
dsmDB: Clustering in-memory
Database Management Systems

Master’s Thesis submitted to the

Faculty of Informatics of the University of Lugano

in partial fulfillment of the requirements for the degree of

Master of Science in Informatics

Dependable Distributed Systems

presented by

Daniele Sciascia

under the supervision of

Prof. Fernando Pedone

August 2009

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been sub-
mitted previously, in whole or in part, to qualify for any other academic award;
and the content of the thesis is the result of work which has been carried out
since the official commencement date of the approved research program.

Daniele Sciascia
Lugano, 24 August 2009

i

Abstract

Database management systems used in practice inherit their design from the
early work of the database community. At the time, systems had limited memory
and processing resources, and architectures were mainly centralized. Databases
are often the “bottleneck” of performance-critical systems because of their heavy
use of stable storage and mechanisms that allow concurrent transactions to be
correctly executed.

In this thesis we investigate the dsmDB approach for clustering in-memory
databases. The dsmDB is designed for distributing database computation and
storage over a cluster of machines. Performance is enhanced by emphasizing
in-memory computation and minimizing disk use. This is achieved by using an
optimistic concurrency control mechanism on top of an in-memory storage layer
that guarantees only weak consistency. By combining the two components we
achieve both high performance and strong consistency.

The resulting architecture is also flexible enough to allow recovery of the
state of crashed nodes from the state of the alive nodes, and incremental expan-
sion by adding more nodes at runtime.

iii

iv

Acknowledgements

I thank my advisor Professor Fernando Pedone, and those who have worked on
the dsmDB project, Marco Primi and Nicolas Schiper.

v

vi

Contents

Contents viii

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Problem statement . 1
1.2 Building blocks . 2
1.3 Design considerations . 2

1.3.1 Minimizing disk use . 2
1.3.2 Synchronization . 3
1.3.3 High availability . 3
1.3.4 Incremental recovery . 3
1.3.5 Incremental expansion . 3

1.4 Related Work . 4
1.5 Thesis outline . 5

2 The dsmDB approach 7
2.1 System Model . 7
2.2 System Architecture . 8

2.2.1 Clients . 8
2.2.2 DsmDB nodes . 9
2.2.3 Transaction Manager . 10
2.2.4 Storage . 10
2.2.5 Consistency Manager . 11

2.3 Concurrency control . 12
2.3.1 One-copy serializability . 12
2.3.2 Transaction execution . 13
2.3.3 Storage layer consistency . 17
2.3.4 Session consistency . 19

vii

viii Contents

2.4 Partitioning and Replication . 20
2.4.1 Hash based . 20
2.4.2 Fully replicated key set . 21
2.4.3 Compressed mapping . 21
2.4.4 Distributed mapping . 22
2.4.5 Memory overhead comparison 22

2.5 Recovery . 26
2.6 Reconfiguration . 27

3 Implementation 29
3.1 The dsmDB prototype . 29
3.2 Paxos . 31

3.2.1 Protocol . 31
3.2.2 Termination . 32
3.2.3 Paxos and the dsmDB . 33

3.3 In-Memory Storage . 34
3.4 Validation test . 35
3.5 Stored Procedures . 35

4 Performance Evaluation 37
4.1 Infrastructure . 37
4.2 Benchmarks . 37

4.2.1 TPC-B benchmark . 37
4.2.2 B-tree benchmark . 40

4.3 Experiments and Results . 42
4.3.1 DsmDB vs. Berkeley DB . 42
4.3.2 TPC-B benchmark with multiple nodes 44
4.3.3 B-tree benchmark results . 49

5 Conclusions 51
5.1 Summary and discussion . 51
5.2 Future work . 52

Bibliography 55

Figures

2.1 Architecture of the system. 8
2.2 DsmDB node internals. 9
2.3 Schedule 1, a one-copy serializable schedule. 12
2.4 Serial Schedule 2, equivalent to Schedule 1. 12
2.5 Schedule 3, a non one-copy serializable schedule. 13
2.6 Memory overhead comparison. 25

3.1 Structure of the dsmDB prototype implementation 30
3.2 Paxos message flow under normal operation. 32
3.3 Paxos message flow that might never terminate. 33
3.4 Storage data structure . 34

4.1 TPC-B schema layout. 38
4.2 Throughput comparison between Berkeley DB and dsmDB. 43
4.3 Abort rate comparison between Berkeley DB and dsmDB. 44
4.4 Throughput in the TPC-B benchmark over multiple nodes. 45
4.5 Abort rate in the TPC-B benchmark over multiple nodes. 46
4.6 Latency versus throughput in the TPC-B benchmark over multiple

nodes. 46
4.7 Scalability in the TPC-B benchmark over multiple nodes. 48
4.8 Throughput using Stored Procedures in the TPC-B benchmark

over multiple nodes. 48
4.9 Throughput of the B-tree measured in operations per second. . . . 50
4.10 Abort rates in the B-tree benchmark. 50

ix

x Figures

Tables

4.1 Delivery rate of Paxos for different value sizes. 47

xi

xii Tables

Chapter 1

Introduction

1.1 Problem statement

In performance-critical applications, databases are often the “bottleneck” of the
system. For instance, consider popular web applications that are hit by millions
of requests per day. Traditional database management systems heavily rely on
disk storage and therefore, are not able to deal with such loads. A common
solution to avoid this problem is the use of in-memory caching layers, which
require additional software and machines that are responsible for caching query
results in main memory. The context of web applications is just one example,
similar solutions are employed in other contexts where databases need to scale.

In the spirit of [SMA+07], we investigate the need of new database architec-
tures for the online transaction processing (OLTP) market. Databases commonly
used in practice are based on the early work of the database community and
derive their design decisions from it. Traditional databases are based on the
requirements of thirty years ago, where databases needed to be stored on cen-
tralized architectures, main memory capacity and processor performance were
extremely limited, and the concept of scaling a system was to replace the cur-
rent machine with a “bigger” one. These requirements do not belong to the
present. In recent years main-memory and processor technologies have evolved,
and conceptually scaling means adding more machines to the system.

In this thesis we investigate the dsmDB approach [FP08] for clustering in-
memory database management systems. The dsmDB approach assumes a mod-
ern clustered environment, where nodes have a significant amount of main
memory and are connected to each other through fast network links. As opposed
to traditional architectures for database systems, which are commonly used in
practice, the dsmDB approach tries to take advantage of modern equipment in
shared-nothing environments.

1

2 1.2 Building blocks

1.2 Building blocks

The dsmDB is based on the Distributed Shared Memory (DSM) paradigm [NL91].
The idea is to abstract shared memory on a networked architecture. Each node
in a cluster shares its memory and a DSM mechanism conveniently allows for
shared memory programming. If a process accesses a region of shared memory
which is not stored locally, the DSM mechanism transparently retrieves it from
the memory of a remote node. In principle, DSM should improve performance
because fetching memory chunks remotely through fast network links is faster
than storing and accessing data on a local disk. The shared memory program-
ming paradigm is convenient, but it is difficult to design a DSM that provides
both consistency and efficiency at the same time. Among the many consistency
criteria that have been defined, strict consistency is perhaps the most intuitive
but also the most inefficient to implement. In strict consistency a read operation
always returns the last value written. While DSM systems that provide weaker
levels of consistency perform better, they are not suitable for certain applications
that depend on stronger forms of consistency.

The dsmDB approach combines an efficient DSM layer that provides weak
consistency, and is augmented with a concurrency control mechanism. This
mechanism has two important features: (1) it is optimistic; and (2) it works
over versioned data items. Optimistic concurrency control allows concurrent
transactions to be freely executed without synchronizing them. At commit time,
transactions are submitted to a certifier that validates them and aborts conflict-
ing. To increase the degree of multiprogramming, the certifier takes into account
multiple version of data items. The certifier finally uses a broadcasting algorithm
to send transaction batches back to nodes.

DsmDB transactions are implemented on top of these building blocks. Con-
current transactions are executed without synchronization over the data set
stored in shared memory. The shared memory mechanism provides only a weak
level of consistency, therefore at commit time a concurrency control mechanism
ensures global consistent execution.

1.3 Design considerations

1.3.1 Minimizing disk use

For modern server machines it is common to have several gigabytes of main
memory. For most OLTP workloads, the aggregated memory of multiple servers
arranged in a shared-nothing environment are sufficient to store the whole data
set in memory. Retrieving data from a remote node through fast networks is

3 1.3 Design considerations

more efficient than retrieving data from a local disk.

1.3.2 Synchronization

Traditional database management systems include complex synchronization mech-
anisms and concurrent data structures. We completely avoid these complications
since OLTP transactions are typically short and local execution is done instantly.
Still, the distributed nature of the dsmDB allows for high degrees of multipro-
gramming over an optimistic concurrency control mechanism at the transac-
tional level.

1.3.3 High availability

To achieve high availability it is still common to run hot standby machines. That
is, the main machine does all the work and a hot standby machine sits idle
until the main machine fails. We prefer a distributed approach, where all ma-
chines are used at the same time, collaborating and working together. In such
an environment the failure of a machine should only cause temporary degraded
performance.

1.3.4 Incremental recovery

In traditional database management systems recovery is based on some disk-
based logging mechanism. For each running transaction, the system logs the
operations executed on the database. If the system crashes, undo and redo logs
allow to respectively undo unfinished transactions and persistently redo com-
pleted transactions. During the recovery procedure the database cannot perform
any operations until its state is completely recovered. The dsmDB approach al-
lows for incremental recovery: if data items are replicated at multiple nodes, a
crashed node may recover its state by fetching its data items remotely from the
other nodes during normal transaction execution.

1.3.5 Incremental expansion

The dsmDB approach allows incremental expansion. A running dsmDB instance
may reconfigure itself allowing additional nodes to join the instance. It is impor-
tant for such a system to handle the addition of nodes so that more memory is
available if the data set increases, or to achieve better performance if the num-
ber of client requests increases. Reconfiguration in the dsmDB is done on-the-fly,
without disrupting normal execution (i.e.,, no "fork-lift" approach to reconfigu-
ration [SMA+07])

4 1.4 Related Work

1.4 Related Work

So far we introduced the design considerations behind the dsmDB approach,
which we share with [SMA+07]. In this work, we demonstrate a practical use of
Distributed Shared Memory [NL91] over weak consistency. Many practical alter-
natives to database management systems have been defined and implemented.
We introduce some of them in the rest of this section.

The dsmDB approach resembles the Database State Machine [PGS03], with
two main differences: (1) the Database State Machine maintains fully replicated
data at every node; and (2) in the Database State Machine every node broad-
casts transactions one by one and every node maintains its certifier. The dsmDB
approach is optimized for in-memory processing and does not maintain full repli-
cation at each node. Moreover, the dsmDB certifier is a separate task that collects
transactions coming from nodes and broadcasts transaction batches, thus mini-
mizing the number of broadcast operations.

Dynamo [HJK+07] is a distributed key-value store developed and in use at
Amazon. Although the dsmDB and Dynano share a similar query interface, made
of read and write operations, their semantics differ. In the dsmDB, if two con-
current transactions conflict, one of them must be aborted, whereas Dynamo is
based on eventual consistency, where transactions are never aborted but isolation
is not guaranteed by the system. Conflict resolution is moved to the client side,
meaning that clients need to handle conflicts by reconciling conflicting versions
of data items. This mechanism ensures high availability at the cost of ease of
use.

Sinfonia [AMS+07] offers a new paradigm for building scalable distributed
systems. Typical full fledged transactions are replace by minitransactions over
unstructured data. Minitransactions, are less expressive than SQL transactions,
but can be quickly processed and enable an optimized two-phase commit proto-
col that does not block on coordinator crashes. Thus, Sinfonia allows to build
distributed systems on top of a simplified query interface. However load bal-
ancing is not automatically handled by the system, because applications must
decide where to place data while using minitransactions. As a consequence, Sin-
fonia cannot automatically handle hotspots in the workload, by placing related
data in the same server.

The authors of [SMA+07] also describe a system called H-Store which shares
common design considerations with the dsmDB approach. In H-Store transac-
tion execution is optimized depending on transaction classes and schema char-
acteristics. For instance, it is not clear how to distinguish two-phase, strictly
two-phase and sterile transactions programmatically. As a consequence trans-
action classes need be declared a priori, which makes the system less flexible.
Moreover, H-Store does not address the problem of reconfiguration.

5 1.5 Thesis outline

1.5 Thesis outline
Chapter 2 presents the architecture and algorithms behind the dsmDB ap-
proach. We start with a description of the system model and the architecture
and its components. Follow discussions on concurrency control, partitioning
and finally recovery and reconfiguration procedures.

Chapter 3 discusses a prototype implementation of the dsmDB. Here, the dis-
cussion focuses on implementation decisions and details of practical interest.

Chapter 4 presents benchmarks we used to evaluate our prototype. The rest of
the chapter presents performance results and evaluation.

Chapter 5 concludes the thesis and outlines possible future work.

6 1.5 Thesis outline

Chapter 2

The dsmDB approach

2.1 System Model

We define dsmDB as a distributed key-value store composed of N nodes. Nodes
are responsible for storing a given data set. A data set is composed of data
items, and each data item is a pair (k, v), where k is a key associated to a value
v. Both k and v are treated as arbitrary byte arrays, no structure is imposed on
the data. Nodes are not required to use stable storage, the data set is stored over
the aggregated main memory of nodes.

Clients operate on the data set through a simplified transactional query in-
terface. A transaction in dsmDB is a sequence of read and write operations, pos-
sibly spanning over multiple data items. Transactions in the dsmDB are ACID,
although durability relies on the assumption that a certain number of nodes do
not fail.

There are two different ways for nodes to communicate with each other,
point-to-point and atomic broadcast: the first can be used for sending messages
directly from one node to the other through simple send and receive primitives
(we assume nodes all “know” each other); the second can be used to broadcast
a message from one node to a set of other nodes through broadcast and deliver
primitives. These primitives are useful for spreading transaction updates and
for ensuring consistent transaction execution on all nodes. Atomic broadcast
guarantees agreement and total order:

Agreement If node n delivers a message m, then all non-faulty nodes eventually
deliver m.

Total order If n and n′ both deliver messages m and m′, then n delivers m
before m′ if and only if n′ delivers m before m′.

7

8 2.2 System Architecture

In the context of the described system model, we also investigate some addi-
tional and desired properties. One such property is high availability, the ability
for a system to serve requests despite a failure. Another interesting property to
consider is incremental expansion, the ability to add nodes while the system is
running, so that it can handle a growing data set or a growing number of client
requests without stopping the execution (i.e., no “forklift” upgrades).

2.2 System Architecture

The architecture of the dsmDB is composed of clients, multiple dsmDB nodes,
and a consistency manager. Figure 2.1 shows an instance of the system with
two dsmDB nodes, and clients. DsmDB nodes store the data set and process
transactions issued by clients, while the Consistency Manager ensures consistent
execution of concurrent transactions. In this section we will have a closer look
at these components and explain what they do.

dsmDB
node 1

Client 1 Client 2

result

validate dsmDB
node 2

Client 3 Client 4

result

validateConsistency
Manager

Figure 2.1: Architecture of the system.

2.2.1 Clients

From a client’s point of view, the dsmDB is a data store that enables transactional
access to data. Clients can store and retrieve data through a simplified query
interface:

get(k): This primitive returns the value associated to the given key k.

put(k, v): This primitive stores the given key value pair (k, v).

commit(): This primitive commits the current transaction to dsmDB.

rollback(): This primitive aborts the current transaction.

9 2.2 System Architecture

The interface provided by the dsmDB is simplified and, as opposed to tra-
ditional DBMSs, values are treated as byte arrays and no structure or schema
is imposed on the data; and it does not provide complex queries such as select
constructs. A transaction in the dsmDB is simply a sequence of get and put
operations followed by a commit operation. As in traditional DBMSs, a dsmDB
transaction execution is guaranteed to be ACID:

Atomicity: Transactions are executed atomically, meaning that either all of the
operations of a transaction are executed or none of them are.

Consistency: If the state of the database was consistent before the execution of
a transaction, then the state remains consistent also after its execution.

Isolation: Transactions do not see intermediate results of other transactions. A
transaction has the "impression" to be the only one executing.

Durability: Once a transaction is reported to be committed, its modifications
will persist in the database.

2.2.2 DsmDB nodes

In the dsmDB architecture, every node shares its main memory and is responsi-
ble for storing a portion of the data set. Figure 2.2 shows that a single dsmDB
node is composed of a Transaction Manager, a Broadcast Manager and an In-
Memory Storage.

validateremote
read

Transaction
Manager

Storage Broadcast
Manager

read

write

client requests

Consistency
 Manager

Remote
Storage

dsmDB node 1 result

commit

Figure 2.2: DsmDB node internals.

10 2.2 System Architecture

2.2.3 Transaction Manager

The Transaction Manager is mainly responsible for executing client requests.
For each client, it keeps a transaction record that represents the client’s currently
executing transaction. Transaction records are intended to provide isolation and
to keep track of:

Read set the set of keys {k1, k2, . . . , kn} read by the transaction; and

Write set the set of pairs {(k, v)1, (k, v)2, . . . , (k, v)n} written by the transaction.

On a put request, the value and its associated key are stored in the write
set of the transaction record. On a get request, the key is stored in the read
set of the transaction record. To complete the get request, the value associ-
ated to the given key is either fetched from the Storage, or from the transaction
record if that key was previously written by the current transaction. On a commit
request, the transaction record is given to the Broadcast Manager. Eventually,
a reply from the Broadcast Manager will tell the Transaction Manager that the
transaction was either committed or aborted. At that point the Transaction Man-
ager will also send the reply to the client that executed the transaction in the first
place.

2.2.4 Storage

The Storage component is based on the concept of Distributed Shared Memory
[NL91]. Each dsmDB node is required to store a portion of the database in its
Storage component. The Storage component provides simple read and write op-
erations on single data items. These operations give the illusion that the Storage
contains the whole data set, which is not necessarily true because the whole data
set might not even fit into memory. If a read operation tries to access a key which
is not present in the Storage, the read operation is turned into a remote read re-
quest sent to the Storage of the dsmDB node which is responsible for storing
that key. Notice that this can be efficiently implemented because these opera-
tions must provide only a weak level of consistency, so fetching a remote item
requires just a single round of point-to-point communication. We will discuss
partitioning and key ownership in Section 2.4.

The Storage is updated whenever a transaction has been reported to be com-
mitted. In these cases, the write operation is required to store only those objects
for which the Storage is responsible for. If space permits, the write operation
heavily caches objects to avoid future remote read requests. As we will see in
Section 2.3, the Storage must be able to handle multiple versions and is allowed
to return stale data from its cache.

11 2.2 System Architecture

2.2.5 Consistency Manager

The Consistency Manager is a key component for ensuring global consistency
among every dsmDB node. In Section 2.2.4 we described the Storage as a com-
ponent that provides weak consistency. This means that concurrent transactions
executing on different nodes are not synchronized. DsmDB provides an opti-
mistic concurrency control mechanism, meaning that: transactions are free to
execute on dsmDB nodes without worrying about consistency and concurrency,
at commit time some concurrency control mechanism will take care of checking
whether concurrent executions are consistent.

Recall from section Section 2.2.3 that when a client commits a transaction,
the Transaction Manager passes the transaction record to the Broadcast Man-
ager, which in turn sends it to the Consistency Manager. The Consistency Man-
ager collects incoming transactions and validates them.

The validation algorithm is similar to the one employed in the Database State
Machine approach [PGS03]. It ensures one-copy serializability, that is, the ex-
ecution of concurrent transactions on different nodes should be equivalent to
a serial execution on a single node. If two transactions read an object, and at
least one of them has also modified the object, then these transactions conflict.
When two concurrent transactions conflict, one of them must be aborted. We
will further discuss and give examples of one-copy serializable schedules in Sec-
tion 2.3.1.

Validated transactions are placed in a buffer and each of them is marked as
either to abort or to commit. The validation buffer is periodically broadcast to
all dsmDB nodes. More precisely, the buffer has a fixed size and it is broadcast
when: (a) the buffer is full i.e., the number of transactions in the buffer is equal
to its size; or (b) the buffer size (in bytes) has reached the maximum size allowed
by the broadcast primitive; or (c) periodically when a timeout occurs.

Broadcast primitives are implemented by the Paxos algorithm, which we will
explain in Section 3.2. Messages broadcast through Paxos are guaranteed to
be delivered in the same order in the Broadcast Managers of all dsmDB nodes.
When a Broadcast Manager receives such a message, it will go through each
committed transaction and write to Storage its updates (recall that the Stor-
age module might discard objects for which it is not responsible). The Broadcast
Manager also notifies the Transaction Manager the final decision of a given trans-
action so that in turn the Transaction Manager can reply to the client with the
transaction’s outcome, either committed or aborted.

12 2.3 Concurrency control

2.3 Concurrency control

So far we discussed the dsmDB by describing its architecture and the compo-
nents it is made of. It remains to establish how exactly transactions are consis-
tently executed. In this section we introduce the notion of one-copy serializabil-
ity and how it is implemented in dsmDB.

2.3.1 One-copy serializability

DsmDB uses an optimistic multiversion concurrency control mechanism. Op-
timistic, meaning that different processes are allowed to execute transactions
inconsistently, and in a second step a certifier makes sure that conflicting trans-
actions are aborted. Multiversion because each write on a data item produces
a new version. Therefore, the storage has to keep multiple versions of a data
item and transactions are allowed to ask for specific versions. Keeping multiple
versions of a data item has the benefit of increasing the degree of multiprogram-
ming.

The consistency criteria adopted in the dsmDB approach is one-copy serializ-
ability [BHG86]. A sequence of transactions executed in a distributed setting is
one-copy serializable if it is equivalent to a serial schedule executed sequentially
on a single machine. Denote ri(x j) as “transaction i reads version j of value x”
and wi(x j) as “transaction i writes version j of value x”, and consider Schedule
1 depicted in Figure 2.3.

Schedule 1: w0(x0), r1(x0), w1(x1) , r2(x0)

Figure 2.3: Schedule 1, a one-copy serializable schedule.

Even if T2 reads version 0 of value x after T1 wrote version 1 of value x ,
Schedule 1 is one-copy serializable: we can create an equivalent serial schedule
by rearranging the transactions so that each read returns the last value written.
In fact, Schedule 1 is equivalent to Schedule 2 (Figure 2.4).

Schedule 2: w0(x0), r2(x0), r1(x0), w1(x1)

Figure 2.4: Serial Schedule 2, equivalent to Schedule 1.

Consider Schedule 3 in Figure 2.5 as an example of a schedule which is not
one-copy serializable. Transaction T2 reads value x written by transaction T0

and value y written by transaction T1. Schedule 3 is not one-copy serializable

13 2.3 Concurrency control

because there is no way to rearrange those transactions in such a way that the
execution is consistent.

Schedule 3: r0(x0), w0(x1), w0(y1), r1(x1), w1(x2), w1(y2), r2(x1), r2(y2)

Figure 2.5: Schedule 3, a non one-copy serializable schedule.

2.3.2 Transaction execution

To allow only one-copy serializable schedules to be executed, concurrency con-
trol in the dsmDB must be handled by both dsmDB nodes and Consistency man-
ager.

dsmDB node

Algorithm 1 sketches the functionality of dsmDB nodes. A dsmDB transaction is
an object that keeps track of its read set T.rs, its write set T.ws and its update
set T.us. Every dsmDB node keeps track of its current snapshot time, an integer
ST which is initially set to 1. As we will see later, dsmDB groups transactions
according to their snapshot time and tries to commit them together. Every trans-
action also keeps a field T.start, which is used to mark the snapshot time in which
the transaction started. Whenever a transaction starts, its read set, write set and
update set are initialized to the empty set, while T.start is initially set to the
special symbol ⊥.

On a get operation, we check if T.rs is still empty, meaning that no gets
have been executed yet. If so, T.start gets the value of the current snapshot time
ST. Parameter k is the key to be read, but before reading it, it must be added
to the read set. Finally, we read the value corresponding to the given key. We
distinguish two cases: (1) key k was previously written by T , in which case we
return the last version of the value written by T ; (2) the key was not written by
T , in which case the value is retrieved from the storage. Notice that storageGet(),
takes as parameter also the snapshot time in which T started. That’s because the
storage handles multiple versions and (k, v) pairs are marked with the snaphot
time in which they were written. StorageGet(k, T.start) will return the freshest
version v of k such that v ≤ T.star t. A transaction that started at snapshot time
ST , will never read values written at ST ′ > ST .

On a put operation, a dsmDB node keeps track of the (k, v) pair to be put.
This means that we simply need to update read set and the update set of the
transaction. Key k is added to T.ws and the key value pair (k, v) is added to T.up.

14 2.3 Concurrency control

Algorithm 1: dsmDB node

Initialization
ST← 1

On start(T) do
T.start← ⊥
T.rs← ;, T.ws← ;, T.us← ;

On get(T, k) do
if T.rs = ; then

T.start← ST
T.rs← T.rs ∪ {k}
if k ∈ T.ws then

v← last version of k written by T
else

v← storageGet(k, T.start)
return v

On put(T, k, v) do
T.ws← T.ws ∪ {(k)}
T.us← T.us ∪ {(k, v)}

On commit(T) do
if T.ws = ; then

Report T as committed
else

Send T to Consistency Manager

On deliver(msg) do
ST← msg.ST
foreach T ∈ msg.transactions do

if T.commit = true then
foreach (k, v) ∈ T.us do

storagePut(k, v, ST)
Report T as committed

else
Report T as aborted

15 2.3 Concurrency control

At commit time, we distinguish two cases: if T , the transaction to be com-
mitted, is read only (write set is empty), a dsmDB node can immediately report
T as committed. Otherwise, if the transaction is not read only, T is sent to the
Consistency Manager for validation. Notice that a get operation always reads
data which is consistent with respect to its starting snapshot time, therefore read
only transactions are always consistent and do not have to be validated.

Messages coming from the Consistency Manager are delivered using the
broadcast primitive. Such a message contains: (1) The updated value of ST ;
(2) the set of transactions that the Consistency Manager received in the pre-
vious snapshot. When a message is delivered, nodes first update their current
ST , and extract the set of transactions from the message. For each transaction,
we check whether it is marked as committed or aborted. For each committed
transaction T we update the storage with the key value pairs found in T.us and
report T as committed. Notice that each node receives these messages in total
order, meaning that every node delivers messages in the same order. Therefore
each storage will be updated in the same order too. Finally, for each aborted
transaction, we simply report the outcome to the client.

Consistency Manager

Algorithm 2 is a sketch of the code of the Consistency Manager. The Consistency
Manager keeps track of the current snapshot time ST, the set of transactions
aborted in the current ST in abortBuffer, the set of transactions committed in
the current ST in commitBuffer, and the set of keys written at snapshot time
ST − 1 in previousWS.

Whenever the Consistency Manager receives a transaction T , it checks T.start,
the snapshot time in which the transaction started. Transactions that started at
the current ST (for which T.star t = ST holds) are immediately validated. Older
transactions need to be handled more carefully, as we will later discuss. Func-
tion validate(T) is responsible for inserting transactions in the commit buffer. A
transaction T is inserted in the commitBuffer at position i if the following two
statements hold:

1. For all transactions T ′ ∈ commitBuffer[1, i− 1]: T ′.ws ∩ T.rs = ;.

2. For all transactions T ′ ∈ commitBuffer[i, bufferSize]: T ′.rs ∩ T.ws = ;.

Intuitively, validate() tries to find a serial schedule in which there is no
transaction that reads a value previously written by another transaction. When-
ever validate(T) is able to find a valid position i for T in the commitBuffer, T

16 2.3 Concurrency control

Algorithm 2: Consistency Manager

Initialization
ST← 1
abortBuffer← null
commitBuffer← null
previousWS← null

function validate(T)
if ∃ i ∈ [1, bufferSize] :
∀ j ∈ [1, i) commitBuffer[j].ws ∩ T.rs = ; ∧
∀ j ∈ [i, bufferSize] commitBuffer[j].rs ∩ T.ws = ;

then
T.commit = true
insertAt(commitBuffer, T, i)

else
T.commit = false
abortBuffer← abortBuffer ∪ {T}

function newSnapshot()
ST← ST + 1
msg.ST← ST
msg.transactions← (commitBuffer ∪ abortBuffer)
broadcast(msg)
previousWS← null
foreach T ∈ commitBuffer do

previousWS← previousWS ∪ T.ws
abortBuffer← null
commitBuffer← null

On receive(T) do
validateOld← false
if T.start = ST - 1 ∧ T.rs ∩ previousWS = ; then

validateOld← true
if T.start = ⊥∨ T.start = ST ∨ validateOld = true then

validate(T)
if isFull(commitBuffer) then

newSnapshot()
else

T.commit = false
abortBuffer← abortBuffer ∪ {T}

17 2.3 Concurrency control

is marked as committed and inserted into the commitBuffer at position i. If no
such an i can be found, T is marked as aborted and appended to the abortBuffer.

The commitBuffer has a maximum size bufferSize, and when the Consistency
Manager validates bufferSize transactions it will create a new snapshot. Function
newSnapshot() does the following: it increments the current snapshot time ST
and broadcasts a message containing the updated ST and the set of aborted and
committed transactions to all nodes; it updates the set previousWS with all the
keys that were written by the transactions in the commitBuffer; and finally it
clears the abortBuffer and the commitBuffer so that the Consistency Manager is
ready to process the next snapshot time.

So far we described how a transaction T is validated in the case T.start = ST .
The Consistency Manager also handles transactions that started at snapshot time
ST − 1, but arrived at the Consistency Manager at ST . The first if statement of
On receive(T) handles exactly that case. Even if the buffer of snapshot time ST−1
was already broadcast, there are chances that T , the transaction to be validated,
has not read any key previously written by the transactions at ST−1. That’s why
we keep previousWS, which is the set of keys that were written at ST −1. If T.rs
does not intersect previousWS, then it can be validated as if it was a transaction
started at snapshot time ST . For the sake of simplicity, Algorithm 2 does not
handle transactions that started at ST − 2, but it can be easily generalized to
handle transactions arrived at ST− maxPreviousST. To do so, it is not sufficient
to keep track of just one previousWS; it needs to keep previousWSs of snapshot
time ST − 1, ST − 2, . . . , ST −maxPreviousST.

2.3.3 Storage layer consistency

Algorithm 1 of Section 2.3.2 uses two important functions, storageGet() and
storagePut(), that need to be explained more carefully.

Each data item in the Storage is tagged with a version number. In fact,
storagePut takes the version number as argument when creating a new data
item. A data item that was written by a transaction that started at snapshot time
ST is tagged with version number ST. Similarly, when a transaction reads a data
item using storageGet(), it will return a data item which is consistent with the
snapshot item in which the transaction started.

In Section 2.2.4, we explained that the storage layer transparently handles
remote lookups. It gives the impression that the whole data set is stored lo-
cally, whereas the data set might not even fit in a single machine. Function
storageGet() implements exactly this behavior: if the data item to lookup is not
stored locally, it will be fetched remotely from the node who is responsible for
storing that data item. To improve the overall performance of the system, dsmDB

18 2.3 Concurrency control

nodes can cache items for which they are not responsible. There a few issues
that arise from caching and remote lookups. We discuss those in the rest of this
section.

Garbage collection

Each invocation of storagePut() creates a new version of the data item to be
written in the storage. This means that each node accumulates old versions of
data items and there must be a mechanism that collects old versions to make
room for newer ones.

In Section 2.3.2 we said that the Consistency Manager is willing to accept
transactions that started at ST−maxPreviousST, older transaction are aborted. If
the newest version of some data item x was tagged with version v, then all items
x tagged with a version smaller that v − maxPreviousST are useless, because
either:

• The item will never be accessed again. This is especially true if during the
execution nodes are all roughly in the same ST (no node starts transac-
tions which are too old), and there are no long running transactions.

• The item will be accessed, but the transaction reading or writing it will be
aborted at the Consistency Manager.

A garbage collection mechanism can safely remove all data items x such that
x .version< (ST −max PreviousST). If some transaction T tries to access such
a data item (locally or remotely), the node executing T can immediately abort
it. Notice that old versions of a data item must be eliminated in order, from the
oldest to the newest, without leaving “holes” in between. The reason for this
restriction is explained in the next section.

Cache maintenance

Cached items should be treated as local items. When a node delivers updates,
it can decide to cache items for which it is not responsible. These items are
subject to versioning as local items, but they are marked as cached. The storage
should implement some policy to evict cached items to make sure that there
is always space for local items. A possible policy to adopt is LRU (least recently
used): when eliminating some cached items, the storage chooses items that were
the most least recently used. However, our Concurrency Control mechanism
imposes a restriction: there should never be “holes” between versions of an item,
otherwise a storageGet() would not always return the freshest version available,
and transactions might be inconsistent. Therefore, for each cached data item d
the following should be done:

19 2.3 Concurrency control

• When an update is delivered for d, every node that caches d should either
apply the update or otherwise remove d with all of its versions.

• When evicting d with version v, all versions v′ < v of d should also be
removed.

Remote lookups

Remote get operations should be consistent, as if they were executed locally. The
problem arises when nodes interleave the delivery of updates and remote gets.
As an example, consider two nodes n0 and n1. Initially they are both at snapshot
time ST = 0. Assume n0 is responsible for item x0 = 0 and n1 for item y0 = 0.
Suppose the following transaction T1 : r(x0), w(x1), r(y0), w(y1) is executed
at n0. T1 is delivered at n0, but not yet at n1. So, node n0 is at ST = 2 and
proceeds with T2 : r(x1), w(x2), r(y1), w(y2). If y is not cached at n0, clearly
y1 is going to be fetched from n1. If n1 has not yet delivered T1, then r(y1) will
return version 0 of item y . From n0’s point of view, r(y1) did not return the
freshest version of y , thus producing an inconsistent execution. To fix this, a
remote get request includes the ST of the sender and the receiver must make
sure they are at the same ST before replying.

On the other hand, if the receiver of a remote get request is at a later ST, the
garbage collection mechanism might have removed the older requested value,
as we just discussed. In such cases the receiver node replies with a message
telling that the version requested is too old and the transaction that issued the
remote get request must be aborted.

2.3.4 Session consistency

Notice that the concurrency control mechanism described in Algorithm 1 and
Algorithm 2 may lead to the following situation: Client C executes transaction
T1 : w(x = 1) on node 1, where x was initially set to 0. T1 successfully commits
and C immediately proceeds with transaction T2 : r(x) on node 2, which returns
the previous value 0. Notice that if C submits T1 and T2 to the same node, then
this kind of behavior is not possible because: (1) clients can submit only one
transaction at a time (i.e., when committing, the client blocks until it receives
the transaction outcome); and (2) it must be the case that T2.star t > T1.star t,
therefore the storage cannot return the older version of x with value 0. However,
our running example produces a valid one-copy serializable schedule if T1 and
T2 are executed on two different nodes. If clients can submit transactions on
different nodes, there is no guarantee that nodes deliver updates at the same
“speed”. If T2 is submitted to a node which is at a previous snapshot with respect

20 2.4 Partitioning and Replication

to the node where T1 was executed, then T2 might read older values. There are
at least ways to ensure session consistency in the dsmDB:

1. Restrict clients so that they access only one node during the same session.

2. Clients keep track of the snapshot time of their last successfully committed
transaction, so that they can refute transaction executions at earlier STs.

2.4 Partitioning and Replication
A solution to the partitioning problem determines which nodes are responsible
for storing a certain data item. Desirable properties for data distribution are for
example load balancing or hot spot avoidance. Meaning that each node in the
system should be responsible for storing a balanced portion of the data set, and
in such a way that the most accessed items are not placed in the same node.

High availability, and in our particular case also durability, can be achieved
through data replication. With data replication we want to provide a given level
of K-safety, meaning that each (k, v) pair is replicated over K different nodes.
This way, even if K-1 nodes fail, there is at least 1 replica left which is responsible
for a particular data item.

In this section we briefly describe and compare some alternative solutions to
distribute and partition a data set across different nodes in terms of implemen-
tation issues, performance and memory overhead requirements.

2.4.1 Hash based

A naive solution is to distribute data items deterministically according to a hash
function h. For example, node n is responsible for storing key k if h(k)mod N =
n. Replication can be achieved by storing replicas at K − 1 successive nodes.
In our running example, if K = 3 and node n is responsible for storing key k,
replicas can be stored at nodes (n+ 1)mod N and (n+ 2)mod N .

This simple scheme has two advantages: it does not require memory to store
routing information, and handling remote lookups is simple and efficient. Since
every node agrees on the same hash function h, on a get request, if the given key
k is not locally stored, the data item is simply fetched from node n= h(k)mod N
(only one communication round). In fact, in terms of storage, a hash based
scheme is optimal.

The problem of this scheme is that it does not allow to explicitly control the
placement of data. As one of the consequences, it leads to poor performance
when handling system reconfigurations. Let N be the initial number of nodes,
as soon as a new node wants to join the system N is increased by 1 and the

21 2.4 Partitioning and Replication

mapping h(k)mod N = n does not hold anymore (for almost every n, with high
probability). This means that every key in the data set must be rehashed and
redistributed across N + 1 nodes according to the outcome of the hash function
under modulo N + 1.

2.4.2 Fully replicated key set

In this scheme, each data item is stored as a triple (k, v, r), where r is the set
of node ids responsible for storing key k. We define the key set as the set of all
(k, r) pairs contained in the data set. If the key set is fully replicated, every node
knows the complete key-to-node mapping.

This scheme is more complicated but allows greater flexibility. Data can be
distributed according to some predefined policy. The simplest one would be: key
k is stored at node h(k)mod N and its successors. More complex policies might
try to uniform the balance between nodes, place data items frequently accessed
together at the same node, or try to eliminate hot spots. In fact, in this case the
mapping is not fixed, but can change over time.

As opposed to the hash-based solution, in this scheme the number of data
items that must be transferred in case of reconfiguration is minimized, but in
general the memory overhead to keep the key set fully replicated is prohibitive,
as we will later demonstrate.

2.4.3 Compressed mapping

The idea here is that, instead of maintaining a fully replicated key set, every
node maintains compressed information that represents the key set for every
other node. For example, a bloom filter is a compressing data structure that
allows to efficiently represent sets and supports membership queries [BM02].

In the context of dsmDB, the scheme would work as follows: a node n is
responsible for storing key k if bn (n’s bloom filter) contains key k. Every time
a new data item (k, v) is delivered, nodes check if there exits some bi such that
it contains k. If there exists such a bi, then node i is responsible for storing
key k (notice that because of false positives, it might be that more than one
bloom filter contains key k); otherwise nodes must choose the node that will
take responsibility for k and update the corresponding bloom filter. This decision
must be taken deterministically by every node.

To extend this scheme to support replication, it suffices to change the above
updating rule so that for every data item nodes make sure that there are at least
K bloom filters that contain key k. Notice that this could be done considering
false positives.

22 2.4 Partitioning and Replication

Remote lookups are simple and efficient: one round of communication. To
find a node responsible for key k, it suffices to find a bi such that it contains
k. If such a bi exists, i is the node storing key k. Otherwise k does not exist in
the system. When reconfiguring the system, only a small portion of the key set
must be transferred to the arriving node, but also updated bloom filters must be
exchanged.

2.4.4 Distributed mapping

In this scheme, each node is responsible for a portion of the data set and a
portion of the mapping. The mapping can be thought of as a table that relates
keys to node ids. For each data item in the data set, the mapping contains an
entry that consists of a pair (k, n), meaning that key k is stored at node n. The
mapping itself is partitioned over the available nodes.

Node n is the map owner of key k, if h(k) = n, for some hash function h in
0 . . . N − 1. The map owner of key k is responsible for storing the map entry for
key k. Whereas node n′ is the key owner of key k, if there exists some node in
which map(k) = n′, where map(k) is the map entry corresponding to k. The key
owner of key k is responsible for storing the data item with key k.

It is straightforward to extend the above described mapping to support also
replication. Multiple map owners can be decided in the following way: if node
n= h(k) is the map owner, then n+1 mod N , n+2 mod N , . . . , n+(K−1)mod N
are map owners too. Multiple key owners are achieved by extending the map
entries to map a key k to K different nodes ids.

Remote lookups can be done in at most three communication delays: the
first round must reach a map owner, and the map owner forwards the request
to a key owner, which in turn replies directly to the first node. Notice that this
can be optimized: once the remote request reaches the map owner, instead of
immediately forwarding the request to a key owner, the map owner can lookup
its cache. If it cached the data item, it can immediately reply and the lookup
takes only one round (i.e., two communication delays).

2.4.5 Memory overhead comparison

In the ideal case, partitioning and replication would be implemented efficiently
and with no memory overhead for storing the mapping from keys to node ids.
Let nk be the number of keys, ks the key size, vs the value size and r f the
replication factor. The total amount of storage required is nk · r f · (ks+ vs). If
n is the number of nodes available in the system and m the memory available at
each node, then n ·m is the total available memory in the system. Maximizing

23 2.4 Partitioning and Replication

memory usage, we get the following equation:

n ·m= nk · r f · (ks+ vs) (2.1)

Following the same approach, we can compute the total amount of storage re-
quire by each of the schemes we discussed, and compare them against the opti-
mal case.

Fully replicated key set

The mapping for this scheme additionally requires to store a table in which each
row is a pair (key, nodes ids). The table is fully replicated and for each key there
are r f node ids. Assuming that each node id is 4 bytes we have that the table
requires n · nk · (ks+ 4 · r f). Thus, we have:

n ·m= (nk · r f · (ks+ vs)) + (n · nk · (ks+ 4 · r f)) (2.2)

Bloom filter based

To compute the space overhead in the case of bloom filters, we need to know
how much space each bloom filter requires. The false positive rate of a bloom
filter is computed as follows [BM02]:

p ≈ (1− e
−kn

m)k

Where p is the false positive rate, k is the number of hash functions, n is the
expected number of entries and m is the size of the bloom filter in bits. The
optimal number of hash function is:

k ≈ ln(2)
m

n
≈ 0.7

m

n

As an example, assume we want to insert 100 keys in a bloom filter of 1000 bits.
Then we have the optimal number of hash functions:

k = 0.7
1000

100
= 7

Which gives the probability of a false positive:

p ≈ (1− e−
7·100
1000)7 ≈ 0.008

In our example, this means we need only 10 bits (i.e., 1000 divided by 100)
for every key, as opposed to the whole key, to maintain a bloom filter with a

24 2.4 Partitioning and Replication

false positive rate of less than 1% (notice that bloom filters grow linearly in the
number of elements inserted).

In the bloom filter based scheme, each node additionally stores a bloom filter
for every other node. If we assume that the data set is balanced, each node
should hold around n

nk
keys. Moreover, each node holds n bloom filters, each

containing nk
n
· r f keys, for a total of n · nk

n
· r f = nk · r f . It remains to consider

that these bloom filters are replicated at each node, and that we need 10 bits (=
1.25 bytes) per key. Thus we have:

n ·m= (nk · r f · (ks+ vs)) + (n · nk · r f · 1.25) (2.3)

Distributed mapping

In the case of distributed mapping, each node needs to additionally store a por-
tion of a table in which each row is a pair (key, node ids). The table is not fully
replicated, thus we have:

n ·m= (nk · r f · (ks+ vs)) + (nk · (ks+ 4 · r f) (2.4)

Comparison

Figure 2.6 summarizes our comparison of the above schemes. It shows the ratio
between each scheme and the optimal scheme. We compute different series for
different value sizes. For instance, consider fully replicated key set when the
number of nodes is 3 and value size is 16 bytes. The point shown is the ratio of
key-value pairs that can be stored using an optimal scheme over the number of
key-value pairs stored in the case of fully replicated key set. In this particular
example the ratio is about 0.5, meaning that only half of the key-value pairs can
fit in the database, because the rest of the space is needed to store the key set
which is fully replicated on every node.

The memory available at each node m is fixed at 1GB, the key size ks is 8
bytes, and the replication factor r f is 3. These graphs essentially show that
both the fully replicated key set and the bloom- filter-based techniques do not
scale as the number of nodes increases. As the number of keys increases, the
mapping or the bloom filters to store increase at every node, making it linear
in the number of nodes. This is especially true in the extreme case where the
value size (vs) is just 16 bytes. In these cases the number of entries to store
in the fully replicated key set is prohibitive, and similarly the size required by
the bloom filters becomes excessive. The bloom filter based technique improves
over the fully replicated key set, because it stores a compressed representation of
the mapping. The distributed mapping scheme improves the memory overhead

25 2.4 Partitioning and Replication

0

0.2

0.4

0.6

0.8

1.0

3 6 12 24 48 96

Fully replicated key set
R

a
ti
o

Number of nodes

vs = 16B

vs = 128B

vs = 512B

vs = 1KB

vs = 10KB

0

0.2

0.4

0.6

0.8

1.0

3 6 12 24 48 96

Distributed mapping

R
a
ti
o

Number of nodes

0

0.2

0.4

0.6

0.8

1.0

3 6 12 24 48 96

Bloom filter based

R
a
ti
o

Number of nodes

Figure 2.6: Memory overhead comparison.

because the memory required to store the mapping is constant in the number of
nodes. DsmDB’s partitioning and replication relies on the distributed mapping
scheme because:

• it allows to freely control the placement of data, which is not possible
when data items are statically placed as in the hash-based scheme. As
a consequence of dynamic data placement we have a system where data
items can possibly move from one node to another.

• it is the only scheme, among the ones we considered, that offers constant
memory overhead in the number of nodes.

• it requires a bounded number of communication delays during a lookup
(at most three). Schemes that require fewer communication delays, either
place data statically, or impose prohibitive memory overhead.

26 2.5 Recovery

2.5 Recovery

Traditional database management systems typically use some sort of log-based
recovery (e.g., write-ahead logging). During transaction execution, the database
logs modifications in a sequence of log records on stable storage. After a system
crash, the recovery procedure ensures that the database recovers in a consistent
state. The state of the database is first recovered from stable storage, and then
the recovery procedure uses the log to undo unfinished transactions and to redo
completed transactions. The database is ready to execute new transactions only
after recovery. Log maintenance and recovery are expensive operations because
they require constant use of stable storage.

The dsmDB approach allows for a simpler and lightweight recovery mecha-
nism. Given that nodes do not use stable storage to store their portion of the data
set, the state of the database is incrementally recovered from the other nodes.
The state of a dsmDB node consists of its mapping table, which we discussed in
Section 2.4.4, and its portion of the data set. A crashed node restarts with an
empty storage and an empty map and can immediately start processing transac-
tions coming from clients and delivering transaction updates. Data items read
by these transactions are fetched remotely. Notice that to know the owner of a
map, only the number of nodes in the system must be known. Initially, without
the mapping from keys to node ids, a get operation might require up to four
communication delays instead of three.

A crashed dsmDB node needs to retrieve both its map and its portion of the
data set. To do so, it broadcasts a message that tells all the other nodes that
it is recovering. The message contains the node id of the recovering node. We
assume that the node that replaces the crashed node restarts with the same id,
so that the mapping does not change. Nodes that receive a recovery message
from node i scan their mapping and prepare two lists:

key owner list: a list containing all keys k such that i ∈ map(k).

map owner list: a list containing all map entries for which i is responsible.
Node i is responsible for map(k) if i ∈ {h(k), h(k)+1 mod N , . . . , h(k)+
(r f − 1)mod N}, for some predefined hash function h.

These lists are eventually sent to recovering node i, which collects them and
starts processing them in a separate task. It uses the map owner list to update its
own map, and for each key k in the key owner list it fetches k remotely. Before
fetching k in the key owner list, it checks if k is cached in the local storage; if
so, k is marked as local and there is no need to fetch it remotely. Node i is fully
recovered as soon as all keys in its key owner list are stored locally.

27 2.6 Reconfiguration

2.6 Reconfiguration

DsmDB can reconfigure itself, meaning that the number of nodes can increase or
decrease, without stopping and restarting the system. A node joining a running
instance of dsmDB starts with an empty storage and an empty map. In the
following we discuss how to update the maps after the join of a new node.

Recall from Section 2.4.4 that in the case of distributed mapping, a node n is
a map owner of key k if n ∈ {h(k), h(k)+1 mod N , . . . , h(k)+(r f −1)mod N}
for some predefined hash function h. When a new node joins a running dsmDB
instance, N is increased by 1, and the map ownership changes according to the
outcome of hash function h under modulo N + 1.

If we assume that only one node joins a running instance of dsmDB at a time,
then we can reconfigure the system without disrupting transaction execution. To
do so, a node that is joining chooses a new id n, and broadcasts a join message
to every other node with its new id. At this point, map entries can be exchanged
lazily during transaction execution. The idea is that each node keeps all of its
map entries until they are sure that the new owners received it.

A node that delivers a join message, first deletes all data items from its cache
and exchanges map entries during transaction execution. Assume that some
transaction T is executing at node i. If T reads key k, and i is not a key owner
of k, the data item will not be found in the storage. Meaning that key k must
be fetched remotely. The first step in the transaction execution is to create a
remote get request and send it to one of the map owners. Since the number of
nodes N is increased by 1, the map ownership changes, and the remote request
might hit a map owner that doesn’t have the map entry for k yet. If so, the new
map owner will fetch the map entry for key k remotely from the previous map
owner. As soon as the new map owner receives the map entry, it will broadcast
a message that contains the map entry. To reduce the number of broadcast calls,
nodes can batch multiple map entries in a single message. We distinguish two
cases when a node delivers such message: new map owners for key k update
their map by adding the map entry; old map owners for key k update their
map by deleting the map entry. The reconfiguration process terminates when all
nodes have updated their map, meaning that there are no map entries at node
n for which n is not responsible. Notice that if there is some key k that is never
accessed, the reconfiguration process will not terminate because the map entry
for k remains at the old owners. To avoid this case, nodes maintain a list of map
entries that need to be moved, and start a separate task that sends map entries
to new map owners. When the list is empty, it means that the node has moved
all of its map entries, and therefore it broadcasts a message informing the other
that this process has finished. When nodes receive such a message from every
other non crashed node, the reconfiguration process is terminated.

28 2.6 Reconfiguration

Reconfiguration can be done on the fly at the expense of performance:

• Every node empties its cache. Executing a get operations will be expensive
until the caches are again filled.

• The first remote get operation for some key k requires two more message
delays so that the new map owner can fetch the map entry for k remotely.

• Map entries need to be broadcast so that map owners update their maps.

Chapter 3

Implementation

3.1 The dsmDB prototype
To evaluate the dsmDB approach described in Chapter 2, we implemented a
prototype of it. In this chapter we add some considerations of practical interest.
Our prototype closely follows the system architecture we gave in Section 2.2,
and was implemented using the C language. Figure 3.1 shows the architecture
of the dsmDB prototype; it adds some details to Figure 2.2.

Applications that use the dsmDB are linked to a client library that conve-
niently allows to interact with a dsmDB node. The client library implements
functions for reading and writing data items, and committing transactions. The
Transaction Manager of the dsmDB node handles connections to user applica-
tions and their active transactions. To do so, it uses the Transaction module that
allows to create transactions and keeps track of read and write sets. Transactions
use the Storage Manager for reading data items from Storage or remotely using
the Remote module. The Remote interface allows to send read operations to
the nodes responsible for a given key; this is done according to the Distributed
Mapping mechanism as explained in Section 2.4. Remote modules of different
nodes are connected through TPC/IP links.

At commit time, transactions are handed to the Broadcast Manager, which
in turn sends them for validation to the Consistency Manager through a reliable
TCP/IP link. Transactions at the Consistency Manager are first validated and
then broadcast to all the other nodes. Broadcast primitives are implemented
on top of the Paxos algorithm [Lam01]. The Paxos protocol is described by the
actions taken by different processes, each of which having a particular role in
the protocol. In our application of the protocol, the Consistency Manager is a
proposer and dsmDB nodes are learners; between proposers and learners there is
a number of acceptors. Our Paxos protocol is implemented on top of IP multi-

29

30 3.1 The dsmDB prototype

ds
m

DB
 N

od
e

Pa
xo

s A
cc

ep
to

rs

Tr
an

sa
ct

io
n

M
an

ag
er

St
or

ed
 P

ro
ce

du
re

St
or

ag
e

M
an

ag
er

Re
m

ot
e

Di
st

rib
ut

ed
M

ap
pi

ng
St

or
ag

e

Tr
an

sa
ct

io
n

Br
oa

dc
as

t M
an

ag
er

Pa
xo

s
Le

ar
ne

r

Pa
xo

s
Pr

op
os

er

Co
ns

ist
en

cy
 M

an
ag

er

Va
lid

at
io

n

Re
m

ot
e

ds
m

DB
 N

od
e

Re
m

ot
e

ds
m

DB
cli

en
t l

ib
ra

ry

Ap
pl

ica
tio

n

re
ad

co
m

m
it

br
oa

dc
as

t

va
lid

at
e

re
m

ot
e

re
ad

de
liv

er

write

Figure 3.1: Structure of the dsmDB prototype implementation

31 3.2 Paxos

cast. Transactions broadcast by the proposer are delivered in total order by the
learners of each node. When receiving transactions from its learner, the Broad-
cast Manager updates the storage using the write set of committing transactions.
The outcome of a transaction, either commit or abort, is propagated back to the
application that issued the transaction through the Transaction Manager and the
client library.

In the rest of this chapter we give an overview of the Paxos protocol; we
explain how data items are stored in our Storage; how to efficiently implement
the validation test at the Consistency Manager; and we quickly introduce Stored
Procedures.

3.2 Paxos
Paxos is an algorithm for building fault-tolerant distributed systems; it is a pro-
tocol for solving consensus in a collection of processes. Processes propose values,
and the consensus algorithm chooses one of these values. When a value is cho-
sen, processes can learn it.

3.2.1 Protocol

The protocol can be explained by the actions taken by three different kinds of
processes or roles, namely: proposers, acceptors, and learners. The consensus
algorithm proceeds in two phases:

Phase 1 a) A proposer sends a prepare message to acceptors containing a ballot
number b.
b) If an acceptor receives a prepare message with ballot number b, it
promises not to accept new proposals less than b, if b is the largest pro-
posal received so far. If the acceptor already accepted a value, then its
promise message contains also the accepted proposal.

Phase 2 a) If a proposer received a promise message in response to its prepare
message with ballot b from a majority of acceptors, then it sends an accept
message to the acceptors containing ballot b and a proposal value. If there
is at least one acceptor that already accepted some value v, then the pro-
posal value remains v (or one among the set of values that were already
accepted), otherwise the proposer its own value.
b) If an acceptor received an accept message with ballot b and proposal
value v, it sends an accepted message with ballot b and value v, unless it
already replied to a prepare message with ballot b′ > b.

32 3.2 Paxos

prepare b

B = 0
V = nil

B = 0
V = nil

B = 0
V = nil

B = b
V = nil

B = b
V = nil

B = b
V = nil

promise b

accept b,v

B = b
V = v

B = b
V = v

B = b
V = v

accepted b,v

Proposers

Acceptors

Figure 3.2: Paxos message flow under normal operation.

Figure 3.2 shows the normal message flow between acceptors and proposers in
the Paxos algorithm. Learners can learn value v with ballot b, if and only if a
majority of acceptors have sent an accepted message with ballot b and value v.

3.2.2 Termination

Notice that the algorithm, as described so far, does not ensure termination. For
instance, consider the example shown in Figure 3.3. A proposer sends a prepare
message for ballot b1 to the acceptors; follows a promise message for ballot b1
from the acceptors. Similarly, another proposer sends a prepare message with
ballot b2 > b1, and the acceptors promise not to accept values with ballots
smaller than b2. As soon as the first proposer tries to send an accept message with
ballot b1, this will be ignored by the acceptors because they already promised
to reject any value with ballot smaller than b2. This behavior can possibly be
repeated over and over; it follows that termination is not guaranteed.

Typically, the solution to this problem involves a leader election mechanism.
Using such a mechanism, a leader is elected among all the proposer processes.
The leader is the only process allowed to send messages to the acceptors. Non-
leader proposers, propose their values by sending them to the leader. The leader
executes the protocol for its values and the values received from the other pro-
posers.

33 3.2 Paxos

prepare b1

B = 0
V = nil

B = 0
V = nil

B = 0
V = nil

B = b1
V = nil

B = b1
V = nil

B = b1
V = nil

promise b1

prepare b2

B = b2
V = nil

B = b2
V = nil

B = b2
V = nil

promise b2

Proposers

Acceptors

Figure 3.3: Paxos message flow that might never terminate.

3.2.3 Paxos and the dsmDB

Total order broadcast can be achieved by running multiple instances of the pro-
tocol we just described. The protocol works in an asynchronous setting where
messages can be lost, duplicated or take arbitrary time to be delivered. The pro-
tocol works as long as a majority of acceptors is non-faulty. In case of failure,
acceptors can restart if their state is saved to stable storage, thus before replying
to prepare and accept messages acceptors need to update their state and save it
to stable storage.

In our current implementation of Paxos, we assume that there is always one
single proposer that never fails (i.e., the Consistency Manager). As an optimiza-
tion, our implementation also performs ballot reservation: instead of sending
prepare and promise messages for every instance the protocol, a proposer can
pre-execute phase 1 for several future instances, thus reducing the number of
communications delays to two before a value can be learned.

Acceptors use Berkeley DB1 as a stable storage layer. The Berkeley DB storage
is configured not to use any locking mechanisms since the acceptor is the only
process that reads and writes its own storage. Since Paxos uses stable storage
and the dsmDB uses Paxos to broadcast transaction batches, durability does not
depend on the survival of nodes as discussed in Section 2.4, because the state of
dsmDB could be recovered from the acceptors.

1http://www.oracle.com/database/berkeley-db/index.html

34 3.3 In-Memory Storage

3.3 In-Memory Storage
We explained in Section 2.3 that to increase the level of multiprogramming the
dsmDB stores multiple versions of a data item. Moreover, when a node deliv-
ers transaction updates, it may decide to cache data items for which it is not
responsible.

Figure 3.4 shows the internal data structure we use in our prototype to store
both permanent and cached items. We use a regular hash table for storing keys,
and collisions in the table are handled using chaining: keys that hash to the same
position are chained in a linked list of collisions. Every key stored in the hash
table is placed in a structure we call key entry. Other than the key itself, a key
entry contains the head of a versions list, a pointer to the next element in the
conflict list, and a pointer to the next element in the lru list.

The list of versions stores all of the available versions of values associated to
the key. The list of versions is kept in order, from the oldest to the newest version.
We explained in Section 2.3.3 how to limit the number of different versions and
what versions can be eliminated. Additionally, we keep an LRU (Least Recently
Used) list containing all of the cached keys. Every time a cached key is accessed,
it’s moved to the front of this list. A garbage collection mechanism periodically
deletes cached data items from the tail of the LRU list.

Collisions list
Versions list
LRU list

K1

LRU

Hash
Table

X1

K2

Z1

K3

Y1

X2

Figure 3.4: Storage data structure

35 3.4 Validation test

The example in Figure 3.4 shows a hash table with three key entries storing
keys K1, K2, and K3. K1 has two versions of value X , versions 1 and 2. In this
example K1 is a permanent item, therefore it is not subject to garbage collection
and does not need to be in lru list; whereas K2 and K3 are cached data items
and linked in the lru list.

3.4 Validation test

In this section we explain how to efficiently implement the validation test de-
scribed in Section 2.3.2. The Consistency Manager holds an array of transac-
tions we called the commitBuffer. A transaction T contains a read set T.rs and
a write set T.ws; these are respectively the set of keys read and the set of keys
written by T . A transaction commits if the validation test finds a position i in
the commitBuffer such that the following two statements hold:

1. For all transactions T ′ ∈ commitBuffer[1, i− 1]: T ′.ws ∩ T.rs = ;.

2. For all transactions T ′ ∈ commitBuffer[i, bufferSize]: T ′.rs ∩ T.ws = ;.

To find such position, we use algorithm Algorithm 3. The first while loop finds up
to which position the condition (1) holds; the position is stored in variable index;
the second while loop checks whether condition (2) holds; if so T is inserted in
commitBuffer at position index.

We use bloom filters to efficiently implement the intersection operation be-
tween two sets. Checking whether the intersection of two bloom filters is empty
is a matter of ANDing their bitmaps, and checking that the resulting bitmap con-
tains only zeros. Notice that, this can be done only if both bloom filters have the
same size. Using bloom filters offers two advantages: (1) finding the intersection
of two bloom filters is linear in the size of their bitmap; and (2) the information
stored in bloom filters is compressed, thus reducing the memory requirements.
However, bloom filters have the disadvantage of false positives: a small portion
of transactions is aborted due to false positives.

3.5 Stored Procedures

In our current implementation of the dsmDB, the client library communicates
with a single dsmDB node running on the same machine using Unix Pipes. Every
get and put operation of a transaction needs to be sent from the client library to
the node over pipes. DsmDB nodes process one client operation at a time. Stored

36 3.5 Stored Procedures

Algorithm 3: Validation test

function Validate(T)
i← 0
while i < bufferSize do

T ′← commitBuffer[i]
if T ′.ws ∩ T.ws = ; then

i← i+ 1
else

break
index← i

while i < bufferSize do
T ′← commitBuffer[i]
if T ′.rs ∩ T.ws = ; then

i← i+ 1
else

break
if i = bufferSize then

insert(T, commitBuffer, index)

procedures are used to avoid the cost of several round trips for transactions that
are executed frequently. The code of a transaction can be embedded into the
dsmDB node. Stored procedures require only one round trip over pipes: the
client library sends the invocation of a stored procedure along with its arguments
to the dsmDB node; the dsmDB node executes the stored procedure with the
given arguments and replies with the result to the client.

Stored procedures are implemented on top of the Transaction module, which
handles the internal representation of a transaction and gives a convenient API
that implements get, put, and commit operations.

The dsmDB prototype currently lacks a mechanism to “install” or “plugin”
new stored procedure types in a flexible way. This can be achieved in differ-
ent ways, for example by using dynamically loadable libraries. Stored proce-
dures are compiled into dynamic library, and dsmDB nodes load them whenever
needed.

Chapter 4

Performance Evaluation

4.1 Infrastructure

The experiments in this chapter are performed on a cluster of 16 Apple Xserve
G5 machines, with 2 G5 CPUs of 2.3 GHz, between 1 and 2 GB of main memory,
and gigabit network links. The operating system used is MAC OS X 10.4.11.

4.2 Benchmarks

In this section, we describe two benchmarks that we used to evaluate the perfor-
mance of the dsmDB: the standard TPC-B [TPC94] benchmark, and a distributed
B-tree implementation on top of the dsmDB.

4.2.1 TPC-B benchmark

Although TPC-B is considered an obsolete benchmark [LGK93], we decided to
implement it because it would be difficult to implement newer benchmarks such
as TPC-C. The main criticism against TPC-B is that it represents a simplistic
benchmark because it does not model the requirements of real OLTP systems.

Schema

TPC-B models a simple banking application composed of branches, tellers, ac-
counts and the history of the executed transactions. Figure 4.1 shows that the
database is composed of 4 different tables. Each table maintains a balance for
each branch, teller, and account record in the system. A branch has a one-to-
many relationship with the tellers and the accounts. For each executed transac-

37

38 4.2 Benchmarks

BranchID
Balance

Branch

1:M

1:M 1:M

1:M

TellerID
BranchID
TellerBalance

Teller

AccountID
TellerID
BranchID
Delta
Timestamp

History

AccountID
BranchID
AccountBalance

Account

1:M

Figure 4.1: TPC-B schema layout.

39 4.2 Benchmarks

tion the benchmark creates a history record that keeps track of the amount of
money that was withdrawn or deposited in an account. Changing the balance of
an account means that also the balance of the corresponding teller and branch
must be changed. Account, teller, and branch records must contain at least 100
bytes; history records must contain at least 50 bytes.

Transactions

TPC-B defines a single transaction that performs the following statements:

BEGIN TRANSACTION
Update Account where Account_ID = Aid:

Read Account_Balance from Account
Set Account_Balance = Account_Balance + Delta
Write Account_Balance to Account

Write to History:
Aid, Tid, Bid, Delta, Time_stamp

Update Teller where Teller_ID = Tid:
Set Teller_Balance = Teller_Balance + Delta
Write Teller_Balance to Teller

Update Branch where Branch_ID = Bid:
Set Branch_Balance = Branch_Balance + Delta
Write Branch_Balance to Branch

COMMIT TRANSACTION
Return Account_Balance

In terms of dsmDB transactions, this can be translated into 3 get operations
to retrieve the given account, teller and branch records; and 3 put operations to
update these records; an additional put operation to create a new history record.
A total of 7 operations. For this benchmark type, transactions are submitted in
batch mode, that is clients submit one transaction at a time as fast as they can;
there is no “think time” between consecutive transactions.

Scaling rules

The TPC-B specification also defines standard scaling rules. The benchmark
must contain 100’000 accounts, 10 tellers and 1 branch. These numbers can
be changed with the constraint that they are all changed proportionally. For ex-
ample, if one wants to double the number of branches, then also the number of
accounts and tellers must be doubled.

Unfortunately, this requirement is not feasible for the dsmDB. Recall the val-
idation test described in Section 2.2.5: if two transactions read a data item and

40 4.2 Benchmarks

at least one them also updates it, then one of the two transactions must be
aborted. We would experience a very high abort rate and no concurrency at all.
Having one single branch is therefore not feasible, and by increasing the number
of branches to a meaningful number we would need to have a large number of
accounts, which is also not very practical. We therefore decided to redefine our
scaling rules as follows: 100 branches, 1’000 tellers and 100’000 accounts.

Measurements

In TPC-B, clients run in parallel for a fixed amount of time, and at the end of the
benchmark execution the following measurements are reported:

Number of executed transactions: The total number of transactions that were
executed.

Number of committed transactions: The portion of executed transactions that
were reported to be committed.

Number of aborted transactions: The portion of executed transactions that were
reported to be aborted.

Average residence time: Average time needed to execute a transaction. Resi-
dence time is defined as RT = t2− t1, where t1 is a timestamp taken by the
client before executing the first get operation that started the transaction,
and t2 is a time stamp taken after receiving the result of the transaction
(either committed or aborted).

TPS: Committed transactions per second, computed as Number of committed
transactions / Benchmark execution time.

4.2.2 B-tree benchmark

To overcome the limitations of the TPC-B benchmark, we designed a benchmark
that implements searches and inserts in a B-tree. It is interesting to implement
and measure the performance of a B-tree on top of the dsmDB because:

• It has, as we will see, interesting properties that can be exploited by
dsmDB’s caching and concurrency control mechanism.

• It can be used as a “cheap” way for extending dsmDB’s query model. For
instance, range queries can be implemented on top of B-trees.

• It serves as a use-case and excellent example of building distributed data
structures on top of the dsmDB. Because of dsmDB’s shared memory pro-
gramming model, distributed data structures can be easily implemented.

41 4.2 Benchmarks

Properties of B-trees

A B-tree (complete description and algorithms can be found in [CSRL01]) is a
balanced search tree optimized for storing and retrieving data from secondary
storage. The idea is that every node maintains multiple keys and multiple chil-
dren. Usually the number of children or “branching factor” is optimized so that
a node fits in a disk page, reducing the height of the B-tree and therefore re-
ducing the number of disk I/O operations when searching or inserting elements
in the tree. This applies also in the context of the dsmDB, the number of re-
mote lookups (which is a relatively expensive operation to perform) is low. A
B-tree is kept balanced so that its minimum degree t is subject to the following
restrictions:

1. Every node of a B-tree, except the root, has at least t − 1 keys.

2. Every node of a B-tree, contains at most 2t − 1 keys.

Insertion and removal of keys is done so that the above properties always hold.
Insertion of a new key in a node that already holds 2t − 1 keys causes the node
to be split; similarly, the removal of a key from a node that contains t − 1 keys
causes a merge. The height of a B-tree is O(logt(n)) where n is the number of
items in the B-tree.

Transactions

Our B-tree implementation supports two operations:

Btree-Search(k): this operation returns the value associated to key k.

Btree-Insert(k, v): this operation stores the key-value pair (k, v) in the tree.

In terms of dsmDB transactions, both operations require at most logt(n)
reads. A Btree-Search operation starts from the root and traverses the inner
nodes of the tree until it finds the node that stores the value with the given key.
Similarly a Btree-Insert starts from the root and traverses the inner nodes of
tree until it finds the node in which to store its given value. While traversing, a
Btree-Insert operation ensures the balancing property of the tree by splitting
nodes if necessary.

Notice that the inner nodes of a tree are the most accessed data items. Every
dsmDB node with sufficient cache space will automatically cache inner nodes
in its storage, thus further reducing the number of remote lookups. Moreover,
contention is extremely low if we assume that Btree-Insert operations are
performed over randomly chosen keys (i.e., if inserts are not performed in the
order in which nodes are indexed).

42 4.3 Experiments and Results

4.3 Experiments and Results

4.3.1 DsmDB vs. Berkeley DB

In this experiment we compare the dsmDB against Berkeley DB.1 Berkeley DB
is a standalone database that can be embedded into applications; it is widely
used in industry, and in open source projects. Its design is inherited from tra-
ditional databases: it provides locking and logging mechanisms. It is similar to
the dsmDB when it comes to its interface: it provides a key-value interface, and
completely avoids SQL or any high level query languages. In this experiment we
compare dsmDB’s TPC-B benchmark against BDB’s implementation of the same
benchmark.

Experiment setup

Since Berkeley DB is a standalone database, we limit the dsmDB to run in a
single node. We also run 3 acceptors and the Consistency Manager. The Berkeley
DB storage layer in the acceptors, is setup as a data store and does not need
locking because only one process accesses the database at the time. Moreover,
the acceptors are configured so that disk writes are performed asynchronously.

The Berkeley DB benchmark needs to use the transactional interface, there-
fore logging and locking is required. To make the results comparable, the logging
subsystem is configured so that disk writes are performed asynchronously.

We first run the dsmDB and fix the duration of the benchmark to 1 minute.
We then execute the same number of transactions on Berkeley DB. In the results
we compare both throughput and abort rate. The benchmark is repeated for 1,
2, 4, and 8 concurrent number of processes accessing the database.

Experiment results

Figure 4.2 shows the throughput measured in transactions per second over an
increasing level of concurrency. The graph shows that the performance char-
acteristics of Berkeley DB and the dsmDB are very different. Berkeley DB per-
forms almost 3 times better than the dsmDB in the case of 1 client accessing the
database; whereas the dsmDB performs much better in the case of concurrent
clients accessing the data.

There are several factors that explain these differences. In Berkeley DB, disk
becomes immediately the bottleneck as soon as there are two concurrent clients

1http://www.oracle.com/database/berkeley-db/index.html

43 4.3 Experiments and Results

0

1000

2000

3000

4000

5000

6000

7000

1 2 4 8

T
P

S

Client Processes

dsmDB

dsmDB SP

Berkeley DB

Figure 4.2: Throughput comparison between Berkeley DB and dsmDB.

accessing it. Each transaction executing in Berkeley DB potentially requires sev-
eral filesystem operations: seeking to the database file and reading it; seeking
to the log file and writing it. In fact, the typical way to optimize throughput in
BDB is to place log and database files on two different disks.

A dsmDB transaction is first executed in memory, sent to the Consistency
Manager for validation where it gets batched together with other concurrent
transactions, and finally, the transaction batch is written on stable storage in
the acceptors. Acceptors use Berkeley DB as storage layer without transactional
guarantees; no locking nor logging is required in the acceptors. The number
of filesystem operations is reduced because: (1) transactions are batched and
written to disk in sequential order; and (2) there is no log file to write.

Figure 4.3 shows abort rates reported after the same benchmark execution.
This shows that another limiting factor is the locking mechanism. The lock
granularity of Berkeley DB is at page-level. To increase I/O performance, the
page size is typically the same as the size of a disk block. Locking can be a
considerable overhead as transactions are synchronized; transactions might be
aborted because of deadlocks or timeouts when acquiring locks.

DsmDB nodes perform one operation (get, put or commit) at a time. Thus
completely avoiding locking and deadlock detection mechanisms. The concur-
rency control mechanism, as explained in Chapter 2, works over multiple ver-
sions of data items and is optimistic.

44 4.3 Experiments and Results

0%

10.0%

20.0%

30.0%

40.0%

1 2 4 8

A
b

o
rt

 r
a
te

Client Processes

dsmDB

dsmDB SP

Berkeley DB

Figure 4.3: Abort rate comparison between Berkeley DB and dsmDB.

4.3.2 TPC-B benchmark with multiple nodes

In this benchmark we evaluate the TPC-B benchmark over multiple dsmDB
nodes. We run the TPC-B over an increasing number of clients and increasing
number of nodes.

Experiment setup

We run the TPC-B benchmark over 2, 4, and 8 nodes and repeat the experiments
for 1, 2, 4 and 8 clients per node. Clients first connect to the their dsmDB node
and simultaneously start submitting transactions for a total of 4 minutes. In each
run the length of the commit buffer in the Consistency Manager is set equal to
the number of nodes. The replication factor is set to 2 — each data item is
replicated at 2 two distinct nodes.

Experiment results

Figure 4.4 shows the throughput in the TPC-B benchmark for all of the config-
urations we considered. In particular each line represents committed transac-
tions per second over an increasing number of clients per node. In general we
observe that by increasing the number of clients, throughput saturates faster on
the configuration with a low number of nodes. Although throughput improves
as we increase the number of nodes, we do not observe perfect scalability (i.e.,

45 4.3 Experiments and Results

throughput does not double when we double the number of nodes). There are
many reasons that explain the performance behavior shown in this benchmark:

• A 2-node configuration starts with an advantage: since the replication fac-
tor is 2, the data set is fully replicated and nodes never need to fetch items
remotely.

• As we will show, the workload of the TPC-B benchmark has high con-
tention. Moreover, it is a write-intensive benchmark: every transaction
performs 4 writes, 3 updates, and 1 append.

0

3250

6500

9750

13000

1 2 4 8

T
P

S

Clients per Node

2 Nodes

4 Nodes

8 Nodes

Figure 4.4: Throughput in the TPC-B benchmark over multiple nodes.

Recall from Section 4.2.1 that there are 100 branch records in the TPC-B
benchmark, and that before executing a transaction clients choose a branch
record randomly. Consider the 8 nodes configuration running 8 clients per node.
In this case, there is a total of 64 clients running in parallel, therefore it is very
likely that distinct clients choose the same branch record. In fact, as shown in
Figure 4.5, as we increase the number of clients we observe that abort rates
increases rapidly.

Figure 4.6 shows latency versus throughput for each configuration. To give
a better idea of how the system scales, we select those configurations that bring

46 4.3 Experiments and Results

0%

10.00%

20.00%

30.00%

40.00%

1 2 4 8

A
b

o
rt

 R
a
te

Clients per Node

2 Nodes

4 Nodes

8 Nodes

Figure 4.5: Abort rate in the TPC-B benchmark over multiple nodes.

0

1000

2000

3000

4000

0 3000 6000 9000 12000

L
a
te

n
c
y
 (
m

ic
ro

s
e
c
o

n
d

s
)

TPS

2 Nodes

4 Nodes

8 Nodes

Figure 4.6: Latency versus throughput in the TPC-B benchmark over multiple
nodes.

47 4.3 Experiments and Results

the system at peak load but do not saturate the system (i.e., increasing the num-
ber of clients, increases latency but not throughput). Scalability at peak load
is shown in Figure 4.7. In particular it compares: (1) throughput as we have
measured it in the 2, 4, and 8 nodes configurations (TPS); (2) throughput as
if all transactions would commit, same workload without contention (TPS no
aborts); and (3) throughput as if the system would scale linearly a linear line
showing what our system should achieve if it was perfectly scalable (TPS perfect
scalability).

Figure 4.7 shows that contention in the workload is indeed a factor that af-
fects scalability, but it is not the only one. We attribute the scalability gap also to
the performance of our Paxos implementation. Recall that the length of the com-
mit buffer in the Consistency Manager is set to the number of nodes. Therefore,
as we increase number of nodes, the commit buffer increases too, and since the
workload is write-intensive, every transaction must be broadcast. Table 4.1 sum-
marizes the throughput, measured in delivered values per second, of our Paxos
implementation.2 For instance, consider an 8-node configuration with 4 clients
per node. In such a configuration, the commit buffer is sent through Paxos when
it contains around 4000 bytes (8 transactions). From Table 4.1 we get that Paxos
can deliver at most 8 ∗ 1800 = 14400 transactions per second. This means that
an 8-node configuration reaches the limit of our Paxos library. Write-intensive
workloads are easily limited by the performance of Paxos.

Value Size (bytes) Values / sec
1000 3800
2000 2300
4000 1800
8000 1300

Table 4.1: Delivery rate of Paxos for different value sizes.

To conclude this experiment, we show in Figure 4.8 the throughput in the
TPC-B benchmark using Stored Procedures. By using Stored Procedures the
throughput increases up to 10%. The performance characteristics remain the
same, with the only difference that the system saturates “earlier”, with fewer
clients.

2Marco Primi, LibPaxos Performance Analysis, http://libpaxos.sourceforge.net/files/Primim-
SPLab08.pdf

48 4.3 Experiments and Results

0

5500

11000

16500

22000

2 3 4 5 6 7 8

T
P

S

Nodes

TPS

TPS no aborts

TPS perfect scalabilty

Figure 4.7: Scalability in the TPC-B benchmark over multiple nodes.

Clients x Node Clients Nodes Transactions Committed Response Time Aborted TPS

1 2 2 802369 798375 596 3994 3327

2 4 2 1273767 1242732 751 31035 5178

4 8 2 1370024 1287815 1397 82209 5366

8 16 2 1467661 1285003 2610 182658 5354

1 4 4 950359 935933 1007 14426 3900

2 8 4 1531124 1452478 1250 78646 6052

4 16 4 2125505 1882085 1801 243420 7842

8 32 4 2515469 1963459 3045 552010 8181

1 8 8 1357214 1309742 1411 47472 5457

2 16 8 2192986 1975000 1746 217986 8229

4 32 8 3438877 2775259 2229 663618 11564

8 64 8 4537026 2983841 3376 1553185 12433

0

3250

6500

9750

13000

1 2 4 8

T
P

S

Clients per Node

2 Nodes

4 Nodes

8 Nodes

0%

10.00%

20.00%

30.00%

40.00%

1 2 4 8

A
b

o
rt

 R
a
te

Clients per NodeFigure 4.8: Throughput using Stored Procedures in the TPC-B benchmark over
multiple nodes.

49 4.3 Experiments and Results

4.3.3 B-tree benchmark results

In this experiment we evaluate our B-tree on top of the dsmDB implementation.
The workload contains 50% B-tree insert operations and 50% B-tree search op-
erations. As opposed to the TPC-B benchmark, the B-tree benchmark is not write
intensive, as half of the transactions are read-only.

Experiment setup

The B-tree benchmark consists of executing 2’000’000 operations, 1’000’000 in-
serts and 1’000’000 lookups. We repeat the experiment for 4, 6, and 8 nodes. We
fixed the number of clients per node to 6 (we determined that 6 is the number
of clients per node before saturation).

Clients using the B-tree insert fixed-size key-value pairs. We use 8 bytes for
the key and 100 bytes for the value. The minimum degree of the inner nodes of
the B-tree is 12, therefore each node holds at most (2 · 12)− 1 = 23 “pointers”
to values. The size of an inner node is around 500 bytes. At the end of the
benchmark the size of the database is (1000000 · 100bytes) + ((1000000/24) ·
500bytes) = 115MB. The replication factor is set to 2, therefore at the end of
the benchmark the system stores around 230MB of data. Every node is limited
to use at most 100 MB of memory thus, limiting the number of cached items at
each node. At the end of the benchmark, the height of the B-tree is logt(n) =
log12(1000000) ≈ 5.5. In the worst case a lookup requires between 5 and 6
reads, and the worst case insert requires at most 5 to 6 reads and writes (multiple
writes are required if multiple nodes need to be split).

Experiment results

Figure 4.9 shows the number of operations per second measured on 4, 6, and
8 nodes. As opposed to the TPC-B benchmark, results gathered on the B-tree
benchmark are more linear with respect to the number of nodes. The dsmDB
shows a scalable behavior (at least up to 8 nodes) because of: (1) low con-
tention, and (2) the presence of read-only transactions.

As Figure 4.10 demonstrates, we measured abort rates under 1% on all of
the configurations we considered. Scalability comes also from the fact that half
of the transactions are read-only. These kind of transactions always commit,
and need not be sent through Paxos. Moreover, since inner-nodes are the most
frequently accessed items of the tree, execution is sped up when there is enough
memory for caching the inner-nodes.

50 4.3 Experiments and Results

Nodes 4 6 8

CL x Node

Committed

Aborted

Total

Max Duration

OPS / sec

Abort rate

6 6 6

1991870 1988560 1984215

8114 11456 15753

1999984 2000016 1999968

149352127 102714534 82060966

13337 19360 24180

0.41% 0.57% 0.79%

0

6000

12000

18000

24000

30000

4 6 8

O
p

e
ra

ti
o

n
s
 /

 s
e
c

Number of Nodes

Btree

Btree perfect scalability

Nodes 4 6 8

CL x Node

OPS / sec

6 6 6

13337 20005 26673

Figure 4.9: Throughput of the B-tree measured in operations per second.

0%

0.25%

0.5%

0.75%

1%

4 6 8

A
b

o
rt

 R
a
te

Number of Nodes

Btree

Figure 4.10: Abort rates in the B-tree benchmark.

Chapter 5

Conclusions

5.1 Summary and discussion

We discussed in Chapter 1 several issues in traditional database management
systems. Our impression is that performance in these systems is limited by those
mechanisms that avoid “bad things” to happen. Moreover, these systems were
designed to perform on centralized architectures. These considerations motivate
the study of distributed database architectures.

In Chapter 2 we discussed the dsmDB approach. The dsmDB is a distributed
system in which each node shares a portion of its memory. Large data sets are
stored in the aggregated main-memory of a cluster of machines. The dsmDB
eliminates the need of traditional expensive mechanisms like database images
on disk, and pessimistic concurrency control mechanisms. Transactions in the
dsmDB are first executed over an in-memory storage layer that guarantees only
weak consistency, and then globally validated to ensure stronger consistency.
We also described a procedure for recovering the state of crashed nodes from
the state of non crashed nodes. Similarly, we described a procedure that allows
incremental expansion of the system.

In Chapter 3 we described some of the implementation details of our dsmDB
prototype. We described the Paxos algorithm that provides our fault-tolerant
total order broadcast primitives. Paxos is the only component of the dsmDB that
relies on stable storage. But it makes efficient use of disk: it writes batched
transaction updates sequentially.

In Chapter 4 we evaluated the performance of the dsmDB. We analyzed the
performance over two distinct benchmarks: an implementation of the standard
TPC-B benchmark and an implementation of a distributed B-tree on top the
dsmDB.

We compared a 1 node dsmDB configuration against the performance of

51

52 5.2 Future work

Berkeley DB, an embedded database extensively used in practice. We found
that Berkeley DB performs better when only 1 process accesses the database at
a time. Mechanisms such as logging, synchronization, and deadlock detection
become problematic as soon as two processes access the database concurrently.
We have also shown that the performance of a single dsmDB node is comparable
to the performance of Berkeley DB.

We also ran the TPC-B benchmark over multiple dsmDB nodes. We found
that scalability is limited by both contention and the write-intensive nature of
the TPC-B benchmark. This benchmark represents a worst-case scenario for
the dsmDB. Since every transaction updates the state of database, every single
transaction has to be broadcast.

The dsmDB performs much better in the B-tree benchmark. In this bench-
mark the dsmDB has shown a scalable behavior due to the presence of read-only
transactions. Read-only transactions in the dsmDB are optimized because they
need not be broadcast at commit time and never abort.

5.2 Future work

A number of areas, of both theoretical and practical interest, need future work.
We identify the following research lines:

• An extended version of the dsmDB approach that allows deployment on
multiple and geographically distributed clusters. Broadcasting primitives
should be replaced by multicast primitives, and the protocol should be aug-
mented to guarantee high-availability despite crashes or outages of entire
clusters.

• Investigate other consistency criteria that can be implemented on top of
a distributed shared memory mechanism that provides only weak level of
consistency.

• A proof of correctness of the concurrency control mechanism given in Sec-
tion 2.3. Such a proof would demonstrate that the protocol meets the
definition of one-copy serializability and allows to execute only schedules
that meet the definition.

The dsmDB prototype presented in Chapter 3 can be improved in a number of
ways:

• We have seen that scalability is an issue when it comes to write-intensive
workloads. The performance problem can be reduce as discussed in [Pri09].

53 5.2 Future work

• Recovery and Reconfiguration procedures have not been implemented in
our prototype.

• Data sets in the dsmDB are stored in a single domain. Multiple domains
would allow to perform get and put operations on distinct tables.

• The query interface of the dsmDB can be augmented with range queries.
For instance, we already mentioned one way to address this issue in Sec-
tion 4.2. Implementing a B-tree (or similar) data structure on top of the
dsmDB represents a flexible way to extend the query interface. However,
embedding such functionality directly in the dsmDB might lead to better
results in both performance and memory overhead for keeping the data
structure itself.

54 5.2 Future work

Bibliography

[AMS+07] Marcos K. Aguilera, Arif Merchant, Mehul Shah, Alistair Veitch, and
Christos Karamanolis. Sinfonia: a new paradigm for building scal-
able distributed systems. In SOSP ’07: Proceedings of twenty-first
ACM SIGOPS symposium on Operating systems principles, pages 159–
174, New York, NY, USA, 2007. ACM.

[BHG86] Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. Con-
currency control and recovery in database systems. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[BM02] Andrei Broder and Michael Mitzenmacher. Network applications of
bloom filters: A survey. In Internet Mathematics, pages 636–646,
2002.

[CSRL01] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E.
Leiserson. Introduction to Algorithms. McGraw-Hill Higher Educa-
tion, 2001.

[FP08] Nelson Duarte Filho and Fernando Pedone. dsmdb: a distributed
shared memory approach for building replicated database systems.
In SDDDM ’08: Proceedings of the 2nd workshop on Dependable dis-
tributed data management, pages 11–14, New York, NY, USA, 2008.
ACM.

[HJK+07] Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner
Vogels. Dynamo: amazon’s highly available key-value store. In In
Proc. SOSP, pages 205–220, 2007.

[Lam01] Leslie Lamport. Paxos made simple. ACM SIGACT News, 32(4):18–
25, December 2001.

[LGK93] Charles Levine, Jim Gray, and Walt Kohler. The evolution of tpc
benchmarks: Why tpc-a and tpc-b are obsolete, 1993.

55

56 Bibliography

[NL91] Bill Nitzberg and Virginia Lo. Distributed shared memory: A survey
of issues and algorithms. Computer, 24(8):52–60, 1991.

[PGS03] Fernando Pedone, Rachid Guerraoui, and André Schiper. The
database state machine approach. Distrib. Parallel Databases,
14(1):71–98, 2003.

[Pri09] Marco Primi. Paxos made code. Master thesis submitted to the Fac-
ulty of Informatics of the University of Lugano, 2009.

[SMA+07] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Hari-
zopoulos, Nabil Hachem, and Pat Helland. The end of an architec-
tural era: (it’s time for a complete rewrite). In VLDB ’07: Proceedings
of the 33rd international conference on Very large data bases, pages
1150–1160. VLDB Endowment, 2007.

[TPC94] TPC. TPC Benchmark B: Standard specification (revision 2.0), 1994.

	Contents
	List of Figures
	List of Tables
	Introduction
	Problem statement
	Building blocks
	Design considerations
	Minimizing disk use
	Synchronization
	High availability
	Incremental recovery
	Incremental expansion

	Related Work
	Thesis outline

	The dsmDB approach
	System Model
	System Architecture
	Clients
	DsmDB nodes
	Transaction Manager
	Storage
	Consistency Manager

	Concurrency control
	One-copy serializability
	Transaction execution
	Storage layer consistency
	Session consistency

	Partitioning and Replication
	Hash based
	Fully replicated key set
	Compressed mapping
	Distributed mapping
	Memory overhead comparison

	Recovery
	Reconfiguration

	Implementation
	The dsmDB prototype
	Paxos
	Protocol
	Termination
	Paxos and the dsmDB

	In-Memory Storage
	Validation test
	Stored Procedures

	Performance Evaluation
	Infrastructure
	Benchmarks
	TPC-B benchmark
	B-tree benchmark

	Experiments and Results
	DsmDB vs. Berkeley DB
	TPC-B benchmark with multiple nodes
	B-tree benchmark results

	Conclusions
	Summary and discussion
	Future work

	Bibliography

