
Design and Architectural Exploration
of Expression-Grained Reconfigurable Arrays

Giovanni Ansaloni, Paolo Bonzini, Laura Pozzi
Faculty of Informatics
University of Lugano

6900 Lugano, Switzerland
{giovanni.ansaloni, paolo.bonzini, laura.pozzi}@lu.unisi.ch

Abstract— Reconfigurable Arrays combine the benefit of spa-
tial execution, typical of hardware solutions, with that of
programmability, present in microprocessors. When mapping
software applications (or parts of them) onto hardware, however,
FPGAs often provide more flexibility than is needed, and do not
implement coarser-level operations efficiently. Therefore, Coarse
Grained Reconfigurable Arrays (CGRAs) have been proposed
to this aim. While most CGRA designs feature an array cell of
the order of an ALU, this paper proposes a new kind of coarse
grained array, called EGRA (Expression-Grained Reconfigurable
Array), featuring a cell composed of a cluster of ALUs with
flexible interconnect. The EGRA attempts to further close the
performance gap between reconfigurable and hardwired logic by
implementing an arithmetic/logic expression per cell, rather than
a single operation. A mapping methodology is proposed that can
retargetably compile to a family of EGRAs, therefore enabling
architectural exploration of the granularity of the proposed cell.
Performance results on a number of embedded applications
show that EGRAs can be used as a reconfigurable fabric for
customizable processors, outperforming more traditional CGRA
designs.

I. I NTRODUCTION

Reconfigurable (or field-programmable) arrays are flexible
architectures that can perform execution of applications in a
spatialway—much like a fully-custom integrated circuit—but
retain the flexibility ofprogrammableprocessors by providing
the opportunity of reconfiguration.

The ability to exhibit application-specific features that are
not “set in stone” at fabrication time would suggest reconfig-
urable architectures as particularly good candidates for being
integrated in customizable processors. Unfortunately, other
drawbacks have kept reconfigurable arrays from becoming a
largely adopted solution in that field. Among different factors,
the performance and area gap that still exists with hardwired
logic is certainly one of the most important. The problem of
bridging this gap has been the focus of much research in the
last decades, and important advances have been made. This
paper provides an additional step which goes in the direction
of decreasing such gap further.

A walk through related historical background will help
stating this paper’s aims and contributions. In the earliest
examples of reconfigurable architecture such as the PLA (Pro-
grammable Logic Array), mapping of “applications” (Boolean
formulas in sum-of-product form) is immediate. In fact, each

1 to 1 mapping many to 1 mapping

fi
n

e
g

ra
in

co
ar

se
 g

ra
in

PLA FPGA

CGRA EGRA

a) b)

c) d)

A

B

B

C

D

F

E

A

B C DA

F

E

A B

LUT

B C D

A

E F

32-bit ALU

B

A

B A

E C D

F

A B

Cluster
of ALUs

Gate

Fig. 1. Parallel between the evolution of fine-grained architectures from
simple programmable devices to FPGAs (a and b), and the evolution of
CGRAs from simple cells to the EGRA proposed here (c and d).

gate in the application is mapped in a1-to-1 fashion onto a
single gate of the architecture (Figure 1a).

However, this organization does not scale as applications to
be mapped get more complex. For this reason, CPLDs and FP-
GAs instead use elementary components—PLAs themselves,
or look up tables—as building blocks, and glue them with a
flexible interconnection network. Then, programming one cell
corresponds to identifyingmore than one gatein the Boolean
function representation (Figure 1b).

Introducing this additional level is a winning architectural
choice in terms of both area and delay, but such innova-
tions cannot be successful unless algorithms are available
to efficiently map applications to the new architecture—and
indeed efficient algorithms came along to this purpose, e.g.,
FlowMap [5].

An orthogonal step was the introduction of higher granu-

larity cells (Figure 1c). Fine grain architectures provide high
flexibility, but also high inefficiency if input applications can
be expressed at a level coarser than boolean (e.g. as 32-bit
arithmetic operations). Coarse Grain Reconfigurable Arrays
(CGRAs) provide larger elementary blocks that can implement
such applications more efficiently, without undergoing gate-
level mapping.

A variety of CGRA architectures exist (see Section V) but
the process of mapping applications to current CGRAs is
usually not very sophisticated: a single node in the application
intermediate representation gets mapped onto a single cell in
the array (again,1-to-1 mapping). Instead, the architecture
we propose in this paper (Figure 1d) employs an array cell
consisting of a group of ALUs with customizable capabilities.
We consider this the moral equivalent of the switch from
single gates to LUTs that characterizes modern fine grain
reconfigurable architectures. We call this cell RAC (Recon-
figurable ALU Cluster), and the architecture that embeds it
EGRA (Expression-Grain Reconfigurable Architecture).

This allows new and more efficient uses of CGRAs, for
example by enabling implementation of application-specific
functional units in a customizable processor [11]. However,
such a change has to be supported by compilation technology:
the proposed architecture would make little sense without a
compilation flow able to map efficiently onto it. For this rea-
son, we also show how a compiler can aid in thearchitectural
explorationof the granularity of the cell.

To sum up, in this paper we propose a new architecture, the
EGRA, which attempts to further close the performance gap
between reconfigurable and hardwired logic by providing an
effective reconfigurable platform for instruction-set extensible
processors. Our contributions are as follows:

• We show a new design for the combinational part of
coarse grain reconfigurable arrays. The Reconfigurable
ALU Cluster (RAC), the complex cell at the heart of
our architecture, supports efficient computation of entire
subexpressions, as opposed to single operations. In addi-
tion, RACs can be connected either in a combinational
or a sequential mode.

• We overview an automated methodology that can ef-
fectively map embedded applications on top of RACs.
This in turn enablessystematic architectural exploration
of the EGRA design space, and in particular of the
RAC structure, to motivate architectural choices with
quantitative performance and cost analysis.

The remainder of this paper is structured as follows. Sec-
tion II details the structure of the EGRA’s processing element
as well as its control logic, and presents synthesis results for
different instances of the architecture. Section III details a
mapping methodology that can compile a benchmark to a
set of EGRAs whose RACs have different properties, and
Section IV shows quantitative evaluation of the architecture’s
performance.

....................................

output a output b

Constants
...

DATA SWITCHBOX FLAGS SWITCHBOX

DATA SWITCHBOX FLAGS SWITCHBOX

[2,1] [2,2] [2,M]...

[K,1] [K,2]

DATA SWITCHBOX

From
neighbor cells

Constants
(from context)

...
From bus

...
From output

DATA SWITCHBOX

[1,1] [1,2] [1,3] [1,N]...

Constants
...

Fig. 2. Datapath of the Reconfigurable ALU Cluster.

II. PROPOSED ARCHITECTURE

The architecture framework that we propose can be scaled
in two dimensions: at the higher level, deciding the number
of cells of the resulting array and the control unit implemen-
tation, and at the lower level, determining the implementation
template of the RAC.

A. Cell architecture

The RAC datapath consists of a multiplicity of ALUs, with
possibly heterogeneous arithmetic and logic capabilities, and
can support efficient computation of entire subexpressions, as
opposed to single operations. It is inspired by the Configurable
Computation Accelerator proposed by Clark. [4] However, we
use this structure as areplicable element; this has important
consequences. First of all, it opens up the possibility to create
combinational structures (in Clark’s design, a CCA has a fixed
multi-cycle latency) using multiple RACs; this favours designs
featuring a smaller number of rows. Furthermore, it removes
the limit on the number of inputs and outputs, because a
pipelining scheme [16] can be used to move data in and out of
the array; this allows scheduling of more complex applications
and consequently higher gains.

ALUs are organized into rows (see Figure 2) connected by
switchboxes. It is important to have flexible routing between
ALUs on neighbouring rows, because subexpressions extracted
from typical embedded applications often have complex con-
nections that are not captured well by simpler topologies. This
organization allows the usage of a simple array topology (we
used nearest neighbour) without incurring high penalties on
place-and-route.

The inputs of the RAC (see again Figure 2) are taken from
the neighbouring cells’ outputs, from the outputs of the cell
itself, or (optionally) from a set of constants; the inputs of the

.

reg

datapath

from neighbors from bus
... ...

stall cs_row
cs_col

context

..
.

.
.

.

.

to bus

to north to east to south to west

. .

p
ro

g
ram

 w
o

rd

.

.

context memory

reg

. .

out a out b

.

Fig. 3. Block scheme of a RAC composed of datapath, context memory and
bypassable registers on the outputs.

A

B

op1 + op2 + flag

flag ? op1 : op2

1

GEU(A)

BUS input 1

dataout(A)

BUS input 2

constant 0

node opcode flag sourceop1 source op2 source

A

flag op1

op1 op2

B

X Y

0

op2

Fig. 4. Programming a RAC. This example shows how two ALUs can be
connected to compute an unsigned subtract with saturation,(X >= Y) ? X
- Y : 0 . The node computing the subtraction also performs the comparison.
The multiplexer node B uses both the data output and theunsigned≥ flag of
the subtraction node A.

ALUs in subsequent rows are routed from the outputs of the
previous rows or again from the constants.

The number of rows, the number of ALUs in each row and
the functionality of the ALUs is flexible and can be customized
by the designer. In fact, they constitute theexploration level
explained in Section II-D.

The number and size of the constants is also defined at
exploration time. If their width is less than the datapath width,
their content is zero-extended1. The value of the constants,
instead, is part of the configuration bitstream and can be
different for each cell.

Being a reconfigurable design, the processing element in-
cludes not only a datapath, but also acontext memory—see
Figure 3. The context memory stores a number of possible
configuration words, and can be programmed according to the
desired functionality of the cell at configuration time.

B. ALU design

As in other CGRAs, the basic processing element of our
cell design is an ALU. Unlike in the fine grain domain,
it is not possible to define a generic component that can

1The availability of operations such asA + B makes it possible to store
negative values even if the constants themselves are zero-extended.

Control Unit
data_in

data_out

control
datain dataout context

.

.

cs_n

Cell 1:1

Cell 2:1

Cell 1:2

Cell 2:2

datain

control

stall
signals

data
path

control
path

Stall
Memoryout sel

Fig. 5. CGRA functional blocks (2x2 matrix, mesh topology)

data opcodes flag opcodes
out = A & (B ⊕ flagsext) 0
out = A | (B ⊕ flagsext) 1
out = A⊕ (B ⊕ flagsext) =
out = flag ? A : B 6=
out = A + B + flagzext signed<
out = A + B + flagzext signed≥
out = A � B unsigned<
out = A �rot B unsigned≥
out = A �arith B
out = A �logical B
out = A �rot B

TABLE I

L IST OF SUPPORTED OPCODES. NOTE THAT THE 1-BIT FLAG INPUT WILL

BE SIGN- OR ZERO-EXTENDED DEPENDING ON THE OPCODE.

implement arbitrary functions, as is the case of the PLD or the
LUT. Therefore, expressions are realized in our architecture by
clustering more than one elementary unit (ALU) in one cell.

Four types of ALUs can be instantiated. The simplest one is
able to perform bitwise logic operations only; the other three
add respectively a barrel shifter (with support for shifts and
rotates), an adder/subtractor, and both the shifter and adder.
The list of operations in a full-featured unit is in Table I.

Each operation can generate three 1-bit flags: azero flag,
an unsigned≥ flag (equivalent to the carry flag of general-
purpose processors), and asigned< flag (equivalent toN ⊕
V , whereN and V are the sign and overflow flags). Other
conditions can be tested by complementing the flag, and/or
exchanging the operands of the comparison.

Dually, each operation hasthreeoperands, two being 32-bit
values and the third being a 1-bit value. The third operand
can be hardcoded to zero or one, or it can be chosen from
the flags that another ALU generated; it can also be comple-
mented, thus giving a total of eight possibleflag opcodes(also
listed in Table I). Figure 4 explains graphically the way this
functionality is programmed.

Flags enable efficient implementation of if-conversion—
important when automatically mapping software representa-
tions onto hardware. In fact, ALUs can act as multiplexers,

of rows ALU type ALUs per row
1 2 3

1

log 7 141 1 975 28 926
log+sh 11 695 30 627 48 029
log+add 9 125 22 802 35 124

log+sh+add 12 438 35 105 53 837

3

log 10 586 30 971 57 384
log+sh 21 740 66 490 113 648
log+add 14 926 44 054 71 716

log+sh+add 27 672 77 472 125 552

5

log 12 458 43 793 86 560
log+sh 32 455 100 165 168 760
log+add 20 186 65 134 114 034

log+sh+add 40 583 123 294 202 633

TABLE II

DATAPATH AREA (IN µm2) FOR DIFFERENTRAC CONFIGURATIONS

choosing one of the two 32-bit inputs based on another ALU’s
flags. This way, cells can evaluate both arms of a conditional,
and choose between the two via a multiplexer.

C. Array architecture

The EGRA architecture is composed of a collection of
RACs, organized as a mesh with nearest-neighbour connec-
tions and input/ouput connections to the external bus. The size
(number of rows and columns) of the mesh can be defined at
exploration time.

In addition to the cells, the EGRA includes a global control
unit. This unit is in charge of managing the transfers to the
RACs’ context memory, selecting contexts, stalling cells until
their output data is consumed, and connecting their outputs to
the bus. In order to perform these tasks, the control unit also
includes a separate context memory called thecontrol memory.
Individual control configurations are stored for each context
that can be programmed on the EGRA.

Context memory transfers are initiated upon lowering of the
chip select signal; the content of the data bus identifies the
target of the transfer, either one of the RACs or the control
memory. The value of the context control signals identifies
which context is being programmed. Data is transferred on
the following cycles using full input bandwidth, in order to
minimize programming latency.

After configuration, context switches can happen at any
clock cycle, and are performed without clock cycle penalties.
The number of contexts that can be pre-loaded in the EGRA
is defined at exploration time.

Stalling cells and connecting outputs is driven by the control
memory. The control unit accesses it in a cyclic fashion; as
read pointer advances to the next row on every clock cycle,
unless reset by an external signal. The number of rows in the
control memory identifies the maximum length (in cycles) of
the expressions mapped on the EGRA, and can be decided
at exploration time. In order to handle stalls, each RAC is
assigned a memory column of this memory, and receives a
one-bit stall signal on every clock cycle. Another section of
the control memory asserts which RAC output is connected to
the processor bus at any clock cycle.

of rows ALU type ALUs per row
1 2 3

1

log 0.45 0.54 0.55
log+sh 0.62 0.66 0.71
log+add 0.63 0.75 0.85

log+sh+add 0.71 0.76 0.86

3

log 0.75 0.98 1.06
log+sh 1.29 1.51 1.66
log+add 1.54 1.88 2.18

log+sh+add 1.57 1.89 2.32

5

log 1.05 1.49 1.68
log+sh 1.93 2.43 2.68
log+add 2.13 2.67 2.97

log+sh+add 2.37 2.78 3.18

TABLE III

DATAPATH DELAY (IN ns) FOR DIFFERENTRAC CONFIGURATIONS

Array size area (µm2)
1 x 1 62 622
2 x 1 117 748
2 x 2 237 485
3 x 2 375 526
3 x 3 589 911

TABLE IV

AREA OCCUPATION FOR DIFFERENTEGRA SIZES. ALL CONFIGURATIONS

HAVE TWO CONTEXTS, 32 STALL /OUTPUT CONTEXT MEMORY LINES,

RACS OF4 FULL-FEATURED ALU S PER ROW ON2 ROWS, TWO 8-BIT

CONSTANTS PERRAC.

D. Architectural exploration

Choosing the configurable architectural features—RAC
granularity, number of constants in a RAC, number of contexts
in the array to mention a few—is not at all an obvious task
and should be guided by performance evaluation. Therefore
we define anexploration levelwhere a number of cell and
array features can be automatically varied and evaluated in
different experiments.

Design-space exploration is made feasible by the availability
of a compilation flow that can speedily evaluate many different
design choices. Hence, the compilation and synthesis flows
share amachine descriptiondetailing the cell template and
the topology of the EGRA.

In order to investigate area and delay figures of the RAC
datapath, we synthesized different versions using Synopsys
Design Compiler and TSMC 90nm front-end libraries. This
has been instrumental in achieving two goals: on one hand,
collected data is used by the compiler to compute the per-
formance of Instruction Set Extensions (ISEs) mapped onto
the array; additionally, it gives insights on the efficiency of
various EGRA configurations as a digital circuit, both in term
of occupied silicon area and clock speed.

Tables II and III give area and delay results for different
datapath configurations explored. All numbers refer to a dat-
apath without embedded constants and with an equal number
of ALUs on every row—neither of these, however, are actual
limitations of a RAC template. In the present work, we mostly
concern ourselves with the structure of the RAC, because our

c) ISE flowgraph

a) cell
description

levels: 2
ops: 2 -2
op type 1: add / log
op type 2: log
.......

b) cell template

d) partitioned ISE

1
2

3
4

e) topology
description

f) place and route

1 2

3

4

Fig. 6. Overview of the mapping methodology: the configuration to be evaluated and explored is described by a file detailing the cell structure (a, b). The
data-flow graph (c) describing the application to be compiled—e.g., an ISE extracted from input code—is partitioned into many subgraphs, each of which to
be mapped onto a single RAC (d). In this paper we do not consider placing and routing (f) of cells on the array given a topology description (e).

expression mapping methodology (see Section III) does not
yet include place and route of cells on the array. In principle,
however, the exploration level may include the mesh size, or
even the topology of the array. As a hint of this possibility,
Table IV shows examples of the area occupation of a full
EGRA (including the control unit and global context memory)
for a number of different array sizes.

III. M APPING METHODOLOGY

In order to evaluate the points of the design space, a com-
piler is needed that can map applications onto the array. The
compiler’s task is 1) to identify parts of the input application
(Figures 6c) that profit from being executed onto an EGRA,
and 2) to partition them in subgraphs that can each be executed
onto a single RAC (Figures 6d).

In this paper, we consider the EGRA as an extension of
a customizable processor, and extract portions of applications
in the form of ISEs. Therefore, the first part of the compiler
task is solved using well-known algorithms for automated ISE
identification; we employ an enumeration algorithm similar to
the one presented in [19], which extracts from the applications
a set of maximalcandidates.

Before going on with the second part of the task—
partitioning—the compiler needs to run a series oftechnology
mapping steps repeatedly on each candidate, in order to
measure their gain and find a single best-performing one.
After this phase, all operations are expressed in terms of the
features of our ALU design, obtaining efficient calculations as
in the example of Figure 4. In particular, comparisons must
be transformed to an operation (typically a subtraction or an
exclusive OR) that computes flags, so that users of the compar-
ison can test a particular condition on those flags. In order to
improve the utilization of the cells, after technology mapping
the compiler reruns common subexpression elimination.

Each ISE identified by the previous step must now be par-
titioned into different subgraphs that can fit into a single cell

of the array (Figure 6d). The process begins by enumerating
clustersof the ISE graph that can be mapped on a single cell
(this is done with a variant of the algorithm in [1]). Partitioning
is then performed by picking the cluster that has most nodes
on the critical path, and consolidating the nodes that form it
into a single node (representing a RAC). After this, a retiming
algorithm inserts registers between fragments based on the
cycle time requested by the user. Since data-flow graphs are
acyclic, we can use a simple, linear time algorithm [3] to do
so, as reported in [16]. Finally, I/O operations between cells
and register file are scheduled [19].

After these steps are performed for all ISE candidates, the
one promising highest individual gain is chosen. This greedy
choice is another possible source of non-optimality; neverthe-
less, it performs well under relatively broad conditions [15].

IV. RESULTS

In order to collect results, we gathered DFGs from four
MiBench [9] benchmarks using a GCC-based compiler front-
end. The graphs were then placed into our compiler flow,
which tested 872 different configurations. These configurations
used RACs of one to three rows; the biggest one had 5 ALUs
on the first row, 4 ALUs on the second, and 2 on the third.
The register file bandwidth is limited to 2 reads and 1 write;
higher bandwidth values would yield higher speedups.

The two audio benchmarksrawcaudio and rawdaudio,
performing respectively ADPCM encoding and decoding, only
use one context because a single ISE is identified by the
compiler. The two crypto benchmarksdes andsha use four.

Estimated clock cycle savings are plotted in Figures 7 to 10.
Speedup is calculated as follows:

speedup =
total cycles

total cycles−
∑

all ISEs(cyclessw − cycleshw) · freq

where freq is the number of times the ISE is executed,
cycleshw is the latency of the ISE on the EGRA, andcyclessw

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

0 500000 1000000 1500000

sp
ee

du
p

area
Fig. 7. Speedups obtained by 872 RAC configurations onrawcaudio

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

0 500000 1000000 1500000

sp
ee

du
p

area
Fig. 8. Speedups obtained by 872 RAC configurations onrawdaudio

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

0 500000 1000000 1500000

sp
ee

du
p

area
Fig. 9. Speedups obtained by 872 RAC configurations ondes

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

0 200000 400000 600000

sp
ee

du
p

area
Fig. 10. Speedups obtained by 872 RAC configurations onsha

a) b) d)

logic only logic + shift logic + add logic + shift + add

c)

Fig. 11. RAC design of the maximum-speedup Pareto point configuration, for a)rawdaudio; b)rawcaudio; c) crypto benchmarks (des, sha); d) all four
benchmarks.

25241

2

3

4

5

6

7

8

9

10

11

12

13

1715

16 18 20

19

14

a) b)

21

22

28 26 271

5

2

3

8

9

12

11

4

6 7

10

14

13

Fig. 12. Manual place-and-route ofrawdaudio, for two cell designs. a) RACs as in Figure 11a. b) Each RAC only has one ALU.

RACa ALU

Cell area (µm2) 42 920 13 287
Cell delay (ns) 1.62 1.12
Array size 4x4 12x4
Array area (µm2) 724 053 690 268
rawdaudio delay (ns) 11.26 22.16
rawdaudio delay (cycles at 150 MHz) 2 4

aas in Figure 11a

TABLE V

DATA FOR RAWDAUDIO AFTER PLACE-AND-ROUTE.

is the cost of executing the ISE without custom instructions.
Becausecycleshw is integer and bounded bycyclessw, the
plotted speedups can take only a few discrete values, as
observed in the figures.

Our experimental setting essentially considers an EGRA
as an application-specific functional unit of a customizable
processor. The speedup results of this paper show that, in such
setting, multi-ALU cells outperform single-ALU cells found
in more traditional CGRA designs. In fact, cells consisting of
only one row correspond to the low-area points in the plottings,
and have barely noticeable speedups.

Figure 11 shows four RAC designs. The first two represent
the configuration of the maximum-speedup Pareto point, i.e.
achieves the maximum speedup at minimal area cost, for each
of the audio benchmarks; the third achieves maximum speedup
on both crypto benchmarks; the last finally performs well on
all benchmarks but costs noticeably more area than specialized
cells. It is important to note that trivially merging the features
of the cells in Figures 11a and 11b would use more area than
Figure 11d, without improving performance.

All three solutions are 2-row RACs. It is interesting that,
despite the apparent similarity between the design of the RAC
and the CCA, they are much smaller than the examples ofCon-
figurable Computation Acceleratorpresented by Clark [4]. The
reason is that RACs can be connected to form combinational
structures. This features puts smaller cells to an advantage,
since they will usually have higher utilization rates without
sacrificing speed.

In order to evaluate fully the gains of the proposed archi-
tecture over a simpler CGRA with one ALU per cell, we
performed place-and-route by hand onrawdaudio for two
RAC configurations: a single-ALU cell, and the optimal RAC
of Figure 11a.

The resulting layouts in Figure 12, and the area and delay
numbers in Table V, show how the more complex interconnect
of the RAC allows more effective routing, so that even a
simple nearest neighbour topology is a viable choice for
the EGRA. Indeed, the RAC-based design achieves a very
compact packing of the computation in the array; 14 used
RACs fit in a 4x4 array with only one cell (not on the
critical path) used for routing only. Instead, 11 cells are used
for routing when each cell can only perform one arithmetic
operation, ten of which are on the critical path.

For this reason (see Table V), the two designs occupy
roughly the same area after place-and-route, and the single-

ALU one is twice as slow—in practice, it would fail to achieve
any speedup over a general-purpose processor.

V. RELATED WORK

In the past years, several Coarse Grain Reconfigurable Ar-
chitectures (CGRAs) have been proposed [12]. The definition
is broad, and includes designs that differ widely even in the
very coarsenessof the cell. For example, the cell will usually
implement a single execution stage, but may also include an
entire execution unit (Rapid [6]) or can even be a general
purpose processor (RAW [20]).

The most relevant to our work is probably theFlexible
Computational Component[7] which, while targeted more
specifically to DSP kernels, is similar to the RAC in size
and set of allowed operations. However, the authors do not
present an exploration methodology to explain quantitively
their choices.

ADRES [13], [14] also features a complex VLIW cell. Even
though it lacks the ability to perform multi-stage computations
within a cell, it features strong instruction-level parallelism
capabilities that can be exploited by the compiler through
software pipelining [13].

The architectural choices that drove the above-mentioned
designs are usually the result of the designer’s expertise,
more than of systematic, quantitative exploration of the design
space. Therefore, the resulting designs have a fixed structure.
Even when some flexibility is present (as in ADRES or Rapid),
results for exploration are presented only for high-level cycle-
base exploration, or not given at all. The work of Bouwens [2]
is somehow an exception as it demonstrates design space
exploration at the synthesis and place-and-route level for the
ADRES architecture. However, it focuses on CGRA high level
topology, without investigating the structure and coarseness of
the processing elements as done here.

Our HW/SW co-exploration of different EGRA architec-
tures is based on a machine description interface, shared by
the synthesis and compilation flow; this concept is independent
from the proposed RAC structure and has taken inspiration
from recent researches in architectural description languages
[17], [10].

Different approaches have been envisioned also for the
CGRA level of integration in the architecture hierarchy, rang-
ing from coprocessor (Morphosys) to tight coupling with the
processor (ADRES). Our work belongs to the latter family,
but the multi-ALU processing unit we presented could in
principle be applied to differently integrated architectures.
In this sense, the present work constitutes a contribution to
the reconfigurable computing field even outside the specific
implementation detailed in this paper.

Concerning the proposed design of the EGRA, our cell
design is inspired (as mentioned in Section II-A) by the CCA
structure proposed by Clark [4]. Besides the idea of replicating
this structure, we introduced several other novel aspects, in
particular the ability to build combinational functions from
multiple CCAs, and the usage of flags to support if-conversion
in the compiler. Flags are peculiar in the RAC design, and are

inspired by the program status word of a microprocessor, more
than by the carry chains available in many reconfigurable ar-
chitectures (for example, Stretch [18] or even PipeRench [8]).

VI. CONCLUSIONS

In this paper, we have proposed a new coarse-grained archi-
tecture, the EGRA. The architecture builds on the well-proven
advantages of CGRAs over FPGAs and ASICs (little area and
delay overhead due to programmability over FPGAs, adaptiv-
ity compared to ASICs) advancing them further through the
introduction of a novel, flexible computing element (the RAC)
that can evaluate complete subexpressions at once.

In order to analyze the performance of this new recon-
figurable fabric, we have identified a set of parameters that
identify an exploration leveland can be varied to evaluate
quantitativelythe performance of the architecture for different
benchmarks. Evaluation is aided by automated tools that map
benchmarks on an EGRA. The tool uses area and delay
estimates, derived from Synopsys synthesis of different RACs,
to compile for an entire family of architectures.

Research on the EGRA is still in its infancy, and the
initial results presented here suggest multiple directions for
future work. For example, the architecture could implement
various local memory configurations, so that entire loops can
be mapped onto the EGRA and loop pipelining techniques
can be applied. Still, our experimental study determined the
feasibility of using the EGRA to implement Instruction Set
Extensions (ISE) in a custom processor, achieving speedups
of up to 1.45x—competitive with other purely arithmetic
accelerators—and showing that two-row RACs achieve good
performance results and utilization rate.

REFERENCES

[1] K. Atasu, L. Pozzi, and P. Ienne. Automatic application-specific
instruction-set extensions under microarchitectural constraints. InPro-
ceedings of the 40th Design Automation Conference, pages 256–61,
Anaheim, Calif., June 2003.

[2] F. Bouwens, M. Berekovic, A. Kanstein, and G. Gaydadjiev. Archi-
tectural exploration of the ADRES coarse-grained reconfigurable array.
In Reconfigurable Computing: Architectures, Tools and Applications,
volume 4419 of Lecture Notes in Computer Science, pages 1–13.
Springer, Berlin, June 2007.

[3] P. Y. Calland, A. Mignotte, O. Peyran, Y. Robert, and F. Vivien. Retiming
DAG’s. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 17(12):1319–25, Dec. 1998.

[4] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner. Application-
specific processing on a general-purpose core via transparent instruction
set customization. InMICRO 37: Proceedings of the 37th Annual In-
ternational Symposium on Microarchitecture, pages 30–40, Washington,
DC, USA, Dec. 2004. IEEE Computer Society.

[5] J. Cong and Y. Ding. Flowmap: An optimal technology mapping
algorithm for delay optimization in lookup-table based FPGA designs.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 13(1):1–12, Jan. 1994.

[6] C. Fisher, K. Rennie, G. Xing, S. G. Berg, K. Bolding, J. H. Naegle,
D. Parshall, D. Portnov, A. Sulejmanpasic, and C. Ebeling. An emulator
for exploring RaPiD configurable computing architectures. InProceed-
ings of the 10th International Conference on Field-Programmable Logic
and Applications, pages 17–26, Jan. 2001.

[7] M. Galanis, G. Theodoridis, S. Tragoudas, and C. Goutis. A high-
performance data path for synthesizing DSP kernels.IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
25(6):1154–1162, June 2006.

[8] S. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. R. Taylor,
and R. Laufer. PipeRench: A coprocessor for streaming multimedia ac-
celeration. InProceedings of the 26th Annual International Symposium
on Computer Architecture, pages 28–39, May 1999.

[9] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown. MiBench: A free, commercially representative embedded
benchmark suite. InProceedings of the IEEE 4th Annual Workshop on
Workload Characterization, pages 3–14, Dec. 2001.

[10] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and A. Nicolau.
EXPRESSION: a language for architecture exploration through com-
piler/simulator retargetability. InProceedings of the Design, Automation
and Test in Europe Conference and Exhibition, pages 485–490, Mar.
1999.

[11] T. R. Halfhill. ARC Cores encourages “plug-ins”.Microprocessor
Report, 19 June 2000.

[12] R. Hartenstein. A decade of reconfigurable computing: A visionary
retrospective. InProceedings of the Design, Automation and Test in
Europe Conference and Exhibition, pages 642–649, Mar. 2001.

[13] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins.
DRESC: A retargetable compiler for coarse-grained reconfigurable ar-
chitectures. InProceedings of the IEEE International Conference on
Field-Programmable Technology, pages 166–173, Dec. 2002.

[14] B. Mei, S. Vernalde, D. Verkest, and R. Lauwereins. Design method-
ology for a tightly coupled VLIW/reconfigurable matrix architecture: A
case study. InProceedings of the Design, Automation and Test in Europe
Conference and Exhibition, pages 1224–1229, vol.2, Feb. 2004.

[15] L. Pozzi, K. Atasu, and P. Ienne. Exact and approximate algorithms for
the extension of embedded processor instruction sets.IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, CAD-
25(7):1209–29, July 2006.

[16] L. Pozzi and P. Ienne. Exploiting pipelining to relax register-file
port constraints of instruction-set extensions. InProceedings of the
International Conference on Compilers, Architectures, and Synthesis for
Embedded Systems, pages 2–10, San Francisco, Calif., Sept. 2005.

[17] S. Rigo, G. Araujo, M. Bartholomeu, and R. Azevedo. ArchC: A
SystemC-based architecture description language. InProceedings of
th 16th Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD’04), pages 66–73, Oct. 2004.

[18] C. R. Rupp. Multi-scale Programmable Array. U.S. Patent 6633181,
Oct. 2003.

[19] A. K. Verma, P. Brisk, and P. Ienne. Rethinking custom ISE iden-
tification: A new processor-agnostic method. InProceedings of the
International Conference on Compilers, Architectures, and Synthesis for
Embedded Systems, pages 125–134, Salzburg, Austria, Oct. 2007.

[20] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim,
M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal.
Baring it all to software: Raw machines.Computer, 30(9):86–93, Sept.
1997.

