
A Parametrizable Template
for Approximate Logic Synthesis

1st Morteza Rezaalipour
USI Università della Svizzera italiana

Lugano, Switzerland
morteza.rezaalipour@usi.ch

2nd Marco Biasion
USI Università della Svizzera italiana

Lugano, Switzerland
marco.biasion@usi.ch

3rd Ilaria Scarabottolo
USI Università della Svizzera italiana

Lugano, Switzerland
ilaria.scarabottolo@usi.ch

4th George A. Constantinides
Imperial College London

London, United Kingdom
g.constantinides@imperial.ac.uk

5th Laura Pozzi
USI Università della Svizzera italiana

Lugano, Switzerland
laura.pozzi@usi.ch

Abstract—This paper presents XPAT, a novel algorithm for the
generation of approximate circuits which employs an SMT solver
to shape the final resulting circuit on a given parametrizable
template. The solver outlines which products of which input
literals must be included in the final circuit in order to undergo
a given error constraint. A miter is created containing the exact
circuit description, the template, and a measure of the tolerated
error, and by carefully tuning some template key parameters,
such as limiting the number of literals per product, this algorithm
is able to derive circuits that outperform the state of the art in
terms of area. XPAT retrieved circuits with area smaller than
those found by state of the art methods in 75% of the cases,
and on average obtained 9.85% (up to 60.4% in some cases)
improvement in area savings.

I. INTRODUCTION

Approximate Computing is a new paradigm in computer
design postulating that inexact hardware should be used when-
ever full accuracy is not required by a given application, and
hence it should be traded for increased energy performance [1].
Approximate Logic Synthesis (ALS) is the process of deriving
an approximate circuit, given an exact functionality and a
tolerated error. There exist several families of ALS techniques,
and a recent survey [2] distinguishes in particular between
Netlist modification, where the resulting circuit is generated
starting from an existing structure, for example by removal
of gates or wires, and Boolean rewriting, where a circuit is
created without reference to an original structure, for example
by Boolean factorization.

This paper presents a novel Boolean rewriting algorithm,
called XPAT, for the synthesis of approximate circuits which
employs an SMT solver to shape the final result on a given
parametrizable template. In particular, the template is a sum
of products, and the solver outlines which products of which
input literals must be included in the final synthesis for every
circuit output. A miter is created containing the exact circuit
description, the template, and a measure of the tolerated error
between the exact and approximate output. By carefully tuning
some template key parameters (for instance, the maximum
number of literals that can appear in each of the products),

this algorithm is able to synthesize circuits that outperform
the state of the art in terms of area.

In the rest of the paper, Section II presents the most
relevant works in the state of the art, Section III gives the
motivation for this work, Section IV describes the proposed
methodology, whose results are presented and discussed in
Section V. Finally, Section VI concludes the paper.

II. STATE OF THE ART

Several techniques have been proposed for ALS [2]. Some
of them operate on a circuit netlist by removing some of its
components – GLP [3] and Circuit Carving [4] by removing
gates from a circuit, SASIMI [5] by modifying circuit wiring,
EvoApproxLib using an evolutionary approach to create ap-
proximate variants [6]. Other techniques operate on the circuit
truth table – BLASYS [7] employing matrix factorization for
replacing subcuits, AIG-rewriting [8] enumerating cuts within
a circuit and then replacing some with approximations.

In a recent work [9], Witschen et al. propose an innovative
methodology for ALS called MUSCAT, where each circuit
edge is annotated with a cut-point that, if cut, removes such
edge. By formulating ALS as a satisfiability problem, they
search for minimal unsatisfiable subsets, which in turn corre-
spond to approximate circuits within the error threshold. The
authors showcase the superiority of this approach to a number
of state-of-the-art techniques, including AIG-rewriting [8] and
EvoApproxLib [6].

The experiments in Section V compare our strategy to
MUSCAT and BLASYS, and demonstrate how our strategy
outperforms the state of the art in terms of area of the
approximate circuits – with some limitations in scalability,
discussed in the same section.

III. MOTIVATION

Consider the truth table for an exact 2-bit adder – shown
in Figure 1a) and visualized using integer values. If we are
willing to tolerate an error of at most 1, how many truth
tables exist satisfying this constraint? Since for each input

0 + 0
0 + 1
0 + 2
0 + 3
1 + 0
1 + 1
1 + 2
1 + 3
2 + 0
2 + 1
2 + 2
2 + 3
3 + 0
3 + 1
3 + 2
3 + 3

0
1
2
3
1
2
3
4
2
3
4
5
3
4
5
6

1
2
3
4
2
3
4
5
3
4
5
6
4
5
6
7

0
1
2
0
1
2
3
1
2
3
4
2
3
4
5

Exact

Exact +1

Exact -1

a + b out=

(a)

randomly generated

XPAT generated

(b)

o0o1o2

b0a0b1a1

(c)

Fig. 1: a) There are 315 ∗2 = about 22 million distinct truth tables for approximate 2-bit adders which do not exceed an error of 1. b) In red:
randomly generated 50K of such 28M TTs, then synthesised, and plotted area vs. total number of literals of a minimized sum of products.
In black, the circuits generated by XPAT. c) The circuit returned by XPAT.

combination we can have either the exact output or its value
plus one or minus one, there are 315 ∗ 2 = 28,697,814 distinct
satisfying truth tables. An ideal ALS methodology is one that
outputs a circuit corresponding to the truth table which, out
of the 28 million possible ones, occupies the smallest amount
of area once synthesized. We generated 50,000 random truth
tables among the satisfying 28 million, synthesized them, and
plotted them (area vs. the total number of literals in their
minimised sum-of-products). Figure 1b) shows the results. As
can be observed: 1) the area after (multi-level) synthesis is in
clear correlation with the number of literals of a minimised 2-
level circuit. 2) The area of the circuits generated by XPAT is
remarkably small, and smaller than the best circuit returned by
MUSCAT. Figure 1c) reports the circuit that XPAT returned.
In the following, we explain how.

IV. METHODOLOGY

XPAT generates an approximate circuit by selecting a set of
parameters in a template. The template considered in this work
is a sum of products, and the parameters select which products
of which literal should drive each output of the circuit. We first
explain the SMT formulation we use to reach this goal, and
then detail the design of the chosen parametrical template.

A. SMT Formulation

Figure 2 illustrates the miter employed in our formulation.
Consider a circuit (the exact circuit, on the left of the figure)
with n primary inputs and m primary outputs. In order to
define an error between an approximate and an exact circuit,
we define two functions, w and d. Function w denotes the
mapping from Boolean values to word-level values (in the case
of our experiments, generating unsigned integers). The second
function, d, is a difference measure between those values (in
our experiments it is set to |w1 − w2|, for absolute error).

The miter also contains an approximate circuit (shown in the
right part of Figure 2) which in our methodology is expressed
as a parametrical template driven by a set of parameters p.
The next subsection will explain the template in detail – for
now, suffice to say that the choice of the parameter values
completely specifies the functionality of the approximate cir-
cuit. Given, then, a parameter combination p expressing an
approximate circuit, and given an input combination i, function
d(i, p) expresses the error made by approximate circuit p for
input combination i.

exact
circuit

approximate
circuit

input i

oexa oapp

parameters p

w

d

w

Parametrical
Template

∃𝑝. ∀𝑖 (𝑑 ≤ 𝐸𝑇)

Fig. 2: The miter for the presented ALS algorithm. The approximate
circuit functionality is determined by a set of parameters p, chosen
by the solver. The distance d between the two outputs should be no
higher than a given threshold ET for every possible input combination
i

If our aim is to generate an approximate circuit that never
exceeds a given error threshold ET, then, for this circuit to
be valid, the distance between exact output and approximate
output must be smaller than threshold for every input combi-

nation. The question we pose to the SMT solver is whether an
assignment to the parameters exists such that, for every input
combination, the resulting error is always below the threshold:
∃p∀i : d(i, p) <= ET

B. Template definition

The parametrizable template for the approximate circuit is
expressed as a sum of products. Given m primary outputs
o1, ..., om, each output is set to:
oi =

∨K
k=1 Pk

where K is the (limited) number of products included in each
output sum. Figure 3a) depicts this structure. Figure 3b) then
shows how each product Pk is encoded in our miter: A number
n of multiplexers (one per primary input) are and-ed together;
the selector of each multiplexer is a 2-bit parameter pj which
chooses the desired option for input j out of three possibilities:
the input itself, its negation, or value 1. If value 1 is passed
on, the input does not appear in the final product.

More specifically, the first bit of pj is set to true if the
corresponding primary input is included in the product, while
the second bit indicates its sign. If the first bit is set to false
the corresponding input is not considered and the output is 1.
In this case, we force the second bit to be true in order to
avoid symmetries.

i1
'i1 1

p1

i2
'i2 1

p2

in
'in 1

pn

...

Pk

P1 P2 ...

A ProductAn Output

Pk

Om

a) b)

Fig. 3: a) Structure of an output om as a sum of K products. b)
Structure a product: a 2-bit parameter pi is used to select whether
the product includes input i, or its negation, or excludes it by passing
value 1. Vectors [p1, ..., pn] hence represent all possible products of
at most n literals.

Product Pk is then represented by a 2n-bit vector, Pk =
[p0, ..., pn], with n the number of primary inputs. For in-
stance, given PI = {a, b, c} a set of primary inputs, product
P0 = [(1, 1), (1, 0), (0, 1)] translates to ab′; product P1 =
[(0, 1), (0, 1), (1, 0)] translates to c′.

The final result is, then, a set of parameters expressing a sum
of products for each of the circuit primary outputs. As a very
last note, since a constant zero in output cannot be expressed
by the template detailed above, a further 1-bit parameter is
added in order to select whether an output is set to constant
0, or is set to the sum of products detailed above. The total
number of bits needed to define the template for a circuit of
n inputs and m outputs, with K products per sum, is, then,
m(2nK + 1).

UN
SAT
UN
SAT
UN
SAT
UN
SAT
UN
SAT

UN
SAT

UN
SAT

UN
SAT

SAT

0

1

2

3

4

1 2 3 4PPO
LPP

Fig. 4: The number of maximum products per output (PPO) and
maximum literals per products (LPP) are input parameters to miter
generation. The space of the possible combinations of these two
values is then explored, via iterative solver calls, with the aim of
minimizing the resulting approximate circuit area.

C. Limiting the number of literals of the resulting circuits

To search small-area solutions first, we can ask the solver
whether a circuit exists exactly meeting a given specification,
i.e. not exceeding a given pair of values: the number of allowed
products per output (PPO), and the number of allowed literals
per product (LPP). For the 2-bit adder and the constraint ET=1
of the motivational example, the smallest satisfying pair (PPO,
LPP) is (2,2), corresponding to the circuit shown in Figure 1c).

In order to find such pair(s), we explore the space of these
values in a column-wise manner, as illustrated in Figure 4.
Starting with PPO = 1 and LPP = 0 (zero literals per product
corresponds to each output being driven by a constant), a miter
is generated accordingly, and the SMT solver is invoked. If a
satisfying set of parameters does not exist, LPP is increased, a
new miter is generated, and the SMT solver is again invoked.
The search proceeds column-wise, until either the end of the
column is reached or until a SAT is returned (green cell in
the figure). Then, PPO is increased, and the next column is
explored. White cells in the figure are dominated and hence
need not be explored.

V. EXPERIMENTAL EVALUATION

Experimental Setup. To assess the efficiency of XPAT,
we have applied it to a number of arithmetic circuits (adder,
absolute difference, multiplier, multiply-add) with up to 12 bits
in input, and we have compared it with the MUSCAT [9] and
BLASYS [7] ALS algorithms. Area numbers were obtained
by synthesizing the circuits retrieved by XPAT, MUSCAT and
BLASYS using yosys and library gscl45nm. Experiments are
carried out on a Linux Machine with a 3.30GHz Intel Core i9
CPU and 256GBs of RAM.

Area Results. Figure 5 shows the area of the circuits
generated by the three methods, for error thresholds (denoted
by ET) ranging from 1/8 up to 1/2 of the maximum error.
The shaded blue shows the areas where XPAT could not scale,
i.e. could not find a valid circuit within two hours. The area
retrieved are smaller than those found by the state of the art
methods in 75% of the cases.

Scalability and Limitations. While the method outper-
forms state of the art for the benchmarks used in this paper,
runtimes increase beyond hours for larger benchmarks. This

1 2 3 4
ET

0

20

40

60

80

No
rm

al
ize

d
Ar

ea
(%

)

abs_diff_i4_o3
MUSCAT
BLASYS
XPAT

2 4 6 8 10 12 14 16
ET

0

10

20

30

40

50

60

No
rm

al
ize

d
Ar

ea
(%

)

abs_diff_i8_o5
MUSCAT
BLASYS
XPAT

8 16 24 32 40 48 56 64
ET

0

20

40

60

80

No
rm

al
ize

d
Ar

ea
(%

)

abs_diff_i12_o7
MUSCAT
BLASYS
XPAT

1 2 3 4
ET

0

20

40

60

80

No
rm

al
ize

d
Ar

ea
(%

)

adder_i4_o3
MUSCAT
BLASYS
XPAT

2 4 6 8 10 12 14 16 18 20
ET

0

20

40

60

80

No
rm

al
ize

d
Ar

ea
(%

)

adder_i8_o5
MUSCAT
BLASYS
XPAT

1 2 3 4 5 6 7 8
ET

0

20

40

60

80

No
rm

al
ize

d
Ar

ea
(%

)

mul_i4_o4
MUSCAT
BLASYS
XPAT

16 32 48 64 80 96 112 128
ET

0

20

40

60

80

No
rm

al
ize

d
Ar

ea
(%

)

mul_i8_o8
MUSCAT
BLASYS
XPAT

1 2 3 4 5 6 7 8
ET

0

20

40

60

80

No
rm

al
ize

d
Ar

ea
(%

)

madd_i6_o4
MUSCAT
BLASYS
XPAT

4 8 12 16 20 24 28 32
ET

0

10

20

30

40

50

60

No
rm

al
ize

d
Ar

ea
(%

)

madd_i9_o6
MUSCAT
BLASYS
XPAT

Fig. 5: Comparison of areas obtained by our proposed approach against MUSCAT [9] and BLASYS [7] (the letters ”i” and ”o” stand for
the number of primary inputs and outputs of the circuits, respectively.).

limitation might be overcome by considering a multi-level
template, as opposed to the two-level one considered here,
or by applying XPAT to subparts of the circuit, iteratively, as
opposed to the whole. This is the future direction that we are
going to explore.

VI. CONCLUSION

We have presented an innovative ALS method called
XPAT which generates approximate circuits via the use of a
parametrizable template. An SMT solver finds a combination
of parameters that shape the template so that a certain error
threshold is met. The approximate circuit is thus built bottom-
up and from scratch, along the guide of the template, as
opposed to by removing or modifying parts of an existing
circuit as many previous works do. XPAT is shown to improve
on the state of the art, especially for large errors. Where it
could scale, XPAT retrieved circuits smaller than those found
by MUSCAT and by BLASYS in 75% of the cases. On average
it obtained 9.85% improvement in area savings (up to 60.4%).

REFERENCES

[1] Q. Xu, T. Mytkowicz, and N. Kim, “Approximate computing: A survey,”
IEEE Design and Test, vol. 33, pp. 8–22, Jan. 2016.

[2] I. Scarabottolo, G. Ansaloni, G. A. Constantinides, L. Pozzi, and S. Reda,
“Approximate logic synthesis: A survey,” Proceedings of the IEEE,
vol. 108, no. 12, pp. 2195–2213, 2020.

[3] J. Schlachter, V. Camus, K. V. Palem, and C. Enz, “Design and applica-
tions of approximate circuits by gate-level pruning,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 25, pp. 1694–1702,
Feb. 2017.

[4] I. Scarabottolo, G. Ansaloni, and L. Pozzi, “Circuit Carving: A method-
ology for the design of approximate hardware,” in Proceedings of the
Design, Automation and Test in Europe Conference and Exhibition,
pp. 545–550, Mar. 2018.

[5] S. Venkataramani, K. Roy, and A. Raghunathan, “Substitute-and-simplify:
A unified design paradigm for approximate and quality configurable
circuits,” in Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition, pp. 1367–1372, Mar. 2013.

[6] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, “EvoApproxSb:
Library of approximate adders and multipliers for circuit design and
benchmarking of approximation methods,” in Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition, pp. 1–6, 2017.

[7] S. Hashemi, H. Tann, and S. Reda, “BLASYS: Approximate logic
synthesis using boolean matrix factorization,” in Proceedings of the 55th
Design Automation Conference, pp. 55:1–55:6, June 2018.

[8] A. Chandrasekharan, M. Soeken, D. Große, and R. Drechsler,
“Approximation-aware rewriting of AIGs for error tolerant applications,”
in Proceedings of the International Conference on Computer Aided
Design, pp. 1–8, Nov. 2016.

[9] L. Witschen, T. Wiersema, M. Artmann, and M. Platzner, “Muscat: Mus-
based circuit approximation technique,” in Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition, pp. 172–177,
2022.

	Introduction
	State of the art
	Motivation
	Methodology
	SMT Formulation
	Template definition
	Limiting the number of literals of the resulting circuits

	Experimental evaluation
	Conclusion
	References

