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Unit 12 
NoSQL: Not (Only) SQL Concepts 
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Characteristics of Some Applications 

◆  A typical application: security trading system 
 
◆  Fast response 
◆  Fault tolerance 
◆  Fast application development 

◆  Correctness less important for decision making (not 
execution) 

 
◆  Run on clusters of machines, so really a distributed 

database + trading algorithms 
◆  Do not use relational databases: too heavy weight 

◆  We will look at some concepts of distributed databases 
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Distributing The Data 

Machine	  1 Machine	  1 Machine	  1

Machine	  3

Machine	  2

Horizontal	  
Partitioning

Database	  
Sharding

Normalization
Denormalization
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Collection of Machines Each Running a DBMS 

◆  Each machine runs some DBMS, not necessarily a 
relational database system 

◆  But each has some version of 
•  Physical Implementation: file system, indexes, … 
•  Query Processor 
•  Recovery Mechanism 
•  Concurrency Mechanism 

◆  The new issue: coordinate the concurrent execution of 
several machines 
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Issues to Revisit 

◆  ACID properties 
◆  Query execution planning 

◆  We will talk very briefly about 
•  Recovery 
•  Concurrency 
•  Query execution planning 
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Recovery 
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Global Recovery 

◆  We have a local recovery manager on each machine 
◆  It is able to guarantee 

•  A: Atomicity 
•  C: Consistency 
•  D: Durability 

     for transactions executing on the machine 
 
◆  We need to guarantee ACD for transactions that run on 

more than one machine 
◆  So for example, such a transaction must be either 

committed or aborted globally, that is the work on each 
machine must be either committed or aborted (rolled back) 



©  2014 Zvi M. Kedem                                                                                                                                                                                                                     8 

                      

Our Old Example: Money Transfer 

◆  Items a and b are stored on a disk attached to some 
machine running a DBMS 

◆  Transfer $5 from account a to b  
 
1.   transaction starts   
2.   read a into xa (local variable in RAM)   
3.   xa  :=   xa − 5      
4.   write xa onto a      
5.   read b into xb (local variable in RAM)  
6.   xb :=   xb  + 5  
7.   write xb onto b     
8.   transaction ends 
 

◆  If initial values are a = 8 and  b  = 1  
 
then after the execution a = 3 and b = 6 
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Old Example: New Scenario 

◆  There are 3 DBMS machines: nodes in a cluster 

◆  There is M1 that is the coordinator 
◆  There is M2 that is a participant 
◆  There is M3 that is a participant 

◆  User interacts with M1 
◆  M2 stores a on its local disk 
◆  M3 stores b on its local disk 

M1
a

M2

b
M3
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Our New Example: Money Transfer 

◆  User asks to transfer $5 from account a to b  

◆  M1 will be the coordinator 
◆  M2 + M3 will be the participants 
◆  Very rough sketch of execution 

 
1.   M1 starts a global transaction 
2.   M1 tells M2 to subtract 5 from a 
3.   M1 tells M3 to add 5 to b  
4.   M2 starts a local transaction to subtract 5 from a 
5.   M3 starts a local transaction to add 5 to b  
6.   M1 + M2 + M3 cooperate so “everything” is atomically 
      committed or aborted: all transactions commit or abort 
 

M1
a

M2

b
M3
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Two-Phase Commit Protocol 
General Flowchart (Simplified) 
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Two-Phase Commit Protocol 
All Commit 
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Two-Phase Commit Protocol 
A Participant Aborts ⇒ All Abort 
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Two-Phase Commit Protocol 
A Participant Not Ready ⇒ All Abort 
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Two-Phase Commit Protocol 
Some Participant Cannot Commit ⇒ All Abort 
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Two-Phase Commit Protocol 
Coordinator Decides: Global Commit 
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Two-Phase Commit Protocol 
A Participant Is Uncertain ⇒ It Must Wait 
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Two-Phase Commit 
Many Optimizations Possible 

◆  A participant can report it is ready on its own initiative 
◆  A participant can report that it must abort on its own 

initiative 
◆  If a participant crashes while uncertain it can ask other 

participants if they know what the decision was 
◆  … 
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Another Issue: Global Deadlock Handling 

◆  Assume a system with strict two-phase locking (locked 
held until after commit) 

◆  The system uses two-phase commit 
◆  M1 “spawned” two transactions 

•  T[1,1] executing at site S1 
•  T[1,2] executing at site S2 

◆  Only after global commit of M1, T[1,1], T[1,2] can their 
locks be released 

◆  Only after global commit of M2, T[2,1], T[2,2] can their 
locks be released 

◆  M2 “spawned” two transactions 
•  T[2,1] executing at site S1 
•  T[2,2] executing at site S2 

◆  S1 contains items a and b 
◆  S2 contains items c and d 
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Another Issue: Global Deadlock Handling 

S1    S2 
T[1,1] locks a 
T[2,1] locks b 
T[1,1] waits to lock b 

   T[1,2] locks c 
   T[2,2] locks d 
   T[2,2] waits to lock c 

◆  For T[1,1] to continue, T[2,1] has to release a lock 
◆  Can only happen after M2, T[2,1], T[2,2] committed 

◆  For T[2,2] to continue, T[1,2] has to release a lock 
◆  Can only happen after M1, T[1,1], T[1,2] committed 



©  2014 Zvi M. Kedem                                                                                                                                                                                                                     21 

                      

Another Issue: Global Deadlock Handling 

◆  We have a global deadlock 
◆  There is no local deadlock anywhere 
◆  Difficult to detect 
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Concurrency 
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Global Concurrency Management 

◆  We assume that know how to manage recovery, that is a 
distributed transaction either commits or aborts at all 
sites on which it executes 

◆  ACD is guaranteed 
 
◆  We need to guarantee I (Isolation) also for 

transactions that run on more than one machine 

◆  Each machine is running a local concurrency manager, 
which we assume operates using rigorous locking 

◆  All locks are held until after local commit or abort on each 
machine 

◆  In case of global commit, all the locks are held until after 
global commit decision: the coordinator writes commit 
record on its log 

◆  This guarantees global serializability 
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Extension to Multiple Copies (Replication) 
One Machine vs. Two Machines 

Machine	  1 Machine	  1 Machine	  1

Machine	  3

Machine	  2

Horizontal	  
Partitioning

Database	  
Sharding

Normalization
Denormalization
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Advantages of Data Replication 

◆  It may be useful to replicate some data 

◆  To improve fault-tolerance 
 
If Machine 1 crashes, we can still access “the blue data” 
on Machine 2 

◆  To improve efficiency 
 
Both Machine 1 and Machine 2 can access “the blue data” 
locally 
 
So they do not have to use the network to access that 
data and can access it fast 
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Problems With Data Replication 

◆  We need to keep the replicated data consistent 
◆  “The blue data” has to be the same on Machine 1 and on 

Machine 2 

◆  So, if some transaction running on Machine 1 modifies 
“the blue data”, we must make sure that the same 
modification is made  (preferably transparently by the 
system) to “the blue data” on Machine 2 

◆  So perhaps we could use the following protocol 
 
If a transaction wants to modify “the blue data” on one 
machine, we must make sure transparently that it is 
modified in the same way on both machines 
 
A transaction wants to read “the blue data”, it can read it 
from any machine 
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A Nightmare Scenario: Network Partition 

◆  The network partitions into two sets that cannot 
communicate with each other 

1.  Machine 1 
2.  Machine 2 and Machine 3 

◆  No transaction can modify “the blue data” 

◆  Because if this is possible, it can only do it on one of the 
machines 

◆  Then “the blue data” is not consistent 
◆  A transaction that reads “the blue data” on Machine 1 will 

get a different results than a transaction that reads “the 
blue data” on Machine 2 



©  2014 Zvi M. Kedem                                                                                                                                                                                                                     28 

                      

Thomas Majority Rule 
(Example: Sufficient For Understanding) 

◆  There is a data item X that is replicated on 5 machines, 
M1, M2, M3, M4, M5 

◆  The majority of these machines is 3 
◆  The data item is stored as a pair (X,T), where T is the 

timestamp it was last written, assuming the existence of a 
global clock known to everybody (easy to implement, e.g., 
atomic clock broadcasting  on radio from Colorado) 

◆  To write X, access a majority (at least 3) sites and replace 
the existing (X,T) with (Xnew,Tcurrent) 

◆  To read X, access a majority (= 3) sites and, read the 
three pairs of (X,T). Find the one in which with T is the 
largest and return the corresponding X 
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Thomas Majority Rule 
(Example: Sufficiently General) 

◆  The value of (X,T) in the majority of sites used will be red 
◆  Initial state in the 5 sites 

(10,0) (10,0) (10,0) (10,0) (10,0) (10,0)    
◆  Majority used to write 20 into X at time 1: M1, M2, M3 

(20,1) (20,1) (20,1) (10,0) (10,0) 
◆  Majority used to write 30 into X at time 3: M2, M3, M4 

(20,1) (30,3) (30,3) (30,3) (10,0) 
◆  Majority used to read X at time 6: M3, M4, M5 

Retrieved: (30,3) (30,3) (10,0) 
◆  Since the largest timestamp is 3, the correct value for X is 

30 

◆  The protocol works since any two sets of at least 3 
machines contain at least one common machine with the 
latest timestamp 
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Thomas Majority Rule 
General Network Partitioning 

◆  Machines that are in a partition that does not include the 
majority of the copies cannot act on these copies 
•  Cannot read 
•  Cannot write 

◆  So this does not solve the problem of “the blue data” as 
we always need to access both copies 
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Query Execution Planning 
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New Issue: Movement of Data 

◆  We now have another cost to consider: moving data 
among machines 

◆  We will look at one example where we will try just to 
decrease the cost of moving data 

◆  We have two machines: M1 and M2 
◆  In M1 we have a relation R(A,B) 
◆  In M2 we have a relation S(C,D) 
◆  Assume for simplicity that R and S are of the same size 

◆  We want to compute 
SELECT A, C 
FROM R, S 
WHERE R.B = S.D; 
 
and have the result at M2 
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An Execution Plan 

A choice 
◆  Copy S to M1 
◆  Compute the result 
◆  Send the result to M2 

A better choice? 
◆  Copy R to M2 
◆  Compute the result 

But if S is small and R large this may be better 
◆   Copy S to M1 
◆  Compute the result 
◆  Send the result to M2 
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Even Better Execution Plan 
If The Parameters Are Right 

◆  On M2 compute 
INSERT INTO TEMP1 SELECT DISTINCT D 
FROM S; 

◆  Copy TEMP1 to M1 
◆  On M1 compute 

INSERT INTO TEMP2 SELECT A, B 
FROM R, TEMP1 
WHERE B = D; 

◆  Copy TEMP2 to M2 
◆  On M2 compute 

INSERT INTO ANSWER SELECT A, C 
FROM TEMP2, S 
WHERE B = D; 

◆  Very Good if TEMP1 and TEMP2 are relatively small 
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We Used a Semijoin 

◆  Out TEMP2 was left semijoin of R and S, that is the set 
of all the tuples of R for which there is a “matching” tuple 
in S (under the WHERE equality condition) 

◆  Notation: R    S 

◆  Similarly, we can define a right semijoin, denoted by  

â

â
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NoSQL Has To Compromise 
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CAP Theorem 

◆  Without defining precisely, if we have more than one 
machine and replicate the data 

◆  You can get only 2 of the following 3 properties 

1.  Consistency (you will always see a consistent state when 
accessing data) 

2.  Availability (if you can access a machine, it can read and 
write items it stores) 

3.  Partition Tolerance (you can work in the presence of 
partitions) 

◆  So, to get A and B you may be willing to sacrifice C 
 
 



©  2014 Zvi M. Kedem                                                                                                                                                                                                                     38 

                      

Key Ideas 

◆  NoSQL databases and Distributed Database 
◆  Two-phase commit 
◆  Global Deadlocks 
◆  Concurrency control with distributed data 
◆  Query processing with distributed data 
◆  The CAP theorem 


