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1 Normalization

An anomaly occurs in a database when you can update, insert, or delete
data, and get undesired side-effects. These side side-effects include inconsis-
tent, redundant, or missing data. Database normalization is the process of
organizing the data into tables in such a way as to remove anomalies.

To understand how to normalize a database, we defined four types of
data dependencies:

• From the full key : From the full primary key to outside the key

• Partial dependency : From part of the primary key to outside the key

• Transitive dependency : From outside the key to outside the key

• Into key dependency : From outside the key into the key

We then discussed how to removed these dependencies informally, and de-
fined several normal forms based on the definition of these dependencies:

• First Normal Form (1NF): there are a fixed number of columns.

• Second Normal Form (2NF): 1NF and no partial dependencies

• Third Normal Form (3NF) 2NF and no transitive dependencies.

• Boyce-Codd Normal Form (BCNF) 1NF and all dependencies from
full key.
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2 Motivation

Recall the example database in class Pay(Employee, Grade, Salary), in
which the value of Salary was dependent on the value of Grade, and
Employee was the primary key. In other words, we had a from the full
key dependency E → GS and a transitive dependency G→ S.

To normalize the database, we eliminated the transitive dependency by
splitting the Pay(Employee, Grade, Salary) table into two separate ta-
bles: Pay(Employee, Grade). and Rate(Grade, Salary).

This approach works, but it becomes difficult to do as the database be-
comes larger and more complex, and the number of functional dependencies
increases. Instead of starting with a table and re-organizing it, we are going
to start with the functional dependencies and synthesize the correct tables.

3 Small Example

In the Pay(Employee, Grade, Salary) example, we had two dependencies
dependencies: E → GS and G→ S. These might seem simple, because the
example is small, but they are not actually as simple as they could be.

Notice that if E → GS, then of course, E → G. In other words, if E
forces a relation to be equal on G and S, then of course it forces the relation
to be equal on just G. Without going into detail, we notice that we could
re-write our dependencies as:

• E → G

• E → S

• G→ S

Then, (just take my word for it for now), we could further simplify the
dependencies to be:

• E → G

• G→ S

This is the simplest way that we could write the dependencies, while still
preserving the same information. This form is called a minimal cover, and
corresponds exactly to the normalized tables that we want.
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4 Functional Dependencies

A functional dependency is a constraint between two sets of attributes in a
relation. For a given relation R, if the set of attributes A1, · · · , An, func-
tionally determine the set of attributes B1, · · · , Bn, then it means that if
two tuples that have the same values for all the attributes A1, · · · , An, then
they must also have the same values for all the attributes B1, · · · , Bn. This
is written:

A1, · · · , An → B1, · · · , Bn

Note that functional dependencies generalize the concept of a key.

5 Strength of Functional Dependencies

If a relation satisfies the dependency A → BC, then it must also satisfy
the dependency A → B. Informally, if A forces a relation to be equal on
B and C, then of course it forces the relation to be equal on just B. That
is, A → BC ⇒ A → B. If a functional dependency F impies a functional
dependency H, we say that F is stronger than H.

Be careful, though. It is easy to make mistakes. For example, if we are
given the functional dependency AB → C, it might be tempting to conclude
that A → B and A → C. However, this decomposition is incorrect, since
neither A nor B alone determine C. In other words, AB → C 6⇒ A → C,
and AB → C is weaker than A→ C.

6 Properties of Functional Dependencies

There are often several ways to write the same functional dependencies. Two
sets of functional dependencies, S and T , are equivalent if the same set of
relation instances that satisfy S also satisfy T , and vice versa.

There are several useful rules that let you replace one set of functional
dependencies with an equivalent set. Some of those rules are as follows:

• Reflexivity : If Y ⊆ X, then X → Y

• Augmentation: If X → Y , then XZ → Y Z

• Transitivity : If X → Y and Y → Z, then X → Z

• Union: If X → Y and X → Z, then X → Y Z

• Decomposition: If X → Y Z, then X → Y and X → Z
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• Pseudotransitivity : If X → Y and WY → Z, then WX → Z

• Composition: If X → Y and Z →W , then XZ → YW

These rules are a slightly more formal way of capturing the idea of relative
strength of functional dependencies.

Note that a trivial functional dependency is one in thich the constraint
holds for any instance of the relation. For example, X → X always holds.

7 Closure

Given a set of functional dependencies F , and a set of attributes X, the
closure of X with respect to F , written X+

F , is the set of all the attributes
whose values are determined by the values of X because of F . Often, if F
is understood, then the closure of X is written X+.

For example, given the following set, M , of functional dependencies:

1. A→ B

2. B → C

3. BC → D

Then we can compute the closure of A with respect to M in the following
way:

i A→ A ( by reflexivity rule )

ii A→ AB ( by (i) and 1 )

iii A→ ABC ( by (ii), 2, and transitivity rule )

iv A→ ABCD ( by (iii), and 3 )

Therefore, A+
M = ABCD.

8 Cover

We say that a set of functional dependencies F covers another set of func-
tional dependencies G, if every functional dependency in G can be inferred
from F . More formally, F covers G if G+ ⊆ F+. F is a minimal cover of G
if F is the smallest set of functional dependencies that cover G. We won’t
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prove it, but every set of functional dependencies has a minimal cover. Also,
note that there may be more than one minimal cover.

We find the minimal cover by iteratively simplifying the set of functional
dependencies. To do this, we will use three methods:

Simplifying an FD by the Union Rule Let X, Y , and Z be sets of
attributes. If X → Y and X → Z, then X → Y Z

Simplifying an FD by simplifying the left-hand side Let X and Y
be sets of attributes, and B be a single attribute not in X.

Let F be:

. . .

XB → Y

and H be

. . .

X → Y

If F ⇒ X → Y , then we can replace F by H. In other words, if Y ⊆ X+
F ,

then we can replace F by H.
For example, say we have the following functional dependencies (F ):

• AB → C

• A→ B

And we want to know if we can simplify to the following (H):

• A→ C

• A→ B

Then A+
F = ABC. Since, Y ⊆ X+

F , we can replace F by H.

Simplifying an FD by simplifying the right-hand side Let X and
Y be sets of attributes, and C be a single attribute not in Y .

Let F be:

. . .

X → Y C
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and H be

. . .

X → Y

If H ⇒ X → Y C, then we can replace F by H. In other words, if Y C ⊆ X+
H ,

then we can replace F by H.
For example, say we have the following functional dependencies (F ):

• A→ BC

• B → C

And we want to know if we can simplify to the following (H):

• A→ B

• B → C

Then A+
H = ABC. Since, BC ⊆ X+

H , we can replace F by H.

9 Finding the Minimal Cover

Given a set of functional dependencies F :

1. Start with F

2. Remove all trivial functional dependencies

3. Repeatedly apply (in whatever order you like), until no changes are
possible

• Union Simplification (it is better to do it as soon as possible,
whenever possible)

• RHS Simplification

• LHS Simplification

4. Result is the minimal cover
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Small example Applying to algorithm to EGS with

1. E → G

2. G→ S

3. E → S

Using the union rule, we combine 1 and 3 and get

1. E → GS

2. G→ S

Simplifying RHS of 1 (this is the only attribute we can remove), we get:

1. E → G

2. G→ S

Done!

10 An algorithm for (almost) 3NF Lossless-Join
Decomposition

We can now use the following algorithm to compute our 3NF Lossless-Join
Decomposition:

1. Compute Fm, the minimal cover for F

2. For each X → Y in Fm, create a new relation schema XY

3. For every relation schema that is a subset of some other relation
schema, remove the smaller one.

4. The set of the remaining relation schemas is an almost final decompo-
sition

This algorithm is almost correct, because it may be possible to compute
a set of relations that do not contain the key of the original relation. If that
is the case, you need to add a relation whose attributes form such a key.

For example, consider the relation R(A,B) that has no functional depen-
dencies. The relation has only one key AB, but our algorithm, without the
key, would produce no relations. So, we need to add the relation R(A,B).

It is easy to check if your relation contains the key of the original relation.
Simply compute the closure of the relation with respect to all the functional
dependencies and see if you get all the attributes in the original relation.
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