
© 2014 Zvi M. Kedem 1

Unit 7
Logical Database Design

With Normalization

© 2014 Zvi M. Kedem 2

 Normalization in Context

Base%Tables
Constraints,%Privileges

Base%Tables
Constraints,%Privileges

Files
Indexes,%Distribution

Files
Indexes,%Distribution

Standard%OS
Standard%Hardware

Standard%OS
Standard%Hardware

ConcurrencyConcurrency

RecoveryRecovery

Derived%Tables
Constraints,%Privileges

Derived%Tables
Constraints,%Privileges

DerivedDerived

ImplementedImplemented

Relies%onRelies%on

Runs%onRuns%on

Application%Data%Analysis%(ER)Application%Data%Analysis%(ER)

Normalization%(NFs)Normalization%(NFs)

Transaction%Processing%(ACID,%Sharding)Transaction%Processing%(ACID,%Sharding)

Queries%(DML)Queries%(DML)

User%Level
(View%Level)
User%Level
(View%Level)

Community%Level
(Base%Level)

Community%Level
(Base%Level)

Physical%LevelPhysical%Level

DBMS%OS%LevelDBMS%OS%Level

Centralized
Or

Distributed

Centralized
Or

Distributed

Queries%(DML)Queries%(DML)

Schema%Specification%(DDL)Schema%Specification%(DDL)

Query%Execution%(B+,%…,%Execution%Plan)Query%Execution%(B+,%…,%Execution%Plan)

© 2014 Zvi M. Kedem 3

Logical Database Design

◆  We are given a set of tables specifying the database
•  The base tables, which probably are the community (conceptual)

level

◆  They may have come from some ER diagram or from
somewhere else

◆  We will need to examine whether the specific choice of
tables is good for
•  Storing the information needed
•  Enforcing constraints
•  Avoiding anomalies, such as redundancies

◆  If there are problems to address, we may want to
restructure the database, of course not losing any
information

◆  Let us quickly review an example from “long time ago”

© 2014 Zvi M. Kedem 4

A Fragment Of A Sample Relational Database

◆  Business rule, that is a semantic constraint, (one among
several):
•  The value of Salary is determined only by the value of Grade

◆ Comment:
•  We keep track of the various Grades for more than just computing

salaries, though we do not show it
•  For instance, DOB and Grade together determine the number of

vacation days, which may therefore be different for SSN 121 and
106

R Name SSN DOB Grade Salary

A 121 2367 2 80

A 132 3678 3 70

B 101 3498 4 70

C 106 2987 2 80

© 2014 Zvi M. Kedem 5

Anomalies

◆  “If Grade = 2 then Salary = 80” is written twice
◆  There are additional problems with this design.

•  We are unable to store the salary structure for a Grade that does
not currently exist for any employee.

•  For example, we cannot store that Grade = 1 implies Salary = 90
•  For example, if employee with SSN = 132 leaves, we forget which

Salary should be paid to employee with Grade = 3
•  We could perhaps invent a fake employee with such a Grade and

such a Salary, but this brings up additional problems, e.g.,
 What is the SSN of such a fake employee? It cannot be NULL as
SSN is the primary key

Name SSN DOB Grade Salary

A 121 2367 2 80

A 132 3678 3 70

B 101 3498 4 70

C 106 2987 2 80

© 2014 Zvi M. Kedem 6

Better Representation Of Information

◆  The problem can be solved by replacing one table

 by two tables

R Name SSN DOB Grade Salary

A 121 2367 2 80

A 132 3678 3 70

B 101 3498 4 70

C 106 2987 2 80

S Name SSN DOB Grade

A 121 2367 2

A 132 3678 3

B 101 3498 4

C 106 2987 2

T Grade Salary

2 80

3 70

4 70

© 2014 Zvi M. Kedem 7

Decomposition

◆  SELECT INTO S
Name, SSN, DOB, Grade
FROM R;

◆  SELECT INTO T
Grade, Salary
FROM R;

© 2014 Zvi M. Kedem 8

Better Representation Of Information

◆  And now we can
•  Store “If Grade = 3 then Salary = 70”, even after the last employee

with this Grade leaves
•  Store “If Grade = 2 then Salary = 90”, planning for hiring

employees with Grade = 1, while we do not yet have any
employees with this Grade

S Name SSN DOB Grade

A 121 2367 2

B 101 3498 4

C 106 2987 2

T Grade Salary

1 90

2 80

3 70

4 70

© 2014 Zvi M. Kedem 9

No Information Was Lost

◆  Given S and T, we can reconstruct R using natural join

 SELECT INTO R
Name, SSN, DOB, S.Grade AS Grade, Salary
FROM T, S
WHERE T.Grade = S.Grade;

R Name SSN DOB Grade Salary

A 121 2367 2 80

A 132 3678 3 70

B 101 3498 4 70

C 106 2987 2 80

S Name SSN DOB Grade

A 121 2367 2

A 132 3678 3

B 101 3498 4

C 106 2987 2

T Grade Salary

2 80

3 70

4 70

© 2014 Zvi M. Kedem 10

Natural Join

◆  Given several tables, say R1, R2, …, Rn, their natural
join is computed using the following “template”:

 SELECT INTO R
one copy of each column name
FROM R1, R2, …, Rn
WHERE equal-named columns have to be equal

◆  The intuition is that R was “decomposed” into R1, R2,
…,Rn by appropriate SELECT statements, and now we
are putting them back together to reconstruct the original
R

© 2014 Zvi M. Kedem 11

Comment On Decomposition

◆  It does not matter whether we remove duplicate rows
◆  But some systems insist that that a row cannot appear

more than once with a specific value of a primary key
◆  So this would be OK for such a system

◆  This would not be OK for such a system

T Grade Salary

2 80

3 70

4 70

T Grade Salary

2 80

3 70

4 70

2 80

© 2014 Zvi M. Kedem 12

Comment On Decomposition

◆  We can always make sure, in a system in which
DISTINCT is allowed, that there are no duplicate rows by
writing

 SELECT INTO T
DISTINCT Grade, Salary
FROM R;

◆  And similarly elsewhere

© 2014 Zvi M. Kedem 13

Natural Join And Lossless Join Decomposition

◆  Natural Join is:
•  Cartesian join with condition of equality on corresponding columns
•  Only one copy of each column is kept

◆  “Lossless join decomposition” is another term for
information not being lost, that is we can reconstruct the
original table by “combining” information from the two new
tables by means of natural join

◆  This does not necessarily always hold
◆  We will have more material about this later
◆  Here we just observe that our decomposition satisfied this

condition at least in our example

© 2014 Zvi M. Kedem 14

Elaboration On “Corresponding Columns”
(Using Semantically “Equal” Columns)

◆  It is suggested by some that no two columns in the
database should have the same name, to avoid confusion,
then we should have columns and join similar to these

 SELECT INTO R S_Name AS R_Name, S_SSN AS R_SSN, S_DOB AS
R_DOB, S_Grade AS R_Grade, T_Salary AS R_Salary
FROM T, S
WHERE T_Grade = S_Grade;

R R_Name R_SSN R_DOB R_Grade R_Salary

A 121 2367 2 80

A 132 3678 3 70

B 101 3498 4 70

C 106 2987 2 80

S S_Name S_SSN S_DOB S_Grade

A 121 2367 2

A 132 3678 3

B 101 3498 4

C 106 2987 2

T T_Grade T_Salary

2 80

3 70

4 70

© 2014 Zvi M. Kedem 15

Mathematical Notation For Natural Join
(We Will Use Sparingly)

◆  There is a special mathematical symbol for natural join
◆  It is not part of SQL, of course, which only allows standard

ANSI font

◆  In mathematical, relational algebra notation, natural join of
two tables is denoted by (this symbol appears only in
special mathematical fonts, so we may use ∞ in these
notes instead)

◆  So we have: R = S T

◆  It is used when “corresponding columns” means “equal
columns”

å

å

© 2014 Zvi M. Kedem 16

Revisiting The Problem

◆  Let us look at

◆  The problem is not that there are duplicate rows
◆  The problem is the same as before, business rule

assigning Salary to Grade is written a number of times

◆  So how can we “generalize” the problem?

R Name SSN DOB Grade Salary

A 121 2367 2 80

A 132 3678 3 70

B 101 3498 4 70

C 106 2987 2 80

A 132 3678 3 70

B 101 3498 4 70

© 2014 Zvi M. Kedem 17

Stating The Problem In General

◆  We have a problem whenever we have two sets of
columns X and Y (here X is just Grade and Y is just
Salary), such that
1.  X does not contain a key either primary or unique (so

possibly there could be several/many non-identical rows with
the same value of X)

2.  Whenever two rows are equal on X, they must be equal on Y
◆  Why a problem: the business rule specifying how X

“forces” Y is “embedded” in different rows and therefore
•  Inherently written redundantly
•  Cannot be stored by itself

R Name SSN DOB Grade Salary

A 121 2367 2 80

A 132 3678 3 70

B 101 3498 4 70

C 106 2987 2 80

A 132 3678 3 70

B 101 3498 4 70

© 2014 Zvi M. Kedem 18

What Did We Do?
Think X = Grade And Y = Salary

◆  We had a table

◆  We replaced this one table by two tables

U X V W X Y

U X V Y W

© 2014 Zvi M. Kedem 19

Logical Database Design

◆  We will discuss techniques for dealing with the above
issues

◆  Formally, we will study normalization (decompositions as
in the above example) and normal forms (forms for
relation specifying some “niceness” conditions)

◆  There will be three very important issues of interest:
•  Removal of redundancies
•  Lossless-join decompositions
•  Preservation of dependencies

◆  We will learn the material mostly through comprehensive
examples

◆  But everything will be precisely defined
◆  Algorithms will be fully and precisely given in the material

© 2014 Zvi M. Kedem 20

Several Passes On The Material

◆  Practitioners do it (mostly) differently than the way
researchers/academics like to do

◆  Pass 1: I will focus on how IT practitioners do it or at least
like to talk about it

Ad-hoc treatment, but good for building intuition and
having common language and concepts with IT people

◆  Pass 2: I focus on how computer scientists like to do or at
least can do it this way if they want to

Good for actually using algorithms that guarantee correct
results

© 2014 Zvi M. Kedem 21

The Topic Is Normalization And Normal Forms

◆  Normalization deals with “reorganizing” a relational
database by, generally, breaking up tables (relations) to
remove various anomalies

◆  We start with the way practitioners think about it (as we
have just said)

◆  We will proceed by means of a simple example, which is
rich enough to understand what the problems are and how
to think about fixing them

◆  It is important (in this context) to understand what the
various normal forms are even the ones that are obsolete/
unimportant (your maybe asked about this during a job
interview!)

© 2014 Zvi M. Kedem 22

Normal Forms

◆  A normal form applies to a table/relation schema, not to
the whole database schema

◆  So the question is individually asked about a table: is it of
some specific desirable normal form?

◆  The ones you need to know about in increasing order of
“quality” and complexity:
•  First Normal Form (1NF); it essentially states that we have a table/

relation
•  Second Normal Form (2NF); intermediate form in some obsolete

algorithms
•  Third Normal Form (3NF); very important; a final form
•  Boyce-Codd Normal Form (BCNF); very important in theory (but

less used in practice and we will understand why); a final form
•  Fourth Normal Form (4NF); a final form but generally what is good

about it beyond previous normal forms is easily obtained without
formal treatment

◆  There are additional ones, which are more esoteric, and
which we will not cover

© 2014 Zvi M. Kedem 23

Our Example

◆  We will deal with a very small fragment of a database
dealing with a university

◆  We will make some assumptions in order to focus on the
points that we need to learn

◆  We will identify people completely by their first names,
which will be like Social Security Numbers
•  That is, whenever we see a particular first name more than once,

such as Fang or Allan, this will always refer to the same person:
there is only one Fang in the university, etc.

© 2014 Zvi M. Kedem 24

Our New Example

◆  We are looking at a single table in our database
◆  It has the following columns

•  S, which is a Student
•  B, which is the Birth Year of the Student
•  C, which is a Course that the student took
•  T, which is the Teacher who taught the Course the Student took
•  F, which is the Fee that the Student paid the Teacher for taking

the course and getting a good grade

◆  We will start with something that is not even a relation
(Note this is similar to Employees having Children in Unit
2; a Student may have any number of
(Course,Teacher,Fee) values

S B C T F C T F
Fang 1990 DB Zvi 1 OS Allan 2
John 1980 OS Allan 2 PL Marsha 4
Mary 1990 PL Vijay 1

© 2014 Zvi M. Kedem 25

Alternative Depiction

◆  Instead of

you may see the above written as

S B C T F C T F
Fang 1990 DB Zvi 1 OS Allan 2
John 1980 OS Allan 2 PL Marsha 4
Mary 1990 PL Vijay 1

S B C T F
Fang 1990 DB Zvi 1

OS Allan 2
John 1980 OS Allan 2

PL Marsha 4
Mary 1990 PL Vijay 1

© 2014 Zvi M. Kedem 26

First Normal Form:
A Table With Fixed Number Of Column

◆  This was not a relation, because we are told that each
Student may have taken any number of Courses

◆  Therefore, the number of columns is not fixed/bounded
◆  It is easy to make this a relation, getting

◆  Formally, we have a relation in First Normal Form (1NF),
this means that there are no repeating groups and the
number of columns is fixed: in other words this is a
relation, nothing new, defined for historical reasons
•  There are some variations to this definition, but we use this one

R S B C T F
Fang 1990 DB Zvi 1
John 1980 OS Allan 2
Mary 1990 PL Vijay 1
Fang 1990 OS Allan 2
John 1980 PL Marsha 4

© 2014 Zvi M. Kedem 27

Historical Reason For First Normal Form

◆  Originally, there were only file systems
◆  Such systems, frequently consisted of variable-length

records
◆  Transition to tables, which have fixed-length tuples, one

needs to restrict files to have fixed-length records
◆  This was phrased as normalization

◆  Note: we are not discussing how tables are actually
stored, which is invisible to SQL

◆  It may actually be advantageous to store relations using
files with variable-length records

© 2014 Zvi M. Kedem 28

Our Business Rules (Constraints)

◆  Our enterprise has certain business rules
◆  We are told the following business rules

1.  A student can have only one birth year
2.  A teacher has to charge the same fee from every student he/she

teaches.
3.  A teacher can teach only one course (perhaps at different times,

different offerings, etc, but never another course)
4.  A student can take any specific course from one teacher only (or

not at all)

◆  This means, that we are guaranteed that the information
will always obey these business rules, as in the example

R S B C T F

Fang 1990 DB Zvi 1
John 1980 OS Allan 2
Mary 1990 PL Vijay 1
Fang 1990 OS Allan 2
John 1980 PL Marsha 4

© 2014 Zvi M. Kedem 29

Functional Dependencies
(Abbreviation: FDs)

◆  These rules can be formally described using functional
dependencies

◆  We will ignore NULLS
◆  Let P and Q be sets of columns, then:

 P functionally determines Q, written P → Q
 if and only if
 any two rows that are equal on (all the attributes in) P
must be equal on (all the attributes in) Q

◆  In simpler terms, less formally, but really the same, it
means that:
 If a value of P is specified, it “forces” some (specific)
value of Q; in other words: Q is a function of P

◆  In our old example we looked at Grade → Salary

© 2014 Zvi M. Kedem 30

Our Given Functional Dependencies

◆  Our rules
1.  A student can have only one birth year: S → B
2.  A teacher has to charge the same fee from every student he

teaches : T → F
3.  A teacher can teach only one course (perhaps at different times,

different offerings, etc, but never another course) : T → C
4.  A student can take a course from one teacher only: SC → T

R S B C T F
Fang 1990 DB Zvi 1
John 1980 OS Allan 2
Mary 1990 PL Vijay 1
Fang 1990 OS Allan 2
John 1980 PL Marsha 4

© 2014 Zvi M. Kedem 31

Possible Primary Key

◆  Our rules: S → B, T → F, T → C, SC → T
◆  ST is a possible primary key, because given ST

1.  S determines B
2.  T determines F
3.  T determines C

◆  A part of ST is not sufficient
1.  From S, we cannot get T, C, or F
2.  From T, we cannot get S or B

R S B C T F

Fang 1990 DB Zvi 1
John 1980 OS Allan 2
Mary 1990 PL Vijay 1
Fang 1990 OS Allan 2
John 1980 PL Marsha 4

© 2014 Zvi M. Kedem 32

Possible Primary Key

◆  Our rules: S → B, T → F, T → C, SC → T
◆  SC is a possible primary key, because given SC

1.  S determines B
2.  SC determines T
3.  T determines F (we can now use T to determine F because of

rule 2)

◆  A part of SC is not sufficient
1.  From S, we cannot get T, C, or F
2.  From C, we cannot get B, S, T, or F

 R S B C T F

Fang 1990 DB Zvi 1
John 1980 OS Allan 2
Mary 1990 PL Vijay 1
Fang 1990 OS Allan 2
John 1980 PL Marsha 4

© 2014 Zvi M. Kedem 33

Possible Primary Keys

◆  Our rules: S → B, T → F, T → C, SC → T
◆  ST can serve as primary key, in effect:

•  ST → SBCTF
•  This sometimes just written as ST → BCF, since always ST → ST

(columns determine themselves)
◆  SC can serve as primary key, in effect:

•  SC → SBCTF
•  This sometimes just written as SC → BTF, since always SC → SC

(columns determine themselves)

© 2014 Zvi M. Kedem 34

We Choose The Primary Key

◆  We choose SC as the primary key
◆  This choice is arbitrary, but perhaps it is more intuitively

justifiable than ST
◆  For the time being, we ignore the other possible primary

key (ST)

R S B C T F
Fang 1990 DB Zvi 1
John 1980 OS Allan 2
Mary 1990 PL Vijay 1
Fang 1990 OS Allan 2
John 1980 PL Marsha 4

© 2014 Zvi M. Kedem 35

Repeating Rows Are Not A Problem

◆  The two tables store the same information and both obey
all the business rules, note that (Mary,PL) fixes the rest

R S B C T F
Fang 1990 DB Zvi 1
John 1980 OS Allan 2
Mary 1990 PL Vijay 1
Fang 1990 OS Allan 2
John 1980 PL Marsha 4

R S B C T F
Fang 1990 DB Zvi 1
John 1980 OS Allan 2
Mary 1990 PL Vijay 1
Fang 1990 OS Allan 2
John 1980 PL Marsha 4
Mary 1990 PL Vijay 1

© 2014 Zvi M. Kedem 36

Review

◆  To just review this
◆  Because S → B, given a specific S, either it does not

appear in the table, or wherever it appears it has the same
value of B
•  John has 1980, everywhere it appears
•  Lilian does not have B anywhere (in fact she does not appear in

the relation)

◆  Because SC → BTF (and therefore SC → SCBTF, as of
course SC → SC), given a specific SC, either it does not
appear in the table, or wherever it appears it has the same
value of BTF
•  Mary,PL has 1990,Vijay,1, everywhere it appears
•  Mary,OS does not appear

© 2014 Zvi M. Kedem 37

Drawing Functional Dependencies

◆  Each column in a box
◆  Our key (there could be more than one) is chosen to be

the primary key and its boxes have thick borders and it is
stored in the left part of the rectangle

◆  Above the boxes, we have functional dependencies “from
the full key” (this is actually not necessary to draw)

◆  Below the boxes, we have functional dependencies “not
from the full key”

◆  Colors of lines are not important, but good for explaining

C FTBS

© 2014 Zvi M. Kedem 38

Classification Of Dependencies

◆  The three “not from the full key” dependencies are
classified as:

◆  Partial dependency: From a part of the primary key to
outside the key

◆  Transitive dependency: From outside the key to outside
the key

◆  Into key dependency: From outside the key into (all or
part of) the key

C FTBS

© 2014 Zvi M. Kedem 39

Anomalies

◆  These “not from the full key” dependencies cause the
design to be bad
•  Inability to store important information
•  Redundancies

◆  Imagine a new Student appears who has not yet
registered for a course
•  This S has a specific B, but this cannot be stored in the table as

we do not have a value of C yet, and the attributes of the primary
key cannot be NULL

◆  Imagine that Mary withdrew from the only Course she has
•  We have no way of storing her B

◆  Imagine that we “erase” the value of C in the row stating
that Fang was taught by Allan
•  We will know that this was OS, as John was taught OS by Allan,

and every teacher teaches only one subject, so we had a
redundancy; and whenever there is a redundancy, there is
potential for inconsistency

© 2014 Zvi M. Kedem 40

Anomalies

◆  The way to handle the problems is to replace a table with
other equivalent tables that do not have these problems

◆  Implicitly we think as if the table had only one key (we are
not paying attention to keys that are not primary)

◆  In fact, as we have seen, there is one more key, we just
do not think about it (at least for now)

© 2014 Zvi M. Kedem 41

Review Of Our Example

◆  Our rules
•  A student can have only one birth year: S → B
•  A teacher has to charge the same fee from every student he/she

teaches : T → F
•  A teacher can teach only one course (perhaps at different times,

different offerings, etc, but never another course) : T → C
•  A student can take a course from one teacher only : SC → T

R S B C T F
Fang 1990 DB Zvi 1
John 1980 OS Allan 2
Mary 1990 PL Vijay 1
Fang 1990 OS Allan 2
John 1980 PL Marsha 4

© 2014 Zvi M. Kedem 42

Review Of Our “Not From The Full Key”
Functional Dependencies

◆  S → B: partial; called partial because the left hand side is
only a proper part of the key

◆  T → F: transitive; called transitive because as T is
outside the key, it of course depends on the key, so we
have CS → T and T → F; and therefore CS → F
 Actually, it is more correct (and sometimes done) to say
that CS → F is a transitive dependency because it can be
decomposed into SC → T and T → F, and then derived by
transitivity

◆  T → C: into the key (from outside the key)

C FTBS

© 2014 Zvi M. Kedem 43

Classification Of The Dependencies: Warning

◆  Practitioners do not use consistent definitions for these
◆  I picked one set of definitions to use here

◆  We will later have formal machinery to discuss this

◆  Wikipedia seems to be OK, but other sources of material
on the web are frequently wrong (including very
respectable ones!)

◆  http://en.wikipedia.org/wiki/Database_normalization if you
want to know more, but the coverage of the material we
need to know is too skimpy and not sufficiently intuitive

© 2014 Zvi M. Kedem 44

Redundancies In Our Example

◆  What could be “recovered” if somebody covered up values
(the values are not NULL)?

◆  All of the empty slots, marked here with “?”

S B C T F
Fang 1990 DB Zvi 1
John 1980 OS Allan 2
Mary 1990 PL Vijay 1
Fang ? ? Allan ?
John ? PL Marsha 4

© 2014 Zvi M. Kedem 45

Our Business Rules Have A Clean Format

◆  Our business rules have a clean format
•  Whoever gave them to us, understood the application very well

◆  The procedure we describe next assumes rules in such a
clean format

◆  Later we will learn how to “clean” business rules without
understanding the application

◆  Computer Scientists do not assume that they understand
the application or that the business rules are clean, so
they use algorithmic techniques to clean up business rules

◆  And Computer Scientists prefer to use algorithms and rely
less on intuition

© 2014 Zvi M. Kedem 46

A Procedure For Removing Anomalies

◆  Recall what we did with the example of Grade determining
Salary

◆  In general, we will have sets of attributes: U, X, V, Y, W
◆  We replaced R(Name,SSN,DOB,Grade,Salary), where

Grade → Salary; in the drawing “X” stands for “Grade” and
“Y” stands for “Salary”

 by two tables S(Name,SSN,DOB,Grade) and
T(Grade,Salary)

◆  We will do the same thing, dealing with one anomaly at a

time

U X V W X Y

U X V Y W

© 2014 Zvi M. Kedem 47

A Procedure For Removing Anomalies

◆  While replacing

 by two tables

◆  We do this if Y does not overlap (or is a part of) primary

key

◆  We do not want to “lose” the primary key of the table
UXVW, and if Y is not part of primary key of UXVYW, the
primary key of UXVYW is part of UXVW and therefore it is
a primary key there (a small proof is omitted)

U X V W X Y

U X V Y W

© 2014 Zvi M. Kedem 48

Incorrect Decomposition
(Not A Lossless Join Decomposition)

◆  Assume we replaced

 with two tables (note “Y” in the previous slide), which is
SSN was actually the key, therefore we should not do it),
without indicating the key for S to simplify the example

◆  We cannot answer the question what is the Name for SSN
= 121 (we lost information), so cannot decompose like this

R Name SSN DOB Grade Salary

A 121 2367 2 80

A 132 3678 3 70

B 101 3498 4 70

C 106 2987 2 80

S Name DOB Grade Salary

A 2367 2 80

A 3678 3 70

B 3498 4 70

C 2987 2 80

T SSN Salary

121 80

132 70

101 70

106 80

© 2014 Zvi M. Kedem 49

Our Example Again

S B C T F
Fang 1990 DB Zvi 1
John 1980 OS Allan 2
Mary 1990 PL Vijay 1
Fang 1990 OS Allan 2
John 1980 PL Marsha 4

C FTBS

© 2014 Zvi M. Kedem 50

Partial Dependency: S → B

S B C T F
Fang 1990 DB Zvi 1
John 1980 OS Allan 2
Mary 1990 PL Vijay 1
Fang 1990 OS Allan 2
John 1980 PL Marsha 4

C FTBS

© 2014 Zvi M. Kedem 51

Decomposition

S B C T F
Fang 1990 DB Zvi 1
John 1980 OS Allan 2
Mary 1990 PL Vijay 1
Fang 1990 OS Allan 2
John 1980 PL Marsha 4

S B
Fang 1990
John 1980
Mary 1990
Fang 1990
John 1980

S C T F
Fang DB Zvi 1
John OS Allan 2
Mary PL Vijay 1
Fang OS Allan 2
John PL Marsha 4

© 2014 Zvi M. Kedem 52

No Anomalies

S B
Fang 1990
John 1980
Mary 1990
Fang 1990
John 1980

S B

© 2014 Zvi M. Kedem 53

Some Anomalies

S C T F
Fang DB Zvi 1
John OS Allan 2
Mary PL Vijay 1
Fang OS Allan 2
John PL Marsha 4

C FTS

© 2014 Zvi M. Kedem 54

Decomposition So Far

S C T F
Fang DB Zvi 1
John OS Allan 2
Mary PL Vijay 1
Fang OS Allan 2
John PL Marsha 4

C FTS

S B
Fang 1990
John 1980
Mary 1990

S B

© 2014 Zvi M. Kedem 55

Second Normal Form:
1NF And No Partial Dependencies

◆  Each of the tables in our database is in Second Normal
Form

◆  Second Normal Form means:
•  First Normal Form
•  No Partial dependencies

◆  The above is checked individually for each table

◆  Furthermore, our decomposition was a lossless join
decomposition

◆  This means that by “combining” all the tables using the
natural join, we get exactly the original table back

◆  This is checked “globally”; we do not discuss how this is
done generally, but intuitively clearly true in our simple
example

© 2014 Zvi M. Kedem 56

Transitive Dependency: T → F

S C T F
Fang DB Zvi 1
John OS Allan 2
Mary PL Vijay 1
Fang OS Allan 2
John PL Marsha 4

C FTS

© 2014 Zvi M. Kedem 57

Decomposition

S C T F
Fang DB Zvi 1
John OS Allan 2
Mary PL Vijay 1
Fang OS Allan 2
John PL Marsha 4

S C T
Fang DB Zvi
John OS Allan
Mary PL Vijay
Fang OS Allan
John PL Marsha

T F
Zvi 1
Allan 2
Vijay 1
Allan 2
Marsha 4

© 2014 Zvi M. Kedem 58

No Anomalies

T F
Zvi 1
Allan 2
Vijay 1
Allan 2
Marsha 4

FT

© 2014 Zvi M. Kedem 59

Anomalies

S C T
Fang DB Zvi
John OS Allan
Mary PL Vijay
Fang OS Allan
John PL Marsha

C TS

© 2014 Zvi M. Kedem 60

Decomposition So Far
S B

Fang 1990
John 1980
Mary 1990

S B

S C T
Fang DB Zvi
John OS Allan
Mary PL Vijay
Fang OS Allan
John PL Marsha

C TS

T F
Zvi 1
Allan 2
Vijay 1
Marsha 4

FT

© 2014 Zvi M. Kedem 61

Third Normal Form:
2NF And No Transitive Dependencies

◆  Each of the tables in our database is in Third Normal Form
◆  Third Normal Form means:

•  Second Normal Form (therefore in 1NF and no partial
dependencies)

•  No transitive dependencies

◆  The above is checked individually for each table

◆  Furthermore, our decomposition was a lossless join
decomposition

◆  This means that by “combining” all the tables we get
exactly the original table back

◆  This is checked “globally”; we do not discuss how this is
done generally, but intuitively clearly true in our simple
example

© 2014 Zvi M. Kedem 62

Anomaly

◆  We are worried about decomposing by “pulling out” C and
getting CS and TC, as we are pulling out a part of the key

◆  But we can actually do it

S C T
Fang DB Zvi
John OS Allan
Mary PL Vijay
Fang OS Allan
John PL Marsha

C TS

© 2014 Zvi M. Kedem 63

An Alternative Primary Key: TS

◆  Note that TS could also serve as primary key for this table

SCT since by looking at the FD we have: T → C, we see
that TS functionally determines everything, that is it
determines all the attributes TSC

◆  Recall, that TS could have been chosen at the primary key
of the original table

S C T
Fang DB Zvi
John OS Allan
Mary PL Vijay
Fang OS Allan
John PL Marsha

C TS

© 2014 Zvi M. Kedem 64

Anomaly

◆  Now our anomaly is a partial dependency, which we know
how to handle

S C T
Fang DB Zvi
John OS Allan
Mary PL Vijay
Fang OS Allan
John PL Marsha

T CS

© 2014 Zvi M. Kedem 65

Decomposition

S C T
Fang DB Zvi
John OS Allan
Mary PL Vijay
Fang OS Allan
John PL Marsha

S T
Fang Zvi
John Allan
Mary Vijay
Fang Allan
John Marsha

C T
DB Zvi
OS Allan
PL Vijay
OS Allan
PL Marsha

© 2014 Zvi M. Kedem 66

No Anomalies

S T
Fang Zvi
John Allan
Mary Vijay
Fang Allan
John Marsha

T S

© 2014 Zvi M. Kedem 67

No Anomalies

C T
DB Zvi
OS Allan
PL Vijay
OS Allan
PL Marsha

CT

© 2014 Zvi M. Kedem 68

Our Decomposition

S B
Fang 1990
John 1980
Mary 1990

S B

T F
Zvi 1
Allan 2
Vijay 1
Marsha 4

S T
Fang Zvi
John Allan
Mary Vijay
Fang Allan
John Marsha

T S

C T
DB Zvi
OS Allan
PL Vijay
PL Marsha

CT

FT

© 2014 Zvi M. Kedem 69

Our Decomposition

◆  We can also combine tables if they have the same key
and we can still maintain good properties

S B
Fang 1990
John 1980
Mary 1990

T F C
Zvi 1 DB
Allan 2 OS
Vijay 1 PL
Marsha 4 PL

S T
Fang Zvi
John Allan
Mary Vijay
Fang Allan
John Marsha S B

CT F

T S

© 2014 Zvi M. Kedem 70

Boyce-Codd Normal Form:
1NF And All Dependencies From Full Key

◆  Each of the tables in our database is in Boyce-Codd
Normal Form

◆  Boyce-Codd Normal Form (BCNF) means:
•  First Normal Form
•  Every functional dependency is from a full key

 This definition is “loose.” Later, a complete, formal definition
◆  A table is BCNF is automatically in 3NF as no bad

dependencies are possible
◆  The above is checked individually for each table

◆  Furthermore, our decomposition was a lossless join
decomposition

◆  This means that by “combining” all the tables we get
exactly the original table back

◆  This is checked “globally”; we do not discuss how this is
done generally, but intuitively clearly true in our simple
example

© 2014 Zvi M. Kedem 71

A New Issue: Maintaining Database Correctness
And Preservation Of Dependencies

◆  We can understand this just by looking at the table which
we decomposed last

◆  We will not use drawings but write the constraints that
needed to be satisfied in narrative

◆  We will examine an update to the database and look at
two scenarios

◆  When we have one “imperfect” 3NF table SCT
◆  When we have two “perfect” BCNF tables ST and CT
◆  We will attempt an incorrect update and see how to detect

it under both scenarios

© 2014 Zvi M. Kedem 72

Our Tables (For The Two Cases)

◆  SCT satisifies: SC → T and ST →C: keys SC and ST

◆  ST does not satisfy anything: key ST
◆  CT satisfies T → C: key T

S C T
Fang DB Zvi
John OS Allan
Mary PL Vijay
Fang OS Allan
John PL Marsha

S T
Fang Zvi
John Allan
Mary Vijay
Fang Allan
John Marsha

C T
DB Zvi
OS Allan
PL Vijay
OS Allan
PL Marsha

© 2014 Zvi M. Kedem 73

An Insert Attempt

◆  A user wants to specify that now John is going to take PL
from Vijay

◆  If we look at the database, we realize this update should
not be permitted because
•  John can take PL from at most one teacher
•  John already took PL (from Marsha)

◆  But can the system figure this out just by checking
whether FDs continue being satisified?

◆  Let us find out what will happen in each of the two
scenarios

© 2014 Zvi M. Kedem 74

Scenario 1: SCT

◆  We maintain SCT, knowing that its keys are SC and ST

◆  Before the INSERT,
constraints
are satisfied;
keys are OK

◆  After the INSERT,
constraints
are not satisfied;
SC is no longer a key

◆  INSERT rejected
after the constraint
is checked

S C T
Fang DB Zvi
John OS Allan
Mary PL Vijay
Fang OS Allan
John PL Marsha

S C T
Fang DB Zvi
John OS Allan
Mary PL Vijay
Fang OS Allan
John PL Marsha
John PL Vijay

© 2014 Zvi M. Kedem 75

Scenario 2: ST And CT

◆  We maintain ST, knowing that its key ST
◆  We maintain CT, knowing that its key is T

◆  Before the INSERT,
constraints
are satisfied;
keys are OK

◆  After the INSERT,
constraints
are still satisfied;
keys remain keys

◆  But the INSERT
must still be
rejected

S T
Fang Zvi
John Allan
Mary Vijay
Fang Allan
John Marsha

S T
Fang Zvi
John Allan
Mary Vijay
Fang Allan
John Marsha
John Vijay

C T
DB Zvi
OS Allan
PL Vijay
OS Allan
PL Marsha

C T
DB Zvi
OS Allan
PL Vijay
OS Allan
PL Marsha
PL Vijay

© 2014 Zvi M. Kedem 76

Scenario 2: What To Do?

◆  The INSERT must be rejected
◆  This bad insert cannot be discovered as bad by examining

only what happens in each individual table
◆  The formal term for this is: dependencies are not

preserved

◆  So need to perform non-local tests to check updates for
validity

◆  For example, take ST and CT and reconstruct SCT

© 2014 Zvi M. Kedem 77

A Very Important Conclusion

◆  Generally, normalize up to 3NF and not up to BCNF
•  So the database is not fully normalized

◆  Luckily, when you do this, frequently you “automatically”
get BCNF
•  But not in our example, which I set up on purpose so this does not

happen

© 2014 Zvi M. Kedem 78

Multivalued Dependencies

◆  To have a smaller example, we will look at this separately,
not by extending our previous example
•  Otherwise, it would become too big

◆  In the application, we store information about Courses (C),
Teachers (T), and Books (B)

◆  Each course has a set of books that have to be assigned
during the course

◆  Each course has a set of teachers that are qualified to
teach the course

◆  Each teacher, when teaching a course, has to use the set
of the books that has to be assigned in the course

© 2014 Zvi M. Kedem 79

An Example table

◆  This instance (and therefore the table in general) does not
satisfy any functional dependencies
•  CT does not functionally determine B
•  CB does not functionally determine T
•  TB does not functionally determent C

C T B
DB Zvi Oracle
DB Zvi Linux
DB Dennis Oracle
DB Dennis Linux
OS Dennis Windows
OS Dennis Linux
OS Jinyang Windows
OS Jinyang Linux

© 2014 Zvi M. Kedem 80

Redundancies

◆  There are obvious redundancies
◆  In both cases, we know exactly how to fill the missing data

if it was erased
◆  We decompose to get rid of anomalies

C T B
DB Zvi Oracle
DB Zvi Linux
DB Dennis ?
DB Dennis ?
OS Dennis Windows
OS Dennis Linux
OS Jinyang ?
OS Jinyang ?

C T B
DB Zvi Oracle
DB ? Linux
DB Dennis Oracle
DB ? Linux
OS Dennis Windows
OS ? Linux
OS Jinyang Windows
OS ? Linux

© 2014 Zvi M. Kedem 81

Decomposition

C T B
DB Zvi Oracle
DB Zvi Linux
DB Dennis Oracle
DB Dennis Linux
OS Dennis Windows
OS Dennis Linux
OS Jinyang Windows
OS Jinyang Linux

C T
DB Zvi
DB Dennis
OS Dennis
OS Jinyang

C B
DB Oracle
DB Linux
OS Windows
OS Linux

© 2014 Zvi M. Kedem 82

Multivalued Dependencies And 4NF

◆  We had the following situation
◆  For each value of C there was

•  A set of values of T
•  A set of values of B

◆  Such that, every T of C had to appear with every B of C
 This is stated here rather loosely, but it is clear what it
means

◆  The notation for this is: C → → T | B

◆  The tables CT and CB where in Fourth Normal Form
(4NF)

◆  We do not define formally here

© 2014 Zvi M. Kedem 83

Now: To Algorithmic Techniques

◆  So far, our treatment was not algorithmic and we just
looked at an interesting case exploring within the context
of that case 3 issues

1.  Avoiding (some) redundancies by converting tables to
3NF (and sometimes getting BCNF)

2.  Preserving dependencies/constraints by making sure that
dependencies (business rules) can be easily checked and
enforced

3.  Making sure that the decomposition of tables to obtain
tables in better form does not cause us to lose information
(lossless join) decomposition

◆  But we did not have an algorithmic procedure to do this
◆  We now continue with building up intuition and actually

learning an algorithmic procedure

© 2014 Zvi M. Kedem 84

Closures Of Sets Of Attributes (Column Names)

◆  Closure of a set of attributes is an easy to use but
extremely powerful tool for everything that follows

◆  “On the way” we may review some concepts
◆  We return to our old example, in which we are given a

table with three columns (attributes)
•  Employee (E, for short, meaning really the SSN of the employee)
•  Grade (G, for short)
•  Salary (S, for short)

◆  Satisfies:
1.  E → G
2.  G → S

◆  We would like to find all the keys of this table
◆  A key is a minimal set of attributes, such that the values of

these attributes, “force” some values for all the other
attributes

© 2014 Zvi M. Kedem 85

Closures Of Sets Of Attributes

◆  In general, we have a concept of a the closure of a set of
attributes

◆  Let X be a set of attributes, then X+ is the set of all
attributes, whose values are forced by the values of X

◆  In our example
•  E+ = EGS (because given E we have the value of G and then

because we have the value for G we have the value for E)
•  G+ = GS
•  S+ = S

◆  This is interesting because we have just showed that E is
a key

◆  And here we could also figure out that this is the only key,
as GS+ = GS, so we will never get E unless we already
have it

◆  Note that GS+ really means (GS)+ and not G(S)+

© 2014 Zvi M. Kedem 86

Computing a Closure: An Example

◆  Our table is ABCDE
◆  Our only functional dependency (FD) is BC → D

•  This means: any tuples that are equal on both B and on C must be
equal on D also

◆  We look at all the tuples of the table in which ABC has a
specific fixed value, that is all the values of A are the
same, all the values of B are the same and all the values
of C are the same
•  We discuss soon why this is interesting

◆  What other columns from D and E have specific fixed
values for the set of tuples we are considering?

◆  D has to have a specific fixed value
◆  E does not have to have a specific fixed value

© 2014 Zvi M. Kedem 87

Computing Closures Of Sets Of Attributes

◆  There is a very simple algorithm to compute X+

1. Let Y = X
2. Whenever there is an FD, say V → W, such that

 1. V ⊆ Y, and
 2. W − Y is not empty
 add W − Y to Y

3. At termination Y = X+

◆  The algorithm is very efficient
◆  Each time we look at all the functional dependencies

•  Either we can apply at least one functional dependency and make
Y bigger (the biggest it can be are all attributes), or

•  We are finished

© 2014 Zvi M. Kedem 88

Example

◆  Let R = ABCDEGHIJK
◆  Given FDs:

1.  K → BG
2.  A → DE
3.  H → AI
4.  B → D
5.  J → IH
6.  C → K
7.  I → J

◆  We will compute: ABC+

1.  We start with ABC+ = ABC
2.  Using FD number 2, we now have: ABC+ = ABCDE
3.  Using FD number 6, we now have ABC+ = ABCDEK
4.  Using FD number 1, we now have ABC+ = ABCDEKG
No FD can be applied productively anymore and we are done

© 2014 Zvi M. Kedem 89

Keys Of Tables

◆  The notion of an FD allows us to formally define keys
◆  Given R (relation schema which is always denoted by its

set of attributes), satisfying a set of FDs, a set of attributes
X of R is a key, if and only if:
•  X+ = R.
•  For any Y ⊆ X such that Y ≠ X, we have Y+ ≠ R.

◆  Note that if R does not satisfy any (nontrivial) FDs, then R
is the only key of R

◆  “Trivial” means P → Q and Q ⊆ P: we saying something
that is always true and not interesting

◆  Example, AB → A is always true and does not say
anything interesting

◆  Example, if a table is R(FirstName,LastName) without
any functional dependencies, then its key is just the pair
(FirstName,LastName)

© 2014 Zvi M. Kedem 90

Keys of Tables

◆  If we apply our algorithm to the EGS example given
earlier, we can now just compute that E was (the only) key
by checking all the subsets of {E,G,S}

◆  Of course, in general, our algorithm is not efficient, but in
practice what we do will be very efficient (most of the
times)

© 2014 Zvi M. Kedem 91

Example

◆  Let R = ABCDEKGHIJ
◆  Given FDs:

1.  K → BG
2.  A → DE
3.  H → AI
4.  B → D
5.  J → IH
6.  C → K
7.  I → J

◆  Then
•  ABCH+ = ABCDEGHIJK
•  And ABCH is a key or maybe contains a key as a proper subset
•  We could check whether ABCH is a key by computing ABC+, ABH

+, ACH+, BCH+ and showing that none of them is ABCDEGHIJK

© 2014 Zvi M. Kedem 92

Another Example: Airline Scheduling

◆  We have a table PFDT, where
•  PILOT
•  FLIGHT NUMBER
•  DATE
•  SCHEDULED_TIME_of_DEPARTURE

◆  The table satisfies the FDs:

•  F → T
•  PDT → F
•  FD → P

© 2014 Zvi M. Kedem 93

Computing Keys

◆  We will compute all the keys of the table
◆  In general, this will be an exponential-time algorithm in the

size of the problem
◆  But there will be useful heuristic making this problem

tractable in practice
◆  We will introduce some heuristics here and additional

ones later

◆  We note that if some subset of attributes is a key, then no
proper superset of it can be a key as it would not be
minimal and would have superfluous attributes

© 2014 Zvi M. Kedem 94

Lattice Of Sets Of Attributes

◆  There is a natural structure (technically a lattice) to all the
nonempty subsets of attributes

◆  I will draw the lattice here, in practice this is not done
•  Not necessary and too big

◆  We will look at all the non-empty subsets of attributes
◆  There are 15 of them: 24 − 1

◆  The structure is clear from the drawing

© 2014 Zvi M. Kedem 95

Lattice Of Nonempty Subsets

PF PD PT FD FT DT

PFD PFT PDT FDT

PFDT

P F D T

© 2014 Zvi M. Kedem 96

Keys Of PFDT

◆  The algorithm proceeds from bottom up
◆  We first try all potential 1-attribute keys, by examining all

1-attribute sets of attributes
•  P+ = P
•  F+ = FT
•  D+ = D
•  T+ = T

 There are no 1-attribute keys

◆  Note, that the it is impossible for a key to have both F and
T
•  Because if F is in a key, T will be automatically determined as it is

included in the closure of F
◆  Therefore, we can prune our lattice

© 2014 Zvi M. Kedem 97

Pruned Lattice

PF PD PT FD DT

PFD PDT

P F D T

© 2014 Zvi M. Kedem 98

Keys Of PFDT

◆  We try all potential 2-attribute keys
•  PF+ = PFT
•  PD+ = PD
•  PT+ = PT
•  FD+ = FDPT
•  DT+ = DT

 There is one 2-attribute key: FD

◆  We can mark the lattice

◆  We can prune the lattice

© 2014 Zvi M. Kedem 99

Marked And Pruned Lattice

◆  The key we found is marked with red
◆  Some nodes can be removed

PF PD PT FD DT

PDT

P F D T

© 2014 Zvi M. Kedem 100

Keys Of PFDT

◆  We try all potential 3-attribute keys
•  PDT+ = PDTF

 There is one 3-attribute key: PDT

© 2014 Zvi M. Kedem 101

Final Lattice
We Only Care About The Keys

◆  We could have removed some nodes, but we did not need
to do that as we found all the possible keys

PF PD PT FD DT

PDT

P F D T

© 2014 Zvi M. Kedem 102

Finding A Decomposition

◆  Next, we will discuss by means of an example how to
decompose a table into tables, such that

1.  The decomposition is lossless join
2.  Dependencies are preserved
3.  Each resulting table is in 3NF

◆  Although this will be an example, the example will be
sufficiently general so that the general procedure will be
covered

© 2014 Zvi M. Kedem 103

The EmToPrHoSkLoRo Table

◆  The table deals with employees who use tools on projects
and work a certain number of hours per week

◆  An employee may work in various locations and has a
variety of skills

◆  All employees having a certain skill and working in a
certain location meet in a specified room once a week

◆  The attributes of the table are:
•  Em: Employee
•  To: Tool
•  Pr: Project
•  Ho: Hours per week
•  Sk: Skill
•  Lo: Location
•  Ro: Room for meeting

© 2014 Zvi M. Kedem 104

The FDs Of The Table

◆  The table deals with employees who use tools on projects
and work a certain number of hours per week

◆  An employee may work in various locations and has a
variety of skills

◆  All employees having a certain skill and working in a
certain location meet in a specified room once a week

◆  The table satisfies the following FDs:
•  Each employee uses a single tool: Em → To
•  Each employee works on a single project: Em → Pr
•  Each tool can be used on a single project only: To → Pr
•  An employee uses each tool for the same number of hours each

week: EmTo → Ho
•  All the employees working in a location having a certain skill

always work in the same room (in that location): SkLo → Ro
•  Each room is in one location only: Ro → Lo

© 2014 Zvi M. Kedem 105

Sample Instance: Many Redundancies

Em To Pr Ho Sk Lo Ro

Mary Pen Research 20 Clerk Boston 101

Mary Pen Research 20 Writer Boston 102

Mary Pen Research 20 Writer Buffalo 103

Fang Pen Research 30 Clerk New York 104

Fang Pen Research 30 Editor New York 105

Fang Pen Research 30 Economist New York 106

Fang Pen Research 30 Economist Buffalo 107

Lakshmi Oracle Database 40 Analyst Boston 101

Lakshmi Oracle Database 40 Analyst Buffalo 108

Lakshmi Oracle Database 40 Clerk Buffalo 107

Lakshmi Oracle Database 40 Clerk Boston 101

Lakshmi Oracle Database 40 Clerk Albany 109

Lakshmi Oracle Database 40 Clerk Trenton 110

Lakshmi Oracle Database 40 Economist Buffalo 107

© 2014 Zvi M. Kedem 106

Our FDs

1.  Em → To
2.  Em → Pr
3.  To → Pr
4.  EmTo → Ho
5.  SkLo → Ro
6.  Ro → Lo

◆  What should we do with this drawing? I do not know. We
need an algorithm

◆  We know how to find keys (we will actually do it later) and
we can figure that EmSkLo could serve as the primary
key, so we could draw using the appropriate colors

◆  But note that there for FD number 4, the left hand side
contains an attribute from the key and an attribute from
outside the key, so I used a new color

◆  Let’s forget for now that I have told you what the primary
key was, we will find it later

Em PrToLoSk RoHo

© 2014 Zvi M. Kedem 107

1: Getting A Minimal Cover

◆  We need to “simplify” our set of FDs to bring it into a
“nicer” form, so called minimal cover or (sometimes
called also canonical cover)

◆  But, of course, the power has to be the same as we need
to enforce the same business rules

◆  The algorithm for this will be covered later, it is very
important

◆  The end result is:
1.  Em → ToHo
2.  To → Pr
3.  SkLo → Ro
4.  Ro → Lo

◆  From these we will build
our tables directly, but
just for fun, we can look
at a drawing

Em PrToLoSk RoHo

© 2014 Zvi M. Kedem 108

2: Creating Tables From a Minimal Cover

◆  Create a table for each functional dependency
◆  We obtain the tables:

1.  EmToHo
2.  ToPr
3.  SkLoRo
4.  LoRo

© 2014 Zvi M. Kedem 109

3: Removing Redundant Tables

◆  LoRo is a subset of SkLoRo, so we remove it
◆  We obtain the tables:

1.  EmToHo
2.  ToPr
3.  SkLoRo

© 2014 Zvi M. Kedem 110

4: Ensuring The Storage Of The Global Key
(Of The Original Table)

◆  We need to have a table containing the global key
◆  Perhaps one of our tables contain such a key
◆  So we check if any of them already contains a key of

EmToPrHoSkLoRo:

1.  EmToHo EmToHo+ = EmToHoPr, does not contain a key
2.  ToPr ToPr+ = ToPr, does not contain a key
3.  SkLoRo SkLoRo+ = SkLoRo, does not contain a key

◆  We need to add a table whose attributes form a global key

© 2014 Zvi M. Kedem 111

Finding Keys Using a Good Heuristic

◆  Let us list the FDs again (or could have worked with the
minimal cover, does not matter):
•  Em → To
•  Em → Pr
•  To → Pr
•  EmTo → Ho
•  SkLo → Ro
•  Ro → Lo

◆  We can classify the attributes into 4 classes:
1.  Appearing on both sides of FDs; here To, Lo, Ro.
2.  Appearing on left sides only; here Em, Sk.
3.  Appearing on right sides only; here Pr, Ho.
4. Not appearing in FDs; here none.

© 2014 Zvi M. Kedem 112

Finding Keys

◆  Facts:
•  Attributes of class 2 and 4 must appear in every key
•  Attributes of class 3 do not appear in any key
•  Attributes of class 1 may or may not appear in keys

◆  An algorithm for finding keys relies on these facts
•  Unfortunately, in the worst case, exponential in the number of

attributes

◆  Start with the attributes in classes 2 and 4, add as needed
(going bottom up) attributes in class 1, and ignore
attributes in class 3

© 2014 Zvi M. Kedem 113

Finding Keys

◆  In our example, therefore, every key must contain EmSk
◆  To see, which attributes, if any have to be added, we

compute which attributes are determined by EmSk
◆  We obtain

•  EmSk+ = EmToPrHoSk

◆  Therefore Lo and Ro are missing
◆  It is easy to see that the table has two keys

•  EmSkLo
•  EmSkRo

© 2014 Zvi M. Kedem 114

Finding Keys

◆  Although not required strictly by the algorithm (which does
not mind decomposing a table in 3NF into tables in 3NF)
we can check if the original table was in 3NF

◆  We conclude that the original table is not in 3NF, as for
instance, To → Pr is a transitive dependency and
therefore not permitted for 3NF

© 2014 Zvi M. Kedem 115

4: Ensuring The Storage Of The Global Key

◆  None of the tables contains either EmSkLo or EmSkRo.
◆  Therefore, one more table needs to be added. We have 2

choices for the final decomposition
1.  EmToHo; satisfying Em → ToHo; primary key: Em
2.  ToPr; satisfying To → Pr; primary key To
3.  SkLoRo; satisfying SkLo → Ro and Ro → Lo; primary key SkLo

or SkRo
4.  EmSkLo; not satisfying anything; primary key EmSkLo

 or
1.  EmToHo; satisfying Em → ToHo; primary key: Em
2.  ToPr; satisfying To → Pr; primary key To
3.  SkLoRo; satisfying SkLo → Ro and Ro → Lo; primary key SkLo

or SkRo
4.  EmSkRo ; not satisfying anything; primary key SkRO

◆  We have completed our process and got a decomposition
with the properties we needed; actually more than one

© 2014 Zvi M. Kedem 116

A Decompostion

Em To Ho

Mary Pen 20

Fang Pen 30

Lakshmi Oracle 40

To Pr

Pen Research

Oracle Database

Sk Lo Ro

Clerk Boston 101

Writer Boston 102

Writer Buffalo 103

Clerk New York 104

Editor New York 105

Economist New York 106

Economist Buffalo 107

Analyst Boston 101

Analyst Buffalo 108

Clerk Buffalo 107

Clerk Albany 109

Clerk Trenton 110

Em Sk Lo

Mary Clerk Boston

Mary Writer Boston

Mary Writer Buffalo

Fang Clerk New York

Fang Editor New York

Fang Economist New York

Fang Economist Buffalo

Lakshmi Analyst Boston

Lakshmi Analyst Buffalo

Lakshmi Clerk Buffalo

Lakshmi Clerk Boston

Lakshmi Clerk Albany

Lakshmi Clerk Trenton

Lakshmi Economist Buffalo

© 2014 Zvi M. Kedem 117

A Decompostion

Em To Ho

Mary Pen 20

Fang Pen 30

Lakshmi Oracle 40

To Pr

Pen Research

Oracle Database

Sk Lo Ro

Clerk Boston 101

Writer Boston 102

Writer Buffalo 103

Clerk New York 104

Editor New York 105

Economist New York 106

Economist Buffalo 107

Analyst Boston 101

Analyst Buffalo 108

Clerk Buffalo 107

Clerk Albany 109

Clerk Trenton 110

Em Sk Ro

Mary Clerk 101

Mary Writer 102

Mary Writer 103

Fang Clerk 104

Fang Editor 105

Fang Economist 106

Fang Economist 107

Lakshmi Analyst 101

Lakshmi Analyst 108

Lakshmi Clerk 107

Lakshmi Clerk 101

Lakshmi Clerk 109

Lakshmi Clerk 110

Lakshmi Economist 107

© 2014 Zvi M. Kedem 118

Properties Of The Decomposition

◆  The table on the left listed the values of the key of the
original table

◆  Each row corresponded to a row of the original table
◆  The other tables had rows that could be “glued” to the

“key” table based on the given business rules and thus
reconstruct the original table

◆  All the tables are in 3NF

© 2014 Zvi M. Kedem 119

Computing Minimal Cover

◆  What remains to be done is to learn how to start with a set
of FDs and to “reduce” them to a “clean” set with
equivalent constraints power

◆  This “clean” set is a minimal cover
◆  So we need to learn how to do that next

◆  We need first to understand better some properties of FDs

© 2014 Zvi M. Kedem 120

To Remind: Functional Dependencies

◆  Generally, if X and Y are sets of attributes, then X → Y
means:
 Any two tuples (rows) that are equal on (the vector of
attributes) X
 are also
 equal on (the vector of attributes) Y

◆  Note that this generalizes the concept of a key (UNIQUE,
PRIMARY KEY)
•  We do not insist that X determines everything
•  For instance we say that any two tuples that are equal on G are

equal on S, but we do not say that any two tuples that are equal
on G are “completely” equal

© 2014 Zvi M. Kedem 121

An Example

◆  Functional dependencies are properties of a schema, that
is, all permitted instances

◆  For practice, we will examine an instance

1.  A → C No
2.  AB → C Yes
3.  E → CD Yes
4.  D → B No
5.  F → ABC Yes
6.  H → G Yes
7.  H → GE No
8.  HGE → GE Yes

A B C D E F G H
a1 b1 c1 d1 e1 f1 g1 h1
a2 b1 c1 d2 e2 f2 g1 h1
a2 b2 c3 d3 e3 f3 g1 h2
a1 b1 c1 d1 e1 f4 g2 h3
a1 b2 c2 d2 e4 f5 g2 h4
a2 b3 c3 d2 e5 f6 g2 h3

© 2014 Zvi M. Kedem 122

Relative Power Of Some FDs
 H → G vs. H → GE

◆  Let us look at another example first
◆  Consider some table talking about employees in which

there are three columns:
1.  Grade
2.  Bonus
3.  Salary

◆  Consider now two possible FDs (functional dependencies)
1.  Grade → Bonus
2.  Grade → Bonus Salary

◆  FD (2) is more restrictive, fewer relations will satisfy FD (2)
than satisfy FD (1)
•  So FD (2) is stronger
•  Every relation that satisfies FD (2), must satisfy FD (1)
•  And we know this just because {Bonus} is a proper subset of

{Bonus, Salary}

© 2014 Zvi M. Kedem 123

Relative Power Of Some FDs
 H → G vs. H → GE

◆  An important note: H → GE is always at least as powerful
as H → G

that is
◆  If a relation satisfies H → GE it must satisfy H → G

◆  What we are really saying is that if GE = f(H), then of
course G = f(H)

◆  An informal way of saying this: if being equal on H forces
to be equal on GE, then of course there is equality just on
G

◆  More generally, if X, Y, Z, are sets of attributes and Z ⊆ Y;
then if X → Y is true than X → Z is true

© 2014 Zvi M. Kedem 124

Relative Power Of Some FDs
 A → C vs. AB → C

◆  Let us look at another example first
◆  Consider some table talking about employees in which

there are three columns:
1.  Grade
2.  Location
3.  Salary

◆  Consider now two possible FDs
1.  Grade → Salary
2.  Grade Location → Salary

◆  FD (2) is less restrictive, more relations will satisfy FD (2)
than satisfy FD (1)
•  So FD (1) is stronger
•  Every relation that satisfies FD (1), must satisfy FD (2)
•  And we know this just because {Grade} is a proper subset of

{Grade, Salary}

© 2014 Zvi M. Kedem 125

Relative Power Of Some FDs
 A → C vs. AB → C

◆  An important note: A → C is always at least as powerful
as AB → C

that is
◆  If a relation satisfies A → C it must satisfy AB → C

◆  What we are really saying is that if C = f(A), then of course
C = f(A,B)

◆  An informal way of saying this: if just being equal on A
forces to be equal on C, then if we in addition know that
there is equality on B also, of course it is still true that
there is equality on C

◆  More generally, if X, Y, Z, are sets of attributes and X ⊆ Y;
then if X → Z is true than Y → Z is true

© 2014 Zvi M. Kedem 126

Trivial FDs

◆  An FD X → Y, where X and Y are sets of attributes is
trivial

if and only if

Y ⊆ X

(Such an FD gives no constraints, as it is always satisfied,
which is easy to prove)

◆  Example
•  Grade, Salary → Grade

is trivial

◆  A trivial FD does not provide any constraints
◆  Every relations that contains columns Grade and Salary

will satisfy this FD: Grade, Salary → Grade

© 2014 Zvi M. Kedem 127

Decomposition and Union of some FDs

◆ An FD X → A1 A2 ... Am, where Ai’s are individual
attributes

 is equivalent to

the set of FDs:
X → A1
X → A2
...,
X → Am

◆ Example
FirstName LastName → Address Salary

 is equivalent to the set of the two FDs:
Firstname LastName → Address
Firstname LastName → Salary

© 2014 Zvi M. Kedem 128

Logical implications of FDs

◆  It will be important to us to determine if a given set of FDs
forces some other FDs to be true

◆  Consider again the EGS relation

◆  Which FDs are satisfied?
•  E → G, G → S, E → S are all true in the real world

◆  If the real world tells you only:
•  E → G and G → S

◆  Can you deduce on your own (and is it even always

true?), without understanding the semantics of the
application, that
•  E → S?

© 2014 Zvi M. Kedem 129

Logical implications of FDs

◆  Yes, by simple logical argument: transitivity
1.  Take any (set of) tuples that are equal on E
2.  Then given E → G we know that they are equal on G
3.  Then given G → S we know that they are equal on S
4.  So we have shown that E → S must hold

◆  We say that E → G, G → S logically imply E → S and
we write

◆  E → G, G → S |= E → S

◆  This means:
 If a relation satisfies E → G and G → S,
 then
 It must satisfy E → S

© 2014 Zvi M. Kedem 130

Logical implications of FDs

◆  If the real world tells you only:
•  E → G and E → S,

◆  Can you deduce on your own, without understanding the
application that
•  G → S

◆  No, because of a counterexample:

◆  This relation satisfies E → G and E → S, but violates G →
S

◆  For intuitive explanation, think: G means Height and S
means Weight

EGS E G S
Alpha A 1

Beta A 2

© 2014 Zvi M. Kedem 131

Conclusion/Question

◆  Consider a relation EGS for which the three constraints E
→ G, G → S, and E → S must all be obeyed

◆  It is enough to make sure that the two constraints E → G
and G → S are not violated

◆  It is not enough to make sure that the two constraints E

→ G and E → S are not violated

◆  But what to do in general, large, complex cases?

© 2014 Zvi M. Kedem 132

To Remind: Closures Of Sets Of Attributes

◆  We consider some relation schema, which is a set of
attributes, R (say EGS, which could also write as R(EGS))

◆  A set F of FDS for this schema (say E → G and G → S)
◆  We take some X ⊆ R (Say just the attribute E)
◆  We ask if two tuples are equal on X, what is the largest set

of attributes on which they must be equal
◆  We call this set the closure of X with respect to F and

denote it by XF
+ (in our case EF

+ = EGS and SF
+ = S, as is

easily seen)
◆  If it is understood what F is, we can write just X+

© 2014 Zvi M. Kedem 133

Towards A Minimal Cover

◆  This form will be based on trying to store a “concise”
representation of FDs

◆  We will try to find a “small” number of “small” relation
schemas that are sufficient to maintain the FDs

◆  The core of this will be to find “concise” description of FDs
•  Example: in ESG, E → S was not needed

◆  We will compute a minimal cover for a set of FDs
◆  The basic idea, simplification of a set of FDs by

•  Combining FDs when possible
•  Getting rid of unnecessary attributes

◆  We will start with examples to introduce the concepts and
the tools

© 2014 Zvi M. Kedem 134

Union Rule: Combining Right Hand Sides
(RHSs)

◆  F = { AB → C, AB → D }
 is equivalent to
 H = { AB → CD }

◆  We have discussed this rule before
◆  Intuitively clear
◆  Formally we need to prove 2 things

•  F |= H is true; we do this (as we know) by showing that ABF
+

contains CD; easy exercise
•  H |= F is true; we do this (as we know) by showing that ABH

+
contains C and ABH

+ contains D; easy exercise

◆  Note: you cannot combine LHSs based on equality of
RHS and get an equivalent set of FDS
•  F = {A → C, B → C} is stronger than H = {AB → C}

© 2014 Zvi M. Kedem 135

Union Rule: Combining Right Hand Sides
(RHSs)

◆  Stated formally:
 F = { X → Y, X → Z } is as powerful as H = { X → YZ }

◆  Easy proof, we omit

© 2014 Zvi M. Kedem 136

Relative Power Of FDs: Left Hand Side (LHS)

◆  F = { AB → C }
 is weaker than
 H = { A → C }

◆  We have discussed this rule before when we started
talking about FDs

◆  Intuitively clear: in F, if we assume more (equality on both
A and B) to conclude something (equality on C) than our
FD is applicable in fewer case (does not work if we have
equality is true on B’s but not on C’S) and therefore F is
weaker than H

◆  Formally we need to prove two things
•  F |= H is false; we do this (as we know) by showing that AF

+ does
not contain C; easy exercise

•  H |= F is true; we do this (as we know) by showing that ABH
+

contains C; easy exercise

© 2014 Zvi M. Kedem 137

Relative Power Of FDs: Left Hand Side (LHS)

◆  Stated formally:
 F = { XB → Y } is weaker than H = { X → Y }, (if B ∉ X)

◆  Easy proof, we omit

◆  Can state more generally, replacing B by a set of
attributes, but we do not need this

© 2014 Zvi M. Kedem 138

Relative Power Of FDs: Right Hand Side (RHS)

◆  F = { A → BC }
 is stronger than
 H = { A → B }

◆  Intuitively clear: in H, we deduce less from the same
assumption, equality on A’s

◆  Formally we need to prove two things
•  F |= H is true; we do this (as we know) by showing that AF

+
contains B; easy exercise

•  H |= F is false; we do this (as we know) by showing that AH
+ does

not contain C; easy exercise

© 2014 Zvi M. Kedem 139

Relative Power Of FDs: Right Hand Side (RHS)

◆  Stated formally:
 F = { X → YC } is stronger than H = { X → Y }, (if C ∉ Y

 and C ∉ X)

◆  Easy proof, we omit

◆  Can state more generally, replacing C by a set of
attributes, but we do not need this

© 2014 Zvi M. Kedem 140

Simplifying Sets Of FDs

◆  At various stages of the algorithm we will have
•  An “old” set of FDs
•  A “new” set of FDs

◆  The two sets will not vary by “very much”
◆  We will indicate the parts that do not change by . . .
◆  Of course, as we are dealing with sets, the order of the

FDs in the set does not matter

© 2014 Zvi M. Kedem 141

Simplifying Set Of FDs
By Using The Union Rule

◆  X, Y, Z are sets of attributes
◆  Let F be:

 …
X → Y
X → Z

◆  Then, F is equivalent to the following H:

…
X → YZ

© 2014 Zvi M. Kedem 142

Simplify Set Of FDS
By Simplifying LHS

◆  Le X, Y are sets of attributes and B a single attribute not in
X

◆  Let F be:
 …
XB → Y

◆  Let H be:
 …
X → Y

◆  Then if F |= X → Y holds, then we can replace F by H
without changing the “power” of F

◆  We do this by showing that XF
+ contains Y

•  H could only be stronger, but we are proving it is not actually
stronger, but equivalent

© 2014 Zvi M. Kedem 143

Simplify Set Of FDS
By Simplifying LHS

◆  H can only be stronger than F, as we have replaced a
weaker FD by a stronger FD

◆  But if we F |= H holds, this “local” change does not change
the overall power

◆  Example below
◆  Replace

•  AB → C
•  A → B

 by
•  A → C
•  A → B

© 2014 Zvi M. Kedem 144

Simplify Set Of FDS
By Simplifying RHS

◆  Le X, Y are sets of attributes and C a single attribute not in
Y

◆  Let F be:
 …
X → YC
…

◆  Let H be:
 …
X → Y
…

◆  Then if H |= X → YC holds, then we can replace F by H
without changing the “power” of F

◆  We do this by showing that XH
+ contains YC

•  H could only be weaker, but we are proving it is not actually
weaker, but equivalent

© 2014 Zvi M. Kedem 145

Simplify Set Of FDS
By Simplifying RHS

◆  H can only be weaker than F, as we have replaced a
stronger FD by a weaker FD

◆  But if we H |= F holds, this “local” change does not change
the overall power

◆  Example below
◆  Replace

•  A → BC
•  B → C

 by
•  A → B
•  B → C

© 2014 Zvi M. Kedem 146

Minimal Cover

◆  Given a set of FDs F, find a set of FDs Fm, that is (in a
sense we formally define later) minimal

◆  Algorithm:
1.  Start with F
2.  Remove all trivial functional dependencies
3.  Repeatedly apply (in whatever order you like), until no

changes are possible
•  Union Simplification (it is better to do it as soon as possible,

whenever possible)
•  RHS Simplification
•  LHS Simplification

4.  What you get is a a minimal cover

◆  We proceed through a largish example to exercise all
possibilities

© 2014 Zvi M. Kedem 147

The EmToPrHoSkLoRo Relation

◆  The relation deals with employees who use tools on
projects and work a certain number of hours per week

◆  An employee may work in various locations and has a
variety of skills

◆  All employees having a certain skill and working in a
certain location meet in a specified room once a week

◆  The attributes of the relation are:
•  Em: Employee
•  To: Tool
•  Pr: Project
•  Ho: Hours per week
•  Sk: Skill
•  Lo: Location
•  Ro: Room for meeting

© 2014 Zvi M. Kedem 148

The FDs Of The Relation

◆  The relation deals with employees who use tools on
projects and work a certain number of hours per week

◆  An employee may work in various locations and has a
variety of skills

◆  All employees having a certain skill and working in a
certain location meet in a specified room once a week

◆  The relation satisfies the following FDs:
•  Each employee uses a single tool: Em → To
•  Each employee works on a single project: Em → Pr
•  Each tool can be used on a single project only: To → Pr
•  An employee uses each tool for the same number of hours each

week: EmTo → Ho
•  All the employees working in a location having a certain skill

always work in the same room (in that location): SkLo → Ro
•  Each room is in one location only: Ro → Lo

© 2014 Zvi M. Kedem 149

Sample Instance

Em To Pr Ho Sk Lo Ro

Mary Pen Research 20 Clerk Boston 101

Mary Pen Research 20 Writer Boston 102

Mary Pen Research 20 Writer Buffalo 103

Fang Pen Research 30 Clerk New York 104

Fang Pen Research 30 Editor New York 105

Fang Pen Research 30 Economist New York 106

Fang Pen Research 30 Economist Buffalo 107

Lakshmi Oracle Database 40 Analyst Boston 101

Lakshmi Oracle Database 40 Analyst Buffalo 108

Lakshmi Oracle Database 40 Clerk Buffalo 107

Lakshmi Oracle Database 40 Clerk Boston 101

Lakshmi Oracle Database 40 Clerk Albany 109

Lakshmi Oracle Database 40 Clerk Trenton 110

Lakshmi Oracle Database 40 Economist Buffalo 107

© 2014 Zvi M. Kedem 150

Our FDs

1.  Em → To
2.  Em → Pr
3.  To → Pr
4.  EmTo → Ho
5.  SkLo → Ro
6.  Ro → Lo

© 2014 Zvi M. Kedem 151

Run The Algorithm

◆  Using the union rule, we combine RHS of 1 and 2, getting:
1.  Em → ToPr
2.  To → Pr
3.  EmTo → Ho
4.  SkLo → Ro
5. Ro → Lo

© 2014 Zvi M. Kedem 152

Run The Algorithm

◆  No RHS can be combined, so we check whether there are
any redundant attributes.

◆  We start with FD 1, where we attempt to remove an
attribute from RHS
•  We check whether we can remove To. This is possible if we can

derive Em → To using
 Em → Pr
 To → Pr
 EmTo → Ho
 SkLo → Ro
 Ro → Lo
 Computing the closure of Em using the above FDs gives us only
EmPr, so the attribute To must be kept.

© 2014 Zvi M. Kedem 153

Run The Algorithm

•  We check whether we can remove Pr. This is possible if we can
derive Em → Pr using

 Em → To
 To → Pr
 EmTo → Ho
 SkLo → Ro
 Ro → Lo
 Computing the closure of Em using the above FDs gives us
EmToPrHo, so the attribute Pr is redundant

© 2014 Zvi M. Kedem 154

Run The Algorithm

◆  We now have
1.  Em → To
2.  To → Pr
3.  EmTo → Ho
4.  SkLo → Ro
5. Ro → Lo

◆  No RHS can be combined, so we continue attempting to
remove redundant attributes. The next one is FD 3, where
we attempt to remove an attribute from LHS
•  We check if Em can be removed. This is possible if we can derive

To → Ho using all the FDs. Computing the closure of To using the
FDs gives ToPr, and therefore Em cannot be removed

•  We check if To can be removed. This is possible if we can derive
Em → Ho using all the FDs. Computing the closure of Em using
the FDs gives EmToPrHo, and therefore To can be removed

© 2014 Zvi M. Kedem 155

Run The Algorithm

◆ We now have
1.  Em → To
2.  To → Pr
3.  Em → Ho
4.  SkLo → Ro
5.  Ro → Lo

◆ We can now combine RHS of 1 and 3 and get
1.  Em → ToHo
2.  To → Pr
3.  SkLo → Ro
4.  Ro → Lo

© 2014 Zvi M. Kedem 156

Run The Algorithm

◆  We now attempt to remove an attribute from the LHS of 3,
and an attribute from RHS of 1, but neither is possible
•  This, of course, needs to be checked

◆  Therefore we are done
◆  We have computed a minimal cover for the original set of

FDs

© 2014 Zvi M. Kedem 157

Minimal Cover

◆  A set of FDs, Fm, is a minimal cover for a set of FD F,
 if and only if

1.  Fm is minimal, that is
1.  No two FDs in it can be combined using the union rule
2.  No attribute can be removed from a RHS of any FD in Fm without

changing the power of Fm
3.  No attribute can be removed from a LHS of any FD in Fm without

changing the power of Fm
2.  Fm is equivalent in power to F

◆  Note that there could be more than one minimal cover for
F, as we have not specified the order of applying the
simplification operations

© 2014 Zvi M. Kedem 158

How About EGS

◆  Applying to algorithm to EGS with
1.  E → G
2.  G → S
3.  E → S

◆  Using the union rule, we combine 1 and 3 and get

1.  E → GS
2.  G → S

◆  Simplifying RHS of 1 (this is the only attribute we can
remove), we get
1.  E → G
2.  G → S

◆  We automatically got the two “important” FDs!

© 2014 Zvi M. Kedem 159

An Algorithm For “An Almost”
3NF Lossless-Join Decomposition

◆  Input: relation schema R and a set of FDs F
◆  Output: almost-decomposition of R into R1, R2, …, Rn,

each in 3NF
◆  Algorithm
1.  Produce Fm, a minimal cover for F
2.  For each X → Y in Fm create a new relation schema XY
3.  For every new relation schema that is a subset (including

being equal) of another new relation schema (that is the
set of attributes is a subset of attributes of another
schema or the two sets of attributes are equal) remove
this relation schema (the “smaller” one or one of the equal
ones); but if the two are equal, need to keep one of them

4.  The set of the remaining relation schemas is an “almost
final decomposition”

© 2014 Zvi M. Kedem 160

Back To Our Example

◆  For our EmToPrHoSkLoRo example, we previously
computed the following minimal cover:
1.  Em → ToHo
2.  To → Pr
3.  SkLo → Ro
4. Ro → Lo

© 2014 Zvi M. Kedem 161

Creating Relations

◆  Create a relation for each functional dependency
◆  We obtain the relations:

1.  EmToHo
2.  ToPr
3.  SkLoRo
4.  LoRo

© 2014 Zvi M. Kedem 162

Removing Redundant Relations

◆  LoRo is a subset of SkLoRo, so we remove it
◆  We obtain the relations:

1.  EmToHo
2.  ToPr
3.  SkLoRo

© 2014 Zvi M. Kedem 163

How About EGS

◆  The minimal cover was
1.  E → G
2.  G → S

◆  Therefore the relations obtained were:
1.  EG
2.  GS

◆  And this is exactly the decomposition we thought was
best!

© 2014 Zvi M. Kedem 164

Assuring Storage Of A Global Key

◆  If no relation contains a key of the original relation, add a
relation whose attributes form such a key

◆  Why do we need to do this?
•  Because otherwise we may not have a decomposition
•  Because otherwise the decomposition may not be lossless

© 2014 Zvi M. Kedem 165

Why It Is Necessary To Store A Global Key
Example

◆  Consider the relation LnFn:
•  Ln: Last Name
•  Fn: First Name

◆  There are no FDs
◆  The relation has only one key:

•  LnFn

◆  Our algorithm (without the key included) produces no
relations

◆  A condition for a decomposition: Each attribute of R has to
appear in at least one Ri

◆  So we did not have a decomposition
◆  But if we add the relation consisting of the attributes of the

key
•  We get LnFn (this is fine, because the original relations had no

problems and was in a good form, actually in BCNF, which is
always true when there are no (nontrivial) FDs)

© 2014 Zvi M. Kedem 166

Why It Is Necessary To Store A Global Key
Example

◆  Consider the relation: LnFnVaSa:
•  Ln: Last Name
•  Fn: First Name
•  Va: Vacation days per year
•  Sa: Salary

◆  The functional dependencies are:
•  Ln → Va
•  Fn → Sa

◆  The relation has only one key
•  LnFn

◆  The relation is not in 3NF
•  Ln → Va: Ln does not contain a key and Va is not in any key
•  Fn → Sa: Fn does not contain a key and Sa is not in any key

© 2014 Zvi M. Kedem 167

Why It Is Necessary To Store A Global Key
Example

◆  Our algorithm (without the key being included) will
produce the decomposition
1.  LnVa
2.  FnSa

◆  This is not a lossless-join decomposition
•  In fact we do not know who the employees are (what are the valid

pairs of LnFn)

◆  So we decompose
1.  LnVa
2.  FnSa
3.  LnFn

© 2014 Zvi M. Kedem 168

Assuring Storage Of A Global Key

◆  If no relation contains a key of the original relation, add a
relation whose attributes form such a key

◆  It is easy to test if a “new” relation contains a key of the
original relation

◆  Compute the closure of the relation with respect to all FDs
(either original or minimal cover, it’s the same) and see if
you get all the attributes of the original relation

◆  If not, you need to find some key of the original relation
◆  We have studied this before

© 2014 Zvi M. Kedem 169

Applying The Algorithm to EGS

◆  Applying the algorithm to EGS, we get our desired
decomposition:
•  EG
•  GS

◆  And the “new” relations are in BCNF too, though we
guaranteed only 3NF!

© 2014 Zvi M. Kedem 170

Returning to Our Example

◆  We pick the decomposition
1. EmToHo
2. ToPr
3. SkLoRo
4. EmSkLo

◆  We have the minimal set of FDs of the simplest form
(before any combinations)
1.  Em → ToHo
2.  To → Pr
3.  SkLo → Ro
4.  Ro → Lo

© 2014 Zvi M. Kedem 171

Returning to Our Example

◆  Everything can be described as follows:
◆  The relations, their keys, and FDs that need to be

explicitly mentioned are:
1. EmToHo key: Em
2. ToPr key: To
3. SkLoRo key: SkLo, key SkRo, and functional dependency

 Ro → Lo
4. EmSkLo key: EmSkLo

◆  In general, when you decompose as we did, a relation
may have several keys and satisfy several FDs that do not
follow from simply knowing keys

◆  In the example above there was one relation that had
such an FD, which made is automatically not a BCNF
relation (but by our construction a 3NF relation)

© 2014 Zvi M. Kedem 172

Back to SQL DDL

◆  How are we going to express in SQL what we have
learned?

◆  We need to express:
•  keys
•  functional dependencies

◆  Expressing keys is very easy, we use the PRIMARY KEY
and UNIQUE keywords

◆  Expressing functional dependencies is possible also by
means of a CHECK condition
•  What we need to say for the relation SkLoRo is that each tuple

satisfies the following condition

There are no tuples in the relation with the same value of Ro and
different values of Lo

© 2014 Zvi M. Kedem 173

Back to SQL DDL

◆ CREATE TABLE SkLoRo
(Sk …,
Lo …,
Ro…,
UNIQUE (Sk,Ro),
PRIMARY KEY (Sk,Lo),
CHECK (NOT EXISTS SELECT *

 FROM SkLoRo AS Copy
 WHERE (SkLoRo.Ro = Copy.Ro
 AND NOT SkLoRo.Lo = Copy.Lo)));

◆ But this is generally not supported by actual relational
database systems

◆ Even assertions are frequently not supported
◆ Can do it differently
◆ Whenever there is an insert or update, check that FDs

hold, or reject these actions

© 2014 Zvi M. Kedem 174

Maintaining FDs During Insertion

◆  We have a table R satisfying some FDs
◆  We have a table T of “candidates” for inserting into R
◆  We want to construct a subset of U of T consisting only of

those tuples whose insertion into R would not violate FDs

◆  We show how to do it for the simple example of R = EGS,
where we need to maintain:
•  E is the primary key
•  G → S holds

◆  We replace

INSERT INTO R
(SELECT *
FROM T);

 By the following

© 2014 Zvi M. Kedem 175

Maintaining FDs During Insertion

INSERT INTO R
 (SELECT *
 FROM T
 WHERE NOT EXISTS
 (SELECT *
 FROM R
 WHERE (R.G = T.G AND R.S <> T.S) OR (R.E = T.E)
)
);

◆  The WHERE condition will only insert only those tuples

from T to R that satisfy the conditions

•  There is no tuple in R with the same value of the primary key E
•  There is no tuple in R with the same G but a different S

© 2014 Zvi M. Kedem 176

What If You Are Given A Decomposition?

◆  You are given a relation R with a set of dependencies it
satisfies

◆  You are given a possible decomposition of R into R1, R2,
…, Rm

◆  You can check
•  Is the decomposition lossless: must have
•  Are the new relations in some normal forms: nice to have
•  Are dependencies preserved: nice to have

◆  Algorithms exist for all of these, which you could learn, if
needed and wanted

◆  We do not have time to do it in this class

© 2014 Zvi M. Kedem 177

Denormalization

◆  After Normalization, we may want to denormalize
◆  The idea is to introduce redundant information in order to

speed up some queries
◆  So the design not so clean, but more efficient
◆  We do not cover more, you can read in http://

en.wikipedia.org/wiki/Denormalization

© 2014 Zvi M. Kedem 178

DB Design Process
(Roadmap)

◆  Produce a good ER diagram, thinking of all the issues
◆  Specify all dependencies that you know about
◆  Produce relational implementation
◆  Normalize each table to whatever extent feasible
◆  Specify all assertions and checks
◆  Possibly denormalize for performance

•  May want to keep both EGS and GS
•  This can be done also by storing EG and GS and defining EGS as

a view

© 2014 Zvi M. Kedem 179

A Review And Some Additional Material

© 2014 Zvi M. Kedem 180

What We Will Cover Here

◆  Review concepts dealing with Functional Dependencies
◆  Review algorithms
◆  Add some material extending previous material

© 2014 Zvi M. Kedem 181

Functional Dependencies
(Abbreviation: FDs)

◆  We will ignore NULLS
◆  Let X and Y be sets of columns, then:

 X functionally determines Y, written X → Y
 if and only if
 any two rows that are equal on (all the attributes in) X
must be equal on (all the attributes in) Y

◆  In simpler terms, less formally, but really the same, it
means that:
 If a value of X is specified, it “determines” some
(specific) value of Y; in other words: Y is a function of
X

◆  We will generally look at sets of FDs and will denote them
as needed by M and N

© 2014 Zvi M. Kedem 182

Trivial FDs

◆  If Y ⊆ X then FD X → Y
•  Holds always
•  Does not say anything

◆  Such FD is called trivial

◆  Can always remove the “trivial part” from an FD without
changing the constraint expressed by that FD

◆  Example: Replace
 ABCD → CDE
 by
 ABCD → E

 Having CD on the right side does not add anything

© 2014 Zvi M. Kedem 183

Union Rule/Property

◆  An FD with n attributes on the right hand side
 X → A1 A2 … An
 is equivalent to the set of n FDs
 X → A1
 X → A2
 ….
 X → An

◆  Example:

 ABC → DEFG
 is equivalent to set of 4 FDs

 ABC → D
 ABC → E
 ABC → F
 ABC → G

© 2014 Zvi M. Kedem 184

Closures of a Sets of Attributes

◆  In general, we have a concept of a the closure of a set of
attributes in a relational schema R

◆  We are given a set of functional dependencies, say M
◆  Let X be a set of attributes,
◆  XM

+ is the set of all the attributes whose values are
“determined” by the values of X because of M
•  If M is understood, we do not need to write it and can just write X+

© 2014 Zvi M. Kedem 185

Computing Closures Of Sets Of Attributes

◆  There is a very simple algorithm to compute X+ (given
some set of FDs)

1. Let Y = X
2. Whenever there is an FD, say V → W, such that

 1. V ⊆ Y, and
 2. W − Y is not empty
 add W − Y to Y

3. At termination Y = X+

◆  The algorithm is very efficient
◆  Each time we look at all the functional dependencies

•  Either we can apply at least one functional dependency and make
Y bigger (the biggest it can be are all attributes), or

•  We are finished

© 2014 Zvi M. Kedem 186

Keys Of Tables

◆  Given R (relation schema which is always denoted by its
set of attributes), satisfying a set of FDs, a set of attributes
X of R is a key, if and only if:
•  X+ = R.
•  For any Y ⊆ X such that Y ≠ X, we have Y+ ≠ R.

◆  Note that if R does not satisfy any (nontrivial) FDs, then R
is the only key of R

◆  Example, if a table is R(FirstName,LastName) without
any functional dependencies, then its key is just the pair
(FirstName,LastName)

© 2014 Zvi M. Kedem 187

Anomalies And Boyce-Codd Normal Form
(BCNF)

◆  We are given R (relation schema) and M (set of FDs)
◆  We have an anomaly whenever

 X → Y is non-trivial and holds
 but
 X does not contain a key of R

◆  Because there could be different tuples with the same
value of X and they all have to have the same value of Y

◆  A relation is in BCNF if anomalies as described in this
slide do not happen

© 2014 Zvi M. Kedem 188

How To Prove That A Relation Is Not In BCNF

◆  To prove that relation R is not in BCNF it is enough to
show that there is a non-trivial FD X → Y and X does not
contain a key of R

◆  And to show that X does not contain a key of R it is
enough to show that X+ ≠ R

© 2014 Zvi M. Kedem 189

Some Normal Form

◆  We have discussed several additional normal forms
pertaining to FDs
•  Second Normal Form (2NF)
•  Third Normal Form (3NF)

◆  We did not look at the most general definitions

◆  Let us review what we did using an old example

◆  We have, in general, FDs of the form X → Y
◆  But by the union rule, we can decompose them and

consider FDs of the form X → A, where A is a single
attribute

© 2014 Zvi M. Kedem 190

Classification Of FDs
(Our Old Example Focusing Only on One Key)

◆  The three “not from the full key” dependencies are

classified as:
◆  Partial dependency: From a part of the primary key to

outside the key
◆  Transitive dependency: From outside the key to outside

the key
◆  Into key dependency: From outside the key into (all or

part of) the key

◆  But what if we have X → Y where X is partially in the key
and partially outside the key?

C FTBS

© 2014 Zvi M. Kedem 191

It is Incomplete to Focus on Only One Key
(The Primary Key)

◆  By looking at the diagram we immediately can deduce that
ST is also a key
•  Because T determines C and therefore as SC determined R, so

did ST

◆  And we discussed it too.

C FTBS

© 2014 Zvi M. Kedem 192

General Definition of Some Normal Forms

◆  Let R be relation schema
◆  We will list what is permitted for three normal forms

◆  We will include an obsolete normal form, which is still
sometimes considered by practitioners: second normal
form (2NF)

◆  It is obsolete, because we can always find a desired
decomposition in relations in 3NF, which is better than
2NF

◆  The interesting is a general definition of 3NF

◆  Note: no discussion of which key is chosen to be primary
as this is formally really “an arbitrary decision” though
perhaps important for the application

© 2014 Zvi M. Kedem 193

Which FDs Are Allowed For Some Normal Forms
Consider X → A (X set, A single)

BCNF 3NF 2NF

X → A is trivial
(A is inside X)

X → A is trivial
(A is inside X)

X → A is trivial
(A is inside X)

X contains a key X contains a key X contains a key

A is in some key
(informally: into a key, but
X can overlap a key)

A is in some key
(informally: into a key, but
X can overlap a key

X not a proper subset of
some/any key
(not worth making it more
precise, as obsolete)

© 2014 Zvi M. Kedem 194

Cannot Have an FD From a Key Into Itself

◆  It is not possible to have a non-trivial functional
dependency from a part of key into that same key

◆  Proof by example:

◆  In such a situation ABC is “too big” and actually BC is a
key (and also the drawing does not follow standards)

A EDCB

© 2014 Zvi M. Kedem 195

Example: Relation in BCNF And Not in 3NF

◆  Given functional dependencies: ABC → DE and CD → A
◆  ABC is a key and designated as primary
◆  This relation is not in BCNF as we have CD → A and CD

does not contain a key as is easily seen
◆  But CD → A is of the form: (something not containing a

key) → (attribute in a key) and this is permitted by 3NF
◆  Note there is another key that could have been the

primary key: BCD
◆  Originally people were confused as they considered only

one key and did not realize that in general 3NF ≠ BCNF

A EDCB

© 2014 Zvi M. Kedem 196

If Only One Key Then 3NF ⇒ BCNF

◆  Proof by contradiction (using example, but really general)
◆  Assume that a relation is in 3NF but not in BCNF and

there is only one key
◆  Then we have a functional dependency that is permitted

by 3NF but not permitted by BCNF, that is of the form
 (something not containing a key) → (attribute in a key)
◆  Example

 ABC is a key
 and CD → A holds

◆  Then we see that BCD is a key also, so we have more
than one key

◆  So we proved: if 3NF and only one key then BCNF

A EDCB

© 2014 Zvi M. Kedem 197

Relative Power of FDS: Simplify RHS

◆  If attributes removed from RHS (right hand side), the
functional dependency becomes weaker

◆  Changing from ABCD → EFG to ABCD → EF the
dependency becomes weaker

◆  Intuitively, after the simplification, we start with the same
assumptions and deduce fewer conclusions

© 2014 Zvi M. Kedem 198

Relative Power of FDS: Simplify LHS

◆  If attributes removed from LHS (left hand side), the
functional dependency becomes stronger

◆  Changing from ABCD → EFG to ABC → EFG the
dependency becomes stronger

◆  Intuitively, after the simplification, we start with fewer
assumptions and deduce the same conclusions

© 2014 Zvi M. Kedem 199

A Typical Step in Computing Minimal Cover

◆  We have a set M of functional dependencies
◆  M contains two functional dependencies with the same left

hand side, say
 X → EFG
 X → GH

◆  We replace these functional dependencies by one
functional dependency

 X → EFGH
◆  And we get a set N of functional dependencies

◆  N is equivalent to M

© 2014 Zvi M. Kedem 200

A Typical Step in Computing Minimal Cover

◆  We have a set M of functional dependencies.
◆  M contains a functional dependency with more than one

attribute in the RHS, say
 X → EFG

◆  We replace this functional dependency by
 X → EF

◆  And we get a set N of functional dependencies

◆  N can only be weaker (in power) than M

◆  N is equivalent (in power) to M
 if and only if

 we can “prove the stronger functional dependency”:
 XN

+ contains EFG

© 2014 Zvi M. Kedem 201

A Typical Step in Computing Minimal Cover

◆  We have a set M of functional dependencies.
◆  M contains a functional dependency with more than one

attribute in the LHS, say
 ABCD → Y

◆  We replace this functional dependency by
 ABC → Y

◆  And we get a set N of functional dependencies

◆  N can only be stronger (in power) than M

◆  N is equivalent to M
 if and only if

 we can “prove the stronger functional dependency”:
 ABCM

+ contains Y

© 2014 Zvi M. Kedem 202

The Goal

◆  Given a table R satisfying a set of FDs M, decompose it
into tables: R1 satisfying M1, R2 satisfying M2, …, Rk
satisfying Mk, such that

◆  The decomposition is lossless join: can recover R from R1,
R2, …, Rk using natural join

◆  Dependencies are preserved: making sure that (after
changes to the database) if R1 satisfies M1, R2 satisfies
M2, …, Rk satisfies Mk, then that if we recover R it will
satisfy M

◆  R1, R2, …, Rk are all in 3NF (and if we are lucky also in
BCNF)

© 2014 Zvi M. Kedem 203

Sketch of The Procedure

◆  Compute a minimal cover N for M
◆  Create a table for each functional dependency in N
◆  Remove duplicate tables (really subsumed in the

following)
◆  Remove a table if its set of columns is a subset of the set

of columns of another table
◆  Check if at least one table contains a global key: just

compute closure of its attributes using M (or N, likely
faster) and see if you get all of R

◆  If no table contains a global key, find one global key (using
heuristics or otherwise) and add a table whose columns
are the attributes of the global key you found

© 2014 Zvi M. Kedem 204

Key Ideas

◆  Need for decomposition of tables
◆  Functional dependencies
◆  Some types of functional dependencies:

•  Partial dependencies
•  Transitive dependencies
•  Into full key dependencies

◆  First Normal Form: 1NF
◆  Second Normal Form: 2NF
◆  Third Normal Form: BCNF
◆  Removing redundancies
◆  Lossless join decomposition
◆  Preservation of dependencies
◆  3NF vs. BCNF

© 2014 Zvi M. Kedem 205

Key Ideas

◆  Multivalued dependencies
◆  Fourth Normal Form: 4NF
◆  Minimal cover for a set of functional dependencies
◆  Algorithmic technique for finding keys
◆  Algorithmic technique for computing a minimal cover
◆  Algorithmic technique for obtaining a decomposition of

relation into a set of relations, such that
•  The decomposition is lossless join
•  Dependencies are preserved
•  Each resulting relation is in 3NF

◆  Denormalization after Normalization

