
RESTful Web Services:
Principles, Patterns,
Emerging Technologies

Cesare Pautasso, Erik Wilde

c.pautasso@ieee.org
http://www.pautasso.info

dret@berkeley.edu
http://dret.net/netdret

http://www.pautasso.info/�
http://dret.net/netdret�

©2009-2010 - Cesare Pautasso, Erik Wilde 2

Overview
9:00-10:30 1. What is REST?
11:00-12:30 2. RESTful Service Design
14:00-15:30 3. REST vs. WS-*
16:00-17:00 4. REST Composition
17:00-17:30 5. REST in Practice

RESTful Service Design2
Cesare Pautasso
Faculty of Informatics
University of Lugano, Switzerland

c.pautasso@ieee.org
http://www.pautasso.info

©2009-2010 - Cesare Pautasso, Erik Wilde 4

REST Design Constraints
1. Resource Identification
2. Uniform Interface

GET, PUT, DELETE, POST
(HEAD, OPTIONS...)

3. Self-Describing Messages
4. Hypermedia Driving Application State
5. Stateless Interactions

©2009-2010 - Cesare Pautasso, Erik Wilde 5

REST Design - Outline
• Design Methodology
• Simple Doodle Service Example
• Design Tips

• Is URI Design part of REST?
• Understanding GET vs. POST vs. PUT
• Multiple Representations

• Content-Type Negotiation
• Media Type Design
• Exception Handling

• Idempotent vs. Unsafe
• Dealing with Concurrency

• Stateful or Stateless?
• Some REST AntiPatterns

©2009-2010 - Cesare Pautasso, Erik Wilde 6

Design Methodology
1. Identify resources to be exposed as

services (e.g., yearly risk report, book
catalog, purchase order, open bugs,
polls and votes)

2. Model relationships (e.g., containment,
reference, state transitions) between
resources with hyperlinks that can be
followed to get more details (or perform
state transitions)

3. Define “nice” URIs to address the
resources

4. Understand what it means to do a GET,
POST, PUT, DELETE for each resource
(and whether it is allowed or not)

5. Design and document resource
representations

6. Implement and deploy on Web server
7. Test with a Web browser

G
ET

PUT

POST

D
ELETE

/loan

/balance

/client

/book

/order ?

/soap

©2009-2010 - Cesare Pautasso, Erik Wilde 7

Design Space
M Representations (Variable)

©2009-2010 - Cesare Pautasso, Erik Wilde 8

Simple Doodle API Example Design
1. Resources:

polls and votes
2. Containment Relationship:

G
ET

PUT

POST

D
ELETE

/poll

/poll/{id}

/poll/{id}/vote

/poll/{id}/vote/{id} ?

poll
{id1}

3. URIs embed IDs of “child”
instance resources

4. POST on the container is used to
create child resources

5. PUT/DELETE for updating and
removing child resources

{id2}

{id3}

vote

{id4}

{id5}

©2009-2010 - Cesare Pautasso, Erik Wilde 9

Simple Doodle API Example
1. Creating a poll

(transfer the state of a new poll on the Doodle service)

2. Reading a poll
(transfer the state of the poll from the Doodle service)

POST /poll
<options>A,B,C</options>

201 Created
Location: /poll/090331x

GET /poll/090331x

200 OK
<options>A,B,C</options>
<votes href=“/vote”/>

/poll
/poll/090331x
/poll/090331x/vote

©2009-2010 - Cesare Pautasso, Erik Wilde 10

Simple Doodle API Example
 Participating in a poll by creating a new vote sub-resource

POST /poll/090331x/vote
<name>C. Pautasso</name>
<choice>B</choice>

201 Created
Location:
/poll/090331x/vote/1

GET /poll/090331x

200 OK
<options>A,B,C</options>
<votes><vote id=“1”>
<name>C. Pautasso</name>
<choice>B</choice>
</vote></votes>

/poll
/poll/090331x
/poll/090331x/vote
/poll/090331x/vote/1

©2009-2010 - Cesare Pautasso, Erik Wilde 11

Simple Doodle API Example
 Existing votes can be updated (access control headers not shown)

PUT /poll/090331x/vote/1
<name>C. Pautasso</name>
<choice>C</choice>

200 OK

GET /poll/090331x

200 OK
<options>A,B,C</options>
<votes><vote id=“/1”>
<name>C. Pautasso</name>
<choice>C</choice>
</vote></votes>

/poll
/poll/090331x
/poll/090331x/vote
/poll/090331x/vote/1

©2009-2010 - Cesare Pautasso, Erik Wilde 12

Simple Doodle API Example
 Polls can be deleted once a decision has been made

DELETE /poll/090331x

200 OK

GET /poll/090331x

404 Not Found

/poll
/poll/090331x
/poll/090331x/vote
/poll/090331x/vote/1

©2009-2010 - Cesare Pautasso, Erik Wilde 13

Real Doodle Demo
• Info on the real Doodle API:
http://doodle.com/xsd1/RESTfulDoodle.pdf

• Lightweight demo with Poster Firefox Extension:
http://addons.mozilla.org/en-US/firefox/addon/2691

http://doodle.com/xsd1/RESTfulDoodle.pdf�
http://addons.mozilla.org/en-US/firefox/addon/2691�

©2009-2010 - Cesare Pautasso, Erik Wilde 14

1. Create Poll
POST http://doodle-test.com/api1WithoutAccessControl/polls/
Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?><poll
xmlns="http://doodle.com/xsd1"><type>TEXT</type><extensions
rowConstraint="1"/><hidden>false</hidden><writeOnce>false</writeOnce
><requireAddress>false</requireAddress><requireEMail>false</requireEM
ail><requirePhone>false</requirePhone><byInvitationOnly>false</byInvitat
ionOnly><levels>2</levels><state>OPEN</state><title>How is the tutorial
going?</title><description></description><initiator><name>Cesare
Pautasso</name><userId></userId><eMailAddress>test@jopera.org</eM
ailAddress></initiator><options><option>too fast</option><option>right
speed</option><option>too
slow</option></options><participants></participants><comments></com
ments></poll>

Content-Location: {id}

GET http://doodle-test.com/api1WithoutAccessControl/polls/{id}

©2009-2010 - Cesare Pautasso, Erik Wilde 15

2. Vote
POST http://doodle-test.com/api1WithoutAccessControl/polls/{id}/participants
Content-Type: text/xml

<participant xmlns="http://doodle.com/xsd1"><name>Cesare
Pautasso</name><preferences><option>0</option><option>1</option><
option>0</option></preferences></participant>

©2009-2010 - Cesare Pautasso, Erik Wilde 16

URI - Uniform Resource Identifier

 Internet Standard for resource naming and identification
(originally from 1994, revised until 2005)

 Examples:
http://tools.ietf.org/html/rfc3986

https://www.google.ch/search?q=rest&start=10#1

 REST does not advocate the use of “nice” URIs
 In most HTTP stacks URIs cannot have arbitrary length (4Kb)

URI Scheme Authority Path

Query Fragment

©2009-2010 - Cesare Pautasso, Erik Wilde 17

What is a “nice” URI?

http://map.search.ch/lugano

http://maps.google.com/maps?f=q&hl=en&q=lugano,
+switzerland&layer=&ie=UTF8&z=12&om=1&iwloc=addr

http://maps.google.com/lugano

A RESTful service is much more than just a set of nice URIs

©2009-2010 - Cesare Pautasso, Erik Wilde 18

URI Design Guidelines
 Prefer Nouns to Verbs
 Keep your URIs short
 If possible follow a

“positional” parameter-
passing scheme for
algorithmic resource query
strings (instead of the
key=value&p=v encoding)

 Some use URI postfixes to
specify the content type

 Do not change URIs
 Use redirection if you really

need to change them

GET /book?isbn=24&action=delete
DELETE /book/24

 Note: REST URIs are opaque
identifiers that are meant to
be discovered by following
hyperlinks and not
constructed by the client

 This may break the
abstraction

 Warning: URI Templates
introduce coupling between
client and server

©2009-2010 - Cesare Pautasso, Erik Wilde 19

URI Templates
 URI Templates specify how to construct and parse

parametric URIs.
 On the service they are often used to configure “routing rules”
 On the client they are used to instantiate URIs from local parameters

 Do not hardcode URIs in the client!
 Do not hardcode URI templates in the client!
 Reduce coupling by fetching the URI template from the

service dynamically and fill them out on the client

URI Template URI Template

parameters

URI parameters

URI

client service

©2009-2010 - Cesare Pautasso, Erik Wilde 20

URI Template Examples
 From http://bitworking.org/projects/URI-Templates/

 Template:

http://www.myservice.com/order/{oid}/item/{iid}
 Example URI:

http://www.myservice.com/order/XYZ/item/12345

 Template:

http://www.google.com/search?{-join|&|q,num}

 Example URI:

http://www.google.com/search?q=REST&num=10

http://bitworking.org/projects/URI-Templates/�

©2009-2010 - Cesare Pautasso, Erik Wilde 21

Uniform Interface Constraint

CRUD REST
CREATE POST Create a

sub resource

READ GET Retrieve the current
state of the resource

UPDATE PUT
Initialize or update the

state of a resource
at the given URI

DELETE DELETE
Clear a resource,
after the URI is no

longer valid

HTML5 Forms
 HTML4/XHTML
 <form method=“GET|POST”>

 HTML5
 <form method=“GET|POST|PUT|DELETE”>

 http://www.w3.org/TR/html5/forms.html#attr-
fs-method

©2009-2010 - Cesare Pautasso, Erik Wilde 22

©2009-2010 - Cesare Pautasso, Erik Wilde 23

POST vs. GET
 GET is a read-only operation.

It can be repeated without
affecting the state of the
resource (idempotent) and
can be cached.

Note: this does not mean that
the same representation will
be returned every time.

 POST is a read-write
operation and may change
the state of the resource and
provoke side effects on the
server.

Web browsers warn
you when refreshing
a page generated
with POST

©2009-2010 - Cesare Pautasso, Erik Wilde 24

POST vs. PUT
What is the right way of creating resources (initialize their state)?
PUT /resource/{id}
201 Created
Problem: How to ensure resource {id} is unique?
(Resources can be created by multiple clients concurrently)
Solution 1: let the client choose a unique id (e.g., GUID)

POST /resource
301 Moved Permanently
Location: /resource/{id}
Solution 2: let the server compute the unique id
Problem: Duplicate instances may be created if requests are
repeated due to unreliable communication

©2010 - Cesare Pautasso 25

Redirection for Smooth Evolution

 How can consumers of a RESTful service adapt when service
locations and URIs are restructured?

 Problem: Service URIs may change over time for business or
technical reasons. It may not be possible to replace all
references to old links simultaneously risking to introduce
broken links.

 Solution: Automatically refer service consumers that access
the old identifier to the current identifier.

Consumer Service Endpoint

Stale Reference

Consumer Old Endpoint New Endpoint

Redirect

©2010 - Cesare Pautasso 26

Redirection with HTTP

GET /old

301 Moved Permanently
Location: /new

GET /new

200 OK

 HTTP natively supports
redirection using a
combination of 3xx
status codes and
standard headers:
 301 Moved Permanently
 307 Temporary Redirect
 Location: /newURI

/new/old

 Tip: Redirection responses can be chained.
 Warning: do not create redirection loops!

©2010 - Cesare Pautasso 27

Should all agree on the same format?

 How can services support different consumers which make
different assumptions about the messaging format?

 Problem: Service consumers may change their requirements in
a way that is not backwards compatible. A service may have to
support both old and new consumers without having to
introduce a specific interface for each kind of consumer.

Client

Service
New Client

?

©2010 - Cesare Pautasso 28

Solution: Content Negotiation

 Solution: specific content and data representation formats to
be accepted or returned by a service capability is negotiated at
runtime as part of its invocation. The service contract refers to
multiple standardized “media types”.

 Benefits: Loose Coupling, Increased Interoperability, Increased
Organizational Agility

Service

Client

New Client

©2009-2010 - Cesare Pautasso, Erik Wilde 29

Content Negotiation in HTTP
Negotiating the message format does not require to send more

messages (the added flexibility comes for free)
GET /resource
Accept: text/html, application/xml,

application/json
1. The client lists the set of understood formats (MIME types)

200 OK
Content-Type: application/json
2. The server chooses the most appropriate one for the reply
(status 406 if none can be found)

©2009-2010 - Cesare Pautasso, Erik Wilde 30

Advanced Content Negotiation
Quality factors allow the client to indicate the relative

degree of preference for each representation (or
media-range).

Media/Type; q=X
If a media type has a quality value q=0, then content with

this parameter is not acceptable for the client.
Accept: text/html, text/*; q=0.1

The client prefers to receive HTML (but any other text format
will do with lower priority)

Accept: application/xhtml+xml; q=0.9,
text/html; q=0.5, text/plain; q=0.1
The client prefers to receive XHTML, or HTML if this is not
available and will use Plain Text as a fall back

©2009-2010 - Cesare Pautasso, Erik Wilde 31

Forced Content Negotiation
The generic URI supports content negotiation
GET /resource
Accept: text/html, application/xml,

application/json

The specific URI points to a specific representation format using
the postfix (extension)

GET /resource.html
GET /resource.xml
GET /resource.json

Warning: This is a conventional practice, not a standard.
What happens if the resource cannot be represented in the

requested format?

©2009-2010 - Cesare Pautasso, Erik Wilde 32

Multi-Dimensional Negotiation
Content Negotiation is very flexible and can be

performed based on different dimensions
(each with a specific pair of HTTP headers).

Request Header Example Values Response Header
Accept: application/xml,

application/json
Content-Type:

Accept-Language: en, fr, de, es Content-Language:

Accept-Charset: iso-8859-5,
unicode-1-1

Charset parameter fo the
Content-Type header

Accept-Encoding: compress,
gzip

Content-Encoding:

©2009-2010 - Cesare Pautasso, Erik Wilde 33

Media Type Design
A REST API should spend almost all of its
descriptive effort in defining the media type(s)
used for representing resources and driving
application state, or in defining extended
relation names and/or hypertext-enabled
mark-up for existing standard media types.

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

 How to find the best media type?
 Reuse generic media types or invent

custom/specific media types?
 Should you always standardize media types?

©2009-2010 - Cesare Pautasso, Erik Wilde 34

Media Type Design Trade Off
text/xml

(Generic, Reusable, Meaningless)

application/atom+xml
(Standardized, Reusable, Better Defined)

application/vnd.my.type+xml
(Specific, Less Reusable, Meaningful)

RFC4288 defines how to register custom media types.
List of existing standard media types:
http://www.iana.org/assignments/media-types/

http://www.iana.org/assignments/media-types/�

©2009-2010 - Cesare Pautasso, Erik Wilde 35

Media Type Design Hints
 Reuse Existing Media Types
 Do not be afraid of inventing your own, but

then standardize it and reuse it as much as
possible

 Media Types capture the representation
format of your resource information/data
model and the implied processing model

 There is no best media type for a service, it all
depends on what your clients
need/support/understand

 Clients are not forced to process the media
type as you expect them to

©2009-2010 - Cesare Pautasso, Erik Wilde 36

Exception Handling

100 Continue
200 OK
201 Created
202 Accepted
203 Non-Authoritative
204 No Content
205 Reset Content
206 Partial Content
300 Multiple Choices
301 Moved Permanently
302 Found
303 See Other
304 Not Modified
305 Use Proxy
307 Temporary Redirect

400 Bad Request
401 Unauthorized
402 Payment Required
403 Forbidden
404 Not Found
405 Method Not Allowed
406 Not Acceptable
407 Proxy Authentication Required
408 Request Timeout
409 Conflict
410 Gone
411 Length Required
412 Precondition Failed
413 Request Entity Too Large
414 Request-URI Too Long
415 Unsupported Media Type
416 Requested Range Not Satisfiable
417 Expectation Failed

500 Internal Server Error
501 Not Implemented
502 Bad Gateway
503 Service Unavailable
504 Gateway Timeout
505 HTTP Version Not Supported

Learn to use HTTP Standard Status Codes

4xx Client’s fault

5xx Server’s fault

©2009-2010 - Cesare Pautasso, Erik Wilde 37

Idempotent vs. Unsafe
 Unsafe requests modify the state of

the server and cannot be repeated
without additional (unwanted) effects:

Withdraw(200$) //unsafe

Deposit(200$) //unsafe

 Unsafe requests require special
handling in case of exceptional
situations (e.g., state reconciliation)

POST /order/x/payment

 In some cases the API can be
redesigned to use idempotent
operations:

B = GetBalance() //safe

B = B + 200$ //local

SetBalance(B) //idempotent

 Idempotent requests can be
processed multiple times
without side-effects

GET /book

PUT /order/x

DELETE /order/y

 If something goes wrong
(server down, server
internal error), the request
can be simply replayed until
the server is back up again

 Safe requests are
idempotent requests which
do not modify the state of
the server (can be cached)

GET /book

©2009-2010 - Cesare Pautasso, Erik Wilde 38

Dealing with Concurrency

GET /balance

200 OK
ETag: 26

PUT /balance
ETag: 26

200 OK
ETag: 27

 Breaking down the API into a
set of idempotent requests
helps to deal with temporary
failures.

 But what about if another
client concurrently modifies
the state of the resource we
are about to update?

 Do we need to create an
explicit /balance/lock
resource? (Pessimistic
Locking)

 Or is there an optimistic
solution?

/balance

©2009-2010 - Cesare Pautasso, Erik Wilde 39

Dealing with Concurrency

GET /balance

200 OK
ETag: 26

PUT /balance
ETag: 26

200 OK
ETag: 27

PUT /balance
ETag: 26

409 Conflict

The 409 status code can be used to inform a client that his
request would render the state of the resource inconsistent

/balance

©2009-2010 - Cesare Pautasso, Erik Wilde 40

Blocking or Non-Blocking?
 HTTP is a synchronous interaction protocol.

However, it does not need to be blocking.

POST /slow

GET /slow/x

 A Long running request
may time out.

 The server may answer it
with 202 Accepted
providing a URI from which
the response can be
retrieved later.

 Problem: how often should
the client do the polling?
/slow/x could include an
estimate of the finishing
time if not yet completed

/slow

202 Accepted
Location: x

200 OK

204 No Content

©2009-2010 - Cesare Pautasso, Erik Wilde 41

Antipatterns - REST vs. HTTP

REST HTTP

RESTful HTTP

REST

“RPC”

©2009-2010 - Cesare Pautasso, Erik Wilde 42

REST Richardson Maturity Model
0. HTTP as an RPC Protocol

(Tunnel POST+POX or POST+JSON)
I. Multiple Resource URIs

(Fine-Grained Global Addressability)
II. Uniform HTTP Verbs

(Contract Standardization)
III. Hypermedia

(Protocol Discoverability)

 A REST API needs to include levels I, II, III
 Degrees of RESTfulness?

©2009-2010 - Cesare Pautasso, Erik Wilde 43

Antipatterns – HTTP as a tunnel
 Tunnel through one HTTP Method

GET /api?method=addCustomer&name=Wilde
GET /api?method=deleteCustomer&id=42
GET /api?method=getCustomerName&id=42
GET /api?method=findCustomers&name=Wilde*

 Everything through GET
• Advantage: Easy to test from a Browser address bar

(the “action” is represented in the resource URI)
• Problem: GET should only be used for read-only

(= idempotent and safe) requests.
What happens if you bookmark one of those links?

• Limitation: Requests can only send up to approx. 4KB of data
(414 Request-URI Too Long)

©2009-2010 - Cesare Pautasso, Erik Wilde 44

Antipatterns – HTTP as a tunnel
 Tunnel through one HTTP Method
 Everything through POST

• Advantage: Can upload/download an arbitrary amount of data
(this is what SOAP or XML-RPC do)

• Problem: POST is not idempotent and is unsafe (cannot cache
and should only be used for “dangerous” requests)

POST /service/endpoint

<soap:Envelope>
<soap:Body>

<findCustomers>
<name>Wilde*</name>

</findCustomers>
</soap:Body>

</soap:Envelope>

©2010 - Cesare Pautasso 45

Tunneling through one endpoint

 Problem: A service with a single endpoint is too coarse-grained when its
operations need to be invoked on its data entities. A client needs to work
with two identifiers: a global one for the service and a local one for the
entity managed by the service. Entity identifiers cannot be easily reused
and shared among multiple services

Client
Provider
Endpoint

X
X Y Z

A B C

Z

Business Entities

/soap

©2010 - Cesare Pautasso 46

Global addressability

 Solution: expose each resource entitity as individual
“endpoint” of the service they reside in

 Benefits: Global addressability of service entities

Consumer Provider “Entity” Endpoints

X Z A B CY

©2009-2010 - Cesare Pautasso, Erik Wilde 47

Antipatterns – Cookies
 Are Cookies RESTful or not?
 It depends. REST is about stateless communication

(without establishing any session between the client and
the server)

1. Cookies can also be self-contained
 carry all the information required to interpret them with

every request/response
2. Cookies contain references to the application state

(not maintained as a resource)
 they only carry the so-called “session-key”
 Advantage: less data to transfer
 Disadvantage: the request messages are no longer self-

contained as they refer to some context that the server
needs to maintain. Also, some garbage collection
mechanism for cleaning up inactive sessions is required.
More expensive to scale-up the server.

©2009-2010 - Cesare Pautasso, Erik Wilde 48

Stateless or Stateful?
 RESTful Web services are not stateless. The very name of

“Representational State Transfer” is centered around how to
deal with state in a distributed system.

Resource State
 The state of resources

captures the persistent state
of the service.

 This state can be accessed
by clients under different
representations

 The client manipulates the
state of resources using the
uniform interface CRUD-like
semantics (PUT, DELETE,
POST)

Client State
 The client interacts with

resources by “navigating
hyperlinks” and its state
captures the current position
in the hypertext.

 The server may influence the
state transitions of the client
by sending different
representations (containing
hyperlinks to be followed) in
response to GET requests

©2009-2010 - Cesare Pautasso, Erik Wilde 49

Stateless or Stateful?
 RESTful Web services are not stateless. The very name of

“Representational State Transfer” is centered around how to
deal with state in a distributed system.

GET /resource

21

GET /1

200 OK
<xml>

/resource

/1
<xml>

Resource StateClient State

©2009-2010 - Cesare Pautasso, Erik Wilde 50

The Client Algorithm

Retrieve home resource
representation (initial state)

Decode incoming
representation

and determine current state

Choose which link
should be followed

Activate the link
(Retrieve new

representation)

Is this the
desired
state?

A
da

pt
ed

 fr
om

 L
eo

na
rd

 R
ic

ha
rd

so
n’

s
W

S
-R

E
S

T
20

10
 s

lid
es

21

/resource

?

REST vs WS-* Comparison3
Cesare Pautasso
Faculty of Informatics
University of Lugano, Switzerland

c.pautasso@ieee.org
http://www.pautasso.info

©2009-2010 - Cesare Pautasso, Erik Wilde 52

Web Sites (1992)

HTTP

HTMLWeb
Browser

Web
Server

(HTTP)

SOAP

ServerClient XML
WSDL

WS-* Web Services (2000)

©2009-2010 - Cesare Pautasso, Erik Wilde 53

RESTful Web Services (2007)

Client HTTP

PO
-XM

L

RSS/Atom

JSO
N

Web
Server

WADL

WS-* Web Services (2000)

(HTTP)

SOAP

ServerClient XML
WSDL

©2009-2010 - Cesare Pautasso, Erik Wilde 54

WS-* Standards Stack

©2009-2010 - Cesare Pautasso, Erik Wilde 55

XML

URI HTTP

MIME

JSON

SSL/TLS

RSS Atom

RESTful Web Services Standards Stack

AtomPub

©2009-2010 - Cesare Pautasso, Erik Wilde 56

Can we really compare WS-* vs. REST?

WS-* REST

©2009-2010 - Cesare Pautasso, Erik Wilde 57

WS-*

Middleware
Interoperability

Standards

REST

Architectural
style for
the Web

Can we really compare WS-* vs. REST?

©2009-2010 - Cesare Pautasso, Erik Wilde 58

How to compare?

WS-*

Middleware
Interoperability

Standards

REST

Architectural
style for
the Web

©2009-2010 - Cesare Pautasso, Erik Wilde 59

Architectural Decisions
 Architectural decisions

capture the main design
issues and the rationale
behind a chosen
technical solution

 The choice between
REST vs. WS-* is an
important architectural
decision for
Web service design

 Architectural decisions
affect one another

Architectural Decision:
Programming Language

Architecture Alternatives:
1. Java
2. C#
3. C++
4. C
5. Eiffel
6. Ruby
7. …

Rationale

©2009-2010 - Cesare Pautasso, Erik Wilde 60

Decision Space Overview

©2009-2010 - Cesare Pautasso, Erik Wilde 61

21 Decisions and 64 alternatives
Classified by level of abstraction:
• 3 Architectural Principles
• 9 Conceptual Decisions
• 9 Technology-level Decisions

Decisions help us to measure the
complexity implied by the choice of

REST or WS-*

Decision Space Overview

©2009-2010 - Cesare Pautasso, Erik Wilde 62

Architectural Principles

1. Protocol Layering
• HTTP = Application-level Protocol (REST)
• HTTP = Transport-level Protocol (WS-*)

2. Dealing with Heterogeneity
3. Loose Coupling*

* http://dret.net/netdret/docs/loosely-coupled-www2009/

http://dret.net/netdret/docs/loosely-coupled-www2009/�
http://dret.net/netdret/docs/loosely-coupled-www2009/�
http://dret.net/netdret/docs/loosely-coupled-www2009/�
http://dret.net/netdret/docs/loosely-coupled-www2009/�
http://dret.net/netdret/docs/loosely-coupled-www2009/�

©2009-2010 - Cesare Pautasso, Erik Wilde 63

RESTful Web Service Example

HTTP Client

(Web Browser)

Web Server

Application Server Database

GET /book?ISBN=222
SELECT *

FROM books
WHERE isbn=222

POST /order INSERT
INTO orders301 Location: /order/612

PUT /order/612 UPDATE orders
WHERE id=612

©2009-2010 - Cesare Pautasso, Erik Wilde 64

WS-* Service Example
(from REST perspective)

HTTP Client

(Stub Object)

Web Server

Application Server

POST /soap/endpoint

POST /soap/endpoint

POST /soap/endpoint

return getBook(222)

return new Order()

order.setCustomer(x)

Web Service

Implementation

©2009-2010 - Cesare Pautasso, Erik Wilde 65

Protocol Layering
“The Web is the universe of
globally accessible information”
(Tim Berners Lee)
 Applications should publish

their data on the Web
(through URI)

“The Web is the universal
(tunneling) transport for
messages”
 Applications get a chance

to interact but they remain
“outside of the Web”

Application

(Many) Resource URI

HTTP
POST

Application

1 Endpoint URI

HTTP
GET

HTTP
PUT

HTTP
DEL

HTTP
POST

SOAP (WS-*)

MQ…SMTP

AtomPub JSON …POX

©2009-2010 - Cesare Pautasso, Erik Wilde 66

Dealing with Heterogeneity

CICS
IMS

P
icture from

 E
ric N

ew
com

er, IO
N

A

 Enterprise Computing

HTTP

 Web Applications
 Enable Cooperation Enable Integration

http://images.google.com/imgres?imgurl=cgi.omg.org/graphix/corbvert72.gif&imgrefurl=http://cgi.omg.org/members/identity.html&h=209&w=238&prev=/images%3Fq%3DCORBA%2BLogo%26svnum%3D10%26hl%3Den%26lr%3D%26ie%3DUTF-8%26oe%3DUTF-8�
http://images.google.com/imgres?imgurl=cgi.omg.org/graphix/corbvert72.gif&imgrefurl=http://cgi.omg.org/members/identity.html&h=209&w=238&prev=/images%3Fq%3DCORBA%2BLogo%26svnum%3D10%26hl%3Den%26lr%3D%26ie%3DUTF-8%26oe%3DUTF-8�
http://www.bea.com/framework.jsp?CNT=homepage_main.jsp&FP=/content�
http://www.bea.com/framework.jsp?CNT=homepage_main.jsp&FP=/content�

©2010 - Cesare Pautasso 67

Different software connectors

©2009-2010 - Cesare Pautasso, Erik Wilde 68

Managing State
 REST provides explicit state

transitions
 Communication is stateless*
 Resources contain data and

hyperlinks representing valid
state transitions

 Clients maintain application
state correctly by navigating
hyperlinks

 Techniques for adding session to
HTTP:
 Cookies (HTTP Headers)
 URI Re-writing
 Hidden Form Fields

 SOAP services have implicit state
transitions
 Servers may maintain

conversation state across
multiple message exchanges

 Messages contain only data
(but do not include information
about valid state transitions)

 Clients maintain state by guessing
the state machine of the service

 Techniques for adding session to
SOAP:
 Session Headers

(non standard)
 WS-Resource Framework

(HTTP on top of SOAP on top of
HTTP)

(*) Each client request to the server must contain all information needed to understand the request, without referring to any
stored context on the server. Of course the server stores the state of its resources, shared by all clients.

©2009-2010 - Cesare Pautasso, Erik Wilde 69

What about service description?
 REST relies on human

readable documentation that
defines requests URIs and
responses (XML, JSON)

 Interacting with the service
means hours of testing and
debugging URIs manually
built as parameter
combinations. (Is is it really
that simpler building URIs by
hand?)

 Why do we need strongly
typed SOAP messages if both
sides already agree on the
content?

 WADL proposed Nov. 2006
 XForms enough?

 Client stubs can be built from
WSDL descriptions in most
programming languages

 Strong typing
 Each service publishes its

own interface with different
semantics

 WSDL 1.1 (entire port type
can be bound to HTTP GET or
HTTP POST or SOAP/HTTP
POST or other protocols)

 WSDL 2.0 (more flexible,
each operation can choose
whether to use GET or POST)

©2009-2010 - Cesare Pautasso, Erik Wilde 70

What about security?

 REST security is all about
HTTPS (HTTP + SSL/TLS)

 Proven track record
(SSL1.0 from 1994)

 HTTP Basic Authentication
(RFC 2617, 1999
RFC 1945, 1996)

 Note: These are also
applicable with REST when
using XML content

 Secure, point to point
communication
(Authentication, Integrity
and Encryption)

 SOAP security extensions
defined by WS-Security
(from 2004)

 XML Encryption (2002)
 XML Signature (2001)
 Implementations are

starting to appear now
 Full interoperability moot
 Performance?

 Secure, end-to-end
communication – Self-
protecting SOAP messages
(does not require HTTPS)

©2009-2010 - Cesare Pautasso, Erik Wilde 71

What about asynchronous reliable
messaging?

 Although HTTP is a
synchronous protocol,
it can be used to “simulate” a
message queue.

POST /queue

202 Accepted
Location:

/queue/message/1230213

GET /queue/message/1230213

DELETE /queue/message/1230213

 SOAP messages can be
transferred using
asynchronous transport
protocols and APIs
(like JMS, MQ, …)

 WS-Addressing can be used
to define transport-
independent endpoint
references

 WS-ReliableExchange defines
a protocol for reliable
message delivery based on
SOAP headers for message
identification and
acknowledgement

©2009-2010 - Cesare Pautasso, Erik Wilde 72

Measuring Complexity
 Why is REST perceived to be simpler?
 Architectural Decisions give a

quantitative measure of the complexity
of an architectural design space:
 Total number of decisions
 For each decision, number of alternative options
 For each alternative option, estimate the effort

REST WS-*
Decisions 17 14
Alternatives 27 35

Decisions with 1 or more alternative options

©2009-2010 - Cesare Pautasso, Erik Wilde 73

Measuring Complexity

REST WS-*
Decisions 17 14
Alternatives 27 35

Decisions with 1 or more alternative options

REST WS-*
Decisions 5 12
Alternatives 16 32

Decisions with more than 1 alternative options

©2009-2010 - Cesare Pautasso, Erik Wilde 74

Measuring Complexity

REST WS-*
Decisions 5 12
Alternatives 16 32

Decisions with more than 1 alternative options

• URI Design
• Resource Interaction Semantics
• Payload Format
• Service Description
• Service Composition

©2009-2010 - Cesare Pautasso, Erik Wilde 75

Measuring Complexity

REST WS-*
Decisions 5 12
Alternatives 16 32

Decisions with more than 1 alternative options

REST WS-*
Decisions 12 2

Decisions with only 1 alternative option

©2009-2010 - Cesare Pautasso, Erik Wilde 76

Measuring Complexity

REST WS-*
Decisions 12 2

Decisions with only 1 alternative option

• Payload Format
• Data Representation Modeling

©2009-2010 - Cesare Pautasso, Erik Wilde 77

Measuring Effort

REST WS-*
Decisions 12 2

Decisions with only 1 alternative option

REST WS-*
Do-it-yourself
Alternatives

5 0

Decisions with only do-it-yourself alternatives

©2009-2010 - Cesare Pautasso, Erik Wilde 78

Measuring Effort

REST WS-*
Do-it-yourself
Alternatives

5 0

Decisions with only do-it-yourself alternatives

• Resource Identification
• Resource Relationship
• Reliability
• Transactions
• Service Discovery

©2009-2010 - Cesare Pautasso, Erik Wilde 79

Freedom of Choice (>1 Alternative)
Freedom from Choice (=1 Alternative)

©2009-2010 - Cesare Pautasso, Erik Wilde 80

Comparison Summary

 Architectural Decisions measure complexity implied
by alternative technologies

 REST simplicity = freedom from choice
 5 decisions require to choose among 16 alternatives
 12 decisions are already taken (but 5 are do-it-yourself)

 WS-* complexity = freedom of choice
 12 decisions require to choose among 32 alternatives
 2 decisions are already taken (SOAP, WSDL+XSD)

©2009-2010 - Cesare Pautasso, Erik Wilde 81

Comparison Conclusion
 You should focus on whatever solution gets

the job done and try to avoid being religious
about any specific architectures or
technologies.

 WS-* has strengths and weaknesses and will
be highly suitable to some applications and
positively terrible for others.

 Likewise with REST.
 The decision of which to use depends entirely

on the application requirements and
constraints.

 We hope this comparison will help you make
the right choice.

RESTful Service Composition4
Cesare Pautasso
Faculty of Informatics
University of Lugano, Switzerland

c.pautasso@ieee.org
http://www.pautasso.info

©2009-2010 - Cesare Pautasso, Erik Wilde 83

REST Architectural Elements

User Agent Origin Server

Cache

Proxy

Gateway

Connector (HTTP)

Client/Server Layered CacheStateless Communication

©2009-2010 - Cesare Pautasso, Erik Wilde 84

Basic Setup

User Agent Origin Server

HTTP

Caching
User Agent

Origin Server

HTTP

User Agent Caching
Origin Server

HTTP

Adding Caching

Caching
User Agent

Caching
Origin Server

HTTP

©2009-2010 - Cesare Pautasso, Erik Wilde 85

Proxy or Gateway?

Client Proxy
HTTP Origin Server

HTTP

Client Gateway
HTTP

Origin Server
HTTP

Intermediaries forward (and may translate) requests and responses

A proxy is chosen by the Client (for caching, or access control)

The use of a gateway (or reverse proxy) is imposed by the server

©2009-2010 - Cesare Pautasso, Erik Wilde 86

What about composition?

 The basic REST design
elements do not take
composition into account

 WS-BPEL is the standard
Web service composition
language. Business process
models are used to specify
how a collection of services
is orchestrated into a
composite service

 Can we apply WS-BPEL to
RESTful services?

User Agent Origin Server

HTTP

?

Origin Server

Origin Server

User Agent

HTTP

©2009-2010 - Cesare Pautasso, Erik Wilde 87

WSDL 2.0 HTTP Binding can wrap RESTful Web Services

BPEL and WSDL 2.0

(WS-BPEL 2.0 does not support WSDL 2.0)

©2009-2010 - Cesare Pautasso, Erik Wilde 88

Make REST interaction primitives first-class language
constructs of BPEL

BPEL for REST

R

BPEL for REST PUT

DELETE

GET

POST

...

<Put R>

<Get R>

...

<Post R>

<Delete R>

...

<Put R>

<Get R>

<Post R>

<Delete R>

©2009-2010 - Cesare Pautasso, Erik Wilde 89

 Dynamically publish resources from BPEL
processes and handle client requests

BPEL for REST
<Resource P>

<onGet>

<Put R>

<Get S>

</onGet>

<Post R>

<Delete S>

</onDelete>

</Resource>

<onDelete>

R

PUT

DELETE

GET

POST

S

PUT

DELETE

GET

POST

P

PUT

DELETE

GET

POST

BPEL for REST – Resource Block

©2010 - Cesare Pautasso 90

REST Scalability

Origin
ServerClient

Proxy/Gateway

 One example of REST middleware is to help
with the scalability of a server, which may
need to service a very large number of
clients

Cache

Clients

©2010 - Cesare Pautasso 91

REST Scalability

Origin
Server

Clients

Proxy/Gateway

 One example of REST middleware is to help
with the scalability of a server, which may
need to service a very large number of
clients

Cache

©2010 - Cesare Pautasso 92

REST Composition

Origin
Server

Clients

Proxy/Gateway

 Composition shifts the attention to the client
which should consume and aggregate from
many servers

©2010 - Cesare Pautasso 93

Servers

REST Composition

Origin Client

 The “proxy” intermediate element which
aggregates the resources provided by
multiple servers plays the role of a
composite RESTful service
 Can/Should we implement it with BPM?

Composite
RESTful
service

©2010 - Cesare Pautasso 94

Composite Resources

PUT

DELETE

GET

POST

PUT

DELETE

GET

POST

C

R
PUT

DELETE

GET

POST

S

©2010 - Cesare Pautasso 95

Composite Resources

State
R

State
S

C

R S

 The composite resource only aggregates the
state of its component resources

©2010 - Cesare Pautasso 96

Composite Resources

State
R

State
S

State
C

C

R S

 The composite resource augments (or caches)
the state of its component resources

©2010 - Cesare Pautasso 97

Composite Representations

PUT

PUT

DELETE

DELETE

GET

GETPOST

POST
C

R
S

LinkR

LinkS

Composite
Representation

©2010 - Cesare Pautasso 98

Composite Representation

Composite
Representation

Origin
Servers

Client

Origin
Server

 A composite representation is interpreted by
the client that follows its hyperlinks and
aggregates the state of the referenced
component resources

©2010 - Cesare Pautasso 99

Bringing it all together

Composite
Representation

Origin
Servers

Client

Composite
RESTful
service

 A composite representation can be
produced by a composite service too

Origin
Servers

©2010 - Cesare Pautasso 100

Doodle Map Example

Composite
Representation

Origin
Servers

Client

Composite
RESTful
service

 Vote on a meeting place based on its
geographic location

Origin
Servers

©2010 - Cesare Pautasso 101

1. Composite Resource

PUT

DELETE

GET

POST

PUT

DELETE

GET

POST

C

R
PUT

DELETE

GET

POST

S

©2010 - Cesare Pautasso 102

1. Composite Resource

GET

DELETE

GET

POST

C

R
PUT

DELETE

GET

POST

S

©2010 - Cesare Pautasso 103

2. Composite Representation

GET

DELETE

GET

POST

C

R
PUT

DELETE

GET

POST

S

DM
LinkG

LinkC

GET
G

LinkD

©2009-2010 - Cesare Pautasso, Erik Wilde 104

RESTful Composition Example

©2009-2010 - Cesare Pautasso, Erik Wilde 105

Example: Doodle Map Mashup

 Setup a Doodle with Yahoo! Local search
and visualize the results of the poll on
Google Maps

©2009-2010 - Cesare Pautasso, Erik Wilde 106

Doodle Map Mashup Architecture

Web Browser Workflow
Engine

RESTful
Web Services

APIs
GET

POST
GET

RE
ST

fu
l A

PI

Cesare Pautasso, RESTful Web Service Composition with JOpera,
Proc. of the International Conference on Software Composition
(SC 2009), Zurich, Switzerland, July 2009.

http://www.jopera.org/docs/publications/2009/doodlemap�

©2010 - Cesare Pautasso 107

Was it just a mashup?

Mashup
REST

Composition

Mashup

(It depends on the definition of Mashup)

©2010 - Cesare Pautasso 108

 Read-only vs. Read/Write

Moving state around

PUT

DELETE

GET

POST

PUT

DELETE

GET

POST

C

R
PUT

DELETE

GET

POST

S

©2010 - Cesare Pautasso 109

 Read-only vs. Read/write

Simply aggregating data (feeds)

GET

GET
C

R
GET

S

©2010 - Cesare Pautasso 110

 UI vs. API Composition

Is your composition reusable?

Composite
Representation

Origin
Servers

Client

Composite
RESTful
service

Origin
Servers

API

UI Reusable
services vs.
Reusable
Widgets

©2010 - Cesare Pautasso 111

 Can you always do this
from a web browser?

Single-Origin Sandbox

Client

Composite
RESTful
service

Origin
Servers

Origin
Servers

Composite
Representation

©2010 - Cesare Pautasso 112

 Security Policies on the client may not
always allow it to aggregate data from
multiple different sources

Single-Origin Sandbox

Composite
Representation

Client

Composite
RESTful
service

N Origin
Servers

1 Origin Server

©2010 - Cesare Pautasso 113

Complementary

Mashup REST
Composition

Mashup

Read-Only
Read/Write

APIUI

Situational
Reusable

Service
Sandboxed

©2010 - Cesare Pautasso 114

TinyRESTBucks Example

/rest/restbucks/order/1.0/{id}

/tasks/restbucks/order/1.0/{id}/payment

/receipt/{uuid}

/rest/restbucks/order/1.0/ POST

POST

GET

GET

©2010 - Cesare Pautasso 115

Instantiating a process

GET /rest/restbucks/order/1.0/

©2010 - Cesare Pautasso 116

Interacting with a task

GET /rest/restbucks/order/1.0/0/payment

©2010 - Cesare Pautasso 117

Interacting with a task

POST /rest/restbucks/order/1.0/0/payment

©2010 - Cesare Pautasso 118

Interacting with a resource

GET /receipt/2fc7f6e2-8b43-4672-a7c4…

©2010 - Cesare Pautasso 119

Interacting with a resource

DELETE /rest/restbucks/order/1.0/0

©2010 - Cesare Pautasso 120

Deleting a process resource

DELETE /rest/restbucks/order/1.0/0

©2010 - Cesare Pautasso 121

Service
Bindings

SQL

REST.URI

REST

REST.TASK

WS-*

©2010 - Cesare Pautasso 122

Data
Flow

Data Flow
(Copy)

©2010 - Cesare Pautasso 123

 RESTful HTTP is good enough to interact
without any extension with process
execution engines and their processes and
tasks published as resources

 RESTful Web service composition is
different than mashups, but both can be
built using BPM

 If done right, BPM can be a great modeling
tool for Hypermedia-centric service design
(and implementation!)

GET http://www.jopera.org/

Conclusions

http://www.jopera.org/�

©2009-2010 - Cesare Pautasso, Erik Wilde 124

References
 Roy Fielding, Architectural Styles and the Design of Network-based

Software Architectures, PhD Thesis, University of California, Irvine, 2000
 Leonard Richardson, Sam Ruby, RESTful Web Services, O’Reilly, May

2007
 Jim Webber, Savas Parastatidis, Ian Robinson, REST in Practice:

Hypermedia and Systems Architecture, O‘Reilly, 2010
 Subbu Allamaraju, RESTful Web Services Cookbook: Solutions for

Improving Scalability and Simplicity, O’Reilly, 2010
 Raj Balasubramanians, Benjamin Carlyle,Thomas Erl, Cesare Pautasso,

SOA with REST, Prentice Hall, end of 2010
 Martin Fowler, Richardson Maturity Model: steps toward the glory of REST,
http://martinfowler.com/articles/richardsonMaturityModel.html

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm�
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm�
http://martinfowler.com/articles/richardsonMaturityModel.html�

©2009-2010 - Cesare Pautasso, Erik Wilde 125

Self-References
 Cesare Pautasso, Olaf Zimmermann, Frank Leymann,

RESTful Web Services vs. Big Web Services: Making the Right Architectural
Decision, Proc. of the 17th International World Wide Web Conference
(WWW2008), Bejing, China, April 2008.

 Cesare Pautasso and Erik Wilde. Why is the Web Loosely Coupled? A Multi-
Faceted Metric for Service Design, Proc of the 18th International World
Wide Web Conference (WWW2009), Madrid, Spain, April 2009.

 Cesare Pautasso, BPEL for REST, Proc. of the 6th International Conference
on Business Process Management (BPM 2008), Milan, Italy, September
2008.

 Cesare Pautasso, RESTful Web Service Composition with JOpera, Proc. Of
the International Conference on Software Composition (SC 2009), Zurich,
Switzerland, July 2009.

 Cesare Pautasso, Gustavo Alonso: From Web Service Composition to
Megaprogramming In: Proceedings of the 5th VLDB Workshop on
Technologies for E-Services (TES-04), Toronto, Canada, August 2004.

http://www.jopera.org/docs/publications/2008/restws�
http://www.jopera.org/docs/publications/2008/restws�
http://www2008.org/�
http://www.jopera.org/docs/publications/2009/coupling�
http://www.jopera.org/docs/publications/2009/coupling�
http://www2009.org/�
http://www.jopera.org/docs/publications/2008/bpel4rest/�
http://bpm08.polimi.it/�
http://www.jopera.org/docs/publications/2009/doodlemap�

©2009-2010 - Cesare Pautasso, Erik Wilde 126

Leonard Richardson,
Sam Ruby,
RESTful Web Services,
O’Reilly, May 2007

Raj Balasubramanians, Benjamin
Carlyle,Thomas Erl, Cesare Pautasso,
SOA with REST,
Prentice Hall, end of 2010

©2009-2010 - Cesare Pautasso, Erik Wilde 127

ECOWS 2010
European Conference
on Web Services

Cyprus

http://www.cs.ucy.ac.cy/ecows10
http://www.twitter.com/ecows2010

8th

http://www.cs.ucy.ac.cy/ecows10�
http://www.twitter.com/ecows2010�

	Slide Number 1
	Overview
	Slide Number 3
	REST Design Constraints
	REST Design - Outline
	Design Methodology
	Design Space
	Simple Doodle API Example Design
	Simple Doodle API Example
	Simple Doodle API Example
	Simple Doodle API Example
	Simple Doodle API Example
	Real Doodle Demo
	1. Create Poll
	2. Vote
	URI - Uniform Resource Identifier
	What is a “nice” URI?
	URI Design Guidelines
	URI Templates
	URI Template Examples
	Uniform Interface Constraint
	HTML5 Forms
	POST vs. GET
	POST vs. PUT
	Redirection for Smooth Evolution
	Redirection with HTTP
	Should all agree on the same format?
	Solution: Content Negotiation
	Content Negotiation in HTTP
	Advanced Content Negotiation
	Forced Content Negotiation
	Multi-Dimensional Negotiation
	Media Type Design
	Media Type Design Trade Off
	Media Type Design Hints
	Exception Handling
	Idempotent vs. Unsafe
	Dealing with Concurrency
	Dealing with Concurrency
	Blocking or Non-Blocking?
	Antipatterns - REST vs. HTTP
	REST Richardson Maturity Model
	Antipatterns – HTTP as a tunnel
	Antipatterns – HTTP as a tunnel
	Tunneling through one endpoint
	Global addressability
	Antipatterns – Cookies
	Stateless or Stateful?
	Stateless or Stateful?
	The Client Algorithm
	Slide Number 51
	Web Sites (1992)
	RESTful Web Services (2007)
	WS-* Standards Stack
	RESTful Web Services Standards Stack
	Can we really compare WS-* vs. REST?
	Can we really compare WS-* vs. REST?
	How to compare?
	Architectural Decisions
	Decision Space Overview
	Decision Space Overview
	Architectural Principles
	RESTful Web Service Example
	WS-* Service Example �(from REST perspective)
	Protocol Layering
	Dealing with Heterogeneity
	Different software connectors
	Managing State
	What about service description?
	What about security?
	What about asynchronous reliable messaging?
	Measuring Complexity
	Measuring Complexity
	Measuring Complexity
	Measuring Complexity
	Measuring Complexity
	Measuring Effort
	Measuring Effort
	Freedom of Choice (>1 Alternative)�Freedom from Choice (=1 Alternative)
	Comparison Summary
	Comparison Conclusion
	Slide Number 82
	REST Architectural Elements
	Basic Setup
	Proxy or Gateway?
	What about composition?
	BPEL and WSDL 2.0
	BPEL for REST
	BPEL for REST – Resource Block
	REST Scalability
	REST Scalability
	REST Composition
	REST Composition
	Composite Resources
	Composite Resources
	Composite Resources
	Composite Representations
	Composite Representation
	Bringing it all together
	Doodle Map Example
	1. Composite Resource
	1. Composite Resource
	2. Composite Representation
	RESTful Composition Example
	Example: Doodle Map Mashup
	Doodle Map Mashup Architecture
	Was it just a mashup?
	Moving state around
	Simply aggregating data (feeds)
	Is your composition reusable?
	Single-Origin Sandbox
	Single-Origin Sandbox
	Complementary
	TinyRESTBucks Example
	Instantiating a process
	Interacting with a task
	Interacting with a task
	Interacting with a resource
	Interacting with a resource
	Deleting a process resource
	Slide Number 121
	Slide Number 122
	Conclusions
	References
	Self-References
	Slide Number 126
	Slide Number 127
	Antipatterns - REST vs. HTTP
	Slide Number 129
	Slide Number 130

