
© 2014 Zvi M. Kedem 1

Unit 12
NoSQL: Not (Only) SQL Concepts

© 2014 Zvi M. Kedem 2

Characteristics of Some Applications

◆  A typical application: security trading system

◆  Fast response
◆  Fault tolerance
◆  Fast application development

◆  Correctness less important for decision making (not
execution)

◆  Run on clusters of machines, so really a distributed

database + trading algorithms
◆  Do not use relational databases: too heavy weight

◆  We will look at some concepts of distributed databases

© 2014 Zvi M. Kedem 3

Distributing The Data

Machine	 1 Machine	 1 Machine	 1

Machine	 3

Machine	 2

Horizontal	
Partitioning

Database	
Sharding

Normalization
Denormalization

© 2014 Zvi M. Kedem 4

Collection of Machines Each Running a DBMS

◆  Each machine runs some DBMS, not necessarily a
relational database system

◆  But each has some version of
•  Physical Implementation: file system, indexes, …
•  Query Processor
•  Recovery Mechanism
•  Concurrency Mechanism

◆  The new issue: coordinate the concurrent execution of
several machines

© 2014 Zvi M. Kedem 5

Issues to Revisit

◆  ACID properties
◆  Query execution planning

◆  We will talk very briefly about
•  Recovery
•  Concurrency
•  Query execution planning

© 2014 Zvi M. Kedem 6

Recovery

© 2014 Zvi M. Kedem 7

Global Recovery

◆  We have a local recovery manager on each machine
◆  It is able to guarantee

•  A: Atomicity
•  C: Consistency
•  D: Durability

 for transactions executing on the machine

◆  We need to guarantee ACD for transactions that run on

more than one machine
◆  So for example, such a transaction must be either

committed or aborted globally, that is the work on each
machine must be either committed or aborted (rolled back)

© 2014 Zvi M. Kedem 8

Our Old Example: Money Transfer

◆  Items a and b are stored on a disk attached to some
machine running a DBMS

◆  Transfer $5 from account a to b

1. transaction starts
2. read a into xa (local variable in RAM)
3. xa := xa − 5
4. write xa onto a
5. read b into xb (local variable in RAM)
6. xb := xb + 5
7. write xb onto b
8. transaction ends

◆  If initial values are a = 8 and b = 1

then after the execution a = 3 and b = 6

© 2014 Zvi M. Kedem 9

Old Example: New Scenario

◆  There are 3 DBMS machines: nodes in a cluster

◆  There is M1 that is the coordinator
◆  There is M2 that is a participant
◆  There is M3 that is a participant

◆  User interacts with M1
◆  M2 stores a on its local disk
◆  M3 stores b on its local disk

M1
a

M2

b
M3

© 2014 Zvi M. Kedem 10

Our New Example: Money Transfer

◆  User asks to transfer $5 from account a to b

◆  M1 will be the coordinator
◆  M2 + M3 will be the participants
◆  Very rough sketch of execution

1. M1 starts a global transaction
2. M1 tells M2 to subtract 5 from a
3. M1 tells M3 to add 5 to b
4. M2 starts a local transaction to subtract 5 from a
5. M3 starts a local transaction to add 5 to b
6. M1 + M2 + M3 cooperate so “everything” is atomically
 committed or aborted: all transactions commit or abort

M1
a

M2

b
M3

© 2014 Zvi M. Kedem 11

Two-Phase Commit Protocol
General Flowchart (Simplified)

Start Work!
to all

Start Work!
to all

Ready to Commit?
to all

Ready to Commit?
to all

All readyAll ready

Abort!
to all

Abort!
to all

Writes local
Commit record

Writes local
Commit record

Commit!
to all

Commit!
to all

No

Yes

Gets
Start Work!

Gets
Start Work!

Gets
Ready to Commit?

Gets
Ready to Commit?

ReadyReady Already
Aborted
Already
Aborted

No

Do
nothing

Do
nothing

AbortsAborts

Yes
No

Writes local
Yes record
Writes local
Yes record

Yes
to Coordinator

Yes
to Coordinator

Gets
decision

Gets
decision

CommitCommit

AbortsAborts

No

Writes local
Commit record

Writes local
Commit record

Yes

Yes

Coordinator Participant

© 2014 Zvi M. Kedem 12

Two-Phase Commit Protocol
All Commit

Start Work!
to all

Start Work!
to all

Ready to Commit?
to all

Ready to Commit?
to all

All readyAll ready

Abort!
to all

Abort!
to all

Writes local
Commit record

Writes local
Commit record

Commit!
to all

Commit!
to all

No

Yes

Gets
Start Work!

Gets
Start Work!

Gets
Ready to Commit?

Gets
Ready to Commit?

ReadyReady Already
Aborted
Already
Aborted

No

Do
nothing

Do
nothing

AbortsAborts

Yes
No

Writes local
Yes record
Writes local
Yes record

Yes
to Coordinator

Yes
to Coordinator

Gets
decision

Gets
decision

CommitCommit

AbortsAborts

No

Writes local
Commit record

Writes local
Commit record

Yes

Yes

Coordinator Participant

© 2014 Zvi M. Kedem 13

Two-Phase Commit Protocol
A Participant Aborts ⇒ All Abort

Start Work!
to all

Start Work!
to all

Ready to Commit?
to all

Ready to Commit?
to all

All readyAll ready

Abort!
to all

Abort!
to all

Writes local
Commit record

Writes local
Commit record

Commit!
to all

Commit!
to all

No

Yes

Gets
Start Work!

Gets
Start Work!

Gets
Ready to Commit?

Gets
Ready to Commit?

ReadyReady Already
Aborted
Already
Aborted

No

Do
nothing

Do
nothing

AbortsAborts

Yes
No

Writes local
Yes record
Writes local
Yes record

Yes
to Coordinator

Yes
to Coordinator

Gets
decision

Gets
decision

CommitCommit

AbortsAborts

No

Writes local
Commit record

Writes local
Commit record

Yes

Yes

Coordinator Participant

© 2014 Zvi M. Kedem 14

Two-Phase Commit Protocol
A Participant Not Ready ⇒ All Abort

Start Work!
to all

Start Work!
to all

Ready to Commit?
to all

Ready to Commit?
to all

All readyAll ready

Abort!
to all

Abort!
to all

Writes local
Commit record

Writes local
Commit record

Commit!
to all

Commit!
to all

No

Yes

Gets
Start Work!

Gets
Start Work!

Gets
Ready to Commit?

Gets
Ready to Commit?

ReadyReady Already
Aborted
Already
Aborted

No

Do
nothing

Do
nothing

AbortsAborts

Yes
No

Writes local
Yes record
Writes local
Yes record

Yes
to Coordinator

Yes
to Coordinator

Gets
decision

Gets
decision

CommitCommit

AbortsAborts

No

Writes local
Commit record

Writes local
Commit record

Yes

Yes

Coordinator Participant

© 2014 Zvi M. Kedem 15

Two-Phase Commit Protocol
Some Participant Cannot Commit ⇒ All Abort

Start Work!
to all

Start Work!
to all

Ready to Commit?
to all

Ready to Commit?
to all

All readyAll ready

Abort!
to all

Abort!
to all

Writes local
Commit record

Writes local
Commit record

Commit!
to all

Commit!
to all

No

Yes

Gets
Start Work!

Gets
Start Work!

Gets
Ready to Commit?

Gets
Ready to Commit?

ReadyReady Already
Aborted
Already
Aborted

No

Do
nothing

Do
nothing

AbortsAborts

Yes
No

Writes local
Yes record
Writes local
Yes record

Yes
to Coordinator

Yes
to Coordinator

Gets
decision

Gets
decision

CommitCommit

AbortsAborts

No

Writes local
Commit record

Writes local
Commit record

Yes

Yes

Coordinator Participant

© 2014 Zvi M. Kedem 16

Two-Phase Commit Protocol
Coordinator Decides: Global Commit

Start Work!
to all

Start Work!
to all

Ready to Commit?
to all

Ready to Commit?
to all

All readyAll ready

Abort!
to all

Abort!
to all

Writes local
Commit record

Writes local
Commit record

Commit!
to all

Commit!
to all

No

Yes

Gets
Start Work!

Gets
Start Work!

Gets
Ready to Commit?

Gets
Ready to Commit?

ReadyReady Already
Aborted
Already
Aborted

No

Do
nothing

Do
nothing

AbortsAborts

Yes
No

Writes local
Yes record
Writes local
Yes record

Yes
to Coordinator

Yes
to Coordinator

Gets
decision

Gets
decision

CommitCommit

AbortsAborts

No

Writes local
Commit record

Writes local
Commit record

Yes

Yes

Coordinator Participant

© 2014 Zvi M. Kedem 17

Two-Phase Commit Protocol
A Participant Is Uncertain ⇒ It Must Wait

Start Work!
to all

Start Work!
to all

Ready to Commit?
to all

Ready to Commit?
to all

All readyAll ready

Abort!
to all

Abort!
to all

Writes local
Commit record

Writes local
Commit record

Commit!
to all

Commit!
to all

No

Yes

Gets
Start Work!

Gets
Start Work!

Gets
Ready to Commit?

Gets
Ready to Commit?

ReadyReady Already
Aborted
Already
Aborted

No

Do
nothing

Do
nothing

AbortsAborts

Yes
No

Writes local
Yes record
Writes local
Yes record

Yes
to Coordinator

Yes
to Coordinator

Gets
decision

Gets
decision

CommitCommit

AbortsAborts

No

Writes local
Commit record

Writes local
Commit record

Yes

Yes

Coordinator Participant

© 2014 Zvi M. Kedem 18

Two-Phase Commit
Many Optimizations Possible

◆  A participant can report it is ready on its own initiative
◆  A participant can report that it must abort on its own

initiative
◆  If a participant crashes while uncertain it can ask other

participants if they know what the decision was
◆  …

© 2014 Zvi M. Kedem 19

Another Issue: Global Deadlock Handling

◆  Assume a system with strict two-phase locking (locked
held until after commit)

◆  The system uses two-phase commit
◆  M1 “spawned” two transactions

•  T[1,1] executing at site S1
•  T[1,2] executing at site S2

◆  Only after global commit of M1, T[1,1], T[1,2] can their
locks be released

◆  Only after global commit of M2, T[2,1], T[2,2] can their
locks be released

◆  M2 “spawned” two transactions
•  T[2,1] executing at site S1
•  T[2,2] executing at site S2

◆  S1 contains items a and b
◆  S2 contains items c and d

© 2014 Zvi M. Kedem 20

Another Issue: Global Deadlock Handling

S1 S2
T[1,1] locks a
T[2,1] locks b
T[1,1] waits to lock b

 T[1,2] locks c
 T[2,2] locks d
 T[2,2] waits to lock c

◆  For T[1,1] to continue, T[2,1] has to release a lock
◆  Can only happen after M2, T[2,1], T[2,2] committed

◆  For T[2,2] to continue, T[1,2] has to release a lock
◆  Can only happen after M1, T[1,1], T[1,2] committed

© 2014 Zvi M. Kedem 21

Another Issue: Global Deadlock Handling

◆  We have a global deadlock
◆  There is no local deadlock anywhere
◆  Difficult to detect

© 2014 Zvi M. Kedem 22

Concurrency

© 2014 Zvi M. Kedem 23

Global Concurrency Management

◆  We assume that know how to manage recovery, that is a
distributed transaction either commits or aborts at all
sites on which it executes

◆  ACD is guaranteed

◆  We need to guarantee I (Isolation) also for

transactions that run on more than one machine

◆  Each machine is running a local concurrency manager,
which we assume operates using rigorous locking

◆  All locks are held until after local commit or abort on each
machine

◆  In case of global commit, all the locks are held until after
global commit decision: the coordinator writes commit
record on its log

◆  This guarantees global serializability

© 2014 Zvi M. Kedem 24

Extension to Multiple Copies (Replication)
One Machine vs. Two Machines

Machine	 1 Machine	 1 Machine	 1

Machine	 3

Machine	 2

Horizontal	
Partitioning

Database	
Sharding

Normalization
Denormalization

© 2014 Zvi M. Kedem 25

Advantages of Data Replication

◆  It may be useful to replicate some data

◆  To improve fault-tolerance

If Machine 1 crashes, we can still access “the blue data”
on Machine 2

◆  To improve efficiency

Both Machine 1 and Machine 2 can access “the blue data”
locally

So they do not have to use the network to access that
data and can access it fast

© 2014 Zvi M. Kedem 26

Problems With Data Replication

◆  We need to keep the replicated data consistent
◆  “The blue data” has to be the same on Machine 1 and on

Machine 2

◆  So, if some transaction running on Machine 1 modifies
“the blue data”, we must make sure that the same
modification is made (preferably transparently by the
system) to “the blue data” on Machine 2

◆  So perhaps we could use the following protocol

If a transaction wants to modify “the blue data” on one
machine, we must make sure transparently that it is
modified in the same way on both machines

A transaction wants to read “the blue data”, it can read it
from any machine

© 2014 Zvi M. Kedem 27

A Nightmare Scenario: Network Partition

◆  The network partitions into two sets that cannot
communicate with each other

1.  Machine 1
2.  Machine 2 and Machine 3

◆  No transaction can modify “the blue data”

◆  Because if this is possible, it can only do it on one of the
machines

◆  Then “the blue data” is not consistent
◆  A transaction that reads “the blue data” on Machine 1 will

get a different results than a transaction that reads “the
blue data” on Machine 2

© 2014 Zvi M. Kedem 28

Thomas Majority Rule
(Example: Sufficient For Understanding)

◆  There is a data item X that is replicated on 5 machines,
M1, M2, M3, M4, M5

◆  The majority of these machines is 3
◆  The data item is stored as a pair (X,T), where T is the

timestamp it was last written, assuming the existence of a
global clock known to everybody (easy to implement, e.g.,
atomic clock broadcasting on radio from Colorado)

◆  To write X, access a majority (at least 3) sites and replace
the existing (X,T) with (Xnew,Tcurrent)

◆  To read X, access a majority (= 3) sites and, read the
three pairs of (X,T). Find the one in which with T is the
largest and return the corresponding X

© 2014 Zvi M. Kedem 29

Thomas Majority Rule
(Example: Sufficiently General)

◆  The value of (X,T) in the majority of sites used will be red
◆  Initial state in the 5 sites

(10,0) (10,0) (10,0) (10,0) (10,0) (10,0)
◆  Majority used to write 20 into X at time 1: M1, M2, M3

(20,1) (20,1) (20,1) (10,0) (10,0)
◆  Majority used to write 30 into X at time 3: M2, M3, M4

(20,1) (30,3) (30,3) (30,3) (10,0)
◆  Majority used to read X at time 6: M3, M4, M5

Retrieved: (30,3) (30,3) (10,0)
◆  Since the largest timestamp is 3, the correct value for X is

30

◆  The protocol works since any two sets of at least 3
machines contain at least one common machine with the
latest timestamp

© 2014 Zvi M. Kedem 30

Thomas Majority Rule
General Network Partitioning

◆  Machines that are in a partition that does not include the
majority of the copies cannot act on these copies
•  Cannot read
•  Cannot write

◆  So this does not solve the problem of “the blue data” as
we always need to access both copies

© 2014 Zvi M. Kedem 31

Query Execution Planning

© 2014 Zvi M. Kedem 32

New Issue: Movement of Data

◆  We now have another cost to consider: moving data
among machines

◆  We will look at one example where we will try just to
decrease the cost of moving data

◆  We have two machines: M1 and M2
◆  In M1 we have a relation R(A,B)
◆  In M2 we have a relation S(C,D)
◆  Assume for simplicity that R and S are of the same size

◆  We want to compute
SELECT A, C
FROM R, S
WHERE R.B = S.D;

and have the result at M2

© 2014 Zvi M. Kedem 33

An Execution Plan

A choice
◆  Copy S to M1
◆  Compute the result
◆  Send the result to M2

A better choice?
◆  Copy R to M2
◆  Compute the result

But if S is small and R large this may be better
◆  Copy S to M1
◆  Compute the result
◆  Send the result to M2

© 2014 Zvi M. Kedem 34

Even Better Execution Plan
If The Parameters Are Right

◆  On M2 compute
INSERT INTO TEMP1 SELECT DISTINCT D
FROM S;

◆  Copy TEMP1 to M1
◆  On M1 compute

INSERT INTO TEMP2 SELECT A, B
FROM R, TEMP1
WHERE B = D;

◆  Copy TEMP2 to M2
◆  On M2 compute

INSERT INTO ANSWER SELECT A, C
FROM TEMP2, S
WHERE B = D;

◆  Very Good if TEMP1 and TEMP2 are relatively small

© 2014 Zvi M. Kedem 35

We Used a Semijoin

◆  Out TEMP2 was left semijoin of R and S, that is the set
of all the tuples of R for which there is a “matching” tuple
in S (under the WHERE equality condition)

◆  Notation: R S

◆  Similarly, we can define a right semijoin, denoted by

â

â

© 2014 Zvi M. Kedem 36

NoSQL Has To Compromise

© 2014 Zvi M. Kedem 37

CAP Theorem

◆  Without defining precisely, if we have more than one
machine and replicate the data

◆  You can get only 2 of the following 3 properties

1.  Consistency (you will always see a consistent state when
accessing data)

2.  Availability (if you can access a machine, it can read and
write items it stores)

3.  Partition Tolerance (you can work in the presence of
partitions)

◆  So, to get A and B you may be willing to sacrifice C

© 2014 Zvi M. Kedem 38

Key Ideas

◆  NoSQL databases and Distributed Database
◆  Two-phase commit
◆  Global Deadlocks
◆  Concurrency control with distributed data
◆  Query processing with distributed data
◆  The CAP theorem

