Unit 12
NoSQL: Not (Only) SQL Concepts

© 2014 Zvi M. Kedem

L 4

¢

Characteristics of Some Applications

A typical application: security trading system

Fast response
Fault tolerance
Fast application development

Correctness less important for decision making (not
execution)

Run on clusters of machines, so really a distributed
database + trading algorithms

Do not use relational databases: too heavy weight

We will look at some concepts of distributed databases

© 2014 Zvi M. Kedem

© 2014 Zvi M. Kedem

Distributing The Data

Normalization
Denormalization

Machine 1

Horizontal
Partitioning

Machine 1

_

Database
Sharding

Machine 1

Machine 2

Machine 3

Collection of Machines Each Running a DBMS

€ Each machine runs some DBMS, not necessarily a
relational database system
€ But each has some version of
* Physical Implementation: file system, indexes, ...
e Query Processor

* Recovery Mechanism
e Concurrency Mechanism

€ The new issue: coordinate the concurrent execution of
several machines

© 2014 Zvi M. Kedem 4

Issues to Revisit

¢ ACID properties
€ Query execution planning

¢ We will talk very briefly about
* Recovery
* Concurrency
e Query execution planning

© 2014 Zvi M. Kedem

Recovery

© 2014 Zvi M. Kedem

Global Recovery

¢ \We have a local recovery manager on each machine

€ ltis able to guarantee
* A: Atomicity
* C: Consistency
* D: Durability
for transactions executing on the machine

¢ \We need to guarantee ACD for transactions that run on
more than one machine

€ So for example, such a transaction must be either

committed or aborted globally, that is the work on each
machine must be either committed or aborted (rolled back)

© 2014 Zvi M. Kedem 7

Our Old Example: Money Transfer

€ |tems a and b are stored on a disk attached to some
machine running a DBMS

& Transfer $5 from accountato b

transaction starts

read a into xa (local variable in RAM)
Xa ;= xa—-95

write xa onto a

read b into xb (local variable in RAM)
xb:= xb +5

write xb onto b

transaction ends

ONOORWN =

& |[finitial valuesarea=8and b =1

then after the executiona=3and b =6

© 2014 Zvi M. Kedem

Old Example: New Scenario

€ There are 3 DBMS machines: nodes in a cluster

€ There is M1 that is the coordinator
€ There is M2 that is a participant
€ There is M3 that is a participant

€ User interacts with M1

€ M2 stores a on its local disk
¢ M3 stores b on its local disk

M2

M3

© 2014 Zvi M. Kedem

Our New Example: Money Transfer

€ User asks to transfer $5 from accountato b

M2

M3

¢ M1 will be the coordinator
¢ M2 + M3 will be the participants
€ Very rough sketch of execution

M1 starts a global transaction

M1 tells M2 to subtract 5 from a

M1 tells M3toadd 5to b

M2 starts a local transaction to subtract 5 from a

M3 starts a local transactiontoadd 5to b

M1 + M2 + M3 cooperate so “everything” is atomically
committed or aborted: all transactions commit or abort

© 2014 Zvi M. Kedem 10

OOk wh=

Coordinator

Start Work!
to all

\ 4

Ready to Commit?
to all

< Already

Yes |

Writes local
Commit record

\ 4

Commit!
to all

Abort!
to all

© 2014 Zvi M. Kedem

Gets
Start Work!

\ 4

Two-Phase Commit Protocol
General Flowchart (Simplified)

Participant

Gets
Ready to Commit?

Do
nothing

<

_— ~__

\ Ready /h»

~_ -

-

Yes|

Yes/ I

\\Aborted//

Aborts

Writes local
Yes record

Yes
to Coordinator

Gets
decision

Writes local
Commit record

Yes —
—

~ Commit

No |

v

— ~__
~_

~—

/ =

Aborts

11

Coordinator

Start Work!
to all

A

Two-Phase Commit Protocol
All Commit

Ready to Commit?
to all

Participant
Gets
Start Work!
Gets Do
Ready to Commit? nothing

All ready

Yes

Writes local
Commit record

A

Aborts
Writes local Yes Gets
Yes record to Coordinator decision

Commit!
to all

Abort!
to all

© 2014 Zvi M. Kedem

Writes local
Commit record

>

No

Aborts

12

Coordinator

Start Work!
to all

A

Ready to Commit?
to all

All ready

Yes

Writes local
Commit record

y

Commit!
to all

Abort!
to all

© 2014 Zvi M. Kedem

Two-Phase Commit Protocol
A Participant Aborts = All Abort

Participant
Gets
Start Work!
Gets Do
Ready to Commit? nothing
Yes
Already ~~N
Aborted Aborts
Writes local N Yes Gets
Yes record to Coordinator decision
Writes local Yes
Commit record

No

Aborts

13

Two-Phase Commit Protocol

A Participant Not Ready = All Abort

Coordinator

Start Work!
to all

Ready to Commit?
to all

All ready

Yes

Writes local
Commit record

\ 4

Participant
Gets
Start Work!
Gets Do
Ready to Commit? nothing
Yes
Already N
Aborted Aborts
Writes local Yes Gets
Yes record to Coordinator

decision

Commit!
to all

Abort!
to all

© 2014 Zvi M. Kedem

Writes local
Commit record

o

No

Aborts

14

Two-Phase Commit Protocol

Some Participant Cannot Commit = All Abort

Coordinator

Start Work!
to all

y

Ready to Commit?
to all

Participant
Gets
Start Work!
Gets Do
Ready to Commit? nothing

All ready

Yes

Writes local
Commit record

A

Commit!
to all

Abort!
to all

© 2014 Zvi M. Kedem

Aborts
Writes local Yes Gets
Yes record to Coordinator i decision
Writes local Yes
Commit record
No
Aborts

15

Two-Phase Commit Protocol
Coordinator Decides: Global Commit

Coordinator Participant
Start Work! Gets
to all Start Work!
I
Ready to Commit? Gets Do
to all ~Ready to Commit? nothing

All ready \Read?// e Aborted Aborts
Ys ¥ | Yes{
Writes local Writes local Yes N Gets
Commit record ~ Yesrecord ~ toCoordinator decision
! F R
Commit! ~ Writeslocal ~ Yes
| _ <« Commit
to all ~ Commit record —
S Ny
!
Abort! Aborts
to all

© 2014 Zvi M. Kedem 16

Two-Phase Commit Protocol

A Participant Is Uncertain = It Must Wait

Coordinator

to all

Ready to Commit?
| to all ‘

Participant
Gets
Start Work!
Gets Do
Ready to Commit? nothing

All ready N

Writes local
Commit record

Yes 1

No Aeady — No

© Aborted — Apors
Yes N
Writes local Yes Gets
Yes record to Coordinator

decision

© 2014 Zvi M. Kedem

Writes local

Yes
Commit record

No

Aborts

17

Two-Phase Commit
Many Optimizations Possible

€ A participant can report it is ready on its own initiative

€ A participant can report that it must abort on its own
Initiative

€ If a participant crashes while uncertain it can ask other
participants if they know what the decision was

¢ ..

© 2014 Zvi M. Kedem

18

4
4

Another Issue: Global Deadlock Handling

Assume a system with strict two-phase locking (locked
held until after commit)

The system uses two-phase commit

M1 “spawned” two transactions

e T[1,1] executing at site S1

e T[1,2] executing at site S2
Only after global commit of M1, T[1,1], T[1,2] can their
locks be released

Only after global commit of M2, T[2,1], T[2,2] can their
locks be released

M2 “spawned” two transactions
* T[2,1] executing at site S1
e T[2,2] executing at site S2

S1 contains items a and b
S2 contains items c and d

© 2014 Zvi M. Kedem 19

Another Issue: Global Deadlock Handling

ST S2

T[1,1] locks a

T[2,1] locks b

T[1,1] waits to lock b
T[1,2]
T[2,2]
T[2,2]

locks ¢
locks d
waits to lock ¢

¢ For T[1,1] to continue, T[2,1] has to release a lock
€ Can only happen after M2, T[2,1], T[2,2] committed

€ For T[2,2] to continue, T[1,2] has to release a lock
¢ Can only happen after M1, T[1,1], T[1,2] committed

© 2014 Zvi M. Kedem

20

Another Issue: Global Deadlock Handling

¢ \We have a global deadlock
€ There is no local deadlock anywhere

& Difficult to detect

© 2014 Zvi M. Kedem

21

© 2014 Zvi M. Kedem

Concurrency

22

Global Concurrency Management

€ \We assume that know how to manage recovery, that is a
distributed transaction either commits or aborts at all
sites on which it executes

¢ ACD is guaranteed

€ We need to guarantee I (Isolation) also for
transactions that run on more than one machine

€ Each machine is running a local concurrency manager,
which we assume operates using rigorous locking

& All locks are held until after local commit or abort on each
machine

€ In case of global commit, all the locks are held until after
global commit decision: the coordinator writes commit
record on its log

€ This guarantees global serializability

© 2014 Zvi M. Kedem

Extension to Multiple Copies (Replication)
One Machine vs. Two Machines

Normalization Horizontal Database
Denormalization Partitioning Sharding

Machine 1 Machine 1

Machine 2

Machine 3

© 2014 Zvi M. Kedem

24

Advantages of Data Replication

€ It may be useful to replicate some data

€ To improve fault-tolerance

If Machine 1 crashes, we can still access “the blue data”
on Machine 2

€ To improve efficiency

Both Machine 1 and Machine 2 can access “the blue data”
locally

So they do not have to use the network to access that
data and can access it fast

© 2014 Zvi M. Kedem 25

Problems With Data Replication

We need to keep the replicated data consistent

“The blue data” has to be the same on Machine 1 and on
Machine 2

So, if some transaction running on Machine 1 modifies
“the blue data”, we must make sure that the same
modification is made (preferably transparently by the
system) to “the blue data” on Machine 2

So perhaps we could use the following protocol

If a transaction wants to modify “the blue data” on one
machine, we must make sure transparently that it is
modified in the same way on both machines

A transaction wants to read “the blue data”, it can read it
from any machine

© 2014 Zvi M. Kedem

26

A Nightmare Scenario: Network Partition

€ The network partitions into two sets that cannot
communicate with each other

1. Machine 1
2. Machine 2 and Machine 3

€ No transaction can modify “the blue data”

€ Because if this is possible, it can only do it on one of the
machines

¢ Then “the blue data” is not consistent

€ A transaction that reads “the blue data” on Machine 1 will
get a different results than a transaction that reads “the
blue data” on Machine 2

© 2014 Zvi M. Kedem 27

Thomas Majority Rule
(Example: Sufficient For Understanding)

€ There is a data item X that is replicated on 5 machines,
M1, M2, M3, M4, M5

€ The majority of these machines is 3

€ The data item is stored as a pair (X,T), where T is the
timestamp it was last written, assuming the existence of a
global clock known to everybody (easy to implement, e.g.,
atomic clock broadcasting on radio from Colorado)

€ To write X, access a majority (at least 3) sites and replace
the existing (X,T) with (Xnew, Tcurrent)

€ Toread X, access a majority (= 3) sites and, read the
three pairs of (X,T). Find the one in which with T is the
largest and return the corresponding X

© 2014 Zvi M. Kedem 28

Thomas Majority Rule
(Example: Sufficiently General)

€ The value of (X,T) in the majority of sites used will be red

€ |[nitial state in the 5 sites
(10,0) (10,0) (10,0) (10,0) (10,0) (10,0)

¢ Majority used to write 20 into X at time 1: M1, M2, M3
(20,1) (20,1) (20,1) (10,0) (10,0)

¢ Majority used to write 30 into X at time 3: M2, M3, M4
(20,1) (30,3) (30,3) (30,3) (10,0)

¢ Majority used to read X at time 6: M3, M4, M5
Retrieved: (30,3) (30,3) (10,0)

€ Since the largest timestamp is 3, the correct value for X is
30

€ The protocol works since any two sets of at least 3
machines contain at least one common machine with the
latest timestamp

© 2014 Zvi M. Kedem

29

Thomas Majority Rule
General Network Partitioning

€ Machines that are in a partition that does not include the
majority of the copies cannot act on these copies

e (Cannot read
e Cannot write

€ So this does not solve the problem of “the blue data” as
we always need to access both copies

© 2014 Zvi M. Kedem

30

© 2014 Zvi M. Kedem

Query Execution Planning

31

New Issue: Movement of Data

¢ \We now have another cost to consider: moving data
among machines

We will look at one example where we will try just to
decrease the cost of moving data

L 4

We have two machines: M1 and M2

In M1 we have a relation R(A,B)

In M2 we have a relation S(C,D)

Assume for simplicity that R and S are of the same size

® ¢ 0

L 4

We want to compute
SELECTA, C
FROM R, S
WHERE R.B = S.D;

and have the result at M2

© 2014 Zvi M. Kedem 32

¢

4

An Execution Plan

A choice
Copy S to M1

Compute the result
Send the result to M2

A better choice?
Copy R to M2

Compute the result

But if S is small and R large this may be better
Copy S to M1
Compute the result
Send the result to M2

© 2014 Zvi M. Kedem

33

Even Better Execution Plan
If The Parameters Are Right

€ On M2 compute
INSERT INTO TEMP1 SELECT DISTINCT D
FROM S;

& Copy TEMP1 to M1

¢ On M1 compute
INSERT INTO TEMP2 SELECT A, B
FROM R, TEMP1
WHERE B = D;

& Copy TEMP2 to M2

€ On M2 compute
INSERT INTO ANSWER SELECT A, C
FROM TEMP2, S
WHERE B = D;

¢ Very Good if TEMP1 and TEMPZ2 are relatively small

© 2014 Zvi M. Kedem

We Used a Semijoin

¢ Out TEMP2 was left semijoin of R and S, that is the set
of all the tuples of R for which there is a “matching” tuple
in S (under the WHERE equality condition)

¢ Notation: R\'/S

€ Similarly, we can define a right semijoin, denoted by M\

© 2014 Zvi M. Kedem

35

© 2014 Zvi M. Kedem

NoSQL Has To Compromise

36

CAP Theorem

€ Without defining precisely, if we have more than one
machine and replicate the data

€ You can get only 2 of the following 3 properties

1. Consistency (you will always see a consistent state when
accessing data)

2. Availability (if you can access a machine, it can read and
write items it stores)

3. Partition Tolerance (you can work in the presence of
partitions)

€ 5o, to get A and B you may be willing to sacrifice C

© 2014 Zvi M. Kedem 37

Key Ideas

NoSQL databases and Distributed Database
Two-phase commit

Global Deadlocks

Concurrency control with distributed data
Query processing with distributed data

The CAP theorem

L R R 2R R 2 4

© 2014 Zvi M. Kedem

38

