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Abstract

We present MoSQL, a MySQL storage engine using a transactional distributed key-value
store system for atomicity, isolation and durability and a B+Tree for indexing purposes.
Despite its popularity, MySQL is still without a general-purpose storage engine pro-
viding high availability, serializability, and elasticity. In addition to detailing MoSQL’s
design and implementation, we assess its performance with a number of benchmarks
which show that MoSQL scales to a fairly large number of nodes on-the-fly, that is, ad-
ditional nodes can be added to a running instance of the system.
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1 Introduction

Relational database management systems (RDBMS) have had remarkable staying power in real-world appli-
cations despite many alternative approaches showing promise (e.g., XML-based storage, object databases).
In recent years, however, the realities of scaling database systems to Internet proportions have made cus-
tomized solutions more practical than general-purpose one-size-fits-all RDBMSs [32]. Despite the disad-
vantages of using a general-purpose RDBMS in comparison to more specific solutions, we expect that a
significant number of legacy applications will remain in the years ahead and thus the need to improve the
scalability, performance, and fault-tolerance of RDBMSs is acute.

MySQL is an open-source RDBMS at the core of many multi-tier applications based on the “LAMP soft-
ware stack” (i.e., Linux, Apache, MySQL and PHP). Although the LAMP stack initially thrived in environments
where the cost, complexity, and capabilities of enterprise-grade frameworks and RDBMSs were prohibitive
or unnecessary, MySQL has also been deployed in large and complex environments (e.g.,
Wikipedia, Google, Facebook, Twitter). Yet, despite its popularity, MySQL is essentially a standalone database
server. Multi-server deployments are possible but provide weaker system guarantees than single-server con-
figurations (e.g., weak isolation levels, absence of distributed transactions). This is clearly detrimental to the
many applications based on MySQL that have evolved into large and mature systems with originally unex-
pected scalability, fault tolerance, and performance requirements.

The continuing migration of services and applications to the web has exposed RDBMSs to workloads that
are larger, growing faster, and behaving more unpredictably. This trend typically results in over-provisioning
in the difficult-to-scale database tier to ensure responsiveness for all expected ranges of client load, while
costly and disruptive system upgrades to meet growing scalability requirements remain a reality. Elastic stor-
age holds the promise of saving over-provisioning costs while maintaining high performance and low latency,
especially for highly variable or cyclical workloads [2].

MoSQL, the distributed storage engine we have designed and implemented, provides near-linear scala-
bility with additional nodes and strongly consistent, serializable transaction isolation. MoSQL stores data
across several storage nodes, with each storage node containing a subset of the dataset in memory only. Al-
though each node is responsible for a portion of the database, it provides upper layers the abstraction of a
single-partition system: database entries not stored locally on a storage node are fetched from the remote
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nodes responsible for storing them; for performance, remotely fetched entries are locally cached. This mech-
anism is far more efficient than the one used by standalone databases, which fetch missing items in the cache
from an on-disk copy of the database.

MoSQL’s storage nodes offer simplified concurrency control and single-threaded execution; parallelism
can be exploited by deploying multiple node instances on a single physical server. Update transactions pro-
ceed optimistically: there is no global synchronization of update transactions across nodes during execution
(i.e., no distributed locks and deadlocks [15]). At commit time, update transactions are certified; the certifier
decides which transactions must be aborted in order to keep the database in a consistent state. Read-only
transactions always see a consistent snapshot of the database and need not be certified. This mechanism
enables high performance in large databases where contention for the same data is infrequent.

We have implemented all the features described in the paper and conducted a performance evaluation of
MoSQL using the TPC-C benchmark. We show that MoSQL is capable of scaling TPC-C throughput sublin-
early to 16 physical servers. With two physical servers, MoSQL is able to surpass the throughput of a single-
server instance of MySQL using the standard transactional storage engine InnoDB, while still maintaining
elastic capability and fault tolerance. We also demonstrate the elastic capabilities of MoSQL: we add clients
to a running system until a given latency threshold is passed and then add nodes to the storage tier and
launch a new MySQL node and redistribute the clients.

The rest of this paper is structured as follows. Section 2 details MoSQL’s design. Sections 3 and 4 dis-
cuss isolation and performance considerations. Section 5 presents an experimental evaluation of MoSQL’s
prototype. Section 6 reviews related work and Section 7 concludes the paper.

2 System design

2.1 Model and definitions

We consider an environment composed of a set C = {c1, c2, ...} of client nodes and a set S = {s1, ..., sn } of
database server nodes. Nodes communicate through message passing and do not have access to a shared
memory. We assume the crash-stop failure model (e.g., no Byzantine failures). A node, either client or server,
that does not crash is correct, otherwise it is faulty.

The environment is asynchronous: there is no bound on message delays and on relative processing
speeds. However, we assume that some system components can be made fault tolerant using state-machine
replication, which requires commands to be executed by every replica (agreement) in the same order (to-
tal order) [18, 26]. Since ordered delivery of commands cannot be implemented in a purely asynchronous
environment [7, 13], we assume it is ensured by an “ordering oracle" [18].

The isolation property is serializability: every concurrent execution of committed transactions is equiv-
alent to a serial execution involving the same transactions [4]. Serializability prevents anomalous behaviors,
namely, dirty reads, unrepeatable reads, lost updates and phantoms [16].

2.2 Overview

The architecture of MoSQL decouples some of the components typically bundled together in monolithic
databases. In particular, concurrency control and logging management are separate from data storage and
access methods. In this sense our approach is similar to the model proposed in [20] and expands upon the
work in [34] and [27]. Figure 1 shows the architecture of MoSQL.

In brief, MoSQL is composed of three main components:

• MySQL servers handle client requests by parsing SQL statements and executing them against the stor-
age engine. MySQL allows third-party storage engines through its pluggable storage engine API. This
allows us to plug in our calls to our distributed storage nodes.

• Storage nodes handle MySQL requests and keep track of the transactional state. Each storage node
keeps a subset of the dataset and indexes in-memory only. Storage nodes act as a distributed store in
that read requests are either served from local memory or from the memory of a remote storage node.
This is effective since retrieving rows from a remote storage node is usually faster than retrieving rows
from local disk.

• The Certifier is a replicated state machine that logs transactions on disk, ensures serializable transac-
tion executions, and synchronizes system events (i.e., recovery, storage node additions and removals).
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Figure 1: MoSQL global architecture.

At storage nodes, transactions proceed without synchronization. At commit time, storage nodes sub-
mit transactions to the certifier, which ensures serializable execution.

Any number of MySQL instances can be connected to any number of storage nodes. Depending on the
workload, it may be advantageous to assign multiple storage nodes per MySQL instance, or vice-versa. We
typically deploy one MySQL process together with a small number of storage nodes per physical machine,
depending on how many cores are available in the machines.

In the following sections, we detail each one of MoSQL components.

2.3 Storage nodes

Storage nodes are divided into three distinct layers, where each layer builds upon the abstraction offered
by the layer below. The bottom layer implements a distributed storage abstraction. Each storage node is
assigned a subset of entries, and the storage layer provides operations to read and write such entries. This
layer abstracts away the fact that entries are distributed among storage nodes: if a read operation accesses an
entry that is not stored locally, the operation is turned into a remote read request sent to the node responsible
for storing that entry. The transactional layer uses read and write operations provided by the storage layer
to keep track of the state of active transactions. Some metadata is kept for each transaction, such as its
snapshot timestamp (described later), and the set of entries it has read and written, i.e., the transaction’s
readset and writeset. This metadata is later used for certifying transactions. Finally, the B+Tree layer adds
indexing capabilities and exposes the typical operations of a B+Tree index for searching, scanning and adding
entries.

Storage nodes are “elastic” and can be added or removed while MoSQL is running. We distinguish two
reasons for adding storage nodes: (1) to improve performance and accommodate sudden workload spikes;
or (2) to increase aggregate system main memory. For the latter case, increasing the capacity of storage nodes
requires adding one or more machines to the system and redistributing the dataset so that new storage nodes
take ownership of a portion of entries to even out the load. Reconfigurations should be relatively rare and
only necessary when the system reaches a certain threshold of memory utilization.

Reconfiguration can be disruptive, so we use volatile storage nodes to handle spikes in the workload. When
spawned, a volatile storage node starts with an empty storage and does not take ownership of entries. As
transactions are executed, volatile storage nodes will turn read requests into remote requests (using the same
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mechanism we mentioned above) and cache the results of the remote requests locally. We demonstrate and
evaluate the effects of adding volatile storage nodes in Section 5.

The storage layer of a node implements a multiversion store with operations to read specific versions
and write new versions of entries. Entries are partitioned among storage nodes based on their key. A node
is the owner of all entries assigned to it as a result of the partitioning scheme. We use consistent hashing
in our prototype as the partitioning scheme, but other schemes could be used. Consistent hashing has the
advantage of reducing the number of entries that must be moved between nodes as a result of a membership
change (i.e., adding or removing a node) [12]. In addition to its assigned entries, storage nodes can cache any
other entries, as long as space is available. An entry is typically cached after it is accessed remotely. Cached
entries allow a storage node to exploit access locality, and thereby improve performance. Volatile storage
nodes are a particular instance of this design in that they cache entries without taking ownership of them.

The transaction layer is responsible for transaction execution. For each new transaction, it creates a
transaction record, containing the transaction’s unique identifier, readset, writeset, and snapshot timestamp.
The transactional layer exposes a BerkeleyDB-like key-value interface [22] supporting the following core op-
erations: transaction_get(k ), transaction_put(k , v ), transaction_commit() and transaction_rollback().

When a transaction t executes its first transaction_get operation, t ’s snapshot timestamp is assigned the
current value of the node’s transaction counter. All further transaction_get operations of t will be consistent
with t ’s snapshot timestamp. This guarantees that read-only transactions always see a consistent view of
the database and do not need to be certified. The transaction counter of a node is incremented each time a
transaction is locally committed.

The B+Tree layer has support for variable key and value sizes, multi-part table keys (i.e., keys composed
of multiple fields), recursive search, and sequential reads along the leaf nodes. However, in place of system
calls such as fread(), fwrite() and fsync() to read, write and flush data to local disk storage, as with a traditional
implementation, we have calls to the transaction_get(), transaction_put() and transaction_commit() APIs
provided by our transaction layer. Our B+Tree supports the typical B+Tree operations, including search(k),
insert(k,v), update(k,v) and delete(k).

In order to make it possible to index arbitrary types of data with different collation strategies, our B+Tree
layer permits the user to define a specific number of fields that will be indexed, along with a pointer to a
comparator function that determines whether one field is smaller than, equal to, or greater than the other.

New B+Tree node structures are assigned a unique key and persisted in our storage layer using the Mes-
sagePack serialization library.1 Optionally, B+Tree nodes can be compressed after serialization. Multiple
B+Trees can be stored within the same storage node, and multiple active client sessions are supported. These
features enable the use of a single storage node to store multiple indexes on multiple tables with the API en-
abling seamless switching among them.

2.4 Certifier

The certifier has three main tasks: (a) checking whether the items read by a committing update transaction
are up-to-date when the transaction requests to commit; (b) logging committed transactions and system
events (e.g., membership events) to disk; and (c) propagating new entries created by committed transactions
to all nodes. The certifier is replicated for fault-tolerance using state-machine replication [17, 26] and Paxos
[18, 21].

To certify a transaction t , the certifier checks whether the readset of t intersects the writeset of transac-
tions that committed after t executed its first transaction_get() operation. We use Bloom filters to efficiently
implement the intersection between two sets. The intersection of two Bloom filters is empty if the result of
and-ing their bitmaps is zero. Bloom filters offer two advantages: (1) finding their intersection is linear in the
size of their bitmap; and (2) the information stored in Bloom filters is compressed, thus reducing memory
requirements. However, Bloom filters have the disadvantage of false positives, resulting in a tunable number
of transactions unnecessarily aborted.

Besides storing the state needed for transaction certification, each certifier replica also stores the log of
committed transactions, which allows a storage node to recover from a certifier replica. The replicas store
the log on stable storage. To avoid scanning a large portion of the log to find the last version of a key, certifier
replicas maintain hints to the location of the last version of a key in the log.

The certifier also helps nodes to be added online. To join a running MoSQL instance, a node announces
itself to the certifier. When the certifier receives this request it forwards it to all nodes. This mechanism

1http://msgpack.org/
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Figure 2: B+Tree example for employee relation.

globally serializes the membership change request with other system events.

2.5 Storage engine

MoSQL effectively turns MySQL into a middleware for interpretation and execution of SQL statements. Ex-
isting applications need not make any significant changes in order to use MoSQL, they only need to make
use of a client connection pool software to distribute connections to available MySQL servers, or “MySQL
instances” in our parlance.

MoSQL implements five core interface methods corresponding to the typical database operations for
persisting, scanning, deleting and retrieving data in a table: index_read(), index_next(), write_row(), up-
date_row() and delete_row().2 Parsing and optimization of SQL statements are handled by higher layers
within MySQL and are not part of the scope of our implementation (see Section 4). Depending on the work-
load and characteristics of the row data, the storage engine is capable of storing the packed representation of
the row data inside the B+Tree node itself, or storing the primary key value in the primary key index and using
this value to retrieve the row data from the storage layer through a transaction_get() operation. Our storage
layer currently imposes approximately a 100-byte overhead per key stored. For tables with “skinny” rows, this
can result in a substantial overhead, and it is far more sensible to store both primary key and row data inside
the B+Tree node itself. Conversely, for tables with wide rows, storage of the row data inside the B+Tree node
will greatly increase the size of the nodes and potentially waste much bandwidth when transferring B+Tree
nodes.

Secondary indexes are also supported with the secondary key stored in the key part of the B+Tree, and a
primary key pointer stored in the value part that can then be used to retrieve the pointed-to row data from
the storage layer.

3 Isolation considerations

In MoSQL, serializable transaction isolation is provided by the transaction layer, the B+Tree layer, and the
certifier combined. Dirty reads and unrepeatable reads are avoided by the transaction layer: read requests
return committed items which correspond to a consistent database snapshot. Lost updates are checked dur-
ing certification, using transaction readsets and writesets, collected during the execution of transactions by
the transaction layer. Phantoms [16] are checked during certification with information about the B+Tree, as
we now explain.

For our discussion to follow, we consider operations done against a relation employee with attributes id
and name. Figure 2 shows an example of the primary key index for this table. Notice that table entries are not
stored within the B+Tree structure in this example. Each square corresponds to a key-value pair stored in our
storage layer.

Suppose transactions t1 and t2, as defined in Figure 3, execute concurrently. Both see a consistent view of
the database as of their respective start times, each being assigned a snapshot timestamp when they perform
their first transaction_get() operation. Transaction t1 and t2 both read table entries (e) and (f) (see Figure 2)

2http://forge.mysql.com/wiki/MySQL_Internals_Custom_Engine
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SELECT * FROM employee 

      WHERE id BETWEEN 90 AND 100;

 INSERT INTO employee 

       VALUES (93,’Jane Doe’);

SELECT * FROM employee 

    WHERE id BETWEEN 90 AND 100;

 INSERT INTO employee 

           VALUES (91,’John Doe’);

t
1

t
2

Figure 3: MoSQL phantom anomaly involving transactions t1 and t2.

 INSERT INTO employee 

       VALUES (130,’Jane Doe’);

 INSERT INTO employee 

           VALUES (60,’John Doe’);

t
3

t
4

Figure 4: Concurrent execution of t3 and t4 may result in unnecessary aborts.

and each transaction adds a new table entry, with key 91 and 93, respectively. As a result, if during certification
the certifier considers only table entries to detect conflicts, both transactions will commit, despite the fact
that the execution is not serializable (i.e., in a serializable execution, the second transaction must see the
value insert by the first transaction). MoSQL avoids this problem because B+Tree entries are also used in
certification. Entries (a), (b), and (c) will be in the readset of t1 and t2, and the insert operations of t1 and t2

both change entry (b), causing it to be in the writeset of both transactions. As a result, t1 and t2 will conflict
on (b) and only one transaction will pass certification.

Our approach to preventing phantoms resembles the idea of granular locks [16], applied to certification of
B+Tree entries, and as such, it is subject to similar tradeoffs. In particular, it results in some concurrent non-
conflicting transactions being aborted, depending on the B+Tree node size, the specific arrangement of keys,
and the execution order. For example, consider transactions t3 and t4 in Figure 4. To insert table entry with
key 60, t3 reads entries (a) and (b) and writes (b); t4 reads and writes entries (a) and (d) since these B+Tree
nodes will be split. Thus, if t3 is certified after t4, then it will be aborted, even though the two transactions do
not access any common table entries (although they access common B+Tree entries).

4 Performance considerations

MoSQL scales throughput by clustering multiple storage nodes under a single MySQL node or multiple MySQL
nodes. As we discuss in this section, having multiple instances of MySQL sharing a common underlying stor-
age has important implications on performance optimization. In brief, this stems from the fact that while
distributed indexing and storage are provided by the lower layers of our architecture, an unmodified MySQL
optimizer is still used to do query planning and optimization, and was never intended to be used in settings
with multiple interdependent instances.

One of the key advantages of a general-purpose RDBMS is the flexibility and expressive power provided
by SQL and the heuristics used by the optimizer to ensure that queries are efficiently executed. In order to
work well, however, the optimizer requires statistics that reflect the state of the system.

We illustrate the implications of MoSQL’s design with two statistics used by the MySQL optimizer that
must be provided by the storage layer: the estimated cardinality of the table (i.e., number of rows or records)
and the records_in_range(p1, p2) statistic, a storage engine interface method that returns the estimated num-
ber of records in the storage layer between predicates p1 and p2.

In our current implementation we do not collect any statistics about the distribution of keys. We use a
naive, local estimate for the cardinality, based on the number of locally attempted insert statements (deletes
and inserts which eventually abort do not cause this value to decrease); optionally we can scale this value
to the number of nodes in the system. When a node has no information about a table, a constant value is
assumed (in our experiments, this constant is 5000).

In order to provide an estimate for the records_in_range(p1, p2) statistic, we have assumed a uniform
distribution of rows among the keys and exponentially fewer rows estimated for predicates involving a greater
number of parts of the index, i.e., for a table with primary key (k1, k2, ..., km ) we assume that the number of
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rows matching a predicate range using the first i parts of the index is proportional to C m−i , where C is an
appropriate constant (10 for our experiments). We have found this naive approach to be sufficient for the
relatively simple TPC-C queries and also to result in good query plans for most of our complex validation
queries operating against the TPC-C schema.

Moreover, with typical OLTP workloads involving a set of predefined queries that are prepared, potential
optimizer mistakes due to inaccurate or incomplete statistics can be mitigated through overrides: in our
modified TPC-C client we make extensive use of the FORCE INDEX extension to ensure an optimal access
plan is used. We note that a similar issue affects MySQL Cluster.3

Finally, notice that MoSQL is less subject than traditional databases to the potential problems of poor
access plans since all data is stored in main memory. In order to create an appropriate query plan, a tradi-
tional database optimizer must take into account, among other things, the speed of random index lookups,
sequential disk read speed, and index scan speed, since traditional databases must take great care to avoid
expensive disk accesses. With all data stored in-memory in MoSQL and accessed by key, all accesses effec-
tively become “random” accesses, with the only important difference between keys that are cached local to a
node and those which must be retrieved remotely from another storage node.

5 Performance evaluation
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Figure 5: TPC-C throughput (L) for MySQL+InnoDB (1 server) and MoSQL (1-16 nodes) and latency (R) for different
transaction types in MoSQL.

We have evaluated MoSQL on the TPC-C benchmark and a microbenchmark, used to stress particular
parts of the system. All tests were done on a cluster of servers with 8GB of RAM, two quad-core, 2.50GHz Intel
Xeon L5420 CPUs and HP 500GB 7200 RPM SATA HDDs. Unless otherwise noted, we have colocated on each
physical server a single mysqld instance and two storage nodes.

Client connections to MySQL are assigned to underlying storage nodes in a round robin fashion. For ex-
periments involving InnoDB, we have configured it with a 2GB buffer pool, serializable transaction isolation
and to flush transactions to disk on commit.4 For tests involving MySQL Cluster, we used a single SQL node
and data node per server, with mostly default configuration options.5 We have used MySQL 5.1.56 as our
base version for the MoSQL storage engine and for tests involving InnoDB. For MySQL Cluster we have used
version 7.2.5 (5.5.20-ndb-7.2.5).

5.1 TPC-C benchmark

For our TPC-C experiments, we have loaded 10 standard warehouses per physical node. Our TPC-C client is
a modified version of the MySQL TPC-C benchmark tool made available by Percona,6 which itself is based

3MySQL recommends the use of optimizer overrides in cases where the lack of an accurate records_in_range statistic is an issue:
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster-limitations-performance.html

4innodb_flush_log_at_trx_commit = 1, innodb_buffer_pool_size = 2G and transaction_isolation = SERIALIZABLE
52 replicas, 800M/380M data/index memory
6https://code.launchpad.net/~percona-dev/
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on the reference C-based implementation provided in the TPC-C specification. We have modified most of
the SQL statements to use the FORCE INDEX statement to override optimizer decisions about what index to
use, and configured each client thread to be “sticky” to a particular warehouse or range of warehouses for the
duration of its execution, so as to improve cache performance on the underlying data node.

From the nine tables in the TPC-C schema, we configured theitem, order_line, orders, new_order
and history tables to store rows inside the B+Tree leaf node; the warehouse, district, customer,
stock tables were configured to store rows in a separate key-value in our storage layer. None of the tables
were configured with compression.

In Figure 5 we show peak throughput for MoSQL from one to sixteen physical servers; we also show the
points representing ideal scalability and the performance of InnoDB on a single server with increasingly large
warehouses. Due to the nature of the transactions in the TPC-C benchmark, and the increasing size of the
database to sixteen nodes, MoSQL does not achieve perfect scalability. The reason for this is primarily due to
the reduced effectiveness of the cache as nodes are added: as the database grows in size, and the share of keys
that a single storage node owns decreases, there is a greater likelihood that keys must be retrieved remotely.

We also include for reference the peak performance of InnoDB with the same sized databases on a sin-
gle server. As expected, performance degrades rapidly as the size of the database surpasses the configured
amount of memory for the buffer pool, increasing the chance that row retrievals happen from disk. We note
that the threshold for where MoSQL overtakes the throughput of single-server InnoDB is at approximately 2
nodes (i.e., 20 warehouses). While memory could be added to the single system to maintain performance, at
some point, as the size of the database grows beyond available memory, the benefit of an elastic system such
as MoSQL is clear.

In Figure 6 we show two example runs of the TPC-C benchmark, one against an 80-warehouse, 8-node
system, and another against a 40-warehouse, 4-node system, to illustrate the problem of cache performance
on increasingly large systems. We show New-Order transaction throughput and the total number of remote
requests performed, system wide, over time, on a cold-started system (i.e., freshly loaded from a database
backup, no keys cached). As the systems run, there is a rapid improvement in throughput as keys are cached
locally, but note that the eight-node system remains consistently under double the throughput of the four-
node system, and that similarly the ratio of remote requests between the eight and four node configurations
stays slightly above two.

In Figure 5, the 90th-percentile latency of the Stock-Level transaction from one to sixteen nodes is most
reflective of this problem; the Stock-Level transaction is a heavy, read-only transaction that can potentially
read several hundred rows from the large order_line table. As the number of remote calls increases relative
to the size of the system, this transaction shows the greatest degradation in latency.
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Figure 6: Remote reads and New-Order throughput over time for 4- and 8-node configurations.
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5.2 Microbenchmark

We have also evaluated MoSQL with microbenchmarks against a simple table with an integer primary key and
single text field. The table has been configured uncompressed and with row storage inside the B+Tree leaf
node. All operations were done by assigning each benchmark thread a range of keys and randomly choosing
from that range and applying either a select, insert or update statement, writing a 10-byte string along with
the primary key value. All tests were done with a table of 3.2M rows and each statement done as a separate
transaction. The size of the database was held constant in these tests to help eliminate the effect of the cache
on performance (i.e., the database size can easily fit into the cache of a single node).

As can be seen in Figure 7, updates and selects both show near perfect scalability to 16 nodes. Inserts show
slight performance degradation on a per-node basis due to the slight increase in the number of transaction
aborts per node as nodes are added. Figure 8 shows the corresponding latency for the throughput values. As
a reference, we also show the performance of MySQL Cluster; we note, however, that MySQL Cluster offers
weaker isolation (See Section 6).
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Figure 7: Microbenchmark throughput for MoSQL and MySQL Cluster.

For the update workloads at 16 nodes, due to the high commit frequency, the single certifier process
begins to approach saturation and is a natural bottleneck with our current architecture. Scaling the system
to configurations with more nodes would require partitioning the work of the certifier, as discussed in [28].

5.3 Online node addition

Depending on the workload, MoSQL is capable of providing improved performance by the addition of volatile
storage nodes to a running system. This effectively allows the system to use more CPU for transaction pro-
cessing and additional memory for caching, but without changing key ownership at the storage node level or
increasing the overall capacity of the system, making them ideal for responding to temporary spikes in client
load.

To illustrate, we have run an example scenario: we load a 60-warehouse TPC-C system into a four-node
MoSQL configuration and steadily increase client load by eight clients every twelve seconds. We then add a
fifth and then sixth MySQL server at times 72 and 108 and redistribute the client load. Figure 9 shows the run
in its entirety, along with the same workload against a static four-node baseline. Throughput reaches a peak
of about 18000 TpmC at time 50 and then latency begins increasing more rapidly. Throughput and latency
begin to diverge from the static system in the shaded area corresponding to where the fifth node is added,
with the augmented system reaching a peak throughput of 24500 TpmC after the addition of a sixth node,
while the static system never surpasses 19500, a 25% improvement in throughput in less than 60 seconds.
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Figure 8: Microbenchmark latency for MoSQL and MySQL Cluster.

6 Related Work

The scaling problems of data management architectures have been studied for quite some time, while the
desire for elasticity is a relatively recent phenomena with the increasing unpredictability and variability of
workloads in internet-connected applications. In this section, we first focus on the scalability of data man-
agement systems in general and then on solutions specific to MySQL. We conclude with a short discussion
on elasticity.

6.1 Database scalability

Many scalable storage and transactional systems have been proposed recently, several of which expose ap-
plications to a simple interface based on read and write operations (i.e., “key-value" stores). Some storage
systems (e.g., [6, 12, 36]) guarantee eventual consistency, where operations are never aborted but isolation is
not guaranteed. Some storage systems such as Dynamo [12] and Cassandra7 guarantee eventual consistency,
where operations are never aborted but isolation is not guaranteed. Eventual consistency allows replicas to
diverge in the case of network partitions, with the advantage that the system is always available. However,
clients are exposed to conflicts and reconciliation must be handled at the application level.

COPS [19] is a wide-area storage system that ensures a stronger version of causal consistency, which in
addition to ordering causally related write operations also orders writes on the same data items. Walter [31]
offers an isolation property called Parallel Snapshot Isolation (PSI) for databases replicated across multiple
data centers. PSI guarantees snapshot isolation and total order of updates within a site, but only causal or-
dering across data centers. Differently from previous works, Sinfonia [1] offers stronger guarantees by means
of minitransactions on unstructured data. MoSQL differs from these systems in that it implements both a
rich interface (i.e., SQL) and provides stronger guarantees (i.e., serializability).

Google’s Bigtable [8] and Yahoo’s Pnuts [9] are distributed databases that offer a simple relational model
(e.g., no joins). Bigtable supports very large tables and copes with workloads that range from throughput-
oriented batch processing to latency-sensitive applications. Pnuts provides a richer relational model than
Bigtable: it supports high-level constructs such as range queries with predicates, secondary indexes, materi-
alized views, and the ability to create multiple tables. However, neither of these databases offer full transac-
tional support. Spanner [10], Google’s successor to BigTable [8], offers a semi-relational model with wide-area
transaction support, but relies on an assumption of globally-meaningful timestamps provided through spe-

7http://cassandra.apache.org/
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Figure 9: Adding two storage nodes online.

cialized hardware. Google’s Megastore [3] similarly provides a relational model and wide-area transaction
support, but with low latency only within small partitions; cross-partition transactions use an expensive two-
phase commit protocol.

With multicore architectures now the norm, considerable research has gone into improving single-server
performance. Multimed [33] treats a multicore system as a distributed system and runs parallel database
instances mediated through replication middleware. DORA [23] proposes a coupling of threads to disjoint
sets of data rather than transactions in order to reduce locking overhead.

Several fault-tolerant database protocols have exploited partial replication to improve performance. One
class of such protocols requires transactions to be atomically broadcast to all participants. When delivering
a transaction, a server may discard those transactions that do not read or write items that are replicated
locally (e.g., [24, 29, 30]). Alternatively, some protocols implement partial database replication using either
atomic multicast primitives (e.g., [14, 25]) or a two-phase commit-like protocol to terminate transactions [28].
Differently from MoSQL, all these systems expose a simple read-write interface to applications.

6.2 MySQL scalability

Approaches to scaling MySQL can be roughly divided in (a) asynchronous and “semi-synchronous” replica-
tion, (b) sharding, (c) middleware resting between MySQL and the client, and (d) middleware resting between
a low-level storage mechanism and MySQL.

Asynchronous, statement-based replication has been supported by early versions of MySQL and was
among the most important features leading to its extensive use in web-based applications. In a basic config-
uration, a master server writes committed SQL statements to a replication log that are sent asynchronously to
one or more slave servers which then apply each SQL statements as is. The approach scales well for heavy read
workloads where synchrony requirements are not strict, characteristic of many early web applications. More
recently, MySQL has enabled row-based asynchronous replication that sends row change states to slaves
rather than statements. An extension to MySQL called “semi-synchronous” replication shipped with core
MySQL from version 5.5. It enabled a master server to wait until the receipt of a notification from at least one
slave machine that the event was received (not necessarily committed locally) before proceeding, providing
improved data integrity.

Horizontal partitioning and sharding are the common approaches to scaling write throughput in MySQL
applications. Local horizontal partitions have been supported by core MySQL since version 5.1, while “shard-
ing” (or the horizontal partitioning of tables into separate databases) has become a well-known approach for
large-scale applications. Many of the problems with sharding stem from its demotion of a MySQL server to
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a component of a larger system of which it has no awareness, resulting in pushing up significant complexity
from the RDBMS into the application layer. Hibernate Shards8 is one example of middleware that insulates
application developers from this burden.

Sprint [5] and ScaleBase9 are examples of middleware that reside between the application and “demoted”
RDBMS nodes and manage transactions and the distribution of data across nodes. In both systems, the mid-
dleware intercepts SQL commands issued by the applications, and parses and decomposes them into sub-
SQL requests, which are submitted to the appropriate databases. Results are collected and merged, before
being returned to the application. MoSQL does not translate SQL requests into sub-SQL requests; it relies on
MySQL’s parser to handle this task.

MySQL supports a storage-layer interface with which upper layers of the database engine interact. This
enables, in principle, any storage strategy to be used transparently. InnoDB is the default transactional stor-
age engine for MySQL and is used in most cases, but storage layers targeting efficient archival, compressed
storage, in-memory storage, and network-based storage exist depending on application needs. MySQL Clus-
ter provides a scalable, low-latency and shared-nothing storage engine for MySQL. It offers high performance
but with weak transaction isolation (READ COMMITTED). Additional data nodes can be added online, but
not in a seamless fashion and manual intervention is required to reconfigure and rebalance data. Our ap-
proach also falls into this category.

6.3 Elasticity

With the advent of large, distributed storage layers running on typically commodity hardware, the require-
ment of up-front investment in infrastructure to support peaks in throughput has received more attention.
This has resulted in a focus on the idea of database “elasticity”, the ability of a system to contract and expand
as needed in order to respond to peaks and troughs in activity.

ecStore [35] is a peer-to-peer elastic storage system providing range-query and transaction support. It
uses an efficient load-adaptive replication scheme to load-balance requests for frequently accessed data,
but in an eventually consistent manner. ElasTraS [11] provides transactional multi-key access to data. The
ElasTraS system is composed of multiple transaction managers on top of a fault-tolerant distributed storage
(such as Amazon S3). Owning transaction managers (OTM) are assigned to a partition of the data stored
in the distributed storage, to which it is granted exclusive access. To ensure ACID transactional guarantees,
ElasTraS uses minitransactions [1] to handle cross partition transactions. ElasTraS provides also Higher Level
Transaction Managers (HTM) responsible for caching data and absorbing load of read-only transactions. Like
MoSQL, ElaTraS provides the ability to add and remove servers depending on the load. Unlike the above
systems, MoSQL is a storage engine for MySQL executing full–fledged SQL transactions.

7 Final remarks

We propose MoSQL, a distributed and fault-tolerant storage engine for MySQL. MoSQL preserves ACID prop-
erties while offering good performance tradeoffs: despite being distributed, MoSQL reaches similar perfor-
mance compared to InnoDB, when deployed on two servers, while offering linear or sublinear scalability with
additional storage nodes. We also demonstrate the elasticity of MoSQL, its ability to add storage nodes online,
immediately contributing throughput while lowering overall system latency.
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