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Abstract—Modern instant messaging applications (e.g., Gitter,
Slack, Discord) provide users with real-time communication
means. Developers use them for collaborative development, to
ask for code reviews, and to have software-related discussions.
In short, a (potential) treasure trove for program comprehension.
However, as with any high-throughput ‘“chat application”, mes-
sages interleave, leading to concurrent conversations. Associating
messages to conversations is called conversation disentanglement,
a useful and necessary pre-processing step to analyze datasets of
instant messages. Although various conversation disentanglement
algorithms have been proposed, it is cambersome to set up proper
execution environments and hard to ensure input data format
consistency, calling for better practices and tool support.

We present CoD1, a RESTful API micro-service and web
interface for conversation disentanglement. It provides an easy
way to disentangle conversation transcripts with pre-trained
models or to train new ones on custom datasets, features, and
hyper-parameters. CODI achieves state-of-the-art performances
on transcripts of IRC, Slack, and Discord conversations. We show
how CODI can provide a significant improvement to reusability
(and replicability) of research results, while reducing the efforts
and potential mistakes due to configuration, setup, and execution.

CoDr’s source code: https://github.com/USIREVEAL/CODI

Index Terms—CoDi, conversation disentanglement, instant
messaging, micro-services

I. INTRODUCTION

Instant Messaging (IM) applications, such as WhatsApp,
Slack, and Discord, are ubiquitous, supplanting asynchronous
communication means (e.g., emails) for professional and per-
sonal use. Developers are no exception: Software commu-
nities are born, evolve, thrive, and sometimes die on such
virtual communication hubs. This paradigm shift also induces
concerns about information persistence and accessibility. IM
platforms from private companies (e.g., Slack, Discord) usu-
ally provide an API to access information on public servers.
However, this access is often restricted (e.g., Slack’s free tier
plan provides access only to messages of the last 90 days)
without guarantees on future availability of public content.

When a community has a wide scope or simply grows
in popularity, scalability problems arise. Many public servers
feature channels where questions and answers about a spe-
cific topic can be sent. High-traffic channels experience very
soon an interleaving of messages pertaining to different con-
versations (interleaving colors, Figure 1 left), with multiple
messages being sent almost simultaneously. A human reader
is moderately capable of reconstructing in real-time the con-
versation flow. Aids like replies indication, temporal intervals,
cue words and explicit Q&A structures can be used for
disambiguation. However, reliable automatic reconstruction of
conversations remains an open challenge.

Elsner and Charniak proposed a disentanglement algorithm
for Internet Relay Chats (IRC) [1]. While IRC provides only a
textual representation for messages, modern platforms support
features (e.g., multimedia sharing, explicit replies) that can be
leveraged for disentanglement. Their algorithm was adapted
by Chatterjee et al. [2] to disentangle developer conversations
in Slack, while Subash et al. [3] used it for Discord.

No approach for conversation disentanglement is available
out-of-the-box, reducing its usefulness. Having conversations
as higher-order constructs provides richer semantics than sim-
ple sequences of messages, and is key to improve the quality of
inputs to software engineering research on developers’ chats.
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Fig. 1: Conversation Disentanglement Interface in CODI.

We present CODI, an extensible service-based API and web
interface (Figure 1) for disentangling developer chats. It can
be integrated in preprocessing pipelines to clean up collected
data. CoD1’s input/output formats improve interchangeability
of disentanglement algorithms. This is a step towards easier
comparison of alternative approaches. The CODI1 web interface
helps in exploratory phases with fast iteration cycles. The
proposed visualization of disentangled conversations provides
qualitative (e.g., message grouping) and quantitative infor-
mation (e.g., accuracy, F-score, computation time) about the
disentanglement process with the selected model. The tool and
the approach we propose reduce inconsistencies in configura-
tion, simplify the setup, and improve reliability of results.

II. CoD1

CoDi1 is implemented in python and it is composed of three
main modules (Figure 2): The conversation disentangler, the
RESTful API, and the web-based frontend client.
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Fig. 2: CoD1 Architecture Overview
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The disentangler module is a reimplementation of the model
proposed by Elsner and Charniak [1] and later modified by
Chatterjee et al. [2]. Message pairs are evaluated with respect
to their relatedness, according to features like time interval and
term similarity, and then clustered in conversations based on
their relatedness scores. We extend some of the features used
by the latest version of the model (e.g., by adding variations
of possible greetings, with different types of mention features)
and allow to use two different relatedness classifiers: Random
forest [2] and logistic regression [1].

The RESTful API provides an interface to access the
disentangler by defining endpoints for training, validation, and
prediction (Table I). Two endpoints provide utilities to convert
input files between different formats and retrieve performance
statistics of the model computations (e.g., accuracy, F-score).

TABLE I: REST API Endpoints

Path Type Description

api/train POST  Sends an input dataset to the disentangler to train
the classifier

api/validate POST Sends an input annotated dataset to the dis-
entangler. It will predict the conversations and
compare them to the provided annotations

api/predict POST Sends an input dataset to the disentangler to
predict the conversations

api/statistics ~ GET Retrieves the disentangled conversations and
performance statistics (after validate or predict)

api/convert POST  Converts a dataset from ANNOT to JSON format

A. Towards Research Code as Infrastructure

CoDi1 is a step towards Research Code as Infrastructure.
This approach aims to improve reliability of results, reusabil-
ity of implementations, and comparability of approaches in
research prototypes for conversation disentanglement.

Trying to replicate previous studies [1]-[4], we set up
an environment with different python versions, complying
with needs of older and newer scripts; we had to include a
precompiled version of the MEGAM! max entropy classifier—
a dependency whose latest version dates back to October 2007.
These details took significantly more effort than a file drag-
and-drop in a web page and browsing results with performance
information of the algorithm. We also question the reliability
of the obtained output with respect to inconsistencies in python
interpreter versions and outdated libraries.

Inspecting the intermediate format used as input for the
disentanglement algorithm, we identified an inconsistency in
the interaction with the pseudonymization script.

The version used to disentangle Discord messages by Sub-
ash et al. [3] is the same used by Chatterjee et al. for
Slack [5]. To partially comply with user anonymization needs,
user names of message authors in the ANNOT format have
been randomly substituted with common first names. In this
pseudonymization process, references to the authors in the text
of messages have not been translated accordingly. This minor
detail impacts the reply feature of the relatedness classifier,
as reply links are completely lost. An ablation study could

ISee https://tinyurl.com/mr3537ae [acc. March 17, 2023]

confirm this in the original algorithm but such a study is
beyond the scope of this work.

B. Input JSON format

The JavaScript Object Notation (JSON) input format of
CoDi (Figure 3) is richer than the ANNOT representation used
as exchange format in the reference model [1], [2]. We provide
an endpoint to convert between the two for compatibility and
to cross-validate results from previous studies. The represen-
tation we propose better suits the features of modern IM plat-
forms (e.g., replies, quotes, complex mentions, attachments),
and allows to more easily verify input consistency.

"platform”: "Discord”,
”7id”: 7b4138f14-af37”,
“"name”: “Agile Everything”,
“members”: [ {

7id”: 7d1ff9cSb-flfc”,
“name”: “Jermaine Fontaine”
1,
“channels”: [
7id”: 7c65d238f-d987”,
“name”: “visualization”,
"path”: “agile/visualization”,

topics”: [ {
“keywords”: [
“description”:

”Visualization” , ... ],
”Agile Visualization is cool!”

}
1,
"messages”: [ {
7id”: " 34cel3f1-6577",
“authorId”: 7d1ff9c5b-fl1fc”,
“content”: ”Jermaine: $(date) is in large format”,
“conversation”: "T35”,
“timestamp”: 72022-02-06T19:24:23.777+00:00,
"mentions” : [ { Tauthorld” : “d1ff9c5b-flfc” } 1,
“repliesTo” : [ { "messageld” : “cldrd4c2r—z7at” } ],
“attachments” :
“https ://cdn.discordapp.com/...” } ]

[ { 7url” :

Fig. 3: JSON Input Format Example

C. Web User Interface

CoD1 provides a web-based user interface (Frontend —
Client in Figure 2). In the Home page (Figure 4) it is possible
to select the operation to perform @D (e.g., train, validate,
predict), the type of platform Q) (e.g., IRC, Slack, Discord),
parameters of the model B (i.e., features to use in the
classifier), and to drop a file for elaboration @.
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Fig. 4: CoD1 Home Page




In the Validation Statistics page it is possible to compare
the output of a disentanglement with a provided ground truth
(Figure 5). Color coding helps in identifying conversation
blocks. For example, the message from Khylon is misclassified
and assigned to a new conversation (left) instead of being the
last message of conversation 1 (ground truth, right).
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Fig. 5: CoDr Validation Page

In the Prediction Statistics page (already shown in Figure 1)
it is possible to see the output of the disentanglement. Mes-
sages in chronological order (left) are mapped, with arrows, to
their counterpart in disentangled conversation blocks (right).

Prediction and validation statistics pages have an expandable
statistics section at the top (Figure 6). It provides detailed
information on performance and other metrics for the output
conversations as well as for internal components (e.g., classi-
fier accuracy, computation time for each step).
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Training Max-Entropy Correlation Clustering Total

2123 2096 0054 25.058

Fig. 6: CoD1 Statistics Expanded

III. EVALUATION

To assess correctness of our implementation, we compared
disentanglement annotations from CODI (logistic regression
relatedness classifier, all features) with the reference model [2].
We trained both models with the same ground truth: 3,544
manually disentangled messages from Chatterjee et al. [2].
We compared their performances on two previously published
datasets [3] and a new one we extracted and partially manually
annotated (see Section III-A and Table II). We transformed
datasets from the ANNOT format into the CoDI JSON format
and vice-versa, as needed to allow full cross comparisons.

A. Datasets

Literature datasets: We used two subsets of messages from
two Discord datasets published by Subash et al. [3]. The
smaller one is the clojure Discord community dump (Feb —
Apr 2020: 464 messages), the larger one is the python Discord
community dump (Mar 2020: 56,763 messages).

Roassal dataset: We extracted the full history of the roas-
sal> channel in the Pharo® Discord server (Apr 2017 — May
2022: 8,093 messages). To perform an independent testing on a
new ground truth, two authors manually annotated four days
of conversations in this dataset (roassal_m, 294 messages).
The third author was involved in the discussion on conflicting
assignments until consensus for all the messages was reached.

B. Result Analysis

In Table II, we show the results of comparing CODTI’s
disentanglement with automatically disentangled conversations
obtained from the reference algorithm (top-3 rows). We also
report CODI’s testing performance on the new dataset we
manually annotated as ground truth (roassal_m row).

We report accuracy, precision, recall, and Fl-score of
the relatedness classifier and the micro-averaged F1-score
(nuAvg-F1) [6] of the final clustering of disentangled conver-
sations. We used the p©Avg-F1 measure to evaluate correspon-
dence between conversation clusters for comparability with
previous results [1], [2], [4]. Moreover, a multi-way average
over conversation clusters is suitable to compare automatic
disentanglement to a ground truth and correlates with the
one-to-one accuracy metric [1]. For python, due to the large
number of messages in the dataset, we computed pAvg-F1 on
a small random sample of 654 consecutive messages.

TABLE II: CoD1 vs Reference Comparison and New Test

Dataset Relatedness Clustering
Comparison  Accuracy Precision Recall F1 1Avg-F1
clojure 67 94 68 79 88
python 60 86 62 72 78
roassal 77 95 78 86 80
roassal_m 68 68 77 79 63

Correctness: High values of the pAvg-F1 score indicate
disentangled conversations similar to those in the reference
model. Our implementation suffers from lower recall of mes-
sage relatedness. This indicates an overestimation of related ut-
terances in the classifier. Lower pAvg-F1 score for the python
and roassal datasets indicates that although conversations are
similar, there are still significant inconsistencies.

Problematic Cases: By manual inspection we found two
main cases: single point and split/merge inconsistencies. In
single point inconsistencies (Figure 7) one message is assigned
to the wrong conversation. It can be the previous one, the
next one, or a new conversation. Split/merge inconsistencies
(Figure 8) happen when a conversation is split into two or two
conversations are merged into one.

2See tinyurl.com/roassal [acc. March 17, 2023]
3See https://pharo.org [acc. March 17, 2023]
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Fig. 8: Example of Split/Merge Inconsistency (Split)

Single point inconsistencies preserve most of the features
of extracted conversations. Split/merge inconsistencies have
a higher impact on pAvg-F1 but are often limited to a
single conversation mismatch. Manual inspection confirmed
that there is an abundance of split inconsistencies with the
python and roassal datasets. This is the main cause of the
lower pAvg-F1 score with respect to clojure.

Generalizability: Testing with the roassal_m dataset shows
lower performance in terms of pAvg-F1 score (reference
implementation pAvg-F1 = 0.61) with respect to the results
reported by Subash et al. [3]. This might be caused by mes-
sages in the new dataset having different characteristics (e.g.,
lower time dependence, different usage of mentions) and can
potentially hint at low generalizability of the approach. Our
study highlights the need to increase the amount of manually
annotated disentanglement datasets to replicate studies.

C. Conversion and Formats

Chatterjee et al. used an Extensible Markup Language
(XML) representation for the input [2]. The XML was con-
verted to ANNOT format for compatibility with the original
implementation. Due to the conversion, the XML format could
not be exploited by the algorithm, thus remaining unexplored
in terms of potential disentanglement improvements.

Format conversion also comes with limitations to cross-
compatibility of input. For example, mentions in simple textual
format are expensive for computing mention-related features.
Providing them explicitly with a richer message representation,
as already supported by CoDI’s JSON input format, can
improve performance and reliability of the disentanglement.
In fact, the ANNOT format showed to be error prone in
pseudonymized datasets due to inconsistent pre-processing
steps (i.e., name substitutions impairing mention traceability).

IV. RELATED WORK

Most recent works address IM applications popular also
among developer communities like Gitter [7]-[11], Slack [5],
[11]-[13], and Discord [3], [14]-[16]. Few works properly
account for the disentanglement problem in their studies.

Conversation disentanglement in online chats has been
addressed both with unsupervised [6], [17], [18] and su-
pervised [1], [2], [19], [20] approaches. According to Liu
et al. [18], an orthogonal distinction in disentanglement tech-
niques is between two-step approaches and end-to-end ones.
The former [1], [2], [21] combine local relatedness (e.g., mes-
sage pair relatedness classifier) and conversation clustering,
while the latter [22]-[24] try to capture global properties of
conversations in one step.

Only a few published datasets have a manually annotated
ground truth [1], [21], [25] and only one of them is considered
large [25]. Due to this lack, three large datasets [2], [3], [7] of
automatically disentangled developer conversations have also
been proposed for Software Engineering research.

V. FUTURE WORK

We evaluated COD1 by comparing it with the reference
model and on a dataset we manually annotated. We plan to ex-
tend the evaluation to the largest manually annotated dataset by
Kummerfeld et al. [25] and explore improvements to platform-
specific features (e.g., quotes, replies). We are deploying CoD1
for researchers to integrate it in their pipelines, which calls for
an evaluation of the the user interface.

Configurability options, performance optimization, and ro-
bustness to malformed inputs need to be improved upon, with
respect to the reference model and local approaches in general,
especially on large datasets. CODI can be deployed in pre-
trained mode for multiple users. We will implement API-key
access to support concurrent usage in segregated instances,
allowing training custom models also on the publicly deployed
service. Finally, we need to extend the model to another
approach (i.e., end-to-end) to demonstrate generalizability of
our design choices for the JSON input format (Section II-B)
and extensibility of the architecture.

VI. CONCLUSION

Conversation disentanglement is a key pre-processing step
to improve knowledge extraction from instant messaging plat-
forms. We need effective tools to stop such fast and volatile
sources from being only an on-demand support for program
comprehension, unleashing their full potential.

We presented CoDI, an extensible object-oriented micro-
service architecture for conversation disentanglement, report-
ing also on a comparative evaluation. Our work aims at im-
proving the reliability of conversation disentanglement results
while reducing the technical barriers to reuse state-of-the-art
models: CODI is a first step towards making disentanglement
models usable and accessible.
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