item and when, and what was the value

read/written
◆  Abstracting out, we get for our example:

 T1 T2

 READ x 0
 WRITE x 1
 READ x 1
 WRITE x 2
 READ y 0
 WRITE y 0
 READ y 0
 WRITE y 1

© 2014 Zvi M. Kedem 13

Abstraction

◆  In general, DB OS cannot understand what to do based
on knowing the values read/written

◆  The DB OS can understand only patterns of reads and
writes
•  Who read/wrote what item and when

◆  Abstracting out, we get for our example:

 T1 T2

 READ x
 WRITE x
 READ x
 WRITE x
 READ y
 WRITE y
 READ y
 WRITE y

© 2014 Zvi M. Kedem 14

Abstraction

◆  Because there are possible actions that result in this
pattern of accesses that produce incorrect
executions, we must prevent such patterns, even
though sometimes they may produce correct
executions

◆  Here it is relatively easy to see what went wrong
◆  We can say:

•  T1 wrote something and then T2 read it
•  T2 wrote something and then T1 read

◆  We will want in general to avoid such “circular”
dependencies, but they may be more subtle that in this
example

◆  We need a formal and precise statement
◆  And we also want strict histories to help recovery

© 2014 Zvi M. Kedem 15

Concurrency And Correctness?

◆  In general, it may be very difficult to define under what
conditions a concurrent system is correct

◆  So we will say: no errors are introduced because of
concurrent execution that would not have occurred in
a serial execution

◆  Because of the difficulty of figuring out what is correct and
what is not, concurrency control mechanisms are to some
extent “overkill”
 They use mechanisms that may sometimes be too
strong, but will always be strong enough (unless we
weaken them on purpose to speed up processing)

© 2014 Zvi M. Kedem 16

Formal Definition Of History
In Our Context

◆  A history (or schedule) is a trace of behavior of a set of
transactions, listing the reads and the writes in order of
execution

◆  In our example

 T1: READ x
 T1: WRITE x
 T2: READ x
 T2: WRITE x
 T2: READ y
 T2: WRITE y
 T1: READ y
 T1: WRITE y

© 2014 Zvi M. Kedem 17

An Important Restriction For Now

◆  We will assume that no items are added during a run of a
transaction
•  This is so called “phantoms” problem

◆  This is not realistic but can be easily fixed later
◆  To state our assumption more formally

The database consists of a fixed set of items

Transactions may read and write (modify) them

© 2014 Zvi M. Kedem 18

Serial Histories

◆  A history is serial if it describes a serial execution:
 Transactions follow each other: no concurrency
◆  Example of a serial execution

 T1: READ x
 T1: WRITE x
 T1: READ y
 T1: WRITE y
 T2: READ x
 T2: WRITE x
 T2: READ y
 T2: WRITE y

◆  A concurrent execution that happens to be serial is a
correct concurrent execution
•  By assumption, each transaction is correct when run by itself

© 2014 Zvi M. Kedem 19

Serializable Histories

◆  We are given:
•  A database and its initial state
•  A set of transactions
•  A history H of these transactions on this database in this initial

state
◆  H is serializable if it is equivalent to some serial history H'

of this set of transactions on this database in this initial
state

◆  We need to define “equivalent” formally

© 2014 Zvi M. Kedem 20

Equivalent Histories

◆  Let us assume, that the initial state of the database
(before current execution starts) was produced by some
transaction T0

◆  Then some transactions T1, T2, …, Tn executed (possibly
concurrently fully or partially) and the execution ended
producing some final state of the database

◆  Let us now consider two histories, H and H'
◆  We will say that these histories are equivalent if the

behavior is the same in some formal sense in both
histories
•  Transactions read and write the same values
•  The final state of the database is the same

◆  We will discuss next a more “operational” definition of
equivalency, which does not rely on values (which are
generally not know) but on temporal order of certain
actions

© 2014 Zvi M. Kedem 21

Operation Definition Of Equivalent Histories

◆  In both histories, if a transaction Tj read some item x, it
read the value that was written by the same Ti (Ti could be
T0)
•  This implies, that Tj read the same values in both histories, and as

we assume that the transactions are deterministic, Tj produced the
same values when it wrote

◆  In both histories, each item x is last written by the same
transaction
•  This implies that the final state of the database is the same under

both histories

© 2014 Zvi M. Kedem 22

Serializable Histories

◆  Assume
•  H and H' equivalent
•  H' serial

◆  H' was correct, because it was a serial execution
◆  Therefore H was correct, because it was equivalent to H'
◆  Therefore:

Each serializable history describes a correct
execution!

◆  How to determine if a history is serializable?
◆  We will do something weaker

•  Whenever we say that a history is serializable, it will indeed will be
serializable

•  But sometimes when it is serializable but we will not be able to
recognize this

◆  So we may be overly cautious but will never accept
incorrect executions

© 2014 Zvi M. Kedem 23

Serializable Histories

◆  So we really have algorithms that partition histories into
two classes
•  Serializable
•  Perhaps not serializable

◆  We will focus on conflict serializability
◆  We will partition histories into two classes:

•  Conflict serializable (guaranteed to be serializable)
•  Not conflict serializable (we do not know whether they are

serializable or not)

© 2014 Zvi M. Kedem 24

Conflict Serializable Histories

◆  The idea is to figure out something along the following
lines:
 If a transaction accessed some item, who else could have
accessed this item in a way that implies a potential
temporal constraint on any equivalent serial schedule

◆  Tests are local and therefore will be
•  Efficient
•  Non-comprehensive: more temporal constraints will be imposed

than needed in general; therefore serializable histories may not be
conflict-serializable and we will act as if there were not serializable
and not permit them

◆  We proceed to examine four histories of two transactions
each and look only at one operation from each of the two
transactions: we ignore everything else

◆  Here and later we may write “W” for “WRITE” and “R” for
“READ”

© 2014 Zvi M. Kedem 25

Conflicting Operations
(No Implication This Is A Bad Thing)

 .
T1: W x
.

 T2: R x
.

◆  It is possible that these are the only operations (we do not
examine others)

◆  Based only on the above, it is not possible that the
following serial history is equivalent to our history
 T2 (all instructions of this transaction, whatever they are)
T1 (all instructions of this transaction, whatever they are)

◆  Because:
•  In the original history T2 read x as produced by T1
•  In the above serial history T2 could not have done this

◆  The only hope for equivalent serial history: T1 before T2
◆  But this may not work either

© 2014 Zvi M. Kedem 26

Conflicting Operations
(No Implication This Is A Bad Thing)

 .
T1: R x
.

 T2: W x
.

◆  It is possible that these are the only operations (we do not
examine others)

◆  Based only on the above, it is not possible that the
following serial history is equivalent to our history
 T2 (all instructions of this transaction, whatever they are)
T1 (all instructions of this transaction, whatever they are)

◆  Because:
•  In the original history T1 read x not produced by T2
•  In the above serial history T1 had to read x produced by T2

◆  The only hope for equivalent serial history: T1 before T2
◆  But this may not work either

© 2014 Zvi M. Kedem 27

Conflicting Operations
(No Implication This Is A Bad Thing)

 .
T1: W x
.

 T2: W x
.

◆  It is possible that these are the only operations (we do not
examine others)

◆  Based only on the above, it is not possible that the
following serial history is equivalent to our history
 T2 (all instructions of this transaction, whatever they are)
T1 (all instructions of this transaction, whatever they are)

◆  Because:
•  In the original history x was produced for the future by T2
•  In the above serial history T2 could not have done this

◆  The only hope for equivalent serial history: T1 before T2
◆  But this may not work either

© 2014 Zvi M. Kedem 28

Conflicting Operations
(No Implication This Is A Bad Thing)

 .
T1: R x
.

 T2: R x
.

◆  It is possible that these are the only operations (we do not
examine others)

◆  Based only on the above, it is possible that the following
serial history is equivalent to our history
 T2 (all instructions of this transaction, whatever they are)
T1 (all instructions of this transaction, whatever they are)

◆  Because:
•  Order of reads does not matter

◆  Same for
 T1 (all instructions of this transaction, whatever they are)
T2 (all instructions of this transaction, whatever they are)

© 2014 Zvi M. Kedem 29

Conflicting Operations
(No Implication This Is A Bad Thing)

◆  Why did we consider Read as conflicting with Write?
◆  After a transaction that read did not do anything, so why

does it matter what it read
•  For similar reason that we had while discussing recoverable

histories
◆  Consider the following case:

•  Initially: x = 0 and y = 0
•  T1 is: x := 1
•  T2 is: if x = 0 then y := 1
•  At the end: x = 1 and y = 0

◆  Consider the following case with reversed order:
•  Initially x = 0 and y = 0
•  T2 is: if x = 0 then y := 1
•  T1 is: x := 1
•  At the end: x = 1 and y = 1

◆  So we need to pay attention to this as the “reading
transaction,” could have done something else

© 2014 Zvi M. Kedem 30

Conflicting Operations
 (No Implication This Is A Bad Thing)

◆  We will define when two operations (READ / WRITE)
conflict (does not necessarily mean a bad thing
happened)
•  Intuitively: their relative order may matter

◆  If a history contains

 . . .
 Ti: OP' x
 . . .
 Tj: OP'' x
 . . .

◆  Ti and Tj conflict if and only if:
•  i ≠ j (two transactions)
•  x (same variable/item accessed by both transactions)
•  At least one of the OP' and OP'' is a WRITE

© 2014 Zvi M. Kedem 31

Conflict Graphs

◆  Conflict graph is used to decide whether a history
•  Is conflict serializable, or
•  Is not conflict serializable

◆  The vertices of the conflict graph will be the transactions
◆  We draw an arc from T' to T'' if the two transactions

conflict and T' made the relevant access first
◆  Sometimes we may label the arc by the item that was

accessed (just for easier reading of the graph, it is not
needed)

© 2014 Zvi M. Kedem 32

Our Example

◆  Back to our example:

T1: READ x
T1: WRITE x

 T2: READ x
 T2: WRITE x
 T2: READ y
 T2: WRITE y

T1: READ y
T1: WRITE y

◆  Note: there is a cycle

 T1 T2
READ x
WRITE x

READ x
WRITE x
READ y
WRITE y

READ y
WRITE y

T1 T2

© 2014 Zvi M. Kedem 33

Serial And Conflict-Serializable Histories

◆  The conflict graph for a serial history does not have cycles
(is acyclic)

◆  All arcs point from an “older” to a “younger” transaction
◆  Serial history

 T1: READ x
 T1: WRITE x
 T1: READ y
 T1: WRITE y
 T2: READ x
 T2: WRITE x
 T2: READ y
 T2: WRITE y

T1 T2

© 2014 Zvi M. Kedem 34

Serial And Serializable Histories

◆  Another history:
 T1: READ x

 T3: READ z
 T3: WRITE z
 T2: READ z
 T2: WRITE z
 T1: WRITE x
 T3: READ x
 T3: WRITE x

◆  This conflict graph does not have a cycle, and the history
is serializable

◆  Equivalent serial history:
 T1: READ x
 T1: WRITE x
 T3: READ z
 T3: WRITE z
 T3: READ x
 T3: WRITE x
 T2: READ z
 T2: WRITE z

T1 T3 T2

© 2014 Zvi M. Kedem 35

Conflict Graphs And Conflict Serializability

◆  Theorem: If the conflict graph is acyclic (has no
cycles), then the history is serializable

◆  The proof is simple: The graph can be topologically
sorted:
•  An order can be given to transactions, so all the arcs go from early

(old) to late (young) transactions
◆  Topological sorting of an acyclic graph on N vertices

Create N levels.
 Starting from the top level, for each level do the following:

•  Pick a vertex that has no incoming edges (there is always such a

vertex as the graph is acyclic)
•  Place it on the level
•  Remove it, and the edges outgoing from it from the graph

 Redraw the graph, keeping the vertices on the levels

© 2014 Zvi M. Kedem 36

Example Of A Serializable History

T1
Wy

T2

Rz

Wx

T3

Wy
Wz

T4

Rx
Wx

Rw
Wu

T5

Rx
Wx

T6

Rw
Wv

T1

T4

T5

T6 T2

T3

T2

T4

T6

T1

T5

T3

© 2014 Zvi M. Kedem 37

Conflict Graph Is “Too Pessimistic”

◆  There are serializable histories (i.e., equivalent to serial)
that have cyclic conflict graph.

◆  Following is an example
•  R x is superfluous but added to make the example “more realistic”

◆  Each transaction “behaves the same” in both histories.
◆  The final database is the same in both histories.

T1

T2

T3

T1
Rx

Wy

Wz

T2

Rx

Wy
Wz

T3

Rx
Wy
Wz

T1

T2T3

Conflict graph (not acyclic)History Equivalent Serial history

© 2014 Zvi M. Kedem 38

A Common Practice:
Rigorous Two-Phase Locking Protocol

◆  Commercial systems generally allow only histories that
are conflict-serializable, i.e., allow histories that have
acyclic conflict graphs

◆  They generally do not examine the conflict graph as it is
being created

◆  Instead, DB OS forces the transactions to follow a
protocol, which will assure that the resulting graph
would be acyclic (if examined)

◆  Therefore there is no need to examine the graph
◆  The major protocol in use: rigorous two-phase locking
◆  The protocol uses locking

© 2014 Zvi M. Kedem 39

Locks

◆  Two types of lock can be set on each item:
•  X-lock (eXclusive lock)
•  S-lock (Shared lock)

◆  Compatibility of locks for an item:
•  Any number of transactions can hold S-locks on the item;
•  If any transaction holds an X-lock on the item, then no transaction

may hold any lock on the item

◆  There are privileges associated with locks:
•  To write an item, a transaction must hold an X-lock on it
•  To read an item, a transaction must hold an S-lock or an X-lock on

it

© 2014 Zvi M. Kedem 40

Locks

◆  If a transaction wants to get a lock (we will see later how/
when this is done)
•  DB OS may give the lock to it if possible (obeys compatibility as

above),
•  Otherwise the transaction may need to wait for the lock, or the DB

OS may abort it
◆  When the transaction no long needs a lock (we will know

later when this time arrives) the lock may be released by
the DB OS

◆  There problems that need to be addressed (well known
from OS, so we do not focus on them for now):
•  Deadlocks
•  Starvation

© 2014 Zvi M. Kedem 41

Acquiring And Releasing Locks

◆  T is one of the following states with respect to x
•  N x (does not have a lock on x)
•  S x (has a shared lock on x)
•  X x (has an exclusive lock on x)

◆  Operations to acquire locks (lock requests)
•  T: N → S x (T acquires an S-lock on x), also written T S x
•  T: N → X x (T acquires an X-lock on x), also written T X x
•  T: S → X x (T upgrades from an S-lock to an X-lock on x)

◆  Operations to release locks (unlock requests)
•  T: S → N x (T releases an S-lock on x), also written T N x
•  T: X → N x (T releases an X-lock on x), also written T N x
•  T: X → S x (T downgrades from an X-lock to an S-lock on x)

© 2014 Zvi M. Kedem 42

Locking Is Not Enough

◆  In our example, we can bracket each operation by
acquiring and releasing a lock and still get a non-
serializable history (we put it just for the first operation, we
need to do for all, but no space to do it here…)

 T1: S x
 T1: READ x
 T1: N x
 T1: WRITE x
 T2: READ x
 T2: WRITE x

 T2: READ y
 T2: WRITE y
 T1: READ y
 T1: WRITE y

© 2014 Zvi M. Kedem 43

Two-Phase Locking
Constraint On Timing

◆  Two phase locking (2PL) satisfies the following
constraint

◆  During its execution, each transaction is divided into two
phases:
•  During the first phase, it issues lock requests: N → S x, N → X x,

S → X x; this phase is also called the growing phase
•  During the second phase, it releases the locks: X → N x, S → N

x, X → S x; this phase is also called the shrinking phase

◆  For each transaction Ti, we can define a time point, Li, its
lock point: the boundary between the first and the second
phase

◆  For convenience, this will be the point when Ti requires its
last lock

© 2014 Zvi M. Kedem 44

Two-Phase Locking
Constraint On Timing

◆  This transaction followed the two-phase locking protocol
1.  N → S a
2.  N → X b
3.  S → X a
4.  N → S c
5.  N → X d
6.  X → S d
7.  S → N c
8.  X → N a
9.  S → N d
10. X → N b

◆  The lock point was 5
◆  The growing phase was 1–5
◆  The shrinking phase was 6–10

© 2014 Zvi M. Kedem 45

Two-Phase Locking
Constraint On Timing

◆  This transaction did not follow the two-phase locking
protocol
1.  N → S a
2.  N → X b
3.  S → X a
4.  N → S c
5.  X → S a
6.  N → X d
7.  S → N c
8.  S → N a
9.  X → N d
10. X → N b

◆  There was a “growing” action (6) after a “shrinking” action
(5)

◆  Therefore, the transaction did not follow the two-phase
locking protocol

© 2014 Zvi M. Kedem 46

Example Of Two Phase Locking

 T1 T2
1.  Starts
2.  S a
3.  Starts
4.  R a
5.  S b
6.  X c
7.  R b
8.  S c (waits)
9.  W c
10.  X d
11.  N c
12.  N b
13.  S c
14.  R c
15.  N c
16.  N a
17.  Commits
18.  W d
19.  N d
20.  Commits

© 2014 Zvi M. Kedem 47

Example Of Two Phase Locking

◆  Some observations follow
◆  The execution was concurrent and not serial
◆  L1 = 13
◆  L2 = 10
◆  Transactions do not have to unlock items in the same

ordered they locked them
◆  A transaction can continue executing and accessing items

it still has locked even after it has unlocked some items
◆  This history is not recoverable: more about this later

© 2014 Zvi M. Kedem 48

Our Original Non-Serializable History

 T1 T2
1.  R x
2.  W x
3.  R x
4.  W x
5.  R y
6.  W y
7.  R y
8.  W y

◆  This could not have happened under 2PL, because
•  T2 had to have an X-lock on y before (6).
•  T1 had to have an X-lock on y before (8)
•  Since T1 cannot unlock y and then lock it again (2PL), it could

have locked it only after (6)
•  But T1 had to both X-lock x before (2) and unlock it before (4), so

that T2 could lock it
•  But then T1 unlocked x and then locked y, a contradiction

© 2014 Zvi M. Kedem 49

But Using Two Phase Locking

1.  T1 T2
2.  X x
3.  R x
4.  W x
5.  X x (waits)
 T1 completes

 T2 continues and completes

◆  So we got a serializable execution, which happens to be
serial in this case

© 2014 Zvi M. Kedem 50

Another Example

1.  T1 T2
2.  X x
3.  R x
4.  W x
5.  X y
6.  W y
7.  X z
8.  X z (waits)
9.  N y
10.  W z
11.  N z
12.  X z
13.  W z
14.  N z
15.  N x

◆  So we got a serializable execution, which was concurrent
in this case

© 2014 Zvi M. Kedem 51

2PL Guarantees Serializability

◆  Theorem: if all the transactions in the system follow
the two-phase locking protocol, then the conflict
graph is acyclic (and therefore the history is
serializable)

◆  Lemma: If T1 → T2 in the conflict graph, then L1 < L2
in time (L1 was earlier than L2)

◆  Proof:
•  On some x, for conflicting operations (at least one of them WRITE)

T1 OP1 x at time t1
T2 OP2 x at time t2

t1 < t2

© 2014 Zvi M. Kedem 52

2PL Guarantees Serializability

◆  Therefore:
•  T1 held a lock on x at time t1
•  T2 held a lock on x at time t2
•  the two locks could not co-exist in time as at least one of them

was an X-lock (to allow the WRITE)
◆  So T2 could lock x only after T1 unlocked it and therefore

for some instances t' and t'', such that t1 < t' < t'' ≤ t2:
•  T1 unlocked x at t'
•  T2 locked x at t''

◆  So by the definitions of L1 and L2
•  L1 < t' < t'' ≤ L2

◆  This finishes the proof of the lemma

© 2014 Zvi M. Kedem 53

2PL Guarantees Serializability

◆  Assume, by contradiction, that a history obtained following
2PL contains a cycle T1 → T2, T2 → T3, …, Tn → T1

◆  By the lemma:
•  L1 < L2
•  L2 < L3
•  …
•  Ln < L1

◆  Therefore: L1 < L2 < L3 < … < Ln < L1
◆  And we reach a contradiction: L1 < L1.
◆  Therefore there could not have been a cycle and the

history was serializable

© 2014 Zvi M. Kedem 54

Standard 2PL Is Not Sufficient

◆  It allows non-recoverable histories, such as
 T1 T2
 X x
W x
N x

 S x
 R x
 X y
 W y
 N x
 N y
 Commit

Abort

◆  T2 has to abort, but cannot because it has committed
◆  So we will modify the protocol so that it only produces

strict histories (better than recoverable) and this is
exactly what recovery needed (as we discussed and
assumed in the recovery unit)

© 2014 Zvi M. Kedem 55

Strict 2PL

◆  All the conditions of 2PL
◆  All exclusive locks are released after commit or abort
◆  Therefore:

•  Every transaction reads only values produced by transactions that
have already committed

•  Every transaction, if it writes an item, all the transactions that
previously wrote that item have already committed or aborted

◆  These were exactly the conditions for a strict history

© 2014 Zvi M. Kedem 56

Rigorous 2PL

◆  In practice, the programmer does not issue the various
locking and unlocking instructions

◆  In practice, whenever a transaction attempts to access a
variable for the first time in some mode (Read or Write),
the DB OS tries to give it the appropriate lock (Shared or
Exclusive)

◆  The transaction may have to wait to get the lock (and may
have to be aborted in case there are deadlocks), but all
this is transparent to the programmer who wrote the
transaction

◆  All locks released only after a commit or an abort
◆  So: concurrency control is transparent to the programmer

◆  And of course histories are strict (and therefore also no
cascading aborts and they are recoverable)

© 2014 Zvi M. Kedem 57

DB OS Enforcing Rigorous Histories

◆  When transaction issues a Read on x
•  If it has any lock on x, let it proceed
•  Otherwise, if no other transaction has an X-lock on x, give it an S-

lock
•  Otherwise, keep it waiting until an S-lock can be given
•  May have/want to abort it

◆  When a transaction issues a Write on x
•  If it has an X-lock on x, let it proceed
•  Otherwise, if no other transaction has any lock on x, give it an X-

lock, by either giving it directly or by upgrading/converting an
existing S-lock it has on x to give it an X-lock

•  Otherwise, keep it waiting until an X-lock can be given
•  May have/want to abort it

◆  Release all locks only after commit or abort (of course,
abort requires undoing, which recovery should take care
of, though we did not discuss details there)

© 2014 Zvi M. Kedem 58

Phantoms

◆  We assumed in our discussion that no new items are
added to the database

◆  If new items are added, phantoms may appear
◆  For example if we to multiply every account for SSN

between 123456789 and 200000000 by 2 (converting into
a different currency, perhaps) the following may happen:
•  We X-lock all accounts
•  We start multiplying accounts by 2
•  In the middle of processing another account is added
•  We do not know about it, so we do not multiply it by 2

◆  Such accounts that appear in the middle and not
processed are phantoms

◆  To handle phantoms, that is preventing their appearance,
range locks can be introduced

◆  So in our example accounts between 123456789 and
200000000 cannot be added during processing

© 2014 Zvi M. Kedem 59

SQL Standard and Oracle Implementation

© 2014 Zvi M. Kedem 60

Transaction And Queries

◆  A transaction is a sequence of queries
◆  A typical query is a SELECT statement

◆  We encountered this before, without explicitly talking
about this

◆  Some constrains needed to be satisfied after each query:
they could not be deferred

◆  Some constrains needed to be satisfied only after the last
query: they could be deferred

© 2014 Zvi M. Kedem 61

SQL Access Modes And Isolation Levels

◆  The standard is somewhat controversial and not
consistently applied in commercial systems

◆  User can set access mode and isolation level for a
transaction

◆  Access mode is one of the following
•  READ ONLY (implies the transaction will only read; if it tries to

write it must be aborted)
•  READ WRITE (implies the transaction may read and write)

◆  Isolation level is one of the following, in decreasing order
of correctness
•  SERIALIZABLE
•  REPEATABLE READ
•  READ COMMITTED
•  READ UNCOMMITTED

© 2014 Zvi M. Kedem 62

Serializable Isolation Level
(Reference Implementation Using Locks)

◆  Two-phase locking with X-Locks and S-Locks held until
after commit

◆  Guarantees Serializability (in our original sense)

◆  Range Locks are required to handle phantoms
◆  That is, a transaction can lock, say, all records with ID in

the range from 100 to 199
◆  Guarantees no phantoms
◆  First we see why something needs to be done to handle

phantoms

© 2014 Zvi M. Kedem 63

Handling Phantoms

◆  Imagine that we want to give each employee in the range
$1 raise, and do not consider phantoms

◆  We lock sequentially all the existing items in the range,
one by one, and give each employee a raise

◆  Say we just have 3 employees in the range
◆  We lock 105, give raise, lock 135, give raise, lock 189,

give raise, unlock all
◆  After 135 got a raise, a new item with ID 127 is inserted.

There is no conflict with anything but our transaction does
not know about it as it already moved beyond 135

◆  Item 127 was a phantom
◆  But if the range 100…199 is locked, no items can be

added
◆  In this way phantoms are prevented

© 2014 Zvi M. Kedem 64

Read Repeatable Isolation Level
(Reference Implementation Using Locks)

◆  Two-phase locking with X-Locks and S-Locks held until
after commit

◆  No Range Locks are assumed

◆  Guarantees Serializability (in our original sense)
◆  Phantoms possible

© 2014 Zvi M. Kedem 65

Read Committed Isolation Level
(Reference Implementation Using Locks)

◆  Two-phase locking for writing, with X-Locks held until after
commit

◆  For reading a committed value is given to the transaction
(from the log, likely)

◆  Different committed values of the same item can be given
at different point of execution of the transaction

◆  But even if the same committed value is given the
execution may not preserve consistency of the
database even if the transactions when run serially
preserve it
•  Example next

© 2014 Zvi M. Kedem 66

Read Committed Isolation Level
Does Not Necessarily Preserve Consistency

◆  Consistency requirement: a + b ≥ 1
◆  T1: if a = 1 then b := 0
◆  T2: if b = 1 then a := 0
◆  Old committed values: a = b = 1
◆  History

 T1 T2
 Read a
 Read b
 X-lock b
 b := 0
 Commit
 Unlock b
 X-lock a
 a := 0
 Commit
 Unlock a

◆  New committed values: a = b = 0

© 2014 Zvi M. Kedem 67

Not Being Serializable May Be OK

◆  Alice has account a and Bob has account b
◆  They both can look at both accounts but only modify their

own accounts
◆  Each of them, when seeing that the other’s account is

below $100 adds $100 to his/her own account
◆  Let us look at a scenario in which T1 is run by Alice and

T2 is run by Bob

© 2014 Zvi M. Kedem 68

Not Being Serializable May Be OK

◆  Initial state a = b = $50 and these are committed values
◆  History

 T1 T2
 Read a
 Read b
 X-lock b
 b := $150
 Commit
 Unlock b
 X-lock a
 a := $150
 Commit
 Unlock a

© 2014 Zvi M. Kedem 69

Not Being Serializable May Be OK

◆  This could not have happened in any serial execution
◆  In a serial execution we will end up in one of the two

situations
•  a = $50 and b = $150
•  a = $150 and b = $50

◆  However, they may not care that both of them replenished
their accounts thinking that the other’s account was too
low

◆  So we could allow this

◆  Non-serializable histories may be OK if they perform
in a semantically acceptable way, but this needs to
handled in a case-by-case basis as the general theory
does not understand these considerations

© 2014 Zvi M. Kedem 70

Read Uncommitted Isolation Level
(Reference Implementation Using Locks)

◆  Two-phase locking for writing with X-Locks held until after
commit

◆  The transaction can read an item at any time

Dirty reads (temporary values during an execution of
some transaction) may be read

© 2014 Zvi M. Kedem 71

Implication Of Isolation Levels
(Summary)

◆  We had READ REPEATABLE in our formal development
because we did not handle phantoms, just to simplify the
development and the presentation

Isolation
Level

Dirty
Read

Nonrepeatable
Read

Phantom
Read

READ
UNCOMMITED

Y Y Y

READ
COMMITTED

N Y Y

READ
REPEATABLE

N N Y

SERIALIZABLE N N N

© 2014 Zvi M. Kedem 72

Oracle
Rigorous Two-Phase Locking

◆  This is the basic concurrency control mechanism

◆  As we discussed

◆  Locks are issued “automatically” based on what the
transaction requests: read or write

◆  All locks are held until after commit

© 2014 Zvi M. Kedem 73

Oracle
Multiversion Concurrency Control

◆  Oracle uses a multiversion concurrency control
◆  It maintains versions of committed items
◆  Actually not too difficult to do but need to implement

efficiently

◆  Recall that committed values are stored in the log used
for recover as needed

◆  So if some transaction has an item locked for writing,
and maybe already have written it but has not
committed, the system can pull out a committed value
from the log and give it to another transaction

© 2014 Zvi M. Kedem 74

Oracle
Isolation Levels

◆  There are various ways of assigning consistency
requirements to individual queries/statements and
transactions

◆  If a transaction “gets into trouble” (isolation level is
violated) some message is given by the system, and there
are various options, e.g.,
•  Rollback the transaction partially (by the application code, if the

programmer knows what to do)
•  Rollback the transaction completely (abort it)

◆  Specifying isolation levels (without full details):

ORACLE terminology/commands SQL-standard equivalent
Set transaction isolation level read committed Read committed

Set transaction isolation level serializable

Serializable

Set transaction isolation level read only

Read repeatable and no writes

© 2014 Zvi M. Kedem 75

Oracle
Read Committed

◆  This is the default isolation level for a transaction in
Oracle

◆  This is the same as SQL standard

◆  Implies, e.g.,

If the same query is executed twice within a single
transaction, the two executions of the query may get
different values for the same item

© 2014 Zvi M. Kedem 76

Oracle
Serializable

◆  This is at least as strong as SQL standard

◆  Oracle implementation

For every item it will see the value that was committed
when the transaction started or the value that it itself
produced

© 2014 Zvi M. Kedem 77

Oracle
Correct Execution That is Not Permitted

◆  Consider T1 and T2 with SERIALIZABLE isolation level
and a history of their execution

 T1 T2
 Start
 Start
 X-Lock a
 Write a
 Commit
 Unlock a
 S-Lock a
 Read a
 Commit
 Unlock a

◆  T1 will be aborted when it attempts to S-Lock item a

© 2014 Zvi M. Kedem 78

Oracle
Read Only

◆  This is not a part of SQL standard

◆  Oracle implementation

A transaction can only read

For every item it will see the value that was committed
when the transaction started

© 2014 Zvi M. Kedem 79

Oracle
Reading Version Committed at Start

◆  Consider T1 with READ ONLY isolation level and T2 with
SERIALIZABLE isolation level and a history of their
execution

 T1 T2
 Start
 Start
 X-Lock a
 Write a
 Commit
 Unlock a
 S-Lock a
 Read a
 Commit
 Unlock a

◆  T1 will get the value of a that was the most recently
committed when T1 started and not the one produced by
T2

© 2014 Zvi M. Kedem 80

Oracle
Read-Only Transaction

◆  Oracle handling of this makes perfect sense
◆  It is enough to give a read-only transaction a consistent

(preferably recent) snapshot of the database
◆  Such a snapshot can be created by looking at the log

(used for recovery) and taking into account what was
produced by committed transactions at a certain point in
time.

◆  This snapshot reflected a correct state of the database
◆  We will see a simple example, but in detail, next

◆  := denotes write into the variable
◆  = denotes read the variable

© 2014 Zvi M. Kedem 81

T3 Read Only
Equivalent Histories; Second is Serial

T1 T2 T3 T4
Start
a := 11
b := 12
Commit

 Start
 a := 21
 Start
 Commit
 a = 11
 Start
 b := 42
 b = 12
 Commit
 Commit

T1 T2 T3 T4
Start
a := 11
b := 12
Commit

 Start
 a = 11
 b = 12
 Commit
 Start
 a := 21
 Commit
 Start
 b := 42

 Commit

© 2014 Zvi M. Kedem 82

Advanced Material

© 2014 Zvi M. Kedem 83

Locking Is Prone To Starvation

 T1 T2 T3 T4 T5 T6
 S x
 X x (waits)
 S x
 N x
 S x
 N x
 S x
 N x
 S x
 N x

◆  This can continue indefinitely: T7, …
◆  Unless something is done, T2 will never gets the lock it

wants
◆  Obvious solution, stop granting S-locks and when the last

S-lock is released, give X-lock to T2

© 2014 Zvi M. Kedem 84

Two-Phase Locking Is Prone To Deadlocks

◆  Two transactions
T1: x := x + 1; y := y + 1
T2: y := 2y; x := 2x

1.  T1 T2
2.  X x
3.  R x
4.  W x
5.  X y
6.  R y
7.  W y
8.  X x (waits)
9.  X y (waits)

◆  We got a deadlock
◆  In fact this deadlock prevented a non-serializable

history
◆  “Deadlocks are not a bug, but a feature”

© 2014 Zvi M. Kedem 85

Detecting And Avoiding Deadlocks

◆  Deadlocks are characterized by a cyclic “wait for” graph
◆  Ours was very simple, T1 waited for T2 and T2 waited for

T1
◆  To detect if there is a deadlock, draw a “wait for” graph

•  Nodes: Transactions
•  Arc from T1 to T2 iff T1 waits for T2

◆  If there are cycles, some transaction need to be aborted
◆  There are protocols that avoid deadlock by aggressive

abortion of transactions, sometimes not necessary
◆  They abort enough transactions, so that no cycles could

ever appear in the “wait for” graph, so not need to draw it
during execution
•  But they may abort transactions unnecessarily

© 2014 Zvi M. Kedem 86

Kill-Wait Protocol: Locking + More

◆  Each transaction, when entering the system is
timestamped with the current time: timestamp of T is
denoted by TS(T)

◆  If transaction Ti wants to lock x, which another transaction
Tj holds in a conflicting mode (at least one of the two locks
is an X-lock),
•  If TS(T1) < TS(T2), then abort T2 and give the lock to T1 (the

older transaction kills the younger transaction)
•  If TS(T1) > TS(T2), then TS(T1) waits

◆  If a transaction unlocks a lock, the oldest from among the
waiting transactions (all younger than the unlocking
transaction) gets it

◆  In the “wait for” graph all the arcs are from a younger
transaction to an older transaction, and therefore there
cannot be a cycle

© 2014 Zvi M. Kedem 87

Wait-Die Protocol: Locking + More

◆  Each transaction, when entering the system is
timestamped with the current time: timestamp of T is
denoted by TS(T)

◆  If transaction Ti wants to lock x, which another transaction
Tj holds in a conflicting mode (at least one of the two locks
is an X-lock),
•  If TS(T1) < TS(T2), then T1 waits
•  If TS(T1) > TS(T2), TS(T1) abort T1 (T1 dies)

◆  If a transaction unlocks a lock, the youngest from among
the waiting transactions (all older than the unlocking
transaction) gets it

◆  In the “wait for” graph all the arcs are from an older
transaction to a younger transaction, and therefore there
cannot be a cycle

© 2014 Zvi M. Kedem 88

Timestamp-Based Protocol For Concurrency

◆  Each transaction is issued a timestamp when accepted by
DB OS

◆  The first transaction gets the timestamp 1

◆  Every subsequent transaction gets the timestamp that is
the previously largest assigned timestamp + 1

◆  So will can refer to transactions as “older” and “younger”
based on their timestamps and also use timestamp value
for transaction identification

◆  The system maintains for each item x two timestamps:
•  RT(x) is the youngest transaction (largest timestamp) that read it

•  WT(x) is the youngest transaction (largest timestamp) that wrote it

© 2014 Zvi M. Kedem 89

Timestamp-Based Protocol

◆  Assume that T1, T2, … arrive in this order and that the
time stamp of Ti is i

◆  For simplicity assume that the database was created by
transaction T0

◆  We want to get schedules equivalent to the serial
order T0, T1, T2, …, or some subsequence of this, as
some transactions can abort, so will not appear in the
schedule

◆  If we do this, our schedule will be serializable
◆  Similarly to what we did during topological sort, we could

say that Ti executed instantaneously at virtual time Ti

© 2014 Zvi M. Kedem 90

Equivalent Serial Schedule

T0

T1

T3

T4

T8

T7

© 2014 Zvi M. Kedem 91

Scenario

1
2
3
4
5 T5: Read x
6
7
8 T8: Write x
9

Virtual Time

RT(x) = 5 WT(x) = 8

unknown
who
read

nobody
read

unknown
who
wrote

nobody
wrote

© 2014 Zvi M. Kedem 92

Scenario

1
2
3
4
5 T5: Write x
6
7
8 T8: Read x
9

Virtual Time

RT(x) = 8 WT(x) = 5

unknown
who
read

nobody
read

unknown
who
wrote

nobody
wrote

© 2014 Zvi M. Kedem 93

Timestamp-Based Protocol: Reading

◆  RT(x) = 5; this is the youngest transaction that read it
◆  WT(x) = 8; this is the youngest transaction that wrote it
◆  If a transaction Ti with a timestamp of i ≤ 7, say T6, wants

to read x
•  The value it wanted no longer exists (it had to be written by T0

(i.e., initial state of the DB), or by Ti with i ≤ 6)
•  T6 cannot read x and has to be aborted

◆  If a transaction with a timestamp of i ≥ 8, say T9, wants to
read it,
•  T9 reads x, and RT(x) := 9

© 2014 Zvi M. Kedem 94

Timestamp-Based Protocol: Reading

◆  RT(x) = 8; this is the youngest transaction that read it
◆  WT(x) = 5; this is the youngest transaction that wrote it
◆  If a transaction Ti with a timestamp of i ≤ 4, say T3, wants

to read x
•  T3 cannot read x and has to be aborted (as too new a value of x

exists

◆  If a transaction Ti with a timestamp i, 5 ≤ i ≤ 8, say T6,
wants to read x
•  T6 reads x

◆  If a transaction Ti with a timestamp of i ≥ 9, say T9, wants
to read it
•  T9 reads x and RT(x) := 9

© 2014 Zvi M. Kedem 95

Timestamp-Based Protocol: Writing

◆  RT(x) = 5; this is the youngest transaction that read it
◆  WT(x) = 8; this is the youngest transaction that wrote it
◆  If a transaction Ti with a timestamp of i < 5 wants to write,

say T3,
•  T3 has to be aborted
•  Because there was a read of a value of x by transaction T5, and

maybe this was a value produced actually by T2. If we allow T3 to
write, this would have meant that T5 read a value that was
produced by a transaction that was too old

◆  If a transaction Ti with a timestamp of i > 8 wants to write
•  T9 writes and WT(x) = 9

◆  If a transaction Ti with a timestamp of i , 6 ≤ i ≤ 7, say T7,
wants to write
•  We just throw out the write and let T7 proceed
•  This was a blind write, nobody read it and it is obsolete (and

nobody will be allowed to read it as described above; we will not
go back to re-examine this case and check this out)

© 2014 Zvi M. Kedem 96

Timestamp-Based Protocol: Writing

◆  RT(x) = 8; this is the youngest transaction that read it
◆  WT(x) = 5; this is the youngest transaction that wrote it
◆  If a transaction Ti with a timestamp of i < 8, say T6, wants

to write
•  T6 has to be aborted
•  Because there was a read of a value of x by transaction T8, and if

we allow T6 to write x, this would mean that T8 read a value that
was too old

◆  If a transaction Ti with a timestamp of i > 8, say T9, wants
to write

◆  T9 writes and WT(x) = 9

© 2014 Zvi M. Kedem 97

Conflict Serializability And Deadlock Freedom

◆  In the conflict graph all the arcs will be from an older
transaction to a younger transaction

◆  Therefore the history will be conflict-serializable
◆  And as transactions never wait, there will be no deadlocks
◆  But the history may not even be recoverable
◆  We can make it strict, or even rigorous, by having

transactions wait until the relevant transactions commit
◆  There still will not be any deadlocks, because younger

transactions wait for older transactions to commit, but not
the other way around

i

j

© 2014 Zvi M. Kedem 98

Granularity Of Locks

◆  The problem of phantoms can be avoided, by say, locking
the file that has all the accounts, and therefore no account
can be added during the processing

◆  Sometimes we may want to lock all the accounts
(logically, so no new accounts can be added)

◆  Sometimes we may want to lock an account, to add
money to it, for instance
•  And of course, it is not efficient to lock all the accounts in order to

modify one account only

◆  So “lockable” objects are no longer disjoint items
◆  This can be handled using somewhat more complex types

of locks (called intention locks)
◆  Oracle supports this

© 2014 Zvi M. Kedem 99

Key Ideas

◆  The concurrency problem
◆  Ensuring Isolation
◆  The need for abstraction to sequence of Reads and Writes

during concurrent execution
◆  Histories/Schedules
◆  Equivalent histories
◆  Serializability: equivalence with a serial history
◆  Conflicts
◆  Conflict serializable histories
◆  Conflict graphs
◆  Locks
◆  Two phase locking (2PL) to assure serializability
◆  Strict 2PL to assure recoverability

© 2014 Zvi M. Kedem 100

Key Ideas

◆  Rigorous 2PL to make correct locking transparent to the
user

◆  Phantoms
◆  SQL access modes and isolation levels
◆  Oracle implementation
◆  Starvation
◆  Deadlocks
◆  Time-stamp based protocols

