Abstract

Grid workflow management systems coordinate multiple job submissions over heterogeneous Grid resources. They feature visual programming environments to give scientist a high-level view over distributed computations composed of Grid services.

This brief introduction to the field of scientific and Grid workflows includes a survey of selected workflow management tools and outlines current research trends.

Swiss Grid School SGS‘09 @ GPC’09, Geneva, Switzerland
Cesare Pautasso

Ph.D. at ETH Zürich (2004)
Post-Doc at ETH Zürich in the Systems (IKS) Group
 • Software: JOpera: Process Support for more than Web services
 http://www.jopera.org/

Researcher at IBM Zurich Research Lab (2007)
Assistant Professor at the new Faculty of Informatics, University of Lugano (USI), Switzerland (since September 2007)
 • USI Representative in the SwiNG Assembly (since 2007)
 • Grid Workflow Working Group Lead (since 2007)

More Information: http://www.pautasso.info/
Follow me on: http://twitter.com/pautasso/
Acknowledgements

Some material contained in this tutorial was adapted from slides originally published by:

Gustavo Alonso
Win Bausch
Ewa Deelman
Ian Foster
Yolanda Gil
Carole Goble
Roy Grønmo
Thomas Heinis
Rajesh Kalyanam
Francesco Lelli
Omer F. Rana
Heiko Schuldt
Frank Terpstra
Outline

Why Workflow Management on the Grid?
Discussion: Scientific vs. Grid vs. Business Workflows
 • Some Application Examples
Workflow Modeling Languages and Tools Overview
 • Grid Workflow Language Patterns
Running Workflows on the Grid
 • JOpera: Scientific Workflow for Eclipse
 • Workflows and Provenance
Why Workflow Management on the Grid?
Kinds of Grid Computation

One Job Submission

Parameter Sweep
Scientific and Grid Workflow

1. **Cell population**
 - **Condition A**
 - **Condition B**

Data Preprocessing
- Extract raw spot intensities
- Image processing
- Determine expression pattern

Clustering
- MicroArray Scanner

Data Analysis
- Variability and error assessment
- Determine parameters for error model
- Significance assessment
- Likelihood for differential expression for each gene

Workflow Steps
- Annotate and normalize data
- Variability and error assessment
- Significance assessment

1 spot = 1 gene
- **Expression level:**
 - Green: A > B
 - Red: A < B
 - Black: A = B
in vitro

Condition A

wet lab processing

Condition B

Cell population

in silico

MicroArray Scanner

1 spot = 1 gene
Expression level:
Green: A > B
Red: A < B
Black: A = B

Extract raw spot intensities

Image processing

Annotate and normalize data

Determine parameters for error model

Data Preprocessing

Variability and error assessment

Significance assessment

Determine expression for each gene

Clustering

Determine Expression Pattern

Scientific and Grid Workflow (Cesare Pautasso)
Copy & Paste
between different Websites

(Shell) Scripts
Tcsh, Bash, Makefiles, Python, Perl...

Programming
Java, C++, C#, Fortran...

Workflows
Graphical, Drag & Drop and Connect Environments
Vision for Scientific and Grid Workflows

Make it easy to build Grid applications composed of **multiple jobs**

“Provide the scientist with a platform that takes care of all data handling and record keeping chores so that the user can concentrate on the **science** and not **computer science**.”
Some (Scientific) Workflow Management Systems

<table>
<thead>
<tr>
<th>Askalon</th>
<th>GWFE</th>
<th>Pegasus</th>
<th>Triana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bigbross Bossa</td>
<td>GWES</td>
<td>Pipeline Pilot</td>
<td>Trident</td>
</tr>
<tr>
<td>BioPipe</td>
<td>ICENI</td>
<td>P-GRADE</td>
<td>Twister</td>
</tr>
<tr>
<td>BPMN</td>
<td>Inforsense</td>
<td>PowerFolder</td>
<td>Ultimus</td>
</tr>
<tr>
<td>Breeze</td>
<td>JIGSA</td>
<td>Ptolemy II</td>
<td>Versata</td>
</tr>
<tr>
<td>Carnot</td>
<td>JOpera</td>
<td>Savvion</td>
<td>Viztrails</td>
</tr>
<tr>
<td>Con:cern</td>
<td>Kepler</td>
<td>Seebeyond</td>
<td>wftk</td>
</tr>
<tr>
<td>DAGMan</td>
<td>Karajan</td>
<td>SCIRun</td>
<td>XFlow</td>
</tr>
<tr>
<td>DiscoveryNet</td>
<td>Oakgrove's reactor</td>
<td>ScyFLOW</td>
<td>YAWL</td>
</tr>
<tr>
<td>Dralasoft</td>
<td>OSIRIS</td>
<td>SDSC Matrix</td>
<td>Wildfire</td>
</tr>
<tr>
<td>GEL</td>
<td>OSWorkflow</td>
<td>SHOP2</td>
<td>WFEE</td>
</tr>
<tr>
<td>GridAnt</td>
<td>OpenWFE</td>
<td>Taverna</td>
<td>WS-BPEL</td>
</tr>
<tr>
<td>Grid Job Handler</td>
<td></td>
<td>Teuta (UML)</td>
<td>ZBuilder</td>
</tr>
</tbody>
</table>
Scientific vs. Grid vs. Business Workflows
The Origins: Business Process Management

who has to do what, when
The Origins: Business Process Management

• A business process describes key procedures within an organization. They involve:
 • multiple steps
 • numerous people
 • large amounts of resources

• In large business organizations there are many factors that increase the complexity of the business processes:
 • processes are not well documented
 • conformance to rules not guaranteed
 • people lack information about context
 • company lacks monitoring tools
 • steps, people and resources are not properly coordinated

• Workflow Management Systems try to address these problems by automating the coordination aspects of a business process: who has to do what, when, and with which software tools.
Business Workflows

“The automation of a business process where documents, information to be processed or tasks to be carried out are passed from one participant to another following a set of procedural rules,”

Workflow Management Coalition (WfMC, 1993)
Scientific Workflows

“are networks of analytical steps that may involve, e.g., database access and querying, data analysis and mining, and many other steps including computationally intensive jobs submitted to high performance clusters and Grids”

Bertram Ludäscher
Modeling Workflows

- **Activity**
- **Data**
- **User**
- **Software Tool**

Control Flow

Data Flow

activity 1 → activity 4
Business Workflows

1. User

Activity

Control Flow

Software Tool

User

Activity

activity

0

1

2

3

4

5

6
Scientific Workflows

- **Activity**
- **Data**
- **Software Tool**
- **Control Flow**
- **Data Flow**

Diagram showing the flow of activities and data with connections between nodes.
Similarities:
Are scientists doing e-Business?

Capturing knowledge/best practices
Capture business processes within a company

Capture scientific experiments

Executable Models for Repeated Execution
Run a well defined procedure many times

Ensure that an experiment can be reproduced

Incorporate human decision in the process
Can we always do straight-through processing?

Hard to achieve full automation
Differences:
Do scientists need business transactions?

Rate of change
Changing business procedures requires management approval
Exploratory scientific processes require high flexibility

Which kind of data?
Travel reservations, Loan applications
Large protein sequence databases, Astronomy image catalogs

What is the ultimate goal?
Making profit
Making science
Scientific vs. Grid Workflows

Scientific workflows emphasize the design of virtual experiments:

- Data flow models
- Reusable “scientific computing” component library
- Interactive debugging, monitoring and steering
- Data provenance and lineage tracking for reproducibility
- Model versioning for exploratory customization

Grid workflows focus on the large-scale execution of scientific workflows:

- Mapping and adaptation to a dynamic run-time environment
- Provide access to shared workflows as a Grid service
- Parameterized Execution
- Centralized vs. Distributed Execution Architectures
- Fault Tolerance
- Optimization
Scientific Workflows on the Grid

• How can Scientific WF benefit from the Grid?
 1. Leverage underlying Grid middleware:
 • Resource Management
 • Job Scheduling
 • Large Data Transfers (GridFTP) between Activities
 2. Improved QoS based on the workflow model
 • Grid resource reservation
 • Data replication
 • Data placement
 • Fault Tolerance
Example

http://www.jopera.org/
A Web Service-Enabled Workflow System for Climate Modeling Data Processing in TeraGrid

Rajesh Kalyanam
Lan Zhao
Taezoon Park
Sebastien Goasguen
Architecture

Application

Desktop Application
Web Portal

Workflow Engine

JOpera

Workflow Components

Data Components

Metadata Query
Data Discovery
Data Transfer
Data Transformation

Computation Components

Globus Job
Condor Job
Models / Tools

Purdue Data Management System

OPeNDAP
THREDDS
SRB/MCAT

Remote Data Proxies

Data Proxy

Remote Datasets

Climate Modeling

Local Datasets

LARS
PTO
NWS

Computation Middleware

Condor-G
Globus

Computation Resources

Local Clusters
TeraGrid
Portal

This is a collection of multispectral and hyperspectral images, that are used for educational and research purposes at Purdue University. They are processed at the Laboratory for Applications of Remote Sensing.

Home Directory: /demozone/home/lars.itap/LARSDATA/CDR_189

File Details: /demozone/home/lars.itap/LARSDATA/CDR_189/L7010904_022_032_032.lan

Although these data have been processed successfully on a computer system at Purdue University, no warranty expressed or implied is made by Purdue University regarding the use of the data on any other system, nor does the act of distribution constitute any such warranty.
Workflow Model

From Rajesh Kalyanam
Workflow Results
Workflow Lifecycle
Workflow Lifecycle

- Modeling
 - Scientific Computation
 - Simulation

- Workflow Execution
 - Workflow Model
 - Workflow Instances
 - Log Analysis
Workflow Modeling Methodologies
Bottom up Composition

4. Share and Publish it as Web Service

3. Run, Test, and Debug the execution within the same modeling environment

2. Build a workflow using a drag, drop and connect **modeling** environment

1. Select components from a **library**
 a. Lookup services in a public registry
 b. Import from external Web service (WSDL)
 c. Search the standard library
Top down Decomposition

1. Define a **goal** and Draw a *skeleton of the workflow* that satisfies it

2. Refine it and **Bind** services into it:
 - Search for existing matching services
 - Build missing services (if necessary)
 - Add required data transformations

3. Run, Test, and Debug the execution **within the same modeling environment**

4. Share and Publish it as Web Service
Iterative Composition

- Change, Rediscover
- Build New services
- Discover services
- Manage
- Deploy
- Run, Test
- Compile
- Check
- Refactor
- Model
- Service Composition
Workflow Modeling Languages and Tools Overview
HeNCE - The Ancestor of Grid Workflows?

Extended UML Activity Diagrams

From Roy Gronno
8.5.2009

Scientific and Grid Workflow (Cesare Pautasso)

I have realized that the voxel size is incorrect in the z-axis. The reparameterization of the vtk/Volume module reflects the connection here. The proper parameterization was initially found via bulk change to the z-axis parameter stepping from 1.0 to 3.5in steps of 0.25. It was later verified that the proper spacing should be 2.75.
Grid Workflow Language Patterns
<table>
<thead>
<tr>
<th>Workflow Pattern</th>
<th>Variants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple Parallelism</td>
<td>Implicit, Explicit</td>
</tr>
<tr>
<td>Data Parallelism</td>
<td>Static, Dynamic</td>
</tr>
<tr>
<td>Pipelining</td>
<td>Best Effort, Blocking, Buffered, Superscalar, Streaming, Hybrid, Synchronized, Out of Order</td>
</tr>
</tbody>
</table>
Modeling Simple Parallelism

Data Flow, Graph Based

SCIRun
Kepler
Triana
Modeling Simple Parallelism

Control Flow, Graph Based
Modeling Simple Parallelism

Control Flow, Block Based

BPMN

Sequence

Flow

WS-BPEL
Modeling Data Parallelism

Data Flow, Graph Rewriting

Static or Dynamic

Triana
Taverna
JOpera
Modeling Data Parallelism

Control Flow, Block Based, Dynamic

```
Sequence
  ParallelForEach
    T
```

WS-BPEL
AGWL
Karajan
GEL
Modeling Pipelined Execution
Pipelining Semantics
Best Effort Pipelined Execution

Drop data elements on pipeline collisions

Advantages:
- Simplified implementation
- Some applications may tolerate data loss

Problem:
- Downsampling is non deterministic
Blocking Pipelined Execution

Tasks are blocked if successors are busy

Advantages:
- Avoid data loss in the pipeline

Problem:
- Pipeline speed limited by slowest task
- Data may be lost before it enters the pipeline
Buffered Pipelined Execution

Tasks are decoupled by buffers

Advantages:
- Collisions are prevented
- Best applied to tasks having variable speed

Problem:
- Buffer capacity is limited
 (Blocking still needed – Hybrid semantics)
Streaming Pipelined Execution

Tasks exchange data while running

Advantages:

• Suitable for a distributed (P2P) engine

Problems:

• Shifts complexity from the workflow engine to the tasks
• Tasks exchange data while running
• Workflow/Task interface more complex
Running Workflows on the Grid
8.5.2009 64 Scientific and Grid Workflow (Cesare Pautasso)

Workflow Model

Act 1 → Act 2 → Act 4 → Act 7 → Act 5 → Act 6

Basic Architecture

Workflow Management System

Adapters

Grid Schedulers

Grid Resources
Scientific and Grid Workflow (Cesare Pautasso)

Workflow Model

- Act 1
- Act 2
- Act 3
- Act 4
- Act 5
- Act 6
- Act 7

Workflow Management System

- Workflow Users
- Workflow Participants

Workflow Modelers

Scientific Software Developers

Adapters

Grid Schedulers

Wrapper Developers

Grid Resources
Standard APIs

From WFMC Workflow Reference Model, 1998
Wrappers and Grid Applications

Workflow Management System

Worklist Handler

Wrapper

Application X

Grid Scheduler

Application X

Application X

Application X
Wrappers and Legacy Applications

• The workflow engine is also in charge of connecting the different scientific applications.
• These applications do not have to talk directly to each other, they do it through the workflow engine.
• Most engines target a service oriented applications for which they provide very good connectivity through standardized protocols. Otherwise, the interface adapters must be developed on a case by case basis (as a last resort manual integration may be required!)
• For legacy application, a wrapper must be built so that the workflow engine can communicate with the application. The wrapper can be a simple relay of commands and data, or a complete translation program implementing functionality not present in the legacy application.
• For most Grid applications, the interaction takes place through a Grid scheduler, which is responsible for managing the distributed execution of the applications.
Run-time Abstraction Levels
Run-time Abstraction Levels

- A design-time workflow model needs to be mapped across different abstraction levels in order to be executed at run time.
- User request the execution of a new workflow instance.
- The abstract workflow is mapped to an executable instance by:
 - Finding suitable service implementations and binding them to the tasks
 - Rewriting the workflow graph based on a set of refinement rules
 - Planning required data staging, registration, placement, replication and transfer operations
- Each task of the resulting executable workflow is then submitted to a Grid resource manager so that it can be scheduled on suitable resources
- The mapping can be done:
 - when the workflow is started at instantiation time (statically)
 - incrementally as the workflow runs (adaptive execution with dynamic late binding)
Example: Binding with WS-BPEL

- Activity
 - composition time
 - deployment time
 - invocation time

- set of services (BPEL partner link type)
 - one service (WSDL port type)
 - service end point (port)
Workflow Binding Lifecycle

- Library Registration time \((\text{classification})\)
- Modeling time \((\text{static early binding})\)
- Compilation time \((\text{blacklisting})\)
- Deployment time \((\text{customization})\)
- Startup time \((\text{testing})\)
- Task Execution time \((\text{dynamic late binding})\)
- Failed invocation time \((\text{rebind on retry})\)
JOpara
Scientific Workflow for Eclipse

http://www.jopera.org/
- **High Level Workflow Language**
 - Data and Control Aspects (Visual Representation)
 - Recursion, Iteration, Parallelism and Pipelining

- **Open and Extensible Component Model**
 - Run existing code without changes
 - Synchronous, Asynchronous, and Streaming interaction
 - Web services support (Axis, WSIF)
 - Secure access to remote file systems and hosts (SSH)
 - Easy to integrate with existing schedulers (e.g. Condor)
High Level Workflow Language

- Data and Control Aspects (Visual Representation)
- Recursion, Iteration, Parallelism and Pipelining

Open and Extensible Component Model

- Run existing code without changes
- Synchronous, Asynchronous, and Streaming interaction
- Web services support (Axis, WSIF)
- Secure access to remote file systems and hosts (SSH)
- Easy to integrate with existing schedulers (e.g. Condor)

Strong Eclipse Foundation

- Platform Independent (Eclipse/Java)
- Flexible, Extensible, Modular and Embeddable
JOpera Visual Composition Language

Workflows are modeled using multiple viewpoints:

1. Data Flow Graph
 - ISBN
 - QueryBookPrice
 - Price
 - Amount
 - CurrencyConvert

2. Control Flow Graph
 - QueryBookPrice
 - CurrencyConvert
 - Exception Handler

3. Service Bindings
 - QueryBookPrice
 - Amazon.com
 - CurrencyConvert
 - XE.com
JOpera Example: Doodle Map Mashup

Setup a Doodle with Yahoo! Local search and visualize the results of the poll on Google Maps
Doodle Map Mashup Architecture

Web Browser

Workflow Engine

RESTful Web Services APIs

RESTful API

GET

POST

GET
Extensible JOpera Component Model

Combine in the same workflow jobs implemented using an open and extensible set of technologies

JOpera Workflow

- WSDL
- Java
- Human
- XML
- SQL
- SSH
- Condor

- Snippets
- Methods
- XSLT
- XPath
Sharing Workflows as a Service

JOpera processes are automatically published to clients using a variety of access protocols.

Web Clients WS Clients Eclipse RCP Clients

REST WSDL Java

JOpera Workflow

WSDL Java Human XML SQL SSH Condor
Workflows and Provenance
Lineage in Scientific Workflows

Scientists consider the “capture and generation of provenance information as a critical part of the workflow-generated data”

“Sharing workflows is an essential element of education, and acceleration of knowledge dissemination.”

Ewa Deelman et al.
Where does this picture come from?

This photo was taken on July 21, 1981, when the Voyager 2 spacecraft was 33.9 million km from the Saturn planet.
Would you buy a horse without this?
Lineage in Spreadsheets

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>C</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>01-Jan</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>01-Jan</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>01-Feb</td>
<td>20</td>
<td>-50</td>
<td>20</td>
<td>01-Feb</td>
<td>-60</td>
<td>-60</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>01-Mar</td>
<td>30</td>
<td>30</td>
<td>-60</td>
<td>01-Mar</td>
<td>30</td>
<td>30</td>
<td>-60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>01-Apr</td>
<td>40</td>
<td>77</td>
<td>40</td>
<td>01-Apr</td>
<td>40</td>
<td>77</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>100</td>
<td>67</td>
<td>11</td>
<td>178</td>
<td>-8</td>
<td>57</td>
<td>11</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>12.90994</td>
<td>52.6205</td>
<td>43.55361</td>
<td>36.36135</td>
<td>58.67424</td>
<td>56.91146</td>
<td>43.55361</td>
<td>53.04644</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>214.3613</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>141.6387</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>72.7227</td>
<td></td>
<td>86</td>
<td>99</td>
<td>111</td>
<td></td>
<td></td>
<td>106.0920</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>15.2773</td>
<td></td>
<td>26.2773</td>
<td>38.2773</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>-18.0929</td>
<td></td>
<td>-7.09289</td>
<td>4.907114</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>59.55324</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>
Lineage in Spreadsheets

Microsoft Excel - Book2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>SUM(number1, [number2] ...)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>30-Jan</td>
<td>10</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>20</td>
<td>-50</td>
<td>20</td>
<td>01-Feb</td>
<td>-68</td>
<td>-60</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>30</td>
<td>30</td>
<td>-60</td>
<td>30-Mar</td>
<td>30</td>
<td>30</td>
<td>-60</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>40</td>
<td>77</td>
<td>40</td>
<td>01-Apr</td>
<td>40</td>
<td>77</td>
<td>40</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>100</td>
<td>67</td>
<td>11</td>
<td>178</td>
<td>-8</td>
<td>57</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>12.90994</td>
<td>52.6205</td>
<td>43.55361</td>
<td>36.36135</td>
<td>58.67424</td>
<td>56.91148</td>
<td>43.55361</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>214.3613</td>
<td>6.953557</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>141.6387</td>
<td>113.0464</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>141.6387</td>
<td>6.953557</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>72.7227</td>
<td>98</td>
<td>99</td>
<td>111</td>
<td>105.0629</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>15.2773</td>
<td>26.2773</td>
<td>38.2773</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>-18.0929</td>
<td>-7.0929</td>
<td>4.907114</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The formula `=SUM(E14:G15)` is applied to sum the values in the specified range.
Lineage in Spreadsheets

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>01-Jan</td>
<td></td>
<td>10</td>
<td>10</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>01-Feb</td>
<td></td>
<td>20</td>
<td>-50</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>01-Mar</td>
<td></td>
<td>30</td>
<td>30</td>
<td>-60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>01-Apr</td>
<td></td>
<td>40</td>
<td>77</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>00</td>
</tr>
<tr>
<td>8</td>
<td>12.90994</td>
<td>52.6205</td>
<td>43.55361</td>
<td>36.36136</td>
<td></td>
<td>58.67424</td>
<td>55.91148</td>
<td>43.55361</td>
<td>63.04644</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>214.3613</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>141.6387</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

F19 = SUM(F14:G15)
Lineage in Spreadsheets

![Spreadsheet Image](image)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>2006</td>
<td>2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 Jan</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 Feb</td>
<td>20</td>
<td>-50</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 Mar</td>
<td>30</td>
<td>30</td>
<td>-60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 Apr</td>
<td>40</td>
<td>77</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 May</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.5.2009
Scientific and Grid Workflow (Cesare Pautasso)
Lineage in Databases

What is the relationship between these tuples?

Problem: Query Inversion
Lineage in Software Development

What’s in a Makefile?

```
CC = gcc
CFLAGS = -Wall -g

program: main.o input.o output.o logic.o
    $(CC) $(CFLAGS) main.o input.o output.o logic.o -o program

main.o: main.c input.h output.h logic.h
    $(CC) $(CFLAGS) -c main.c

input.o: input.c input.h
    $(CC) $(CFLAGS) -c input.c

output.o: output.c output.h
    $(CC) $(CFLAGS) -c output.c

logic.o: logic.c logic.h
    $(CC) $(CFLAGS) -c logic.c
```
Lineage in Software Development

Where does my program come from?

CC = gcc
CFLAGS = -Wall -g

program main.o input.o output.o logic.o
 $(CC) $(CFLAGS) main.o input.o output.o logic.o -o program

main.o: main.c input.h output.h logic.c
 $(CC) $(CFLAGS) -c main.c

input.o: input.c input.h
 $(CC) $(CFLAGS) -c input.c

output.o: output.c output.h
 $(CC) $(CFLAGS) -c output.c

logic.o: logic.c logic.h
 $(CC) $(CFLAGS) -c logic.c
An ideal scientific workflow should document all of the steps linking the original observations with the final published results so that the process can be reproduced.
Data Provenance

Where does this output document come from?
Change Propagation

What to recompute if this input changes?
Conclusion
Reuse

- Data Products

Execution

- Compute, Storage and Network Resources

Modeling

- Workflow and Component Libraries
 - Workflow Template
 - Workflow Instance
 - Data, Metadata Catalogs

Mapping

- Map to available resources
 - Resource, Application Component Descriptions

From Ewa Deelman
e-Science as Workflow?

Provenance Query

- Executed
- Executing
- Executable
- Not yet executable

What I Did

What I Am Doing

What I Want to Do

Execution environment

Schedule

From Ian Foster
Some References

OGF Workflow Research Group
http://www.isi.edu/~deelman/wf–rg/

Download This Tutorial Material
http://www.pautasso.info/lectures/sgs09workflow.pdf
Free Download

http://www.jopera.org/