
GlobalFS: A Strongly Consistent Multi-Site File System

Leandro Pacheco
University of Lugano

Raluca Halalai
University of Neuchâtel

Valerio Schiavoni
University of Neuchâtel

Fernando Pedone
University of Lugano

Etienne Rivière
University of Neuchâtel

Pascal Felber
University of Neuchâtel

Abstract
This paper introduces GlobalFS, a POSIX-compliant
geographically distributed file system. GlobalFS builds
on two fundamental building blocks, an atomic multicast
group communication abstraction and multiple instances of
a single-site data store. We define four execution modes and
show how all file system operations can be implemented
with these modes while ensuring strong consistency and
tolerating failures. We describe the GlobalFS prototype in
detail and report on an extensive performance assessment.
We have deployed GlobalFS across all EC2 regions and
show that the system scales geographically, providing
performance comparable to other state-of-the-art distributed
file systems for local commands and allowing for strongly
consistent operations over the whole system. The code of
GlobalFS is available as open source.

1 Introduction

Cloud infrastructures, composed of multiple interconnected
datacenters, have become an essential part of modern com-
puting systems. They provide an efficient and cost-effective
solution to hosting web-accessible services, storing and
processing data, or performing compute-intensive tasks.
Large companies like Amazon or Google do not only
use such architectures for their own needs, but they also
rent them to external clients in a variety of flavors, e.g.,
infrastructure (IaaS), platform (PaaS), software (SaaS), or
data (DaaS) as a service. Such global infrastructures rely
on geographically distributed datacenters for fault-tolerance,
scalability, and performance reasons.

We focus in this work on the design of a geographically
distributed file system, accessible via a POSIX-compliant
API. Most previous designs for geographically distributed
file systems [25, 35] have provided weak consistency
guarantees (e.g., eventual consistency [15]) to work around
the limitations formalized by the CAP theorem [21], which
states that distributed applications can fully support at
most two of the following three properties simultaneously:

consistency, availability, and tolerance to partitions. Our
goal is to ensure strongly consistent file system operations
despite node failures, at the price of possibly reduced
availability in the event of a network partition. Weak
consistency is suitable for domain-specific applications
where programmers can anticipate and provide resolution
methods for conflicts, or work with last-writer-wins
resolution methods. Our rationale is that for general-purpose
services such as a file system, strong consistency is more
appropriate as it is both more intuitive for the users and
does not require human intervention in case of conflicts.

Strong consistency requires ordering commands across
replicas, which needs coordination among nodes at
geographically distributed sites (i.e., regions). Designing
strongly consistent distributed systems that provide good
performance requires careful tradeoffs. The original
approach we explore in this work is to trade the performance
of global operations, spanning multiple regions, for the
scalability of intra-region operations. We capture this
compromise with the notion of geographical scalability.

Geographical scalability is motivated by geo-distributed
applications that wish to exploit locality without compro-
mising consistency or reducing the scope of operations to a
single region. This trend is becoming increasingly more im-
portant with the wide range of applications that are deployed
over multiple data centers spanning several regions, e.g., on
Amazon EC2. Yet, achieving geographical scalability is
notoriously difficult. For example, among the few existing
file systems with support for geographical distribution, Calv-
inFS [55] totally orders requests. As a consequence, perfor-
mance decreases with the number of regions in the system,
even for operations that access objects in a single region.

This paper introduces GlobalFS, a file system that
achieves geographical scalability by exploiting two abstrac-
tions. First, it relies on data stores located in geographically
distributed datacenters. Files are replicated and stored as
immutable blocks in the data stores, which are organized
as distributed hash tables (DHTs). Second, GlobalFS uses
an atomic multicast abstraction to maintain mutable file

metadata and orchestrate multi-site operations. Atomic
multicast provides strong order guarantees by partially
ordering operations.

GlobalFS notably differs from other distributed file
systems by defining a flexible partition model in which files
and folders can be placed according to access patterns (e.g.,
in the same region as their most frequent users), as well
as four execution modes corresponding to the operations
that can be performed in the file system: (1) single-partition
operations, (2) multi-partition uncoordinated operations,
(3) multi-partition coordinated operations, and (4) read-only
operations. While single-partition and read-only operations
can be implemented efficiently by accessing a single region,
the other two operations require interactions across multiple
regions. By leveraging atomic multicast and distinguishing
between these four modes of execution, GlobalFS can
provide low latency for single-region commands while
allowing for consistent operations across regions. GlobalFS
can therefore exploit geographical locality in new ways to
combine performance and consistency, and hence propose
original contributions in the well-studied design space of
distributed file systems.

We have implemented a complete prototype of GlobalFS
and deployed it on Amazon’s EC2 platform with nodes
spread all over the world, across all nine available regions.
We have conducted an in-depth study of its performance. Re-
sults show that GlobalFS outperforms other geographically
distributed file systems that offer comparable guarantees
and delivers good performance for single-site commands.
The code of GlobalFS is freely available as open source.1

The rest of this paper is organized as follows. Sections 2
and 3 introduce GlobalFS’s system model and architecture,
respectively. Section 4 presents the protocol design.
Section 5 describes the implementation of our prototype.
Section 6 discusses results of experimental evaluation.
Section 7 reviews related work and Section 8 concludes.

2 System model and definitions

We assume a distributed system composed of interconnected
processes that communicate by message passing. There is
an unbounded set of client processes and a bounded set of
server processes. Processes may fail by crashing, but do not
experience arbitrary behavior (i.e., no Byzantine failures).

Client and server processes are grouped within datacen-
ters that are geographically distributed over different regions.
Processes in the same region experience low-latency
communication, while messages exchanged between
processes located in different regions are subject to larger
latencies. Links are quasi-reliable: if both the sender and
the receiver are non-faulty, then every message sent is
eventually received.

The system is partially synchronous [16]: it is initially
asynchronous and eventually becomes synchronous. The

Atomic multicast

Client interface (FUSE)
Applications

Metadata management
Data store

Network

Figure 1: Overall architecture of GlobalFS.

time when the system becomes synchronous is called the
global stabilization time (GST) and is unknown to the
processes. Before the GST, there are no bounds on the time
it takes for messages to be transmitted and actions to be
executed. After the GST, such bounds exist but are unknown.
In practice, “forever” means long enough for the atomic
multicast protocol to make progress (i.e., deliver messages).

GlobalFS ensures sequential consistency for update
operations and causal consistency for reads. A system is
sequentially consistent if there is a way to reorder the client
commands in a sequence that (i) respects the semantics of
the commands as defined in their sequential specification,
and (ii) respects the ordering of commands as defined by
each client [5]. A system is causally consistent if the result
of read operations respect the causal ordering of events as
defined by the “happens-before” relation [27].

3 System architecture

This section presents the overall architecture of GlobalFS
and how the file system can be partitioned and replicated
across datacenters.

3.1 Components
The architecture of GlobalFS consists of four components:
the client interface, the data store, metadata management,
and atomic multicast (see Figure 1).

The client interface provides a file system API supporting
a subset of POSIX 1-2001 [1]. GlobalFS implements
file system operations sufficient to manipulate files and
directories. Some file system calls change the structure
of the file system tree (i.e., the files and directories within
each directory). Each file descriptor seen by a client when
opening a file is mapped to a local file descriptor at each
GlobalFS server. We support file-specific operations:
mknod, unlink, open, read, write, truncate, sym-

link, readlink; directory-specific operations: mkdir,
rmdir, opendir, readdir; and general purpose opera-
tions: stat, chmod, chown, rename, and utime. We
support symbolic links, but not hard links.

Like most contemporary distributed file systems
(e.g., [20, 49, 9, 47]), GlobalFS decouples metadata from
data storage. Metadata in GlobalFS is handled by the meta-
data management layer. Each file has an associated inode
block (iblock) containing the metadata information about
the file (e.g., its size, owner, and access rights) and pointers
for its data blocks. The actual content of a file is stored in

2

data blocks (dblocks). The two types of blocks are handled
differently and stored separately: dblocks are immutable
and stored by the clients in the storage servers; iblocks
are mutable and maintained by the metadata servers.

GlobalFS distinguishes updates (i.e. operations that
modify the state of a file or directory) from read-only op-
erations. Updates are sequentially consistent while reads are
causally consistent (see Section 2). Every update operation
is ordered by atomic multicast [32]. Atomic multicast is
a one-to-many communication abstraction that implements
the notion of groups. Servers subscribe to one or more
groups and every message multicast to a group g will be
delivered by processes that subscribe to g. Let relation < be
defined such that m<m′ iff there is a process that delivers
message m before message m′. Atomic multicast ensures
that (i) if a process delivers m, then all non-faulty processes
that subscribe to the same group deliver m (agreement); and
(ii) relation < is acyclic (order). The (partial) order property
implies that if processes p and q deliver messages m and
m′, then they deliver them in the same order.

It is important to understand the difference between
atomic broadcast, as implemented by Paxos [28] and its vari-
ants (e.g., [33, 29, 38]), and atomic multicast. With atomic
broadcast, for every pair of delivered messages m and m′,
either m<m′ or m′<m. With atomic multicast, it is possible
that neither m<m′ nor m′<m. This is the case, for example,
if m and m′ are multicast to groups g and g′, respectively,
and no process subscribes to both groups. Partially ordering
messages, as defined by atomic multicast, is a fundamental
requirement for achieving scalable distributed systems.

The data store provides a linearizable key-value store
with primitives to read (get) and create (put) data items.
It is implemented as a collection of distributed hash tables
(DHTs), with one instance of the data store per datacenter.
Maintenance of the data in the DHT is simple and efficient
given that data blocks are immutable. DHT-based data
stores scale remarkably well horizontally [26, 15, 43, 13].

3.2 Partitioning and replication
Data partitioning and replication have an important impact
on the performance and reliability of a data management
system. Horizontal partitioning (sharding) is commonly
used to scale distributed file systems. For example, hashing
the pathname of each file is a straightforward way to
distribute files across the system [55]. Hashing provides
good load distribution of files but its lack of support for
locality might place files far away from their most frequent
or likely users. Although GlobalFS supports any partitioning
scheme, including hashing, we explore a different approach
to partitioning and replication, which takes locality into
consideration, as we now explain.

The file system is partitioned and replicated according to
the expected client access patterns and the degree of fault
tolerance desired. Files that are mostly read and rarely mod-

Partition Replication Performance Fault tolerance

Global across regions best for reads disaster
Local within region best for reads & writes datacenter crash

Table 1: Partitions in GlobalFS.

ified (e.g., system and application programs) are placed in a
single “global” partition, replicated across regions; files that
experience locality of access (e.g., temporary files related to
a client) are placed in “local” partitions, replicated in data-
centers inside a single region, close to the clients most likely
to access them. In this setup, a file in the global partition can
be read from any region, resulting in high throughput and
low latency for read operations. Updating a file in the global
partition, however, involves all regions. Local partitions, on
the other hand, can provide high throughput and low latency
for both reads and updates, as long as the client is close to its
location. Both local and global partitions can tolerate the fail-
ure of an entire datacenter. Moreover, the global partition can
tolerate the failure of all datacenters in a region (i.e., a disas-
ter). Table 1 summarizes the two partition types in GlobalFS.

To allow for flexible system deployment, GlobalFS
decouples data from metadata. Although data and metadata
are likely to be stored in the same servers, the system can
cope with the case in which the metadata of a file is stored in
a region and the file data is stored in a different region. This
is useful, for example, to migrate large files from one region
to another. The metadata, which is typically small, can be
quickly moved from one region to another—hence complet-
ing the operation—while the data follow asynchronously.

3.3 Use of atomic multicast
In order to allow operations to be consistently propagated to
the replicas, one multicast group is associated with each par-
tition. Servers subscribe to two multicast groups: one, gall,
associated with all the servers in the system, and another
associated with servers in the datacenters in the same re-
gion.2 Commands that update files in the global partition or
update files in multiple local partitions are multicast to gall;
commands that update files in a local partition are multicast
to the group associated with the partition. The use of atomic
multicast allows for independent local partitions while still
providing consistent operations across them. Section 4
describes in detail how this is achieved by GlobalFS.

3.4 Example deployment
Consider a deployment involving three regions, R1, R2,
and R3, each with three datacenters. The file system is
partitioned in four partitions, P0,...,P3 (see Figure 2), such
that P0 is replicated in datacenters in all regions and partition
Pi, 1≤ i≤3, is replicated in datacenters in region Ri. In this
scenario, we have clients and servers (metadata and data
store) distributed across the regions, that is, in addition to
the metadata associated with the region’s partition, each
datacenter also hosts an instance of the data store. More

3

… … …… …
P0 P3P2P1

…

/

1 2 3bin etc …

Figure 2: Illustrative deployment of GlobalFS with 4 parti-
tions. Partition P0 is replicated in all regions and each other
partition is replicated in one different region.

precisely, the metadata for the directory /1 and all its
contents (recursively) are stored only in P1. In the same
manner, /2 and /3 are respectively mapped to P2 and
P3. Files not contained in any of these directories (e.g., /,
/bin, /etc) are in partition P0.

4 Protocol design

GlobalFS differentiates four classes of operations and de-
fines for each one a different execution mode. GlobalFS’s
execution modes provide the basis for the implementation
of each file system operation. We start by going through the
details of each execution mode. We then describe the execu-
tion of a read and a write operation, from start to finish.
Finally, we discuss how failures are handled in GlobalFS.

4.1 Execution modes
Each operation in GlobalFS follows one of the following ex-
ecution modes. Except for read and write operations,
all file system operations access only the metadata servers.

Single-partition operations. A single-partition operation
modifies metadata stored in a single partition. As a
consequence, operations in this class are multicast to the
group associated with the concerned partition and, when
delivered, executed locally by the replicas. The execution
of a single-partition operation follows state-machine repli-
cation [46]: each replica delivers a command and executes
it deterministically. One of the replicas replies to the client.

The following operations are single-partition in GlobalFS,
where the terms child and parent are used to refer to a node
and the directory that contains it.

• chmod, chown, truncate, open, and write;
• mknod, unlink, symlink, and mkdir when the

parent and child are in the same partition; and
• rename, when the origin, origin’s parent, destination,

and destination’s parent are in the same partition.

Note that while a single-partition operation in a local par-
tition involves only servers in one region, a single-partition
operation in the global partition (multicast to group gall)
involves servers in all regions of the system.

Uncoordinated multi-partition operations. An uncoor-
dinated multi-partition operation accesses metadata in more

than one partition, but the operation’s execution at each parti-
tion can complete without any input from the other partitions
involved. The partial ordering of atomic multicast is suffi-
cient to guarantee consistency: partitions will independently
reach the same decision in regards to success or failure.
This is similar to the notions of independent transactions
in Granola [12] or one-shot transactions in H-Store [24].

To execute an operation that concerns multiple partitions
P1,P2, ...,Pn, the operation is atomically multicast to all
replicas of all involved partitions. Upon delivery, each
replica Pi executes the operation and one of the replicas
replies to the client. To reach replicas in multiple partitions,
the operation is multicast to group gall; if a replica delivers
an operation it is not concerned about, the replica just
discards the operation.

The following file system commands are implemented
as uncoordinated multi-partition operations:

• mknod, unlink, symlink, mkdir, rmdir when
the parent and child are in different partitions.

Coordinated multi-partition operations. Some op-
erations require partitions to exchange information. In
GlobalFS, this may happen in the case of a rename (i.e.,
moving the location of a file or directory). In this case,
file metadata has to be moved from the origin’s partition
to the destination’s partition. As a result, a rename may
involve up to four partitions, given by the placement of the
origin, origin’s parent, destination, and destination’s parent.
Consequently, a rename operation might fail in one of the
partitions (e.g., origin does not exist) but not in the other.

To execute a coordinated multi-partition operation, the
client multicasts the operation to all concerned partitions (i.e.,
multicast group gall). Upon delivery of the operation, the in-
volved partitions exchange information about the command
and whether it can or cannot be locally executed. In the case
of a rename, the file’s attributes and list of block identifiers
need to be sent to the destination partition. Similarly to a
two-phase commit protocol, the command is only executed
if all involved partitions agree that it can be executed.

Read-only operations. Read-only operations are exe-
cuted by a single metadata replica and data store server.3 For
read-only operations, GlobalFS provides causal consistency.
This is not obvious to ensure since a client may submit a
write operation against a server and later issue a read opera-
tion against a different server or even read from two separate
servers. When the second server is contacted, it may not
have applied required updates yet. GlobalFS provides causal
consistency for read operations by carefully synchronizing
clients and replicas, as we explain in the following.

We use an approach inspired by vector clocks [18] where
clients and replicas keep a vector of counters, with one
counter per system partition. In the example described in
Section 3.4, clients and replicas keep a vector with four

4

Operation Partitions Multicast Performance

Read-only one not multicast 1st (best)
Single-partition one gall or gi 2nd

Uncoord. multi-partition two or more gall 3rd

Coord. multi-partition two or more gall 4th (worst)

Table 2: Operations in GlobalFS.

entries, associated with partitions P0,...,P4. Every request
sent by a client contains vc, the client’s current vector, and
each reply from a replica includes the replica’s vector, vr. A
read is executed by a replica only when v[i]r≥v[i]c, i being
the object’s partition. The idea is that the replica knows
whether it is running late, in which case it must wait to
catch up before executing the request.

When a replica receives an update operation from a client,
the client’s vector vc is atomically multicast together with
the operation. Upon delivery of the command by a replica
of Pi, entry v[i]r is incremented. Every other entry j in the
replica’s vector is updated according to the delivered vc,
whenever v[j]c>v[j]r. Clients update their vector on every
reply, updating v[i]c if v[i]r>v[i]c, for each entry i.

The following file system commands are implemented as
read-only operations: read, getdir, readlink, open

(read-only), and stat.
Table 2 summarizes GlobalFS operations. Single-

partition and read-only operations access a single partition.
While a single-partition operation is multicast to the group
associated with the partition, a read-only operation is not
multicast but is executed by a single metadata replica (and a
data store server). For example, according to the illustrative
deployment described in Section 3.4, a write operation for
partition P0 is multicast to gall and a write operation for any
of the other partitions Pi is multicast to gi. Uncoordinated
multi-partition and coordinated multi-partition operations
access multiple partitions. Such operations are multicast
to group gall. Since read-only operations only involve a
single metadata server and are not multicast, we expect
such operations to outperform any other operations in
GlobalFS. Single-partition operations involve all replicas
within a single partition, and therefore should perform
better than the multi-partition operations. Finally, because
uncoordinated multi-partition operations do not require
servers in different partitions to interact during the execution
of a command, they are expected to perform better than
coordinated multi-partition operations.

4.2 The life of some file system operations
To open a file, the client uses the partitioning function
to discover the partition replicating the provided path.
With the partition, the client issues an open RPC to the
closest replica. The response for this RPC is a file handle
that the client uses to issue subsequent read and write

operations. Upon receiving an open RPC from the client,
a replica checks whether the file is being opened for reading

or writing. If the file is open for reading, the replica creates
a local file handle, valid only at this replica, and returns it
to the client. If the file is open for writing, the file handle
needs to be opened in all replicas as writes are replicated.
The open command is multicast to the associated group
(given by the partitioning function) and executed by all
responsible replicas. Once a replica has finally delivered
and executed the command, it directly replies to the client.

For a read operation, the client needs to execute two
steps. First, it issues a read RPC to the replica holding
the file handle. The replica, upon receiving the read, finds
the requested file’s metadata and looks for the blocks that
match the offset and number of bytes requested. The reply
from the RPC is a list of block identifiers and pointers. With
the block identifiers, the client contacts the closest data
store replicating the file to get the actual data for the blocks.
Multiple blocks can be requested in parallel from different
data store nodes. After that, the client can build the sequence
of bytes that need to be returned by the read operation.

For a write operation, the client first creates one or
more data blocks from the bytes that need to be written to
the file. The client then contacts all the data stores that need
to replicate the file (given the partitioning function), and
inserts the blocks there, with unique identifiers generated at
random. Insertion of multiple blocks can be done in parallel.
If all inserts are successful, the client uses the partitioning
function to get the partition replicating the file, chooses
the closest replica and issues a write RPC with the block
identifiers as parameters. The replica, upon receiving the
write RPC, multicasts the command to the responsible
group. Upon delivery of the command, a replica finds the
medatada for this file and inserts the new blocks. The replica
that received the initial RPC from the client replies. On suc-
cess, the write returns the number of bytes written.

4.3 Failure handling
Replicas use state machine replication to handle metadata
within partitions. A replica only executes a command that
has been successfully delivered by multicast. Thus, if a
replica executes a command, other replicas in the same group
will also execute the command. GlobalFS uses Multi-Ring
Paxos as its atomic multicast (described in more detail in the
next section). With Multi-Ring Paxos, as long as one replica
and a quorum of acceptors are available in each of the groups,
the whole file system is available for writing and reading.

The recovery of a metadata replica is handled by installing
a replica checkpoint and replaying missing commands [8].
Coordinated multi-partition commands require one extra
step. For coordinated multi-partition commands, replicas
in the involved partitions need to exchange information
before deciding whether the command can execute or
not. A recovering replica, upon replaying a coordinated
multi-partition command, requests this information from
replicas in the other partitions. To allow for this, whenever

5

Datacenter
Data (replicated)

Storage node

DHT

Metadata (replicated)

Global ring

Multi-Ring Paxos node

Local ringFUSE API

Data
Metadata

Clients

Figure 3: Components and interactions in GlobalFS.

a replica sends information out regarding a coordinated
command, it also stores this information locally.

Each key-value pair in the data store is replicated in f+1
storage nodes. Hence, up to f storage nodes can fail concur-
rently without affecting data block availability. Datacenter
failures and disasters can be handled by carefully replicating
blocks in different datacenters or different regions.

Client failures during a write or a file delete operation
can leave “dangling” dblocks inside the data store.
dblocks without pointers in any iblock are unreachable
and can be removed from the data store (the implementation
of a garbage collector is part of our future work).

5 Implementation

In this section, we discuss the implementation of GlobalFS
main components, as depicted in Figure 3.

5.1 Client
Files are accessed through a file system in user space (FUSE)
implementation [19]. FUSE is a loadable kernel module
that provides a file system API to user space programs,
letting non-privileged users create and mount a file system
without writing kernel code. According to [54], FUSE is
a viable option in terms of performance for implementing
distributed file systems. Clients know the partitioning
function used by the system (currently hardcoded in the
client) and use Zookeeper [22] to find the set of available
replicas. When using FUSE, every system call directed at
the file system is translated to one or more callbacks to the
client implementation. In GlobalFS, most FUSE callbacks
have an equivalent RPC (remote procedure call) available in
the metadata servers. By using the partitioning function, a
client can discover to which metadata replica or data store it
needs to direct a given operation. Whenever a client has the
option of directing a command to more than one destination,
it chooses the closest one (with the lowest latency).

5.2 Atomic multicast
We use URingPaxos,4 a unicast implementation of
Multi-Ring Paxos [32], which implements atomic multicast
by composing multiple instances of Paxos to provide

scalable performance. Each multicast group is mapped
to one Paxos instance. A message is multicast to one
group only. Processes that subscribe to multiple groups
use a deterministic merge procedure to define the delivery
order of the messages such that processes deliver common
messages in the same relative order.

For each Paxos instance, Multi-Ring Paxos disposes
proposers, learners, and a majority-quorum of acceptors in
a logical directed ring in order to achieve high throughput.
Processes in the ring can assume multiple roles and there
is no restriction on the relative position of these processes
in the ring, regardless of their roles. Each ring has a Paxos
coordinator, typically the first acceptor in the ring.

In our setup we keep a global ring that includes all
metadata replicas in the system, as illustrated in Figure 3.
This ring implements the gall group discussed in Section 4.
Each other group is implemented by a ring that includes
replicas in the same region.

5.3 Metadata replicas
Metadata in GlobalFS is kept by replicated servers, using
state machine replication [46]. Replicas can be part of
multiple multicast groups; in our prototype, each replica
is a Multi-Ring Paxos learner. When a replica delivers a
command, the replica checks whether it should execute the
command by using the partitioning function. The file system
metadata is kept in-memory by the replica and the sequence
of commands is stored by Multi-Ring Paxos acceptors.
Replicas can be configured to keep their state in memory
or on disk, with asynchronous or synchronous disk writes.

The file system is represented as a tree of nodes. There
are three node types: directory, file, and symbolic link. A
directory node stores the directory properties (e.g., owner,
permissions, times) and a hash table of its children nodes,
stored by name. A file node keeps the file properties and a
list of blocks representing its contents. Symbolic link nodes
only need to store the node properties and the target path
of the link.

The metadata replicas are implemented in Java and
expose a remote interface to the clients via Thrift [4].

5.4 Data store
GlobalFS is designed to support any back-end data store
that exposes a typical key-value store API and provides
linearizability. Our data store is implemented in Go and
uses LevelDB [30] as its storage backend. Depending on
the application requirements and fault model, data may be
stored persistently on disk or maintained in memory.

The data store is organized as a ring-based DHT and
uses consistent hashing for data placement. Each server
maintains a full membership of other servers on the
ring, allowing one-hop lookups. This design, similar to
Cassandra [26] or Dynamo [15], provides good horizontal
scalability and stable performance.

6

Each block is assigned to the first server whose logical
identifier follows the block identifier on the ring. A block is
replicated as r copies, by copying it onto the r−1 successors
(i.e., servers that immediately follow this first server on
the ring). This ensures data availability with up to r− 1
simultaneous failures. Servers periodically check for the
availability of copies of their blocks onto their successors
and create additional copies when necessary. Similarly,
servers periodically check for their predecessor availability
and take over the responsibility for their ranges upon failure,
also creating additional copies. We note that the blocks
stored in the DHT are only written once: there is no need
to enforce write consistency between replicas.

Clients contact the DHT via any of its proxy servers. The
proxy will create the r copies of the block, using the slower
link from the client to send the block only once.

6 Evaluation

We evaluate GlobalFS using Amazon’s EC2 platform. We
deploy VMs in all nine EC2 regions available at the time of
our experiments. For each region, we distribute servers and
clients in three separate availability zones to tolerate data-
center failures. More specifically, inside a single region, we
place one server (metadata colocated with storage) and one
client machine in each availability zone (six VMs per region).
In regions where only two availability zones are present (e.g.,
eu-central-1) we compromise by placing two servers
and clients in the same zone. We used r3.large (memory
optimized) and c3.large (compute optimized) instance
types, with 2 virtual CPUs, 32 GB SSD storage, and respec-
tively 15.25 and 3.75 GiB memory [3]. We use r3.large

instances for servers and c3.large instances for clients.
We configure the atomic multicast layer based on

Multi-Ring Paxos to use in-memory storage. The data store
nodes use LevelDB with asynchronous writes.

Our evaluation starts by assessing that the datastore
implementation in Go using LevelDB [30] can sustain
enough throughput not to constitute a bottleneck in our
GlobalFS microbenchmarks. We deploy five storage nodes
inside a single region with a replication factor of 2 (i.e., each
block has 2 copies). For blocks sizes of 1 KB, the datastore
achieves more than 8,000 put operations per second, i.e.,
around 0.06 Gb/s of aggregate traffic. With larger block
sizes (32 KB), the same set-up could sustain around 6,500
get operations per second, or around 1.58 Gb/s. For the
rest of our experiments, we use blocks of 1 KB.

6.1 Microbenchmarks
We use a custom microbenchmark to evaluate the perfor-
mance and scalability of GlobalFS for the following types
of operations:
. read 1 KB: each client reads sequentially from a small
file (10 KB), in 1 KB chunks. Upon reaching the end

of the file, a client wraps and continues reading from the
beginning. We disable caching on the client side so that all
reads go through the complete protocol.
. write 1 KB: each client writes sequentially to a file in
1 KB chunks.
. create: each client repeatedly creates empty files. This
operation accesses only the metadata servers.
. create 1 KB: each client repeatedly creates a file and
writes 1 KB to it. Each operation requires 3 sequential
metadata operations: mknod, open, and write.

Each operation type is further divided into two categories:
local operations target files located in the client’s local
partition and global operations target files located in the
global partition.

GlobalFS geographical scalability

 0.2
 0.4
 0.6
 0.8

 1

G
e

o
g

ra
p

h
ic

a
l

s
c
a

la
b

ili
ty

1 Region 3 Regions 6 Regions 9 Regions

16081 ops

16094 ops

6882 ops

2421 ops

3072 ops

 1

 10

 100

read 1KB

glob. read 1KB

create

create 1KB

write 1KB

L
a

te
n

c
y
 (

m
s
)

Figure 5: Geographical scalability and 95th percentile la-
tencies for different GlobalFS operations, with increasing
system size. Latencies measured at around 50% of maxi-
mum throughput.

6.1.1 Performance with 3 regions

For these experiments, we use 3 different geographically
distributed regions: us-west-2, us-east-1, and eu-

west-1. We deploy 1 local partition in each region. Each
partition features 3 servers, each in a different datacenter
(availability zone). Metadata and storage are co-located:
each server holds a metadata replica and a storage node.
Each datacenter also holds one client machine, thus 3
clients per region. Each client machine has one GlobalFS
FUSE mount point. We then run multiple instances of our
benchmark application on top of each client machine.

For comparison, we also show values reported by HDFS
in [49] and CalvinFS in [55]. HDFS uses a centralized non-
replicated metadata server. The values reported for HDFS
consider only metadata performance, and thus represent an
upper bound for the actual performance of HDFS. For Calv-
inFS, we report the approximate values with 9 servers. As
the exact values for CalvinFS with 9 servers are not provided
in [55], we approximate them by interpolating the values
for 6 and 18 servers (we contacted the authors but could not

7

GlobalFS throughput

 0

 10000

 20000

 30000

 40000

 50000

 60000

glob. read 1KB

read 1KB

create
create 1KB

write 1KB

HDFS read at 126000

O
pe

ra
tio

ns
/s

ec

HDFS write
CalvinFS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

glob. create

glob. create 1KB

glob. write 1KB

GlobalFS latency distribution

0

20

40

60

80

100

local create
local create 1KB

local write 1KB
global read 1KB

local read 1KB

0

20

40

60

80

100

 1 10 100 1000 10000

C
D

F
 (

%
)

Operation time (milliseconds, log-scale)

global create
global create 1KB

global write 1KB

Figure 4: Maximum throughput and latency distribution for different GlobalFS operations with the baseline deployment of 3
partitions. Latencies measured at 50% of maximum throughput.

obtain the source code). Due to the linear behavior exhibited
by CalvinFS, our approximation should be fairly accurate.

Throughput. Figure 4 (left) shows the maximum
throughput achieved for each operation. For read operations,
GlobalFS achieved around 60% higher throughput than
CalvinFS, for both local and global operations. HDFS
achieves higher performance for reads, but it takes only
metadata performance into account. Reads in GlobalFS
scale linearly with the number of replicas (a single replica
needs to be contacted).

For writes, GlobalFS was able to surpass the throughput
of HDFS for local operations, even though HDFS considers
only metadata. GlobalFS was able to achieve 6 times the
throughput of CalvinFS for local writes. For global writes,
CalvinFS’s throughput was 1.7 times higher. In our setup
for GlobalFS, the global partition is replicated by all servers
in the system (thus it cannot scale).

For creating a file with content, by not complying to
POSIX, CalvinFS is able to execute the operation using a
single metadata access (by means of a custom transaction).
Adhering to POSIX requires a sequence of three metadata
operations: create the file, open, and write. The
close is omitted as the write is synchronous. Even though
GlobalFS needs the three operations in the same scenario,
it can achieve throughput 14.5 times higher than CalvinFS
using the faster local partitions. Considering global creates,
CalvinFS achieves 1.5 times higher throughput. On the
other hand, creating an empty file requires a single metadata
operation. In this case, GlobalFS was able to surpass even
the performance of HDFS when using the local partitions
(3.5 times the throughput). Values for this operation are not
reported in the paper that presents CalvinFS [55].

These results show the benefit of exploiting data locality.
CalvinFS, while scaling throughput with the number of
replicas within a datacenter, does not benefit from local,
fast operations. In CalvinFS, all write operations need to

go through the global log, thus introducing an overhead on
latency. This problem is exacerbated in WAN deployments:
either the log is disaster tolerant and all operations pay the
cost, or the log is local to a region and clients in other regions
need to pay the roundtrip latency. GlobalFS on the other
hand, allows for files to be either locally or globally repli-
cated, thus providing the option for users to choose between
availability (disaster tolerance) and performance (throughput
and latency). Note that operations across the whole system
are still strongly consistent in GlobalFS. The results also
show that GlobalFS can deliver good performance while
still providing a POSIX interface, thus allowing for existing
applications to be used without modification.

Latency. Figure 4 (right) shows the latency distribution
for the different types of operations. We measure latency
with the system supporting around 50% of its maximum
throughput. The results show that operations can be divided
roughly in 3 groups in regards to latency: reads, local writes,
and global writes (we group creates with writes). Read op-
erations, global and local, observe the lowest latency values,
an average of 3.5 ms. This is due to reads being executed
by a single metadata replica and not having to go through
atomic multicast. Clients can also obtain dblocks from the
local data store. Local writes, which need to be multicast to
servers in a single region, can achieve the second lowest la-
tency, with averages around 20–40 ms. Finally, global writes
observe the highest latency values. In our setup, global
writes need to be multicast to all servers in the system, across
all regions. Clients also need to insert dblocks in all data
stores. Even so, latency values for writes and creating empty
files on the global partition had an average of around 300 ms.

6.1.2 Geographical scalability

We introduce the notion of geographical scalability to assess
the impact of geographical deployments on performance.
Geographical scalability is defined as the ratio between the

8

maximum throughput of local commands in a region in a
system that spans multiple regions and the throughput of the
region when deployed alone. A geographical scalability of
1 is ideal. Intuitively, it means that the throughput achieved
in a single region is not affected by the other regions.

We compute geographical scalability as follows. We first
measure the throughput achieved with GlobalFS in a single
EC2 region, eu-west-2. Then, we consider multi-region
deployments with 3, 6, and 9 regions:
. 3 regions: us-west-2, us-east-1, eu-west-1.
. 6 regions: + us-west-1, eu-central-1, ap-

northeast-1.
. 9 regions: + ap-southeast-1, ap-southeast-2,
sa-east-1.

The reported value is the ratio between the multi-region
and the single-region configurations.

Figure 5 (left) shows that GlobalFS scales almost per-
fectly for all local operations. For create operations, we see
a drop in performance as regions are added, down to around
0.8 when all available regions are used. Maximum absolute
throughput is shown above the single-region configuration.
Figure 5 (right) shows the 95th-percentile of latency in each
deployment, measured at around 50% of maximum load.
Read commands suffer no impact in latency as they can
be executed by a single replica (note that both lines are
superimposed). For local writes and creates, the largest in-
crease in latency happens when the system grows from 1 to
3 regions. While commands are executed by replicas inside
a single region, Multi-Ring Paxos still needs to synchronize
groups. Therefore, latency variations in the global ring can
affect the performance of local commands [32].

6.2 Real-world applications
We now present results of an experimental evaluation
conducted with real-world applications. We evaluate the
performance of some real-world workloads when executed
on global and local partitions of GlobalFS. We compare the
results against three widely used distributed file systems:
NFS (v4.1) [52], GlusterFS (v3.7) [14] and CephFS
(v0.94) [58]. Our objective is to assess that, while providing
stronger guarantees, GlobalFS compares favorably to
de-facto industry implementations.

We configure NFS with one single shared directory
mounted remotely by the same clients. The NFS server runs
in the us-west-2 region. We disable all caching features
on GlobalFS, and the NFS clients mount the remote directory
with lookupcache=none,noac,sync options. Note that
NFS lacks native support for replication,5 while GlobalFS
is configured to always guarantee two copies per dblock.

We use FUSE-based bindings for GlobalFS, GlusterFS,
and CephFS. We chose two well-known open-source
projects as workload: the bc numeric processing language
(v1.06), and the Apache httpd web-server (v2.4.12).
These two projects differ in size of the compressed archives

(278 kB and 6 MB), number of shipped files (94 and 2,452)
and lines of ansi-C code to compile (8,510 and 157,575).
They expose different workloads to the underlying file
system and are often used as benchmarks [53]. Table 3
embeds the operations breakdown of the system calls issued
by the different commands (decompress, configure, and
compile) used for these experiments. We evaluate GlobalFS
either within a global or a local partition, and compute
the average over 3 distinct executions. All file systems
are mounted by 9 clients spread equally across 3 regions,
but the workload is executed on a single client. We use
equivalent settings for GlusterFS,6 and CephFS. For NFS,
all clients mount a shared directory, and a client co-located
with the service executes the commands. For GlusterFS
we evaluate two different deployments, local (one region)
and global (three regions). Each deployment consists of
a distributed/replicated volume on top of regular storage
bricks, one on each of the availability zones for the given
EC2 regions. We deployed CephFS only at a single region (3
storage daemons, 1 metadata server, and 3 clients) because
a deployment across regions would require forfeiting strong
consistency [17]. Apart from the replication factor set to
3, GlusterFS, and CephFS are used in their pristine settings.

Table 3 presents our results. We observe that GlobalFS
performs consistently better than GlusterFS when operating
across regions. GlobalFS performs competitively against
the other filesystems across the whole suite of benchmarks.
Indeed, GlobalFS is up to 50.9× faster that GlusterFS in
compiling Apache httpd over the global partition. Note
that for the same benchmark on a local partition, GlobalFS
is actually faster than NFS. When evaluating GlusterFS and
CephFS we use their default, out-of-the-box configuration.
Both are heavily optimized systems and some optimizations
are on by default (e.g., clients in CephFS use write-back
caching, which improves write performance by batching
small writes). As expected, the performance penalty for
accessing the global partition is higher for write-dominated
workloads (extracting an archive, configuring the software
package). For read-dominated or compute-intensive (make)
operations, this overhead decreases because read operations
can be completed locally. For comparison purposes, we also
tested HDFS (v2.6) with FUSE bindings on a local partition
with some of the benchmarks and observed performance
in the order as GlobalFS and GlusterFS (e.g., 2.12× slower
for the first command as compared to 1.36× and 1.63×,
respectively).

Our real-world benchmarks demonstrate that GlobalFS
performs on par with widely adopted distributed file
systems, it ensures a stronger consistency model, it supports
replication, and allows users to benefit from locality thanks
to its partitioning model.

9

access open read write lstat lseek closefstat GlobalFS GlusterFS CephFS
Command Operations breakdown NFS global local global∗ local local

tar xzvf bc-1.06.tgz ta
r
bc

1.94 s 47.09× 1.36× 149.05× 1.63× 0.17×
configure co

nf
ig
ur
e
bc

5.32 s 44.66× 2.02× 45.67× 0.96× 0.56×
make -j 10 ma

ke
 b
c

5.9 s 29.90× 2.38× 49.34× 1.17× 0.63×
make (same as above) 13.14 s 20.73× 1.16× 55.20× 0.92× 0.30×

gzip -d httpd-2.4.12.tgz gz
ip
 h
tt
pd

3.87 s 117.12× 2.47× 284.75× 0.37× 0.11×
tar xvf httpd-2.4.12.tar ta

r
ht
tp
d

60.01 s 41.46× 1.08× 99.17× 0.12× 0.14×
configure --prefix=/tmp co

nf
ig

ur
e

29.32 s 49.35× 2.04× 56.53× 1.34× 0.33×
make -j 10 ma

ke
 h
tt
pd

714.37 s 2.74× 0.52× 139.68× 0.87× 0.48×
make (same as above) 3432.72 s 1.82× 0.36× 83.72× 0.50× 0.64×

Table 3: Execution times for several real-world benchmarks on GlobalFS with operations executed over global and local
partitions. Execution times are given in seconds for NFS, and as relative times w.r.t. NFS for GlobalFS, GlusterFS and
CephFS. ∗Note that GlusterFS does not support deployments with both global and local partitions; thus, we report results
from two separate deployments.

7 Related work

In this section, we survey the literature on distributed file
systems targeting datacenter deployments. All systems
in this category separate the storage of data and metadata.
The characteristics of all surveyed systems are provided in
Table 4. We categorize file systems by their geographical
scaling potential and identify three possible scenarios: file
systems that work on LAN (WoL) mainly intended for
cluster deployments; file systems that support but perform
poorly in wide-area network deployments (WoW); and
file systems that scale in WAN (SoW). GlobalFS is the
only system to support data locality while at the same time
providing strong consistency and geographical scalability.

7.1 File systems with strong consistency
CalvinFS [55] is a multi-site distributed file system built
on top of Calvin [56], a transactional database. Metadata
is stored in main memory across a shared-nothing cluster
of machines. File operations that modify multiple metadata
elements execute as distributed transactions. CalvinFS
supports linearizable writes and reads using a single log
service to totally order transactions, a mechanism known to
to scale throughput with the number of nodes within three
regions [56]. Using more regions penalize all operations,
implying lack of data locality support for CalvinFS. We
note that CalvinFS relies on “custom transactions” that
group multiple commands into a single operation to
boost performance. For example, creating and writing
a file, which in POSIX would require three sequential
calls (i.e., create, open and write), can be executed as a
single transaction in CalvinFS. As a consequence, POSIX
compliance cannot benefit from these optimizations.

CephFS [58] is a file system implementation atop the
distributed Ceph block storage [10]. It uses independent
servers to manage metadata and link files and directories to
blocks stored in the block storage. CephFS is able to scale
up and down the metadata servers set and to change the
file system partition at runtime for load balancing through
its CRUSH [59] extension. Although CephFS supports
geographical distribution, WAN deployment over Amazon’s

Name Consistency
level

POSIX
interface

Code
available

Client
type

Scaling
potential

GlobalFS S
√ √

User SoW
AFS [44] W,CTO ×

√
User WoW

CalvinFS [55] S × × User SoW
CephFS [58] S

√ √
Kernel,User WoL

CodaFS [45] E
√ √

Kernel WoL
Colossus [11] S – × – SoW
BeeGFS [7] S∗

√ √
User WoL

GeoFS [31] S∗,CTO
√

× User WoW
GFS/GFS2 [41] –

√ √
Kernel WoL

GIGA+ [40] E
√

× User WoL
GlusterFS [14] S

√ √
User WoW

GoogleFS [20] S
√

× – SoW
HDFS [49] S, CTO ×

√
User SoW

LOCUS [57] S
√

× Kernel WoL
Lustre [47] CH

√ √
Kernel WoL

MooseFS [34] S∗
√ √

User WoL
NFS/pNFS [52] CTO

√ √
Kernel WoW

ObjectiveFS [36] RaW
√ √

User WoW
OCFS [2] CH ×

√
Kernel WoL

OCFS2 [2] CH
√ √

Kernel WoL
PVFS [9] RaW ×

√
User WoL

OrangeFS [42] RaW ×
√

User WoL
QuantcastFS [39] E ×

√
User WoL

SeaweedFS [48] S ×
√

Kernel WoL
XtreemFS [23] S∗

√ √
User WoW

WheelFS [51] S,CTO
√ √

User WoW

Table 4: Survey of distributed file systems along several
criteria: consistency level (Strong=S, Weak=W, Eventual=E,
Cache=CH, Close-To-Open=CTO, Read-after-Write=RaW),
support of the POSIX standard, code availability, client type
(user-space=User, kernel-space=Kernel), scaling potential
(Works-on-LAN=WoL, Works-on-WAN=WoW, Scale-on-
WAN=SoW). Some properties are unknown (–) or not by
default (∗).

EC2 is discouraged by the CephFS developers [17].
The Google File System (GoogleFS) [20] stores data on a

swarm of slave servers. It maintains metadata on a logically
centralized master, replicated on several servers using state
machine replication and total ordering of commands using
Paxos [28]. GoogleFS is a flat storage system. It does
not consider the case of a file system spread over multiple
datacenters and the associated partitioning. MooseFS [34]
is designed around a similar architecture and has the same

10

limitations. Colossus [11], GoogleFS successor, provides
the same strong consistency guarantees, but many of its
internal details remain undisclosed.

FhGFS/BeeGFS [7] is distributed file system for high-
performance computing clusters that targets read-dominated
workloads.

GeoFS [31] is a POSIX-compliant file system for WAN
deployments. It exploits user-defined timeouts to invalidate
cache entries. Clients pick the desired consistency for files
and metadata, as in WheelFS’s semantic cues [51].

RedHat’s GFS/GFS2 [41] and GlusterFS [14] supports
strong consistency by enforcing quorums for writes,
which are fully synchronous. GlusterFS can be deployed
across WAN links, but it scales poorly with the number of
geographical locations, as it suffers from high-latency links
for all write operations.

HDFS [49] is the distributed file system of the Hadoop
framework. It is optimized for read-dominated workloads.
Data is replicated and sharded across multiple data nodes.
A name node is in charge of storing and handling metadata.
As for GoogleFS, this node is replicated for availability.
The HDFS interface is not POSIX-compliant and it only
implements a subset of the specification via a FUSE
interface. QuantcastFS [39] is a replacement for HDFS that
adopts the same internal architecture. Instead of three-way
replication, it exploits Reed-Solomon erasure coding to
reduce space requirements while improving fault tolerance.

SeaweedFS [48] is a distributed file system that follows
the design of Haystack [6]. It supports multiple master
nodes and multiple metadata managers to locate files. It is
optimized for (small) multimedia files and does not support
the POSIX semantics.

XtreemFS [23] is a POSIX-compliant system that offers
per-object strong-consistency guarantees on top of a set of
independent volumes managed by a metadata server (MRC).
To best of our understanding, it does not provide a global
integrated file system. Further, it does not offer consistency
guarantees for inter-volume operations.

PVFS [9] and HDFS can be adapted to support lin-
earizability guarantees for metadata [50] by delegating the
storage of the file system’s metadata to Berkeley DB [37],
which uses Paxos to totally order updates to its replicas.

7.2 File systems with weak consistency
There are several distributed file systems for
high-performance computing clusters, such as
PVFS, PVFS2/OrangeFS [42], Lustre [47], and
FhGFS/BeeGFS [7]. These systems have specific
(e.g., MPI-based) interfaces and target read-dominated
workloads. GIGA+ [40] implements eventual consistency
and focus on the maintenance of very large directories. It
complements the OrangeFS cluster-based file system.

ObjectiveFS [36] relies on a backing object store
(typically Amazon S3) to provide a POSIX-compliant

file system with read-after-write consistency guarantees.
If deployed on a WAN, ObjectiveFS suffers from long
round-trip times for operations such as fsync that need
to wait until data has been safely committed to S3.

Close-to-open consistency (CTO) was introduced along
with client-side caching mechanisms for the Andrew file
system and implemented in its open-source implementation
OpenAFS [44]. This was a response to previous distributed
file systems designs such as LOCUS [57], which offered
strict POSIX semantics but with poor performance. Close-
to-open semantics are also used by NFS [52], HDFS [49],
and WheelFS [51].

Oracle OCFS [2] is a distributed file system optimized
for the Oracle ecosystem (e.g., database, application-server).
It provides a cache consistency guarantee by exploiting
Linux’s O DIRECT. Its successor OCFS2 [2] supports the
POSIX standard while guaranteeing the same level of cache
consistency.

8 Conclusion
This paper introduces GlobalFS, a geographically distributed
file system that accommodates locality of access, scalable
performance, and resiliency to failures without sacrificing
strong consistency. GlobalFS builds on two abstractions:
single-site linearizable data stores and an atomic multicast
based on Multi-Ring Paxos. This modular design was
crucial to handle the complexity of the development, testing,
and assessment of GlobalFS. Our in-depth evaluation
reveals that GlobalFS outperforms other geographically
distributed file systems that offer comparable guarantees and
delivers performance comparable to single-site networked
file systems. We credit GlobalFS performance to its flexible
partition model and four execution modes, which allow
us to exploit common access patterns and optimize for
the most frequent file system operations. These original
features distinguish GlobalFS from other distributed file
systems and are key to providing geographical scalability
without compromising consistency.

Notes
1https://github.com/pacheco/GlobalFS
2Note that the setup of multicast groups is flexible and other

configurations could be used to adapt for instance to the network topology,
the workload, or specific performance/consistency requirements.

3GlobalFS does not implement atime (i.e., time of last access), as
recording the time of the last access would essentially turn every read into
a write operation to update the file’s access time.

4https://github.com/sambenz/URingPaxos
5The replicas mount option of NFS is a client-side failover feature,

but the replication of the shared data has to be handled independently from
the NFS protocol.

6GlusterFS experiments over the global partition are executed only
once due to the required AWS budget.

11

https://github.com/pacheco/GlobalFS
https://github.com/sambenz/URingPaxos

References
[1] IEEE Std 1003.1-2001 Standard for Information Technology —

Portable Operating System Interface (POSIX) Base Definitions, Issue
6. IEEE, 2001.

[2] Oracle Cluster File System (OCFS). In Pro Oracle Database 10g
RAC on Linux. Apress, 2006, pp. 171–200.

[3] http://aws.amazon.com/ec2/instance-types/.

[4] https://thrift.apache.org.

[5] ATTIYA, H., AND WELCH, J. Distributed Computing: Fundamen-
tals, Simulations and Advanced Topics. John Wiley & Sons, 2004.

[6] BEAVER, D., KUMAR, S., LI, H. C., SOBEL, J., AND VAJGEL,
P. Finding a Needle in Haystack: Facebook’s Photo Storage. In 9th
USENIX Conference on Operating Systems Design and Implementa-
tion (2010), OSDI.

[7] BEEGFS. http://www.beegfs.com.

[8] BENZ, S., MARANDI, P. J., PEDONE, F., AND GARBINATO, B.
Building global and scalable systems with atomic multicast. In 15th
ACM/IFIP/USENIX International Middleware Conference (2014),
Middleware.

[9] CARNS, P. H., LIGON III, W. B., ROSS, R. B., AND THAKUR, R.
PVFS: A parallel file system for linux clusters. In 4th Annual Linux
Showcase and Conference (2000), ALS.

[10] CEPH BLOCK STORAGE. http://ceph.com/ceph-storage/
block-storage/.

[11] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A., FROST,
C., FURMAN, J. J., GHEMAWAT, S., GUBAREV, A., HEISER, C.,
HOCHSCHILD, P., ET AL. Spanner: Google’s globally distributed
database. ACM Transactions on Computer Systems (TOCS) 31, 3
(2013), 8.

[12] COWLING, J., AND LISKOV, B. Granola: Low-overhead distributed
transaction coordination. In USENIX Annual Technical Conference
(2012), ATC.

[13] DABEK, F., KAASHOEK, M. F., KARGER, D., MORRIS, R., AND
STOICA, I. Wide-area cooperative storage with CFS. In 18th ACM
Symposium on Operating Systems Principles (2001), SOSP.

[14] DAVIES, A., AND ORSARIA, A. Scale out with GlusterFS. Linux
Journal 2013, 235 (Nov. 2013).

[15] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI,
G., LAKSHMAN, A., PILCHIN, A., SIVASUBRAMANIAN, S.,
VOSSHALL, P., AND VOGELS, W. Dynamo: Amazon’s highly
available key-value store. In 21st ACM SIGOPS Symposium on
Operating Systems Principles (2007), SOSP.

[16] DWORK, C., LYNCH, N., AND STOCKMEYER, L. Consensus in
the presence of partial synchrony. Journal of the ACM 35, 2 (1988),
288–323.

[17] EMAIL EXCHANGE ON CEPHFS MAILING LIST. https://www.
mail-archive.com/ceph-users@lists.ceph.com/msg23788.html.

[18] FIDGE, C. J. Timestamps in Message-Passing Systems that Preserve
the Partial Ordering. In 11th Australian Computer Science Conference
(University of Queensland, Australia, 1988), pp. 55–66.

[19] FILE SYSTEM IN USER SPACE (FUSE). http://fuse.sourceforge.net/.

[20] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The google file
system. In 19th ACM Symposium on Operating Systems Principles
(2003), SOSP.

[21] GILBERT, S., AND LYNCH, N. Brewer’s conjecture and the feasibil-
ity of consistent, available, partition-tolerant web services. SIGACT
News 33, 2 (June 2002), 51–59.

[22] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND REED, B.
Zookeeper: Wait-free coordination for internet-scale systems. In
USENIX Annual Technical Conference (2010), ATC.

[23] HUPFELD, F., CORTES, T., KOLBECK, B., STENDER, J., FOCHT,
E., HESS, M., MALO, J., MARTI, J., AND CESARIO, E. The
XtreemFS architecture—a case for object-based file systems in grids.
Concurrency and Computation: Practice and Experience 20, 17
(2008), 2049–2060.

[24] KALLMAN, R., KIMURA, H., NATKINS, J., PAVLO, A., RASIN,
A., ZDONIK, S., JONES, E. P. C., MADDEN, S., STONEBRAKER,
M., ZHANG, Y., HUGG, J., AND ABADI, D. J. H-Store: a high-
performance, distributed main memory transaction processing system.
Proc. VLDB Endow. 1, 2 (2008), 1496–1499.

[25] KUBIATOWICZ, J., BINDEL, D., EATON, P., CHEN, Y., GEELS,
D., GUMMADI, R., RHEA, S., WEIMER, W., WELLS, C., WEATH-
ERSPOON, H., AND ZHAO, B. OceanStore: An architecture for
global-scale persistent storage. ACM SIGPLAN Notices 35, 11 (2000),
190–201.

[26] LAKSHMAN, A., AND MALIK, P. Cassandra: a decentralized struc-
tured storage system. ACM SIGOPS Operating Systems Review 44,
2 (Apr. 2010).

[27] LAMPORT, L. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM 21, 7 (1978), 558–565.

[28] LAMPORT, L. The part-time parliament. ACM Transactions on
Computer Systems (TOCS) 16, 2 (May 1998), 133–169.

[29] LAMPORT, L. Fast Paxos. Distributed Computing 19, 2 (2006),
79–103.

[30] LEVELDB. https://github.com/google/leveldb.

[31] LIU, G., MA, L., YAN, P., ZHANG, S., AND LIU, L. Design and
Implementation of GeoFS: A Wide-Area File System. In 9th IEEE
International Conference on Networking, Architecture, and Storage
(2014), NAS.

[32] MARANDI, P. J., PRIMI, M., AND PEDONE, F. Multi-Ring Paxos.
In IEEE/IFIP International Conference on Dependable Systems and
Networks (2012), DSN.

[33] MARANDI, P. J., PRIMI, M., SCHIPER, N., AND PEDONE, F.
Ring Paxos: A High-Throughput Atomic Broadcast Protocol. In
IEEE/IFIP International Conference on Dependable Systems and
Networks (2010), DSN.

[34] MOOSEFS. https://www.moosefs.org.

[35] MUTHITACHAROEN, A., MORRIS, R., GIL, T. M., AND CHEN, B.
Ivy: a read/write peer-to-peer file system. In 5th USENIX Symposium
on Operating Systems Design and Implementation (2002), OSDI.

[36] OBJECTIVEFS. http://objectivefs.com.

[37] OLSON, M. A., BOSTIC, K., AND SELTZER, M. Berkeley DB. In
USENIX Annual Technical Conference (1999), ATC.

[38] ONGARO, D., AND OUSTERHOUT, J. In search of an understand-
able consensus algorithm. In USENIX Annual Technical Conference
(2014), ATC.

[39] OVSIANNIKOV, M., RUS, S., REEVES, D., SUTTER, P., RAO, S.,
AND KELLY, J. The Quantcast File System. Proc. of the VLDB
Endowment 6, 11 (2013), 1092–1101.

[40] PATIL, S., AND GIBSON, G. Scale and concurrency of GIGA+: File
system directories with millions of files. In 9th USENIX Conference
on File and Storage Technologies (2011), FAST.

[41] PRESLAN, K. W., BARRY, A. P., BRASSOW, J. E., ERICKSON,
G. M., NYGAARD, E., SABOL, C. J., SOLTIS, S. R., TEIGLAND,
D. C., AND O’KEEFE, M. T. A 64-bit, shared disk file system for
linux. In 16th IEEE Symposium on Mass Storage Systems (1999).

[42] PVFS2. http://www.pvfs.org.

[43] ROWSTRON, A., AND DRUSCHEL, P. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer storage utility.
In 18th ACM Symposium on Operating Systems Principles (2001),
SOSP.

12

http://aws.amazon.com/ec2/instance-types/
https://thrift.apache.org
http://www.beegfs.com
http://ceph.com/ceph-storage/block-storage/
http://ceph.com/ceph-storage/block-storage/
https://www.mail-archive.com/ceph-users@lists.ceph.com/msg23788.html
https://www.mail-archive.com/ceph-users@lists.ceph.com/msg23788.html
http://fuse.sourceforge.net/
https://github.com/google/leveldb
https://www.moosefs.org
http://objectivefs.com
http://www.pvfs.org

[44] SATYANARAYANAN, M. Scalable, secure, and highly available
distributed file access. Computer 23, 5 (1990), 9–18.

[45] SATYANARAYANAN, M., KISTLER, J. J., KUMAR, P., OKASAKI,
M. E., SIEGEL, E. H., AND STEERE, D. C. Coda: A Highly
Available File System for a Distributed Workstation Environment.
IEEE Trans. Comput. 39, 4 (Apr. 1990), 447–459.

[46] SCHNEIDER, F. B. Implementing fault-tolerant services using the
state machine approach: A tutorial. ACM Computing Surveys 22, 4
(1990), 299–319.

[47] SCHWAN, P. Lustre: Building a file system for 1000-node clusters.
In Linux Symposium (2003).

[48] SEAWEEDFS. https://github.com/chrislusf/seaweedfs.

[49] SHVACHKO, K., KUANG, H., RADIA, S., AND CHANSLER, R. The
hadoop distributed file system. In 26th IEEE Symposium on Mass
Storage Systems and Technologies (2010), MSST.

[50] STAMATAKIS, D., TSIKOUDIS, N., SMYRNAKI, O., AND
MAGOUTIS, K. Scalability of replicated metadata services in dis-
tributed file systems. In 12th IFIP WG 6.1 International Conference
on Distributed Applications and Interoperable Systems (2012), DAIS.

[51] STRIBLING, J., SOVRAN, Y., ZHANG, I., PRETZER, X., LI, J.,
KAASHOEK, M. F., AND MORRIS, R. Flexible, Wide-Area Storage
for Distributed Systems with WheelFS. In 6th USENIX Symposium
on Networked Systems Design and Implementation (2009), NSDI.

[52] SUN MICROSYSTEMS, INC. NFS: Network file system protocol
specification. RFC 1094, Network Information Center, SRI Interna-
tional, Mar. 1989.

[53] TARASOV, V., BHANAGE, S., ZADOK, E., AND SELTZER, M.
Benchmarking file system benchmarking: It *is* rocket science. In
13th USENIX Workshop on Hot Topics in Operating Systems (2011),
HotOS.

[54] TARASOV, V., GUPTA, A., SOURAV, K., TREHAN, S., AND ZADOK,
E. Terra incognita: On the practicality of user-space file systems. In
7th USENIX Workshop on Hot Topics in Storage and File Systems
(2015), HotStorage.

[55] THOMSON, A., AND ABADI, D. J. CalvinFS: Consistent WAN
replication and scalable metadata management for distributed file sys-
tems. In 13th USENIX Conference on File and Storage Technologies
(2015), FAST.

[56] THOMSON, A., DIAMOND, T., WENG, S.-C., REN, K., SHAO, P.,
AND ABADI, D. J. Calvin: Fast distributed transactions for parti-
tioned database systems. In ACM SIGMOD International Conference
on Management of Data (2012), SIGMOD.

[57] WALKER, B., POPEK, G., ENGLISH, R., KLINE, C., AND THIEL,
G. The LOCUS distributed operating system. In 9th ACM Symposium
on Operating Systems Principles (1983), SOSP.

[58] WEIL, S. A., BRANDT, S. A., MILLER, E. L., LONG, D. D. E.,
AND MALTZAHN, C. Ceph: A scalable, high-performance distributed
file system. In 7th USENIX Symposium on Operating Systems Design
and Implementation (2006), OSDI.

[59] WEIL, S. A., BRANDT, S. A., MILLER, E. L., AND MALTZAHN, C.
CRUSH: Controlled, scalable, decentralized placement of replicated
data. In ACM/IEEE conference on Supercomputing (2006), SC.

13

https://github.com/chrislusf/seaweedfs

	Introduction
	System model and definitions
	System architecture
	Components
	Partitioning and replication
	Use of atomic multicast
	Example deployment

	Protocol design
	Execution modes
	The life of some file system operations
	Failure handling

	Implementation
	Client
	Atomic multicast
	Metadata replicas
	Data store

	Evaluation
	Microbenchmarks
	Performance with 3 regions
	Geographical scalability

	Real-world applications

	Related work
	File systems with strong consistency
	File systems with weak consistency

	Conclusion

