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Abstract

This paper presents Callinicos, a robust storage system
with a novel transaction protocol that generalizes mini-
transactions. This protocol allows Callinicos to cope with
Byzantine failures, support cross-partition communica-
tion with transactions, and implement on-demand con-
tention management. We have evaluated Callinicos with
a set of micro-benchmarks, and two realistic applications:
a Twitter-like social network and a distributed message
queue. Our experiments show that: (i) cross-partition
communication improves performance by reducing the
number of aborts, and (ii) the conflict resolution protocol
results in no aborts in the presence of contention and no
overhead in the absence of contention.

1 Introduction

Many application domains including retail, healthcare,
and finance, have a need for storage systems that toler-
ate failures and scale performance without sacrificing
consistency. However, designing systems that satisfy
these requirements is a daunting task. Among the various
approaches proposed in recent years, mini-transactions
strike an attractive balance between functionality and per-
formance [2]. Mini-transactions allow applications to
atomically access and conditionally modify distributed
data. They are also amenable to optimizations that re-
sult in scalable performance, such as update batching,
message piggybacking, and state partitioning.

Like database transactions, mini-transactions hide the
complexities that result from concurrent execution and
failures. However, mini-transactions optimize the execu-
tion and commit of transactions by exposing a restricted
set of operations. These operations allow a transaction
to read a storage entry; compare an entry with a value
(i.e., equality comparison); and update the value of an
entry. A mini-transaction is only committed if all its
compare operations are successful. As a consequence of

these restrictions, mini-transactions can piggyback the
last transaction action onto the first phase of the two-
phase commit, saving a network round-trip. Despite their
simple execution model, several non-trivial applications
have been developed with mini-transactions, including a
cluster file system and a group communication service.

Yet, despite the fact that several storage systems from
the research community have proposed the use of mini-
transactions [2, 34, 35], few real-world applications have
employed them. This paper argues that mini-transactions
suffer from several problems that have hindered their
wide-spread adoption: (i) they provide only limited reli-
ability, (ii) they disallow indirect memory accesses and
prevent data from transferring from one partition to an-
other within a transaction, and (iii) for workloads with
high-contention (e.g., hot spots), they are affected by fre-
quent aborts which leads to increased latencies. Below,
we discuss each of these issues in more detail.

Limited reliability. Although mini-transactions can
tolerate benign failures, such as crash failures, there
are many other types of failures that occur in data cen-
ters. Byzantine failures are a common occurrence [16],
resulting from any number of reasons including disk
faults [8, 38], file system bugs [50], or human errors [23].
Mission-critical services require strong end-to-end guar-
antees that hold all the way up to the application layer.

Restricted operations. To provide scalable perfor-
mance, mini-transactions disallow indirect memory ac-
cesses and prevent data from transferring from one par-
tition to another within a single transaction. This restric-
tion significantly impacts how applications can implement
many common, but surprisingly simple operations. As
a motivating example, consider the pseudocode to atom-
ically swap the contents of two stored keys shown in
Figure 1 (left). The operations could not be implemented
within a single mini-transaction, since keya and keyb may
be stored in different partitions and there is no way for
partitions to exchange information within a transaction.
The only way one could implement the above code would



swap tx1(keya,keyb) {
swap tx(keya,keyb) { x← read(keya)

x← read(keya) y← read(keyb)
y← read(keyb) } // return x,y
write(keya,y) swap tx2(keya,keyb,x,y) {
write(keyb,x) cmp(keya,x)

} cmp(keyb,y)
write(keya,x)
write(keyb,y)

}

Figure 1: A transaction to swap two entries (left) and its
schematic implementation using mini-transactions (right).

be to split the swap operation in two independent trans-
actions, swap tx1 that reads both keys and swap tx2 that
updates them. However, with two transactions, the swap
operation would no longer be atomic and a third transac-
tion could execute between swap tx1 and swap tx2. This
third transaction could change either of the values, which
would lead to a non-serializable execution. One could
extend swap tx2 with the mini-transaction compare oper-
ation (cmp) to conditionally write the new values if they
have not been modified, and abort otherwise, as shown
in Figure 1 (right). Under high-contention workloads,
such an implementation would lead to frequent aborts,
decreasing storage throughput and increasing latency.

Contention. Mini-transactions rely on optimistic con-
currency control (e.g., [12, 25, 27, 40, 41]). Unfortunately,
in the presence of contention, optimistic concurrency con-
trol leads to aborts, poor use of system resources and
increased latencies. It also put additional burden on devel-
opers, since key-value stores with optimistic concurrency
control often delegate the task of managing contention to
application designers.

This paper presents Callinicos, a storage system de-
signed to address the limitations of mini-transactions.
While prior work has addressed some of the above chal-
lenges individually, no system at present addresses all
of them (see Table 1). Augustus [35] augments mini-
transactions with support for Byzantine fault tolerance.
Just like Sinfonia’s mini-transactions [2], Augustus’s
transactions are prone to aborts in the presence of con-
tention. Calvin [44], Rococo [34], and H-Store [43] ac-
count for contention at different degrees, as we detail in
§ 6, but none of these systems can cope with Byzantine
failures. In contrast, Callinicos tolerates the most extreme
types of failure, is not constrained by restricted operations,
and never aborts transactions due to contention.

Callinicos implements armored-transactions, a novel
transaction model that can split the execution of an
armored-transaction in rounds to cope with data con-
tention and allow partitions to exchange data. Armored-
transactions execute in a single round, like mini-
transactions, if they are not subject to data contention

Contention management
Without With

Rococo [34]
Benign Sinfonia [2] H-Store [43]

Failure Calvin [44]
Model

Byzantine Augustus [35] Callinicos

Table 1: Overview of transactional key-value stores.

and cross-partition communication. Additional rounds
are used to order armored-transactions that conflict and
exchange data across partitions within a single and
atomic armored-transaction. Armored-transactions can
be viewed as a generalization of basic mini-transactions,
which allow for cross-partition communication, and im-
plement on-demand contention management.

Using Callinicos, we have implemented two real-world
applications: Buzzer, a twitter clone, and Kassia a dis-
tributed message queue based on Apache Kafka. Al-
though it would have been possible to implement these
applications using mini-transactions, their design would
be significantly more complicated and the performance
would be poor, as we show in § 5. We have evaluated
Callinicos under a variety of deployment and workload
scenarios, and our experiments show that in the absence
of contention, Callinicos introduces no overhead in the ex-
ecution of transactions and can scale throughput with the
number of nodes; in the presence of contention it orders
transactions to avoid aborts. Overall, this paper makes the
following contributions:

• It details a novel multi-round transactional execution
model that generalizes the mini-transaction model,
while allowing for cross-partition data exchange and
contention management.

• It describes the design and implementation of a robust,
distributed storage system built using the new transac-
tional execution model.

• It demonstrates through experimental evaluation that
the transactional model and storage system offer
significant performance improvements over mini-
transactions.

The remainder of the paper is structured as follows: it
details the system model (§ 2), discusses Callinicos’s de-
sign (§ 3), and presents the transaction execution protocol
(§ 4). Then it evaluates the performance (§ 5), reviews
related work (§ 6), and concludes (§ 7).
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2 System model and definitions

We consider a distributed system with processes that com-
municate by message passing. Processes do not have
access to a shared memory or a global clock. The sys-
tem is asynchronous (i.e., no bounds on processing times
or message delays) and there is an arbitrary number of
clients and a fixed number n of servers, where clients and
servers are disjoint.

Processes can be correct or faulty. A correct process
follows its specification; a faulty, or Byzantine, process
presents arbitrary behavior. There is a bounded although
arbitrary number of faulty clients. Servers are divided
into disjoint groups. Each group g contains ng servers,
out of which fg can be faulty.

Processes communicate using either one-to-one or one-
to-many communication. One-to-one communication
guarantees that if sender and receiver are correct, then
every message sent is eventually received. One-to-many
communication is based on atomic multicast and ensures
that: (a) a message multicast by a correct process to group
g will be delivered by all correct processes in g; (b) if a
correct process in g delivers m, then all correct processes
in g deliver m; and (c) every two correct processes in g
deliver messages in the same order.

Atomic multicast algorithms need additional assump-
tions in the system model (e.g., partial synchrony [21]).
These assumptions are not explicitly used by our proto-
cols. While several BFT protocols implement the atomic
multicast properties enumerated above (e.g., [10, 26]),
we assume (and have implemented) PBFT [14], which
can deliver messages in four communication steps and
requires ng = 3 fg +1 servers.

We use SHA-1 based HMACs for authentication, and
AES-128 for transport encryption. We assume that adver-
saries (and faulty processes under their control) are com-
putationally bound and unable, with very high probability,
to subvert the cryptographic techniques used. Adversaries
can coordinate faulty processes and delay correct pro-
cesses in order to cause the most damage to the system.
Adversaries cannot, however, delay correct processes in-
definitely.

3 Storage Design

Callinicos is a distributed key-value store with support
for transactions. Like other systems that implement mini-
transactions, Callinicos uses state partitioning to improve
scalability. While the partitioning algorithm has an im-
pact on performance, the choice of partitioning scheme is
orthogonal to the design of Callinicos.

Clients have access to a partition oracle, which knows
the partitioning scheme used for a particular deployment.
The partition oracle can be implemented using a variety

l ∈ Lit Literals
k ∈ K Keys
v ∈ ID Identifiers
t ::= s Transaction
s ::= s1;s2 Sequence

| v = e Assignment
| if e then s1 else s2 Conditional Branch
| while e do s While Loop
| r | w | c Transaction Operators

e ::= e1&&e2 | e1||e2 | ! e1 Logical Expr.
| e1 > e2 | e1 < e2 | e1 == e2 Relational Expr.
| e1 >= e2 | e1 <= e2 | e1! = e2
| e1 ∗ e2 | e1/e2 Multiplicative Expr.
| e1 + e2 | e1− e2 Additive Expr.
| v | l Variable or Literal

r ::= read(k) Read
w ::= write(k,v) | delete(k) Update
c ::= export(id) | import(id) | rollback Control

Figure 2: Transaction language syntax (subset).

of designs: centralized, replicated, fully-distributed, etc.
Each design has different tradeoffs for performance over-
head on the system. Our Callinicos prototype uses static
partitioning and each client has a-priori knowledge of the
partitioning scheme.

3.1 Unrestricted operations
Clients access the storage by means of pre-declared
transactions, similar to stored procedures in rela-
tional databases. These transactions, named armored-
transactions, are written in a small transaction language,
designed to meet three goals. First, it is a subset of pop-
ular general purpose programming languages, such as
Java or C. This means that the syntax is familiar to de-
velopers, and the transaction specification could be easily
embedded in larger programs. Second, the subset is large
enough to support the basic operations required for ex-
pressive, multi-partition transactions. Third, the language
makes explicit the points in the code where data may cross
partition boundaries.

The language, whose syntax is in Figure 2, includes
support for variable declarations and assignment; logical,
relational, and arithmetic expressions; and basic control
flow for branching and looping. Statements and expres-
sions may be composed to express more complex logic.

At the heart of the transaction language are a set of built-
in operations that are used to manipulate storage entries.
These operations include read and write operations, as
well as delete, to remove a key from the store.

Transaction-local variables persist for the duration of
the transaction, and can be shared between partitions by
using export and import control operations, which we
explain in the next section. A transaction can request to
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abort its execution with a rollback operation.
Callinicos guarantees strict serializability for update

transactions from all clients and read-only transactions
submitted by correct clients. An update transaction con-
tains at least one operation that modifies the state. Call-
inicos provides no guarantees for read-only transactions
from faulty clients. More precisely, for every history
H representing an execution containing committed up-
date transactions and committed read-only transactions
submitted by correct clients, there is a serial history Hs
containing the same transactions such that (a) if transac-
tion T reads an entry from transaction T ′ in H, T reads
the same entry from T ′ in Hs; and (b) if T terminates
before T ′ starts in H, then T precedes T ′ in Hs.

3.2 Byzantine fault tolerance

Both clients and servers can present faulty behavior. To
cope with faulty servers, each partition is fully replicated
on a group of servers. Each server group uses atomic
multicast and state machine replication [28, 39], imple-
mented with PBFT [14], to ensure consistency. Therefore,
although partitions can contain faulty servers, the partition
as a whole follows the Callinicos protocol.

Faulty clients can attempt to disrupt the execution with
a number of attacks, which include (a) leaving a trans-
action unfinished in one or more partitions, (b) forcing
early termination of honest transactions (i.e., from a cor-
rect client), and (c) attempting denial-of-service attacks.
We describe these attacks and the mechanisms to counter
them in more detail in § 4.3.

3.3 Contention management

Callinicos implements on demand contention manage-
ment. Every armored-transaction is multicast to each par-
tition involved in the armored-transaction. The involved
partitions are computed from the pre-declared armored-
transaction, possibly reaching all partitions if the appro-
priate subset cannot be statically determined. Servers in a
partition then try to acquire all the locks required by the
armored-transaction. If all locks cannot be acquired, the
servers request the ordering of the armored-transaction.
This mechanism strives to avoid the overhead of order-
ing in the absence of contention, typical of distributed
locking, and the penalty of aborts, typical of optimistic
concurrency control.

4 Armored Transactions

Armored transactions implement a novel multi-round pro-
tocol, which generalizes the concept of mini-transactions
by allowing data to flow across partitions in the context of

the same transaction. The exchange of data between par-
titions in armored transactions is mediated by the clients
that submit these transactions. Servers from each partition
send the data to be transferred to the client at the end of
a round, and the client forwards the data to the proper
destination at the beginning of the next round. Figure 3
shows the complete execution for armored transactions.
We explain the details in the following sections.

4.1 Transaction pre-processing

Before a client application can submit an armored-
transaction for execution on the server, it first must trans-
form the armored-transaction expressed in the Callinicos
transaction language into a transaction matrix. A transac-
tion matrix is a representation of the armored-transaction
in which operations have been assigned to specific parti-
tions and specific rounds. Each column in a transaction
matrix represents a partition-specific sequence of rounds.
Each row in the matrix represents the operations that will
be executed in a single round. Intuitively, operations are
mapped to a partition if they read or write data from that
partition. Two operations, o1 and o2 are mapped to sep-
arate rounds if o2 depends on the output of o1, and they
are executed on separate partitions.

Assuming a two-partition deployment, where keya and
keyb are on partitions 1 and 2, respectively, the transaction
matrix for the swap operation shown in § 1 will be a 2×2
matrix (see Table 2). Both reads in the swap matrix are
independent of any other operations and executed in the
first round. Since the writes depend on the result of the
reads, they are placed on the second round.

Partition 1 Partition 2
Round 1 a← read(keya) b← read(keyb)

export(a) export(b)
Round 2 import(b) import(a)

write(keya, b) write(keyb, a)

Table 2: Transaction matrix for Swap command.

To build a transaction matrix, clients need to deter-
mine two pieces of information: (i) the data dependencies
between operations, and (ii) the partitions where data
is stored. Information about data dependencies can be
learned by performing a static analysis of the armored-
transaction logic to track data flow. Information about
partition mappings can be learned by consulting the par-
tition oracle. If the value of a key is known statically,
then the partition oracle will tell the client where a key
is stored. If the value of a key can only be determined at
runtime, then the oracle will tell the client that no asser-
tion about the data layout can be made, and instruct the
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deliver 
t's matrix

t.ts ← counter
t.id ← hash(t)
inc(counter)

acquired
all locks

of t?

for each op
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return signed
ORDER vote

return signed
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yes

no

yes
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no

yes

no

deliver
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one or more
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import variables 
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rounds

no

yes

op = rollback execute op last op
in round? last round?

no yes no

yes yes

no

execute op

First round

Subsequent and 
ordering rounds

Figure 3: Armored-transaction execution on the servers in Callinicos.

client to execute a guarded version of the operation on all
partitions (e.g., if contains(k) then op(k)).

Clients organize the operations in columns and rows
as follows: (1) Operations that are confined to specific
partitions are placed on their respective columns, or are
executed on all partitions. (2) Operations that depend
on the outcome of a previous operation executed on a
different partition are placed on the row immediately after
the row of the operation they depend on. (3) Independent
operations are executed as early as possible.

After operators are assigned to rows and columns, each
entry is augmented with export and import operations,
which transport data across partitions at the end and be-
ginning of each round, respectively. The details of the
export and import operations, and the data transfer mech-
anism between rounds are presented in detail in § 4.2.

To reduce the implementation effort, our prototype re-
lies on hand-written annotations that indicate partition
and round number for each line of code in the transac-
tion language specification. In a continuing development
effort, we are working to automate the transformation.

4.2 Execution under normal conditions

Once delivered for execution, an armored-transaction first
transitions to a transient state (i.e., ordering or pending)
and eventually reaches a final state (i.e., committed or
failed). All state transitions are irreversible, irrevocable,
and can be proved by signed certificates, which are gener-
ated as part of the state transition.

State transitions happen as the result of the round ex-
ecutions. Each round is composed of a request-reply
exchange between a client and the servers. Requests from
clients can start a new transaction, continue an ongoing
transaction, or finalize a transaction. Replies from servers
contain a signed vote with the round number, the out-
come of the round, the current timestamp of the armored-
transaction, and any applicable execution results. Servers
implement a local and unique counter, used to assign
timestamps to transactions, as described next. In the

absence of failures and malicious behavior, an armored-
transaction follows the sequence of steps described next.
We discuss execution under failures in § 4.3.

Transaction submission. A client submits a new
armored-transaction t by multicasting t’s transaction ma-
trix to each partition g involved in t. One multicast call is
done per partition (see Figure 4, Step 1). Since the matrix
is fully defined before it is multicast, every server knows
how many rounds are needed to complete the transaction,
which data should be returned in each round, and which
data will be received in each round.

Client

Partition 1

Partition 2

Step 1
Multicast

Step 2
Execution

Step 3
Vote
Continue

Step 4
Data
Transfer

Step 5
Execution

Step 6
Vote
Outcome

Step 7
Outcome

(a) with data transfer.
Client

Partition 1

Partition 2

Step 1
Multicast

Step 2
Execution

Step 2.1
Vote
Order

Step 2.2
Order

Step 2.3
Execution

Step 3
Vote
Outcome

Step 4
Outcome

ts=4.1

ts=3.2

ts=4.1

ts=4.1

(b) with ordering

Figure 4: Execution of a two-round transaction.

The first round. Once server s delivers t’s matrix, t be-
comes delivered at s and the value of s’s counter becomes
the timestamp ts of t. Each correct server s tries to acquire
all the locks required by t (Figure 4, Step 2). If the lock
acquisition fails (i.e., another transaction has a conflicting
lock), s stops the execution of t and issues a signed vote
for ORDER (Figure 4b, Step 2.1), meaning that s requires
the next round of t to be an ordering round (i.e., t is in
the ordering state at s). If s can acquire all locks needed
by t, s will execute t’s operations that belong to the cur-
rent round. If s finds a rollback operation, it stops the
execution of t, issues a signed vote for ABORT, meaning
that it expects the current round to be the last and the next
multicast from the client to provide a termination certifi-
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cate. If s completes t’s execution in the current round and
the round is the last, s issues a signed vote for COMMIT
(Figure 4a, Step 6). If the current round is not the last, s
issues a signed vote for CONTINUE (Figure 4a, Step 3).
In the case of a vote for CONTINUE, if the transaction
contains any export operations in the current round, the
respective variables are included in the signed vote. For
any of these three votes t also becomes pending. In any
case, a server’s vote on the outcome of a round is final
and cannot be changed once cast.

Lock management. A transaction can request retrieve
and update locks on single keys and ranges of keys. Both
single-key and key-range locks keep track of the acquisi-
tion order in a locking queue, i.e., a queue containing all
the transactions that requested that specific lock, ordered
by increasing timestamp. Retrieve locks can be shared;
update locks are exclusive. A requested lock that conflicts
with locks already in place will trigger an ordering round.
Lock acquisition is performed sequentially, by a single
thread, and at once for the complete transaction matrix,
i.e., each server traverses its entire column and tries to
acquire locks on all keys defined in all rounds. If a round
performs retrieve or update operations on a key that is
the result of a previous round, the server must perform a
partition-wide lock. Callinicos’s execution model avoids
deadlocks since all the locks of a transaction are acquired
atomically, possibly after ordering (defined next). If two
conflicting multi-partition transactions are delivered in
different orders in two different partitions, then each trans-
action will receive at least one vote to ORDER from one of
the involved partitions, which will order both transactions.

Subsequent rounds. The execution of each following
round starts with the client multicasting the vote certifi-
cate from the previous round (Figure 4a, Step 4). Each
server then validates the signatures, tallies the votes, and
proceeds according to the outcome of the certificate. The
possible outcomes of the certificate are either: COMMIT,
ABORT, ORDER, or CONTINUE.

If at least one vote is for COMMIT, or ABORT, then
the transaction will terminate, as described below. If no
partition votes for ORDER, t will transition to the pending
state. Otherwise, t will go through an ordering round
before transitioning to pending (Figure 4b, Step 2.2). The
pending state indicates that a transaction has not yet been
finalized (i.e., it has neither been committed nor aborted).

A vote for CONTINUE indicates that the previous round
was not the last round of t. The transaction will remain in
the pending state, and s executes the next round of t. The
execution of the next round starts with the importing of
variables exported in the previous round as indicated by
export operations. These values are stored locally for the
duration of the transaction, and are used in subsequent
rounds. Once the execution of the round completes, the
server issues a signed vote following the same rules as the

first round. A server will not execute subsequent rounds
until it has been presented with a vote certificate for the
round it just executed. Furthermore, a server will not
re-execute a round for which it has already issued a vote,
unless it is an ordering round, as we explain next.

The ordering round. To order a transaction, the server
examines the timestamps of all votes, selects the high-
est value, maxts, and sets t’s timestamp to maxts. If s’s
counter is lower than maxts, s sets its counter to maxts.
Then, t’s locks are re-ordered and t is scheduled for re-
execution (Figure 4b, Step 2.3). Because all (correct)
servers in the partitions that contain t participate in the
same protocol steps, t will have the same timestamp in all
involved partitions. The re-ordering of t’s locks ensures
that for all locks ` acquired by t, there is no armored-
transaction u with a timestamp lower than t ordered after
t in `’s locking queue. We explain the re-ordering of locks
below. Since a change of execution order may lead to a
different outcome, t is re-executed when it becomes the
transaction with the lowest timestamp that has no con-
flicts. The ordering round, if present, will always be the
second round since lock acquisition is done in the first
round. As a corollary, correct servers only vote for OR-
DER as the outcome of the first round. Furthermore, after
an ordering round t is guaranteed to acquire all its locks
since the criteria for execution requires all conflicting
armored-transactions with a lower timestamp to finalize
before t is executed. Notice that this does not undermine
the irrevocability of the server’s votes. Although the re-
execution of a re-ordered armored-transaction creates a
new vote, the new vote does not replace the vote from the
first round; it becomes the vote of the ordering round.

Changing t’s timestamp may (a) have no effect on `’s
locking queue order, for each data item ` accessed by t;
(b) change the order between non-conflicting armored-
transactions (e.g., when re-ordering a retrieve lock with
other retrieve locks); or (c) change the order between con-
flicting armored-transactions (e.g., an update lock is re-
ordered after a series of retrieve locks). In case (a), ts was
increased but no conflicting transaction is affected and
thus t keeps its position in the locking queue. In cases (b)
and (c), ts’s increase resulted in a position change for t
within `’s locking queue. In case (b), no transaction u
with timestamp between t’s old timestamp and ts conflicts
with t and so, the position of t in `’s locking queue is
adjusted but no further actions are necessary. For case (c),
the locking state of each conflicting transaction u has to
be updated to assess whether u is eligible for re-execution
(i.e., if u is the transaction with the lowest timestamp and
has no conflicts).

Transaction termination. If the incoming vote cer-
tificate contains at least one partition vote for ABORT or
COMMIT votes from all partitions, s treats the vote certifi-
cate as a termination certificate, i.e., a certificate that is
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used to determine the outcome of t (Figure 4a, Step 7). If
the outcome is ABORT, s rolls back t by discarding any
update buffers; if COMMIT, s applies t’s updates. In either
case, t is no longer pending and its locks are released.

4.3 Execution with faulty clients

Faulty clients can attempt to disrupt the protocol by violat-
ing safety or liveness guarantees. The armored-transaction
protocol builds on our prior work on Augustus [35] to
ensure that safety cannot be violated. Callinicos does not
provide absolute liveness guarantees. However, Callini-
cos does provide protection against some specific attacks.
Below, we describe three in particular: (a) leaving a trans-
action unfinished in one or more partitions, which can also
happen when a client fails by crashing; (b) forcing early
termination of honest transactions (i.e., from a correct
client); and (c) attempting denial-of-service attacks.

Unfinished transactions. A faulty client may leave
a transaction unfinished by not executing all transaction
rounds. We address this scenario by relying on subse-
quent correct clients to complete pending transactions
left unfinished. If a transaction t conflicts with a pending
transaction u in server s ∈ g, s will vote for ordering t.
In the ORDER vote sent by s to the client, s includes u’s
operations. When the client receives an ORDER vote from
fg +1 replicas in g, it forwards the ordering vote certifi-
cate for t and starts the termination of u by multicasting
u’s operations to every partition h involved in u. Clients
do not have to immediately start the recovery of u, in
particular when u is a multi-round transaction.

Once t is ordered, the client has a guarantee that t will
eventually be executed. The amount of time that the client
should wait before trying to recover u can be arbitrarily
defined by the application. If a vote request for u was not
previously delivered in h (e.g., not multicast by the client
that created u), then the correct members of h will proceed
according to the client’s request. If u’s vote request was
delivered in h, then correct members will return the result
of the previous vote, since they cannot change their vote
(i.e., votes are final). If u is a single-round transaction,
then the client will gather a vote certificate to finalize u. If
u is a multi-round transaction, then the client will gather
a vote certificate for the first execution round. In any case,
eventually the client will gather enough votes to continue
or finalize the execution of u, following the same steps as
the failure-free cases.

Forced early termination of honest transactions.
Faulty clients cannot force an erroneous or early termina-
tion of a honest transaction t. The atomic multicast pro-
tocol ensures that faulty clients cannot tamper with each
others’ transactions prior to delivery. Since we assume
that faulty processes cannot subvert the cryptographic
primitives, it is impossible for faulty clients to forge a

transaction that will match the id of t once t is delivered.
Furthermore, it is impossible for faulty clients to forge the
vote certificates. Thus, once t is delivered to at least one
partition, that partition will be able to enlist help from cor-
rect clients to disseminate t to the other partitions through
the mechanism used to address unfinished transactions,
and complete the execution of t.

Denial-of-service attacks. Faulty clients can try to
perform denial-of-service attacks by submitting either:
(a) transactions with many update operations, (b) multiple
transactions concurrently, or (c) transactions with a very
large number of rounds. Although we do not currently
implement them in our prototype, a number of measures
can be taken to mitigate such attacks, such as limiting
the number of operations in a transaction, restricting the
number of simultaneous pending transactions originating
from a single client (e.g., [29]), or limiting the number of
rounds in a transaction. These attacks, however, cannot
force honest transactions to abort.

4.4 Correctness

In this section, we argue that for all executions H pro-
duced by Callinicos with committed update transactions
and committed read-only transactions from correct clients,
there is a serial history Hs with the same transactions that
satisfies two properties: (a) If T reads an item that was
most recently updated by T ′ in H (or “T reads from T ′” in
short), then T reads the same item from T ′ in Hs (i.e., H
and Hs are equivalent). (b) If T commits before T ′ starts
in H then T precedes T ′ in Hs.

Case 1. T and T ′ are single-partition transactions. If T
and T ′ access the same partition, then from the protocol,
one transaction executes before the other, according to the
order they are delivered. If T executes first, T precedes T ′

in Hs, which trivially satisfies (b). It ensures (a) because
it is impossible for T to read an item from T ′ since T ′ is
executed after T terminates. If T and T ′ access different
partitions, then neither T reads from T ′ nor T ′ reads from
T , and T and T ′ can appear in Hs in any order to ensure (a).
To guarantee (b), T precedes T ′ in Hs if and only if T
commits before T ′ starts in H. In this case, recovering
an unfinished transactions is never needed since atomic
multicast ensures that T and T ′ are delivered and entirely
executed by all correct servers in their partition.

Case 2. T and T ′ are multi-partition transactions that
access partitions in PS (partition set) and PS′, respec-
tively.

First, assume that PS and PS′ intersect and p∈PS∩PS′.
There are two possibilities: (i) either the operations re-
quested by T and T ′ do not conflict, or (ii) at least one
operation in each transaction conflict, and the transac-
tions need to be ordered. In (i), property (a) is trivially
ensured since neither transaction reads from the other,
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otherwise they would conflict. To ensure (b), T and T ′

appear in Hs following their termination order, if they are
not concurrent. If T and T ′ are concurrent, then their
order in Hs does not matter. In (ii), from the algorithm
(ii.a) T commits in every p before T ′ is executed at p,
or (ii.b) T ′ commits in every p before T is executed at
p, or (ii.c) T is executed first in a subset pT of p and T ′

is executed first in the remaining (and complementary)
subset pT ′ of p. For cases (ii.a) and (ii.b), without lack of
generality, we assume (ii.a) holds. Thus, T precedes T ′ in
Hs. Property (a) is guaranteed because it is impossible for
T to read from T ′ since T will commit regardless of the
outcome of T ′. Property (b) holds because it impossible
for T ′ to execute before T .

For case (ii.c), the vote certificate for T will contain
COMMIT votes from pT and ORDER votes from pT ′ . Each
of these votes contains a unique timestamp for T . The
presence of an ORDER vote from a partition in PS forces
all of PS to update the timestamp of T to the largest
timestamp observed in the vote certificate (i.e., the final
timestamp), and adjust the execution order of T according
to this timestamp. If the final timestamp of T is smaller
than the final timestamp of T ′, then T will be executed
before T ′, and thus T precedes T ′ in Hs.

Now assume that PS and PS′ do not intersect. Then
T and T ′ can be in Hs in any order. In either case, (a) is
trivially ensured. T precedes T ′ in Hs if and only if T
commits before T ′ starts in H, and thus (b) is ensured.
Recovery an unfinished transaction will extend its lifetime,
but will not change the argument above.

Case 3. T is a single partition transaction that accesses
partition P and T ′ is a multi-partition transaction that
accesses partitions in PS′.

If T is executed before T ′ at P, T precedes T ′ in Hs.
Property (a) follows from the fact that T cannot read from
T ′; property (b) follows because T ′ can only finish after
T . If P 6∈ PS′, then (a) trivially holds and (b) can be
ensured by placing T and T ′ in Hs following the order
they complete. Finally, if T is executed after T ′ at P, then
T ′ will precede T based on its final timestamp. If T ′ does
not yet have a final timestamp, then T has to wait. If the
final timestamp of T ′ remains smaller than the timestamp
of T , then T ′ precedes T in Hs. Property (a) holds since T ′

cannot read from T and it is impossible for T to commit
before T ′, as T has to wait for T ′. Otherwise, T ′ will be
such that T is executed before T ′, and thus T precedes T ′

in Hs as explained above.

5 Evaluation

Callinicos is designed to address three critical limita-
tions of mini-transactions related to reliability, expres-
sivity, and performance. These limitations manifest them-
selves in workloads that are inherently unscalable. Prior

work on storage systems designed for cross-partition data-
exchange or high contention workloads typically relax
consistency requirements in order to meet performance
demands (e.g., [48]). This observation is also reflected
in the design of common storage system benchmarks.
For example, widely used benchmarks like TPC-C [45]
avoid queries that result in “hotspots”. For this reason,
we evaluate Callinicos using a set of micro-benchmarks.
These micro-benchmarks are both inspired by real-world
applications and illustrate the benefits of Callinicos on
the types of workloads that cause most systems to per-
form poorly. Overall, our experiments demonstrate that
Callinicos allows developers to easily build distributed ap-
plications with performance that scales with the number
of partitions for high contention workloads.

Our prototype is implemented in Java 7. It includes
an atomic multicast implementation based on PBFT [14]
and the transaction processing engine. All source code
is publicly available under an open source license.1 In
the experiments, each client is a thread performing syn-
chronous calls to the partitions sequentially, without think
time. Each partition contained four servers.

We ran all the tests on a cluster with the following con-
figuration: (a) HP SE1102 nodes equipped with two quad-
core Intel Xeon L5420 processors running at 2.5 GHz
and 8 GB of main memory, and (b) an HP ProCurve
Switch 2910al-48G gigabit network switch. The single-
hop latency between two machines connected to different
switches is 0.17 ms for a 1KB packet. The nodes ran
CentOS Linux 6.5 64-bit with kernel 2.6.32. We used the
Sun Java SE Runtime 1.7.0 40 with the 64-Bit Server VM
(build 24.0-b56).

5.1 Kassia distributed message queue
The first set of experiments measures the scalability of
Callinicos, and evaluates the benefits of cross-partition
communication. As a baseline, we compare the results
against a mini-transaction implementation of the same
queries. Although there are many examples of distributed
data structures, including B-trees [1] and Heaps [11],
we chose to focus on distributed queues because (i) the
implementation of their basic operations are easy to ex-
plain, (ii) they are widely used by a number of real-world
systems, including those at Yahoo, Twitter, Netflix, and
LinkedIn [37], and (iii) they exhibit a natural point of
contention, since every producer must read the location
of the queue head when executing a push operation.

Our distributed message queue service, named Kassia,
is inspired by Apache Kafka [5]. Both Kassia and Kafka
implement a partitioned and replicated commit log ser-
vice, which can be used to support the functionality of a
messaging system. In both Kassia and Kafka, producers

1https://github.com/usi-systems/callinicos
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generate new messages and publish them to queues, while
consumers subscribe to queues. In both systems, queues
can be assigned to different partitions. Kassia offers the
same abstractions as Kafka, but with two crucial differ-
ences. First, while Kafka is only able to ensure a total
ordering of messages on a single partition [6], Kassia (i.e.,
Callinicos) ensures a total ordering of messages across
multiple partitions. Thus, Kassia, can distribute the load
of message production and consumption by increasing the
number of partitions. Second, while Kafka provides no
reliability guarantees, Kassia tolerates Byzantine failures.

A message in Kassia is an entry of type (msg id,
msg content), where msg id is a key in the key-value store.
A message queue is a sequence of pointers to msg id’s. A
designated storage area (i.e., the head index) is used to
maintain an index that points to the first position in the
queue. A second designated storage area (i.e., the tail
index) is used to maintain an index that points to the last
position in the queue.

To publish a message, a producer must perform the
following operations: (i) read from the tail index to learn
the location of the tail of the queue; (ii) increment the tail
of the queue to the next location; (iii) write the message to
the new tail location; and (iv) update the tail of the queue
in the tail index.

Consumers in Kassia never remove messages from
the queue. Instead they perform a sequential scan of all
messages from the head to the tail. Thus, consumers
perform the following operations: (i) read from the tail
index to learn the location of the tail of the queue; (ii)
read from the head index to learn the location of the head
of the queue; (iii) issue a read range request to read all
messages in the queue.

Thus, we see that producer operations exhibit high-
contention, since all producer transactions include a write
to the same location in the store. In contrast, consumer
operations exhibit low-contention, read-only workloads.

We implemented the Kassia producer and consumer
transactions using both armored-transactions and mini-
transaction versions. Like the swap example from § 1,
the mini-transaction version needed to be split into two
separate transactions. The first transaction reads the tail
index, while the second needs to use a compare opera-
tion to ensure that the value hasn’t changed between the
execution of the first and second transactions.

Scalability of Callinicos transactions. The first ex-
periment evaluates how armored-transactions scale. We
measured the maximum throughput for producer transac-
tions as we increased the number of partitions. For this
experiment, a separate queue was created in each partition
and there were approximately six producers per queue.
Thus, the workload itself is scalable. In other words, if all
producers wrote to a single queue, we would not expect
to see armored-transactions scale.
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Figure 5: Maximum throughput for the producer (in trans-
actions per second) with increasing number of partitions.

As shown in Figure 5, Callinicos scales nearly linearly
with the number of partitions, achieving peak throughput
of 60k, 116k, 220k and 350k messages per second with
1, 2, 4 and 8 partitions, respectively. In this experiment,
producers submit batches with 200 messages of 200 bytes.

Armored-transactions vs. mini-transactions. The
next experiment considers the question of how armored-
transactions perform compared to mini-transactions for
high-contention and low-contention workloads. For high-
contention workloads, an initially empty queue was re-
peatedly written to by increasing number of producers.
For low-contention workloads, an initially full queue was
repeatedly read by increasing numbers of consumers. Re-
call that consumers do not remove messages from the
queue; each consumer operation reads all the messages in
the queue. For both workloads, we measured the through-
put and latency as we increased load.

For this experiment, there was a single queue dis-
tributed across 4 partitions. Thus, in contrast to the scal-
ability measurements above, the workload is inherently
unscalable. As a further parameter to the experiment,
we varied the number and size of messages sent by the
clients. Recall that each client executes a single thread
that repeatedly sends batches of synchronous messages.
In the first configuration, clients send 200 messages of
200 bytes in each batch. In the second configuration, they
send 4 10-KB messages in each batch.

Figures 6 (a) and (b) show the producer results.
With 200-byte messages, Callinicos outperforms mini-
transactions at peak throughput by a factor of 2.1. More-
over, due to the high number of aborts experienced by
mini-transactions, producers need to resubmit their re-
quests, which increases latency. With 10k-byte messages,
Callinicos outperforms mini-transactions by a factor of
2.5. Both systems present similar latency up to 2 clients,
but the latency of mini-transactions increases quickly with
larger number of clients. In both configurations, we can
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Figure 6: Compared to mini-transactions, Kassia producers demonstrate higher throughput and lower latency compared
to mini-transactions for contention-heavy workload. Kassia consumers show no overhead for contention-light workload.

also observe that the two system behave differently once
they reach their point of saturation: armored-transactions
experience quite stable performance, while in the case of
mini-transactions performance drops.

Figures 6 (c) and (d) show the consumer results. In
the absence of contention, mini-transactions perform
slightly better than Callinicos armored-transactions with
small messages; with larger messages the difference
between the two systems is negligible. In both cases,
mini-transactions consistently display lower latency than
armored-transactions, although as for throughput, the dif-
ference is more noticeable with small messages. Since
the consumer workload is read-only, there are no aborts
and both systems sustain throughput at high load.

Our experiments show that Callinicos provides better
throughput and latency than mini-transactions for high-
contention workloads. For low-contention workloads,
Callinicos adds no additional overhead.

5.2 Buzzer distributed graph store
As a second application, we implemented a Twitter clone
named Buzzer, which is backed by a distributed graph

store. Most social networking applications exhibit only
eventually-consistent semantics [48]. As a result, users
have become accustomed to odd or anomalous behav-
ior (e.g., one friend sees a post, and another doesn’t).
In contrast, Buzzer not only provides strict serializabil-
ity, but also tolerates Byzantine failures. Moreover, graph
stores offer a useful point-of-comparison because: (i) they
demonstrate a different design from queues where con-
tention is less pronounced (i.e., all writers don’t update
the same memory location), and (ii) graphs have become
increasingly popular for applications in telecommunica-
tions, transportation, and social media [42].

In Buzzer, there are operations to post a message, fol-
low a user (friends), and to retrieve one’s timeline (i.e., an
aggregate of the friends’ posts). Posts are single-round,
single-partition update transactions. Follows are single-
round, multi-partition update transactions. Timelines are
multi-round, multi-partition read-only transactions.

The level of contention in a graph store depends on
the workload and the structure of the graph on which
the workload is run. For these experiments, we used
a single workload that was composed of 85% timeline,
7.5% follow, and 7.5% post operations, and varied the
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contention by altering the connectivity of the graph. For
typical graph queries that update data as they traverse
the graph, dense, highly connected graphs exhibit high
contention, while sparse graphs exhibit low contention.
We opted for a small social network with 10,000 users.
Then, using statistics from Twitter [46], we inferred that
the “friending” behavior of Twitter users approximately
follows a Zipf distribution with size 2,500 and skew of
1.25. We built our social network graph by sampling that
Zipf distribution. We call this network high-contention.
To contrast with this highly connected network, we cre-
ated another network using a Zipf distribution with size
25 and skew 1.25. We call this network low-contention.

In these experiments, we explored the question of how
Callinicos’ conflict resolution compares to optimistic con-
currency control. The experiments measure the maximum
throughput for the workload described above.

While partitioning the queue data was relatively
straightforward, ensuring a good partitioning of the social
network data is somewhat more complex. We distributed
relationships such that each user has a 50% probability
of having her friends’ data on the same partition where
her data is. If not on the same partition, all friends’ data
is placed on two partitions, the user’s partition and an-
other partition chosen randomly. For example, for the
four-partition scenario all data accessed by a user has a
50% chance of being fully contained in a single partition
and a 50% chance of being spread across two different
partitions (16.67% for each combination). We enforced
this restriction to assess the scalability of the system as
the number of partitions increase.

The results, seen in Figure 7, show that Callinicos’ con-
flict management adds little overhead for low-contention
workloads. However, for high-contention workloads, Call-
inicos’ demonstrates significantly better throughput. In
other words, although ordering conflicting transactions
adds a slight overhead, it avoids aborts which are even
more detrimental to performance. Moreover, these ex-
periments show that for both high-contention and low-
contention workloads, the throughput of Callinicos scales
with the number of available partitions.

6 Related work

Many storage systems have been designed and imple-
mented. In this section, we compare Callinicos to many
of these systems from a few different perspectives.

Distributed storage systems. Database systems that
implement some notion of strong consistency (e.g., serial-
izability, snapshot isolation) traditionally use two-phase
locking (2PL), optimistic concurrency control (OCC),
or a variation of the two to coordinate the execution
of transactions. Examples of distributed database sys-
tems based on 2PL are Gamma [20], Bubba [13], and
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Figure 7: Buzzer’s maximum throughput under low- and
high-contention for 2 and 4 partitions (2 P and 4 P).

R* [32]. Spanner [17] uses 2PL for update transactions
and a timestamp-based protocol for read-only transac-
tions. Examples of recent systems based on OCC are
H-Store [25] and VoltDB [49]. MDCC [27] and Geo-
DUR [40, 41] use OCC for geo-replicated storage. Perco-
lator implements snapshot isolation using OCC [12]. In a
seminal paper, Gray et al. [24] have shown that two-phase
locking and optimistic concurrency control are exposed to
a prohibitively high number of deadlocks and aborts when
used to handle replication. Fundamentally, the problem
stems from the fact that requests are not ordered among
replicas, a limitation that is addressed by Callinicos.

Storage systems with limited transactions. Several
distributed storage systems improve performance by sup-
porting limited types of distributed transactions. For ex-
ample, MegaStore [7] only provides serializable trans-
actions within a data partition. Other systems, such as
Granola [18], Calvin [44] and Sinfonia [2] propose con-
currency control protocols for transactions with read/write
keys that are known a priori. Moreover, many cloud-
oriented storage systems have abandoned transactional
properties to improve performance. For example, Apache
Cassandra [3], Apache CouchDB [4], MongoDB [33],
and Amazon Dynamo [19] offer no transaction support.
When using such systems, applications must handle con-
tention explicitly, by preventing conflicts from happening
or by allowing weaker consistency (e.g., eventual con-
sistency). NoSQL scalable storage systems that offer
transactions are usually limited to single-row updates
(e.g., [15]) or single-round transactions (e.g., [2, 18]), and
employ optimistic concurrency control (e.g., [2, 7, 35]).

Storage systems with support for contention. A few
systems have been proposed that can handle contention,
although none of these systems tolerate Byzantine fail-
ures. Calvin [44] deals with contention by preemptively
ordering all transactions. It adds a sequencing layer on
top of any partitioned CRUD storage system and enables
full ACID transactions. The sequencing layer operates in
rounds. Each round lasts 10 ms, which is used to batch
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incoming requests. Once a sequencer finishes gathering
requests for a given round, it exchanges messages with
other sequencers to merge their outputs. The sequenc-
ing layer provides ordering without requiring locks, and
supports transactional execution without a commit round.
Calvin, however, does not support multi-round execution.

Rococo [34] uses a dependency graph to order trans-
actions. Transactions are broken into pieces that can
exchange data. Pieces are either immediate or deferrable.
An offline checker analyzes all transactions in the system
and decides which can be reordered based on their pieces.
Once executed, an immediate piece cannot be reordered,
i.e., transactions with conflicting immediate pieces can-
not be reordered. A central coordinator distributes pieces
for execution, forwards intermediary results, and collects
dependency information. At commit, each server uses
the dependency graph information to reorder deferrable
pieces. Callinicos can reorder all types of transactions and
does it using a simpler algorithm based on timestamps.

H-Store [43] promotes the idea of favoring single-
partition transactions executed in a single thread with-
out any contention management. This approach ensures
optimal performance under no contention. When the num-
ber of aborts increases (i.e., under heavier contention),
H-Store first tries to spread conflicting transactions by in-
troducing waits, and then switches to a strategy that keeps
track of read and write sets to try to reduce aborts. Call-
inicos keeps track of the read and write sets by default,
and orders and enqueues conflicting transactions instead
of aborting them. Multi-round execution in H-Store de-
pends on a centralized coordinator, which is responsible
for breaking transactions into subplans, submitting these
subplans for execution, and executing application code to
determine how to continue the transaction.

A speculative execution model on top of H-Store is
proposed in [25], where three methods of dealing with
contention are compared. The first method, blocking, sim-
ply queues transactions regardless of conflict. The second
method, locking, acquires read and write locks, and sus-
pends conflicting transactions. If a deadlock is detected,
the transaction is aborted. The third method is speculative
execution. Conflicting multi-partition transactions are ex-
ecuted in each partition as if there were no contention, and
if they abort due to contention their rollback procedure
requires first rolling back all subsequent transactions and
then re-executing them. Multi-round execution follows
the model proposed by H-Store. Experimental evaluation
of the speculative model shows that for workloads that
incur more than 50% of multi-partition transactions, the
throughput of the speculative approach drops below the
locking approach. In a multi-round transaction bench-
mark, the throughput of the speculative model dropped to
the level of the blocking approach.

Granola [18] uses timestamps to order transactions.

The timestamps are used in two different types of trans-
actions: independent and coordinated. For independent
transactions, replicas exchange proposed timestamps, se-
lect the highest proposal, and execute the transaction at
the assigned timestamp. Coordinated transactions also
exchange timestamp proposals to order transactions, but
they abort if any replica votes ABORT or detects a conflict.

Byzantine fault-tolerant storage systems. Some stor-
age systems have been proposed that can tolerate Byzan-
tine failures. MITRA [30, 31] and Byzantium [22] are
middleware-based systems for off-the-shelf database repli-
cation. While MITRA implements serializability, Byzan-
tium provides snapshot isolation. BFT-DUR [36] and
Augustus [35] are transactional key-value stores. BFT-
DUR is an instance of deferred update replication and
can support arbitrary transactions. Augustus provides an
interface similar to Sinfonia, with transactions with opera-
tions defined a priori. All these systems rely on optimistic
concurrency control to ensure strong consistency. Thus,
in the case of contention they are exposed to many aborts.
HRDB [47] provides BFT database replication by relying
on a trusted node to coordinate the replicas. Although
HRDB provides good performance, the coordinator is a
single point of failure. DepSky [9] provides confidential-
ity for cloud environments. It offers users a key-value
interface without the abstraction of transactions.

7 Conclusion

Callinicos introduces a generalized version of the single-
round mini-transaction model. Multi-round armored-
transactions are modeled using a transaction matrix, in
which rows indicate the rounds, columns indicate the parti-
tions, and each cell contains the commands that a partition
will execute during a round. Callinicos allows for cross-
partition communication, and, uses a timestamp-based
approach to reorder and ensure the execution of conflict-
ing transactions. Using Callinicos, we’ve implemented
Kassia, a distributed BFT message queue, and Buzzer, a
social network backed by a distributed graph store. that
scales with the number of partitions. Overall, our experi-
ments show that Callinicos offers scalable performance
for high-contention workloads, and that the design allows
users to implement robust, performant distributed data
structures.
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