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AbstratDistributed omputing is reshaping the way people think about and do daily lifeativities. On-line tiket reservation, eletroni ommere, and telebanking are ex-amples of servies that would be hardly imaginable without distributed omputing.Nevertheless, widespread use of omputers has some impliations. As we beomemore depend on omputers, omputer malfuntion inreases in importane. Untilreently, disussions about fault tolerant omputer systems were restrited to veryspei� ontexts, but this senario starts to hange, though.This thesis is about the design of fault tolerant omputer systems. More spei�ally,this thesis fouses on how to develop database systems that behave orretly even inthe event of failures. In order to ahieve this objetive, this work exploits the notionsof data repliation and group ommuniation. Data repliation is an intuitive wayof dealing with failures: if one opy of the data is not available, aess another one.However, guaranteeing the onsisteny of repliated data is not an easy task. Groupommuniation is a high level abstration that de�nes patterns on the ommuniationof omputer sites. The present work advoates the use of group ommuniation inorder to enfore data onsisteny.This thesis makes four major ontributions. In the database domain, it introduesthe Database State Mahine and the Reordering tehnique. The Database StateMahine is an approah to exeuting transations in a luster of database servers thatommuniate by message passing, and do not have aess to shared memory nor to aommon lok. In the Database State Mahine, read-only transations are proessedloally on a database site, and update transations are �rst exeuted loally on adatabase site, and them broadast to the other database sites for erti�ation andpossibly ommit. The erti�ation test, neessary to ommit update transations,may result in aborts. In order to inrease the number of transations that suessfullypass the erti�ation test, we introdue the Reordering tehnique, whih reorderstransations before they are ommitted.In the distributed system domain, the Generi Broadast problem and the OptimistiAtomi Broadast algorithm are proposed. Generi Broadast is a group ommuni-ation primitive that allows appliations to de�ne any order requirement they need.Reliable Broadast, whih does not guarantee any order on the delivery of messages,and Atomi Broadast, whih guarantees total order on the delivery of all messages,are speial ases of Generi Broadast. Using Generi Broadast, we de�ne a groupommuniation primitive that guarantees the exat order needs of the Database State



Mahine. We also present an algorithm that solves Generi Broadast. OptimistiAtomi Broadast algorithms exploit system properties in order to implement totalorder delivery fast. These algorithms are based on system properties that do notalways hold. However, it they hold for a ertain period, ensuring total order deliveryof messages is done faster than with traditional Atomi Broadast algorithms. Thisthesis disusses optimism in the implementation of Atomi Broadast primitives,and presents in detail the Optimisti Atomi Broadast algorithm. The optimistibroadast approah presented in this thesis is based on the spontaneous total ordermessage reeption property, whih holds with high probability in loal area networksunder normal exeution onditions (e.g., moderate load).



RésuméLes systèmes répartis sont en train de modi�er profondément nos ativités quotidi-ennes: réservation de billets en-ligne, ommere életronique, telebanking, sont desexemples de servies qui n'étaient pas imaginables avant l'arrivée des systèmes ré-partis. Néanmoins, l'utilisation à grande éhelle de systèmes informatiques n'est passans onséquene. Plus l'on devient dépendent des ordinateurs, plus leur défaillanepose des problèmes. Jusqu'à réemment, les disussions sur la défaillane des sys-tèmes informatiques ne onernaient que des erles restreints. La situation est entrain d'évoluer.Cette thèse aborde le problème de la oneption de systèmes tolérants aux pannes.Plus spéi�quement, e travail se onentre sur le développement de bases des don-nées qui se omportent orretement même en as de défaillanes. Pour atteindre ebut, ette thèse se base sur les notions de répliation de données et sur les ommu-niations de groupes. La répliation de données est une idée naturelle pour tolérerles pannes: si une opie d'une donnée n'est pas disponible, il su�t d'aéder à uneautre opie. Par ontre, garantir la ohérene des données répliquées n'est pas unetâhe simple. La thèse propose l'utilisation des méanismes de ommuniation degroupes pour garantir la ohérene des données.La thèse omporte quatre ontributions majeures. Dans le domaine des bases dedonnées, elle introduit la "Database State Mahine" et la tehnique de réordon-nanement. La Database State Mahine est une manière de gérer des transationss'exéutant sur un luster de serveurs de bases de données ommuniquant par éhangede messages, et n'ayant aès ni à une mémoire partagée ni à une horloge ommune.Dans e ontexte, les transations de leture sont exéutées loalement sur un serveur,et les transations de mise à jour sont d'abord exéutées loalement sur un serveuravant d'être di�usées aux autres serveurs pour le test de erti�ation et la validation(ommit) éventuelle. Le test de erti�ation, néessaire à la validation, peut on-duire à avorter une transation. Dans le but d'augmenter le taux de transations quepassent le test de erti�ation, la thèse introduit la tehnique de réordonnanement,qui réordonne les transations avant de les erti�er.Dans le domaine de systèmes répartis, le problème de la Di�usion Générique (GeneriBroadast) et l'algorithme de Di�usion Atomique Optimisite (Optimisti AtomiBroadast) sont introduits. La Di�usion Générique est une primitive de ommunia-tion de groupes qui permet aux appliations de dé�nir l'ordre dont elles ont besoin.La Di�usion Fiable (Reliable Broadast) qui ne garantit auun ordre entre les mes-



sages, et la Di�usion Atomique (Atomi Broadast) qui garantit l'ordre total pourla livraison de messages, sont des as partiuliers de la Di�usion Générique. La Dif-fusion Générique est une primitive de ommuniation de groupes qui permet d'o�rirl'ordre exat néessaire pour la Database State Mahine. La thèse présente égale-ment un algorithme qui résout la Di�usion Générique. Les algorithmes de Di�usionAtomique Optimiste exploitent les propriétés du système pour délivrer e�aementles messages dans un ordre total. Ces algorithmes sont basés sur des propriétés dusystème qui ne sont pas toujours satisfaites. Néanmoins, si elles sont satisfaites du-rant une ertaine période de temps, l'algorithme assure l'ordre total plus e�aementque les algorithmes de di�usion atomique traditionnels. La thèse disute l'optimismedans le ontexte de la mise en oeuvre de la Di�usion Atomique, et présente en détailun algorithme. L'optimisme exploité par et algorithme est basé sur la propriétéd'ordre spontanée, qui est satisfaite ave une probabilité élevée dans des réseaux àpetite éhelle dans des onditions d'exéution normale (tra� modéré, par exemple).
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1
Chapter 1Introdution It all depends on how we look at things,and not on how they are themselves.Carl JungDistributed omputing has beome an ubiquitous tehnology in the world. Fromglobal to loal area networks, distributed omputing seems to be everywhere. Com-puter speialists point out two reasons for that. Firstly, manufature improvementsand large sale prodution have redued the ost and inreased the performane ofomputers. Seondly, advanes in ommuniation systems have resulted in heapand fast data transmission, allowing to onnet virtually every two omputers in theworld.It is early to preisely assess how the omputer revolution will impat our soiety,but some of its e�ets an already be notied. On-line tiket reservation, eletroniommere, and telebanking are examples of servies that would be hardly imag-inable without omputers. Nevertheless, widespread use of omputers has someimpliations. As more appliations, and people, depend on omputers, omputermalfuntion beomes ritial. Until reently, disussions about fault tolerant om-puter systems were restrited to very spei� ontexts. This piture starts to hange,though.1This thesis is about the design of fault tolerant omputer systems. More spei�ally,this thesis fouses on how to develop database systems that behave orretly even inthe event of failures. In order to ahieve this objetive, this work exploits the notionsof data repliation and group ommuniation. Data repliation is an intuitive wayof dealing with failures: if one opy of the data is not available, aess another one.However, guaranteeing the onsisteny of repliated data is not an easy task. Groupommuniation is a high level abstration that de�nes patterns on the ommuniationof omputer sites. The present work advoates the use of group ommuniation in1Apart from being a historial landmark, the hange of the millennium has ontributed to enlargethe disussions about the e�ets of omputer failures on human lives.



2 Chapter 1. Introdutionorder to enfore data onsisteny.1.1 Repliated DatabasesDespite the fat that database repliation has been an ative area of researh sinethe late 70's [Gif79, Sto79, Tho79℄, the problem of designing database repliationprotools that provide good performane and strong data onsisteny is still farfrom having a de�nitive answer. One reason for this fat is that methods to handlerepliation designed in the 80's have been shown to perform poorly as the number ofrepliated database sites inreases [GHOS96℄. Protools developed with entralisedsettings in mind (e.g., two-phase loking), when implemented in a distributed system,have been shown to present exessive synhronisation osts, and rapid growth ofdistributed deadloks with the number of database sites.However, requirements of urrent appliations have inreased the demand for high-performane and high-availability databases [Jaj99℄, resulting in the emergene ofnew mehanisms to support database repliation. Commerial database ompanies,for example, have foused on solutions that provide weak onsisteny guarantees[Sta95, Ja95℄. Nevertheless, weak guarantees are not intuitive and di�ult to use.Furthermore, in many ases, user intervention is neessary to bring the databasebak to a onsistent state. Weak onsisteny guarantees may beome attrative inthe future, but so far, they lak the theoretial bakground that allows for stritprotool spei�ations and rigorous orretness proofs [BHG87, Jaj99, Pap79℄.Transations are the unit of work of databases [GR93℄. Ensuring data onsisteny inrepliated databases omes down to guaranteeing that transation properties areensured, independently of the number of database replias and the way data isdistributed among them. Transations are haraterised by the ACID properties:Atomiity, Consisteny, Isolation, and Durability [GR93℄. The Atomiity propertystates that either all transation operations are exeuted or none is. Consisteny es-tablishes that a transation is a orret transformation of the state. Isolation a�rmsthat even though transations may exeute onurrently, it appears to eah trans-ation that it exeutes alone. Durability states that one a transation ompletessuessfully, its hanges to the state survive failures.1.2 Group CommuniationIn the ontext of lient-server distributed systems, the mid-80's and 90's saw theemergene of repliation protools based on group ommuniation. Roughly speak-ing, group ommuniation gathers proesses in sets and provides ommuniationprimitives enabling to address sets as individual entities [HT93℄. Group ommuni-ation has reeived inreasing attention in the past years from both pratial andtheoretial viewpoints. The best known group ommuniation system is Isis [BSS91℄,whih is onsidered by many as the �rst system in whih the feasibility of the groupommuniation approah was demonstrated. Furthermore, urrent trends in middle-



1.3. About this Researh 3ware systems seem to on�rm the important role played by group ommuniationprimitives [Gro98℄. From the theoretial point of view, a sound theory underly-ing group ommuniation has been developed, and minimal onditions under whihgroup ommuniation primitives are proved to be fault-tolerant have been formallyidenti�ed [CT96, CHT96℄.Group ommuniation primitives an have various semantis, and in partiular, theyan guarantee ausal, atomi, and total order message delivery [BSS91℄. For exam-ple, Atomi Broadast, the group ommuniation primitive exploited in this thesis,enables to send messages to a set of proesses, with the guarantee that the destina-tions agree on the set of messages delivered, a property known as Agreement, and onthe order aording to whih the messages are delivered, a property known as TotalOrder [HT93℄. Atomi Broadast has been shown to guarantee orret propagationof requests in some distributed system repliation tehniques [Sh90℄.Repliation based on group ommuniation has mostly onentrated on lient-serverdistributed omputing [GS97℄. More reently, some authors have suggested usinggroup ommuniation to develop database repliation protools (e.g., [SR96℄). In-deed, similarities between ACID properties and Atomi Broadast properties suggestthat there might be a relation between these two subjets. For example, the Agree-ment property of Atomi Broadast an be assoiated with the Atomiity propertyof transations, and the Isolation property of transations an be assoiated with theTotal Order property of Atomi Broadast.1.3 About this ResearhThis thesis started with the broad objetive of investigating the use of group om-muniation primitives to develop database repliation protools in the ontext of theDRAGON2 projet, a joint e�ort between the Swiss Federal Institute of Tehnol-ogy in Lausanne (EPFL) and the Swiss Federal Institute of Tehnology in Zurih(ETHZ). As this work evolved, it turned out that looking at database repliationprotools from the viewpoint of distributed systems, and looking at group om-muniation primitives from the viewpoint of distributed databases was, per se, aninteresting way of approahing two di�erent domains.1.3.1 Researh ObjetivesThe primary goal of this work is to investigate how group ommuniation an be usedto implement database repliation protools. The sope of this researh foused on anarhiteture based on a luster of database sites. Database sites do not have aess toshared memory or a global lok, and ommuniate through message passing. Usersshould have the impression that the database luster is a high-performane and high-availability entralised database site. Therefore, data onsisteny is mandatory.2DRAGON stands for Database Repliation based on Group Communiation. DRAGON isfunded by the Swiss Federal Institute of Tehnology (EPFL and ETHZ).



4 Chapter 1. IntrodutionA seondary goal of this researh is to better understand the impat of group om-muniation on databases, and database repliation protools on distributed systemmehanisms. For example, group ommuniation evolved essentially to handle pro-ess repliation [BSS91℄. Naturally, one may wonder whether a di�erent ontext willhange the way group ommuniation has been de�ned, and is usually implemented.1.3.2 Researh ContributionsThis thesis provides four major ontributions. In the database domain, it presents theDatabase State Mahine and the Reordering tehnique. In the distributed systemsdomain, this work introdues the Generi Broadast problem, and the OptimistiAtomi Broadast algorithm.Database State Mahine. The Database State Mahine is a database repliationapproah that de�nes the way transations are exeuted by database sites, and theway database sites interat with eah other to ommit transations. In the DatabaseState Mahine, transations are exeuted loally on a database site aording to thetwo-phase loking onurreny ontrol mehanism, whih enfores loal data onsis-teny. In order to guarantee global data onsisteny, database sites interat by meansof an Atomi Broadast primitive, whih is the only ommuniation mehanism usedby database sites. The requirements that database sites have to meet in this ontextare disussed in detail. Experimental results show that the Database State Mahineis a promising approah to exeuting transations in a luster on database sites.Reordering Tehnique. Global data onsisteny in the Database State Mahinerelies on some sort of optimisti onurreny ontrol mehanism, alled erti�ationtest. Aording to this shema, a transation that requests a ommit operation doesnot have a guarantee that it will be ommitted, sine it may fail the erti�ation test.The Reordering tehnique is a way of exeuting the erti�ation test that inreasesthe hanes that transations are ommitted. Roughly speaking, the Reorderingtehnique exploits harateristis of serial exeutions and rearranges transationsbefore they are ommitted. The Reordering tehnique has been positively evaluatedusing a simulation model.Generi Broadast. Generi Broadast is a group ommuniation primitive thatallows appliations to de�ne order requirements based on a on�it relation. Re-liable Broadast, whih does not guarantee any order on the delivery of messages,and Atomi Broadast, whih guarantees order on the delivery of all messages, arespeial ases of Generi Broadast. It turns out that for several appliations, likethe Database State Mahine, Reliable Broadast o�ers a semanti that is too weakto guarantee orretness. Conversely, Atomi Broadast o�ers a semanti that is toostrong. Using Generi Broadast, we an de�ne a group ommuniation primitivethat is stronger than Reliable Broadast, and weaker than Atomi Broadast. Analgorithm that implements Generi Broadast is presented. In order to ompare the



1.3. About this Researh 5implementations of various group ommuniation primitives, the delivery latenyparameter is introdued.Optimisti Atomi Broadast. The Optimisti Atomi Broadast algorithm ex-ploits system properties in order to deliver messages fast. The algorithm is optimistiin the sense that it assumes properties that do not always hold. However, it theyhold for a ertain period, guaranteeing total order of messages is done faster thanwith traditional Atomi Broadast algorithms. This thesis disusses optimism inthe implementation of Atomi Broadast primitives, and presents in detail the Op-timisti Atomi Broadast algorithm. The system property exploited by OptimistiAtomi Broadast is the spontaneous total order property whih states that, in somenetworks, it is highly probable that messages are reeived at their destinations in thesame total order. The spontaneous total order property holds with high probabilityin loal area networks under normal exeution onditions (e.g., moderate load).1.3.3 Thesis OrganisationThe thesis is organised as follows. Chapter 2 disusses system models, de�nes fault-tolerant broadast and related problems, and formalises some database notationsused throughout this thesis. Chapter 3 introdues the Database State Mahine andthe Reordering tehnique. The Database State Mahine is �rst analysed by meansof a simple probabilisti model, and then by means of a simulation model. Chap-ter 4 presents the Generi Broadast problem, shows how it an be used to de�ne abroadast primitive weaker than Atomi Broadast, but that still ensures the orderneeds of the Database State Mahine, and presents an algorithm that solves GeneriBroadast. Chapter 5 disusses how Atomi Broadast algorithms an take advan-tage of optimisti system assumptions, and presents in detail the Optimisti AtomiBroadast algorithm. In Chapter 6, we summarise the major results of this workand outline future researh diretions.



6 Chapter 1. Introdution



7
Chapter 2System Models and De�nitionsA theory has only the alternative of being right or wrong.A model has a third possibility: it may be right, but irrelevant.Manfred EigenA system model desribes preisely and onisely all the hypothesis and importantaspets about the system. A model should be as general as possible, to extend theappliability of the results stated (this is typially the ase when the results are in theform of impossibility proofs), and ompat, to leave out irrelevant details and simplifythe approah to the problem. In this hapter, we reall system models onsidered inthe literature and used in this thesis, de�ne the properties of fault-tolerant problemsof interest for this work, and present some important database de�nitions.2.1 Model De�nitionsDistributed system models usually entre their de�nitions around two basi abstra-tions: proesses and ommuniation hannels. In the following, we present someommon ways of modelling these abstrations.2.1.1 Proess ModelWe haraterise proesses aording to four riteria: synhronisation aspets, modeof failure, information storage, and proess membership.Synhronisation aspets. Aording to synhronisation aspets, proesses an besynhronous or asynhronous. If proesses are asynhronous, then there is no boundon the time neessary to exeute a step. By ontrast, if proesses are synhronous,there exists a known bound on their relative speed, that is, for some known boundednumber of steps taken by any proess, every other proess takes at least one step.



8 Chapter 2. System Models and DefinitionsThroughout this work, we onsider that proesses are asynhronous, and to simplifythe presentation, we assume the existene of a disrete global lok, even thoughproesses do not have aess to it. The range of the lok's tiks is the set of naturalnumbers.Mode of failure. Several modes of failure have been introdued in the literature(see [Cri91, Sh93℄ for brief surveys). We onentrate on two modes of failure: therash-stop model and the rash-reover model. In the rash-stop model, one aproess has rashed, it never reovers. If a proess p is able to exeute requests ata ertain time τ (i.e., p did not fail until time τ) we say that p is up at time τ .Otherwise, we say that p is down at time τ . A proess that never rashes (i.e., it isalways up) is orret, and a proess that is not orret is faulty.In the rash-reover model, a proess p is lassi�ed aording to its behaviour on-erning failures as always-up if p never rashes, eventually-up if p rashes at leastone, but there is a time after whih p is permanently up, eventually-down if thereis a time after whih p is permanently down, and unstable if p rashes and reoversin�nitely many times [OGS97, ACT98℄. Proess p is good if it is either always-up oreventually-up, and bad if it is eventually-down or unstable. Both models of failurerule out faulty proesses that exeute arbitrary ations (i.e., no Byzantine faults).We further assume that proesses fail independently.Proess state. There are two ways of modelling proesses that rash and reoveraording to what happens to their loal state after reovering from a rash: proessesan either (1) forget the state they had before the rash (i.e., proesses only havevolatile memory), or (2) remember the state they had, or a part of it, before the rash(i.e., proesses have stable storage). Even if a proess has stable storage, it is wiseto use it sparingly sine aessing stable storage is more expensive than aessingvolatile memory.Proess set. We distinguish between a stati set of proesses, and a dynami setof proesses. A stati set is omposed of n proesses Π = {p1, p2, . . . , pn}, and thison�guration never hanges throughout the exeution. Conversely, if a system hasa dynami set of proesses, then at two di�erent times during the exeution, thesystem may be omposed of distint sets of proesses. Several events may trigger ahange in the urrent set of proesses if this set is dynami (e.g., a new proess joinsthe proesses that are part of the urrent set).Proess models in perspetive. Proess models proposed in the literature anbe de�ned by ombining the parameters presented above (see Table 2.1).Model M1 has been onsidered by several authors [FLP85, CT96, Sh97℄. Thestrongest argument in favour of model M1 is that it provides a relatively simpleframework to rigorously study distributed algorithms. However, in pratial senar-ios it laks �exibility sine one a proess has rashed, it is not allowed to reover



2.1. Model Definitions 9Model riteriaModel Mode of failure Proess state Proess set
M1 rash-stop � stati
M2 rash-stop � dynami
M3 rash-reover volatile stati
M4 rash-reover stable statiTable 2.1: Proess modelsor be replaed by another proess. This drawbak is one way or another overomeby the other models. Model M2 was introdued by Isis [BJ87℄.1 It does not permitproesses to reover but it allows a proess that has been exluded from a view tojoin the other proesses with a new identi�ation, whih is a way round the problemenountered in model M1. In Isis, when a new proess joins a view, it reeives thestate from proesses in this view (e.g., the messages that proesses have reeivedin the view). Only reent proposals have onsidered the rash-reover model withasynhronous proesses. Model M3 has been onsidered in [ACT98℄, and model M4in [OGS97, HMR97, ACT98℄.2.1.2 Communiation Channel ModelCommuniation hannels an be haraterised aording to timing, reliability, andordering properties. Before going into detail on eah one of these properties, we de�ne

send(m) and receive(m) as the primitives proesses use to ommuniate. Message
m is taken from a set M to whih all messages belong. When a proess p invokes�send� with a message m as a parameter, we say that p sends m, and when a proess
q returns from the exeution of �reeive� with a message m as a parameter, we saythat q reeives m.Timing properties. Timing properties are related to guarantees on transmissiondelays of messages, whih an be bounded or unbounded. This work assumes thatommuniation delays are unbounded.Reliability properties. Two haraterisations of ommuniation hannels aord-ing to reliability properties are Reliable Channels [BCBT96℄ and Quasi-Reliable han-nels [ACT97℄. Reliable Channels satisfy the following properties:(No reation) If proess q reeives message m from p, then p sends m to q.(No dupliation) Proess q reeives m from p at most one.(No loss) If p sends m to q, and q is orret, then q eventually reeives m.1In Isis, proess sets are alled views.



10 Chapter 2. System Models and DefinitionsQuasi-Reliable Channels are spei�ed by replaing the No Loss property of ReliableChannels by the following property:(Quasi-No loss) If p sends m to q, and p and q are orret, then q eventuallyreeives m.Quasi-Reliable Channels de�ne weaker onstraints than Reliable Channels, that is,any exeution that satis�es Reliable Channels properties, also satis�es Quasi-Reliableproperties, however, the ontrary is not true. Figure 2.1 shows an exeution involvingproesses p and q that satis�es the quasi-no loss property, but does not satisfy theno loss property. In Figure 2.1, message m is never reeived by proess q.
p

q

send(m)

m is lost

p crashes

Figure 2.1: Quasi-Reliable Channels
Ordering properties. Reliable and Quasi-Reliable Channels guarantees an beaugmented with ordering properties. Two partiular ordering properties are FIFOorder, and ausal order. FIFO order is de�ned as shown next.(FIFO order) If p sends m to q before sending m′ to q, then q does notreeive m′ before m.Causal order is de�ned based on Lamport's happened before relation → [Lam78℄.Let a, b, and c be events in a distributed system. The relation a→ b (i.e., a happensbefore b) holds if and only if (1) a and b are events in the same proess and a ourredbefore b, or (2) a is the event of sending a message m in a proess and b is the eventof reeipt of message m in another proess, or (3) there exists an event c suh that
a→ c, and c→ b. Causal order is de�ned as follows.(Causal order) If m and m′ are two messages reeived by some proess p,and send(m)→ send(m′), then receive(m)→ receive(m′) in p.Figures 2.2 and 2.3 depit FIFO and Causal Channels. Causal Channels are strongerthan FIFO Channels, that is, Causal Channels preserve FIFO order. The exeutionsin Figures 2.2 and 2.3 satisfy both Reliable Channels and Quasi-Reliable spei�a-tions.
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send(m) send(m’)

p

q
receive(m’)receive(m)Figure 2.2: FIFO Channels

send(m’’)

send(m) send(m’)

receive(m’)

p

q

r
receive(m) receive(m’’)Figure 2.3: Causal Channels2.1.3 Asynhronous SystemsAsynhronous systems are modelled by asynhronous proesses that ommuniatethrough hannels with unbounded transmission delays. Asynhronous systems de-�ne a very general model, and several impossibility results have been based on them.In [FLP85℄, it has been shown that Consensus (see Setion 2.2) is not solvable inasynhronous systems subjet to rash-stop failures (Model M1). Impossibility re-sults have also been presented for asynhronous systems with a dynami set of pro-esses [CHTCB96℄ (model M2), and asynhronous systems with proesses that anrash and reover [ACT98℄ (models M3 and M4). The latter result de�nes minimalbounds for solving Consensus when proesses' state is volatile and stable.2.1.4 Failure DetetorsTo irumvent the Fisher-Lynh-Paterson impossibility result [FLP85℄ (FLP forshort), asynhronous systems with a stati set of rash-stop proesses have beenaugmented with failure detetors [CT96℄. Eah proess p in Π has aess to a loalfailure detetor module Dp that provides (possibly inorret) information about theproesses that are suspeted to have rashed. A failure detetor may make mistakes,that is, (1) it may suspet a proess that has not failed or (2) never suspet aproess that has failed. Failure detetors have been lassi�ed aording to aurayand ompleteness properties whih haraterise the mistakes they an make [CT96℄.



12 Chapter 2. System Models and DefinitionsCompleteness. There are two ompleteness properties.
⊲ Strong Completeness: eventually every proess that rashes is permanentlysuspeted by every orret proess.
⊲ Weak Completeness: eventually every proess that rashes is permanentlysuspeted by some orret proess.Auray. There are four auray properties.
⊲ Strong Auray: no proess is suspeted before it rashes.
⊲ Weak Auray: some orret proess is never suspeted.
⊲ Eventual Strong Auray: there is a time after whih orret proesses arenot suspeted by any orret proess.
⊲ Eventual Weak Auray: there is a time after whih some orret proess isnever suspeted by any orret proess.Table 2.2 summarises all lasses of failure detetors. Throughout this work, we do notonsider any failure detetor in partiular, nevertheless, we assume that the systemis augmented with failure detetors so that Consensus an be solved. Moreover,Chapters 4 and 5 need a failure detetor that guarantees Strong Completeness (i.e.,Auray is not relevant). AurayCompleteness Strong Weak Eventually Strong Eventually WeakStrong Perfet Strong Eventually Perfet Eventually Strong

P S 3P 3SWeak Weak Eventually Weak
Q W 3Q 3WTable 2.2: Failure detetors lassesIt has been shown in [CHT96℄ that 3W is the weakest failure detetor to solveConsensus in asynhronous systems subjet to rash-stop failures, and [CT96℄ showsthat any given failure detetor D that satis�es weak ompleteness an be reduedinto a failure detetor D′ that satis�es strong ompleteness, that is, 3S and 3W areequivalent.The works presented in [ACT98, OGS97℄ rede�ne failure detetors in asynhronoussystems where proesses an rash and reover. In this thesis, we onentrate onfailure detetors in the rash-stop model.2.1.5 Algorithms, Runs and ProblemsWhen disussing distributed protools, it is important to haraterise the notionsof algorithm, run, and problem. In the following, we provide de�nitions for theseterms in the ontext of asynhronous proesses in the rash-stop model, whih is the



2.2. Fault-Tolerant Broadasts and Related Problems 13model onsidered in Chapters 3 and 4. Chapter 2 is based on a formalism spei�to databases, introdued in Setion 2.3.An algorithm A is a olletion of n deterministi automata, one per proess, andomputation proeeds in steps of A. In the rash-stop model, in eah step, a proessatomially (1) reeives a (possibly empty) message that was sent to it, (2) queriesits failure detetor module, (3) modi�es its state, and (4) may send a message to asingle proess [CT96℄.Informally, a run R of A de�nes a (possibly in�nite) sequene of steps of A. There isa lose relation between system models, algorithms, and problems, in that a systemmodel M determines the set of runs that an algorithm A an produe in M , and aproblem spei�ation P (or simply a problem) is de�ned as requirements on sets ofruns.2.2 Fault-Tolerant Broadasts and Related ProblemsIn this setion, we de�ne Reliable Broadast, Atomi Broadast, Consensus, andNon-Bloking Atomi Commitment in asynhronous systems with proesses thatrash and stop. The Non-Bloking Atomi Commitment de�nition further assumesthat the system is augmented with failure detetors. The abstrations presented inthis setion lay the basis for the work developed in Chapters 3, 4, and 5.2.2.1 Reliable BroadastReliable Broadast is de�ned by the primitives R-broadast(m) and R-deliver(m),whih satisfy the following properties [HT93℄.(Validity) If a orret proess R-broadasts a message m, then it eventuallyR-delivers m.(Agreement) If a orret proess R-delivers a message m, then all orretproesses eventually R-deliver m.(Uniform integrity) For every message m, every proess R-delivers m atmost one, and only if m was previously R-broadast by sender(m).R-broadast and R-deliver may be build over Quasi-Reliable Channels, whih o�erweaker guarantees than Reliable Broadast (see Figure 2.4). In the rash-stop model,Reliable Broadast an be solved by the following algorithm, resilient to n−1 proessrashes [CT96℄. Whenever a proess p wants to R-broadast a message m, p sends mto all proesses. One a proess q reeives m, if q 6= p then q sends m to all proesses,and, in any ase, q R-delivers m (see the Appendix for a detailed presentation of thisalgorithm).
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Application

Reliable
Broadcast

Channels
Quasi-Reliable
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R-broadcast(m) R-deliver(m)
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Figure 2.4: Communiation abstration2.2.2 Atomi BroadastAtomi Broadast is de�ned by the primitives A-broadast(m) and A-deliver(m). Inaddition to the properties of Reliable Broadast, Atomi Broadast satis�es the totalorder property [HT93℄.(Total Order) If two orret proesses p and q A-deliver two messages mand m′, then p A-delivers m before m′ if and only if q A-delivers m before m′.The total order indued on the A-deliver is represented by the relation ≺. Thus, ifmessage m is A-delivered before message m′, then A-deliver(m) ≺ A-deliver(m′).Stronger de�nitions of Reliable and Atomi Broadast an be obtained by augment-ing the properties previously presented with FIFO and Causal Order onstraints.The resulting de�nitions are FIFO Broadast (FIFO Order + Reliable Broadast),Causal Broadast (Causal Order + Reliable Broadast), FIFO Atomi Broadast(FIFO Order + Atomi Broadast), and Causal Atomi Broadast (Causal Order+ Atomi Broadast). Figure 2.5 depits the relationship among broadast primi-tives [HT93℄.2.2.3 ConsensusConsensus is de�ned by the primitives propose(v), and deide(v), whih satisfy thefollowing properties.(Termination) Every orret proess eventually deides some value.(Uniform integrity) Every proess deides at most one.(Agreement) No two orret proesses deide di�erently.(Uniform validity) If a proess deides v, then v was proposed by someproess.
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Figure 2.5: Relationship among broadast primitivesConsensus an be solved in rash-stop asynhronous systems augmented with failuredetetors. In [CT96℄ the authors present two algorithms that solve Consensus. Oneuses a failure detetor of lass S and tolerates f < n failures, and the other usesa failure detetor of lass 3S and tolerates f < n/2 failures. Another algorithmthat solves Consensus in the rash-stop model using a failure detetor of lass 3Sis the Early Consensus algorithm [Sh97℄. The Early Consensus algorithm tolerates
f < n/2 failures and to a ertain extend, is more e�ient than the algorithm basedon 3S proposed in [CT96℄. The Consensus algorithm presented in [CT96℄ using afailure detetor of lass 3S, and the Early Consensus algorithm are presented in theAppendix.Consensus and Atomi Broadast have been shown in the literature to be equivalentin the rash-stop model [CT96℄. The equivalene result basially states that AtomiBroadast an be redued to Consensus (see the Appendix), and Consensus anbe redued to Atomi Broadast. The Consensus to Atomi Broadast redutiononsists in having propose(v) exeute A-broadast(v), and deide(v) ourring afterthe �rst A-deliver(v).2.2.4 Non-Bloking Atomi CommitmentNon-Bloking Atomi Commitment is de�ned by the primitives AC-vote(v) and AC-deide(v), v ∈ {commit, abort}, whih ensure the following properties.(Uniform Agreement) No two partiipants AC-deide di�erently.(Uniform Validity) If a proess AC-deides commit, then all proesses havevoted commit.(Termination) Every orret proess eventually AC-deides.(Non-Triviality) If all proesses vote commit, and there is no failure, thenevery orret proess eventually AC-deides commit.



16 Chapter 2. System Models and DefinitionsNon-Bloking Atomi Commitment has been shown to be unsolvable in asynhronoussystems subjet to rash failures, even if augmented with failure detetors of the lass
3P or S [Gue95℄. However, a weaker version of Atomi Commit (Non-BlokingWeak Atomi Commit) an be reduible to Consensus. Non-Bloking Weak AtomiCommit replaes the previously de�ned Non-Triviality property by the following.(Weak Non-Triviality) If all proesses vote commit, and no proess is eversuspeted, then every orret proess eventually AC-deides commit.2.3 Database De�nitionsIn this setion, we formally de�ne transations and histories, present the ACID trans-ation properties, and disuss model assumptions usually assoiated with databases.Formal de�nitions of transations and histories will be useful to prove repliateddatabases protools orret.2.3.1 Transations and HistoriesInformally, a transation is a set of database operations that �nishes with a Commitor an Abort operation. Let Γ = {x1, x2, . . . , xm} be a database, and r[xk] and w[xk]be a read and a write operation on data item xk, xk ∈ Γ, respetively, and c and abe the ommit and abort operations. Formally, transation ti is de�ned as a partialorder on read and write operations with ordering relation <i, where1. ti ⊆ {ri[xk], wi[xk] : x ∈ Γ} ∪ {ai, ci};2. ai ∈ ti i� ci 6∈ ti;3. let o be ci or ai (whihever is in ti), for any other o′ ∈ ti, o′ <i o; and4. for any two operations ri[xk] and wi[xk] suh that ri[xk], wi[xk] ∈ ti, then either

ri[xk] <i wi[xk] or wi[xk] <i ri[xk].Transations exeuting in a database are formalised by histories [BHG87℄. Let T =
{t1, t2, . . . , tj} be a set of transations. A omplete history H over T is a partialorder on read and write operations with ordering relation <H where1. H = ∪j

i=1ti;2. ∪j
i=1 <i ⊆<H ; and3. for any two operations w[xk] and o[xk], o ∈ {r, w}, issued by di�erent transa-tions in H, either w[xk] <H o[xk] or o[xk] <H w[xk].A history is a pre�x of a omplete history. Given some history H, the ommittedprojetion of H, denoted C(H), is the history obtained from H, by eliminating alloperations that do not belong to transations ommitted in H.



2.4. Disussion 172.3.2 Transation PropertiesTransations satisfy the ACID properties. The ACID aronym stands for Atom-iity, Consisteny, Isolation, and Durability. The ACID properties are de�ned asfollows [GR93℄.(Atomiity) A transation's hanges to the state are atomi: either all happenor none happen.(Consisteny) A transation is a orret transformation of the state. The a-tions taken as a group do not violate any of the integrity onstraints assoiatedwith the state.(Isolation) Even though transations exeute onurrently, it appears to eahtransation t, that other transations exeuted either before t or after t, butnot both.(Durability) One a transation ompletes suessfully (ommits), its hangesto the state survive failures.From the viewpoint of the history de�nition presented in the previous setion, theatomiity property states that the study of the orretness of database protools(i.e., serialisability), should onentrate on the ommitted projetions of the historiesprodued by these protools.Consisteny is not relevant in the history formalism previously de�ned, sine it dealswith semanti meaning about the transformations performed by transations on thedatabase, and the history formalism is not strong enough to apture this abstrationlevel.Isolation has reeived a lot of attention by database researhers, mainly in the early70's. Aording to the transation and history formalism presented in the previ-ous setion, a database protool ensures isolation if the ommitted projetion ofany history it produes does not have yles [BHG87℄. Isolation is also known asserialisability, or, in the ontext of repliated databases, one-opy serialisability.The durability property is highly dependent on the assumptions made about pro-esses. For example, most database systems onsider that database sites (or pro-esses) always reover after a rash, and have aess to stable storage. In this se-nario, durability an be enfored by arefully storing ritial information in stablestorage [Had88℄.2.4 DisussionA model is a simpli�ation of a real system, allowing to study it in depth, withouthaving to worry about details. Usually, the more omplex the model, the loser tothe reality it is, however, omplex models make the approah to the problem di�ult.



18 Chapter 2. System Models and DefinitionsIn this hapter, we have haraterised distributed systems and database systems bythe models usually presented in the literature.The thesis fouses on two distint system models. In Chapter 3, we onsider thatproesses rash and reover, have aess to stable storage, and belong to a stati setof proesses. In Chapters 4 and 5 we onsider that proesses rash and stop, do nothave stable storage, and belong to a stati set of proesses. In Chapters 4 and 5,proesses are fully onneted by Quasi-Reliable Channels, and Chapter 4 furtherassumes that ommuniation hannels are FIFO.Thus, the two models onsidered in this thesis di�er on the mode of failure of pro-esses. This distintion has simpli�ed the work in Chapters 4 and 5. However, theintuitions behind the ideas proposed in Chapters 4 and 5 do not depend on detailsabout the rash-stop model, and an be extended to the rash-reover model.
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Chapter 3The Database State MahineFirst things �rst, but not neessarily in that order.Dotor WhoThis hapter introdues the �rst ontribution of the thesis, the Database StateMahine. The Database State Mahine is, from the user's point of view, a high-performane and high-availability database that o�ers strong onsisteny (i.e., seri-alisability). From the system's viewpoint, the Database State Mahine is a meh-anism to handle repliation in a luster of workstations onneted by a standardommuniation network.From the model perspetive presented in the previous hapter, the Database StateMahine onsiders a stati set of proesses that have aess to stable storage. Pro-esses ommuniate through an Atomi Broadast primitive.Compared to other database approahes that also provide high-availability, theDatabase State Mahine does not sari�e performane (it minimises inter site syn-hronisation and eliminates distributed deadloks), nor data onsisteny. Further-more, by relying on a luster of workstations onneted by a standard ommuniationnetwork, the Database State Mahine does not depend on speialised hardware.In this hapter, we reall the deferred update repliation tehnique and the prinipleof the state mahine approah [Sh90℄, whih de�ne the general framework for theDatabase State Mahine, and present the arhiteture of the Database State Mahineand the Reordering tehnique. The performane of the Database State Mahine isanalysed with simulation and probabilisti models.3.1 Deferred Update Repliation FrameworkBefore presenting the Database State Mahine approah, we desribe the deferred up-date repliation priniple in detail and introdue some additional notation. We also



20 Chapter 3. The Database State Mahineprovide a general algorithm that will lay the basis for the Database State Mahinealgorithm.3.1.1 Deferred Update Repliation PrinipleIn the deferred update repliation tehnique, transations are loally exeuted atone database site, and during their exeution, no interation between other databasesites ours (see Figure 3.1). Transations are loally synhronised at database sitesaording to some onurreny ontrol mehanism [BHG87℄. Hereafter, we assumethat the onurreny ontrol mehanism used by every database site to loal syn-hronise transations is the strit two phase loking rule. When a lient requests thetransation ommit, the transation's updates (e.g., the redo log reords) and someontrol strutures are propagated to all database sites, where the transation willbe erti�ed and, if possible, ommitted. This proedure, starting with the ommitrequest, is alled termination protool. The objetive of the termination protool istwofold: (i) propagating transations to database sites, and (ii) ertifying them.
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Figure 3.1: Deferred update tehniqueThe erti�ation test aims at ensuring one-opy serialisability. It deides to abort atransation if the transation's ommit would lead the database to an inonsistentstate (i.e., non-serialisable). For example, onsider two onurrent transations, taand tb, that are exeuted at di�erent database sites, and that update a ommondata item. When ta and tb request the ommit, the erti�ation test has to realisewhether onsisteny may be violated and, if this is the ase, sort out the problem bydeiding to abort one or both transations (e.g., if there is no guarantee that ta and
tb arrive at all sites in the same order, both transations have to be aborted [AAS97℄,however, if the erti�er knows that ta is reeived before tb at all sites, or the other



3.1. Deferred Update Repliation Framework 21way round, then just ta, respetively tb, has to be aborted [PGS98℄).3.1.2 Transation StatesDuring its proessing, a transation passes through some well-de�ned states (seeFigure 3.2). The transation starts in the exeuting state, when its read and writeoperations are loally exeuted at the database site where it was initiated. When thelient that initiates the transation requests the ommit, the transation passes tothe ommitting state and is sent to the other database sites. A transation reeivedby a database site in the ontext of the termination protool is also in the ommittingstate, and it remains in the ommitting state until its fate is known by the databasesite (i.e., ommit or abort). The di�erent states of a transation ta at a databasesite si are denoted Executing(ta, si), Committing(ta, si), Committed(ta, si), and
Aborted(ta, si). The exeuting and ommitting states are transitory states, whereasthe ommitted and aborted states are �nal states.
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AbortedFigure 3.2: Transation states3.1.3 Deferred Update Repliation AlgorithmWe desribe next a general algorithm for the deferred update repliation tehnique.To simplify the presentation, we onsider a partiular lient ck that sends requeststo a database site si in behalf of a transation ta.1. Read and write operations requested by the lient ck are exeuted at si aord-ing to the strit two phase loking (strit 2PL) rule. From the start until theommit request, transation ta is in the exeuting state.2. When ck requests ta's ommit, ta is immediately ommitted if it is a read-onlytransation (nevertheless, read-only transations may be aborted during theirexeution, as disussed later). If not, ta passes to the ommitting state, and thedatabase site si triggers the termination protool for ta: the updates performedby ta, as well as its readset and writeset, are sent to all database sites.



22 Chapter 3. The Database State Mahine3. Eventually, every database site sj erti�es ta. The erti�ation test takesinto aount every transation tb known by sj that on�its with ta (see Se-tion 3.1.4). It is important that all database sites reah the same deision onthe �nal state of ta, whih may require some oordination among databasesites. Suh oordination an be ahieved, for example, by means of an AtomiCommitment protool, or, as it will be shown in Setion 3.2, by using an AtomiBroadast primitive.4. If ta is serialisable with the previous ommitted transations in the system(e.g., ta passes the erti�ation test), all its updates will be applied to thedatabase. Transations in the exeution state at eah site sj holding loks onthe data items updated by ta are aborted.5. The lient ck reeives the outome for ta from site si as soon as si an determinewhether ta will be ommitted or aborted. The exat moment this happensdepends on how the termination protool is implemented, and will be disussedin Setion 3.2.Queries do not exeute the erti�ation test, nevertheless, they may be aborted dur-ing their exeution due to loal deadloks and by non-loal ommitting transationswhen granting their write loks (see Setion 3.5). The algorithm presented above anbe modi�ed in order to redue or ompletely avoid aborting read-only transations.For example, if queries are pre-delared as so, one an update transation passes theerti�ation test, instead of aborting a query that holds a read lok on a data itemit wants to update, the update transation waits for the query to �nish and releasethe lok. In this ase, update transations have the highest priority in granting writeloks, but they wait for queries to �nish. Read-only transations an still be aborteddue to deadloks, though. However, multiversion data item mehanisms an preventqueries from being aborted altogether. In [SA93℄, read-only transations are exe-uted using a �xed view (or version) of the database, without interfering with theexeution of update transations.3.1.4 Transation DependeniesIn order for a database site si to ertify a ommitting transation ta, si must beable to tell whih transations on�it with ta up to the urrent time. A transation
tb on�its with ta if ta and tb have on�iting operations and tb does not preede
ta. Two operations on�it if they are issued by di�erent transations, aess thesame data item and at least one of them is a write. The preede relation betweentwo transations ta and tb is de�ned as follows. (a) If ta and tb exeute at the samedatabase site, tb preedes ta if tb enters the ommitting state before ta. (b) If ta and
tb exeute at di�erent database sites, say si and sj, respetively, tb preedes ta if tbommits at si before ta enters the ommitting state at si. Let site(t) identify thedatabase site where transation t was exeuted, and committing(t) and commit(t)sjbe the events that represent, respetively, the request for ommit and the ommit of
t at sj. The event committing(t) only happens at the database site si where t was



3.2. A Database as a State Mahine 23exeuted, and the event commit(t)sj
happens at every database site sj . We formallyde�ne that transation tb preedes transation ta, denoted tb → ta, as

tb → ta ≡







committing(tb)
e
→ committing(ta) if site(ta) = site(tb),

commit(tb)site(ta)
e
→ committing(ta) otherwise,where e

→ is Lamport's order relation between system events [Lam78℄. The relation
tb 6→ ta establishes that tb does not preede ta. If site(ta) = site(tb), tb 6→ ta is equiv-alent to committing(tb) 6

e
→ committing(ta). Sine loal events in a site are totallyordered, committing(tb) 6

e
→ committing(ta) ≡ committing(ta)

e
→ committing(tb),and so, tb 6→ ta ≡ ta → tb. If site(ta) 6= site(tb), tb 6→ ta is equivalent to

commit(tb)site(ta) 6
e
→ committing(ta), or committing(ta)

e
→ commit(tb)site(ta).The deferred update repliation does not require any distributed loking protoolto synhronise transations during their exeution. Therefore, network bandwidthis not onsumed by synhronising messages, and there are no distributed deadloks.However, transations may be aborted due to on�iting aesses. In the next se-tions, we show that the deferred update repliation tehnique an be implementedusing the state mahine approah, and that this approah allows optimisations thatan redue transation abortion due to on�iting aesses.3.2 A Database as a State MahineThe deferred update repliation tehnique an be implemented as a state mahine.In this setion, we reall the priniple of the state mahine approah, and disuss thedetails of the Database State Mahine and its impliations to the way transationsare proessed.3.2.1 The State Mahine ApproahThe state mahine approah [Sh90℄, also alled ative repliation, is a non-entralisedrepliation oordination tehnique. Its key onept is that all replias (or databasesites) reeive and proess the same sequene of requests. Replia onsisteny is guar-anteed by assuming that when provided with the same input (e.g., a lient request)eah replia will produe the same output (e.g., state hange). This assumptionimpliitly implies that replias have a deterministi behaviour.The way requests are disseminated among replias an be deomposed into tworequirements [Sh90℄:(Agreement.) Every non-faulty replia reeives every request.(Order.) If a replia �rst proesses request req1 before req2, then no repliaproesses request req2 before request req1.



24 Chapter 3. The Database State MahineThe order requirement an be weakened if some semanti information about therequests is known. For example, if two requests ommute, that is, independentlyof the order they are proessed they produe the same �nal states and sequene ofoutputs, then it is not neessary that order be enfored among the replias for thesetwo requests.3.2.2 The Termination ProtoolThe termination protool presented in Setion 3.1 an be turned into a state ma-hine (i.e., made deterministi) as follows. Whenever a lient requests a transation'sommit, the transation's updates, its readset and writeset (or, for short, the trans-ation) are atomially broadast to all database sites. Eah database site will behaveas a state mahine, and the agreement and order properties required by the statemahine approah are ensured by the Atomi Broadast primitive.The database sites, upon delivering and proessing the transation, should eventuallyreah the same state. In order to aomplish this requirement, delivered transationsshould be proessed with ertain are. Before delving deeper into details, we desribethe database modules involved in the transation proessing. Figure 3.3 abstratlypresents suh modules and the way they are related to eah other.1 Transationexeution, as desribed in Setion 3.1, is handled by the Transation Manager, theLok Manager, and the Data Manager. The Certi�er exeutes the erti�ation testfor an inoming transation. It reeives the transations delivered by the AtomiBroadast module. On ertifying a transation, the Certi�er may ask information tothe data manager about already ommitted transations (e.g., logged data). If thetransation is suessfully erti�ed, its write operations are transmitted to the LokManager, and one the write loks are granted, the updates an be performed.To make sure that eah database site will onverge to the same state after proessingommitting transations, eah erti�er has to (1) reah the same deision when erti-fying transations, and (2) guarantee that write-on�iting transations are appliedto the database in the same order (sine transations whose writes do not on�itare ommutable). The �rst onstraint is ensured by providing eah erti�er withthe same set of transations and using a deterministi erti�ation test. The seondonstraint an be attained if the erti�er ensures that write-on�iting transationsgrant their loks in the same order that they are delivered. This requirement isstraightforward to implement, nevertheless, it redues onurreny in the erti�er.3.2.3 The Termination AlgorithmThe proedure exeuted on delivering the request of a ommitting update transation
ta is detailed next. For the disussion that follows, the readset RS(ta) and the writeset
WS(ta) are sets ontaining the identi�ers of the data items read and written by ta,1In a database implementation, these distintions may be muh less apparent, and the modulesmore tightly integrated [GR93℄. However, for presentation larity, we have hosen to separate themodules.
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Figure 3.3: Termination protool based on Atomi Broadastrespetively, during ta's exeution. Assuming that ta was exeuted at database site
si, every database site sj , after delivering ta, performs the following steps:1. Certi�ation test. Database site sj ommits ta (i.e., ta passes from the ommit-ting state to the ommitted state at sj) if there is no ommitted transation

tb at sj that on�its with ta. The notion of on�iting operations de�ned inSetion 3.1.4 is weakened, and just write operations performed by ommittedtransations and read operations performed by ta are onsidered (i.e., write-read on�its). Read-write on�its are not relevant sine only ommittedtransations take part in ta's erti�ation test, and write-write on�its aresolved by guaranteeing that all ta's updates are applied to the database afterall the updates performed by ommitted transations (up to the urrent time).The erti�ation test is formalised next as a ondition for a state transitionfrom the ommitting state to the ommitted state (see Figure 3.2):
Committing(ta, sj) ; Committed(ta, sj) ≡











∀tb, Committed(tb, sj) :

tb → ta ∨ (WS(tb) ∩RS(ta) = ∅)









The ondition for a transition from the ommitting state to the aborted stateis the omplement of the right side of this expression.One ta has been erti�ed by database site si, where it was exeuted, si aninform ta's outome to the lient that requested ta's exeution.



26 Chapter 3. The Database State Mahine2. Commitment. If ta is not aborted, it passes to the ommit state, the loksfor the data items it has written are requested, and one granted, ta's updatesare performed. There are three ases to onsider on granting the write loksrequested by ta.(a) There is a transation tb in exeution at sj whose read or write lokson�it with ta's writes. In this ase tb is aborted by sj, and therefore,all tb's read and write loks are released.(b) There is a transation tb, that was exeuted loally at sj and requested theommit, but has not been A-delivered yet at sj. Sine tb exeuted loallyat sj, tb has its write loks on the data items it updated. If tb ommits,its writes will overwrite ta's (i.e., the ones that overlap) and, in this ase,
ta need neither request these write loks nor proess the updates over thedatabase. This is similar to Thomas' Write Rule [Tho79℄. However, if tbis later aborted (i.e., it does not pass the erti�ation test), the databaseshould be restored to a state without tb, for example, by applying ta'sredo log entries to the database.() There is a transation tb that has passed the erti�ation test and hasgranted its write loks at sj, but it has not released them yet. In this ase,
ta waits for tb to �nish its updates and release its write loks.An important aspet of the termination algorithm presented above is that the AtomiBroadast is the only form of interation between database sites. The Atomi Broad-ast properties guarantee that every database site will ertify a transation ta usingthe same set of ommitted transations. It remains to be shown how eah databasesite builds suh a set. If transations ta and tb exeute at the same database site, thisan be evaluated by identifying transations that exeute at the same site (e.g., eahtransation arries the identity of the site where it was initiated) and assoiatingloal timestamps to the ommitting events of transations.If ta and tb exeuted at di�erent sites, this is done as follows. Every transationommit event is timestamped with the order the transation was A-delivered. TheAtomi Broadast properties ensure that eah database site assoiates the sametimestamps to the same transations, and there are no two transations with thesame timestamp. Eah transation t has a committing(t) �eld that stores the ommittimestamp of the last loally ommitted transation when t passes to the ommittingstate (see Figure 3.4). The committing(t) �eld is broadast to all database sitestogether with t. When a database site sj erti�es ta, all ommitted transations thathave been delivered by sj with ommit timestamp greater than committing(ta) takepart in the set of ommitted transations used to ertify ta (t(2) to t(m) in Figure 3.4).Suh a set of ommitted transations only ontains transations that do not preede

ta.3.2.4 Algorithm CorretnessThe Database State Mahine algorithm is proved orret using the multiversion for-malism of [BHG87℄. Although we do not expliitly use multiversion databases, our
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Figure 3.4: Transation preedenesapproah an be seen as so, sine replias of a data item loated at di�erent databasesites an be onsidered as di�erent versions of this data item [BHG87℄.We �rst de�ne C(H)si
as a multiversion history derived from the system history

H, just ontaining operations of ommitted transations involving data items storedat si. We denote wa[xa] a write by ta (as writes generate new data versions, thesubsript in x for data writes is always the same as the one in t) and ra[xb] a readby ta of data item xb.The multiversion formalism uses a multiversion serialisation graph (MV SG(C(H)si
)or MV SGsi

for short) and onsists in showing that all the histories produed by thealgorithm have a multiversion serialisation graph that is ayli [BHG87℄. We denote
MV SGk

si
a partiular state of the multiversion serialisation graph for database site

si. The multiversion serialisation graph passes from one state MV SGk
si
into another

MV SGk+1
si

when a transation is ommitted at si.We exploit the state mahine harateristis to struture our proof in two parts.In the �rst part, Lemma 3.1 shows that, by the properties of the Atomi Broadastprimitive and the determinism of the erti�er, every database site si ∈ ΣD eventuallyonstruts the same MV SGk
si
, k ≥ 0. In the seond part, Lemmas 3.2 and 3.3 showthat every MV SGk

si
is ayli.Lemma 3.1 If a database site si onstruts a multiversion serialisation graph

MV SGk
si

, k ≥ 0, then every database site sj eventually onstruts the same mul-tiversion serialisation graph MV SGk
sj
.Proof: The proof is by indution. (Base step.) When the database is ini-tialised, every database site sj has the same empty multiversion serialisation graph
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MV SG0

sj
. (Indutive step - assumption.) Assume that every database site sjthat has onstruted a multiversion serialisation graph MV SGk

sj
has onstrutedthe same MV SGk

sj
. (Indutive step - onlusion.) Consider ta the transa-tion whose ommitting generates, from MV SGk

sj
, a new multiversion serialisationgraph MV SGk+1

sj
. In order to do so, database site sj must deliver, ertify andommit transation ta. By the order property of the Atomi Broadast primitive,every database site sj that delivers a transation after installing MV SGk

sj
, delivers

ta, and, by the atomiity property, if one database site delivers transation ta, thenevery database site delivers ta. To ertify ta, sj takes into aount the transationsthat it has already loally ommitted (i.e., the transations in MV SGk
sj
). Thus,based on the same loal state (MV SGk

sj
), the same input (ta), and the same (deter-ministi) erti�ation algorithm, every database site eventually onstruts the same

MV SGk+1
sj

. 2We show next that every history C(H)si
produed by a database site si has an ayli

MV SGsi
and, therefore, is 1SR [BHG87℄. Given a multiversion history C(H)si

anda version order≪, the multiversion serialisation graph for C(H)si
and≪, MV SGsi

,is a serialisation graph with read-from and version order edges. A read-from relation
ta →֒ tb is de�ned by an operation rb[xa]. There are two ases where a version-orderrelation ta →֒ tb is in MV SGsi

: (a) for eah rc[xb], wb[xb] and wa[xa] in C(H)si(a, b, and c are distint) and xa ≪ xb, and (b) for eah ra[xc], wc[xc] and wb[xb]in C(H)si
and xc ≪ xb. The version order is de�ned by the delivery order of thetransations. Formally, a version order an be expressed as follows: xa ≪ xb i�

deliver(ta) ≺ deliver(tb) and ta, tb ∈MV SGsi
.To prove that C(H)si

has an ayli multiversion serialisation graph (MV SGsi
) weshow that the read-from and version-order relations in MV SGsi

follow the order ofdelivery of the ommitted transations in C(H)si
. That is, if ta →֒ tb ∈ MV SGsithen deliver(ta) ≺ deliver(tb).Lemma 3.2 If there is a read-from relation ta →֒ tb ∈MV SGsi

then deliver(ta) ≺
deliver(tb).Proof: A read-from relation ta →֒ tb is in MV SGsi

if rb[xa] ∈ C(H)si
, a 6= b. Fora ontradition, assume that deliver(tb) ≺ deliver(ta). If ta and tb were exeuted atdi�erent database sites, by the time tb was exeuted, ta had not been ommitted at

site(tb), and thus, tb ould not have read a value updated by ta. If ta and tb wereexeuted at the same database site, tb must have read unommitted data from ta,sine ta had not been ommitted yet. However, this ontradits the strit two phaseloking rule. 2Lemma 3.3 If there is a version-order relation ta →֒ tb ∈ MV SGsi
then

deliver(ta) ≺ deliver(tb).Proof: Aording to the de�nition of version-order edges, there are two ases toonsider. (1) Let rc[xb], wb[xb] and wa[xa] be in C(H)si
(a, b and  distint), and
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xa ≪ xb, whih implies ta →֒ tb is in MV SGsi

. It follows from the de�nition ofversion-order that deliver(ta) ≺ deliver(tb). (2) Let ra[xc], wc[xc] and wb[xb] be in
C(H)si

, and xc ≪ xb, whih implies ta →֒ tb is in MV SGsi
, and we have to show that

deliver(ta) ≺ deliver(tb). For a ontradition, assume that deliver(tb) ≺ deliver(ta).From the erti�ation test, when ta is erti�ed, either tb → ta or WS(tb)∩RS(ta) = ∅.But sine x ∈ RS(ta), and x ∈WS(tb), it must be that tb → ta.Assume that ta and tb were exeuted at the same database site. By the de�-nition of preedene (Setion 3.1.4), tb requested the ommit before ta (that is,
committing(tb)

e
→ committing(ta)). However, ta reads xc from tc, and this anonly happen if tb updates x before tc, that is, xb ≪ xc, ontraditing that xc ≪ xb.A similar argument follows for the ase where ta and tb were exeuted at distintdatabase sites, and we onlude that if there is a version-order relation ta →֒ tb in

MV SGsi
then deliver(ta) ≺ deliver(tb). 2Theorem 3.1 Every history H produed by the Database State Mahine algorithmis 1SR.Proof: By Lemmas 3.2 and 3.3, every database site si produes a serialisationgraph MV SGk

si
suh that every edge ta →֒ tb ∈ MV SGk

si
satis�es the relation

deliver(ta) ≺ deliver(tb). Hene, every database site si produes an ayli multiver-sion serialisation graph MV SGk
si
. By Lemma 3.1, every database site si onstrutsthe same MV SGk

si
. By the Multiversion Serialisation Graph theorem of [BHG87℄,every history produed by the Database State Mahine algorithm is 1SR. 23.2.5 Coping with Unilateral AbortsOne a transation t is delivered and suessfully erti�ed at some database site si, thas to be ommitted at si. Nevertheless, it an happen that for some �loal reason�(e.g., disk full), si annot arry out t's ommit, and has to abort t.2 This situationharaterises a unilateral abort. The problem with unilateral aborts is that they arenon-deterministi events, and thus, violate the assumption about the (deterministi)way requests are proessed by database sites in the Database State Mahine.One way of oping with unilateral aborts is introduing a oordination phase (e.g.,Atomi Commitment) before ommitting transations. This solution introdues anadditional ost in the transation proessing (additional ommuniation betweensites) whih will only be justi�ed in (hopefully rare) abnormal situations. Per-formane problems aside, introduing an Atomi Commitment phase in the statemahine approah might have major impliations. For example, the deterministirequirement on the manner requests are proessed ould be reonsidered.Another way of dealing with unilateral aborts is treating them as site failures. Inthis ase, as soon as the site reovers (e.g., in ase of disk full, the reover proedureonsists in alloating more disk spae), the transation is ommitted on that site.2Note that in the Database State Mahine, �loal reasons� are not related to onurreny ontrol.



30 Chapter 3. The Database State MahineThis means that database site si will not be able to ertify and ommit any trans-ation t′, deliver(t) ≺ deliver(t′), until si is able to ommit t (i.e., after the problemthat prevents t from ommitting has been removed). It does not make muh senseeither to exeute transations loally at si before ommitting t, and, from the lient'spoint of view, this behaviour is similar to a database site failure.3.3 The Reordering Certi�ation TestTransations running without any synhronisation between database sites may leadto high abort rates. In this setion, we show how the erti�ation test an be modi�edsuh that more transations pass the erti�ation test, and thus, do not abort.3.3.1 Reordering PrinipleThe reordering erti�ation test is based on the observation that the serial order inwhih transations are ommitted does not need to be the same total order in whihtransations are delivered to the erti�er [PGS97℄. The idea is to dynamially builda serial order (that does not neessarily follow the delivery order) in suh a way thatless aborts are produed. By being able to reorder a transation ta to a positionother than the one ta is delivered, the reordering protool inreases the probabilityof ommitting ta.The Database State Mahine augmented with the Reordering tehnique di�ers fromthe Database State Mahine presented in Setion 3.2 in the way the erti�ation testis performed for ommitting transations (see Figure 3.5). The erti�er distinguishesbetween ommitted transations already applied to the database and ommittedtransations in the Reorder List. The Reorder List ontains ommitted transationswhose write loks have been granted but whose updates have not been applied tothe database yet, and thus, have not been seen by transations in exeution. Thebottom line is that transations in the Reorder List may hange their relative order.The number of transations in the Reorder List is limited by a predetermined thresh-old, the Reorder Fator. Whenever the Reorder Fator is reahed, the leftmost trans-ation ta in the Reorder List is removed, its updates are applied to the database,and its write loks are released. If no transation in the Reorder List is waiting toaquire a write lok just released by ta, the orresponding data item is available toexeuting transations. The reordering tehnique redues the number of aborts, how-ever, introdues some data ontention sine data items remain bloked longer. Thisexpeted tradeo� was indeed observed by our simulation model (see Setion 3.5.3).3.3.2 The Termination Protool based on ReorderingLet databasesi
= t(0) ◦t(1) ◦· · · ◦t(lastsi

(τ)) be the sequene ontaining all transationson database site si at time τ that have passed the erti�ation test augmentedwith the reordering tehnique (order of delivery plus some possible reordering). The
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deliverFigure 3.5: Reorder tehnique (reorder fator = 4)sequene databasesi

inludes transations that have been applied to the databaseand transations in the Reorder List. We de�ne pos(t) the position transation thas in databasesi
, and extend the termination protool desribed in Setion 3.2.3 toinlude the reordering tehnique.1. Certi�ation test. Database site sj ommits ta if there is a position in the Re-order List where ta an be inserted. Transation ta an be inserted in position

p in the Reorder List if both following onditions are true.(a) For every transation tb in the Reorder List suh that pos(tb) < p, either
tb preedes ta, or tb has not updated any data item that ta has read (thisis essentially the erti�ation test desribed in Setion 3.1.3).(b) For every transation tb in the Reorder List suh that pos(tb) ≥ p, (b.1)
tb does not preede ta, or ta has not read any data item written by tb, and(b.2) ta did not update any data item read by tb.The erti�ation test with reordering is formalised next as a state transitionfrom the ommitting state to the ommitted state:

Committing(ta, sj) ; Committed(ta, sj) ≡



































∃position p in the Reorder List s.t. ∀tb, Committed(tb, sj) :

pos(tb) < p⇒ tb → ta ∨WS(tb) ∩RS(ta) = ∅ ∧

pos(tb) ≥ p⇒











(tb 6→ ta ∨WS(tb) ∩RS(ta) = ∅)

∧

WS(ta) ∩RS(tb) = ∅











































The ondition for a transition from the ommitting state to the aborted stateis the omplement of the right side of this expression.2. Commitment. If ta passes the erti�ation test, ta is inluded in the ReorderList at position p, that is, all transations in the Reorder List that are on the



32 Chapter 3. The Database State Mahineright of p, inluding the one at p, are shifted one position to the right, and tais inluded. If, with the inlusion of ta, the Reorder List reahes the ReorderFator threshold, the leftmost transation in Reorder List is removed and itsupdates are applied to the database.3.3.3 Algorithm CorretnessFrom Lemma 3.1, every database site builds the same multiversion serialisationgraph. It remains to show that all the histories produed by every database siteusing reordering have a multiversion serialisation graph that is ayli, and, there-fore, 1SR.We rede�ne the version-order relation ≪ for the termination protool based on re-ordering as follows: xa ≪ xb i� pos(ta) < pos(tb) and ta, tb ∈MV SGsi
.Lemma 3.4 If there is a read-from relation ta →֒ tb ∈ MV SGsi

then pos(ta) <
pos(tb).Proof: For a ontradition, assume that ta →֒ tb ∈MV SGsi

and pos(tb) < pos(ta).A read-from relation ta →֒ tb is in MV SGsi
if rb[xa] ∈ C(H)si

, a 6= b, resulting intwo ases of interest: (a) tb was delivered and ommitted before ta, and (b) tb wasdelivered and ommitted after ta but reordered to a position before ta. The ase inwhih ta is delivered and ommitted after tb is the same as ase (a), and the ase inwhih ta is delivered before tb and reordered to a position before tb is not possiblesine when ta is erti�ed, tb is not in the Reorder List.In ase (a), it follows that tb reads unommitted data (xa) from ta, whih is notpossible: if ta and tb exeuted at the same database site, reading unommitted datais avoided by the strit 2PL rule, and if ta and tb exeuted at di�erent database sites,
ta's updates are only seen by tb after ta's ommit. In ase (b), from the erti�ationtest augmented with reordering, when tb is erti�ed, we have that (ta 6→ tb∨WS(ta)∩
RS(tb) = ∅) ∧ WS(tb) ∩ RS(ta) = ∅ evaluates true. (Note that sine tb is theommitting transation, the indexes a and b in the expression given in the previoussetion have been inverted.) Sine tb reads-from ta, WS(ta) ∩ RS(tb) 6= ∅, and so,it must be that ta 6→ tb. If ta and tb exeuted at the same database site, ta 6→ tbimplies committing(tb)

e
→ committing(ta). However, this is only possible if tb reads

x from ta before ta ommits, ontraditing the strit 2PL rule. If ta and tb exeutedat di�erent database sites, ta 6→ tb implies commit(ta)site(tb) 6
e
→ committing(tb),and so, tb passed to the ommitting state before ta ommitted at site(tb), whihontradits the fat that tb reads from ta, and onludes the proof of the Lemma.2Lemma 3.5 If there is a version-order relation ta →֒ tb ∈ MV SGs then pos(ta) <

pos(tb).Proof: Aording to the de�nition of version-order edges, there are two ases ofinterest. (1) Let rc[xb], wb[xb], and wa[xa] be in C(H)si
(a, b and c distint), and
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xa ≪ xb, whih implies ta →֒ tb is in MV SGsi

. It follows from the de�nition ofversion-order that pos(ta) < pos(tb). (2) Let ra[xc], wc[xc], and wb[xb] be in C(H)si(a, b and c distint), and xc ≪ xb, whih implies ta →֒ tb is in MV SGsi
. We showthat pos(ta) < pos(tb). Sine ta reads-from tc, tc ommits before ta is erti�ed, andthere are two situations to onsider.(a) tc and tb have been ommitted when ta is erti�ed. Assume for a ontraditionthat pos(tb) < pos(ta). From the erti�ation test, we have that either tb → taor WS(tb)∩RS(ta) = ∅. Sine x ∈WS(tb) and x ∈ RS(ta), WS(tb)∩RS(ta) 6=

∅, and so, it must be that tb → ta. However, ta reads x from tc and not from
tb, whih an only happen if xb ≪ xc, ontraditing that xc ≪ xb.(b) tc and ta have been ommitted when tb is erti�ed. Assume for a ontraditionthat pos(tb) < pos(ta). From the erti�ation test, it must be that (ta 6→
tb ∨ WS(ta) ∩ RS(tb) = ∅) ∧ WS(tb) ∩ RS(ta) = ∅ evaluates true, whihleads to a ontradition sine x ∈ WS(tb) and x ∈ RS(ta), and therefore,
WS(tb) ∩RS(ta) 6= ∅. 2Theorem 3.2 Every history H produed by the Database State Mahine algorithmaugmented with the reordering tehnique is 1SR.Proof: By Lemmas 3.4 and 3.5, every database site si produes a serialisation graph

MV SGk
si
suh that every edge ta →֒ tb ∈ MV SGk

si
satis�es the relation pos(ta) <

pos(tb). Hene, every database site produes an ayli multiversion serialisationgraph MV SGx
s . By Lemma 3.1, every database site si onstruts the same MV SGk

si
.By the Multiversion Serialisation Graph theorem of [BHG87℄, every history produedby the Database State Mahine algorithm augmented with Reordering is 1SR. 23.4 Simple Probabilisti AnalysisIn this setion, we evaluate the Database State Mahine approah using a simpleanalytial model, based on the deadlok analysis presented in [GR93℄. Our analyt-ial model haraterises the abort rate of the Database State Mahine without theReordering tehnique.We simplify the analysis by making some assumptions about the system. Thedatabase is omposed of DB data items, all with the same probability of beingaessed (i.e., no hotspots). All transations follow the same pattern, that is, eahtransation exeutes a �xed number nr of read aesses and a �xed number nw ofwrite aesses. Only update transations are onsidered.First, we alulate the probability that a transation passes the erti�ation test. Ifthere are only two onurrent transations in the system, ta and tb, and ta ommitsbefore tb, the probability that a read operation performed by tb does not on�itwith any write performed by ta is (1 − nw/DB), and the probability that no readperformed by tb on�its with no write performed by ta (i.e., the likelihood that tb



34 Chapter 3. The Database State Mahinepasses the erti�ation test) is ∏nr−1
i=0 (1−nw/(DB−i)). Considering that DB ≫ nr(muh bigger than), this is approximately (1− nw/DB)nr.For a set G of N onurrent transations, and assuming a worst ase analysis whereall transations in G have non-interseting write sets, the probability that the i-thtransation passes the erti�ation test after the ommit of (i − 1) transations,denoted Pi,N , is

Pi,N =

(

1−
(i− 1) nw

DB

)nr

. (3.1)If we onsider that (i − 1) nw ≪ DB (muh smaller than), expression (3.1) an besimpli�ed as follows
Pi,N = 1−

(

nr

1

)(

(i− 1) nw

DB

)

+ . . . +

(

nr

nr

)(

(i− 1) nw

DB

)nr

≈ 1−
(i− 1) nr nw

DB
,

(3.2)sine the high-order terms in (3.2) an be dropped [GR93℄.In the average, the probability PC that a transation t in G passes the erti�ationtest is
PC ≈

1

N

N
∑

i=1

Pi,N = 1−
(N − 1) nr nw

2 DB
. (3.3)Furthermore, onsidering TPSup the number of update transations submitted perseond in the system, and τ the time in seonds it takes for a transation to bedelivered and erti�ed, N = TPSup τ . However, not all transations in G may ause

t's abort sine transations that exeuted at the same site as t are properly orderedwith t by loal loking mehanisms (we assume that the probability of loal deadlokis very small). Exluding suh transations leads to N∗ = TPSup τ (nS − 1)/nS(reall that nS is the number of database sites). From (3.3), in the average, thelikelihood that a transation t does not pass the erti�ation test, PC , is
PC ≈

(N∗ − 1) nr nw

2 DB
. (3.4)Using PC we an estimate the abort rate of the Database State Mahine. In Se-tion 3.5, we ompare this probabilisti abort rated with results obtained with oursimulation model.3.5 Simulation ModelThe simulation model we have developed abstrats the main omponents of a repli-ated database system (our approah is similar to [ACL87℄). In this setion, we



3.5. Simulation Model 35desribe the simulation model, analyse the behaviour of the Database State Mahineapproah using the output provided by the simulation model, and ompare some ofthe results obtained with the simulation model with the results obtained with theprobabilisti analysis developed in the previous setion.3.5.1 Database Model and SettingsEvery database site is modelled as a proessor with some data disks and a log diskas loal resoures. The network is modelled as a ommon resoure shared by alldatabase sites. Eah proessor is shared by a set of exeution threads, a terminatingthread, and a workload generator thread (see Figure 3.6). All threads have the samepriority, and resoures are alloated to threads in a �rst-in-�rst-out basis. Eahexeution thread exeutes one transation at a time, and the terminating threadis responsible for doing the erti�ation. The workload generator thread reatestransations at the database site. Exeution and terminating threads at a databasesite share the database data strutures (e.g., lok table).
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NetworkFigure 3.6: Simulation modelCommitting transations are delivered by the terminating thread and then erti�ed.If a transation passes the erti�ation test, its write loks are requested and itsupdates are performed. However, one the terminating thread aquires the trans-ation's write loks, it makes a log entry for this transation (with its writes) andassigns an exeution thread to exeute the transation's updates over the database.This releases the terminating thread to treat the next ommitting transation.The parameters onsidered by our simulation model with the settings used in theexperiments are shown in Table 3.1. The workload generator thread reates trans-ations and assigns them to exeuting threads aording to the pro�le desribed(perentage of update transations, perentage of writes in update transations, andnumber of operations). We have hosen a relative small database size in order toreah data ontention quikly and avoid extremely long simulation runs that would



36 Chapter 3. The Database State Mahinebe neessary to obtain statistially signi�ant results.We use a losed model, that is, eah terminated transation (ommitted or aborted) isreplaed by a new one. Aborted transations are sent bak to the workload generatorthread, and some time later resubmitted at the same database proess where theyoriginated. The multiprogramming level determines the number of exeuting threadsat eah database proess. Loal deadloks are deteted with a timeout mehanism:transations are given a ertain amount of time to exeute (transation timeout), andtransations that do not reah the ommitting state within the timeout are aborted.Database parameters Proessor parametersDatabase size (data items) 2000 Proessor speed 100 MIPSDatabase sites (n) 1..8 Exeute an operation 2800 instr.Multiprogramming level (MPL) 8 Certify a transation 5000 instr.Data item size 2 KB Reorder a transation 15000 instr.Transation parameters Disk parameters (Seagate ST-32155W)Update transations 10% Number of data disks 4Writes in update transations 30% Number of log disks 1Number of operations 5..15 Miss ratio 20%Transation timeout 0.5 se Lateny 5.54 mseReorder fator 0, n, 2n, 3n, 4n Transfer rate (Ultra-SCSI) 40 MB/seGeneral parameters Communiation parametersControl data size 1 KB Atomi Broadasts per seond ∞, 180, 800/nCommuniation overhead 12000 instr.Table 3.1: Simulation model parameters
Proessor ativities are spei�ed as a number of instrutions to be performed. Thesettings are an approximation from the number of instrutions used by the simula-tor to exeute the operations. The erti�ation test is e�iently implemented byassoiating to eah database item a version number [ACL87℄. Eah time a data itemis updated by a ommitting transation, its version number is inremented. Whena transation �rst reads a data item, it stores the data item's version number (thisis the transation read set). The erti�ation test for a transation onsists thus inomparing eah entry in the transation's read set with the urrent version of theorresponding data item. If all data items read by the transation are still urrent,the transation passes the erti�ation test. We onsider that version numbers arestored in main memory. The reordering test is more omplex, sine it requires han-dling read sets and write sets of transations in the reorder list. The ontrol data sizeontains the data strutures neessary to perform the erti�ation test (e.g., readsetand writeset). Atomi Broadast settings are desribed in the next setion.



3.5. Simulation Model 373.5.2 Atomi Broadast ImplementationWe do not onsider any spei� Atomi Broadast algorithm in our simulation. In-stead, we take a more general approah, based on broadast algorithms lasses, a-ording to salability issues. Our simulation is based on these lasses of algorithms.Atomi Broadast algorithms an be divided into two lasses. We say that an AtomiBroadast algorithm sales well, and belongs to the �rst lass, if the number ofmessages delivered per time unit in the system is independent of the number ofsites that deliver the messages. This lass is denoted lass k, where k determinesthe number of messages that an be delivered per time unit. An Atomi Broadastalgorithm of lass k is presented in [Jal98℄. In order to keep a onstant delivery time,the algorithm in [Jal98℄ relies on speial hardware.If the number of messages delivered per time unit in the system dereases with thenumber of database sites that deliver the messages, the Atomi Broadast algorithmdoes not sale well, and belongs to the seond lass. This lass is denoted lass k/n,where n is the number of sites that deliver the messages, and k/n is the numberof messages that an be delivered per time unit. In this ase, the more sites areadded, the longer it takes to deliver a message, and so, the number of messagesdelivered in the system per time unit dereases exponentially with the number ofsites. Most Atomi Broadast algorithms fall in this ategory (e.g., [BSS91, CM84,CT96, GMS91, LG90, WS95℄).As a referene, we also de�ne an Atomi Broadast that delivers messages instan-taneously. Suh an algorithm is denoted lass ∞ (i.e., it would allow in theory anin�nite number of messages to be delivered per time unit).The value hosen for lass k/n in Table 3.1 is an approximation based on experimentswith SPARC 20 workstations running Solaris 2.3 and an FDDI network (100Mb/s)using the UDP transport protool with a message bu�er of 20 Kbytes. The AtomiBroadast algorithm used in the experiments is of lass k/n, and the results foundallowed to estimate k = 800 in k/n. The value for lass k was arbitrarily takenas 180. Moreover, for all lasses, the exeution of an Atomi Broadast has someommuniation overhead that does not depend on the number of sites (see Table 3.1).3.5.3 Experiments and ResultsIn the following, we disuss the experiments we onduted and the results obtainedwith the simulation model. Eah point plotted in the graphis has a on�deneinterval of 95%, and was determined from a sequene of simulations, eah one on-taining 100000 submitted transations. In order to remove initial transients [Jai91℄,only after the �rst 1000 transations had been submitted, the statistis started tobe gathered.In some of the graphis presented next, we analyse update and read-only transationsseparately, although the values presented were observed in the same simulations (i.e.,all simulations ontain update and read-only transations).



38 Chapter 3. The Database State MahineUpdate Transations Throughput. The experiments shown in Figures 3.7 and3.8 evaluate the e�ets of the Atomi Broadast algorithm lasses on the transationthroughput. In these experiments, eah luster of database sites proessed as manytransations as possible, that is, transation throughput was only limited by the re-soures available. Figure 3.7 shows the number of update transations submitted,and Figure 3.8 the number of update transations ommitted. From Figure 3.7, thehoie of a partiular Atomi Broadast algorithm lass is not relevant for lusterswith less than �ve database sites: whatever the lass, transation throughput in-reases linearly with the number of database sites. This happens beause until fourdatabase sites, all three on�gurations are limited by the same resoure, namely, lo-al data disks (see paragraph about Resoure Utilisation). Sine the number of datadisks inreases linearly with the number of database sites, transation throughputalso inreases linearly. For lusters with more than four database sites, ontentionis determined di�erently for eah algorithm lass. For lass ∞, data ontention pre-vents linear throughput growth, that is, for more than �ve sites, the terminationthread reahes its limit and it takes muh longer for update transations to ommit.The result is that data items remain loked for longer periods of time, impeding theprogress of exeuting transations. For lasses k and k/n, ontention is aused by thenetwork (the limit being 180 and 800/n messages delivered per seond, respetively).It was expeted that after a ertain system load, the terminating thread wouldbeome a bottlenek, and transation erti�ation ritial. However, from Figure 3.8,this only happens for algorithms of lass ∞ (about 170 update transations perseond), sine for algorithms in the other lasses, the network beomes a bottlenekbefore the terminating thread reahes its proessing limit. Also from Figure 3.8,although the number of transations submitted per seond for lusters with morethan four sites is onstant for lass k, the number of transation aborts inreaseas the number of database sites augments. This is due to the fat that the moredatabase sites, the more transations are exeuted under an optimisti onurrenyontrol and thus, the higher the probability that a transation aborts. The samephenomenon explains the di�erene between submitted and ommitted transationsfor lass k/n. For lass ∞, the number of transations ommitted is a onstant,determined by the apaity of the terminating thread.Queries Throughput. Figures 3.9 and 3.10 show submitted and ommitted queriesper seond in the system. The urves in Figure 3.9 have the same shape as the onesin Figure 3.7 beause the simulator enfores a onstant relation between submit-ted queries and submitted update transations (see Figure 3.1, update transationsparameter). Update transations throughput is determined by data and resoureontention, and thus, queries are bound to exhibit the same behaviour. If updatetransations and queries were assigned a �xed number of exeuting threads at the be-ginning of the simulation, this behaviour would not have been observed, however, therelation between submitted queries and update transations would be determined byinternal harateristis of the system and not by an input parameter, whih wouldompliate the analysis of the data produed in the simulation. Queries are onlyaborted during their exeution to solve loal deadloks they are involved in, or onbehalf of ommitting update transations that have passed the erti�ation test and
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40 Chapter 3. The Database State Mahineare requesting their write loks (Setion 3.2.3). As shown in Figure 3.9 and 3.10,the values for submitted and ommitted queries, for all Atomi Broadast algorithmlasses, are very lose to eah other, whih amounts to a small abort rate.Reordering. Figures 3.11 and 3.12 show the abort rate for algorithms in the lasses
k and k/n respetively, with di�erent reorder fators. We do not onsider algorithmsin the lass ∞ beause reordering does not bring any improvement to the abort ratein this ase (even if more transations passed the erti�ation test, the terminatingthread would not be able to proess them). In both ases, reorder fators smallerthan 4n, have proved to redue the number of aborted update transations. Forreordering fators equal to or greater than 4n, the data ontention introdued bythe reordering tehnique leads to an inrease on the abort rate that is greater thanthe redution obtained with its use (i.e., the reordering tehnique inreases the abortrate of update transations). When the system reahes this point, most exeutingupdate and read-only transations time out and are aborted by the system.Abort Rate. Figures 3.13 and 3.14 present the detailed abort rate for the DatabaseState Mahine based on algorithms of lass k/n without and with the Reorderingtehnique (reorder fator equal to 3n). Figures 3.13 and 3.14 are not in the same salebeause the results shown di�er from more than one order of magnitude. Figure 3.13also shows the values obtained with the probabilisti model developed in Setion 3.4.The graphis only inlude the aborts during transation exeution, and, in the aseof update transations, due to failing the erti�ation test. Aborts due to time outare not shown beause in the ases presented they amount to a small fration of theabort rate. Without reordering (Figure 3.13), most transations fail the erti�ationtest and are aborted.The results observed are very lose to those alulated using the probabilisti model.In order to draw the probabilisti urve, we have to alulate N , the number ofonurrent transations. N is expressed as the produt of TPSup, the number ofupdate transations submitted per seond, and τ , the time it takes to exeute atransation. We take the values of TPSup and τ from the simulation experiments.When the Reordering tehnique is used, the number of transations that fail theerti�ation test is smaller than the number of transations aborted during theirexeution (see Figure 3.14).Response Time. Figure 3.15 presents the response time for the exeutions shownin Figures 3.7 and 3.8. The prie paid for the higher throughput presented byalgorithms of lass ∞, when ompared to algorithms of lass k, is a higher responsetime. For algorithms in the lass k/n, this only holds for less than 7 sites. When thenumber of transations submitted per seond is the same for all lasses of AtomiBroadast algorithms (see Figure 3.16), algorithms in lass ∞ are faster. Querieshave the same response time, independently of the Atomi Broadast lass. Notethat on�gurations with less than three sites are not able to proess 1000 transationsper seond. This explains why update transations exeuted in a single database site
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44 Chapter 3. The Database State Mahinehave a better response time than update transations exeuted in a Database StateMahine with two sites (a single site reahes no more than 403 TPS, and a DatabaseState Mahine with two sites reahes around 806 TPS).Figures 3.17 and 3.18 depit the degradation of the response time due to the Re-ordering tehnique. The inrease in response time beomes aentuated when dataontention beomes a problem (i.e., RF = 4n).Resoure Utilisation. Finally, Figures 3.19 and 3.20 present the way resoureutilisation varies when the number of sites inreases, with and without the Reorderingtehnique. The values in Figure 3.19 were observed in the same experiments shownin Figures 3.7 � 3.10, and Figure 3.13, and the values in Figure 3.20 were observed inthe same experiments depited in Figures 3.14 and 3.18. In both ases, in a DatabaseState Mahine with less than �ve sites, the limiting resoures are data disks. For �vesites or more, the network beomes the bottlenek. The log disk utilisation urve hasa shape similar to the urve that represents ommitted transations, sine the logis only used for ommitting transations. This explains the superior log utilisationwhen the Reordering tehnique is used.Overall Disussion. Besides showing the feasibility of the Database State Ma-hine, the simulation model allows to draw some onlusions about its salability.Update transations salability is determined by the salability of the Atomi Broad-ast algorithm lass, whih has showed to be a potential bottlenek of the system.This happens beause the network is the only resoure shared by all database sites(and network bandwidth does not inrease as more database sites are added to thesystem). As for queries, only a slight grow in the abort rate was observed as thenumber of sites inrease. This is due to the fat that queries are exeuted only loally,without any synhronisation among database sites.The above result about update transations salability deserves a areful interpreta-tion sine, in regard to network resoure utilisation, tehniques that fully synhronisetransations between database sites (e.g., distributed 2PL protool [BHG87℄) prob-ably will not outperform the Database State Mahine. A typial Atomi Broadastalgorithm in the lass k/n needs about 4n [PGS98℄ messages to deliver a transation,and a protool that fully synhronises transation operations needs around m × nmessages, where m is the number of transation operations (assuming that readsand writes are synhronised) [BHG87℄. Thus, unless transations are very small(m ≤ 4), the Database State Mahine needs less messages than a tehnique thatfully synhronises transations.Furthermore, the simulation model also shows that any e�ort to improve the salabil-ity of update transations should be onentrated on the Atomi Broadast primitive.Finally, if on the one hand the deferred update tehnique has no distributed dead-loks, on the other hand its lak of synhronisation may lead to high abort rates.The simulation model has showed that, if well tuned, the reordering erti�ation testan overome this drawbak.
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48 Chapter 3. The Database State Mahine3.6 Related WorkThe Database State Mahine is an example of the deferred update tehnique. Inthis setion, we situate the deferred update tehnique in the ontext of repliateddatabases and present repliated database algorithms that are related to the DatabaseState Mahine.3.6.1 Database RepliationDatabase repliation tehniques an be lassi�ed aording to the way updates arepropagated to database sites, and the way updates are regulated. These two riteriade�ne two orthogonal attributes that haraterise database repliation tehniques.Updates an be propagated in an eager or lazy way [GHOS96℄. In eager repliation,lient update requests are applied to all orret database sites as part of the originaltransation (i.e., the transation ommits in all orret database sites or in none).In lazy repliation, a transation �rst ommits at one database site, and then theother database sites are updated as di�erent transations. Lazy repliation may notpreserve one-opy serialisability.Eager repliation admits two variations [BHG87℄. Immediate update repliation prop-agates every single lient request to all database sites during the exeution of thetransation, whereas in the deferred update repliation, a single database site reeivesand proesses all lient requests, and only when the lient requests the ommit op-eration, the updates are propagated to the other database sites.Master and group based repliation regulates the way database sites aept updaterequests [GHOS96℄. In the master based repliation, only one database site anproess update requests, while in the group based repliation, any database site anreeive update requests from the lients and modify the database. These mehanisman be onsidered as a kind of database ownership, where only the database ownerhas the right to proess updates. In the master based repliation there is only onedatabase owner and in the group based repliation there are n database owners. WithMaster based tehniques, the failure of the Master prevents any update operationfrom being proesses until the Master reovers. If availability is an important issue,then some mehanism is neessary to assign a new Master.Table 3.2 summarises the attributes that haraterise database repliation protools.The Database State Mahine is an eager group repliation mehanism.Commerial databases have mostly foused on lazy repliation tehniques. This is inpart due to the fat that ommerial repliation has sometimes other goals than highavailability (e.g., repliation may aim only at performane, or providing support foro�-line analytial proessing).Sybase Repliation Server [Syb99℄ and IBM Data Propagator [Gol95℄, are examplesof master based lazy repliation. Although these mehanisms are implemented indi�erent ways,3 they both share the partiularity that repliation is implemented3Sybase Repliation Server is based on the �push model,� where sites subsribe to opies of data,



3.6. Related Work 49Eager LazyRepliation RepliationGroup N transations 1 transationOwnership N Database owners N Database ownersMaster N transations 1 transationOwnership 1 Database owner 1 Database ownerTable 3.2: Database repliation lassi�ation�outside the database engine,� and in both ases, the repliation mehanism interferesas little as possible in the �normal� (i.e., without repliation) exeution. Oraleversion 7.1 o�ers mehanisms to implement any repliation strategy [Del95℄. To keepdatabase onsisteny with lazy group and lazy master repliation, Orale providesoniliation rules that an be used to solve on�its [Ora95, Ja95℄.In the next setions, we present other database repliation proposals. This is a di�-ult task to aomplish due to the multitude of repliated database algorithms andthe variety of assumptions that they make about the system. Thus, before proeed-ing with our disussion, we point out that the Database State Mahine is at theintersetion of two axes of researh. First, relying on a erti�ation test to ommittransations is an appliation of optimisti onurreny ontrol. However, terminat-ing transations with an Atomi Broadast primitive is an alternative to solutionsbased on Atomi Commitment protools. Furthermore, we mainly onentrate ourdisussion on eager group based repliation.3.6.2 Optimisti Conurreny ControlAlthough most ommerial database systems are based on (pessimisti) 2PL syn-hronisation [GR93℄, optimisti onurreny ontrol have reeived inreasing atten-tion sine it introdution in [KR81℄ (see [Tho98, Bha99, OV99℄ for surveys). It hasbeen shown in [ACL87℄ that if su�ient hardware resoures are available, optimistionurreny ontrol an o�er better transation throughput than 2PL. This resultis explained by the fat that an inrease in the multiprogramming level, in orderto reah high transation throughput, also inreases loking ontention, and thus,the probability of transation waits due to on�its, and transation restarts to solvedeadloks. The study in [ACL87℄ is for a entralised single-opy database. One ouldexpet that in a repliated database, the ost of synhronising distributed aesses bymessage passing would be non negligible as well. In fat, the study in [GHOS96℄ hasshown that fully synhronising aesses in repliated database ontexts (as requiredby 2PL) is dangerous, sine the probability of deadloks is diretly proportional tothe third power of the number of database sites in the system.and hanges are propagated from the primary to the bakups as soon as they our, and IBM DataPropagator is based on the �pull model,� where repliated data is demanded by the bakups to theprimary at regular time intervals.



50 Chapter 3. The Database State Mahine3.6.3 Transation TerminationThe limitations of traditional Atomi Commitment protools in repliated ontextshave been reognised by many authors, and several algorithms have been proposed toterminate transations in repliated databases without Atomi Commitment. How-ever, most approahes are not eager group based, or require expliit use of appliationsemantis.The fat that Atomi Commitment leads to abort transations in situations where asingle replia manager rashes has been pointed out in [GOS96℄. The authors proposea variation of the three phase ommit protool [Ske81℄ that ommits transations aslong as a majority of replia managers are up.In [DGH+87℄, lazy based epidemi repliation protools are proposed as an alterna-tive to traditional repliation protools. Another example of epidemi repliationis proposed in [JMR97℄, whih relies on semanti knowledge about the appliation.Bayou [TTP+95℄ implements a lazy master repliation mehanism, o�ering weak on-sisteny, while the work in [BK97℄ presents a lazy master approah that guaranteesone-opy serialisability.A deferred update repliation protool that guarantees one-opy serialisability ispresented in [AAS97℄. In this protool, transations that exeute at the same proessshare the same data items, using loks to solve loal on�its. This protool isbased on a variation of the three phase ommit protool to erti�ate and terminatetransations.It is only reently that Atomi Broadast has been onsidered as a possible andi-date for terminating transations in repliated databases. Shiper and Raynal [SR96℄pointed out some similarities between the properties of Atomi Broadast and statitransations (e.g., transations whose operations are known in advane). Atomi-ally broadasting transations was also addressed in [Kei94℄, whih assumes thattransation operations are known at the beginning of the transation exeution. Thework in [BK98℄ investigates relaxed isolation guarantees in order to develop databaserepliation protools.In [AAAS97℄, a family of protools for the management of repliated database basedon the immediate and the deferred tehniques is proposed. The immediate updaterepliation onsists in atomially broadasting every write operation to all databasesites. This mehanism requires that every database site exeute eah transationoperation in the same way. For the deferred update repliation, two Atomi Broad-asts are neessary to ommit a transation. An alternative solution is also proposed,using a sort of multiversion mehanism to deal with the writes during transationexeution (if a transation writes a data item, a later read should re�et this write).Amir et al. [ADMSM94℄ also use Atomi Broadast to implement repliated databases.However, the sheme proposed onsiders that lients submit individual objet oper-ations rather than transations.



3.7. Disussion 513.7 DisussionThe Database State Mahine is an aggressive approah to building high performanerepliated databases. Its priniple is to redue synhronisation between databasesites to the utmost, requiring a deterministi transation proessing. Deterministitransation proessing is a deliate issue in the ontext of a repliated database. Wehave hosen to base the Database State Mahine on the deferred update repliationtehnique beause this allowed us to onentrate the deterministi requirements ona very preise part of the system, the erti�ation test. Furthermore, the deferredupdate repliation tehnique also permits a fair distribution of load among databasesites, that is, transations are only exeuted at one database site, although updatetransations are ommitted in all database sites.The optimisti way in whih transations are proessed in the deferred update repli-ation may lead to high abort rates. The Database State Mahine redues the numberof aborts using the Reordering tehnique, whih exploits the serialisability propertyto ommit transations that otherwise would be aborted. Reordering transationsinreases the response time, but, as it was observed in our simulations, for ertainreorder fators, this ost is aeptable.Some issues about the Database State Mahine remain open for further studies. Forexample, we have not been onerned by the way lients hoose the database site thatwill exeute their requests. This is an important issue for load balaning. Anotherinteresting issue for future studies is how to pass from full repliation to partialrepliation. At �rst glane, this seems not to be possible beause of the erti�ationtest. However, if the erti�ation test is augmented with Atomi Commitment (seeSetion 3.2.5), partial repliation beomes possible. Note that even if the erti�ationtest relies on an Atomi Commitment, propagating ommitting transations withan Atomi Broadast is still attrative sine it inreases the hane of ommittingtransations [PGS98℄.
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Chapter 4Generi Broadast All generalizations are dangerous,even this one.Alexandre DumasThe Database State Mahine relies on an Atomi Broadast primitive to propagateupdate transations. As shown in the previous hapter, Atomi Broadast is su�ientto ensure the Database State Mahine orretness, however, it turns out that itis not neessary. In this hapter, we introdue the Generi Broadast problem, abroadast primitive that allows appliations to tailor-make their order requirements.The intuition behind Generi Broadast is that message ordering has a ost, andfor several appliations, like the Database State Mahine, total ordering of messagesis stronger than neessary to guarantee orretness. Generi Broadast allows theappliation to de�ne a on�it relation that re�ets the semanti meaning of themessages.In addition to introduing the Generi Broadast problem, this hapter presents analgorithm that solves it, and ompares this algorithm to known Atomi Broadastimplementations using the delivery lateny parameter. This hapter is based on anasynhronous system model. Proesses ommuniate by message passing throughQuasi-Reliable hannels, and have the rash-stop mode of failure. The system isaugmented with failure detetors (see Chapter 2).4.1 Problem De�nitionGeneri Broadast is de�ned by the primitives g-Broadast and g-Deliver.1 Whena proess p invokes g-Broadast with a message m, we say that p g-Broadasts m,and when p returns from the exeution of g-Deliver with message m, we say that
p g-Delivers m. Message m is taken from a set M to whih all messages belong.1g-Broadast has no relation with the GBCAST primitive de�ned in the Isis system [BJ87℄.



54 Chapter 4. Generi BroadastCentral to Generi Broadast is the de�nition of a (symmetri) on�it relation on
M×M denoted by C (i.e., C ⊆ M×M). If (m,m′) ∈ C then we say that m and
m′ on�it. Generi Broadast is spei�ed by (1) a on�it relation C and (2) thefollowing onditions:(Validity) If a orret proess g-Broadasts a message m, then it eventuallyg-Delivers m.(Agreement) If a orret proess g-Delivers a message m, then all orretproesses eventually g-Deliver m.(Integrity) For any message m, every orret proess g-Delivers m at mostone, and only if m was previously g-Broadast by some proess.(Partial Order) If orret proesses p and q both g-Deliver messages mand m′, and m and m′ on�it, then p g-Delivers m before m′ if and only if qg-Delivers m before m′.The on�it relation C determines the pair of messages that are sensitive to order,that is, the pair of messages for whih the g-Deliver order should be the same atall proesses that g-Deliver the messages. The on�it relation C renders the abovespei�ation generi, as shown in the next setion.4.1.1 Instanes of Generi BroadastWe onsider in the following some instanes of Generi Broadast. In partiular,we show (a) that Reliable Broadast and Atomi Broadast are speial ases ofGeneri Broadast, (b) how Generi Broadast an be de�ned in a senario whereoperations ommute, and () how Generi Broadast an be de�ned in the ontextof the Database State Mahine (see Chapter 3).Reliable and Atomi Broadast. Two speial ases of on�it relations are the(1) empty on�it relation, denoted by C∅, where C∅ = ∅, and the (2) M ×Mon�it relation, denoted by CM×M, where CM×M =M×M. In ase (1) no pairof messages on�it, that is, the partial order property imposes no onstraint. Thisis equivalent to having only the validity, agreement, and integrity properties, whihis alled Reliable Broadast. In ase (2) any pair (m,m′) of messages on�it, thatis, the partial order property imposes that all pairs of messages be ordered, whih isalled Atomi Broadast. In other words, Reliable Broadast and Atomi Broadastlie at the two ends of the spetrum de�ned by Generi Broadast. In between, anyother on�it relation de�nes an instane of Generi Broadast.Commuting Operations. Con�it relations lying in between the two extremesof the on�it spetrum an be better illustrated by an example. Consider a repli-ated Aount objet, de�ned by the operations deposit(x) and withdraw(x). Clearly,



4.1. Problem Definition 55
deposit operations ommute with eah other, while withdraw operations do not,neither with eah other nor with deposit operations.2 Let Mdeposit denote the setof messages that arry a deposit operation, andMwithdraw the set of messages thatarry a withdraw operation. This leads to the following on�it relation CAccount:

CAccount = { (m, m′) : m ∈Mwithdraw or m′ ∈Mwithdraw}.Generi Broadast with the CAccount on�it relation for broadasting the invoationof deposit and withdraw operations to the repliated Aount objet de�nes a weakerordering primitive than Atomi Broadast (e.g., messages inMdeposit are not requiredto be ordered with eah other), and a stronger ordering primitive than ReliableBroadast (whih imposes no order at all).The Database State Mahine Semantis. The termination protool of theDatabase State Mahine is based on an Atomi Broadast primitive (Setion 3.2.2).One a transation passes to the ommitting phase, its updates, read and write setsare atomially broadast to all databases sites to be erti�ed. Atomi Broadast issu�ient to guarantee replia orretness, as it was shown in Setion 3.2.4, however,it turns out that it is not neessary.The following example shows that Atomi Broadast is stronger than neessary toguarantee replia orretness. Assume two messages m and m′ that transport twoonurrent transations ta and tb, denoted by m : ta and m′ : tb respetively, suhthat RSa = {x, y} and WSa = {z}, and RSb = {x} and WSb = {w}. In this ase,neither ta (if ommitted) has any in�uene on the outome of the erti�ation test of
tb, nor tb (if ommitted) has any in�uene on the outome of the erti�ation test of
ta. To see why, notie that RSa ∩WSb = ∅ and RSb ∩WSa = ∅. Furthermore, sineboth transations have disjoint write sets, even if both are ommitted, the ordertheir updates are performed in the database does not matter. Therefore, total orderdelivery of messages m and m′ is not neessary for the Database State Mahine tobe orret.A on�it relation CDSM , weaker than Atomi Broadast, an be derived for theDatabase State Mahine from the erti�ation test, whih heks whether transa-tions an be ommitted or not. The on�it relation CDSM is de�ned as follows.
CDSM = { (m : ta, m′ : tb) : (RSa ∩WSb 6= ∅) ∨ (WSa ∩RSb 6= ∅) ∨ (WSa ∩WSb 6= ∅)}.4.1.2 Strit Generi Broadast AlgorithmFrom the spei�ation it is obvious that any algorithm solving Atomi Broadastalso solves any instane of the Generi Broadast problem de�ned by C ⊆ M×M.However, suh a solution also orders messages that do not on�it. We are interested2This is the ase for instane if we onsider that a withdraw(x) operation an only be performedif the urrent balane is larger than or equal to x.



56 Chapter 4. Generi Broadastin a strit algorithm, that is, an algorithm that does not order two messages if notrequired, aording to the on�it relation C. The idea is that ordering messageshas a ost (e.g., in terms of number of ommuniation steps) and this ost should bekept as low as possible. More formally, we de�ne an algorithm that solves GeneriBroadast for a on�it relation C ⊂ M×M, denoted by AC , strit if it satis�es theondition below.(Stritness) Consider an algorithm AC , and let RNC
C be the set of runs of

AC . There exists a run R in RNC
C , in whih at least two orret proessesg-Deliver two non-on�iting messages m and m′ in a di�erent order.Informally, the stritness ondition requires that algorithm AC allow runs in whihthe g-Deliver of non on�iting messages is not totally ordered. However, even if ACdoes not order messages, it an happen that total order is spontaneously ensured.So we annot require violation of total order to be observed in every run: we requireit in at least one run of AC .4.2 Solving Generi BroadastIn this setion, we present an algorithm that solves Generi Broadast. Our solu-tion relies on an algorithm that solves the Consensus problem. We �rst provide anoverview of the solution, and then present a detailed algorithm.4.2.1 Overview of the AlgorithmProesses exeuting our Generi Broadast algorithm progress in a sequene of stagesnumbered 1, 2, . . . , k, . . . . Stage k terminates only if two on�iting messages are g-Broadast, but not g-Delivered in some stage k′ < k.g-Delivery of non-on�iting messages. Let m be a g-Broadast message.When some proess p reeives m in stage k, and m does not on�it with someother message m′ already reeived by p in stage k, p inserts m in its pendingk

p set,and sends an ACK(m) message to all proesses. As soon as p reeives ACK(m)messages from nack proesses, where
nack ≥ (n + 1)/2, (4.1)

p g-Delivers m.g-Delivery of on�iting messages. Consensus is launhed to terminate stage
k if a on�it is deteted. The Consensus deides on two sets of messages, denotedby NCmsgSetk (NC stands for Non-Con�iting) and CmsgSetk (C stands for Con-�iting). The set NCmsgSetk ∪ CmsgSetk is the set of all messages g-Deliveredin stage k. Messages in NCmsgSetk are g-Delivered before messages in CmsgSetk,



4.2. Solving Generi Broadast 57and messages in NCmsgSetk may be g-Delivered by some proess p in stage k before
p exeutes the k-th Consensus. The set NCmsgSetk does not ontain on�itingmessages, while messages in CmsgSetk may on�it. Messages in CmsgSetk areg-Delivered in some deterministi order. Proess p starts stage k + 1 one it hasg-Delivered all messages in CmsgSetk.Properties. To be orret, our algorithm must satisfy the following properties:(a) If two messages m and m′ on�it, then at most one of them is g-Delivered instage k before Consensus.(b) If message m is g-Delivered in stage k by some proess p before Consensus,then m is in the set NCmsgSetk.() The set NCmsgSetk does not ontain any on�iting messages.3We disuss eah of these properties informally. The formal proof of the algorithm isin Setion 4.2.3. Property (a) is ensured by ondition (4.1). Property (b) is ensuredas follows. Before starting Consensus, every proess p sends its pendingk

p set to allproesses (in a message of type heking, denoted by CHK), and waits for messagesof type CHK from exatly nchk proesses. Only if some message m is at least in
⌈(nchk + 1)/2⌉ messages of type CHK, then m is inserted in majMSetkp , the initialvalue of Consensus that deides on NCmsgSetk. So, if m is in less than ⌈(nchk+1)/2⌉messages of type CHK, m is not inserted in majMSetkp. Indeed, if ondition

2nack + nchk ≥ 2n + 1 (4.2)holds and m is in less than ⌈(nchk + 1)/2⌉ messages of type CHK, then m ould nothave been g-Delivered in stage k before Consensus. To understand why, notie thatfrom (4.2) and the fat that nack, nchk, and n ∈ N, we have (see Proposition 4.1)
(n− nchk) + ⌈(nchk + 1)/2⌉ ≤ nack, (4.3)where (n−nchk) is the number of proesses from whih p knows nothing. From (4.3),if m is in less than ⌈(nchk + 1)/2⌉ messages of type CHK, then even if all proessesfrom whih p knows nothing had sent ACK(m), there would not be enough ACK(m)messages to have m g-Delivered by some proess in stage k before Consensus.Proposition 4.1 If 2nack + nchk ≥ 2n + 1 and nack, nchk, and n ∈ N then (n −

nchk) + ⌈(nchk + 1)/2⌉ ≤ nack.Proof: Solving 2nack +nchk ≥ 2n+1 for nack, we have n+(1−nchk)/2 ≤ nack. But
n+(1−nchk)/2 = (n−nchk)+(nchk+1)/2, and so, (n−nchk)+(nchk+1)/2 ≤ nack. We3Property () does not follow from (a) and (b). Take for example two messages m and m′ thaton�it, but are g-Delivered in stage k as the result of the Consensus terminating stage k: neitherproperty (a), nor property (b) applies.



58 Chapter 4. Generi Broadastlaim that (n−nchk)+(1+nchk)/2 ≤ nack implies (n−nchk)+⌈(nchk +1)/2⌉ ≤ nack.If nchk is odd, the laim follows diretly. Thus, assume that nchk is even, that is, thereis an l ∈ N, suh that nchk = 2 l. We have to show that (n − 2 l) + (l + 1/2) ≤ nackimplies (n− 2 l)+ ⌈(l+1/2)⌉ ≤ nack. Sine l ∈ N, (n− 2 l)+ (l+1/2) ≤ nack implies
(n− 2 l)+ (l + 1) ≤ nack, and it is not di�ult to see that if (n− 2 l)+ (l + 1) ≤ nackthen (n− 2 l) + ⌈(l + 1/2)⌉ ≤ nack. 2Property () is ensured by the fat that m is inserted in majMSetkp only if m is inat least ⌈(nchk + 1)/2⌉ messages of type CHK reeived by p (majority ondition).Let m and m′ be two messages in majMSetkp . By the majority ondition, the twomessages are in the pendingk

q set of at least one proess q. This is however onlypossible if m and m′ do not on�it.Minimal number of orret proesses. Our Generi Broadast algorithm waitsfor nack messages before g-Delivering non-on�iting messages, and nchk messages ifa on�it is deteted before starting Consensus. Therefore, our algorithm requiresmax(nack, nchk) orret proesses. The minimum of orret proesses to solve GeneriBroadast with our algorithm is (2n + 1)/3, whih happens when nack = nchk.4.2.2 Detailed AlgorithmProvided that the number of orret proesses is at least max(nack, nchk), nack ≥
(n + 1)/2, and 2nack + nchk ≥ 2n + 1, Algorithm 1 solves Generi Broadast for anyon�it relation C. All tasks in Algorithm 1 exeute onurrently, and Task 3 hastwo entry points (lines 12 and 31).Algorithm 1 uses an �underline� notation (e.g., k) to preise the message a proess iswaiting for. For example, a proess that waits for message (k, pendingk

q , ACK) (line31) will reeive a message (i,−, type) suh that i = k and type = ACK.Proess p in stage k manages the following sets.
• R_deliveredp: ontains all messages R-delivered by p up to the urrent time,
• G_deliveredp: ontains all messages g-Delivered by p in all stages k′ < k,
• pendingk

p : ontains every message m suh that p has sent an ACK messagefor m in stage k up to urrent time, and
• localNCg_Deliverk

p : is the set of non on�iting messages that are g-Deliveredby p in stage k, up to the urrent time (and before p exeutes the k-th Con-sensus).When p wants to g-Broadast message m, p exeutes R-broadast(m) (line 8). AfterR-delivering a message m, the ations taken by p depend on whether m on�its ornot with some other message m′ in R_deliveredp \G_deliveredp.



4.2. Solving Generi Broadast 59No on�it. If no on�it exists, then p inludes m in pendingk
p (line 14), andsends an ACK message to all proesses, aknowledging the R-delivery of m (line 15).One p reeives nack ACK messages for a message m (line 31), p inludes m in

localNCg_Deliverk
p (line 35) and g-Delivers m (line 36).Con�it. In ase of on�it, p starts the terminating proedure for stage k. Proess

p �rst sends a message of the type (k, pendingk
p , CHK) to all proesses (line 17), andwaits the same information from exatly nchk proesses (line 18). Then p builds theset majMSetkp (line 20).4 It an be proved that majMSetkp ontains every message

m suh that for any proess q, m ∈ localNCg_Deliverk
q . Then p starts Consensus(line 21) to deide on a pair (NCmsgSetk, CmsgSetk) (line 22). One the deisionis made, proess p �rst g-Delivers (in any order) the messages in NCmsgSetk that ishas not g-Delivered yet (lines 23 and 25), and then p g-Delivers (in some deterministiorder) the messages in CmsgSetk that it has not g-Delivered yet (lines 24 and 26).After g-Delivering all messages deided in Consensus exeution k, p starts stage k+1(lines 28-30).4.2.3 Proof of CorretnessWe �rst establish some Lemmata that will be used to prove the main result (i.e.,Properties 4.2 � 4.5). Lemma 4.1 states that the set pendingk does not ontainon�iting messages. It is used to prove Lemmata 4.2 and 4.5.Lemma 4.1 For any proess p, and all k ≥ 1, if messages m and m′ are in

pendingk
p , then m and m′ do not on�it.Proof: Suppose, by way of ontradition, that there is a proess p, and some k ≥ 1suh that m and m′ on�it and are in pendingk

p . Sine m and m′ are in pendingk
p ,

p must have R-delivered m and m′. Assume that p �rst R-delivers m and then m′.Thus, there is a time t after p R-delivers m′ suh that p evaluates the if statementat line 13, and m′ ∈ R_deliveredp, m′ 6∈ G_deliveredp, and m′ 6∈ pendingk
p . Attime t, m ∈ R_deliveredp (by the hypothesis m is R-delivered before m′), and

m 6∈ G_deliveredp (if m ∈ G_delivered, from lines 27-29 m and m′ annot be bothin pendingk
p ). Therefore, when the if statement at line 13 is evaluated, m and m′ arein R_delivered \G_delivered, and sine m and m′ on�it, the ondition evaluatesfalse, and m′ is not inluded in pendingk

p , a ontradition that onludes the proof.
2Lemma 4.2 proves property (a) of page 57.Lemma 4.2 If two messages m and m′ on�it, then at most one of them is g-Delivered in stage k before Consensus.4majMSetk

p = {m : |Chkk
p (m)| ≥ (nchk + 1)/2}



60 Chapter 4. Generi BroadastAlgorithm 1 Generi Broadast algorithm1: Initialisation:2: R_delivered← ∅3: G_delivered← ∅4: k ← 15: pending1 ← ∅6: localNCg_Deliver1 ← ∅7: To exeute g-Broadast(m): {Task 1}8: R-broadast(m)9: g-Deliver(−) ours as follows:10: when R-deliver(m) {Task 2}11: R_delivered← R_delivered ∪ {m}12: when (R_delivered \G_delivered) \ pendingk 6= ∅ {Task 3}13: if [ for all m, m′ ∈ R_delivered \ G_delivered, m 6= m′ : (m, m′) 6∈ Conflict ℄then14: pendingk ← R_delivered \G_delivered15: send(k, pendingk, ACK) to all16: else17: send(k, pendingk, CHK) to all18: wait until [ for nchk processes q : p received (k, pendingk
q , CHK) from q ]19: #De�ne chkPSetk(m) = {q : p received (k, pendingk

q , CHK) from q and

m ∈ pendingk
q }20: majMSetk ← {m : | chkPSetk(m) | ≥ ⌈(nchk + 1)/2⌉}21: propose(k, (majMSetk, (R_delivered \G_delivered) \majMSetk))22: wait until decide(k, (NCmsgSetk, CmsgSetk))23: NCg_Deliverk ← (NCmsgSetk \ localNCg_Deliverk) \G_delivered24: Cg_Deliverk ← CmsgSetk \G_delivered25: g-Deliver messages in NCg_Deliverk in any order26: g-Deliver messages in Cg_Deliverk using some deterministi order27: G_delivered← (localNCg_Deliverk ∪NCg_Deliverk ∪ Cg_Deliverk)∪

G_delivered28: k ← k + 129: pendingk ← ∅30: localNCg_Deliverk ← ∅31: when reeive(k, pendingk
q , ACK) from q32: #De�ne ackPSetk(m) = {q : p received (k, pendingk

q , ACK) from q and

m ∈ pendingk
q }33: ackMSetk ← {m : |ackPSetk(m)| ≥ nack}34: localNCmsgSetk ← ackMSetk \ (G_delivered ∪NCmsgSetk)35: localNCg_Deliverk ← localNCg_Deliverk ∪ localNCmsgSetk36: g-Deliver all messages in localNCmsgSetk in any order



4.2. Solving Generi Broadast 61Proof: The proof is by ontradition. Assume that there are two messages mand m′ that on�it and are g-Delivered in stage k before Consensus. Without lakof generality, onsider that m is g-Delivered by proess p, and m′ is g-Deliveredby proess q. From the Generi Broadast algorithm (lines 31-36), p (and q) hasreeived nack messages of the type (k, pendingk, ACK) suh that m ∈ pendingk(m′ ∈ pendingk). Sine nack > (n + 1)/2, there must be a proess r that sendsthe message (k, pendingk
r , ACK) to proesses p and q, suh that m and m′ are in

pendingk
r , ontraditing Lemma 4.1. 2Lemma 4.3 relates (1) the set Ackk(m) of proesses that send an aknowledgementfor some message m in stage k and (2) the set Chkk

p of proesses from whih someproess p reeives CHK messages in stage k, with (3) the set Chkk
p(m) of proessesfrom whih p reeives a CHK message ontaining m in stage k.Lemma 4.3 Let Ackk(m) be a set of proesses that exeute the statement send(k,

pendingk, ACK) in stage k with m ∈ pendingk, and let Chkk
p be the set of proessesfrom whih some proess p reeives messages of the type (k, pendingk, CHK) in stage

k. If |Ackk(m)| ≥ nack, |Chkk
p | = nchk, and 2nack + nchk ≥ 2n + 1, then there are atleast ⌈(nchk + 1)/2⌉ proesses in Chkk

p(m)
def
= Chkk

p ∩Ackk(m).Proof: We �rst determine a relation between sets Ackk(m), Chkk
p , and Chkk

p(m).Set Chkk
p(m) ontains all proesses from set Chkk

p that sent an aknowledgementmessage for m. Thus, proess p knows that every proess q ∈ Chkk
p(m) exeutedthe statement send(k, pendingk, ACK) in stage k with m ∈ pendingk, but p doesnot know anything about the remaining proesses in Π \Chkk

p . Therefore, there are
|Π\Chkk

p | = (n−nchk) additional proesses that might have sent an aknowledgementfor m. We onlude that |Ackk(m)| ≤ (n − nchk) + |Chkk
p(m)|. By the hypothesis,

|Ackk(m)| ≥ nack, and thus, nack ≤ (n − nchk) + |Chkk
p(m)| (1). Subtrating nfrom both sides in (1) leads to nack − n ≤ |Chkk

p(m)| − nchk (2). By rearranging
2nack + nchk ≥ 2n + 1, we have that nack − n ≥ (1− nchk)/2 (3). From (2) and (3),
|Chkk

p(m)| −nchk ≥ (1−nchk)/2, and so, |Chkk
p(m)| ≥ (nchk + 1)/2. Sine nchk and

|Chkk
p(m)| ∈ N, we onlude that |Chkk

p(m)| ≥ ⌈(nchk + 1)/2⌉. 2Lemma 4.4 proves property (b) of page 57. It states that any message g-Deliveredby some proess q during stage k, before q exeutes Consensus in stage k will beinluded in the set NCmsgSetk deided by Consensus k.Lemma 4.4 For any two proesses p and q, and all k ≥ 1, if proess p exeutes thestatement deide(k, (NCmsgSetk ,−)), then localNCg_Deliverk
q ⊆ NCmsgSetk.Proof: Let m be a message in localNCg_Deliverk

q . We �rst show that if p exe-utes the statement propose(k,majMSetkp ,−)), then m ∈ majMSetkp. Sine m ∈

localNCg_Deliverk
q , q must have reeived nack messages of the type (k, pendingk,

ACK) (line 31) suh that m ∈ pendingk. Thus, there are nack proesses that sent
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m to all proesses in the send statement at line 15. From Lemma 4.3, Chkk(m) ≥
(nchk + 1)/2, and so, from the algorithm line 20, m ∈ majMSetkp. Therefore, forevery proess q that exeutes propose(k, (majMSetkq ,−)), m ∈ majMSetkq . Let
(NCmsgSetk,−) be the value deided on Consensus exeution k. By the uniformvalidity of Consensus, there is a proess r that exeuted propose(k, (majMSetkr ,−))suh that NCmsgSetk = majMSetkr , and so, m ∈ NCmsgSetk. 2Lemma 4.5 proves property () of page 57.Lemma 4.5 If two messages m and m′ on�it, then at most one of them is in
NCmsgSetk.Proof: The proof is by ontradition. Assume that there are two messages mand m′ that on�it, and are both in NCmsgSetk. From the validity property ofConsensus, there must be a proess p that exeutes propose(k, (majMSetkp ,−)), suhthat NCmsgSetk = majMSetkp . Therefore, m and m′ are in majMSetkp, and fromthe algorithm, p reeives ⌈(nchk + 1)/2⌉ messages of the type (k, pendingk, CHK)suh that m is in pendingk, and p also reeives ⌈(nchk + 1)/2⌉ messages of the type
(k, pendingk, CHK) suh that m′ is in pendingk. Sine p waits for exatly nchkmessages of the type (k, pendingk, CHK), there must exist at least one proess q in
Chkk

p suh that m and m′ are in pendingk
q , ontraditing Lemma 4.1. 2Lemma 4.6 lies the basis for Propositions 4.2 and 4.3. It shows that (a) if some orretproess exeutes Consensus at some stage k, then all orret proesses also exeuteConsensus at stage k, and (b) all orret proesses g-Deliver the same messages atstage k.Lemma 4.6 For any two orret proesses p and q, and all k ≥ 1:(1) If p exeutes send(k,−, CHK), then q eventually exeutes send(k,−, CHK).(2) If p exeutes propose(k,−), then q eventually exeutes propose(k,−).(3) If p g-Delivers messages in NCg_Deliverk

p ∪ Cg_Deliverk
p , then(3.1) q also g-Delivers messages in NCg_Deliverk

q ∪Cg_Deliverk
q , and(3.2) localNCg_Deliverk

p ∪NCg_Deliverk
p =

localNCg_Deliverk
q∪NCg_Deliverk

q and Cg_Deliverk
p = Cg_Deliverk

q .Proof: The proof is by simultaneous indution on (1), (2) and (3). (Base step.)For k = 1, we �rst show that (1) holds: if p exeutes send(1,−, CHK) (line 17),then q also exeutes send(1,−, CHK). If p exeutes send(1,−, CHK), then p hasR-delivered two messages, m and m′, that on�it. From the agreement of R-broadast, q also R-delivers m and m′. Assume that q �rst R-delivers m, and then m′.Thus, there is a time after q R-delivers m′ when m and m′ are in R_deliveredq \
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G_deliveredq , and m′ 6∈ pending1

q . So, q eventually exeutes send(1,−, CHK)(line 17).To prove (2), assume that p exeutes propose(1,−). From the algorithm, it islear that p exeutes send(1,−, CHK), and from item (1) above, q also exeutessend(1,−, CHK) and waits for nchk messages of the type (1,−, CHK) (line 18).Sine there are nchk proesses orret that exeute send(1,−, CHK), q eventuallyreeives nchk messages of the type (1,−, CHK) (line 18), and exeutes propose(1,−).To prove (3.1), assume that p g-Delivers messages in NCg_Deliver1
p∪Cg_Deliver1

p.Before exeuting deide(1, (NCmsgSet1p, CmsgSet1p)), p exeutes propose(1,−). Byitem (2) of the lemma, q also exeutes propose(1,−). By termination and uni-form integrity of Consensus, q eventually exeutes deide(1,−) and does it exatlyone. It follows from the algorithm (lines 23-26) that q g-Delivers messages in
NCg_Deliver1

q ∪ Cg_Deliver1
q .To prove (3.2) we show that (a) localNCg_Deliver1

p ∪ NCg_Deliver1
p =

localNCg_Deliver1
q ∪NCg_Deliver1

q , and (b) Cg_Deliver1
p = Cg_Deliver1

q .(a) From the algorithm, line 23, and the fat that initially G_deliveredp = ∅, wehave that NCg_Deliver1
p = (NCmsgSet1p \ localNCg_Deliver1

p), and thus,
localNCg_Deliver1

p∪NCg_Deliver1
p = localNCg_Deliver1

p∪(NCmsgSet1p\
localNCg_Deliver1

p). From Lemma 4.4, it follows that localNCg_Deliver1
p∪

NCg_Deliver1
p = NCmsgSet1p. A similar argument follows for q, and bythe agreement property of Consensus, we have NCmsgSet1p = NCmsgSet1q .Therefore, we onlude that localNCg_Deliver1

p ∪ NCg_Deliver1
p =

localNCg_Deliver1
q ∪NCg_Deliver1

q .(b) From the algorithm, line 24, Cg_Deliver1
p = CmsgSet1p \ G_deliveredp.Sine initially G_deliveredp and G_deliveredq are empty, Cg_Deliver1

p =
CmsgSet1p, and Cg_Deliver1

q = CmsgSet1q . By agreement of Consensus, forevery p and q, CmsgSet1p = CmsgSet1q , and so, Cg_Deliver1
p = Cg_Deliver1

q .(Indutive step.) Assume that the Lemma holds for all k, 1 ≤ k < l. We pro-eed by �rst showing that (1) if p exeutes send(l,−, CHK) (line 17), then q alsoexeutes send(l,−, CHK). If p exeutes send(l,−, CHK), then from line 13, thereis some time t when two on�iting messages m and m′ are in R_deliveredp \
G_deliveredp. Sine m and m′ are not in G_deliveredp, m and m′ are not in
∪k

i=1(localNCg_Deliveri
p ∪NCg_Deliveri

p ∪Cg_Deliveri
p). By the indution hy-pothesis, m and m′ 6∈ ∪k

i=1(localNCg_Deliveri
q ∪NCg_Deliveri

q ∪Cg_Deliveri
q).By the agreement property of R-broadast, eventually m and m′ belong to

R_deliveredq . From Lemma 4.1, and the fat that m and m′ on�it, there is a timeafter whih q g-Delivers all messages in ∪k
i=1(localNCg_Deliveri

q∪NCg_Deliveri
q∪

Cg_Deliveri
q) suh that there exist two messages m and m′ in R_deliveredq \

G_deliveredq , and m and m′ are not both in pendingl
q . Thus, q eventually exeutessend(l,−, CHK).Suppose that (2) p exeutes propose(l,−). From the algorithm, p previously ex-euted send(l,−, CHK), and from item (1), q also exeutes send(l,−, CHK) and



64 Chapter 4. Generi Broadastwaits for nchk messages of the type (l,−, CHK). Sine there are nchk proesses or-ret that exeute send(l,−, CHK), q eventually reeives nchk messages of the type
(l,−, CHK), and exeutes propose(l,−).We now onsider that (3.1) p g-Delivers messages in NCg_Deliverl

p∪Cg_Deliverl
p.Before exeuting deide(l, (NCmsgSetlp, CmsgSetlp)), p exeutes propose(l,−). Byitem (1) of the lemma, q also exeutes propose(l,−). By the termination and agree-ment properties of Consensus, q eventually exeutes deide(l,−) exatly one. Fromthe algorithm, q g-Delivers messages in NCg_Deliverl

q ∪ Cg_Deliverl
q .To prove (3.2) we show that (a) localNCg_Deliverl

p ∪ NCg_Deliverl
p =

localNCg_Deliverl
p ∪NCg_Deliverl

q , and (b) Cg_Deliverl
p = Cg_Deliverl

q .(a) From the algorithm, line 23, and Lemma 4.4 (i.e., localNCg_Deliverl
p ⊆

NCmsgSetlp), it follows that localNCg_Deliverl
p ∪ NCg_Deliverl

p =

NCmsgSetlp − G_deliveredp. To see why, note that from lines 34 and 35,
localNCg_Deliverl

p ∩G_deliveredp = ∅. By the agreement property of Con-sensus, NCmsgSetlp = NCmsgSetlq. From the algorithm, G_delivered =

∪k
i=1(localNCg_Deliveri ∪ NCg_Deliveri ∪ Cg_Deliveri), and from theindution hypothesis, G_deliveredp = G_deliveredq . Therefore, we have

localNCg_Deliverl
p∪NCg_Deliverl

p = localNCg_Deliverl
p∪NCg_Deliverl

q .(b) From the algorithm, line 24, Cg_Deliverl
p = CmsgSetlp \ G_deliveredp.But when line 24 is evaluated, G_deliveredp = ∪k

i=1(localNCg_Deliveri
p ∪

NCg_Deliveri
p ∪Cg_Deliveri

p), and it follows from the indution hypothesisthat G_deliveredp = G_deliveredq . By the agreement property of Consensus,
CmsgSetlp = CmsgSetlq, and thus, Cg_Deliverl

p = Cg_Deliverl
q . 2The following propositions suppose f < max(nack, nchk). Proposition 4.2 is strongerthan the agreement property de�ned in Setion 4.1, sine it laims that any twoorret proesses not only g-Deliver the same messages, but also g-Deliver them inthe same stage.The proof for Proposition 4.2 onsiders two ases. The �rst ase assumes that someorret proess p g-Delivers m in stage k and exeutes Consensus in stage k. Inthis ase, m ∈ localNCg_Deliverk

p ∪ NCg_Deliverk
p ∪ Cg_Deliverk

p , and fromLemma 4.6, every orret proess also g-Delivers m. The seond ase onsiders that
p g-Delivers m in stage k but never exeutes Consensus in stage k. The proof proeedsby showing that if this happens, then all orret proesses send an aknowledgementfor m in stage k, and eventually every orret proess reeives nack aknowledgementmessages for m and g-Delivers m.Proposition 4.2 (Agreement). If a orret proess p g-Delivers a message m insome stage k, then every orret proess q eventually g-Delivers m in stage k.Proof: There are two ases to onsider: (a) p exeutes Consensus on stage k, and(b) p never exeutes Consensus in stage k.



4.2. Solving Generi Broadast 65(a) Sine p g-Delivers m in stage k, m ∈ localNCg_Deliverk
p ∪NCg_Deliverk

p ∪

Cg_Deliverk
p , and so, from Lemma 4.6, we have m ∈ localNCg_Deliverk

q ∪

NCg_Deliverk
q ∪ Cg_Deliverk

q . Thus, q either g-Delivers m at line 36 (inwhih ase m ∈ localNCg_Deliverk
q ), or at line 25 (in whih ase m ∈

NCg_Deliverk
q ), or at line 26 (in whih ase m ∈ Cg_Deliverk

q ).(b) Sine p does not exeute Consensus in stage k, m ∈ localNCg_Deliverk
p , andit must be that p has reeived nack messages of the type (k, pendingk, ACK)(line 30) suh that m ∈ pendingk. There are nack ≥ (n+1)/2 orret proesses,and so, p has reeived the message (k, pendingk, ACK) from at least one orretproess r.We laim that every orret proess r′ exeutes the send(k, pendingk, ACK)statement at line 15, suh that m ∈ pendingk. From lines 12-15, r R-delivers

m, and by the agreement of Reliable Broadast, eventually r′ also R-delivers
m. Therefore, there is a time t when m ∈ R_deliveredr′ .It follows from the fat that m is g-Delivered by p in stage k that m 6∈
∪k−1

i=1 (localNCg_Deliverk
p ∪NCg_Deliverk

p ∪Cg_Deliverk
p). By Lemma 4.6,we have m 6∈ ∪k−1

i=1 (localNCg_Deliverk
r′ ∪ NCg_Deliverk

r′ ∪ Cg_Deliverk
r′),and so, there is a t′ > t when r′ exeutes line 13. At time t′, m does not on�itwith any other message. To see why, onsider that m on�its with some mes-sage m′ in stage k. In this ase, r′ exeutes send(k,−, CHK) in stage k, andfrom Lemma 4.6 all orret proesses also exeute send(k,−, CHK) in stage

k. It follows that r′ eventually exeutes Consensus in stage k, a ontraditionthat onludes the laim.Sine there are nack orret proesses that exeute send(k, pendingk, ACK),suh that m ∈ pendingk, q will eventually exeute the when statement atline 31, and g-Deliver m. 2Two situations are distinguished in the proof for Proposition 4.3. The �rst situation(a) onsiders that some proess q g-Delivers two on�iting messages m and m′ inthe same stage k, and in the seond situation, (b) proess q g-Delivers m and m′ indi�erent stages. Considering that q g-Delivers m before m′, it is shown for (a) thatsine m and m′ on�it, m′ ∈ CmsgSetk. Assuming, for a ontradition, that p g-Delivers m′ before m, from a similar argument, it is onluded that m ∈ CmsgSetk.Therefore, m,m′ ∈ CmsgSetk. However, all messages in CmsgSetk are g-Deliveredin the same deterministi order, and thus, it annot be that q g-Delivers �rst mand then m′, and p g-Delivers �rst m′ and then m. For situation (b), it followsdiretly from Algorithm 1 that if p and q both g-Deliver m, respetively m′, in stage
k, respetively k′, then they g-Deliver m and m′ in the same order.Proposition 4.3 (Partial Order). If orret proesses p and q both g-Delivermessages m and m′, and m and m′ on�it, then p g-Delivers m before m′ if andonly if q g-Delivers m before m′.Proof: Assume that q g-Delivers message m before message m′. We show that palso g-Delivers m before m′. There are two ases to onsider: (a) q g-Delivers m and
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m′ at stage k, and by Proposition 4.2, p also g-Delivers m and m′ at stage k, and(b) q g-Delivers m at stage k, and m′ at stage k′ > k, and by Proposition 4.2, p alsog-Delivers m at stage k, and m′ at stage k′.(a) We laim that if messages m and m′ on�it, and q g-Delivers m before m′,then m′ ∈ CmsgSetk. To see why, notie that if q g-Delivers m before Con-sensus, m ∈ localNCmsgSetkq , and from Lemma 4.4, m ∈ NCmsgSetk. FromLemma 4.5, m and m′ annot be both in NCmsgSetk, thus m′ ∈ CmsgSetk,onluding the proof of our laim.Suppose, by way of ontradition, that p g-Delivers m′ before m. From an ar-gument similar to the laim above, m ∈ CmsgSetk. Therefore, m and m′ are in

CmsgSetk, and m and m′ are g-Delivered by q and p at line 26. However, sine
q g-Delivers m before m′, and messages in CmsgSetk are g-Delivered aord-ing to some deterministi funtion, p and q do not use the same deterministifuntion. A ontradition that onludes the proof of ase (a).(b) From the algorithm, if p g-Delivers m at stage k, and m′ at stage k′ > k, then
p g-Delivers m before m′. 2Proposition 4.4 below proves that Algorithm 1 guarantees the validity property ofGeneri Broadast using two mehanisms [CT96℄. The idea is to assume that somemessage m is g-Broadast and never g-Delivered and then reah a ontradition.First, the proof of Proposition 4.4 shows that if m is never g-Delivered, then thereis a Consensus exeution k1 when every orret proess proposes m. Notie thatthis an only be proved for orret proesses, sine to propose m, a proess �rst hasto R-deliver m, and the properties of Reliable Broadast only ensure that orretproesses R-deliver all R-broadast messages. It then shows that from the de�nitionof faulty proesses, there is a Consensus exeution k2 that no faulty proess exeutes(they all rash before k2). The ontradition follows immediately, sine at Consensusexeution k = max(k1, k2), only orret proesses propose a value, and m is alwaysproposed. Thus, m is inluded in the deision of Consensus k, and will be g-Delivered.Proposition 4.4 (Validity). If a orret proess p g-Broadasts a message m,then p eventually g-Delivers m.Proof: For a ontradition, assume that p g-Broadasts m but never g-Delivers it.From Proposition 4.2, no orret proess g-Delivers m. Sine p g-Broadasts m, itR-broadasts m, and from the validity property of Reliable Broadast, p eventuallyR-delivers m. By Algorithm 1, there is a time after whih m ∈ R_deliveredp. Itfollows from the agreement property of Reliable Broadast and the fat that m isnever g-Delivered, that eventually, for every orret proess q, m ∈ (R_deliveredq \

G_deliveredq).By the ontradition hypothesis, p does not g-Deliver m, and so, p does not reeive
nack messages of the type (k, pendingk, ACK) suh that m ∈ pendingk. But sinethere are nack orret proesses that exeute the if statement at line 13, there is atleast one orret proess q suh that, after m ∈ R_deliveredq\G_deliveredq , q never



4.2. Solving Generi Broadast 67exeutes the then branh (lines 14-15), and always exeutes the else branh (lines 17-30). Thus, q exeutes send(k,−, CHK). From Lemma 4.6, item (1), every orretproess also exeutes send(k,−, CHK). Sine there are nchk orret proesses, noorret proess remains bloked forever at the wait statement (line 18), and everyorret proess eventually exeutes propose(k,−). Thus, there is a k1 suh thatfor all l ≥ k1, all orret proesses exeute propose(l, (majMSetl , (R_delivered \
G_delivered) \majMSetl)), and m ∈ majMSetl ∪ (R_delivered \G_delivered).Assume that k2 is suh that no faulty proess exeutes propose(l,−), l ≥ k2, (i.e., at
k2 all faulty proesses have rashed). Let k = max(k1, k2). All orret proesses ex-eute propose(k,−), and by the termination and agreement of Consensus, all orretproesses exeute deide(k, (NCmsgSetk , CmsgSetk)) with the same (NCmsgSetk,
CmsgSetk). By the uniform validity property of Consensus, some proess q exe-utes propose(k, (majMSetl , (R_delivered \G_delivered) \majMSetl)) suh that
m ∈ majMSetl ∪ (R_delivered \ G_delivered), and so, all proesses g-Deliver m,a ontradition that onludes the proof. 2Proposition 4.5 (Uniform Integrity). For any message m, eah proess g-Delivers m at most one, and only if m was previously g-Broadast by sender(m).Proof: If a proess p g-Delivers m at line 36, then p reeived nack messages of thetype (k, pendingk, ACK),m ∈ pendingk. Let q be a proess from whih p reeivedthe message (k, pendingk

q , ACK),m ∈ pendingk
q . Sine q exeutes send(k, pendingk

q ,
ACK), q has R-delivered m. By the uniform integrity of Reliable Broadast, proesssender(m) has R-broadast m, and so, sender(m) has g-Broadast m.Now onsider that p g-Delivers m at line 25 or 26. Thus, p exeuted the state-ment deide(k, (NCmsgSetk , CmsgSetk)) for some k, suh that m ∈ NCmsgSetk ∪
CmsgSetk. By the uniform validity property of Consensus, some proess q musthave exeuted propose(k, (majMSetk , (R_delivered \G_delivered) \majMSetk))suh that m ∈ majMSetk∪(R_delivered\G_delivered). We distinguish two ases.Case (a). If m ∈ majMSetkq , then, from Algorithm 1, |Chkk

q (m)| ≥ ⌈(nchk + 1)/2⌉.Let r ∈ Chkk
q (m). Therefore, r exeuted send(k, pendingk

r , CHK), suh that m ∈

pendingk
r , and thus, r has R-delivered m.Case (b). If m ∈ R_delivered \ G_delivered, it is not di�ult to see that q hasR-delivered m.In both ases, by the uniform integrity property of Reliable Broadast, proesssender(m) has R-broadast m, and so, sender(m) has g-Broadast m. 2Theorem 4.1 Algorithm 1 solves Generi Broadast, or redues Generi Broadastto a sequene of Consensus in asynhronous systems with f < max(nack, nchk).Proof. Immediate from Propositions 4.2, 4.3, 4.4, and 4.5. 2



68 Chapter 4. Generi Broadast4.3 Evaluation of the Generi Broadast AlgorithmThe Generi Broadast algorithm is strit and heaper than known Atomi Broadastimplementations based on the same assumptions. We evaluate next the ost of theGeneri Broadast algorithm using the delivery lateny parameter, introdued in thissetion.4.3.1 Generi Broadast Algorithm StritnessProposition 4.6 states that the Generi Broadast algorithm of Setion 4.2.2 is astrit implementation of Generi Broadast.Proposition 4.6 Algorithm 1 is a strit Generi Broadast algorithm.Proof. Immediate from Figure 4.1, where proess p g-Broadasts message m andproess s g-Broadasts messages m′. Proess p (respetively s) R-delivers m′ (respe-tively m) after g-Delivering m′ (respetively m) � not shown in Figure 4.1. Proess
p only aknowledges message m, proesses q and r aknowledge messages m and m′,and proess s only aknowledges message m′.Proess p reeives the aknowledges from p, q, and r and sine nack = 3, p g-Delivers
m. Proess p then reeives the aknowledgement from s for m′, and g-Delivers m′.Similarly, s g-Delivers m′ and then m. Therefore, p g-Delivers m before m′, and sg-Delivers m′ before m. 2
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g-Deliver(m)Figure 4.1: Run R of Generi Broadast (nack = 3)



4.3. Evaluation of the Generi Broadast Algorithm 694.3.2 Generi Broadast Algorithm CostIn order to analyse the ost of the Generi Broadast algorithm, we introdue thedelivery lateny parameter. We analyse the Generi Broadast algorithm onsideringbest ase runs, when messages an be g-Delivered without on�it, and with on�it.Delivery Lateny. In the following, we introdue the delivery lateny as a param-eter to measure the e�ieny of algorithms solving any Broadast problem (de�nedby the primitives α-Broadast and α-Deliver). The delivery lateny is a variationof the Lateny Degree introdued in [Sh97℄, whih is based on modi�ed Lamport'sloks [Lam78℄:
• a send event and a loal event on a proess p do not modify p's loal lok,
• let ts(send(m)) be the timestamp of the send(m) event, and ts(m) the times-tamp arried by message m: ts(m)

def
= ts(send(m)) + 1, and

• the timestamp of receive(m) on a proess p is the maximum between ts(m)and p's urrent lok value.The delivery lateny of a message m α-Broadast in some run R of an algorithm Asolving a Broadast problem, denoted dlR(m), is de�ned as the di�erene between(1) the largest timestamp of all α-Deliver(m) events (at most one per proess) in run
R and (2) the timestamp of the α-Broadast(m) event in run R. Let πR

m be the setof proesses that α-Deliver message m in run R. The delivery lateny of m in R isformally de�ned as
dlR(m)

def
= max

p∈πR
m

(ts(α-Deliverp(m))− ts(α-Broadast(m))).For example, onsider a broadast algorithm Ab where (1) to broadast a message
m, a proess p sends m to all proesses, (2) eah proess q on reeiving m sendsan aknowledgement message ACK(m) to all proesses, and (3) as soon as q hasreeived nack messages of the type ACK(m), q delivers m. Let R be a run of Ab, asshown in Figure 4.2. In this ase we have dlR(m) = 2.The delivery lateny is a measure of the synhronisation among proesses in a givenrun produed by some broadast algorithm A to deliver a message. The deliverylateny an be used to haraterise the minimal synhronisation among proesses,required by an algorithm A, to deliver messages. For example, algorithm Ab requiresthat proesses send an ACK(m) message only after reeiving message m, and so,no run generated by Ab where m is broadast will have sendp(ACK(m)) preedingreeivep(m), for any proess p. Nevertheless, algorithm Ab allows a proess q to send
ACK(m) after having reeived ACK(m) from some proess p. Thus, there exists arun R′ of Ab where reeiveq(ACK(m)) preedes sendq(ACK(m)) (see Figure 4.3).In this ase we have dlR

′

(m) = 3.
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send(m)
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deliver(m)Figure 4.2: Run R of Ab with dlR(m) = 2
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Figure 4.3: Run R′ of Ab with dlR
′

(m) = 3Therefore, when haraterising a broadast algorithm A with the delivery latenyparameter, we will onsider best ase senarios, whih haraterise the minimal syn-hronisation neessary to deliver messages.Cost Analysis. We now disuss the ost of our Generi Broadast algorithm. Ourmain result is that for messages that do not on�it, the Generi Broadast algorithman deliver messages with a delivery lateny equal to 2, while for messages thaton�it, the delivery lateny is at least equal to 4. Sine known Atomi Broadastalgorithms deliver messages with a delivery lateny of at least 3,5 this results showsthe tradeo� of the Generi Broadast algorithm: if messages on�it frequently, ourGeneri Broadast algorithm may beome less e�ient than an Atomi Broadastalgorithm, while if on�its are rare, then our Generi Broadast algorithm leads tosmaller osts ompared to Atomi Broadast algorithms.Before stating Properties 4.8 � 4.11, we present Proposition 4.7 whih de�nes a lowerbound on algorithms that implement Reliable Broadast, and Corollary 4.1 whih5An exeption is the Optimisti Atomi Broadast algorithm (see Chapter 5), whih an delivermessages with delivery lateny equal to 2 if the spontaneous total order property holds.



4.3. Evaluation of the Generi Broadast Algorithm 71states this lower bound in terms of the delivery lateny parameter.Proposition 4.7 Let Arb be an algorithm that solves Reliable Broadast. For everyrun R of Arb where a proess p R-broadasts some message m and a proess q 6=
p R-delivers m, there is a ausal hain of events onneting R-broadastp(m) andR-deliverq(m).Proof. Suppose, by way of ontradition, that there exists an algorithm Arb thatsolves Reliable Broadast suh that in some runs of Arb, a proess p R-broadastsa message m, a proess q 6= p R-delivers m, and there is no ausal hain of eventsonneting R-broadastp(m) and R-deliverq(m). Let R be suh a run of Arb whereR-broadastp(m) is the �rst event exeuted by proess p. From the hypothesis, thereis no event e ∈ R so that R-broadastp(m)→ e and e→ R-deliverq(m).Consider now a run R′ similar to R exept that p does not R-broadast m. Proess
q is not able to distinguish between R and R′, and sine q R-delivers m in R, qR-delivers m in R′, violating the uniform integrity property of Reliable Broadast,and ontraditing our hypothesis that Arb solves Reliable Broadast. 2Corollary 4.1 There is no algorithm Arb that implements Reliable Broadast suhthat for any message m R-delivered in some run R produed by Arb, dlR(m) < 1.Proof. Immediate from Proposition 4.7 and the de�nition of delivery lateny. 2Propositions 4.8 and 4.9 assess the ost of the Generi Broadast algorithm whenmessages do not on�it. Proposition 4.8 de�nes a lower bound on the deliverylateny of Algorithm 1 for messages g-Delivered without Consensus (line 36), andProposition 4.9 shows that this bound an be reahed in runs where there are noproess failures.Proposition 4.8 There is no run R generated by Algorithm 1 where some message
m is only g-Delivered at line 36 and dlR(m) < 2.Proof. Assume for a ontradition that there is a run R and a message m g-Delivered in R suh that dlR(m) < 2. Sine m is g-Delivered in R, by the integrityproperty of Generi Broadast, there is a proess q that g-Broadasts m. By Algo-rithm 1, if q g-Broadasts m, q R-broadasts m, and every proess p that g-Delivers
m �rst R-delivers m. We de�ne lRB

m,p = ts(R-deliverp(m))− ts(R-broadastq(m)), and
lgB
m,p = ts(g-Deliverp(m))− ts(g-Broadastq(m)), where lgB

m,p ≥ lRB
m,p. By Corollary 4.1,

lRB
m,p ≥ 1, and from the de�nition of delivery lateny and the ontradition hypothesis,
lgB
m,p ≤ dlR(m) < 2.It follows that 1 ≤ lRB

m,p ≤ lgB
m,p ≤ dlR(m) < 2, and it must be that lRB

m,p = lgB
m,p.Therefore, after R-delivering m, p does not reeive any message m′ suh that m→ m′,where → is the happens-before relation de�ned by Lamport [Lam78℄. Sine p g-Delivers m at line 36, p reeives nack messages of the type (k, pendingk, ACK),



72 Chapter 4. Generi Broadastsuh that m ∈ pendingk. Let r be a proess from whih p reeives a message
(k, pendingk, ACK)r at line 18. Sine m ∈ pendingk, than r has reeived m, andso, m→ (k, pendingk, ACK)r, a ontradition. 2Proposition 4.9 Assume that Algorithm 1 uses the Reliable Broadast implemen-tation given in [CT96℄. There is a run R generated by Algorithm 1 where message
m is g-Delivered at line 36 and dlR(m) = 2.Proof. Immediate from Figure 4.4 where proess p g-Broadasts a message m.(Some messages have been omitted from Figure 4.4 for larity.) For all ρ ∈ {p, q, r, s},
ts(reeiveρ(m)) = ts(sendp(m)) + 1, and, for all ρ′ ∈ {p, q, s}, ts(reeiveρ(k, {m},
ACK) from ρ′) = ts(sendρ′(k, {m}, ACK)) + 1. But ts(sendρ′(k, {m}, ACK)) =
ts(reeiveρ′(m)), and so, ts(reeiveρ(k, {m}, ACK) from ρ′) = ts(sendp(m)) + 2.From Figure 4.4, ts(g-Broadastp(m)) = ts(sendp(m)), and ts(g-Deliverρ(m)) =
ts(reeiveρ(k, {m}, ACK) from ρ′). By the de�nition of delivery lateny, we have
dlR(m) = 2. 2
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s Figure 4.4: Run of Generi Broadast with dlR(m) = 2The results that follow are about the ost of the Generi Broadast algorithm inruns where on�iting messages are g-Broadast. Proposition 4.10 establishes alower bound for ases where messages on�it, and Proposition 4.11 shows that thebest ase with on�its an be reahed in runs with no proess failures nor failuresuspiions. Proposition 4.10 is based on Conjeture 4.1, whih establishes a lowerbound on Consensus algorithms. This lower bound is based on the lateny degreeparameter, introdued in [Sh97℄.Conjeture 4.1 Assume an asynhronous system model M augmented with a failuredetetor that does not satisfy strong auray. There is no algorithm AC in M thatsolves Consensus with a lateny degree smaller than 2.Notie that there are algorithms that solve Consensus with a lateny degree equalto 2 in M [Sh97, MR99℄.



4.3. Evaluation of the Generi Broadast Algorithm 73Proposition 4.10 Assume that Conjeture 4.1 is true. There is no run R generatedby Algorithm 1 in M where m and m′ are the only messages g-Delivered, m and m′on�it, and dlR(m) < 4 and dlR(m′) < 4.Proof. Assume for a ontradition that there is a run R and two messages m and m′g-Delivered in R suh that m and m′ on�it and dlR(m) < 4 and dlR(m′) < 4. FromLemma 4.2, at most one message is g-Delivered in R before Consensus. Without lossof generality, assume that m is g-Delivered after Consensus. We will show that itannot be that dlR(m) < 4.For every proess p that g-Delivers m, p �rst exeutes deidep(−, (seta, setb)), suhthat m ∈ setb. Thus, from the uniform validity property of Consensus, there is a pro-ess q that exeutes proposeq(−, (seta, setb)). Let lCp = ts(deidep(−, (seta, setb))) −
ts(proposeq(−, (seta, setb))). From Conjeture 4.1 and the de�nition of lateny de-gree [Sh97℄, lCp ≥ 2.From Algorithm 1, before q exeutes proposeq(−, (seta, setb)), q reeives nchk mes-sages of the type (−, pending,CHK). Let r be a proess from whih q reeivesmessage (−, pendingr, CHK). We laim that r R-delivers m. To see why, notiethat in Algorithm 1, r only exeutes sendr(−, pendingr, CHK) (line 17) after r R-delivers two on�iting messages: m and m′. It follows that ts(g-Deliverp(m)) −
ts(R-deliverr(m)) ≥ lCp + 1, and sine lCp ≥ 2, we have (a) ts(g-Deliverp(m)) −
ts(R-deliverr(m)) ≥ 3.We de�ne (b) lRB

m,r = ts(R-deliverr(m)) − ts(R-broadast(m)), and () lgB
m,p =

ts(g-Deliverp(m)) − ts(g-Broadast(m)). By Algorithm 1, (d) ts(g-Broadast(m)) =

ts(R-broadast(m)). It follows from (a), (b), (), and (d) that lgB
m,p = lRB

m,p + 3.By the ontradition hypothesis, dlR(m) < 4, and by the de�nition of delivery la-teny, for all p that g-Deliver m, lgB
m,p ≤ dlR(m). Thus, lRB

m,p + 3 ≤ dlR(m) < 4. Weonlude that lRB
m,p = 0, whih ontradits Proposition 4.7 and onludes the proof.2Proposition 4.11 Assume that Algorithm 1 uses the Reliable Broadast implemen-tation given in [CT96℄, and the Consensus implementation given in [Sh97℄. Thereexists a run R of Algorithm 1 where two messages on�iting m and m′ are g-Delivered in some stage k, and dlR(m) = 4 and dlR(m′) = 4.Proof. Immediate from Figure 4.5, where proess q g-Broadasts message m, andproess r g-Broadasts message m′. (The Consensus exeution and some mes-sages have been omitted for larity.) For all ρ ∈ {p, q, r, s}, ts(reeiveρ(m)) =

ts(sendq(m)) + 1, and ts(reeiveρ(m
′)) = ts(sendr(m

′)) + 1. It also follows thatfor all ρ′ ∈ {p, q, r}, ts(reeiveρ(k,−, CHK) from ρ′) = ts(sendρ′(k,−, CHK)) + 1.From Figure 4.5, ts(sendρ′(k,−, CHK)) = ts(reeiveρ′(m)) = ts(reeiveρ′(m
′)), andthus, ts(reeiveρ(k,−, CHK) from ρ′) = ts(sendρ′′(m)) + 2, ρ′′ ∈ {q, r}.By the Consensus algorithm given in [Sh97℄, ts(deideρ(−)) = ts(proposeρ(−)) +

2. From Figure 4.5, ts(proposeρ(−)) = ts(reeiveρ(k,−, CHK)), and we have that
ts(deideρ(−)) = ts(reeiveρ(k,−, CHK)) + 4. We onlude by the de�nition ofdelivery lateny and sine ts(g-Deliverρ(m)) = ts(g-Deliverρ(m

′)) = ts(deideρ(−)),
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ts(g-Broadastq(m)) = ts(sendq(m)), and ts(g-Broadastr(m)) = ts(sendr(m)), that
dlR(m) = 4 and dlR(m′) = 4. 2
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Figure 4.5: Run of Generi Broadast with dlR(m) = 4 and dlR(m′) = 4

4.4 Related WorkGroup ommuniation aim at extending traditional one-to-one ommuniation, whihis insu�ient in many settings. One-to-many ommuniation is typially neededto handle repliation (repliated data, repliated objets, et.). Classial teh-niques to manage repliated data are based on voting and quorum systems (e.g.,[Gif79, Her86, JM87℄ to ite a few). Early quorum systems distinguish read opera-tions from write operations in order to allow for onurrent read operations. Theseideas have been extended to abstrat data types in [Her86℄. Inreasing onur-reny without ompromising strong onsisteny guarantees on repliated data is astandard way to inrease system performane. Lazy repliation [RL92℄ is anotherapproah that aims at inreasing performane by reduing the ost of repliation.Lazy repliation also distinguishes between read and write operations, and relaxesthe requirement of total order delivery of read operations. Consisteny is ensured atthe ost of managing timestamps outside the set of repliated servers. Timestampsare used to ensure Causal Order delivery on the repliated servers.Our approah also aims at inreasing the performane of repliation by inreasingonurreny in the ontext of group ommuniation. To the best of our knowledge,no previous work has de�ned group ommuniation in this way. Nevertheless, thereare some similarities between our Generi Broadast algorithm and quorum sys-tem [Gif79℄. From this perspetive, our work an be seen as a way to integrate groupommuniation and quorum systems. There is even a stronger similarity betweenquorum systems and our Generi Broadast algorithm. Our algorithm is based on



4.5. Disussion 75two sets: an aknowledgement set and a heking set. These sets play a role similarto quorum systems. However, quorum systems require weaker onditions to keeponsisteny than the ondition required by the aknowledgement and heking sets.6This disrepany is explained in part by the fat that quorum systems are onlyonerned with safety guarantees (e.g., two writes on replias of the same objetshould not be performed onurrently), whereas the Generi Broadast algorithm isonerned with safety and liveness guarantees.4.5 DisussionGeneri Broadast is a powerful message ordering abstration. The de�nition of aGeneri Broadast primitive is based on a on�it relation derived from semantiinformation provided by the appliation. Reliable and Atomi Broadast are speialases of Generi Broadast, where the on�it relation is the empty set in one ase(i.e., Reliable Broadast) and the Cartesian Produt over all messages in the otherase (i.e., Atomi Broadast). Reliable and Atomi Broadast determine the twoends of a spetrum of order relations. Between these two ends, we de�ned a on�itrelation to be used by the Database State Mahine algorithm, whih haraterises aserialisability based message ordering.The advantage of Generi Broadast over Atomi Broadast is a ost issue, whereost is de�ned by the delivery lateny of messages. The intuition behind the GeneriBroadast problem is that ordering messages has a ost, and this ost should only bepaid when neessary, that is, when messages on�it. This notion of ost is formallyde�ned by the stritness property. In this hapter, we have presented a strit GeneriBroadast algorithm.On a di�erent issue, the Generi Broadast algorithm proposed uses mehanismsthat have similarities with quorum systems. This raises an interesting issue and laysthe basis for further investigation aiming at better understanding the di�erenes be-tween repliation protools based on group ommuniation (e.g., Atomi Broadast,Generi Broadast) and repliation protools based on quorum systems.Finally, the Generi Broadast algorithm proposed requires at least (2n+1)/3 orretproesses. Suh a ondition is usual in the ontext of Byzantine failures, but rathersurprising in the ontext of rash failures. These observations suggest that theremight be room for optimised Generi Broadast algorithms.
6Let nr be the size of a read quorum, and nw the size of a write quorum. Quorum systemsusually requires that nr + nw ≥ n + 1, and nw ≥ ⌈(n + 1)/2⌉.
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77
Chapter 5Optimisti Atomi BroadastA pessimist sees the di�ulty in every opportunity;an optimist sees the opportunity in every di�ulty.Winston ChurhillBroadast protools have been shown to play an important role in fault tolerantsystems. For repliation mehanisms based on the state mahine approah [Sh90℄(e.g., the Database State Mahine), Atomi Broadast guarantees that every repliadelivers requests in the same order. One way of improving the e�ieny of suhrepliation mehanisms is to use broadast primitives providing order guaranteesthat take advantage of appliation semantis, like Generi Broadast. Another wayis to exploit system properties to implement fast Atomi Broadast protools.In this hapter, we introdue optimisti approahes to implementing broadast pro-tools (e.g., Atomi Broadast). These approahes are optimisti beause they arebased on system properties that do not always hold, but if these properties hold fora ertain period, messages an be delivered fast. This hapter desribes three opti-misti approahes in general lines, and presents one in detail, the Optimisti AtomiBroadast (OPT-ABast) algorithm. The optimism in these approahes exploits thespontaneous total order property, that is, the fat that in some networks it is highlyprobable that messages are reeived in the same total order.5.1 Degrees of OptimismThe optimisti approahes presented in this hapter exploit the spontaneous totalorder property to deliver messages fast. The spontaneous total order property holdsunder some irumstanes (e.g., moderate load) in loal area networks. It an bestated as follows.(Spontaneous Total Order) Consider a set Ω of proesses. If a proess psends a message m to all proesses in Ω, and a proess q sends a message m′



78 Chapter 5. Optimisti Atomi Broadastto all proesses in Ω, then the two messages are reeived in the same order byall reeivers.Under abnormal exeution onditions (e.g., high network loads), the spontaneoustotal order property may be violated. More generally, one an onsider that thesystem passes through periods when the spontaneous total order property holds,and periods when the property does not hold.To illustrate the spontaneous total order property, we onduted some experimentsinvolving eight workstations (UltraSpar 1+) onneted by an Ethernet network(10 Mbits/s). In the experiments (see Figure 5.1), eah workstation broadastsmessages to all the other workstations, and reeives messages from all workstationsover a ertain period of time (around 10 se.). Broadasts are implemented with IP-multiast, and messages have 1024 bytes. From Figure 5.1, it an be seen that thereis a relation between the time between suessive broadast alls, and the perentageof messages that are reeived in the same order.

Time between suessive broadasts (mse)Messagestot
allyordered(
%)

54.543.532.521.510.5

0.960.940.920.90.880.860.840.820.80.78Figure 5.1: Spontaneous total order propertyThe approahes presented next assume that in order to deliver a message, an AtomiBroadast algorithm proeeds in two phases. In the �rst phase, the message ispropagated to all proesses, and in the seond phase, proesses determine the orderin whih messages have to be delivered.1In addition to the propagation phase and the order phase, we also onsider a hekphase, and a treatment phase to haraterise and ompare optimisti broadast ap-proahes. The hek phase determines whether the spontaneous total order propertyholds, and the treatment phase represents the proessing exeuted by the appliationupon A-delivering a message (e.g., the treatment done by a replia in the ontext of1Indeed, several Atomi Broadast algorithms based on non-entralised ontrol are struturedin a propagation and order phases [AM92, CT96℄.



5.1. Degrees of Optimism 79Ative Repliation [GS97℄). The treatment phase has been inluded to help omparethe overhead introdued by some of the optimisti tehniques.To keep the presentation simple, we fous our attention on one message ordered at atime. However, the optimisti approahes presented an also be used when messagesare ordered in bathes. The beginning of the propagation phase is determined bythe A-broadast of a message, and the treatment phase starts on a proess when themessage is A-delivered by this proess.To assess the e�ieny of our optimisti approahes, we assoiate with eah approaha �ost� Λ, whih inludes ordering and proessing osts.5.1.1 Classial Atomi Broadast Algorithmwith Conservative TreatmentThis approah serves as a referene for the optimisti tehniques presented next.Consider that m is a message A-broadast by a proess p. Proess p �rst sends m toall proesses (inluding itself), and one m is reeived by some proesses, a protoolis used to deide on the delivery order of m. The number of proesses that have toreeive m so that order an be deided depends on the protool. A proess q onlyA-delivers message m after m's order is known by q.Figure 5.2 depits the propagation, order, and treatment phases involved in theClassial Algorithm with Conservative Treatment approah. In this ase, the ost is
ΛCC = Λp + Λo + Λt, where Λp represents the ost of the propagation phase, Λo theost of the ordering phase, and Λt the ost of the treatment phase.
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Figure 5.2: Classial approah5.1.2 Optimisti Atomi Broadast Algorithmwith Conservative TreatmentThe Optimisti Algorithm with Conservative Treatment approah assumes that hek-ing whether the spontaneous total order property holds or not is heaper than a-tually totally ordering messages. Thus, instead of exeuting the order phase afterreeiving a message m, proesses try to determine whether m is reeived in the sameorder by all reeivers. If this is the ase, m an be delivered. Otherwise, proesseshave to agree on the order m should be delivered. Figure 5.3 depits the OptimistiAlgorithm with Conservative Treatment approah, with the hek phase, and α, theprobability that the spontaneous total order property holds.
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Figure 5.3: Optimisti Algorithm approahThe messages neessary to exeute the hek phase introdues an additional ost,and so, when the spontaneous total order property does not hold, the OptimistiAlgorithm approah is more expensive than the Classial Algorithm approah (seeSetion 5.1.1). In this ase we de�ne the ost ΛOC as Λp + Λc + (1 − α)Λo + Λt,where Λc represents the ost of the hek phase. Setion 5.2 presents in detail analgorithm that uses the Optimisti Algorithm approah.An interesting optimisation would be to overlap the hek with the order phases toredue (or ompletely eliminate) the overhead with the delivery of messages whenthe spontaneous total order property does not hold.5.1.3 Classial Atomi Broadast Algorithmwith Optimisti TreatmentA more aggressive way of exploiting the spontaneous total order property than theprevious tehnique is as follows [KPAS99℄. When a proess p reeives a message m, pA-delivers m to the appliation before exeuting the order phase. This way, a messageis A-delivered �rst in a tentative order. Proesses also exeute the order phase, andone the de�nitive order for a message is known, the message is A-delivered again.Although the order phase is always performed, its exeution is overlapped with thetreatment phase. If the de�nitive order does not orrespond to the tentative order,the appliation has to �undo� some operations and �redo� them in the orret order(see Figure 5.4).For the Classial Atomi Broadast Algorithm with Optimisti Treatment approah,the ost is ΛCO = Λp + (1 − α)(Λo + Λu) + Λt, where Λu represents the ost forthe undo phase, and either (1) Λt ≤ Λo, or (2) if the tentative order is not thesame de�nitive order, one the de�nitive order is known for some message m, theappliation treatment of m an be interrupted. Sine messages an be reeived the�rst time in a wrong order, this approah requires the appliation to be able to undothe operations of the treatment phase.As pointed out previously, this tehnique does not orrespond to the Atomi Broad-ast spei�ation presented in Chapter 2. The new spei�ation is de�ned by theprimitives Opt-broadast(m), Opt-deliver(m), and TO-deliver(m), whih satisfy the
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Figure 5.4: Optimisti Problem approahfollowing properties [KPAS99℄.(Validity) If a orret proess Opt-broadasts a message m, then it eventuallyOpt-delivers m and TO-delivers m.(Agreement) If a orret proess Opt-delivers a message m then every orretproess eventually Opt-delivers m. If a orret proess TO-delivers m thenevery orret proess eventually TO-delivers m.(Uniform integrity) For every message m, every proess Opt-delivers andTO-delivers m at most one, and only if m was previously Opt-broadast bysender(m).(Global Order) If two orret proesses p and q TO-deliver two messages mand m′, then p TO-delivers m before m′ if and only if q TO-delivers m before
m′.(Loal Order) A proess does not TO-deliver a message m before Opt-delivering m.These properties state that every message Opt-broadast by a orret proess iseventually Opt-delivered and TO-delivered by every orret proess in the system.Order is guaranteed in suh a way that no proess TO-delivers a message before Opt-delivering it, and every message is TO-delivered (but not neessarily Opt-delivered)in the same order by all the orret proesses.5.1.4 Optimisti Atomi Broadast Algorithmwith Optimisti TreatmentAn algorithm an be devised by ombining the two approahes presented before.That is, proesses Opt-deliver messages as soon as they reeive them, but only ex-eute the order phase if the spontaneous total order property does not hold (seeFigure 5.5).
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Figure 5.5: Hybrid approahThis approah has the advantages of both the Optimisti Atomi Broadast Algo-rithm with Conservative Treatment and the Classial Atomi Broadast Algorithmwith Optimisti Treatment: it overlaps the treatment phase with the exeution ofthe hek phase, and it takes advantage of system properties to deliver messages(in the de�nitive order) fast. In this ase, the ost is ΛOO = Λp + (1 − α)(Λc +max(Λo,Λu)) + Λt, where (1) Λt ≤ Λc, or (2) if the tentative order of m is not or-ret, the appliation treatment started by the Opt-delivery of some message m anbe interrupted.Table 5.1 shows the approahes presented in this setion. Eah approah is hara-terised by its ost.Approah CostConservative Treatment:Classial Atomi Broadast Alg. ΛCC = Λp + Λo + ΛtOptimisti Atomi Broadast Alg. ΛOC = Λp + Λc + (1− α) Λo + ΛtOptimisti Treatment:Classial Atomi Broadast Alg. ΛCO = Λp + (1− α)(Λo + Λu) + ΛtOptimisti Atomi Broadast Alg. ΛOO = Λp + (1 − α)(Λc + max(Λo, Λu)) + ΛtTable 5.1: Cost of the various approahes5.1.5 A Strawman Analysis of the Degrees of OptimismFrom the ost haraterisation presented in the previous setions, and by makingsome simplifying assumptions, we an evaluate and draw some onlusions aboutthe behaviour of eah optimisti approah.In the following, we �quantify� the ost of a phase by its lateny (also known asommuniation steps). The values taken for the propagation, order, and hek phases



5.1. Degrees of Optimism 83are based on best ase analysis (i.e., no failures nor proess suspiions). The ost fora proess to propagate a message to all the other proesses (broadast), supposing nproesses, is Λp = 1. To hek whether the spontaneous total order property holds,we onsider that one proess is hosen a priori as the oordinator and the otherproesses send to the oordinator a list with the order of the messages reeived.The oordinator determines whether the spontaneous total order property holds andinforms all proesses. Therefore, Λc = 2. The order phase an be implementedusing the optimised Chandra and Toueg Consensus algorithm with unreliable failuredetetors of lass 3S [CT96℄.2 In the best ase we have Λo = 3.We proeed onsidering two ases: (a) Λt = Λu = 0 (i.e., the ost for the treatmentphase and the undo phase are equal), and (b) Λt = Λu = Λo (i.e., the treatment,undo, and ordering phases have the same ost). In ase (a), the osts of the treatmentand the undo phases are very low (e.g., loal resoures are muh faster than thenetwork), and in ase (b), the osts of the treatment and undo phases are high,relatively to the send to all, hek, and order phases.Simple alulations lead to the relations shown in Table 5.2, whih are depited inFigures 5.6 and 5.7.
Λt = Λu = 0 Λt = Λu = Λo

ΛCC/ΛOC 4/(6− 3α) 7/(9− 3α)

ΛCC/ΛCO 4/(4− 3α) 7/(10− 6α)

ΛCC/ΛOO 4/(6− 5α) 7/(9− 5α)Table 5.2: Relationships between degrees of optimismFigures 5.6 and 5.7 show that the Classial Algorithm with Optimisti Treatment andthe Optimisti Algorithm with Optimisti Treatment approahes �perform better� (interms of lateny) than the Optimisti Algorithm with Conservative Treatment ap-proah. This is in part beause even when the spontaneous total order propertyholds, a message an only be delivered using the Optimisti Algorithm with Conser-vative Treatment approah after the hek phase has terminated, whih is not thease with the other tehniques. However, this analysis does not take into aountresoures utilisation (i.e., proessor and network). If resoures were onsidered, theresults might have been di�erent. The reason is that the Optimisti Algorithm withConservative Treatment approah never has to undo operations (i.e., it generates lessproessor ativity), and only orders messages when the spontaneous total order prop-erty does not hold (i.e., it generates less network ativity). Furthermore, as alreadystated, there is a fundamental di�erene between the Optimisti Algorithm with Con-servative Treatment approah and the approahes based on optimisti treatment, inthat the latter an only be used when the appliation is able to undo operations.From Figures 5.6 and 5.7, the Classial Algorithm with Optimisti Treatment ap-proah is more e�ient than the Optimisti Algorithm with Optimisti Treatment2The optimised Chandra and Toueg Consensus algorithm onsists in eliminating the �rst phaseof the algorithm, when proesses send their initial values to the oordinator (see the Appendix),and having the oordinator propose its initial value as estimate [Sh97℄.
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ΛCC/ΛOO
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ΛCC/ΛOC

Optimisti TreatmentOptimisti ABast withOptimisti TreatmentClassial ABast withConservative TreatmentOptimisti ABast with

α
10.90.80.70.60.50.40.30.2

43.532.521.510.5Figure 5.6: Degrees of optimism (Λt = Λu = 0)approah when the ost of the treatment and undo phases are low, and worse whenthey are high. This is explained by the fat that the Optimisti Algorithm withOptimisti Treatment approah allows an overlap between the order and the undophases, with the additional ost of a hek phase. The Classial Algorithm withOptimisti Treatment approah does not have the additional hek phase ost, buttreats the order and the undo phases sequentially. If the ost of the undo phase iszero, the Optimisti Algorithm with Optimisti Treatment approah does not haveany advantage over the Classial Algorithm with Optimisti Treatment approah,and, atually, further augments the overall ost to deliver a message. Finally, forvalues of α very lose to one, both approahes based on optimisti treatment have asimilar behaviour.5.2 Optimisti Atomi Broadast AlgorithmIn this setion, we present in detail an algorithm that exploits the Optimisti Ap-proah introdued in the previous setion: the Optimisti Atomi Broadast (OPT-ABast) algorithm. Our interest in the Optimisti Approah omes from the fatthat the OPT-ABast algorithm an replae lassial implementations of AtomiBroadast in the Database State Mahine without further modi�ations in the waytransations are proessed (see [KPAS99℄ for a database repliation protool basedon optimisti treatment).This setion onsiders an asynhronous system model. Proesses ommuniate bymessage passing through FIFO Quasi-Reliable hannels, and have the rash-stopmode of failure. The system is augmented with failure detetors to allow us to solveConsensus (Chapter 2).
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Optimisti TreatmentOptimisti ABast withOptimisti TreatmentClassial ABast withConservative TreatmentOptimisti ABast with

α
10.90.80.70.60.50.40.30.2

1.81.71.61.51.41.31.21.110.90.80.7Figure 5.7: Degrees of optimism (Λt = Λu = Λo)5.2.1 Overview of the AlgorithmIn the OPT-ABast algorithm, proesses progress in a sequene of stages. Messagesan be delivered �during� a stage or at the �end� of a stage, and the key idea is thatduring a stage, messages an be delivered faster than at the end of a stage. Figure 5.8depits the OPT-ABast algorithm when messages are delivered during a stage k.3In order for a proess p to deliver messages during stage k, p has to determinewhether the spontaneous total order property holds. Proess p determines whetherthis property holds by exhanging information about the order in whih messagesare reeived. One p reeives this order information from all the other proesses, puses a pre�x funtion to determine whether there is a non-empty ommon sequeneof messages reeived by all proesses.
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86 Chapter 5. Optimisti Atomi BroadastFigure 5.9 depits the way the OPT-ABast algorithm proeeds from stage k tostage k+1. Whenever the spontaneous total order property does not hold, proessesterminate the urrent stage, and start a new one. The termination of a stage involvesthe exeution of a Consensus, whih an lead to the delivery of messages. Proessfailures are disussed in Setion 5.3.3.
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stage k+1stage kFigure 5.9: Overview of the OPT-ABast algorithm (stages k and k + 1)The notion of e�ieny is aptured by the delivery lateny de�ned in Setion 4.3.2,whih informally de�nes a measure of the synhronisation needed by the OPT-ABastalgorithm to deliver messages. We show that messages delivered during a stage havea deliver lateny equal to 2, and messages delivered at the end of a stage have adeliver lateny equal to 4. The additional ost payed to deliver messages at the endof a stage omes from the Consensus exeution.Known Atomi Broadast implementations for the asynhronous model augmentedwith failure detetors deliver messages with a deliver lateny equal to 3 [CT96℄. Thismeans that if the spontaneous total order property is violated too frequently, theOPT-ABast algorithm may beome ine�ient. However, in ase the spontaneoustotal order property holds frequently, messages an be delivered e�iently using theOPT-ABast algorithm.5.2.2 Additional NotationThe Optimisti Atomi Broadast algorithm presented in the next setion handlessequenes of messages. In the following we de�ne some terminology needed for thepresentation of the algorithm.A sequene of messages is denoted by seq = 〈m1,m2, . . . 〉. We de�ne the operators
⊕ and ⊖ for onatenation and deomposition of sequenes. Let seqi and seqj be twosequenes of messages. Then, seqi ⊕ seqj is the sequene of all the messages in seqifollowed by the sequene of all the messages in seqj, and seqi ⊖ seqj is the sequeneof all the messages in seqi that are not in seqj . So, the sequene seqi ⊖ seqj doesnot ontain any message in seqj. The pre�x funtion ⊙ applied to a set of sequenes



5.2. Optimisti Atomi Broadast Algorithm 87returns the longest ommon sequene that is a pre�x of all the sequenes, or theempty sequene denoted by ǫ.For example, if seqi = 〈m1,m2,m3〉 and seqj = 〈m1,m2,m4〉, then seqi ⊕ seqj =
〈m1,m2,m3,m1,m2,m4〉, seqi ⊖ seqj = 〈m3〉, and ⊙(seqi, seqj) = 〈m1,m2〉.5.2.3 Detailed AlgorithmAlgorithm 2 (page 89) solves Atomi Broadast. Proesses exeuting Algorithm 2progress in a sequene of loal stages numbered 1, ..., k, .... Messages A-delivered by aproess during stage k are inluded in the sequene stgA_deliverk. These messagesare A-delivered without the ost of Consensus. Messages A-delivered by a proessat the end of stage k are inluded in the sequene endA_deliverk. These messagesare A-delivered with the ost of a Consensus exeution. We say that a message mis A-delivered in stage k if m is A-delivered either during stage k or at the end ofstage k.Every stage k is terminated by a Consensus to deide on a sequene of messages, de-noted by msgStgk. Algorithm 2 guarantees that if a orret proess starts Consensus(by invoking the propose primitive), all orret proesses also start Consensus. Notiethat if not all orret proesses invoke the propose primitive in the k-th Consensusexeution, then Consensus termination annot be ensured.The sequene msgStgk ontains all message that are A-delivered in stage k (i.e.,during stage k and at the end of stage k) by every proess that reahes the endof stage k. Proess p starts stage k + 1 one it has A-delivered all messages in
endA_deliverk, where endA_deliverk = msgStgk ⊖ stgA_deliverk.The orretness of Algorithm 2 is based on two properties:1. for any orret proesses p and q, all the messages A-delivered by p in stage kare also A-delivered by q in stage k (i.e., stgA_deliverk

p ⊕ endA_deliverk
p =

stgA_deliverk
q ⊕ endA_deliverk

q ), and2. every sequene of messages A-delivered by some proess p in stage k before pexeutes Consensus k is a non-empty pre�x of the sequene deided in Con-sensus k (i.e., stgA_deliverk
p is a pre�x of msgStgk).All tasks in Algorithm 2 exeute onurrently. At eah proess p, tasks GatherMsgs(lines 11-12) and TerminateStage (lines 25-35) are started at initialisation time. TaskStgDeliverk (lines 13-24) is started by p when p begins stage k. Lines 20 and 21 intask StgDeliverk are atomi, that is, task StgDeliverk is not interrupted (by taskTerminateStage) after it has exeuted line 20 and before having exeuted line 21.Proess p in stage k manages the following sequenes.

• R_deliveredp: ontains all messages R-delivered by p up to the urrent time,
• A_deliveredp: ontains all messages A-delivered by p up to the urrent time,
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• stgA_deliverk

p : is the sequene of messages A-delivered by p during stage k,up to the urrent time,
• endA_deliverk

p : is the sequene of messages A-delivered by p at the end ofstage k.When p wants to A-broadast message m, p exeutes R-broadast(m) (line 9). After
p R-delivers a message m (line 11), p inludes m in R_deliveredp, and eventuallyexeutes task StgDeliverk (line 13). At task StgDeliverk, p sends a sequene ofmessages that it has not A-delivered yet to all proesses (line 14), and waits for suhsequene from all proesses (line 15). The next ations exeuted by p depend on themessages it reeives at the wait statement (line 15).1. If p reeives a sequene from all proesses, and there is a non-empty pre�xommon to all these sequenes, then p A-delivers the messages in the ommonpre�x (line 20). If not, p R-broadasts message (k,EndStg) to terminate theurrent stage k (line 23).2. One p R-delivers message (k,EndStg) at line 25, p terminates task StgDeliverk(line 26), and starts the k-th Consensus exeution (line 27), proposing a se-quene of all messages p has R-delivered up to the urrent time but not A-delivered in any stage k′, k′ < k. Upon deiding for Consensus k (line 28), pbuilds the sequene endA_deliverk (line 29) and A-delivers the messages in

endA_deliverk (line 30). Proess p then starts stage k + 1 (lines 32-35).5.2.4 Proof of CorretnessThe orretness of the OPT-ABast algorithm follows from Propositions 5.1 (Agree-ment), 5.2 (Total Order), 5.3 (Validity), and 5.4 (Integrity). In the following proofs,we onsider the number of times that proesses exeute lines 13-21 in a given stage.Hereafter, stgA_deliverk,lk
p denotes the value of stgA_deliverk

p after p exeutedline 21 for the lk-th time in stage k, lk > 0, and stgA_deliverk,0
p denotes ǫ (thevalue of stgA_deliverk

p before p exeutes lines 13-21 for the �rst time). Likewise,
prefixlk

p , respetively msgSeqlk , denotes the value of prefixp, respetively msgSeq,after p exeuted line 17, respetively 15, for the lk-th time in a given stage. In theproofs presented next �∀p� means �∀p ∈ Π�.The proofs of Lemmata 5.1 and 5.3 use the FIFO property of the ommunia-tion hannels to onlude that for any proess p that exeutes the l-th iterationof line 17, prefixl
p = ⊙∀qmsgSeql

q. This statement holds sine when p exeutesthe l-th iteration of line 17, p has reeived l messages of the type (−,msgSeqq)from every proess q. The FIFO hannels guarantee that all proesses that exeutethe l-th iteration of line 17 reeive the messages (−,msgSeqq) in the same order
(−,msgSeq1

q ), (−,msgSeq2
q ), . . . , (−,msgSeql

q) from every q.Lemma 5.1 If p and q are two proesses that exeute the lk-th iteration of line 21in stage k, then stgA_deliverk,lk
p = stgA_deliverk,lk

q .
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Algorithm 2 OPT-ABast algorithm1: Initialisation (see Setion 5.2.3 for a desription of the variables):2: R_delivered← ǫ3: A_delivered← ǫ4: k ← 15: stgA_deliverk ← ǫ6: endA_deliverk ← ǫ7: fork tasks { GatherMsgs, StgDeliver1, TerminateStage }8: To exeute A-broadast(m):9: R-broadast(m)10: A-deliver(−) ours as follows:11: when R-deliver(m) {Task GatherMsgs}12: R_delivered← R_delivered ⊕ 〈m〉13: when (R_delivered⊖A_delivered)⊖ stgA_deliverk 6= ǫ {Task StgDeliverk}14: send (k, (R_delivered⊖A_delivered)⊖ stgA_deliverk) to all15: wait until for [∀q ∈ Π : received (k, msgSeqq) from q or Dp 6= ∅]16: π = { q | p received (k, msgSeqq) from q }17: prefix← ⊙∀q∈π msgSeqq18: if π = Π and prefix 6= ǫ then19: stgDeliver← prefix⊖ stgA_deliverk20: [ deliver all messages in stgDeliver aording to their order in stgDeliver;21: stgA_deliverk ← stgA_deliverk ⊕ prefix ]22: else23: R-broadast(k,EndStg)24: end task25: when R-deliver(k,EndStg) {Task TerminateStage}26: terminate task StgDeliverk, if exeuting27: propose(k, R_delivered⊖A_delivered)28: wait until deide(k, msgStgk)29: endA_deliverk ← msgStgk ⊖ stgA_deliverk30: deliver all messages in endA_deliverk following their order in endA_deliverk31: A_delivered← A_delivered⊕ (stgA_deliverk ⊕ endA_deliverk)32: k ← k + 133: stgA_deliverk ← ǫ34: endA_deliverk ← ǫ35: fork task StgDeliverk



90 Chapter 5. Optimisti Atomi BroadastProof. We �rst show that for any l, 0 < l ≤ lk, prefixl
p = prefixl

q. Sine pand q exeute line 21 for the l-th time in stage k, p and q reeive a message ofthe type (k,msgSeq) from every proess in the l-th iteration of lines 15. Fromline 17 and the fat that ommuniation between proesses follows a FIFO order,
prefixl

p = ⊙∀rmsgSeql
r, and prefixl

q = ⊙∀rmsgSeql
r, where msgSeql

r is the l-thmessage of the type (k,msgSeqr) reeived from proess r, and we onlude that
prefixl

p = prefixl
q. From line 21, stgA_deliverk,l = stgA_deliverk,l−1 ⊕ prefixl,and a simple indution on lk leads to stgA_deliverk,lk

p = stgA_deliverk,lk
q . 2Lemma 5.2 If some proess p exeutes line 21 l times, then all proesses in Πexeute the send statement at line 14 l times.Proof. This follows diretly from the algorithm sine p an only exeute line 21after reeiving message (k,msgSeq) (line 15) from all proesses. Thus, if p exeutesline 21 l times, it reeives message (k,msgSeq) from all proesses l times, and fromthe no reation property of Reliable Channels, all proesses exeute the send(k,−)statement at line 14 l times. 2Lemma 5.3 For any proess p, and all k ≥ 1, if p exeutes deide(k,msgStgk), then(a) stgA_deliverk

p is a pre�x of msgStgk, and (b) stgA_deliverk
p does not ontainthe same message more than one.Proof. Assume that p exeutes deide(k,msgStgk). By uniform validity of Con-sensus, there is a proess q that exeuted propose(k,R_deliveredq ⊖A_deliveredq),suh that R_deliveredq ⊖A_deliveredq = msgStgk. Let lk be the number of timesthat p exeutes line 21 before exeuting deide(k,−). From Lemma 5.2, all proessesin Π exeute the send statement at line 14 lk times.We show by indution on lk that stgA_deliverk,lk

p is a pre�x of R_deliveredq ⊖

A_deliveredq , and stgA_deliverk,lk
p does not ontain the same message more thanone. Base step. (lk = 0) In this ase, stgA_deliverk,0

p = ǫ and the lemma istrivially true. Indutive step. Assume that the lemma holds for all l′k, 0 < l′k <

lk. We show that stgA_deliverk,lk
p is a pre�x of R_deliveredq ⊖ A_deliveredq ,and stgA_deliverk,lk

p does not ontain the same message more than one. Byline 21, stgA_deliverk,lk
p = stgA_deliver

k,(lk−1)
p ⊕ prefixlk

p . Sine ommunia-tion hannels are FIFO, any message sent by some proess r in the lk-th exeu-tion of send(k,msgSeqlk
r ) (line 14) is reeived by p in the lk-th exeution of thestatement reeive(k,msgSeqlk

r ) (line 15), and therefore, after p exeutes line 17,
prefixlk

p = ⊙∀rmsgSeqlk
r . From lines 14 and 15, msgSeqlk

r = (R_deliveredr ⊖

A_deliveredr) ⊖ stgA_deliver
k,(lk−1)
r , and so, prefixlk

p = ⊙∀r((R_deliveredr ⊖

A_deliveredr) ⊖ stgA_deliver
k,(lk−1)
r ). By Lemma 5.1, we have prefixlk

p =

⊙∀r((R_deliveredr⊖A_deliveredr)⊖stgA_deliver
k,(lk−1)
p ). So, stgA_deliverk,lk

p =

stgA_deliver
k,(lk−1)
p ⊕(⊙∀r(R_deliveredr⊖A_deliveredr)⊖stgA_deliver

k,(lk−1)
p ).From the indution hypothesis, item (a), we have that stgA_deliver

k,(lk−1)
p is a pre�x



5.2. Optimisti Atomi Broadast Algorithm 91of R_deliveredq ⊖ A_deliveredq . Furthermore, from item (b) of the indution hy-pothesis, all messages in stgA_deliver
k,(lk−1)
p are unique. Thus, stgA_deliverk,lk

p =

⊙∀r(R_deliveredr ⊖ A_deliveredr),4 and therefore, stgA_deliverk,lk
p is a pre�x of

R_deliveredq ⊖ A_deliveredq . It also follows that stgA_deliverk,lk
p does not on-tain the same message more than one. For a ontradition, assume that message

m is more than one in stgA_deliverk,lk
p . Thus, for every proess r, m is more thanone in R_deliveredr. From the algorithm, lines 11 and 12, m has been R-deliveredmore than one by r, ontraditing uniform integrity of Reliable Broadast. 2Lemma 5.4 For any two orret proesses p and q, and all k ≥ 1, if p exeutes line30 in stage k, then q exeutes line 30 in stage k.Proof. If p exeutes line 30 in stage k, then p exeutes the deide(k,msgStgk)statement at line 28, and the propose(k,−) statement at line 27. Therefore, p R-delivers a message of the type (k,EndStg) at line 25. By the agreement propertyof Reliable Broadast, q eventually R-delivers message (k,EndStg), and exeutesthe propose(k,−) statement at line 27. By agreement of Consensus, q exeutes thedeide(k,msgStgk) statement, and line 30. 2Lemma 5.5 For any two proesses p and q, and all k ≥ 1, if both p and q exeuteline 29, then stgA_deliverk

p ⊕ endA_deliverk
p = stgA_deliverk

q ⊕ endA_deliverk
q .Proof. From line 29, endA_deliverk

p = msgStgk ⊖ stgA_deliverk
p , and therefore,

stgA_deliverk
p ⊕ endA_deliverk

p = stgA_deliverk
p ⊕ (msgStgk ⊖ stgA_deliverk

p ).By Lemma 5.3, stgA_deliverk
p is a pre�x of msgStgk, and so, stgA_deliverk

p ⊕

endA_deliverk
p = msgStgk. From a similar argument, we have stgA_deliverk

q ⊕

endA_deliverk
q = msgStgk. We onlude that stgA_deliverk

p ⊕ endA_deliverk
p =

stgA_deliverk
q ⊕ endA_deliverk

q . 2Lemma 5.6 For any proess p, and all k ≥ 1, if message m ∈ stgA_deliverk
p ⊕

endA_deliverk
p then there is no k′, k′ < k, suh that m ∈ stgA_deliverk′

p ⊕

endA_deliverk′

p .Proof. The proof is by ontradition. Assume that there exist a proess p, a mes-sage m, some k, and some k′ < k, suh that m ∈ stgA_deliverk
p ⊕ endA_deliverk

p ,and m ∈ stgA_deliverk′

p ⊕ endA_deliverk′

p . We distinguish two ases: (a) m ∈

stgA_deliverk
p , or (b) m ∈ endA_deliverk

p . Note that from line 29, it annot bethat m ∈ stgA_deliverk
p and m ∈ endA_deliverk

p .Case (a). From lines 21, 17 and 15 stgA_deliverk
p is a ommon non-empty pre-�x among the messages of the type (k,msgSeq) reeived by p from all proesses.4Let seqi and seqj be two sequenes suh that seqi is a pre�x of seqj , and messages in seqj areunique. It an be shown that seqi ⊕ (seqj ⊖ seqi) = seqj .



92 Chapter 5. Optimisti Atomi BroadastThus p has reeived the message (k,msgSeqp) (i.e., a message that p sent to itself),suh that m ∈ msgSeqp. But msgSeqp = R_deliveredp ⊖ A_deliveredp (line 14),and so, m 6∈ A_deliveredp. When p exeutes line 14 at stage k, A_deliveredp =
⊕k−1

i=1 (stgA_deliveri
p⊕endA_deliveri

p). This follows from line 31, the only line where
A_delivered is updated. Therefore, m 6∈ ⊕k−1

i=1 (stgA_deliveri
p ⊕ endA_deliveri

p),ontraditing the fat that there is a k′ < k suh that m ∈ stgA_deliverk′

p ⊕

endA_deliverk′

p .Case (b). From line 29, m ∈ msgStgk, and from line 28, and validity of Consensus,there is a proess q that exeutes propose(k,R_deliveredq ⊖ A_deliveredq) suhthat m ∈ R_deliveredq ⊖ A_deliveredq . So, m 6∈ A_deliveredq . Sine when
q exeutes line 27, A_deliveredq = ⊕k−1

i=1 (stgA_deliveri
q ⊕ endA_deliveri

q),m 6∈

⊕k−1
i=1 (stgA_deliveri

q⊕endA_deliveri
q), and from Lemma 5.5 ⊕k−1

i=1 (stgA_deliveri
p⊕

endA_deliveri
p) = ⊕k−1

i=1 (stgA_deliveri
q ⊕ endA_deliveri

q). Thus, we onlude that
m 6∈ ⊕k−1

i=1 (stgA_deliveri
p ⊕ endA_deliveri

p), a ontradition that onludes theproof. 2Proposition 5.1 (Agreement). If a orret proess p A-delivers a message m,then every orret proess q eventually A-delivers m.Proof: Consider that p has A-delivered message m in stage k. We show that q alsoA-delivers m in stage k. There are two ases to onsider: (a) p A-delivers messagesin endA_deliverk
p , and (b) p does not A-deliver messages in endA_deliverk

p .Case (a). From Lemma 5.4 and the fat that p A-delivers messages in endA_deliverk
p ,

q A-delivers messages in endA_deliverk
q , and from Lemma 5.5, stgA_deliverk

p ⊕

endA_deliverk
p = stgA_deliverk

q ⊕endA_deliverk
q . Sine p A-delivers m in stage k,

m ∈ stgA_deliverk
p⊕endA_deliverk

p , and so, m ∈ stgA_deliverk
q⊕endA_deliverk

q .Therefore, q either A-delivers m at line 20 (in whih ase m ∈ stgA_deliverk
q ), orat line 30 (in whih ase m ∈ stgA_deliverk

q ).Case (b). Sine p does not A-deliver messages in endA_deliverk
p , from Lemma 5.4,no orret proess q A-delivers messages in endA_deliverk

q . However, m is A-delivered in stage k by p, and so, it must be that m ∈ stgA_deliverk
p . Assume that

m ∈ stgA_deliverk,lk
p , where lk is suh that for any l′k < lk, m 6∈ stgA_deliver

k,l′
k

p .Therefore, p exeutes the lk-th iteration of line 21 in stage k, and we laim that
q also exeutes the lk-th iteration of line 21 in stage k. The laim is proved byontradition. From the algorithm, q exeutes R-broadast(k,−). By agreementand validity of Reliable Broadast, every orret proess R-delivers the message
(k,EndStg) and exeutes propose(k,−). By agreement and termination of Consen-sus, every orret proess deides on Consensus k, and eventually A-delivers messagesin endA_deliverk, ontraditing the fat that no orret proess A-delivers messagesin endA_deliverk, and onluding the proof of the laim. Sine p and q exeute the
lk-th iteration of line 21 in stage k, and m ∈ stgA_deliver

k,l′
k

p , from Lemma 5.1,
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m ∈ stgA_deliver

k,l′
k

q , and from lines 20-21, q A-delivers m. 2Proposition 5.2 (Total Order). If orret proesses p and q both A-deliver mes-sages m and m′, then p A-delivers m before m′ if and only if q A-delivers m before
m′.Proof: Assume that p A-delivers message m in stage k, and m′ in stage k′, k′ >
k. Therefore, m ∈ stgA_deliverk

p ⊕ endA_deliverk
p , and m′ ∈ stgA_deliverk′

p ⊕

endA_deliverk′

p , and it follows immediately from Lemma 5.5 that q A-delivers mbefore m′. Now, assume that m and m′ are A-delivered by p in stage k. Thus, mpreedes m′ in stgA_deliverk
p⊕endA_deliverk

p , and by Lemma 5.5, stgA_deliverk
p⊕

endA_deliverk
p = stgA_deliverk

q ⊕ endA_deliverk
q .We laim that if m preedes m′ in stgA_deliverk

q⊕endA_deliverk
q , then q A-delivers

m before m′. If m,m′ ∈ stgA_deliverk
q (respetively m,m′ ∈ endA_deliverk

q ), then,from task stgDeliverk, line 20 (respetively TerminateStage, line 30), q A-delivers mbefore m′. Thus, onsider that m ∈ stgA_deliverk
q and m′ ∈ endA_deliverk

q . Toreah a ontradition, assume that q A-delivers m′ before m. Before A-delivering mat line 20, q exeutes line 26 and terminates task stgA_deliverk
q , and so, m annotbe A-delivered in stage k, ontraditing that m and m′ are A-delivered in stage k,and onluding the proof of the lemma. 2Lemma 5.7 If a orret proess p exeutes line 25 in stage k, then every orretproess q exeutes line 25 in stage k.Proof. The proof is by indution on k. Base step. (k = 1) Initially, all orretproesses are in stage 1. Thus, if p exeutes line 25 in stage 1 and R-delivers message

(1,EndStg), by the agreement property of Reliable Channels, every orret pro-ess eventually exeutes line 25 and R-delivers message (1,EndStg). Indutivestep. Assume that if a orret proess p exeutes line 25 in stage k − 1, then everyorret proess q exeutes line 25 in stage k − 1. We show that if p exeutes line25 in stage k, then q also exeutes line 25 in stage k. From the algorithm and thetermination property of Consensus, after R-delivering message (k − 1,EndStg), allorret proesses eventually terminate Consensus in stage k − 1 and exeute lines32-35, starting stage k. Sine p R-delivers message (k,EndStg), by agreement ofReliable Channels, every orret proess q R-delivers message (k,EndStg). 2Lemma 5.8 No orret proess p has a task stgDeliverkp , k > 0, that is permanentlybloked in the wait statement of line 15.Proof. For a ontradition, onsider that there exists a orret proess p suh thatfor some lk > 0, task stgDeliverkp is permanently bloked at the lk-th iteration ofline 15. Therefore, (a) there is a proess q suh that p never reeives the message
(k,msgSeq) for the lk-th time from q and (b) q 6∈ Dp. From (b), and the ompletenessproperty of Dp, q is a orret proess. From Lemma 5.7, if p exeutes line 25 in stage
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k, then q exeutes line 25 in stage k, but sine p never reeives (k,msgSeq) for the
lk-th time from q, by the no loss property of Reliable Channels, q does not sendmessage (k,msgSeq) for the lk-th time to p (line 14).We now prove the following laim: if q does not exeute send(k,msgSeq) for the lk-thtime, q exeutes R-deliver(k,EndStg). When p exeutes the wait statement for the
lk-th time in stage k, there exists a message m suh that m ∈ (R_deliveredp ⊖

A_deliveredp) ⊖ stgA_deliver
k,(lk−1)
p . So, (1a) m 6∈ stgA_deliver

k,(lk−1)
p , andfrom line 31, (1b) m 6∈ ⊕k−1

i=1 stgA_deliveri
p ⊕ endA_deliveri

p. If q does not sendthe message (k,msgSeq) for the lk-th time to p, then either (i) (R_deliveredq ⊖

(⊕k−1
i=1 (stgA_deliveri

q ⊕ endA_deliveri
q)))⊖ stgA_deliver

k,(lk−1)
q is empty (line 13)or (ii) task stgDeliverkq is terminated before q sends message (k,msgSeq) for the

lk-th time to p (i.e., q terminates stage k). Furthermore, sine p exeutes line 15for the lk-th time, p has exeuted the (lk − 1)-th iteration of lines 13-21, and re-eived a message from all proesses at line 15 for the (lk − 1)-th time. Thus, everyproess exeutes the send statement at line 14 at least lk − 1 times, and, fromLemma 5.1, (2a) stgA_deliver
k,(lk−1)
p = stgA_deliver

k,(lk−1)
q . From Lemma 5.5,(2b) for all k′, 1 ≤ k′ < k, stgA_deliverk′

p ⊕ endA_deliverk′

p = stgA_deliverk′

q ⊕

endA_deliverk′

q . From (1a) and (2a), we onlude that m 6∈ stgA_deliver
k,(lk−1)
q ,and, from (1b) and (2b), m 6∈ ⊕k−1

i=1 stgA_deliveri
q ⊕ endA_deliveri

q . Sine q doesnot send message (k,msgSeq) for the lk-th time to p at line 14, m will never be in
R_deliveredq . However, by the agreement property of Reliable Broadast, eventu-ally m ∈ R_deliveredq (item (i) of the laim is false), and so, task stgDeliverkq isterminated at line 24 or 26 before q sends message (k,msgSeq) for the lk-th time to
p (item (ii) of the laim is true), and q exeutes R-deliver(k,EndStg), onludingour laim.By the agreement of Reliable Broadast, p eventually R-delivers message (k,EndStg),and so, p exeutes line 26 and terminates task stgDeliverkp , ontraditing our initialhypothesis that task stgDeliverkp remains permanently bloked. 2Proposition 5.3 (Validity). If a orret proess p A-broadasts a message m,then p eventually A-delivers m.Proof: For a ontradition, assume that p A-broadasts m but never A-deliversit. From Proposition 5.1, no orret proess A-delivers m. Sine p A-broadasts
m, it R-broadasts m, and from the validity of Reliable Broadast, p eventually R-delivers m and inludes m in R_deliveredp. Sine no orret proess A-delivers m,
m 6∈ A_deliveredp, and for all k, m 6∈ stgA_deliverk, k > 0. From the agreementof Reliable Broadast, there is a stage k1 suh that for all l ≥ k1, and every orretproess q, m ∈ (R_deliveredq ⊖A_deliveredq)⊖ stgA_deliverl

q .Let k2 be a stage suh that for all l ≥ k2 every faulty proess has rashed (i.e., nofaulty proess exeutes stage l), and let k ≥ max(k1, k2). Thus, no faulty proess exe-utes stage k, and for every orret proess q, m ∈ (R_deliveredq⊖A_deliveredq)⊖
stgA_deliverk

q at stage k. From Lemma 5.8, for every orret p, no task stgDeliverkpremains permanently bloked at line 15, and if task stgDeliverkp is terminated, task
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p is eventually started by p. Thus, all orret proesses exeute thewhen statement at line 13, and there are two ases two onsider: (a) for all lk > 0,every proess exeutes the then branh of the if statement at line 18 (in whih asethere are no faulty proesses in the system), and (b) for some lk > 0, there is aproess r that exeutes the else branh, and R-broadasts message (k,EndStg).Case (a). We laim that there exists an l′k > 0 suh that m ∈ ⊙∀r∈Π msgSeq

l′
k

r . Fromthe algorithm, for every proess r, msgSeqlk
r = (R_deliveredr ⊖ A_deliveredr) ⊖

stgA_deliverk,lk
r , and so, m ∈ msgSeqlk

r . Assume, for a ontradition, that forevery l′k > 0, m 6∈ ⊙∀r∈Π msgSeq
l′
k

r . Sine m ∈ msgSeqlk
r , for all r, this an only bepossible if for two proesses p′ and p′′, m preedes some message m′ in msgSeqlk

p′ and
m′ preedes m in msgSeqlk

p′′ . However, in this ase, eventually, ⊙∀r∈Π msgSeqr = ǫ,and proesses do not exeute the then branh, ontraditing the assumption of ase(a).Case (b). By the validity of Reliable Broadast, r R-delivers message (k,EndStg).From Lemma 5.7, if p reahes line 25 in stage k, then q reahes line 25 in stage
k, and from agreement of Reliable Broadast, every orret proess q R-delivers
(k,EndStg) and exeutes propose(k,R_deliveredq⊖A_deliveredq), suh that m ∈
R_deliveredq ⊖ A_deliveredq . By agreement and termination of Consensus, every
q deides on the same msgStgk, and by validity of Consensus m ∈ msgStgk. Itfollows that q A-delivers m, a ontradition that onludes the proof. 2Proposition 5.4 (Uniform Integrity). For any message m, eah proess A-delivers m at most one, and only if m was previously A-broadast by sender(m).Proof: We �rst show that, for any message m, eah proess A-delivers m only if mwas previously A-broadast by sender(m). There are two ases to onsider. (a) Aproess p A-delivers m at line 20. Thus, p reeived a message (k,msgSeqq) fromevery proess q, for some k, and m ∈ msgSeqq. From line 14, m ∈ R_deliveredq ,and from line 12, p has R-delivered m. By uniform integrity of Reliable Broad-ast, sender(m) R-broadasts m, and so, sender(m) A-broadasts m. (b) Proess
p A-delivers m at line 30. Thus, from line 29, m ∈ msgSetk, for some k, and pexeuted deide(k,msgStgk). By uniform validity of Consensus, some proess q ex-euted propose(k,R_deliveredq ⊖ A_deliveredq), suh that m ∈ R_deliveredq ⊖
A_deliveredq . From an argument similar to the one presented in item (a), sender(m)A-broadasts m.We now show that m is only A-delivered one by p. From Lemma 5.6, it is lear thatif m is A-delivered in stage k (i.e., m ∈ stgA_deliverk ⊕ endA_deliverk), then m isnot A-delivered in some other stage k′, k′ 6= k. It remains to be shown that m is notA-delivered more than one in stage k. There are three ases to be onsidered: m isA-delivered at line 20 and will not be A-delivered again (a) at line 20 or (b) at line30, and () m is A-delivered at line 30 and will not be A-delivered again at line 20.Case (a). After A-delivering m at line 20, p inludes m in stgA_deliverk

p , and from



96 Chapter 5. Optimisti Atomi Broadastline 19, p will not A-deliver m again at line 20.Case (b). For a ontradition, assume that m is A-delivered one at line 20 and againat line 30. Thus, when p exeutes line 29, m 6∈ stgA_deliverk
p . Sine m has alreadybeen A-delivered at line 20, it follows that task StgDeliverk is terminated after pA-delivers m at line 20 and before p exeutes line 21. This leads to a ontraditionsine lines 20 and 21 are exeuted atomially.Case (). Before exeuting line 30, p exeutes line 26, and terminates task StgDeliverk.So, one p A-delivers some message at line 30 in stage k, no message an be A-delivered at line 20 in stage k by p. 2Theorem 5.1 Algorithm 2 solves Atomi Broadast.Proof. Immediate from Propositions 5.1, 5.2, 5.3, and 5.4. 25.3 Evaluation of the OPT-ABast AlgorithmIntuitively, the key idea to evaluating the OPT-ABast algorithm is that if Consensusis not needed to deliver some message m, but neessary to deliver some other message

m′, then the delivery lateny of m′ is greater than the delivery lateny of m. Beforegoing into details about the delivery lateny of messages delivered with and withoutthe ost of a Consensus exeution (see Setion 5.3.2), we present a more generalresult about the neessity of Consensus in the OPT-ABast algorithm.5.3.1 On the Neessity of ConsensusProposition 5.5 states that in a failure free and suspiion free run, Consensus is notexeuted in stage k if the spontaneous total order message reeption property holdspermanently in k.Lemma 5.9 For any two proesses p and q, and all k ≥ 1, if p exeutes line 21 forthe lk-th time in stage k, lk > 0, then q exeutes line 21 for the (lk − 1)-th time instage k.Proof. If p exeutes line 21 for the lk-th time in stage k, then p exeutes the waitstatement at line 15 for the lk-th time in stage k suh that p does not suspet anyproess and reeives a message from every proess (furthermore, there is a non-emptypre�x between all messages reeived by p). From the no reation property of ReliableChannels, every proess q exeutes the send statement at line 14 for the lk-th time instage k. For a ontradition, assume that q does not exeute line 21 for the (lk−1)-thtime. Then, q exeutes R-broadast(k,EndStg) (line 23) in the l′k iteration of lines14-24, l′k ≤ (lk − 1), and q �nishes task StgDeliverk (line 24). Therefore, q neverexeutes the send statement at line 14 for the lk-th time, a ontradition. 2



5.3. Evaluation of the OPT-ABast Algorithm 97Proposition 5.5 Let R be a failure free and suspiion free run of the OPT-ABastalgorithm. If for every two proesses p and q, all k > 0, and all lk > 0,
((R_deliveredp ⊖ A_deliveredp) ⊖ stgA_deliverk,lk

p ) ⊙ ((R_deliveredq ⊖

A_deliveredq) ⊖ stgA_deliverk,lk
q ) 6= ǫ, then no proess exeutes Consensus k in

R.Proof. Assume that there is a proess p that exeutes Consensus k in R. Fromthe algorithm, p R-delivers a message of the type (k,EndStg), and by uniformintegrity of Reliable Broadast, some proess q exeuted R-broadast(k,EndStg).From line 18, either (a) q suspets some proess, or (b) there is an iteration lk ≥ 0of lines 14-17, suh that prefixlk+1
q = ǫ. Case (a) ontradits the hypothesis that noproess is suspeted, so it must be that prefixlk+1

q = ǫ.From Lemma 5.9 and lines 17, 14 and 15, we have prefixlk+1
q = ⊙∀rmsgSeqlk+1

r =

⊙∀r((R_deliveredr ⊖ A_deliveredr) ⊖ stgA_deliverk,lk
r ), and therefore,

⊙∀r((R_deliveredr ⊖ A_deliveredr)⊖ stgA_deliverk,lk
r ) = ǫ. So, there must existtwo proesses p and q suh that ((R_deliveredp⊖A_deliveredp)⊖stgA_deliverk,lk

p )⊙

((R_deliveredq⊖A_deliveredq)⊖stgA_deliverk,lk
q ) = ǫ, ontraditing the hypoth-esis. 2Thus, from Proposition 5.5, in a failure free and suspiion free run, Consensus is onlyneessary in stage k when the spontaneous total order property does not hold in k.5.3.2 Delivery Lateny of the OPT-ABast AlgorithmWe now disuss in more detail the e�ieny of the OPT-ABast algorithm. Forevery proess p and all stages k, there are two ases to onsider: (a) messages A-delivered by p during stage k (line 20), and (b) messages A-delivered by p at the endof stage k. The main result is that for ase (a), the Optimisti Atomi Broadastalgorithm an A-deliver messages with a delivery lateny equal to 2, while for ase(b), the delivery lateny is at least equal to 4. Sine known Atomi Broadastalgorithms deliver messages with a delivery lateny of at least 3, these results showthe tradeo� of the Optimisti Atomi Broadast algorithm: if the spontaneous totalorder message reeption property only holds rarely, the OPT-ABast algorithm isnot attrative, while otherwise, the OPT-ABast algorithm leads to smaller ostsompared to known Atomi Broadast algorithms.Propositions 5.6 and 5.7 assess the minimal ost of the Optimisti Atomi Broadastalgorithm to A-deliver a message m. Proposition 5.6 de�nes a lower bound on thedelivery lateny of Algorithm 2 for messages A-delivered without Consensus (line 20),and Proposition 5.7 states that this bound an be reahed in runs where no proessA-delivers m at the end a of stage.Proposition 5.6 There is no run R generated by Algorithm 2 where some message

m is only A-delivered at line 20 (without Consensus) and dlR(m) < 2.



98 Chapter 5. Optimisti Atomi BroadastProof. Assume that m is only A-delivered during some stage k > 0 (i.e., with-out Consensus), and let p be a proess that A-delivers m in R. Proess p reeivesa message (k,msgSeqq) from every proess q suh that m ∈ msgSetq . Sine qexeutes send(k, (R_deliveredq ⊖ A_deliveredq) ⊖ stgA_deliverk) suh that m ∈
(R_deliveredq ⊖A_deliveredq)⊖ stgA_deliverk, q exeutes R-deliver(m). By theway timestamps are assigned to events (see Setion 4.3.2), ts(A-deliverp(m)) ≥
ts(R-deliverq(m)) + 1 (1). By uniform integrity of Reliable Broadast, there is someproess r that exeutes R-broadast(m), whih, from Algorithm 2, is the proess thatexeutes A-broadast(m). Thus, ts(A-broadastr(m)) = ts(R-broadastr(m)) (2).From (1) and (2), ts(A-deliverp(m)) − ts(A-broadastr(m)) ≥ ts(R-deliverq(m)) −
ts(R-broadastr(m))+1 (3). Let lRB

m,q = ts(R-deliverq(m))− ts(R-broadastr(m)) (4),and lAB
m,p = ts(A-deliverp(m)) − ts(A-broadastr(m)) (5). Therefore, from (3), (4),and (5), lAB

m,p ≥ lRB
m,q + 1. From the de�nition of delivery lateny, dlR(m) ≥ lAB

m,p.It follows that dlR(m) ≥ lAB
m,p ≥ lRB

m,q + 1. From Proposition 4.7, lRB
m,q ≥ 1, and weonlude that dlR(m) ≥ 2. 2Proposition 5.7 Assume that Algorithm 2 uses the Reliable Broadast implemen-tation given in [CT96℄. There is a run R generated by Algorithm 2 where message

m is A-delivered during stage k > 0, and dlR(m) = 2.Proof. Immediate from Figure 5.10, where proess p A-broadasts message m.(Some messages have been omitted from Figure 5.10 for larity.) Let ρ, ρ′ ∈ {p, q, r, s}.It follows that ts(reeiveρ(m)) = ts(sendp(m))+1, and ts(reeiveρ(k, 〈m〉) from ρ′) =
ts(sendρ′(k, 〈m〉)) + 1. But ts(sendρ′(k, 〈m〉)) = ts(reeiveρ′(m)), and therefore,
ts(reeiveρ(k, 〈m〉) from ρ′) = ts(sendp(m)) + 2. From Figure 5.10, we have that
ts(A-broadastp(m)) = ts(sendp(m)), and ts(A-deliverρ(m)) = ts(reeiveρ(k, 〈m〉)from ρ′). By the de�nition of delivery lateny, we onlude that dlR(m) = 2. 2
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s Figure 5.10: Run of OPT-ABast with dlR(m) = 2The results that follow de�ne the behaviour of the Optimisti Atomi Broadastalgorithm for messages A-delivered at the end of stage k. Proposition 5.8 establishes



5.3. Evaluation of the OPT-ABast Algorithm 99a lower bound for this ase, and Proposition 5.9 shows that this bound an be reahedwhen there are no proess failures and no failure suspiions.Proposition 5.8 Assume that Conjeture 4.1 is true (see page 72). There is no run
R generated by Algorithm 2 where m and m′ are the only messages A-delivered, mand m′ are both A-delivered at line 30, and dlR(m) < 4 and dlR(m′) < 4.Proof. Assume for a ontradition that there is a run R suh that dlR(m) < 4 and
dlR(m′) < 4. Sine p A-delivers m and m′ at line 30, from Algorithm 2, p exeutesdeidep(−,msgStg), suh that m,m′ ∈ msgStg. By uniform validity of Consen-sus, there is a proess q that exeutes proposeq(−, R_deliveredq ⊖ A_deliveredq),suh that msgStg = R_deliveredq ⊖ A_deliveredq . Thus, q R-delivers message
(−,EndStg). By uniform integrity of Reliable Broadast, there is a proess r thatexeutes R-broadastr(−,EndStg). Therefore, r has R-delivered at least one mes-sage that is neither in A_deliveredr nor in stgA_deliverr (line 13). Without loss ofgenerality, assume that this message is m. Sine r R-delivered m, there is a proess sthat exeutes R-broadasts(m), and this is the proess that exeutes A-broadasts(m).We de�ne:

lAB
m,p = ts(A-deliverp(m))− ts(A-broadasts(m)),

lCp = ts(deidep(−,msgStg))− ts(proposeq(−,msgStg)),

lRBEndStg,q = ts(R-deliverr(EndStg))− ts(R-broadastr(EndStg)), and
lRB
m,r = ts(R-deliverr(m))− ts(R-broadasts(m)).It follows that lAB

m,p ≥ lCp + lRBEndStg,q + lRB
m,r. From Conjeture 4.1 and the de�nitionof lateny degree [Sh97℄, lCp ≥ 2, and from Proposition 4.7, lRBEndStg,q ≥ 1, and

lRB
m,r ≥ 1. Thus, lAB

m,p ≥ 4. By the de�nition of delivery lateny, dlR(m) ≥ lAB
m,p, andwe onlude that dlR(m) ≥ 4. 2Proposition 5.9 Assume that Algorithm 2 uses the Reliable Broadast implemen-tation given in [CT96℄, and the Consensus implementation given in [Sh97℄. Thereexists a run R of Algorithm 2 where messages m and m′ are both A-delivered atline 30, and dlR(m) = 4 and dlR(m′) = 4.Proof. Immediate from Figure 5.11, where proess q A-broadasts message m,and proess r A-broadasts message m′. (The Consensus exeution and some mes-sages have been omitted for larity.) For all ρ ∈ {p, q, r, s}, ts(reeiveρ(m)) =

ts(sendq(m)) + 1, and ts(reeiveρ(m
′)) = ts(sendr(m

′)) + 1. It also follows that
ts(reeiveρ(k,EndStg)) = ts(sends(k,EndStg)) + 1. From Figure 5.11,
ts(sends(k,EndStg)) = ts(reeives(m)) = ts(reeives(m

′)), and therefore,
ts(reeiveρ(k,EndStg)) = ts(sendρ′(m)) + 2, ρ′ ∈ {q, r}.By the Consensus algorithm given in [Sh97℄, ts(deideρ(−)) = ts(proposeρ(−)) + 2.From Figure 5.11, ts(proposeρ(−)) = ts(reeiveρ(k,EndStg)), and we have that



100 Chapter 5. Optimisti Atomi Broadast
ts(deideρ(−)) = ts(reeiveρ(k,EndStg)) + 4. We onlude by the de�nition ofdelivery lateny and sine ts(A-deliverρ(m)) = ts(A-deliverρ(m′)) = ts(deideρ(−)),
ts(A-broadastq(m)) = ts(sendq(m)), and ts(A-broadastr(m)) = ts(sendr(m)), that
dlR(m) = 4 and dlR(m′) = 4. 2
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Figure 5.11: Run of OPT-ABast with dlR(m) = 4 and dlR(m′) = 45.3.3 Handling FailuresIn the OPT-ABast algorithm (line 18), whenever task StgDeliverk does not reeivemessages from all proesses in Π, the urrent stage k is terminated, whih leads toan exeution of Consensus to A-deliver the messages. Therefore, as soon as a proess
p ∈ Π rashes, the A-deliver of messages will always be slow (i.e., with a deliverylateny of at least 4). This an be solved by adding a membership servie to ourOPT-ABast algorithm as follows. Let vi be the urrent view of system Π (vi ⊆ Π):
• at line 18, replae ondition π = Π by π = vi.One a proess p rashes (or is suspeted to have rashed), p is removed from theview and fast A-deliver of messages is again possible. We do not disuss furtherthis extension to the OPT-ABast algorithm, but we note that the instane of themembership problem needed to remove a rashed proess an easily be integratedinto the Consensus problem that terminates a stage.5.4 Related WorkThe work presented in this hapter ombines Atomi Broadast algorithms withoptimisti tehniques. The literature on Atomi Broadast algorithms is abundant



5.5. Disussion 101(e.g., [AMMS+93, BSS91, CT96, CM84, GMS91, Jal98, LG90, WS95℄). However,the multitude of di�erent models and assumptions needed to prove the orretnessof the algorithms renders any fair omparison di�ult. We base our solution on theAtomi Broadast algorithm of [CT96℄ beause it provides a theoretial frameworkthat permits to develop the orretness proofs under assumptions that are realistiin many settings (i.e., unreliable failure detetors).Optimisti algorithms have been widely studied in database onurreny ontrol (seeChapter 2). However, there have not been attempts, prior to this work, to introdueoptimism in the ontext of agreement algorithms. The Classial Atomi BroadastAlgorithm with Optimisti Treatment approah desribed in Setion 5.1 is onep-tually similar to Virtual Time, and its implementation Time Warp [Jef85℄. TheTime Warp mehanism exeutes operations in a pre-determined virtual time. Alloperations have to be exeuted aording this time, but sine a proess is neversure whether it has reeived all the operations that preede a given operation, inorder to guarantee the order onstraint, some previously operations may have tobe undone, and proessed again. An important di�erene between these two opti-misti strategies is that operations are undone and re-exeuted at most one withthe Classial Atomi Broadast Algorithm with Optimisti Treatment approah, butan unbounded number of times with the Time Warp mehanism.The losest to the idea exploited by the Optimisti Atomi Broadast algorithmis [GLS96℄, where the authors redue the Atomi Commitment problem to Consensusand, in order to have a fast deision, exploit the following property of the Consensusproblem: if every proess starts Consensus with the same value v, then the deisionis v. This work presents a more general idea, and does not require that all theinitial values be equal. Moreover, we have here the trade-o� of typial optimistialgorithms: if the optimisti assumption is met, there is a bene�t (in e�ieny), butif the optimisti assumption is not met, there is a loss (in e�ieny).5.5 DisussionThe work presented in this hapter originated from the pragmati observation that,with high probability, messages broadast in a loal area network are �spontaneously�totally ordered. Exploiting this observation led to proposing the optimisti ap-proahes, and developing the Optimisti Atomi Broadast algorithm. Proessesexeuting the OPT-ABast algorithm progress in a sequene of stages, and messagesan be delivered during stages or at the end of stages. Messages are delivered fasterduring stages than at the end of stages. For any proess, the urrent stage is termi-nated, and another one started, whenever the spontaneous total order property doesnot hold.The e�ieny of the OPT-ABast algorithm has been quanti�ed using the notion ofdelivery lateny. The delivery lateny of messages delivered during a ertain stagehas been shown to be equal to 2, while the delivery lateny of messages deliveredat the end of a stage equal to 4. This result shows the tradeo� of the OPT-ABastalgorithm: if most messages are delivered during the stages, the OPT-ABast algo-



102 Chapter 5. Optimisti Atomi Broadastrithm outperforms known Atomi Broadast algorithms, otherwise, the OPT-ABastalgorithm is outperformed by known Atomi Broadast algorithms.Finally, to the best of our knowledge, there have not been previous attempts of ex-ploiting optimisti properties for the development of agreement algorithms. If thisproperty is satis�ed the e�ieny of the algorithm is improved, if the property is notnot satis�ed the e�ieny of the algorithm deteriorates (however the optimisti prop-erty has no impat on the safety and liveness guarantees of the system). We believethat this opens interesting perspetives for revisiting or improving other agreementalgorithms.



103
Chapter 6Conlusion This is not the end. It is not even thebeginning of the end. But it is, perhaps,the end of the beginning.Winston ChurhillDistributed omputing has enabled the development of appliations and servies thatwere not feasible before omputers started to ommuniate to eah other. Severalurrent appliations show evidene that the distributed omputing paradigm is re-shaping the way people think about and do daily life ativities. Consequently, the dis-semination of distributed appliations is inreasing the demand for high-availabilityand high-performane mehanisms to support these appliations.However, designing high-availability systems that provide good performane has beenthe hole grail of fault tolerant omputing. In order to reah this objetive, someproposals in the ontext of database systems have suggested weakening onsistenyguarantees. This approah is very attrative in some ases, but to be e�etive, deepknowledge about the appliation is usually neessary. More reently, some researhershave proposed to use group ommuniation mehanisms to develop high-availabilityand high-performane databases that also ensure strong data onsisteny.This thesis disusses the details involved in the design of a repliated database pro-tool based on group ommuniation primitives, and proposes the use of appliationsemantis and optimisti tehniques to develop e�ient group ommuniation prim-itives.6.1 Researh AssessmentThis researh has led to four major ontributions. In the database domain, theDatabase State Mahine and the Reordering tehnique have been proposed. In thedistributed system domain, the Generi Broadast problem and algorithm and the



104 Chapter 6. ConlusionOptimisti Atomi Broadast algorithm have been introdued.Database State Mahine. This thesis has presented the Database State Mahine,an approah to exeuting transations in a luster of database sites that ommuni-ate by message passing, and do not have aess to shared memory nor to a ommonlok. In the Database State Mahine, read-only transations are proessed loallyon a database site, and update transations do not inur in any synhronisationamong sites during their exeution. When an update transation requests a om-mit operation, it is atomially broadast. Loal exeution of update transations ondatabase sites an be seen as a pre-proessing, sine a transation an only be om-mitted (i.e., updates applied to the database) by some sites after the transation isdelivered and suessfully erti�ed on this database site. Consisteny is guaranteedby a loal onurreny ontrol mehanism (two phase loking), and the erti�ationtest.Some important aspets about the Database State Mahine are that transationsare never involved in distributed deadloks (only loal deadloks are possible), theload an be fairy distributed in the system (loal transations are exeuted loallyand update transations are pre-proessed by only one database site), and all om-muniation is enapsulated in the Atomi Broadast primitive. Basing all databasesite interation on a high level group ommuniation primitive has some bene�ts.First, it simpli�es the portability of the Database State Mahine to systems withdi�erent network harateristis (i.e., only the Atomi Broadast primitive has to bere-implemented). Seond, it fouses e�orts to improve ommuniation performaneon a single point, and �nally, it simpli�es the proof of orretness of the protool.Reordering Tehnique. The erti�ation test neessary to ommit an updatetransation is an optimisti way of proessing transations. Depending on the pro�leof the transations (e.g., number of read and write operations), and harateristisof the database (e.g., number of data items), optimisti onurreny ontrol mayresult in high abort rates. In order to inrease the number of transations that passthe erti�ation test, we have introdued the Reordering tehnique. The Reorderingtehnique originated from the observation that onurrent transations an be erti-�ed in any order, but sine some orders an lead to more aborts than others, insteadof taking a hane, the Reordering tehnique looks for favourable erti�ation orders.Simulation results show that this an be very e�etive.The Reordering tehnique was implemented in the Database State Mahine by meansof a Reorder List with maximum size determined by the Reorder Fator. At �rstglane, the greater the Reorder Fator, the better. Nevertheless, big Reorder Fatorshave the undesirable side e�et of augmenting the system's response time. Therefore,a �good� Reorder Fator is a ompromise between abort rate and response time, anddepends on system harateristis. The Reorder Fator allows the Database StateMahine to be tuned aording to the system requirements.



6.2. Future Diretions and Open Questions 105Generi Broadast. So far, order properties o�ered by group ommuniationprimitives existed in two �avours: no message order guarantee and message orderguarantee for all messages.1 Suh primitives, Reliable and Atomi Broadast, respe-tively, are important abstrations, however, in several senarios, Reliable Broadastis too weak to ensure system orretness, and Atomi Broadast is to strong. Sineordering messages has a ost, to be e�ient, appliations need group ommuniationwith order guarantees that math their exat neessities. This observation was thestarting point for the oneption of Generi Broadast.Generi Broadast permits an appliation to de�ne any order semantis that it needs.In addition to de�ning Generi Broadast, we have also proposed an algorithm thatsolves it. The Generi Broadast algorithm proposed uses a quorum to determinewhen messages an be safely delivered without the ost of a Consensus exeution(whose aim is to order messages), and when messages on�it, and so, Consensusis neessary. No previous attempt of de�ning a primitive like Generi Broadastis known. When messages do not on�it, the Generi Broadast algorithm has asmaller delivery lateny than known Atomi Broadast algorithms, and when mes-sages on�it, it has a delivery lateny greater than the delivery lateny of knownAtomi Broadast algorithms.Optimisti Atomi Broadast. We have desribed three optimisti approahesin the ontext of Atomi Broadast. These approahes take advantage of the spon-taneous total order property, typial in loal area networks. The approahes basedon optimisti treatment guarantee di�erent properties from Atomi Broadast. Wehave also presented in detail an Optimisti Algorithm with Conservative Treatment,the Optimisti Atomi Broadast algorithm.A very simple analysis shows that the approahes based on optimisti treatment out-perform the Optimisti Atomi Broadast with Conservative Treatment approah.Nevertheless, the former two allow messages to be delivered twie, and so, theyannot replae Atomi Broadast without hanges in the appliation, whih is pos-sible with the Optimisti Atomi Broadast with Conservative Treatment approah.Therefore, appliations using the approahes based on optimisti treatment must beable to ope with messages delivered �rst in a tentative order that may be di�erentfrom a de�nitive order [KPAS99℄.6.2 Future Diretions and Open QuestionsBesides the ontributions presented in the previous setion, this work has raisedseveral issues that deserve further analysis. In the following, we desribe some futurediretions and open questions related to this researh.1This inludes Total Order and Causal Order. Only Total Order has been onsidered in thethesis.



106 Chapter 6. ConlusionSafety vs. Liveness Database Guarantees. Traditionally, database protoolshave only been onerned with safety properties (i.e., ACID properties) [BHG87,GR93℄, and very few works have addressed liveness properties (e.g., [RSL78, PG97℄).The Database State Mahine ould be used as a framework to study liveness guar-antees in repliated databases. The fat that Atomi Broadast is de�ned by safetyand liveness guarantees may help haraterise the liveness property ensured by theDatabase State Mahine. As a seond step, it would be interesting to study how tode�ne and ahieve stronger and weaker liveness guarantees.The Database State Mahine in Pratie. Simulation results have broughtto light some of the harateristis of the Database State Mahine. Experimentsusing a �real setting� would be interesting to take further onlusions about the ap-proah. The Database State Mahine was designed in suh a way to simplify itsintegration with existing database engines (e.g., without modifying internal ode).Some preliminary studies involving the POET database [Obj97℄ have shown thatthe Database State Mahine an indeed be integrated in an existing database en-gine without hanging the database engine's ode. However, additional work is stillneessary to oneive a prototype.Partial Repliation. The Database State Mahine assumes that eah databasesite has a full opy of the database. This hypothesis allows database sites to exeutethe erti�ation test independently of one another, and reah the same outome.One natural question is whether it is possible to build a Database State Mahinebased on a weaker assumption (i.e., partial repliation). It seems that this an onlybe done by introduing some oordination among database sites, when exeuting theerti�ation test. The resulting protool would be a sort of Atomi Commitment.One might wonder whether total order is still neessary in this senario. It turns outthat the answer is a�rmative, sine it has been shown that if database sites ertifytransations in the same order, the erti�ation test an be muh more e�etive (i.e.,more transations pass the test) [PGS98℄. The exat way transations are exeuted,broadast, and erti�ed in this senario is subjet to further investigation.Group Communiation in the Crash-Reover Model. Only reently, groupommuniation in the (asynhronous) rash-reover model has attrated the atten-tion of researhers. Works developed so far have foused on solving Consensus in therash-reover model [OGS97, HMR97, ACT98℄. This is an important step towardsgroup ommuniation protools in the rash-reover model sine some group om-muniation problems have been shown to be equivalent to Consensus (e.g., AtomiBroadast). Although these results were developed in the rash-stop model, it isreasonable to expet that they have analogues in the rash-reover model. To thepresent time, no work has expliitly addressed the problem of group ommuniationin the rash-reover model where all proesses an rash and reover.2 This seems2Some group ommuniation toolkits allow new proesses to join proesses in exeution [BJ87,Mal96, vBM96℄. This mehanism an be seen as a kind of �reover,� sine a proess that has



6.2. Future Diretions and Open Questions 107to be a fruitful researh diretion for the next years.Optimisti Generi Broadast. The ideas underlying Generi Broadast andOptimisti Atomi Broadast are orthogonal, and one ould think of ombining them.The result would be an optimisti implementation of Generi Broadast. For exam-ple, the Optimisti Generi Broadast algorithm would only order messages if theyon�it and the spontaneous total order property does not hold. Suh mehanismwould redue the likelihood that messages have to be ordered with a Consensus.The Optimisti Design Priniple. Some thoughts about the Optimisti AtomiBroadast algorithm suggest an optimisti design priniple. The idea is that in someirumstanes, a problem an be solved by two mehanisms: a fast mehanism,that ensures the problem properties in most ases, and a slow mehanism, thatalways guarantees the problem properties. By being able to detet whenever the�rst mehanism does not sueed, and swith to the seond whenever this happens,a system designer an ome up with an optimisti way of solving a problem. Thisoptimisti design priniple requires re�nements, aording to the situation where it isapplied. For example, in same ases, wrong results produed by the fast mehanismshould never be observed by the appliation, and in other ases, this may be tolerated.The study about degrees of optimism shows that the optimisti design priniple anbe put in pratie in both ases. Furthermore, while the implementation of the fastand the slow mehanisms depend on spei� harateristis about the problem beingsolved and the model, the detetion mehanism might exploit researh done on thedetetion of global prediates [CL85, BM93℄.

rashed an restart again (with a di�erent identi�ation). Nevertheless, orretness is not ensuredif all proesses rash and then reover.
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Appendix ABroadasts and ConsensusAlgorithmsThis appendix presents broadast and Consensus algorithms referened throughoutthis thesis. The Reliable Broadast (Algorithm 3), Consensus (Algorithm 4), andAtomi Broadast (Algorithm 6) algorithms have been proposed by Chandra andToueg [CT96℄. The Early Consensus algorithm (Algorithm 5) has been proposedby Shiper [Sh97℄. All algorithms assume the asynhronous model augmented withfailure detetors where proesses ommuniate by message passing, using reliablehannels, and fail by stopping their omputation (i.e., same model as the one onsid-ered in Chapters 3 and 4). The Consensus algorithms use a failure detetor of lass
3S.
Algorithm 3 Reliable broadast algorithmEvery proess p exeutes the following:To exeute R-broadast(m):send(m) to all (inluding p);R-deliver(m) ours as follows:when reeive(m) for the �rst timeif sender(m) 6= p then send(m) to all ;R-deliver(m);
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Algorithm 4 Chandra and Toueg onsensus algorithmEvery proess p exeutes the following:proedure propose(vp)

estimatep ← vp

statep ← undecided

rp ← 0
tsp ← 0while statep = undecided do

rp ← rp + 1
cp ← (rp mod n) + 1send (p, rp, estimatep, tsp) to cp {Phase 1}if p = cp then {Phase 2}wait until for ⌈(n + 1)/2⌉ proesses q: reeived(q, rp, estimateq, tsq) from q℄

msgsp[rp]← {(q, rp, estimateq, tsq) | p reeived (q, rp, estimateq, tsq) from q}
t← largest tsq suh that (q, rp, estimateq, tsq) ∈ msgsp[rp]
estimateq ← selet one estimateq suh that (q, rp, estimateq, t) ∈ msgsp[rp]send (p, rp, estimateq) to allwait until [reeived (cp, rp, estimateq) from cp or cp ∈ Dp℄ {Phase 3}if [reeived (cp, rp, estimateq) from cp℄ then
estimateq ← estimatecp

tsp ← rpsend (p, rp, ack) to cpelsesend (p, rp, nack) to cpif p = cp then {Phase 4}wait until [for ⌈

(n+1)
2

⌉proesses q : reeived (q, rp, ack) or (q, rp, nack)℄if [for ⌈

(n+1)
2

⌉proesses q : reeived (q, rp, ack)℄ thenR-broadast(p, rp, estimatep, decide)when R-deliver(q, rq , estimateq, decide)if statep = undecided then
decide(estimateq)
statep ← decided



119Algorithm 5 Early onsensus algorithmfuntion propose(vp)
ri ← 0
estimatei ← (i, vi)obeginupon reeption of (pj , rj , vj , decide) from pj :send(pi, rj , vj , decide) to all;return vjloop

phase i ← 1; currentRoundTerminated i ← false ;
coordSuspected i ← false; nbSuspicions i ← 0;
coord i ← (ri mod n) + 1;if i = coord i thensend (pi, ri, 1, estimatei) to all;while not currentRoundTerminated iseletupon reeption of (pj , ri, 1, estimatej) from pj when phasei = 1:�rst reeption:

msgCounter i ← 1;if i 6= coord i then
estimatei ← estimatej ;send (pi, ri, 1, estimatei) to all;other reeptions:

msgCounter i ← msgCounter i + 1;if msgCounter i > n/2 thensend (pi, ri, estimatei .second , decide) to all;return estimatei .second ;upon coord i ∈ 3Si when not coordSuspected i:send (pi, ri, suspicion) to all;
coordSuspected i ← true;upon reeption of (pj , ri, suspicion) from pj when phase i = 1:
nbSuspicions i ← nbSuspicionsi + 1;if nbSuspicionsi > n/2 then

phase i ← 2;send (pi, ri, 2, estimatei) to all;upon reeption of (pj , ri, 2, estimatej) from pj :�rst reeption:
msgCounter i ← 1;if phasei = 1 then

phase i ← 2;send (pi, ri, 2, estimatei) to all;other reeptions:
msgCounter i ← msgCounter i + 1;if estimatej .first = coord i then estimatei ← estimatej ;if msgCounter i > n/2 then
currentRoundTerminated i ← true;
ri ← ri + 1;
estimatei.f irst← i;
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Algorithm 6 Atomi broadast algorithmEvery proess p exeutes the following:Initialisation:
R_delivered← ǫ
A_delivered← ǫ
k ← 0To exeute A-broadast(m): {Task 1}R-broadast(m)A-deliver(−) ours as follows:when R-deliver(m) {Task 2}

R_delivered← R_delivered ∪ {m}when R_delivered \A_delivered 6= ∅ {Task 3}
k ← k + 1
A_undelivered← R_delivered \A_deliveredpropose(k, A_undelivered)wait until deide(k, msgSetk)
A_deliverk → msgSetk \A_deliveredatomially deliver all messages in A_deliverk in some deterministi order
A_delivered← A_delivered ∪A_deliverk
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