
Prompter: A Self-confident Recommender System
Luca Ponzanelli1, Gabriele Bavota2, Massimiliano Di Penta2, Rocco Oliveto3, Michele Lanza1

1: REVEAL @ Faculty of Informatics – University of Lugano, Switzerland
2: University of Sannio, Benevento, Italy 3: University of Molise, Pesche (IS), Italy

Abstract—Developers often consult different sources of infor-
mation like Application Programming Interfaces (API) documen-
tation, forums, Q&A websites, etc. with the aim of gathering
additional knowledge for the programming task at hand. The
process of searching and identifying valuable pieces of informa-
tion requires developers to spend time and energy in formulating
the right queries, assessing the returned results, and integrating
the obtained knowledge into the code base. All of this is often
done manually.

We present Prompter, a plug-in for the Eclipse IDE which
automatically searches and identifies relevant Stack Overflow dis-
cussions, evaluates their relevance given the code context in the
IDE, and notifies the developer if and only if a user-defined
confidence threshold is surpassed.

I. Introduction
Developers have to cope with large and complex systems.

Even though they are probably active developers in the
community, they do not know the complete system by heart.
The knowledge they possess probably concerns some parts of
the system they are mostly working with. Sooner or later, for
example to fix a bug, they have to deal with the unknown
or partially known parts of the system. When this situation
happens, developers need to access additional sources of
information to go beyond the knowledge of the system they
already posseses [1]. This happens by asking teammates [2],
through pair programming sessions [3], or by searching and
perusing the vast amount of information available on the
internet [4].

However, people are not always available. To overcome
this situation, developers harness information retrieved from
different sources, such as forums, mailing lists [5], blogs,
Q&A websites, bug trackers [6], etc. Among all the online
resource available, Q&A websites have become a prominent
venue among developers to share programming knowledge. A
prominent example is Stack Overflow1, a vast Q&A website
for developers that has hundreds of thousands of users, and
millions of questions, answers, and comments [7].

Developers cannot access the information within the In-
tegrated Development Environment (IDE), but they have to
interrupt their work flow, leave the IDE, and use a web browser
to perform and refine searches. The process of searching and
identifying valuable pieces of information requires developers
to spend time and energy in formulating the right queries,
assessing the returned results, and transfer the obtained
knowledge to the problem context in the IDE.

Recommender systems [8] represent a possible solution to
this problem. A recommender system gathers and analyzes

1http://stackoverflow.com

data, identifies useful artifacts, and suggests them to the
developer. Seminal tools, such as eRose [9], Hipikat [10] and
DeepIntellisense [11], suggest project artifacts in the IDE
aiming at providing developers with additional information on
specific parts of the system. They come however with a caveat:
the developer must proactively invoke them, and, once invoked,
they continuously display information. This may defeat their
purpose, as they augment the complexity of what is displayed
in the IDE. Ideally, a recommender system should behave
like a prompter in a theatre: Ready to provide suggestions
whenever the actor needs them, and ready to autonomously
give suggestions if it feels something is going wrong.

The interaction between the theatre prompter and the actor
is similar to the interaction between two developers doing
pair programming, working side by side to write code. These
developers have different roles, i.e., the driver, who is in charge
of writing code, and the observer, who observes the work of
the driver [12], tries to understand the context, and, if she has
enough confidence, interrupts the driver by giving suggestions.
In addition, the driver can consult the observer whenever she
needs it, making the observer the programming prompter of
the programming actor.

This interaction is what we propose in Prompter2, a tool
that automatically retrieves and recommends, with push notifi-
cations, relevant Stack Overflow discussions to the developer
[13]. Prompter makes the IDE a programming prompter that
silently observes and analyzes the code context in the IDE,
automatically searches for Stack Overflow discussions on the
Web, evaluates their relevance by taking into consideration
code aspects (e.g., code clones, type matching), conceptual
aspects (e.g., textual similarity), and Stack Overflow community
aspects (e.g., user reputation) to decide, given a certain amount
of self-confidence (encoded in a threshold the user can change
through a slider, to make the recommender quiet or talkative)
when to suggest discussions.

II. Promtper

Figure 1 shows the user interface of Prompter. It provides
two views through which the user can (i) receive and track noti-
fications, and (ii) read the suggested Stack Overflow discussions.
The notification center (1) is the main view of Prompter and
it is used to notify the developer whenever a relevant result
is available. Whenever Prompter considers a discussion as
relevant for the current context, it opens the notification center
and plays a sound. If a Stack Overflow discussion is notified

2http://prompter.inf.usi.ch

1

http://stackoverflow.com
http://prompter.inf.usi.ch


12

Fig. 1. The Prompter User Interface.

more than once, it is pushed to the top of the list for visibility.
Figure 2 shows an example of notification. The developer is
provided with some information regarding (a) the title of the
Stack Overflow discussion, (b) the notification date and time, so
that the developer can know how old the notification is, (c) the
confidence level of Prompter on the Stack Overflow discussion
against the related code context, and (d) some feedback,
tracking and linking functionalities in the bottom-right corner.
By clicking on the thumb up (down) icon, the developer can
rate the discussion as useful (useless) with respect to the coding
activity she is performing in the IDE. The other icons on the
notification allows the developer to backtrack to the code entity
associated with a specific notification (eye icon), or to link
the suggested discussion to its code entity (chain icon). If the
developer clicks on the former, Prompter opens up a code editor
and highlights the portion of code related to the notification. If
the developer clicks on the latter, a simple annotation reporting
the URL of the discussions is created in the code in form of a
comment.

c

db

a

Fig. 2. Prompter notification details.

Whenever a developer clicks on a notification, a Stack
Overflow document view (Figure 1 (2)) is opened, which
shows the contents of the Stack Overflow discussion.

2 31

Fig. 3. Prompter sensitivity bar

At the top of the notification center, the developer can change
the sensitivity of the notification system (Figure 3, (2)): by
sliding to the right Prompter is more talkative and produces
more notifications, by sliding to the left it becomes more
taciturn and requires a higher level of confidence to notify the
developer. Moreover, by clicking on the arrow in the top-left
corner (Figure 3 (1)), the developer can access the full result set
of Stack Overflow discussions related to the last notification.

A. Explicit Query Writing

54

Fig. 4. Prompter manual search bar

Sometimes Prompter is not able to point out the right Stack
Overflow discussion or probably it has not enough information
to generate a notification. For example, a similar situation
can happen at the very beginning of the development, where
there are few lines of code (e.g., a class stub). For this reason,
we implemented an additional manual interaction where we
provide the developer with the capability to perform manual
searches. Whenever the developer wants to search for Stack
Overflow discussions on her own, she can click on the manual
search button at the top right corner (Figure 3 (3)). The

2



Search Service

Eclipse
Prompter

Query Generation 
Service

Search Engines

Google

Bing

Blekko

Stack Overflow 
API Service

Ranking
Model

Search Engine
Proxy

Code 
Context

1 32

Code
Context

Query &
Triggering 

Info

Query &
Code Context

4 Query

5 Results

6Discussion 
IDs

7 Documents

8
Ranked 
Results

Fig. 5. Prompter architecture.

notification centers disappears and a manual search bar becomes
available (Figure 4). There, the developer can manually type a
query (Figure 4 (4)) and search for Stack Overflow discussions.
The results are presented in form of notification, where each of
them presents a confidence value according to the code context
obtained from the code editor on top. While the developer
is interacting with the manual search view, he can continue
modifying and writing code. If Prompter notifies a discussion
in the meanwhile, the developer is notified anyway: a counter
of the unseen notifications will popup on top of the notification
center icon—Figure 4 (5), and it resets as soon as the developer
accesses the notification center by clicking on the icon.

B. Explicit Invocation

A prompter in a theater does not only prompt the right
sentence to the actors on the stage, but he also provides support
on demand. Indeed, an actor can always ask the prompter
for a cue in order to go on with the show. In Prompter we
implemented the same interaction: the developer can always
ask Prompter to perform a search on a specific code entity
(i.e., method or class), by accessing the contextual menu in
the code editor, or on the package explorer. In the first case,
Prompter searches discussions for the code entity identified
by cursor in the editor, while in the second case it searches
according to the code entity selected.

C. A Use Case Scenario

Alice is a developer who wants to implement an echo server
in Java. She has little knowledge about the Java SDK, but she
knows how the echo server should be implemented. An echo
server is a simple program that waits for incoming connections
and, whenever a client connects and sends messages, it replies
back to the connected client with the same message. Alice
decides to take advantage of Prompter to help her to implement
the server. Due to her lack of Java SDK knowledge, Alice
wants Prompter to be more talkative at the very beginning,
thus she moves the sensitivity bar to the right (see Figure 3).
Alice begins developing the server by creating a new Java class
in the Eclipse IDE, she starts by naming the class EchoServer.
As soon as she starts typing some code, Prompter begins to
silently gather the code context in the current code editor and

searches for relevant Stack Overflow discussions. Given the low
threshold set by Alice, Prompter immediately notifies a couple
of discussions. The last notified discussion, titled Java Echo
Server3, seems to tackle what Alice is trying to implement.
She clicks on the notification, and another view pops-up in
the IDE, showing the Stack Overflow web page. As the title
suggested, the discussion tackles the implementation of an echo
server, and Alice can start copying and pasting the parts of
the code she needs by also taking into account the corrections
proposed by the answers in the discussion. In the meanwhile,
Prompter continues to observe what Alice is writing in the
code editor and to search for other Stack Overflow discussions
relevant for the modified code. Since the current discussion also
provides the code needed to accomplish her tasks, she decides
to lower the number of notification she is receiving, and she
slides the sensitivity bar more on the left side. In doing so,
she allows Prompter to interrupt her in case of higher quality
discussions.

When she finished implementing the server, she decides
to test its functionalities. Unfortunately, when testing her
implementation, she discovers a bug: the server does not reply
back to the client. However, while she was implementing
the server, Prompter continued to silently search and notify
discussion (with a higher level of relevance). She spots a
discussion titled Sockets, BufferedReader.readLine() – why
the stream is not ready?4, and she opens it. By reading the
discussion, she discovers that other people are dealing with
the same problem. The solution lies in a single statement
needed to flush the stream towards the client. She adds the
statement, tests the fixed implementations, and verifies that
everything works well. Once she has completed the assigned
programming task, Alice can take advantage of the feedback
system of Prompter, and give a “thumbs up” (see Figure 2,
(d)) for the two discussions she used. Prompter collects these
feedbacks and stores them for future improvements of its
ranking model.

3http://stackoverflow.com/questions/13767751
4http://stackoverflow.com/questions/8563529

3

http://stackoverflow.com/questions/13767751
http://stackoverflow.com/questions/8563529


D. Architecture

Figure 5 depicts the architecture of Prompter, which is
composed of (i) the Eclipse plug-in, (ii) the Search Service, and
(iii) the Query Generation Service. The numbers in the picture
represent the sequence of actions that Prompter performs when
it retrieves documents from Stack Overflow.

Prompter is meant to be a silent observer that looks at what
the developer is writing. Every time a change in the source
occurs, Prompter extracts the code context (i.e., source code,
and API information) from the code element under observation
(i.e., a method or a class), and sends it to the Query Generation
Service (1). This service generates a query starting from the
code context received, and sends it back, together with the
triggering information, to the plug-in (2). If the quality of the
query is good enough, the plug-in forwards the query and
the code context to the Search Service. The query is used to
search for Stack Overflow discussions on the web by means
of different search engines (e.g., Google, Bing, Blekko). All
resulting URLs are collected, and duplicates are removed (5).
Every URL that refers to a question from Stack Overflow must
match the form stackoverflow.com/questions/〈id〉/〈title〉, otherwise
it is discarded. By matching the aforementioned form, Stack
Overflow discussion ids are extracted from URLs. (6) The
ids are used to query the Stack Overflow API5 to obtain a
fresh and up-to-date copy of each discussion. (7) The collected
discussions, given the code context in the IDE, are evaluated
and reranked by means of a ranking model we devised [13]. (8)
When all the discussions are evaluated, their URLs, together
with the related relevance value, are sent back to the plugin.
If the top ranked discussion surpasses a user-defined threshold
of relevance, Prompter fires a new notification in the IDE, or
the results are discarded otherwise.

E. The Ranking Model

Prompter uses a ranking model [13] that, given a code
context in the IDE, evaluates the relevance of a set of retrieved
Stack Overflow discussions. The evaluation of the discussions is
performed by taking in consideration both code-related aspects
(e.g., API types, API methods, code similarity), and community-
related aspects (e.g., user popularity, question score). The code-
related aspects are focused on revealing similarities between
the code context in the IDE and the technical aspect of a Stack
Overflow discussion, while the community-related aspects are
focused on including the judgment of the crowd inside our
confidence value.

F. Evaluation Summary

Prompter has been evaluated through two studies [13].
The first was aimed at evaluating the devised ranking model,
while the second was conducted to evaluate the usefulness of
Prompter. In the first study we asked people to evaluate how
much a code sample and the top ranked Prompter recommen-
dation were related. We showed how the agreement of the
users involved pointed out good results.

5http://api.stackexchange.com/

In the second study we carried out a controlled experiment
with developers asking them to perform coding tasks. Then,
we measured the completeness of the assigned tasks achieved
by participants (with and without using Prompter). We showed
how Prompter is effective for development tasks and how, from
a qualitative point of view, developers were really satisfied of
the tool.

III. Conclusion and FutureWork

We have presented Prompter, a plugin for the Eclipse
Integrated Development Environment (IDE) that silently
observers the developer, captures a code context in the IDE,
retrieves Stack Overflow discussions in the background, ranks
them according to a ranking model we have developed,
and suggests discussions if and only if a developer-defined
threshold of relevance is surpassed. Prompter implements the
ideal behavior of a recommender system: Like a prompter
in a theatre, Prompter is a silent observer that interrupts
the developer only when it has enough confidence about the
results, but it is always at disposal of the developer if she
needs to explicitly invoke it. We also presented a summary of
the evaluation of Prompter where we showed how it has been
proven to be effective for development tasks.

Acknowledgments. Ponzanelli and Lanza thank the Swiss
National Science foundation (SNF) for the financial support
through SNF Project “ESSENTIALS”, No. 153129.

References

[1] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated
software development teams,” in Proceedings of ICSE 2007. IEEE CS
Press, 2007, pp. 344–353.

[2] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models:
a study of developer work habits,” in Proceedings of ICSE 2006. ACM,
2006, pp. 492–501.

[3] L. Constantine, Constantine on Peopleware. Yourdon, 1995.
[4] M. Umarji, S. Sim, and C. Lopes, “Archetypal internet-scale source code

searching,” in Proceedings of OSS 2008, 2008, pp. 257–263.
[5] A. Bacchelli, T. dal Sasso, M. D’Ambros, and M. Lanza, “Content

classification of development emails,” in Proceedings of ICSE 2012,
2012, pp. 375–385.

[6] J. Anvik, L. Hiew, and G. Murphy, “Who should fix this bug?” in
Proceedings of ICSE 2006. ACM, 2006, pp. 361–370.

[7] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann,
“Design lessons from the fastest q&a site in the west,” in Proceedings of
CHI 2011. ACM, pp. 2857–2866.

[8] M. Robillard, R. Walker, and T. Zimmermann, “Recommendation systems
for software engineering,” IEEE Software, pp. 80–86, 2010.

[9] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller, “Mining
version histories to guide software changes,” in Proceedings
of ICSE 2004. IEEE, 2004, pp. 563–572. [Online]. Available:
http://www.st.cs.uni-sb.de/papers/icse2004/icse.pdf

[10] D. Cubranic and G. Murphy, “Hipikat: recommending pertinent software
development artifacts,” in Proceedings of ICSE 2003. IEEE Press, 2003,
pp. 408–418.

[11] R. Holmes and A. Begel, “Deep intellisense: a tool for rehydrating
evaporated information,” in Proceedings of MSR 2008. ACM, 2008,
pp. 23–26.

[12] L. Williams, “Integrating pair programming into a software development
process,” in Proceedings of CSEET 2001. IEEE, 2001, pp. 27–36.

[13] L. Ponzanelli, “Mining StackOverflow to Turn the IDE into a Self-
confident Programming Prompter,” in In Proceedings of MSR 2014 (11th
Working Conference on Mining Software Repositories). ACM, 2014,

pp. 102–111.

4

stackoverflow.com/questions/<id>/<title>
http://api.stackexchange.com/
http://www.st.cs.uni-sb.de/papers/icse2004/icse.pdf

	Introduction
	Promtper
	Explicit Query Writing
	Explicit Invocation
	A Use Case Scenario
	Architecture
	The Ranking Model
	Evaluation Summary

	Conclusion and Future Work
	References

