
Paxos made code

Implementing a high throughput Atomic Broadcast

Master’s Thesis submitted to the

Faculty of Informatics of the University of Lugano

in partial fulfillment of the requirements for the degree of

Master of Science in Informatics

Dependable Distributed Systems

presented by

Marco Primi

under the supervision of

Prof. Fernando Pedone

May 2009

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been sub-
mitted previously, in whole or in part, to qualify for any other academic award;
and the content of the thesis is the result of work which has been carried out
since the official commencement date of the approved research program.

Marco Primi
Lugano, 29 May 2009

i

Abstract

The PAXOS algorithm is used to implement Atomic Broadcast, an important com-
munication primitive useful for building fault-tolerant distributed systems. Trans-
forming a formal description into an efficient, scalable and reliable implemen-
tation is a difficult process that requires addressing a number of practical issues
and making careful design choices. In this document we share our experience in
building, verifying and benchmarking different Paxos-based implementations of
Atomic Broadcast.

iii

iv

Acknowledgements

Daniele Sciascia is coauthor of libpaxos-T and libfastpaxos.
Thanks to Nicolas Schiper for some interesting insights and tests about the issue
described in Section 4.6.1.

v

vi

Contents

Contents viii

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Related work . 3
1.2 LibPaxos Motivation . 4

2 The Paxos algorithm 5
2.1 Atomic Broadcast and Multipaxos . 5
2.2 Actors . 5

2.2.1 Learner . 6
2.2.2 Acceptor . 6
2.2.3 Proposer . 7
2.2.4 Leader Proposer . 7

2.3 Phases . 7
2.3.1 Phase 1 . 7
2.3.2 Phase 2 . 9

2.4 Example execution . 9

3 LibPaxos: an open-source Paxos implementation 13
3.1 Implementing PAXOS . 13
3.2 Design choices . 14

3.2.1 Network model . 14
3.2.2 Client model . 15

3.3 Implementing the learner . 16
3.4 Implementing the acceptor . 17

3.4.1 Snapshots . 18
3.5 Implementing the proposer . 18

vii

viii Contents

3.5.1 Pending list size . 22
3.5.2 Ballots and rejects . 22
3.5.3 Calibration and event counters 23
3.5.4 Memory allocation strategies 24

3.6 Handling Failures . 25
3.6.1 Acceptor Failures . 25
3.6.2 Learner Failures . 25
3.6.3 Proposer Failures . 25

3.7 Optimizations . 26
3.7.1 Phase 1 pre-execution . 26
3.7.2 Parallel Phase 2 . 27
3.7.3 Message batching and compression 27
3.7.4 Value batching . 27
3.7.5 Learning acceptors . 28
3.7.6 Relaxed stable storage . 28
3.7.7 Selective quorums . 28

4 Performance evaluation 31
4.1 Experiments setup . 31

4.1.1 Infrastructure . 31
4.1.2 Benchmark client . 31

4.2 An ideal Atomic Broadcast . 32
4.3 Example experiment . 32
4.4 Impact of acceptors durability . 33
4.5 Impact of values size . 34
4.6 Scalability . 36

4.6.1 Multicast switching issues . 37
4.6.2 Number of acceptors . 38
4.6.3 Number of learners . 39

4.7 Recovery times for proposers . 40

5 Conclusions 43
5.1 Discussion . 43
5.2 Future work . 43

Bibliography 45

Figures

2.1 The phases of the PAXOS algorithm from ABroadcast to ADeliver.
This procedure is required to successfully bind a value to an in-
stance. 8

3.1 The finite state machine depicting the states of any instance of the
algorithm . 19

4.1 Delivery rate for different client value sizes in values per second
and kilobytes per second. Higher is better. 35

4.2 90% confidence intervals of delivery latency for different client
value sizes. Smaller is better. 35

4.3 Delivery rate (left axis) and delivery latency (right axis) with dif-
ferent number of acceptors. 39

4.4 Delivery rate (left axis) and delivery latency (right axis) with dif-
ferent number of learners. 40

4.5 Delivery rate over time, around second 65, we force the leader
election service to choose a new coordinator among the proposers. 41

ix

x Figures

Tables

4.1 Comparison of serializer against PAXOS. Best throughput obtained
with a single client sending multiple values concurrently. 33

4.2 Comparison of durability methods for PAXOS and the serializer.
Strict durability (TR and BD columns) has a significant impact on
delivery rate. 34

xi

xii Tables

Chapter 1

Introduction

Historical notes

The PAXOS algorithm was originally presented by Leslie Lamport in 1990. How-
ever, at that time, only few people realized its potential. In fact, very few people
understood that the paper was about distributed systems at all, probably be-
cause it was written like a story about ancient greek legislators. It took almost
ten years and a complete rewrite to get the paper published in 1998 [Lam98].

After that, PAXOS quickly gained a special spot in the field of distributed
systems because of its simplicity and its weak, realistic assumptions. Numer-
ous studies decomposed, improved and built upon PAXOS in the following years
[Lam02; CSP07]. The algorithm is nowadays used as a fundamental building
block of many fault-tolerant production systems. It is for example the base for
Google’s Chubby Distributed Lock Service [Bur06], a component used in com-
mercial products like Analytics and Earth.

What is Paxos

PAXOS is an elegant solution to the consensus problem in distributed systems,
informally defined as follows: a set of processes starts, each one with some
initial value. Through some communication protocol, all of them should come
to an agreement and unambiguously choose a single value among the initial
ones.

PAXOS can solve this problem in an asynchronous model despite having very
weak, realistic assumptions. Channels can, for example, lose, reorder or dupli-
cate messages. Moreover only three message delays are required to make each
participant aware of the final value. The protocol is fully decentralized, crashed
processes can be replaced without having to stop the system, unless a critical
number of them fail. Agreement on the chosen value is never violated, despite

1

2

the number of failures.
Solving consensus in an efficient way allows us to build an Atomic Broadcast

protocol (a.k.a. total order broadcast), which ensures that messages are received
reliably and in the same order by all participants. This is accomplished by ex-
ecuting different consensus instances. The Atomic Broadcast usually consists of
two primitives:

• ABroadcast(v): An action invoked by clients when they want to submit
the value v to the network.

• v = ADeliver(): An action invoked on each client listening to the broad-
cast whenever the next value v is decided.

The broadcast, and therefore PAXOS, must satisfy the following conditions [DSU04]:

• Validity: if a correct process ABroadcasts a value v, then it eventually ADe-
liver v.

• Uniform Agreement: if a process ADelivers v, then all correct processes
eventually deliver v.

• Uniform Integrity: for any value v, every process delivers v at most once,
and only if v previously submitted by some process.

• Uniform Total Order: if a process delivers value v before delivering value
v′, then all processes deliver v before v′.

What is Paxos used for?

In distributed systems, it is often the case that processes need to take coordinated
actions in order to maintain consistency. An easy solution to this problem is
to have a single process acting as a coordinator, serializing and distributing a
stream of submitted commands that all participants will receive and execute in
the same order. This technique is generally known as the Finite state machine
approach for distributed systems [Lam96].

In such a system, however, the coordinator is a single point of failure and
most likely a bottleneck. By using an Atomic Broadcast protocol instead, one
can get rid of the coordinator, making the system truly decentralized and fault
tolerant since it is equivalent to having a coordinator that never crashes.

Other than being provably correct for this task, PAXOS has also a lot of poten-
tial for having good throughput and low latency, if correctly implemented. For
this reasons, it is currently used in numerous production systems, like Google’s
Chubby [Bur06].

3 1.1 Related work

As a simple example, observe the following scenario for a fully-replicated
distributed database: clients perform concurrent operations through one of the
servers, which is currently acting as master. Normally this requires some ex-
pensive communication protocol to ensure that all replicas update their local
copy before answering a client (e.g., Two Phase Commit). Failures during those
operations may lead to even more complicate recovery schemes.

If we instead can rely on a powerful primitive like Atomic Broadcast, build-
ing such a system becomes trivial: the master submits each client operation
through the ABroadcast, when that command is ADelivered, the master applies
the changes and answer the client. The replicas will eventually apply the same
changes in the same order, therefore reaching the same state. The failure of the
master does not involve complex recovery mechanisms, the clients just have to
switch to another replica. In fact, in this situation, a master is not required any-
more, clients submit commands directly through ABroadcast. Notice how the
complexity of building the system reduces to the complexity of implementing
a total order broadcast protocol. If we can build a scalable, reliable and fast
Atomic Broadcast, we have an easy way of building large systems on top of it.

1.1 Related work

Although it was introduced 10 or so years earlier, the PAXOS algorithm was pub-
lished in 1998 by Leslie Lamport in a paper titled "The Part-Time Parliament"
[Lam98]. Initially, few people understood and worked on the protocol, mostly
providing alternative decompositions with corresponding proofs of correctness
[PLL97; RPSR03]. Later, Lamport published another paper containing a from-
scratch, simpler description of the algorithm [Lam01a].

The protocol gained momentum as more people understood its usefulness for
building fault-tolerant distributed systems. Alternative versions of the algorithm
started to surface, providing agreement in different models, like in presence
of byzantine failures or in disk-based scenarios [Lam01b; Lam02; GL03; Zie04].
Other revisions proposed faster and cheaper modifications [LM04; Lam06; CSP07].

Up to this point, the literature is still mostly theoretical. Only recently, PAXOS

started to be used as a building block for real-world production systems like
Chubby [Bur06], a fault-tolerant distributed lock service used in many Google
systems like BigTable[CDG+06] and the Google File System[GGL03], which are
in turn components used in commercial products like Google Earth, Google An-
alytics and the engine behind Google’s web crawling engine.

A particularly relevant paper for us is [CGR07], which for the first time dis-
cusses the practical point of view of implementing PAXOS, providing interesting
insights on how Google engineers proceeded in developing, evaluating and test-

4 1.2 LibPaxos Motivation

ing their system.

1.2 LibPaxos Motivation

As described in more detail in the next chapter, the PAXOS algorithm looks very
simple. However we find, as well as others [CGR07], that translating the algo-
rithm into well-performing code is non-trivial. Moreover it requires making a
number of design choices and addressing different practical issues.

Since we spent much time building different PAXOS implementations, we
share our experience and motivate our choices. We think this document can
be a useful guide for anyone willing to implement a Paxos-based protocol from
scratch.

The main contribution that we make is releasing LibPaxos as open-source
software. The project consists of a collection of PAXOS implementations useful as
reference and example of the ideas described in the rest of this document. We
hope LibPaxos can one day be used as a brick for easily building fault-tolerant
distributed systems.

Chapter 2

The Paxos algorithm

2.1 Atomic Broadcast and Multipaxos

Atomic Broadcast is a powerful communication primitive for distributed systems;
it allows different processes to reliably receive an ordered sequence of values.
Using this primitive leads to simpler application design, since the latter can be
built on top of an algorithm proven to be correct.

The PAXOS algorithm for solving consensus is used to implement a fault-
tolerant Atomic Broadcast. This is done by executing subsequent instances
of consensus, each one uniquely identified by a monotonic increasing number
(instance identificator, or iid). The resulting protocol (known also as MULTI-
PAXOS), has been shown correct [Lam01a]: it satisfies the safety requirement
of agreement, validity and integrity despite the number of failures. Progress is
granted as long as a subset of processes is alive and communicating, meaning
that adding more machines makes the system more resilient. PAXOS only toler-
ates crash-stop failures, although it can be modified to survive byzantine failures
too [Lam01b; Lam02; Zie04].

2.2 Actors

A distributed application that uses PAXOS as a black-box providing Atomic Broad-
cast, has different processes that are interested in receiving values, submitting
them, or both. We refer to this processes as clients.

Within the black box instead, there is another set of processes performing
specific protocol tasks, we refer to those as proposers, acceptors and learners.
Notice that this is a logical modularization for the sake of simplicity; in reality a
client process could also be an acceptor, a learner, a proposer, a combination of
them or neither of those.

5

6 2.2 Actors

2.2.1 Learner

The task of the learner consists of listening to acceptors decisions, in order to
deliver the ordered sequence of values. A client interested in listening to the
stream is either a learner or receives values from one.

Whenever the learner realizes that a majority of acceptors has been reached
for an instance, it knows that the value for that instance is permanently and
unambiguously chosen. Reaching a majority of acceptors means receiving a cer-
tain number of valid acknowledgements from them, this mechanism is covered
in more details later.

Values are delivered in the same order by all learners, starting from instance
number 1. Knowing the chosen value for an instance is therefore not sufficient
for delivering it: all instances from 1 to the current iid must have been deliv-
ered already. For example, assume a learner delivered values for instances up
to number 10. The value for instance 11 is not known yet but the values for
instances 12 and 13 are; we call instance 11 a hole. In this situation, a learner
should contact the acceptors and ask them to repeat their decision for the miss-
ing instance. Once iid:11 is closed, it can be delivered, followed by iid:12 and
iid13.

2.2.2 Acceptor

The task of the acceptor is relatively simple: it sits waiting for messages from
proposers or learners and answers to them. For each instance, the acceptor
keeps a state record, consisting of < iid, B, V, V B >, where B is an integer, the
highest ballot number that was accepted or promised for this instance, V is a
client value and V B is the ballot number corresponding to the accepted value.
The three fields are initially empty.

The proposer sends two kinds of requests: prepare and accept, the acceptors
react to them in the following way.

A prepare is a tuple < i, b >, where i is the instance number and b a ballot.
Unless the ballot B in the acceptor record for instance i contains a number higher
than b, the acceptor grants the request. It sets B = b and answers with a promise
message, consisting of < i, b, V, V B >, where V and V B are null if no value was
accepted yet.

An accept is a tuple < i, b, v >, where i is the instance number, b is a ballot
and v is a value. Unless the ballot B in the acceptor record for instance i contains
a number higher than b, the acceptor grants the request. It sets B = b, V = v,
V B = b and answers with a learn message, consisting of< i, b, v >. The acceptor
should periodically repeat the state of the highest instance for which some value
was accepted. By doing so, it helps learners to stay up-to date when message

7 2.3 Phases

loss occurs, since they can realize if they have holes and act accordingly.
Notice that for the protocol to work correctly, acceptors are not allowed to

lose any information in case of a crash. This means that before answering any
request, the updated state must be saved into stable storage (i.e., synchronously
written to disk).

The number of acceptors is pre-determined and fixed. Progress can be achieved
only as long as a majority of them is alive.

2.2.3 Proposer

The proposer is responsible for pushing values submitted by the clients until
those are delivered. Proposers relies on an external leader election service,
which should nominate a coordinator (or leader) among them. Even a weak
failure detector is sufficient for this task. Proposers that are not the current co-
ordinator can be idle; their only task is to be ready to take over the leadership,
if the leader election service says so. The Leader proposer instead is the "active"
component in the system that tries to deliver values as fast as possible.

2.2.4 Leader Proposer

The leader proposer sends client values through the broadcast. For each client
value submitted, it chooses the next unused instance and tries to bind the the
value to it. This process is executed in two phases, the second phase can be
started only on successful completion of the first one, as described in more de-
tails in the next section.

2.3 Phases

Figure 2.1 depicts the sequence of events required in each instance in order to
deliver a value.

2.3.1 Phase 1

In the first phase, the proposer sends a prepare message to the acceptors consist-
ing of < i, b >, where i is the instance number and b a ballot. It should also set
a timeout for this instance at some point in the future. Acceptors that did not ac-
knowledge a higher ballot, answer with a promise, consisting of < i, b, V, V B >,
where V and V B are null if no value was accepted yet. The Leader has to wait
until either (i) a majority (i.e., bn/2c+1 where n is the number of acceptors) of
promises are received from distinct acceptors, or (ii) the timeout expires. In the

8 2.3 Phases

Phase 1a Phase 1b Phase 2a Phase 2b

Prop.

Acc.1

Acc.0

Acc.2

Lear.

Broadcast (by client)

Deliver

Figure 2.1: The phases of the PAXOS algorithm from ABroadcast to ADeliver. This
procedure is required to successfully bind a value to an instance.

9 2.4 Example execution

first case the instance is declared ready, and phase 2 can begin. In the second
case the proposer will increment its ballot and retry executing phase 1; it cannot
execute phase 2.

Notice that for this mechanism to work, ballot numbers produced by differ-
ent proposers should be distinct, for example proposer number 1 uses ballot
numbers 101, 201, 301, ..., while proposer 5 uses ballot numbers 105, 205, 305,
... (in this case at most 100 proposers are allowed).

2.3.2 Phase 2

Depending on the outcome of phase 1, the proposer may need to take different
actions in phase 2. Specifically, if all the promises received contained a null value
V , the instance is empty. In this case the leader can send a value submitted a
client. If instead some value was found in the promises, the instance is reserved.
The coordinator is forced to select the value V with the highest associated ballot
V B and execute phase 2 with it.

Once a value is picked with the above rule, the proposer sends an accept and
again sets a timeout for this request. The accept consists of < i, b, v >, where
i is the instance number, b is the ballot used in phase 1 and v is a value. Ac-
ceptors that did not acknowledge a higher ballot will accept the request and
answer with a learn message, consisting of < i, b, v >. If a majority of acceptors
accepted the value, it is safe to assume that the instance is closed with v perma-
nently associated to it. Nothing can happen in the system that will changes this
fact, therefore learners can deliver the value to their clients. In case of request
timeout, the Leader has to start over by incrementing the ballot and executing
phase 1 again.

We previously said that learn messages are sent by acceptors to learners. The
Leader should receive those messages too or it can internally use a learner and
wait for it to deliver.

2.4 Example execution

Let us observe an example execution for one instance of the protocol. The net-
work is composed of a single client C , two proposers P1 and P2, three acceptors
A1, A2, A3. L1, L2 and L3, are three learners started by the client and by the
proposers. P1 is initially the leader.
Initialization: C sends the value v to the current leader P1.
Phase 1a: P1 sends a prepare message consisting of an instance number (1 in
this case) and a ballot number (i.e., 101).
P1 does not receive any promise from the acceptors because of message loss. It

10 2.4 Example execution

increments the ballot (to 201) and retries.
Phase 1b: The three acceptors receive the prepare request, since none of them
acknowledged any ballot higher than 201 for instance 1, they update their state
in stable storage and send the corresponding promise message. P1 receives two
promises from A2 and A3, it can declare this instance ready since the value in
both promises is null.
Phase 2a: Instance 1 is ready with no value in it. The proposer sends an accept
message containing the previously used ballot 201 and the value v received from
the client.
Phase 2b: Again the acceptors did not acknowledge a ballot higher than 201,
therefore they accept the request. After updating their state permanently, they
send a learn message to all learners, announcing their decision to accept v for
instance 1 with ballot 201. As soon as the learners realize that a majority of
acceptors granted the same request (same ballot), they can deliver v. In this
way, P1, P2 and C are notified that the value was accepted. In case of a timeout
in phase 2, P1 must restart from phase 1, using ballot 301.

As another example, let us go through the worst possible scenario we can
think of. The network is composed of two proposers P1 and P2, three acceptors
A1, A2, A3 and a client C . C , P1 and P2 internally start three learners, respec-
tively Lc, L1 and L2.

P1 is the current leader and manages to deliver instances up to i − 1 (in-
cluded). P1 successfully completes phase 1 for instance i, it sends an accept
containing the value vi submitted by C . Acceptors A1, A2 receive the valid re-
quest, accept it, and update their state in stable storage. At this point the value
vi is unambiguously chosen for instance i, since a majority of acceptors accepted
it. However, assume that both acceptors crash while trying to inform the learn-
ers about their decision. To make things worse, P1 crashes in the same moment.
Due to a temporary network failure, A3 does not receive P1’s message, it stays
alive but knows nothing about what happened.

P2 takes over the leadership: since it uses a learner, it knows that instance up
to i−1 are already closed. It executes phase 1 for instance i. However, since not
enough acceptors are responding to its requests, phase 1 keeps expiring; P2 can
do nothing but increment the ballot and keep trying. After some time, acceptor
A1 recovers. A majority of acceptors is now online, progress is (eventually)
granted. The next phase 1 executed by P2 receives two acknowledgements and
the one from A1 contains value vi. P2 is forced to execute phase 2 using vi

rather than any other value. A1 and A3 grant the request, they accept, log to
stable storage and inform the learners, which can deliver value vi for instance i.

No matter how tragic the scenario is, the safety of the protocol reduces to a

11 2.4 Example execution

simple fact: if a majority of acceptors accepted the same request, an instance is
closed. Any proposer trying to do something for that instance will realize during
phase 1 that there is a value already. It is then forced by the protocol to help
with the current situation rather than try to push a different client value.

12 2.4 Example execution

Chapter 3

LibPaxos: an open-source Paxos
implementation

3.1 Implementing PAXOS

Although the laws governing a PAXOS network are very simple, translating the
algorithm into a high-performance, reliable implementation proves to be non-
trivial, as observed by others before us [CGR07]. In the past two years we
developed a number of PAXOS-based systems, exploring different design alterna-
tives with the objective of creating the ultimate high-throughput PAXOS imple-
mentation. The following projects are currently published as open-source under
the name of LibPaxos1.

ErlangPaxos: We think the Erlang programming language can be a powerful
tool for prototyping of distributed algorithms. Among other features, it pro-
vides network communications and failure detection directly embedded in the
language. For this reason, our first, exploratory implementation was written in
Erlang. ErlangPaxos is structured like a PAXOS "simulator" governed by a shell
that allows to inject specific events (message loss, process crash, network parti-
tioning, etc.) and track reactions of the participants to them. This proved to be
extremely useful for understanding the dynamics of the protocol and debugging
it.

libpaxos-T: Our first attempt to produce a high performance library to be
used within prototypes of distributed databases for clustered environments. The
system is written in C and uses the pthread2 library for concurrency. This proved
to be a major problem since the time cost of pthread calls varies greatly across
different systems, making the library occasionally unpredictable. The same is

1http://libpaxos.sourceforge.net/
2http://en.wikipedia.org/wiki/POSIX_Threads

13

http://libpaxos.sourceforge.net/
http://en.wikipedia.org/wiki/POSIX_Threads

14 3.2 Design choices

true when using UDP multicast as the communication method: performances are
sensibly influenced by the operating system network stack and by the capacity
of the underlying network switch.

libpaxos-E: Motivated by the fact that PAXOS is clearly the bottleneck in our
distributed database prototype, we decided to restart from scratch and design a
better structured library. We dropped threads in favor of an event-based model,
using libevent3, a library that allows to handle heterogeneous events (network
traffic, timeouts, periodic alarms) with ease. The resulting code is easier to ex-
tend and modify to benchmark advanced optimizations. The system is complete
with a simple leader election service (which can be replaced). We hope it will
become mature enough to be used out-of-the-box in production environments.

libfastpaxos: a UDP Multicast, libevent-based implementation of the FAST-
PAXOS algorithm [Lam06]. Implements the basic protocol without sophisticated
optimizations. We built this library to better understand the loss in performance
expected with growing number of client-proposers.

3.2 Design choices

Implementing PAXOS requires addressing a number of practical issues that are
abstracted in the algorithm, which has to stay simple to be provably correct.
Many design choices do not become evident until one hits against them, requir-
ing to modify part of the system. For this reason one should consider those issues
in advance and account for them at design time.

3.2.1 Network model

The single most influential choice when creating a PAXOS system, is probably the
type of communication primitive used. Our implementations are based on UDP
multicast, except for ErlangPaxos which abstracts the network layer. The ad-
vantage of Multicast is simplicity. If acceptors subscribe to a given address/port
pair, then to send a message to all of them it is sufficient to send a message to
that address. In a connection-oriented network this is more complicated since
processes may leave, and come back or move to a different hosts. Multicast also
pushes the cost of sending multiple copies of a message down to the network
switch, since the sender calls send only once.

There are two major drawbacks of using UDP: the message size is limited by
the MTU of the host OS and network switch, therefore there is a bound on the
size of values that clients can submit. The second constraint is the performance

3http://monkey.org/~provos/libevent/

http://monkey.org/~provos/libevent/

15 3.2 Design choices

of the network equipment when delivering high throughput multicast traffic. In
particular, we found the behavior of the switches used in our experiments to be
very unpredictable when multiple senders produce high volumes of traffic.

Many of the design choices in the rest of this document are based on the use
of multicast, they may not work well in connection-oriented scenarios.

3.2.2 Client model

Depending on how PAXOS is used by the application on top of it, one has to make
important design choices regarding clients/proposers interactions.

Client-proposers vs. clients and proposers

Should each client that wants to broadcast be a proposer? While this may be
the case for a FASTPAXOS implementation (thus allowing delivery in only two
message delays), we do not think it is a good choice in general. Making pro-
posers and clients two disjoint sets of processes allows simpler management, for
example, concerning leader election. Clients are free to join, leave and crash
without interfering with PAXOS itself. This however introduces the cost of one
more message delay for each value.

To submit values, clients connect to the current leader. In case the coor-
dinator crashes, they connect to the next elected leader. Alternatively, clients
can send their values by multicasting them on the "leader network" (an address
where the current leader is listening to). A coordinator crash is completely trans-
parent to them in this case.

Semantic of ABroadcast

Another important question is about the guarantees provided by the ABroad-
cast call invoked by clients. For example, should the call return only once the
value has been delivered? Or can it return immediately, without any guarantee,
allowing to submit multiple values concurrently?

Creating an ABroadcast call that returns exactly the state of the operation,
either success or failure, is very difficult or even impossible. Consider a client
that connects (e.g., using TCP) to the coordinator to submit a value. The best
that proposer can do is send to status updates as the value is used. It starts by
saying "Value received", then "Value submitted in phase 2" and hopefully then
"Value delivered". However, what happens if the leader crashes at some point
during this procedure? The clients sees the connection falling, but has no way
of knowing if the value reached the acceptors and will be delivered eventually.

16 3.3 Implementing the learner

We think is better for different reasons to build a submit function (ABroad-
cast) that has weaker guarantees. This approach is the most general. The clients
can decide what to do, like keeping trying to submit a value until it is delivered,
risking to deliver it twice, or simply forgetting about it if it did not go through
the first time (the client may need to use a learner to know about delivered
values).

In case the application using PAXOS has strict ordering guarantees, e.g., it
requires FIFO order with respect to each proposer, it is quite easy to enforce
those requirements on top of the the Atomic Broadcast layer, for example by
embedding a vector clock[Lam78] or a 〈client ID,sequence number〉 pair directly
into the value.

Allowing each client to submit multiple values is also a key ingredient for
more efficient network usage, allowing many optimizations described in the rest
of this document.

3.3 Implementing the learner

In libpaxos-E, the learner is used by clients, but it’s also used as a building block
to implement proposers and acceptors. Therefore it needs to be flexible enough.
In our case, it is started by passing 2 arguments: a custom initialization function
and a deliver callback function. The learner starts the main events loop. Passing
a custom initialization allows to add events to it (i.e., create a periodic callback,
set timeouts, listen to a network socket and react accordingly). The deliver call-
back instead, is invoked whenever the current instance is closed, as previously
described, it has the final value chosen for that instance as argument.

The learner is organized roughly as follows. Initially it sets the current in-
stance number (lower instance not yet delivered) to 1, then it starts listening
on the "learners network", where learn messages from acceptors are received.
Those messages are stored in a structure indexed by the instance ID.

When the current instance is n, the learner may already know the value for
some future instance (n+1, n+2, . . .), without having n closed yet. Such a case
is called a hole and requires it to take a special action, since the future instances
cannot be delivered before n. The learner periodically checks for holes and
asks the acceptors to retransmit their decision for the corresponding instances.
Instance n is eventually closed and can be delivered, followed by n+1, n+2,

Once an instance is delivered, the current instance number is incremented
and the learner can completely forget about the associated value, avoiding the
need of infinite space over time. Allowing the learner to deliver out-of-order is
a straightforward modification and does not require changing the hole-checking
mechanism.

17 3.4 Implementing the acceptor

In some situations, a client using a learner may join the network after a
significant number of instances have been already delivered. The default be-
havior for a learner is to fetch and deliver all such values by sending a number
of repeat requests. Depending on the application, this may be useful or not. A
learner should have an alternative startup method, which starts delivering from
the present instance rather than starting from number 1.

Another ability an application may need from the learner is to fetch the value
for some specific instance closed in the past. This can be easily achieved using
retransmission requests.

3.4 Implementing the acceptor

Despite being the simplest component in the network, an acceptor can be tricky
to implement, specifically because stable storage must be provided to it. This
follows from the fact that an acceptor crashing must be able to recover its state
entirely. Without doubts, this stable storage requirement is the factor with the
most impact on performance. However, as we shall see later, there are ways to
get around this issue.

In our prototypes, we use Berkeley DB [OBS99] as a stable storage layer.
The code is made so that we can easily change the "durability mode": from no
durability at all, to strict log-based transactional storage with synchronous writes
to disk, passing from other intermediate setting.

In libpaxos-E, the acceptor starts on top of a learner, however it normally
shuts down the learner functionalities (learning/delivering values), it only uses
its event loop (one of the optimization described later on requires the acceptor to
be a learner too). To this event loop the acceptor adds a periodic event which re-
minds to repeat its most recent (highest instance number) accept, this is useful
to keep learners up-to-date in low-traffic situations. Other than that, the ac-
ceptor simply waits for requests from proposers (prepare/accept messages) and
answers to them if the case. Any change to the state must be made permanent
before sending the corresponding acknowledgement.

For practical reasons, acceptors need send one further type of message, a so
called reject. An acceptor receives a promise that has a ballot too small, rather
than just dropping the request silently, it informs the sender about the currently
accepted ballot with a reject message. This allows the proposer to skip a few
ballots ahead when generating the next request.

18 3.5 Implementing the proposer

3.4.1 Snapshots

Over time, the space required to store the acceptor state grows to infinity. A solu-
tion to this problem, originally proposed in [CGR07], is to allow the application
running on top of PAXOS to invoke a special routine: snapshot(i). When re-
ceiving this command, each acceptor knows that it can safely drop informations
about instances up to i, truncating their database. The semantic of this opera-
tion and its recovery procedure, in case of failure, depends on the application
built on top.

3.5 Implementing the proposer

The proposer is clearly the most complex role among the three. Not considering
disk storage, it is likely to be the next bottleneck in a PAXOS system, since all
traffic goes through it.

As discussed previously, we think it is a good idea to have clients that send
values to the proposers rather than having clients that are proposers; this allows
to treat Atomic Broadcast as a standalone component. A proposer that is not
currently coordinator can sit idle. However, nothing prevents it from listening to
messages addressed to the leader (with multicast, those messages are received
anyway). This may be helpful in case the leader election service nominates
this proposer as the next coordinator. For the same reason, non-coordinating
proposers may also listen for values submitted by clients.

The leader instead is busy broadcasting client values as fast as possible.
When received, those values are temporarily stored in a pending list. A leader
that simply executes one instance at the time, can be implemented almost di-
rectly by following the algorithm. However, if high performance is required,
it is probably the case that multiple instances should be executed concurrently,
which complicates the design significantly.

In libpaxos-E, the proposer starts on top of a learner. Its state consists of a
window of instances. The lower bound for this window is the lowest instance
not yet closed; the higher bound must be chosen so that it fits in memory. This
structure can be easily implemented over a properly sized array, using instance
number modulo array size to directly access the relative instance informations.
The window slides forward when the internal learner delivers the next value.

Periodically, the Leader L should go over the current window and, based on
the state of each instance, take the appropriate action. For example if instance
i successfully completed phase 1 with a null value, the leader can pop the next
client value from the pending list, assign it to i and execute phase 2. When
timeouts occur, L should take appropriate action, namely retrying with a higher

19 3.5 Implementing the proposer

ballot for phase 1 timeouts, and restarting from phase 1 for phase 2 timeouts.
Trying to keep the proposer code as simple and close as possible to the algo-

rithm specification is quite difficult, especially when multiple parallel instances
are executed. Consequently it is more difficult to catch protocol violations that
may be present in the code. An approach that we found extremely useful in
this task is to model the life of any instance as a finite-state machine. This map
makes it easier to verify that the appropriate action is always taken, since those
are likely to end up scattered around in the code.

Delivered

ClosedP2 pending

P1 ready
(without value)

P1 ready
(with value)

P1 pending

Empty

D0

D1

D3

D2

D4
D5

S

TO1

TO2

R0

A

C

R1

E

num: iid
num: state
num: ballot

val: p1 value
num: p1 value ballot
set: p1 acks

val: p2 value
bool: is client value

Instance record

P

NV

Figure 3.1: The finite state machine depicting the states of any instance of the
algorithm

The finite state machine in Figure 3.1 depicts the possible sequence of events
and states that happen during the life of an instance. Each instance record is

20 3.5 Implementing the proposer

a tuple 〈i, S, b, pset, v1, vb, pset, v2, cv〉, where i is the instance number, S is a
symbol representing a state (as they appear in the figure), b is a ballot, pset
is a set of promises received, v1 is the value found after a successful phase
1, vb is the corresponding ballot, v2 is the value to use for phase 2, cv is a flag
indicating wether v2 is a value received from a client. Each instance is initialized
as 〈0, empt y, 0, {;}, null, 0, null, f alse〉. We now go through the possible state
transitions.

• S: the proposer executes phase 1 for the first time in this instance, num-
bered I . It generates its first ballot. For example if the proposer ID is
2, the first ballot b is 102. After sending the prepare request to the ac-
ceptors, the record is updated to 〈I ,p1_pending,b,;, null, 0, null, f alse〉.
The proposer sets a timeout for this instance.

• TO1: the timeout for this instance is expired (a majority of promises were
not received). The proposer increments the ballot, sends the prepare re-
quests, clears the promises and sets the timeout. All other fields are not rel-
evant. The updated record consists of 〈I , p1_pending,b++,;,null,0, v2, cv〉

• P: the proposer received a promise pa from some acceptor a. The ballot
number must match the one stored, otherwise the message is dropped.
The record is updated to 〈I , p1_pending, b, {pa ∪ pset},v1,vb, v2, cv〉. v1
and vb are updated with the following rule: if pa contains a value, and the
corresponding value ballot is higher than vb, then v1 is set to the value in
the promise and vb to its value ballot. If the size of pset is now equal to
the majority of acceptors, one of R0 or R1 is triggered.

• R0: a majority of promises was received, none of which contained a value.
The record is updated to 〈I ,p1_ready, b, {;},null,0, v2, cv〉. If v2 is non-
null, this proposer previously assigned a client value to this instance, ac-
tion A is triggered. If v2 is null, the proposer assigns to it the next element
from the pending list of client values and sets cv to true. Then A is exe-
cuted.

• NV: phase 1 was completed, v2 is null and the pending list happens to be
empty. This instance is not used until a value is submitted by some client.

• A: some client value v2 was assigned to this instance, the record consists
of 〈I , p1_read y, b, {;}, null, 0, v2, cv〉. Phase 2 can start with action E.

• R1: a majority of promises was received, at least one of them contained a
value, v1. Different cases are possible:

21 3.5 Implementing the proposer

– v2 is null: update the record to 〈I , p1_read y, b, {;}, null, 0,v1, false〉.
We assigned no client value to this instance. Phase 2 is executed with
the value, among the promises, that has the highest value ballot.

– v1= v2: update the record to 〈I , p1_read y, b, {;}, null, 0, v2, cv〉.
The value found in phase 1 is the client value that we assigned to
this instance (this can happen after a phase 2 timeout).

– v1 6= v2∧ cv= true: push back v2 to the head of the pending list,
then update the record to 〈I , p1_read y, b, {;}, null, 0,v1, false〉. While
trying to send a client value for this instance, we discovered another
value and we must use it. The client value will be sent in another
instance.

– v1 6= v2∧ cv= false: discard the current v2, then update the record
to 〈I , p1_read y, b, {;}, null, 0,v1, false〉. We had some non-client
value for this instance, but another value came along and replaced
it.

In all above cases the result is the same: the value found in phase 1 is used
to execute phase 2, by triggering action E.

• E: the proposer executes phase 2 with ballot b and value v2. The record is
updated to 〈I ,p2_pending, b, {;}, null, 0, v2, cv〉. A timeout is set.

• C: this action is triggered if the proposer realizes that instance i is closed
(i.e., by querying its learner) with any value. The record is updated to
〈I ,closed, b, {;}, null, 0, v2, cv〉. This instance can be ignored until it is
delivered (D5).

• TO2: the timer for phase 2 expired. It is necessary to restart from phase
1. The record is updated to 〈I ,p1_pending,b++, {;}, null, 0, v2, cv〉.

• D0, . . . , D5: at any time during the life of the instance, something else may
happen, the learner may kick-in and deliver some value v′ for it. Maybe
that value got accepted "slowly" making the proposer timeout, maybe an-
other proposer is sending values. Independently of the current state, the
event is handled with the following rule:

– v′ = v2∧ cv= true: our client’s value was delivered, inform it if the
case.

– v′ 6= v2∧ cv= true: push back v2 to the head of the pending list,
since we could not deliver it in this instance.

– Any other case requires no action.

22 3.5 Implementing the proposer

This finite-state machine approach allows to create a test suite to verify that the
proposer takes the appropriate action for every 〈state, event〉 that can happen.
Given that the most modern techniques for formally verifying code cannot cope
directly with thousands lines of C code, this is probably as close as one can get
to showing the correctness of a particular implementation with respect to the
algorithm description.

3.5.1 Pending list size

In case the submit function used by the clients is non-blocking, special care needs
to be taken when handling the list of pending values of the leader proposer. For
example, assume C is a client that acts in the following way: it submits ten values
and sets a timer for each one of them. If a timer expires, C tries again to submit
that value. The client is also a learner. When one of its values is delivered,
C deletes it, generates a new value and submits it, setting the corresponding
timeout. In other words, at any moment, C is trying to push ten distinct values.
Assume the timeout for values used by C is 1 second, the average delivery rate
of the underlying PAXOS network is 1 value per second. At time 0, C submits;
the pending list size of the leader contains 10 values. After 1 second, 1 value
was delivered, however 9 of C ’s values timed-out and were re-submitted. The
pending list size is now 18. After another second, another value is delivered,
while 9 others timed-out, and so on.

A simple way to solve this issue could be to have the leader checking that a
value is not already in the pending list before adding it. This solves the issue in
the case described above, but not in the general case. In fact if C generates a
different value once an old one times-out, we have the same effect: the leader
pending list grows too quickly for the capacity of the network.

A more general solution is to limit the maximum pending list size. Values
that don’t fit are simply ignored. The client will retry to submit them later on
and eventually succeed.

3.5.2 Ballots and rejects

From the PAXOS algorithm description, ballot numbers generated by proposers
must fulfill the following requirements:

• Two distinct proposers never generate the same ballot for the same in-
stance.

• The operation increment must be defined for any ballot (we use b++ to
denote the result of incrementing ballot b).

23 3.5 Implementing the proposer

• The binary operations greater than and equal to must be defined for any
two ballots.

In our implementation we use the following scheme: fix the maximum number
of proposer n as a power of 10, i.e., 100. Each proposer is given a unique ID in
the range 0 . . . n−1. Proposer p’s first ballot number for each instance is created
as an integer n+ p (i.e. 103 if p is 3). Incrementing ballot b is straightforward:
b++ ≡ (b+ n) (i.e., 103→ 203→ 303→ . . .).
When receiving a reject message containing the current ballot "to beat" b′, the
proposer can specifically generate the next one rather than just incrementing the
current b:

Algorithm 1 INCREMENTSKIP(b, b′)

1: my_seq = b− p
2: b′_owner = b′ mod n
3: b′_seq = b′− b′_owner
4: use_seq = max(my_seq, b′_seq)
5: use_seq += 1
6: return (use_seq+ p)

3.5.3 Calibration and event counters

Two important parameters for the proposer are the time intervals used for phase
1 and phase 2 timeouts. An interval too small may time-out before the acceptors
have the chance to send the answer; an interval too large may make the proposer
less reactive. There is no magic number to pick those values, since they depend
almost entirely on (i) the disk latency of acceptors and (ii) the network latency.

For example, in some of the libpaxos-E experiments that we run, we set the
phase 1 interval in the order of seconds when running using the acceptor in strict
durability mode. If instead we use a non-durable setting, the interval is set to a
few millisecond.
It is therefore essential to calibrate those parameters once the system is de-
ployed. A simple and effective way to do this is to count the number of phase 1
and phase 2 timeouts.
We start by setting both intervals to a very large value, and putting the system
under heavy load (with clients sending random values). Very few or no time-
outs should happen. Then we keep decreasing the time interval until only a few
timeouts occur. Although this is not the case in any of our implementations, one
could use those counter to dynamically increase or reduce the timeout intervals
at runtime.

24 3.5 Implementing the proposer

In libpaxos-E, the proposer includes a simple framework for events counting,
which is useful to calibrate those and other parameters described later on in this
document. Count reports are periodically logged if the proposer is the current
leader. Events that we find useful to monitor include:

• Values dropped from the pending list of the leader. An indicator that clients
are submitting at a rate too high for the proposer to digest.

• Number of times the leader cannot execute phase 2 for a new instance
because phase 1 is not completed yet. This value grows quickly if the
phase 1 pre-execution window of the leader is too small. Pre-execution of
phase 1 is an optimization described in section Section 3.7.1.

• Number of retransmissions requested or sent (in the learner and in the ac-
ceptor respectively). Useful to quantify the loss of messages in the network
if a non-reliable protocol is used (e.g., UDP).

3.5.4 Memory allocation strategies

At any moment in time, a proposer is only interested in a subset of all instances.
It does not care about instances with number lower than the highest one de-
livered, since those are closed and there is nothing to do about them. Neither
the leader is interested in instances too far in the future, since before delivering
those, the ones in between must be closed. There is therefore a "window" of cur-
rently relevant instance numbers that starts from the current iid (the lowest not
closed/delivered). This windows slides up of one position whenever the next
value is delivered.

Exploiting this fact allows to map the conceptually infinite array of instances
over a fixed size array that can be pre-allocated. For example, if the array holds
100 instance slots, the maximum window size is 99. The leader must not try to
access instances already delivered or higher than the lowest not delivered plus
99. Instances in the window are found with a direct memory access in the array
at position iid (mod 100). In languages like C and C++, this simple trick can
save a lot of memory allocations, which are costly and bug-prone. In languages
like JAVA this mechanism helps the garbage collector by cutting all references
from the root set.

A similar strategy is used to implement the learner.

25 3.6 Handling Failures

3.6 Handling Failures

The PAXOS algorithm tolerates any number of process failures, provided that
those are crash-stop (crash-resume for acceptors). In our implementation, we
try to model this behavior by "mining" the code with runtime validity checks.
If one of those assertions fails, the actor immediately shuts down. It is by far
simpler to restart some process from a valid known state, even if it is the initial
one, than modify the system to handle unexpected incorrect behavior.

3.6.1 Acceptor Failures

Particular care should be taken of the acceptors, since the system cannot progress
unless a majority of them is alive. A practical way to do that is to wrap the
process or monitor it. When a failure is detected, this monitor should restart the
acceptor in recovery mode rather than from scratch. The time required by an
acceptor to recover may depend on the size of data stored and therefore by the
number of values delivered so far.

3.6.2 Learner Failures

When crashed, a learner can be restarted "clean", that is, with an empty state.
After that, it eventually closes some instance numbered i, just by listening to the
learn message that it receives. When this happens, the learner realizes that it
has to fill a hole that goes from instance 1 to instance i−1. It does so by sending
repeat requests. Later on we discuss some optimizations to make this procedure
faster.

Depending on who is using this learner however, the above procedure could
be totally irrelevant. We think the learner has to have a second initialization
procedure that simply ignores instances up to i − 1. The instance number from
which to start can be forced or chosen automatially, i.e., "start delivering from
instance I" or "start delivering from the lowest you can close right now".

For example, in libpaxos-E, when a proposer crashes and restarts, it does
not care about values delivered in the past. The only relevant information is
the number of the highest instance already delivered, which is used when the
proposer becomes a leader.

3.6.3 Proposer Failures

Handling proposer failures depends very much on the semantic of the submit
function used by clients. If submit has no guarantee of success, then the failure

26 3.7 Optimizations

of the leader is transparent to the clients (like in libpaxos-E), no special action
needs to be taken.

The proposer can simply be restarted by its wrapper/monitor process. It
instructs the internal learner not to go over the previously delivered values. This
is because the only relevant information to a non-leader proposer is the number
of the highest delivered instance. In fact when a proposer is promoted to leader,
it starts phase 1 for instance (highest delivered + 1).

A leader crash must be detected promptly by the failure detector, which nom-
inates the next coordinator. The leader election service may also decide to give
the leadership to some process even if the current leader did not crash. This
means that all proposers should be always ready to switch back and forth be-
tween "idle" and leader mode.

3.7 Optimizations

When implementing PAXOS, there are a number of practical tricks that are essen-
tial for improving performance. Some of those are well known in the literature,
some others are specific to our implementations.

3.7.1 Phase 1 pre-execution

A proposer should only execute phase 2 for an instance after completing phase 1.
However nothing prevents from executing phase 1 "in advance", that is, without
waiting the next value from the client[Lam98]. An instance whose phase 1 is
completed can be used later, provided that the current leader does not crash.
Therefore the coordinator can pre-execute a large number of instances. When
values are submitted, phase 2 starts immediately, saving the two message delays
required by phase 1.

For maximum throughput, this pre-execution window should be large enough
so that, when receiving a value to broadcast, the leader should never execute
phase 1. For calibrating this value we find useful to count the number of times
the proposer cannot directly jump to phase 2. If the pre-execution window is
large enough, this counter stays 0 for the whole execution.

Notice that this shortcut can be used only the first time phase 2 is executed
in an instance. In case of timeout, the proposer is forced by the protocol to go
through phase 1 again.

27 3.7 Optimizations

3.7.2 Parallel Phase 2

Unless the broadcast requires some strict ordering guarantees (i.e., FIFO), two
instances are completely independent. Therefore the leader can concurrently
execute multiple phase 2 with different values.
This form of pipelining can increase throughput tenfold, but it requires some
special attention. For example, the leader should not assign a value from the
pending list to instance i unless all instances from the lowest not delivered up
to i − 1 already have a value assigned. Otherwise the network may get "stuck"
since i can be delivered but i − 1 is not closed simply because there is no value
to send for it.

Notice that FIFO order cannot be granted even with respect to a single client,
since the leader pops different items from the pending list but it may be forced
to re-enqueue them in a different order.

In libpaxos-E, the maximum number of instances to execute in parallel can
be set to 1: no concurrency. This ensures FIFO ordering with respect to each
client.

3.7.3 Message batching and compression

Sending a single message for each request or acknowledgement is a waste of
network resources, especially since messages not containing a value are small
(i.e., a prepare request contains just 2 numbers). In each packet there is room
for multiple PAXOS messages batched together.

Combined with the two previous optimizations, batching allows the leader
to execute phase 1 for hundreds of instances with only a few messages. Not
only this saves network bandwidth, it allows the acceptors to process different
requests and update their state in stable storage with a single atomic operation,
requiring a single (larger) disk write.

In our implementations, we batch only messages of the same type, however
different kinds of messages can be batched too if they have the same recipients
(i.e., prepare and accept from leader to acceptors). To further reduce traffic,
messages can be compressed before being sent.

3.7.4 Value batching

To digest client values faster, the leader can use a single instance to broadcast
different values. This is done by popping different values from the pending list
and sending them as one composite value. At the other side of the system, the
learners unpack the batch and deliver the originally submitted values.

28 3.7 Optimizations

3.7.5 Learning acceptors

If each acceptor is also a learner, it eventually knows the final value chosen for
each instance.
Storing this final value and refusing to modify it later, does not violate the pro-
tocol. Furthermore it speeds up the recovery procedure for learners lagging
behind. When answering to accept and repeat requests, the acceptor can set a
flag implying that the instance is closed with that value. When receiving such an
answer, a learner does not need to wait for a majority, it can deliver immediately
that value.

This update to the state in the acceptor does not require an immediate com-
mit to stable storage.

3.7.6 Relaxed stable storage

In a PAXOS implementation, acceptors must be able to recover their state entirely
after a failure, therefore they synchronously write to disk before acknowledging
any valid request. Even adopting a smarter policy for such writes (i.e., batching
many of them into a single atomic operation), still involves I/O that requires
tens of milliseconds to complete.

An acceptor that crashes either recovers its state entirely, or it is not allowed
to re-enter the system. Therefore if we make their storage volatile, failed accep-
tors should not be restarted.

By making each acceptor a learner, and assuming that at least one up-to-date
acceptor-learner is alive at any moment, we can relax the durability requirement.
If it is feasible to assume that either (i) a majority of acceptors does not crash
simultaneously, or (ii) at least one up-to-date learning acceptor does not crash,
then it is possible to weaken the durability mode required. The storage can be
made volatile and thus much faster.

Crashed acceptors are not allowed to re-enter the network, but rather than
restarting them we take a different approach. When some number (strictly less
than a majority) of failures is detected, the leader should stop opening new
instances. A snapshot is taken to ensure all learners delivered all values decided
so far. The system can be then entirely restarted, with the initial number of
acceptors.

3.7.7 Selective quorums

If strict durability is required, we can use selective quorums to spread the cost
of disk writes across different acceptors.
For example, a system with 6 acceptors is divided into two groups of 3 each, G1

29 3.7 Optimizations

and G2. Acceptors in G1 ignore all requests regarding odd-numbered instances,
considering only even-numbered ones. Processes in G2 do the opposite. The
majority for any instance consists of 2 acceptors.

This approach allows better parallelism and reduces the latency introduced
by disk writes. In this case, for example, two instances i and i+ 1 can be closed
with a single disk delay.

30 3.7 Optimizations

Chapter 4

Performance evaluation

In this section we perform different experiments aimed at better understanding
the runtime behavior of libpaxos-E. Notice that libpaxos-E only recently com-
pleted development, therefore the objective here is not to simply measure its
performances, rather it is to understand in order to improve. For example with
libpaxos-T, the predecessor of libpaxos-E, it took us different months of targeted
benchmarks and usage within other systems before reaching stable, reproducible
results and understanding which were the true bottlenecks.

4.1 Experiments setup

4.1.1 Infrastructure

The experiments described in the rest of this section were performed within a
cluster of 16 Apple Xserve G5 RackMac3,1 machines running Mac OS X Server
10.4.11. Each machine has two PowerPC G5 2.3GHz CPUs and 2GB of RAM.
Nodes are connected through a GigaBit ethernet 1000baseT dedicated switch.
The maximum MTU size is around 8 Kbytes; client values are therefore limited
to less than 7 Kbytes. Round-trip times for ping among nodes are around 0.2
milliseconds. Unless otherwise specified, each process (including clients) runs
on a different machine.

4.1.2 Benchmark client

Client processes used in our experiments behave in the following way. Values are
randomly generated, the minimum and maximum allowed size is a parameter.
A number n of values (30 by default) is submitted asynchronously. Each client
starts a learner in order to be notified with broadcast values. When a delivery

31

32 4.2 An ideal Atomic Broadcast

occurs with value v, the client checks to see if v belongs to the set of submitted
values. If so, v is deleted from the list, a new value v′ is created and sent to the
leader. In other words, at each moment in time each client tries to broadcast
n different values. If a value submitted is not delivered in a few seconds (3 by
default), the client will re-send it. Each client stores the turnaround time for
each value, which is the time from the first submission to the delivery of that
value.

Another kind of client which does not submit values but only listens for them
is used to measure throughput in values per second and bytes per second.

4.2 An ideal Atomic Broadcast

In order to better understand the performance of our implementation, we try to
create an ideal Atomic Broadcast to compare against. For this purpose we use
a serializer node (sometimes known as a sequencer). The task of this process
is listening to client values, assigning each one of them to a different instance
and broadcasting them to the learners (with a special flag specifying that this is
the final value). This node can alone implement Atomic Broadcast in only two
message delays, but has of course to make stronger assumptions than PAXOS. If
the node stops, the system stops, and if the node loses data there is no way to
recover it.

The serializer is compatible with clients and learners of libpaxos-E, therefore
our benchmarks for the two are identical. Moreover it uses the same stable
storage layer used by acceptors, allowing different kinds of durability.

4.3 Example experiment

To show the procedure behind each of our benchmarks, we start with a simple
test. The objective is to maximize throughput in a network with a single client
sending values.
Setup: A client submits values for 5 minutes, at most 30 are sent concurrently.
The size of values is random between 20 and 2000 bytes. The stable storage
is configured to be non-durable (we assume no failures). PAXOS runs with 3
acceptors.

It takes different runs to calibrate the library parameters for the best perfor-
mance, specifically the timeout intervals need to be adjusted iteratively, observ-
ing the event counters. Before considering an experiment "valid" we execute it
different times to ensure it is repeatable and not just a case.

33 4.4 Impact of acceptors durability

Paxos Serializer unit
Average delivery rate 5278 9614 val/s
Average delivery rate 5323 9523 kB/s
Minimum Latency 0.56 0.51 ms
Maximum Latency 6552.82 4795.14 ms
90% C.I. Latency [1.72, 5.38] [2.11, 2.76] ms

Table 4.1: Comparison of serializer against PAXOS. Best throughput obtained
with a single client sending multiple values concurrently.

Table 4.1 presents the best results obtained in terms of throughput for both
PAXOS and the serializer. Although the serializer runs faster, this experiment is
not a good indicator since a single client is unlikely to produce enough data to
saturate the broadcast. In a high-traffic situation, we expect the serializer to
beat PAXOS by some orders of magnitude.

More interesting in this case is the latency. For example, in the best case,
(minimum latency) the difference between the two broadcasts is extremely small.
As one may expect, the maximum latency is worse for PAXOS, which may have to
re-execute an instance from phase 1 in case of timeout. This is also evident from
the latency confidence interval (the last row in the table). This value is obtained
by randomly sampling the latency of values in one of the clients. We think a con-
fidence interval is a much more valid indicator than the mean latency, mainly
because the geometric average is not robust and greatly influenced by outliers
in the sample population.

4.4 Impact of acceptors durability

We want to quantify the performance penalty of enforcing strict durability in the
acceptors’ stable storage layer.
Setup: We use the same workload as in the previous experiment, consisting of a
single client sending different small values concurrently. PAXOS runs with three
acceptors. We try different durability settings for them and the serializer:

• ND: No durability, the acceptors write to disk only when the memory cache
is full and some database page need to be swapped out.

• TR: Default transactional mode for Berkeley DB, it wraps state modifica-
tions into atomic operations logged to disk before proceeding. This setting
ensures durability in case of process crash but not in case of an OS failure,
since disk writes may be buffered by the disk driver.

34 4.5 Impact of values size

Paxos
ND TR BD unit

Avg. Delivery rate 5234 55 48 val/s
Avg. Delivery rate 5439 58 49 kB/s
90% C.I. Latency [1.67, 5.02] [211, 259] [311, 350] ms

Serializer
ND TR BD unit

Avg. Delivery rate 9457 109 71 val/s
Avg. Delivery rate 9820 113 73 kB/s
90% C.I. Latency [2.22, 2.91] [119, 132] [147, 169] ms

Table 4.2: Comparison of durability methods for PAXOS and the serializer. Strict
durability (TR and BD columns) has a significant impact on delivery rate.

• BD: Durability is enforced by "manually" forcing a full database synchro-
nization on disk before answering any request.

The results in Table 4.2 clearly show how stricter durability negatively affects
performances for both PAXOS and the serializer. In the best case we have a 100x
slowdown in the delivery rate and a corresponding increase of latency.
A positive result is that the performance loss of the serializer seems similar to
the one of PAXOS, meaning that the latter is not "more affected" by the cost of
disk storage.

4.5 Impact of values size

So far, we considered clients sending mixed-size values of around a kilobyte (on
average). This size turns out to be a very relevant factor for both delivery rate
and latency. For example, small values may be delivered quickly since they re-
quire less bandwidth and less time to be stored. Larger values however make
more efficient use of each multicast message sent.
Setup: We use a single client sending multiple values concurrently, the size of
those is fixed in each of the experiments. The three PAXOS acceptors and the seri-
alizer are configured for using non-durable storage. We start with small values,
30 bytes, and increase up to 6000 bytes, which is the maximum the network
allows. Especially for PAXOS, the network and the clients must be carefully cali-
brated to get the best performance. For each different value size we try to obtain
the best delivery rate, then we fix the parameters and run different executions
with those; each one lasts at least few minutes.

35 4.5 Impact of values size

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 1000 2000 3000 4000 5000 6000 7000

V
a
lu

e
s
 p

e
r
 s

e
c
o

n
d

Paxos

Serializer

0

2000

4000

6000

8000

10000

12000

14000

16000

0 1000 2000 3000 4000 5000 6000 7000

Client values size (bytes)

K
B

y
te

s
 p

e
r
 s

e
c
o

n
d

Figure 4.1: Delivery rate for different client value sizes in values per second and
kilobytes per second. Higher is better.

0

1

2

3

4

5

6

0 1000 2000 3000 4000 5000 6000 7000

Client values size (bytes)

L
a
te

n
c
y
 C

.I
.

(
m

s
)

Paxos

Serializer

Figure 4.2: 90% confidence intervals of delivery latency for different client value
sizes. Smaller is better.

36 4.6 Scalability

In Figure 4.1 each point represents the average of the experiments with
"good" parameters, the error bar display the best and the worst performance
recorded with those settings. Figure 4.2 reports the corresponding latency, the
error bar represent the bounds of the 90% confidence interval while the point is
the middle value.

There are a few interesting remarks about this set of experiments. The first
discovery is that, once calibrated, PAXOS performances are not that distant from
that of the serializer, at least in terms of delivery rate. In fact for some sizes (300
and 6000 bytes), PAXOS is actually better than the serializer. Although we did not
expect such a good result, it can be explained by the fact that the serializer acts
very similarly to a single acceptor. Given that we are far from the throughput
limit of the underlying switched network, learners can deliver more or less at
the same frequency after a single message from the serializer or after 2 of the 3
messages from the acceptors.

Latency values are more than doubled for PAXOS, going through the proposer
has clearly a cost. Very small values have in both cases high latency since many
of them need to be sent by the client and batched by the proposer/serializer
before filling a packet and flushing it.

The serializer performances are very stable, as visible from the (almost not
visible) error bars. PAXOS results instead fluctuate up to 50% in some cases.

A relevant parameters for the performance of PAXOS is the number of in-
stances that the proposer is allowed to execute concurrently. We notice that
setting it to more than twice the number of values that should normally fit in a
packet, dramatically reduces the throughput and increases the number of time-
outs.

With both broadcast methods we notice that sometimes the experiments re-
port very bad result (i.e., 10 or 100 times slower than other executions with
the same parameters). Since this is unfrequent, we filter those executions and
repeat the benchmark. This issue is further discussed in Section 4.6.1.

Despite the high delivery rate with small values, the quantity of data deliv-
ered is small, around 1 kilobyte per second, despite the high delivery rate. With
larger values at a lower rate we instead reach 14 Mbytes per second. Batching
values as described in Section 3.7.4 may therefore have a beneficial effect in
networks where clients cannot aggregate small values themselves.

4.6 Scalability

Previous benchmarks were executed with the minimum possible number of pro-
cesses. In this set of experiments we explore the cost of adding more, either to
make the system more resilient or to allow more application processes to listen

37 4.6 Scalability

to the broadcast.
With this particular implementation, it is not worth to benchmark with dif-

ferent number of processes submitting values. Since ABroadcast just sends a
multicast message on the "leader network", having a single client sending 10
values concurrently or 10 clients sending 1 value each is the same from the
proposers point of view.

4.6.1 Multicast switching issues

We previously said that sometimes the network produces very bad results for
configurations that, if just restarted, work properly. We suspected this was re-
lated to some learners lagging behind and asking for numerous retransmissions
to the acceptors.

While running the set of experiments that we are about to present, this be-
havior becomes more and more frequent as the number of processes involved
grows. After some other test aimed at observing the performance of multicast
on this and other network switches, we have a more precise idea of what is
causing the problem.

Multicast is built on top of UDP, which is a non-reliable transmission mecha-
nism. When a process sends data, this is copied into an operating system buffer.
From there it is copied to the network card and finally sent on the wire. At this
point the operation is considered successful despite the fact the the datagram
may never reach any of the receivers.

As long as a single process in the network is sending, the throughput reaches
decent values. However adding more senders literally kills the performance,
i.e., the decrease in bandwidth is not linear in the number of processes sending:
if a single sender delivers regularly at 100 MBps, two senders running concur-
rently cannot reach 50 MBps each. This is the actual behavior on the switch
used in our experiments. Messages loss rate rate is proportional to the loss in
throughput, but is yet to be clarified if (for this particular network) messages are
lost by all-or-none or different processes lose different messages.

As long as the network has only a few processes sending at a relatively low
rate, the switch manages to push most of the packets through. When we run
close to the capacity limit instead, PAXOS is affected in a significant way. As soon
as one of the learners loses some relevant message, the situation degenerates.
The learner starts asking retransmissions, producing more traffic. The acceptors
have to answer and produce even more traffic. The fact that they slow down
may also result in timeouts in the leader which is forced to re-execute different
instances. Of course this causes further message loss and yet more learners will
need to ask retransmissions.

38 4.6 Scalability

At the moment, we have no concrete solution for this issue. Since it depends
on the capabilities of the underlying switch, it is difficult to solve in a general
way. Maybe a benefit could be gained by introducing some network coding,
such that processes can tolerate message loss since informations are repeated
and spread across datagrams. Another approach may be to force the leader to
slow down whenever some learner is lagging behind, however this is probably
not good for scalability.

For the following experiments, we assume to have found a way to magi-
cally configure the switch for not losing messages. This means that we will
discard executions in which the problems manifest itself. Unlike previously, this
is much more frequent even when just adding two more acceptors. The values
presented are therefore not very realistic since they are measured for extremely
short executions (i.e., 60 seconds) and after different trials. Nevertheless they
may provide an idea of how the system scales in a situation where the switch is
well-behaving.

4.6.2 Number of acceptors

In PAXOS, adding more acceptors makes the system more resilient. The num-
ber f of failures tolerated is the total number of acceptors minus a majority
(i.e., f = d#o f acceptors

2
e − 1). We would like to assess the cost of more resilience.

Setup: We use a single client proposing short values of 500 bytes each. We
voluntarily keep the delivery rate well below the expected limit for this configu-
ration, meaning that the client sends only a few values concurrently. We use the
same parameters for executions with different number of acceptors.
The results in Figure 4.3 confirms what one may expect intuitively: the latency

increases, as each learner needs to wait for more acknowledgements. Since
those are sent concurrently from all acceptors however, the increase is only a
fifth of a millisecond after tripling the number of acceptors and seems linear
in the number of processes. The drop in throughput looks linear too but it is
steeper. Moreover the network becomes less predictable. With 7 acceptors, for
example, we record an execution that obtains more than 7000 values per second
while most of the others are around half of that.

Unfortunately, we only have nine machines free in the cluster. Adding a
tenth acceptor on a node that is also playing some other role (proposer, learner
or client) would expose that machine to a traffic rate that is at least double to
all other processes.

Acceptors are relatively lightweight on the CPU (i.e., during our benchmarks
we observe they rarely use more than 5% of the CPU time). Nevertheless they do
lots of I/O, a profiling of one of this processes in non-durable mode reveals that

39 4.6 Scalability

0

1000

2000

3000

4000

5000

6000

7000

8000

2 3 4 5 6 7 8 9 10

Number of acceptors

V
a
lu

e
s
 p

e
r
 s

e
c
o

n
d

0

0.2

0.4

0.6

0.8

1

1.2

1.4

L
a
te

n
c
y
 C

.I
.

(
m

s
)

Delivery Rate

Latency

Figure 4.3: Delivery rate (left axis) and delivery latency (right axis) with differ-
ent number of acceptors.

it is spending roughly 40% of the time in storage procedures and the remaining
60% almost exclusively in network related system calls. With stricter durability
settings where synchronous disk I/O is required, the ratio becomes around 90%
disk and 10% network.

We think the most relevant factor for adding more acceptors is the multicast
capacity of the underlying switch. For leader and learners, having to wait for
more messages is not a big penalty, however the network equipment must be
able to digest lots of additional data without dropping too much packets, since
also the recovery procedures are more costly.

4.6.3 Number of learners

The number of learners that a network can sustain is likely to be an important
factor when running an application on top of PAXOS. Since in a switch packets
are transmitted on all segments anyway, adding more listeners should come "for
free" and the change is transparent to the rest of the network. As we already
discussed in Section 4.6.1 this is not true in practice. At least in our case where
more learners increase the probability of network congestions due to retransmit
requests.
Setup: We use a single client proposing short values of 500 bytes each. The
submit rate for this client is below the maximum expected capacity. We start

40 4.7 Recovery times for proposers

with 3 learners (started respectively by the client, the leader proposer and the
bandwidth monitor). Then we add other learner processes (with a delivery func-
tion that does nothing) on other cluster nodes. We only have 6 free machines so
the test with 10, 15 and 24 processes are executed with more than a learner on
the same node. Figure 4.4 confirms that, at least up to a certain point, adding

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20 25 30

Number of learners

V
a
lu

e
s
 p

e
r
 s

e
c
o

n
d

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

L
a
te

n
c
y
 C

.I
.

(
m

s
)

Delivery Rate

Latency

Figure 4.4: Delivery rate (left axis) and delivery latency (right axis) with differ-
ent number of learners.

more learners does not affect the network. The best single result for this set of
benchmark is in fact recorded with 10 processes.

Learners are also quite lightweight on the CPU (3% to 5% usually), never-
theless we have the impression that the slowdown measured with more of them
is related to the fact that they need to share a single machine. For example, the
configuration with 24 learners has 4 processes on each one of the 6 spare ma-
chines. The number of retransmissions requested is higher in this case; adding
yet another learner to one of those nodes jams the network after a few seconds.

4.7 Recovery times for proposers

In our implementation, proposers rely on an external failure detector to provide
a simple leader election service. The latter is responsible of nominating the cur-
rent coordinator. Strategies for electing the leader are out of the context of this
document. What is relevant for us is that when a proposer is promoted, it has to

41 4.7 Recovery times for proposers

pick up where its predecessor left, as fast as possible.
Setup: We start a network composed of 3 acceptors, 2 proposers and a total of
4 learners. One of them logs delivery rate statistics every second. The client
submits 10 values of 500 bytes each concurrently; if those values are not deliv-
ered in the next 3 seconds, it will try to resubmit them. We also run a leader
election oracle in "manual" mode. This component normally decides to change
the leader if a certain number of heartbeat messages are lost, but in this case it
sticks to the first proposer until we command to switch to the other one.

0

1000

2000

3000

4000

5000

6000

7000

60 65 70 75 80 85 90 95 100

Time (seconds)

V
a
lu

e
s
 p

e
r
 s

e
c
o

n
d

Delivery rate

Figure 4.5: Delivery rate over time, around second 65, we force the leader elec-
tion service to choose a new coordinator among the proposers.

Figure 4.5 depicts an example execution where we force the oracle to demote
the initial leader. The other proposer is eventually notified of the change and be-
gins pre-executing phase 1 for some instances, starting from the lowest one not
yet delivered. By the time the client realizes the values timed-out and resubmits
them, the new leader is ready and can immediately start executing phase 2 for
different instances (the duration of the interval where the throughput is zero is
exactly 3 seconds).

If the acceptors answer with reject messages to invalid proposals (phase 1b),
the bootstrap time for the new leader depends solely on the number of instances
to pre-execute. If rejects are not implemented, it may take variable time since
the previous leader may have timed-out and incremented the ballot for those
instances. The new leader has to increment and wait for the timeout at least the
same number of times before finally producing a ballot that is acknowledged in

42 4.7 Recovery times for proposers

phase 1.
Another technique for reducing this switch time is to keep track of submitted,

not-yet-delivered values in proposers that are not the current leader. This way
the broadcast can continue as soon as the new leader completes phase 1 for the
next empty instance.

Chapter 5

Conclusions

5.1 Discussion

In this document we revisited the literature about PAXOS, collecting different
efforts to make the algorithm more efficient. We then showed how to use those
techniques in practice when creating an implementation.

Although we tried to be as general as possible when implementing libpaxos-
E, it is evident for us that the application using PAXOS as an Atomic Broadcast
primitive may require very specific features from it. It is therefore important
to understand this requirements before selecting the algorithm (simple, fast,
byzantine, etc.), the network layer, the semantic of the submit/deliver interface
and finally the optimizations. The implementation should be the last step that
almost directly follows from the above choices.

When creating the code, proper engineering methods should be used to en-
sure that the requirements are effectively granted at run-time. We did not stress
this aspect which was already explored in [CGR07]. We also propose different
benchmark cases that were useful for us to gain a better understanding of the
system.

While using multicast has different advantages, like transparent reconfigura-
tion and cheap delivery to multiple recipients, it also has a few problems and its
behavior may depend on the network equipment.

5.2 Future work

There are two main areas which we think are worth further exploration. The
first one is disk-based stable storage: there may be more efficient ways to en-
sure strict durability by better tailoring the persistence layer to the workload of
the acceptors. The second one is performance of IP-Multicast, which proved to

43

44 5.2 Future work

be very unpredictable in some situations. Both of those issues may significantly
enhance the performance of a PAXOS network. Most of the design issues ad-
dressed in this document are specific to LAN-based implementations using UDP
Multicast. Using some other messaging scheme (i.e., TCP) may require a very
different approach and yield to very different results.

Another issue we would like to deepen is using LibPaxos to provide Atomic
Broadcast to a set of geographically distant processes over the internet.

Bibliography

[Bur06] Mike Burrows. The chubby lock service for loosely-coupled dis-
tributed systems. In OSDI ’06: Proceedings of the 7th symposium on
Operating systems design and implementation, pages 335–350, Berke-
ley, CA, USA, 2006. USENIX Association.

[CDG+06] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Debo-
rah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E. Gruber. Bigtable: a distributed storage system for struc-
tured data. In OSDI ’06: Proceedings of the 7th symposium on Operat-
ing systems design and implementation, pages 205–218, Berkeley, CA,
USA, 2006. USENIX Association.

[CGR07] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. Paxos
made live: an engineering perspective. In PODC ’07: Proceedings of
the twenty-sixth annual ACM symposium on Principles of distributed
computing, pages 398–407, New York, NY, USA, 2007. ACM Press.

[CSP07] Lásaro J. Camargos, Rodrigo M. Schmidt, and Fernando Pedone.
Multicoordinated paxos: Brief announcement. In PODC ’07: Pro-
ceedings of the twenty-sixth annual ACM symposium on Principles of
distributed computing, pages 316–317, New York, NY, USA, 2007.
ACM Press.

[DSU04] Xavier Défago, André Schiper, and Péter Urbán. Total order broad-
cast and multicast algorithms: Taxonomy and survey. ACM Comput.
Surv., 36(4):372–421, 2004.

[GGL03] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The
google file system. In SOSP ’03: Proceedings of the nineteenth ACM
symposium on Operating systems principles, pages 29–43, New York,
NY, USA, 2003. ACM.

[GL03] Eli Gafni and Leslie Lamport. Disk paxos. Distributed Computing,
16(1):1–20, 2003.

45

46 Bibliography

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a dis-
tributed system. Commun. ACM, 21(7):558–565, July 1978.

[Lam96] B. W. Lampson. How to build a highly available system using consen-
sus. In Babaoglu and Marzullo, editors, 10th International Workshop
on Distributed Algorithms (WDAG 96), volume 1151, pages 1–17.
Springer-Verlag, Berlin Germany, 1996.

[Lam98] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst.,
16(2):133–169, 1998.

[Lam01a] Leslie Lamport. Paxos made simple. SIGACT News, 32(4):51–58,
December 2001.

[Lam01b] Butler W. Lampson. The abcd’s of paxos. In PODC, page 13, 2001.

[Lam02] Leslie Lamport. Paxos made simple, fast, and byzantine. In OPODIS,
pages 7–9, 2002.

[Lam06] Leslie Lamport. Fast paxos. Distributed Computing, 19(2):79–103,
2006.

[LM04] Leslie Lamport and Mike Massa. Cheap paxos. In DSN, pages 307–
314, 2004.

[OBS99] Michael A. Olson, Keith Bostic, and Margo Seltzer. Berkeley db. In
ATEC ’99: Proceedings of the annual conference on USENIX Annual
Technical Conference, pages 43–43, Berkeley, CA, USA, 1999. USENIX
Association.

[PLL97] Roberto De Prisco, Butler W. Lampson, and Nancy A. Lynch. Revisit-
ing the paxos algorithm. In WDAG, pages 111–125, 1997.

[RPSR03] Boichat Romain, Dutta Partha, Frolund Svend, and Guerraoui
Rachid. Deconstructing paxos. SIGACT News, 34(1):47–67, 2003.

[Zie04] Piotr Zielinski. Paxos at war. Technical Report UCAM-CL-TR-593,
University of Cambridge, Computer Laboratory, 2004.

	Contents
	List of Figures
	List of Tables
	Introduction
	Related work
	LibPaxos Motivation

	The Paxos algorithm
	Atomic Broadcast and Multipaxos
	Actors
	Learner
	Acceptor
	Proposer
	Leader Proposer

	Phases
	Phase 1
	Phase 2

	Example execution

	LibPaxos: an open-source Paxos implementation
	Implementing Paxos
	Design choices
	Network model
	Client model

	Implementing the learner
	Implementing the acceptor
	Snapshots

	Implementing the proposer
	Pending list size
	Ballots and rejects
	Calibration and event counters
	Memory allocation strategies

	Handling Failures
	Acceptor Failures
	Learner Failures
	Proposer Failures

	Optimizations
	Phase 1 pre-execution
	Parallel Phase 2
	Message batching and compression
	Value batching
	Learning acceptors
	Relaxed stable storage
	Selective quorums

	Performance evaluation
	Experiments setup
	Infrastructure
	Benchmark client

	An ideal Atomic Broadcast
	Example experiment
	Impact of acceptors durability
	Impact of values size
	Scalability
	Multicast switching issues
	Number of acceptors
	Number of learners

	Recovery times for proposers

	Conclusions
	Discussion
	Future work

	Bibliography

