
The Tragedy of Defect Prediction,
Prince of Empirical Software Engineering Research

Michele Lanza, Andrea Mocci, Luca Ponzanelli
REVEAL @ Università della Svizzera Italiana (USI)

ABSTRACT
If measured in terms of number of published papers, defect
prediction has become in the past decade an important re-
search field, with many researchers continuously proposing
novel approaches to predict defects in software systems. How-
ever, there is also a noticeable lack of impact on industrial
practice of most of those approaches. This begs the question
whether there is something amiss.

We present a series of reflections on how defect prediction
approaches are evaluated, stating that there is something
intrinsically wrong in how it is often conducted. This in turn
might explain to a certain extent why defect prediction still
lacks real-world impact. Our goal is not to criticize defect
prediction per se, but how defect prediction approaches are
evaluated.

CCS Concepts
•Software and its engineering → Defect analysis;

Keywords
Defect prediction, Mining software repositories

Act I: Prologue
Something is rotten in the state of Denmark.

William Shakespeare — The Tragedy of Hamlet,
Prince of Denmark. Act I, Scene 4

Denmark is, in this case, not a Scandinavian country: It
is the research field known as defect prediction. Throughout
this paper we will discuss its intrinsic conceptual flaw, which
however does not only pertain to defect prediction as such,
but also bleeds into other research fields with which defect
prediction shares a peculiar commonality. The commonality
pertains, as we will see, to the infamous evaluation which
has become a necessary evil of modern software engineering
research. More about this later.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

FSE ’16, Nov 13-19, 2016, Seattle, WA, USA
c© 2016 ACM. ISBN 978-1-4503-3900-1/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2884781.2884824

As we are treading dangerous territories here, we better
take one step after another: What is defect prediction?

Defect prediction deals with the creation and empirical
evaluation of approaches to know/estimate in advance where
in a system defects will appear. The earliest approaches,
devised in the 1980s, used simple regression models based
on various software metrics [9]. The field has since then seen
a staggering amount of novel and more refined approaches
being invented, especially during the rise of Mining Software
Repositories (MSR) as a research field. According to An-
dreas Zeller in his MSR keynote in 2007, MSR as a research
community laid the groundwork for the birth of what he
named “empirical software engineering 2.0”. Indeed, if this
were a brawl in a pub, we are picking on the largest guy in
the room to have a beef with.

Our goal is not to criticise empirical software engineering
as a whole, which does have many reasons to exist. However,
defect prediction is a archetypal example of empirical software
engineering research, where in the middle of the many trees
that need to be felled, the research community has lost
sight of the forest. This is especially true when it comes
to the evaluation of novel approaches, which seems to have
surpassed the actual technical core of any approach in terms
of importance and acceptance-inducing factor.

If one surveys the many publications on defect prediction,
it is hard not to notice how important the evaluation is, filled
with precision and recall percentages, p-values, and other
success metrics. What is wrong with that, one might ask?
Indeed, we do not argue against evaluating such approaches,
quite the contrary. But, we do maintain that the de facto
way of performing evaluations is intrinsically flawed, as we
will see in the remainder of this paper. A tiny spoiler1: “If
my calculations are correct, when this baby hits 88 miles per
hour... you’re gonna see some serious shit.”

User guide. Before starting, let us explain the gist of the
present paper. The call for papers for the Visions & Reflec-
tions track of FSE 2016 states “[...] a forum for innovative,
thought-provoking research in software engineering [...]” and
“[...] The writing style can even be narrative to the extent
where this supports the motivation [...]”. We have therefore
taken the liberty to mimic2 a theatre piece. Moreover, we
will inject interludes in italics which are to be treated as side
remarks for the reader. Lastly, the writing style is rather
informal. Again, this is not accidental. In essence, a grain of
humour certainly helps in the reading of the following pages.

1Movie citation. Apologies for the coarse language.
2In an admittedly clumsy way.

1

http://dx.doi.org/10.1145/2884781.2884824

Present

Present’

C

D

E
F

G

Predictor

B

A

H

I

J

Future’

Past

Figure 1: The essence of defect prediction evaluation as a diagram.

Act II: Small-scale Utopia
We will now describe a thought experiment: Let us assume
for a second that the world is perfect.

In such a perfect world, a bug B in a software system
consists of: a specific software change C, which leads to
a software defect D, which is then reported by someone
through a bug report R. As a reaction to the reported bug,
a developer then provides a fix F , effectively closing the
process.

This process is not only a simplification, but also an ide-
alization. The actual process is much more complex, and
probably never assumes the form we describe here. For ex-
ample, the typical bug report life cycle intrinsically allows
loops to happen when bugs get reopened.

However, several defect prediction approaches rely on this
simplified process, and for the sake of our thought experiment
we assume the same process as well.

The pieces of that assumption which are important for the
validation of defect prediction approaches are primarily R
and secondarily C and F , because R is the actual artifact
which can be mined with ease from issue tracker repositories,
and C and F because they can be recovered — with some
effort — from the versioning system.

An intriguing conceptual question is the one per-
taining to the defect itself, D. In reality, defect
prediction approaches are not validated on the
actual defects, but on the creation of bug reports.
In short, from the perspective of defect predic-
tion evaluation, if there is no bug report, there is
simply no bug. However, for the present thought
experiment we ignore this for now.

We now take the above process and abstract it into the
(admittedly abstract) concept of “a bug” B, ignoring its
internal details. We need B as an abstraction to widen the
context in the next act.

Act III: Large-scale Dystopia
When defect prediction approaches are evaluated, researchers
use as ground truth the “past”, i.e., all bugs reported during
a reference time period. The present is placed into the past
(becoming present’), and the predictor is run onto the future’
which in reality is the past as seen from the actual present.

Defect prediction approaches now try, irrespective of their
underlying technicalities, to predict where (e.g., in which
class or module) defects will appear. To do so they use the
fix F which was a response to the report R, and establish
which parts of the system changed during the fix. If those
parts match the predicted part of the system, the predictor
worked correctly. Figure 1 depicts in a simplified way this
evaluation process.

One could point out that establishing what changed
during a fix, and whether all those changes were a
“response” to R is not an exact science, and often
based on (imprecise) heuristics.

The mentioned evaluation process allows for an easy way to
measure the performance of defect prediction approaches, for
example using precision, recall, and f-measures, to mention
some often used metrics. It is then on those success metrics
that approaches are compared against one another.

It is still sad but true that there are very few
(re)usable benchmark datasets, and therefore any
comparison between different approaches on di-
verse datasets is an apples-and-oranges compari-
son with little validity.

So far so good. So what? The problem is the following:
Software is developed by humans, and more importantly, it
evolves. Any decision in the system, e.g., a bug fix or any
other change, impacts — directly or indirectly — future de-
cisions, over the development time. And time is the keyword
for our next act.

2

Act IV: 88 Miles per Hour
If a predictor were to actually be put into production as
an in vivo tool, it would produce recommendations. These
recommendations would be seen by developers, and this
would influence, and hopefully have a significant impact, on
what they will do from that moment on.

In other words, if a defect predictor were to predict the
presence of a bug in a particular area of the system, a de-
veloper would go and have a look at that part. This simple
reaction does however have an influencing, and potentially
cascading effect on anything that follows in time.

Of course, one might say, aren’t we pointing out the obvi-
ous here? Indeed: A useful recommender must have some
impact in the evolution of a system. Well, the problem is
the following: Defect prediction approaches are evaluated
on the past history of bugs of a system, where that history
is treated as the future. In essence, the way that defect
predictors are being evaluated is equivalent to the situation
where the very same defect predictors act as if they would
be completely ignored by developers. But, if the point of an
approach (i.e., research) is to have any sort of impact on
a system (i.e., the real world), does this not contradict the
root mission of research itself?

To summarize again with the help of Figure 1: If a predictor
were to correctly predict the future presence of bug A, that
recommendation would impact any subsequent bug and as a
matter of act might produce unexpected consequences. One
possibility is that bugs B to J either do not appear when
they actually appeared, or they do not appear at all. In
essence, apologizing ahead for the high-flying wording, a real
prediction perturbs the time-space continuum.

Flying at a lower altitude, bugs are causally connected
because software is produced by humans, and if they are
doing something they are not doing something else. Short
of supporting the theory of parallel universes, the main
message of this set of reflections is that the evaluation of
defect prediction approaches using the past bug history of a
system is intrinsically flawed.

Tying back to the spoiler: Defect prediction approaches
are evaluated using the fading picture metaphor from the
movie “Back to the Future” (see Figure 2). Although a very
nice movie, its time travel logic is full of evident paradoxes.

Figure 2: The essence of defect prediction evaluation
as a picture.

Act V: The Angel’s Advocate
As the devil’s advocate seems to be among the co-authors
of this paper, we summon the help of the angel’s advocate,
who dislikes what we just wrote.

Not all bugs are causally connected: Your base as-
sumption is wrong. If two bugs reside in very distant
parts of a system and they are not structurally re-
lated, they have no causal connection whatsoever.

Indeed, we must concede that if two bugs were to appear at
very close points in time in very distant parts of the system,
indeed they might not have any causal connection. However,
given enough time distance, even bugs who are far away
from each other and are not structurally related, are causally
connected, because software is developed by humans who
follow a process.

If a defect prediction approach uses only structural
properties of the code, the impact of the recommen-
dations on the system’s evolution can be ignored or
factored out.

Indeed, if the recommendations are based only on struc-
tural properties of an entity, the impact of system’s evolution
on the code metrics can be considered relatively similar to
the one observed. In fact, the more the predictor recom-
mends the entities that have been really fixed, the more the
process resembles the one that has been actually observed in
the system. However, current approaches do not only rely
on purely structural metrics. If we consider the study per-
formed by D’Ambros et al. [2], process metrics [7] exhibit the
best performance and lowest variability, outperforming other
metrics sets based on source code [1]. Process metrics are
evolutionary metrics, and they would be strongly influenced
by any change of the process, like the in vivo usage of a
defect prediction recommender.

You are wrong, a simple n-fold cross validation on
the bug dataset is enough to make do with all this
time-traveling nonsense.

The benefit of n-fold cross validation cannot take into ac-
count the potential impact of the defect predictor on changing
the system. In other words, it is not by recombining the
training and testing datasets with n-fold cross validation
that one can reconstruct the potential impact of the defect
predictor in the system, simulating the changes that such
a recommender would do. Without an in vivo adoption,
measuring the effect of the predictor is indeed impossible.

Wait, didn’t you also do defect prediction research?
Yes, we did, and not only don’t we deny that, nor do we

regret that. Some of our most impactful (as in: cited) papers
are in that area. Our bug dataset3 has been extensively used
by other researchers. Back in those days we believed that
was the right thing to do. However, this little reflection and
insight of ours came only recently.

Care to explain this in vivo? Performed or taking place
in a living organism. The opposite of in vitro.

3See http://bug.inf.usi.ch

3

http://bug.inf.usi.ch

Act VI: Aftermath
Although the tone of this paper is not exactly on the serious
side, we do want to emphasize that the point we are making is
a serious and honest criticism towards how defect prediction
approaches have been evaluated all these years.

We want to reiterate that we do not criticize defect predic-
tion approaches per se. In fact, many approaches are based
on sound and meaningful assumptions. Let us look at some
well-known conjectures formulated by researchers:

• New bugs might appear in parts of the system where
there have already been bugs [6].

• Bugs might appear in the part of the system where
complex changes have been performed [5].

• Bugs might appear in parts of the system which are
badly designed [1, 4, 10].

• Bugs might appear in part of the system which change
frequently [8].

These conjectures are clearly reasonable and well-founded,
and it is indeed interesting to investigate them with the goal
of proving/disproving them. In the end the overall goal is
and remains to advance the state of the art and the software
engineering discipline as such, where the engineering is to be
considered as a set of proven best practices.

The problem are not the approaches, and therefore this
present paper is by no means comparable to Fenton and
Ohlsson’s article “A critique of Software Defect Prediction
Models” [3]. We believe instead the problem lies in how the
approaches are evaluated and how they are being compared
against each other.

However, pointing out problems is too easy, we want to
conclude the paper by proposing a solution.

We start with the the lyrics of Megadeth’s song Ashes in
Your Mouth:

Now we’ve rewritten history
The one thing we’ve found out
Sweet taste of vindication
It turns to ashes in your mouth

Where do we go from here?
And should we really care?
The answer to your question is
“Welcome to tomorrow!”

Megadeth — Ashes in Your Mouth. Symphony
of Destruction, 1992.

The truth, albeit unpleasant, is that a field like defect
prediction only makes sense if it is used in vivo.

In other words, researchers active in this area should seri-
ously consider putting their predictors out into the real world,
and have them being used by developers who work on a live
code base. Of course this comes at a high cost, but then
again one should consider that even if a predictor manages
to correctly predict one single bug, this would have a real
and concrete impact, which is more than that can be said
about any approach which relies on an in vitro validation,
no matter how extensive.

We end the paper with a series of suggestions:

The central point raised by our paper in fact also applies to
other research fields beyond defect prediction, where
change prediction is an obvious example. We conjecture
it applies in general to any approach where the past
is treated as the future for the sake of evaluating any
approach which deals with evolving software systems.

In case the reader is not aware of the movie “Back to the
Future”, we strongly suggest to watch it. Not only does
that make it easier to understand some allusions in the
paper, but the movie is a superb way to spend two
hours of your precious time.

Following up on the previous point, please abstain from
watching “Back to the Future II” and “Back to the
Future III”. You have been warned. It will be literally
a waste of your... time.

1. REFERENCES
[1] V. R. Basili, L. C. Briand, and W. L. Melo. A

validation of object-oriented design metrics as quality
indicators. IEEE Transactions on Software Engineering,
22(10):751–761, Oct 1996.

[2] M. D’Ambros, M. Lanza, and R. Robbes. Evaluating
defect prediction approaches: A benchmark and an
extensive comparison. Empirical Software Engineering,
17(4-5):531–577, 2012.

[3] N. E. Fenton and N. Ohlsson. Quantitative analysis of
faults and failures in a complex software system. IEEE
Transactions on Software Engineering, 26(8):797–814,
Aug. 2000.

[4] T. Gyimothy, R. Ferenc, and I. Siket. Empirical
validation of object-oriented metrics on open source
software for fault prediction. IEEE Transactions on
Software Engineering, 31(10):897–910, Oct 2005.

[5] A. E. Hassan. Predicting faults using the complexity of
code changes. In Proceedings of ICSE 2009 (31st
International Conference on Software Engineering),
pages 78–88. IEEE Computer Society, 2009.

[6] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and
A. Zeller. Predicting faults from cached history. In
Proceedings of ICSE 2007 (29th International
Conference on Software Engineering), pages 489–498.
IEEE Computer Society, 2007.

[7] R. Moser, W. Pedrycz, and G. Succi. A comparative
analysis of the efficiency of change metrics and static
code attributes for defect prediction. In Proceedings of
ICSE 2008 (30th International Conference on Software
Engineering), pages 181–190. ACM, 2008.

[8] N. Nagappan and T. Ball. Use of relative code churn
measures to predict system defect density. In
Proceedings of ICSE 2005 (27th International
Conference on Software Engineering), pages 284–292.
ACM, 2005.

[9] V. Y. Shen, T.-J. Yu, S. M. Thebaut, and L. R.
Paulsen. Identifying error-prone software an empirical
study. IEEE Transactions on Software Engineering,
11(4):317–324, Apr. 1985.

[10] R. Subramanyam and M. S. Krishnan. Empirical
analysis of ck metrics for object-oriented design
complexity: Implications for software defects. IEEE
Transactions on Software Engineering, 29(4):297–310,
Apr. 2003.

4

	References

