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Abstract—Replication is a common technique used to design
reliable distributed systems by masking defective components.
To cope with the requirements of modern Internet applications,
replication protocols must allow for throughput scalability and
dynamic reconfiguration, that is, on-demand replacement or
provisioning of system resources. This paper describes Elastic
Paxos, a new dynamic atomic multicast protocol that fulfills
these requirements. Elastic Paxos allows to dynamically add and
remove resources to an online partially replicated state machine.
We implemented Elastic Paxos and evaluated its performance in
OpenStack, a cloud environment. We demonstrate its practicality
to dynamically scale up and down a partially replicated data store
with it and to reconfigure a distributed system.

Keywords—atomic multicast; Paxos; scalability; dynamic recon-
figuration

I. INTRODUCTION

Today’s on-demand computing resources, common in pub-
lic cloud environments, provide operators of distributed sys-
tems with the possibility to react quickly to changes in appli-
cation workload. Starting up new webservers once increased
traffic is detected or switching off low utilized servers to save
costs are common operations. Dynamically adding or removing
resources when servers are stateful (e.g., databases), however,
is much more challenging than reconfiguring stateless servers
(e.g., webservers). In fact, building fault-tolerant (replicated)
distributed services that provide strong consistency and scal-
able performance is a daunting task in itself. Further requiring
these services to dynamically scale up and down resources
introduces additional complexity.

Services are typically made scalable and fault-tolerant by
means of state partitioning (sharding) and replication (e.g.,
[1], [2], [3]). But handling sharded and replicated data in
a distributed environment is challenging if services are not
willing to give up strong consistency. Strong consistency re-
quires client requests to be ordered across shards and replicas.
Atomic multicast is a communication abstraction that can help
the design scalable and highly available stateful services [4],
[5] by consistently ordering requests. Therefore, much of the
complexity involved in designing scalable and fault-tolerant
services is encapsulated by atomic multicast.

Nevertheless, existing atomic multicast protocols are static,
in that creating new multicast groups at run time is not
supported. Consequently, replicas must subscribe to multicast
groups at initialization, and subscriptions and unsubscriptions
can only be changed by stopping all replicas, redefining the
subscriptions, and restarting the system. This paper presents
Elastic Paxos, the first dynamic atomic multicast protocol.
Elastic Paxos allows replicas to dynamically subscribe to and
unsubscribe from atomic multicast groups.

Dynamic subscriptions in Elastic Paxos should not be
confused with dynamic reconfiguration. In dynamic reconfig-
uration (e.g., [6], [7], [8], [9], [10]), the goal is to change
the set of participants of a system (e.g., group membership).
Elastic Paxos seeks to allow replicas to dynamically change the
multicast groups they subscribe to, while the membership of
the system may remain constant. Interestingly, we show in the
paper that one can use dynamic subscriptions to reconfigure a
system.

In brief, our dynamic atomic multicast protocol composes
multiple sequences of Paxos [11], [12], where each sequence
is referred to as an atomic multicast stream, to provide efficient
message ordering. The protocol ensures that no two replicas
order the same requests in different orders and allows to add
and remove additional streams during run time. To illustrate
the design of a scalable and highly available prototypical
service, we consider a storage service (i.e., a key/value store).
The storage is partitioned into disjoint partitions and each
partition is replicated by a group of replicas. There is one
atomic multicast stream per partition, which the replicas of
the partition subscribe to, and one atomic multicast stream
that is shared by all replicas. The storage service supports
two types of operations: single-partition operations (i.e., get
and put on a single key) and multi-partition operations (i.e.,
a consistent get range operation that returns all keys in a
specified interval). Single-partition operations are multicast to
the replicas of the partition that contains the accessed key;
multi-partition operations are multicast to all replicas, using
the shared atomic multicast stream.

This paper makes the following contributions. (i) We intro-
duce Elastic Paxos, an atomic multicast protocol that supports
dynamic subscriptions. (ii) We show how Elastic Paxos can
be used to design strongly consistent, scalable and highly
available dynamic services. (iii) We detail the implementation
of our new protocol. (iv) We evaluate the performance of
Elastic Paxos with three practical use cases: (a) How to
dynamically remove bottlenecks of atomic broadcast with the
online addition of resources. (b) How to split or combine
shards of a partitioned data store. (c) How to reconfigure
atomic broadcast.

The rest of this paper is structured as follows. Section II
describes our system model and assumptions. Section III ex-
plains why system designers must care about atomic multicast
as a middleware service and introduces how atomic multicast
can be used to design scalable services. Section IV highlights
why dynamic subscription is required, Section V presents the
design of our protocol and Section VI explains how they were
implemented. Section VII assesses the performance of the
components, Section VIII presents related work and Section IX
concludes this paper.



II. SYSTEM MODEL

We assume a distributed system composed of a set Π =
{p1, p2, ...} of interconnected processes that communicate
through point-to-point message passing. Processes may fail
by crashing and subsequently recover, but do not experience
arbitrary behavior (i.e., no Byzantine failures). Processes are
either correct or faulty. A correct process is eventually op-
erational “forever” and can reliably exchange messages with
other correct processes. A faulty process is a process that
is not correct. In practice, “forever” means long enough for
processes to make some progress (e.g., terminate one instance
of consensus).

The protocols in this paper ensure safety under both
asynchronous and synchronous execution periods. To ensure
liveness, we assume the system is partially synchronous [13]: it
is initially asynchronous and eventually becomes synchronous.
The time when the system becomes synchronous, called the
Global Stabilization Time (GST) [13], is unknown to the pro-
cesses. When the system behaves asynchronously (i.e., before
GST), there are no bounds on the time it takes for messages
to be transmitted and actions to be executed; when the system
behaves synchronously (i.e., after GST), such bounds exist but
are unknown by the processes.

III. BACKGROUND

Atomic multicast is a communication abstraction that helps
design highly available and scalable applications.We start by
defining atomic multicast and atomic broadcast (§III-A). Then,
we explain how from atomic broadcast one can implement
atomic multicast (§III-B). We conclude with the design of
a highly available and scalable store service developed with
atomic multicast, which will be used throughput the paper
(§III-C).

A. Atomic multicast

Atomic multicast is an abstraction used by processes to
communicate. It defines two communication primitives: mul-
ticast(S,m) and deliver(m). Client processes invoke multi-
cast(S,m) to submit requests, encoded in message m, to the
replica processes that subscribe to atomic multicast stream S.
Replicas subscribe to one or more streams and deliver client
requests with primitive deliver(m).

Intuitively, atomic multicast ensures that if a process deliv-
ers message m multicast to stream S, then all correct processes
that subscribe to S also deliver m; and if processes p and q
deliver messages m and m′, then they deliver them in the same
order. Atomic broadcast is a special case of atomic multicast
where there is a single stream of messages to which all replicas
subscribe.

B. From broadcast to multicast

Atomic multicast can be implemented with independent
instances of Multi-Paxos, where each Multi-Paxos instance
corresponds to an atomic multicast stream [5], [14]. Replicas
can subscribe to one or more atomic multicast streams and a
replica that subscribes to stream Si becomes a learner in the
Multi-Paxos instance associated with Si.

Replicas that subscribe to multiple streams ensure ordered
delivery of messages by implementing a deterministic round-
robin procedure that merges messages ordered in different
streams (dMerge).

To handle imbalanced traffic among streams and ensure
that messages will not be delivered at the pace of the slowest
stream, processes can skip Paxos executions in a stream.
Periodically, the group coordinator of a stream calculates the
number of executions that need to be skipped for the stream
to reach a virtual maximum throughput, measured in Paxos
executions per second. Then, the coordinator proposes in the
next available execution to skip some executions [5].

C. Designing scalable services with atomic multicast

Designing services that are highly available and capable
to scale throughput without giving up strong consistency is a
daunting task. In this paper, we consider strongly consistent
services that ensure linearizability. A service is linearizable
if there is a permutation of the commands executed by the
clients that respects (i) the service’s sequential specification
and (ii) the real-time precedence of commands [15].
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Fig. 1. Architecture overview of a highly available and scalable store
service developed with atomic multicast.

State machine replication [16], [17] simplifies the prob-
lem of implementing highly available linearizable services by
decomposing the ordering of requests across replicas from
the execution of requests at each replica. Requests can be
ordered using atomic broadcast and, as a consequence, service
developers can focus on the execution of requests, which is
the aspect most closely related to the service itself. State
machine replication requires the execution of requests to be
deterministic, so that when provided with the same sequence of
requests, every replica will evolve through the same sequence
of states and produce the same results.

State machine replication, however, does not lead to ser-
vices that can scale throughput with the number of replicas.
Increasing the number of replicas results in a service that
tolerates more failures, but does not necessarily serve more
clients per time unit. Several systems resort to state partitioning
(i.e., sharding) to provide scalability (e.g., Calvin [18], H-
Store [19]). Scalable performance and high availability can be
obtained by partitioning the service state and replicating each
partition with state machine replication. To submit a request
for execution, the client atomically multicasts the request to the
appropriate partitions [4]. Performance will scale as long as the
state can be partitioned in such a way that most commands are
executed by a single partition only.



Figure 1 illustrates a key-value store service developed with
atomic multicast. There are commands to read and write single
entries in the store (get and put) and to query multiple entries
(getrange). Replicas in G1 subscribe to streams S1 and S2

and replicas in G2 subscribe to streams S2 and S3. Atomic
multicast is implemented with Multi-Ring Paxos [5], which
pipelines acceptors in a stream. The streams that a replica
subscribes to are combined by the dMerge component.

IV. DYNAMIC ATOMIC MULTICAST

Atomic multicast is a suitable abstraction to build scalable
distributed systems. But creating new groups during run time
is not supported by existing atomic multicast systems. In this
section, we motivate and define dynamic atomic multicast
(§IV-A, §IV-B).

A. Motivation

Atomic multicast, as discussed in the previous section,
relies on static subscriptions of replicas to streams, that is,
subscriptions are defined at initialization and can only be
changed by stopping all processes, redefining the subscriptions,
and restarting the system.

In today’s cloud environments, adding resources to and re-
moving resources from an operational system without shutting
it down is a desirable feature. Combining the benefits of atomic
multicast and dynamic subscriptions at run time allows several
practical use cases, as we describe next.

1) Vertical scalability: Although atomic broadcast is typi-
cally implemented with a single message stream, it can be also
implemented with multiple streams, as long as all processes
subscribe to all streams. When implemented with a single
stream, the performance of atomic broadcast will be typically
limited by the performance of the coordinator (CPU) or the
acceptors (disk write performance) of the stream. However,
replicas can increase the throughput of atomic broadcast by
dynamically subscribing to multiple streams. In doing so, each
stream contributes to the aggregated throughput of atomic
broadcast.

2) Horizontal scalability: Scaling out a key-value store
service can be achieved by horizontally partitioning (sharding)
the service state. Partitioned state introduces the problem of
how to ensure consistency of cross-partition queries. Paxos
and other atomic broadcast algorithms ensure total order of
commands within one partition (e.g., get and put commands),
consistent cross-partition operations (e.g., getrange) must be
coordinated using additional mechanisms, such as two-phase
commit and synchronized clocks (e.g., [1]). Atomic multicast
offers an alternative by ordering both single-partition and
cross-partition commands, as needed (i.e., partial order). If
replicas can dynamically subscribe to a new stream (i.e., a
new partition), then a replicated data store can be repartitioned
without service interruption.

3) Reconfiguration: Reconfiguration means changing the
set of processes in a distributed system. It is used, for example,
to replace a failed server or a server whose disk is full. Recon-
figuring a replicated state machine has been considered before
(e.g., [6], [7], [8], [9], [10]). In general, existing solutions
consist in stopping processes in the current configuration (i.e.,

the running state machine), redefining the set of processes in
the new configuration, and re-starting the processes in the new
configuration [9].

In Paxos, the real challenge is reconfiguring the set of
acceptors since these are the processes that store the state of
Paxos (e.g., accepted values). Moreover, processes must know
the set of acceptors of each consensus instance (i.e., system
membership). Lamport [11] suggests to manage membership
by making the set of acceptors part of the state of the system
and handling membership changes as commands, which must
also be ordered by consensus. Such a mechanism, however,
prevents multiple consensus instances from executing concur-
rently, which limits performance [10].

Dynamic subscriptions offer an alternative approach to
reconfiguring the acceptors in a single stream Si. We first
create a new stream S′

i with the new set of acceptors, then
have the learners subscribe to S′

i, and finally unsubscribe from
Si. Note that this approach does not impose any constraints
on the intersection between Si and S′

i (e.g., Si and S′
i can be

disjoint sets).

B. Dynamic atomic multicast

After arguing for dynamic subscriptions in atomic
multicast, we extend the atomic multicast interface with
two additional primitives: subscribe msg(G,S) and unsub-
scribe msg(G,S), which replicas in replication group G can
use to subscribe to and unsubscribe from stream S. After
replicas subscribe to stream S, they will eventually deliver
messages multicast to S. Similarly, if replicas unsubscribe
from S, they will eventually stop delivering messages multicast
to S. In both cases, atomic multicast guarantees acyclic ordered
delivery (see §III-A).

V. ELASTIC PAXOS

In this section, we present an overview of the Elastic Paxos
protocol (§V-A), describe Elastic Paxos in detail (§V-B) and
introduce a few optimizations (§V-C).

A. Overview

We seek decentralized solutions that properly coordinate
dynamic subscriptions in atomic multicast without relying on
a single entity, such as an oracle that oversees all subscribe and
unsubscribe requests. In the following, we provide an overview
of our solution. We describe how a replica R in replication
group G can subscribe to and unsubscribe from a stream.

Every replica in G starts with a subscription to a default
stream, SG. In order for R to subscribe to a new stream SN ,
R must atomically broadcast request subscribe msg(G,SN ) to
(a) the new stream SN ; and (b) a stream S that R currently
subscribes to (e.g., the default stream). Upon delivering the
subscription request from S, the deterministic merger that
executes at R spawns a new learner task at R for stream SN .
The new learner starts by recovering all messages in SN until
it reaches the subscribe request subscribe msg(G,SN ).

When the subscribe request is ordered in both streams S
and SN , the merger determines the “merge point”, that is, the
instance after which the replica will start combining messages



from the new stream with messages from the currently sub-
scribed streams. To avoid order violations, Elastic Paxos uses
the same instance in both streams, computed as the maximum
between the instances in which the subscribe request was
delivered in each stream (see Figure 2). Intuitively, this works
because the merge point is “aligned” at all subscribed streams.
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Fig. 2. How Elastic Paxos ensures acyclic ordering.

Unsubscriptions are simpler than subscriptions because
there is already a total order among messages in all subscribed
streams. Therefore, it is enough to broadcast a single un-
subscribe msg(group,stream) request to any of the subscribed
streams. As soon as the request is delivered, the dMerge task
removes the requested stream from the set of streams the
replica subscribes to.

B. Detailed protocol

Algorithm 1 details how a replica R in replication group
G subscribes to a new stream SN . Every replica consists of
multiple tasks. There is one dMerge task, and one learner
task per subscribed stream. The dMerge task orders messages
from the various streams a replica subscribes to and handles
subscription and unsubscription requests. dMerge holds an
array of stream queues (Q), from which it deterministically
(round-robin) delivers decided values. Every stream queue is
filled by a background learner task. When a replica subscribes
to a new stream, one more learner task is created. This new
learner will recover (Section VI) all decided values and put
them in Q.

For every queue, dMerge keeps a pointer per stream (ptr)
with the position of the last ordered value in the stream that
has already been delivered to the application. The subscription
point is the maximum stream position of the two subscription
messages (i.e., the new stream and the currently subscribed
stream). Round-robin delivery from the new stream will start
in the round after the maximum stream position.

For the sake of simplicity, in Algorithm 1 a stream position
corresponds to a Paxos instance. In our prototype, the stream
position is not related to the decided Paxos instances. Since
multiple values or skip messages can be decided in one Paxos
instance (batching), in our prototype the pointer refers to a
value, after discarding skip messages.

Algorithm 1 Replica R in G subscribes to stream SN

1: Initialization:
2: Q[1..max stream][1..max instance]← ⊥,⊥, ...
3: start task dMerge {init deterministic merge}

4: task dMerge {Deterministic merge}
5: Initialization:
6: Σ← {SG} {set of subscribed streams, with default stream}
7: start task Learner(SG) {start the first learner}
8: S ← SG {set first stream}
9: ptr[S]← 0 {next instance in a stream}

10: while forever do {round-robin delivery}
11: ptr[S]← ptr[S] + 1 {set pointer to next message in S}
12: wait until Q[S][ptr[S]] 6= ⊥
13: v ← Q[S][ptr[S]]
14: if v = subscribe msg(Gx, Sx) and Gx = G then
15: SN ← Sx

16: start task Learner(SN )
17: while Q[SN ][ptr[SN ]] 6= v do {find same subscribe...}
18: ptr[SN ]← ptr[SN ] + 1 {...msg in both streams}
19: merge ptr ← max ptr(ptr) + 1
20: while ptr[SN ] < merge ptr do {align stream}
21: ptr[SN ]← ptr[SN ] + 1 {skip}
22: else
23: if v 6= subscribe msg(Gx, Sx) then
24: deliver v {v is ordered, pass it to the application}
25: if ∀S ∈ Σ : ptr[S] = merge ptr then
26: Σ← Σ ∪ {SN} {update current subscriptions}
27: S ← first(Σ) {after subscription start from first group}
28: else
29: S ← next(Σ) {next group for round-robin delivery}

30: procedure max ptr(ptr)
31: // return maximum ptr[S] for all streams S in Σ
32: x← 0
33: for each S ∈ Σ do
34: if ptr[S] > x then x← ptr[S]
35: return x

36: procedure first(Σ)
37: // return the first S in Σ

38: procedure next(Σ)
39: // return the next (cyclic) S in Σ

40: task Learner(S) {Learner of stream S}
41: Initialization:
42: ptr[S]← 0
43: for i from 1 to max decided instance in S do
44: Q[S][i]← recover(i) {recover all decided instances}

45: upon deliver(v) do
46: Q[S][i]← v {fill queue while Paxos instances get decided}
47: i← i+ 1

C. Extensions and optimizations

As Algorithm 1 shows, after receiving a subscribe request,
the dMerge task interrupts the handling of messages until the
same request is received in the new stream. Since the dMerge
task does not know where in the stream the missing subscrip-
tion request is, the simplest approach is to scan all previous
messages. This procedure can be optimized if the process that



triggers a subscription first broadcasts a hint to learners. Upon
receiving such a hint (prepare msg(G,SN )), learners start
scanning the new stream for subscription requests. To recover
the stream in the background, we implemented a prepare
message.

VI. IMPLEMENTATION

To evaluate the capabilities of Elastic Paxos, we extended
the URingPaxos library1 to handle dynamic subscriptions.
URingPaxos implements Ring Paxos [20], a high throughput
atomic broadcast protocol based on TCP. Further, it imple-
ments atomic multicast by combining multiple instances of
Ring Paxos [14]. The library is written in Java with some
performance critical sections in C (JNI). URingPaxos uses
ZooKeeper [21] to store ring management and protocol con-
figuration data. Elastic Paxos replaces the static deterministic
merge procedure of URingPaxos with a new procedure (Algo-
rithm 1).

To demonstrate Elastic Paxos in a real application, we ex-
tended a partitioned key/value store service [5] with operations
to handle subscribe and unsubscribe events and support for
dynamic scalability. Clients can submit put, get, and getrange
commands to replicas. Replicas execute the commands to their
in-memory data store and reply back directly to the client.
Every replica belongs to one hash-partitioned shard of the
whole state and every partition has a dedicated Paxos stream to
order commands. To achieve linearizability for multi-partition
operations, the replicas coordinate their executions with direct
signal messages [4].

An important part to allow Elastic Paxos is recovery.
The URingPaxos library has several mechanism built in to
recover and trim Paxos acceptors log and coordinate replica
checkpoints and state transfer [5], [22].

Further, we added support to OpenStack. A controller or
a client can create or destroy virtual machines, forming addi-
tional streams depending on the currently measured application
throughput. Adding a new stream from newly created virtual
machines (three acceptors) takes approximately 60 seconds.

VII. EXPERIMENTAL EVALUATION

In this section, we describe our experimental environment
(§VII-A), explain our goals and methodology (§VII-B), and
evaluate Elastic Paxos (§VII-C–VII-D–VII-E).

A. Experimental setup

All experiments were performed on SWITCHengines,2 an
IaaS cloud service for academics. The platform uses Open-
Stack to provide virtual machines and Ceph as a distributed
parallel block storage, serving the virtual machines.

The hardware consists of 32 physical machines; 16 are
dedicated for compute nodes and 16 act as storage nodes.
Every node (Intel S2600GZ) has 256 GB of main memory.
The distributed file system uses 128 4 TB (WD4000F9YZ)
spinning drives and a replication factor of 3. During our

1https://github.com/sambenz/UringPaxos
2http://www.switch.ch/services/engines/

experiments, approximately 500 other virtual machines were
running on the cluster.

All virtual machines used in the experiments have 2 vCPU
and 2 GB of memory. The network between these VMs is
virtualized and tunneled between the physical nodes. Paxos
acceptors and replicas are scheduled to different physical
machines using the OpenStack anti-affinity host groups. Since
the virtual machines do not provide local storage on real disk
devices, all experiments were run in memory only.

Multi-Ring Paxos has two important parameters, λ and
∆t. λ defines the maximum virtual system throughput per
stream, measured in Paxos instances per second. ∆t defines
the sampling interval to compare the actual throughput in a
stream and λ. In all experiments, λ is set to 4000 and ∆t to
100ms.

B. Objectives and methodology

We assess the behavior of Elastic Paxos under a range of
different practical deployments, as described next.

• We evaluate the performance of Elastic Paxos when
multiple Paxos streams are added dynamically to a
set of replicas (§VII-C). This is important in practice
whenever the ordering protocol is the bottleneck in a
SMR setup.

• We assess how Elastic Paxos can be used with a
partitioned key/value store application to dynamically
re-partition the replicas under load (§VII-D). Re-
partitioning is required whenever the replicas are the
bottleneck (e.g., due to CPU saturation).

• We demonstrate how a set of Paxos acceptors can be
reconfigured under full system load (§VII-E). This is
useful to replace a failed acceptor or an acceptor that
runs out of disk storage.

C. Vertical Scalability

In this experiment we demonstrate how Elastic Paxos can
be used to dynamically add multiple streams to a single set of
replicas.

Setup. We start the experiment with a client VM (5 threads
per stream) that sends 32 kbyte values to two replica VMs. We
limited the single stream throughput to 30% not to saturate the
replicas at the beginning of the experiment. Every 15 seconds
replicas subscribe to a new stream and immediately deliver
new commands from the added stream. Every stream contains
3 acceptor VMs which are deployed as OpenStack Heat-
AutoScaling groups. In this experiment, all VMs are started
up from the beginning, but Heat-AutoScaling allows clients to
boot up or shutdown the virtual machines that participate in
the streams.

Results. Figure 3 shows the aggregated throughput at the
replicas. The most visible impact is right after the subscribe
message. This is due to the fact that we intentionally do not
use the prepare msg request (see V-C) to inform replicas
about the changes. During recovery of the new stream, a
number of messages are queued up in memory at the replicas
and delivered right after the subscription process is over.
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Fig. 3. Dynamically adding streams to a set of replicas to scale up the
coordination layer. Every 15 seconds replicas subscribe to a new stream.

The interval averages increasing from 735, 1498, 2391 to
2660 ops/s by adding additional streams. With 4 streams, this
corresponds to an increase of 3.62 of the system throughput.

D. Horizontal Scalability

In this section we evaluate how Elastic Paxos can be used
to dynamically scale out a partitioned key/value store. For this
experiment we use the partitioned key/value store described in
Section VI.

Setup. We start the experiment with a client VM
(100 threads) that sends 1024-byte put commands to random
keys. Two replica VMs apply these commands to their local
in-memory storage and send back a command response to
the client thread. Initially only one partition is present in the
system and serves every request. Every partition is coordinated
by a stream of 3 acceptor VMs. At 30 seconds, one of
the replicas subscribes to a new stream with additional 3
acceptors and informs the whole system 5 seconds later about
the partition change. The client is notified about the change
in the partitioning by ZooKeeper and starts sending random
commands to both partitions.

Results. Figure 4 shows the system throughput during re-
partitioning under 75% peak load. The duration of the re-
partitioning is 1 second and mainly caused by a client timeout.
Commands from clients which are received by the wrong
partition after the split are discarded. The clients will resend
them after a timeout to the correct partition. The throughput
after splitting the partition is half at every replica. Further,
also the CPU consumption at every replica drops after the re-
partitioning event. Therefore, both partitions could now clearly
handle 100% more operations per second.
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Fig. 4. Re-partitioning of a key/value store (75% peak load). After 35 seconds
the throughput and CPU consumption at both replicas decreased.

E. Reconfiguration

In this experiment we show how Elastic Paxos can be
used to reconfigure a state machine under full system load.
Since reconfiguration of atomic broadcast is a sub problem
of reconfigure atomic multicast, we use dynamic subscriptions
to replace the set of acting acceptors. Changing the set of
acceptors is required, if for example they run out of disk space,
one acceptor stable storage is not recoverable or to tolerate
more failures (e.g., 5 instead of 3 acceptors). The goal of this
experiment is to show, that dynamic subscription is an efficient
solution to state machine reconfiguration.

Setup. We start the experiment with a client VM
(60 threads) that sends 32 kbyte values to two replica VMs.
These two replicas subscribe to the first stream which contains
3 acceptor VMs. After 40 seconds, we inform the replicas that
we will add a second stream (with a prepare msg request).
After 45 seconds we let the replicas subscribe to the new
stream containing 3 different acceptor VMs. Right after the
subscribe message we submit a unsubscribe message to the
original stream.

Results. Figure 5 shows the reconfiguration under full
load of 550 Mbps. Since the replicas received a prepare msg
(see V-C), they can start up and recover the new stream in
the background without blocking the main message execution.
With this optimization, reconfiguration introduces no overhead.

VIII. RELATED WORK

In this section, we briefly review related work on atomic
multicast (§VIII-A), group membership (§VIII-B), and state
machine reconfiguration (§VIII-C).
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Fig. 5. State machine reconfiguration under full system load. At 45 seconds
we replace the set of active acceptors with a new one.

A. Atomic multicast

Atomic multicast has been extensively studied in the lit-
erature [23]. In [6], a protocol is proposed for failure-free
scenarios. To decide on the final timestamp of a message,
each process in the set of message addresses locally chooses a
timestamp, exchanges its chosen timestamps, deterministically
agrees on one of them, and delivers messages according to
the message’s final timestamp. Several works have extended
this algorithm to tolerate failures [24], [25], [26], [27], where
the main idea is to replace failure-prone processes by fault-
tolerant disjoint groups of processes, each group implementing
the algorithm by means of state machine replication.

Atomic broadcast [28], [29] is a special case of atomic
multicast where all messages are targeted to a single group.
Paxos [11] is one of many ways to implement atomic broadcast
(e.g., [30], [31], [32], [33], [34], [35]).

Elastic Paxos is based on Multi-Ring Paxos [14]. The
algorithm to reconfigure the deterministic merge function is
similar to [6]. The chosen timestamps for subscribe and unsub-
scribe messages are the stream positions which are persisted in
the streams themselves. Therefore for reconfiguration, Elastic
Paxos requires each involved stream (group) to be able to reach
consensus.

Spread [36] implements a highly configurable group com-
munication system, which supports the abstraction of process
groups. Spread orders messages by the means of intercon-
nected daemons that handle the communication in the sys-
tem. Processes connect to a daemon to multicast and deliver
messages. While the group abstraction is similar to the Totem
Multi-Ring protocol [37], Totem uses timestamps to achieve
global total order.

E-Cast [38] addresses similar problems like Elastic Paxos

does. Compared to Elastic Paxos, E-Cast defines multicast
as a stateful routing problem. E-Cast uses replicated routers
(sequencers) to partially order messages and reconfigure the
system, while Elastic Paxos uses the deterministic merge
function in each replica. Therefore, Elastic Paxos does not
require a global sequencer to order messages and reconfigure
the system.

B. Group membership

Group membership has been an active field of research for
decades, in the context of group communication protocols [39].
While in atomic broadcast total order is achieved by a se-
quence of individual consensus rounds, group communication
protocols are based on a sequence of view changes. Group
membership is a special case of the set membership problem,
in which all processes decide on which non-faulty processes
belong to the current set (view) [40].

In Elastic Paxos, the round-robin delivery order can be seen
as a dynamic set of changing streams. While the total order
within a stream is based on atomic broadcast, the deterministic
merge function is based on a sequence of subscription changes,
similar to view changes. Compared to group communication
protocols, Elastic Paxos does not use view changes to remove
faulty replicas, but to dynamically scale. Additionally, the
subscriptions in Elastic Paxos are persisted in the streams,
every recovering replica can re-learn all subscription changes.

Rollup [41] is a protocol designed for fast cluster mem-
bership updates. The main goal is to avoid disruptive behavior
when the master or leader of a protocol is replaced. Since Elas-
tic Paxos is based Paxos, frequent changes of the coordinator
have an impact on performance. Compared to Rollup, Elastic
Paxos is designed to scale atomic multicast groups rather than
addressing fast replacement of the Paxos leader.

C. State machine reconfiguration

Changing the set of acting acceptors is discussed in [7], [9].
Elastic Paxos uses a different approach. It does not change the
set of the acceptors itself, rather it replaces all of them by a
new set (i.e., new stream).

Group communication protocols reconfigure the system to
tolerate failures (e.g., process crashes). In general they use
a fault-tolerant consensus algorithm to coordinate the view
change. As already described, Elastic Paxos uses a similar way
to add and remove new streams.

Similar to Elastic Paxos, SMART [10] uses different
independent Paxos streams to reconfigure a replicated state
machine. But, while SMART changes the set of replicas,
Elastic Paxos keeps the replication group constant and changes
the subscriptions. This allows Elastic Paxos, additionally to
reconfiguration, also to scale by adding multiple Paxos streams
to a single replication group. Adding a new replica to a
replication group is part of Elastic Paxos’s recovery procedure.

Eve [42] implements scalable state machine replication
on multi-core servers, but it is static and does not allow
reconfiguration. DynaStore [43] allows reconfiguration without
consensus and can operate in a completely asynchronous sys-
tem.However, compared to Elastic Paxos, DynaStore considers
a strictly weaker model (i.e., read/write register instead of an
arbitrary state machine).



IX. CONCLUSIONS

Using on-demand computing resources to elastically grow,
shrink, or replace processes in a fault-tolerant distributed
system requires dynamic replication protocols. Existing so-
lutions often halt the system during reconfiguration. In this
paper we propose a new dynamic atomic multicast algorithm,
Elastic Paxos, which was designed for dynamically scaling
up and down strongly consistent multicast. We showed the
practicality of our argument by dynamically reconfiguring a
distributed system. Moreover, the results of our experiments
demonstrate both horizontal and vertical scalability of our
proposed techniques deployed in a cloud environment.
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