
Software Systems as Cities

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Richard Wettel

under the supervision of

Prof. Michele Lanza

September 2010

Dissertation Committee

Prof. Matthias Hauswirth Università della Svizzera Italiana, Switzerland
Prof. Cesare Pautasso Università della Svizzera Italiana, Switzerland

Prof. Rainer Koschke University of Bremen, Germany
Prof. André van der Hoek University of California, Irvine, USA

Dissertation accepted on 21 September 2010

Prof. Michele Lanza
Research Advisor

Università della Svizzera Italiana, Switzerland

Prof. Michele Lanza
PhD Program Director

i

I certify that except where due acknowledgement has been given, the work presented in this
thesis is that of the author alone; the work has not been submitted previously, in whole or in
part, to qualify for any other academic award; and the content of the thesis is the result of work
which has been carried out since the official commencement date of the approved research pro-
gram.

Richard Wettel
Lugano, 21 September 2010

ii

Abstract

Software understanding takes up a large share of the total cost of a software system. The high
costs attributed to software understanding activities are caused by the size and complexity of
software systems, by the continuous evolution that these systems are subject to, and by the lack
of physical presence which makes software intangible. Reverse engineering helps practitioners
deal with the intrinsic complexity of software, by providing a broad range of patterns and tech-
niques. One of these techniques is software visualization, which makes software more tangible,
by providing visible representations of software systems.

Interpreting a visualization is by no means trivial and requires knowledge about the visual
language of the visualization. One means to ease the learning of a new visualization’s language
are metaphors, which allow the interpretation of new data representations by analogy. Possibly
one of the most popular metaphors for software visualization is the city metaphor, which has
been explored in the past by a number of researchers. However, in spite of the efforts, the value
of this metaphor for reverse engineering has never been taken beyond anecdotical evidence.

In this dissertation, we demonstrate the value of the city metaphor for reverse engineering
along two directions. On the one hand, we show that the metaphor is versatile enough to
allow the representation of different facets of software. On the other hand, we show that the
city metaphor enables the creation of software visualizations which efficiently and effectively
support reverse engineering activities.

Our interpretation of the city metaphor at its core depicts the system as a city, the packages as
districts, and the classes as buildings. The resulting “code city” visualization provides a structural
overview of the software system, enriched with contextual data. To be able to perform analyses
of real systems using our approach, we implemented a tool called CodeCity.

We demonstrate the versatility of the metaphor, by using it in three different analysis con-
texts, i.e., program comprehension, software evolution analysis, and software design quality
assessment. For each of the contexts, we describe the visualization techniques we employ to
encode the contextual data in the visualization and we illustrate the application by means of
case studies. The insights gained in the three analysis contexts are complementary to each other,
leading to an increasingly more complete “big picture” of the systems.

We then demonstrate how the visualizations built on top of our city metaphor effectively
and efficiently support reverse engineering activities, by means of an extensive controlled ex-
periment. The design of our experiment is based on a list of desiderata that we extracted from
our survey of the current body of research. We conducted the experiment over a period of
six months, in four sites located in three countries, with a heterogeneous sample of subjects
composed of fair shares of both academics and industry practitioners. The main result of our
experiment was that, overall, our approach outperforms the state-of-practice in supporting users
solve reverse engineering tasks, in terms of both correctness and completion time.

iii

iv

Acknowledgements

I am grateful to Michele Lanza for being my advisor. Michele, it has been a privilege to work
with you. Apart from being a mentor, you have been there for me in so many ways. I hope you
will remain part of my life in the years to come.

I thank Matthias Hauswirth, Cesare Pautasso, Rainer Koschke, and André van der Hoek, for
accepting to be in my dissertation committee. Your thorough reviews allowed me to improve
this dissertation sensibly. It was great to have you all in Lugano for my defense.

I am lucky to have worked here with my awesome office mates: Romain Robbes, Mircea
Lungu, Marco D’Ambros, Lile Hattori, Fernando Olivero, and Alberto Bacchelli. Romain, you’re
way too cool ^^for words... Mircea, thanks for showing me the proverbial Romanian hospital-
ity so far away from home. I enjoyed having you around. Marco, I will miss our daily exchange
of looks, jokes, and nonsensical discussions. Lile, your strength and tenacity is the living proof
that it’s not a men’s world we’re living in. Fernando, it was great having an office mate who
shared my passion for 3D “bisualization”. Speaking of which, thank you for so graciously accept-
ing all my jokes, even the bad ones. Alberto, thanks for all your unconditional support and for
introducing me to the bolognese food. One rarely meets a person who is so smart, hard-working,
reliable, and yet so humble. I will keep a dear memory of all of you and of the fun we had
together inside and outside our office.

I thank Radu Marinescu, whose early guidance, passion for science, and friendship made all
these possible.

I thank Tudor Gîrba for showing me new perspectives of my work during so many fruitful
discussions. Your enthusiasm for research is contagious, Doru.

I thank Daniel Ra̧tiu for offering to review my dissertation, in spite of his scarce spare time.
Dani, your pragmatic feedback was extremely useful.

A special thanks goes to the numerous people involved in the experiment. To Radu Mari-
nescu, Mircea Lungu, Alberto Bacchelli, Lile Hattori, and Romain Robbes for helping me out
with the design of the experiment. To Oscar Nierstrasz, Serge Demeyer, Fabrizio Perin, Quinten
Soetens, Alberto Bacchelli, and Sebastiano Cobianco for their help in organizing the experimen-
tal runs. Last, but not least, to all the subjects of our experiment: the developers in Bologna
and Lugano, the Software Composition Group in Bern, and the Master students in Lugano and
Antwerp. Your valuable contribution made my dissertation much stronger.

I would like to thank my mother for all the sacrifices she has made while raising me and my
father for the priceless life lessons he has offered me.

To my better half, Simy. You are the meaning of my life.

v

vi

Contents

Contents vii

List of Figures xi

List of Tables xv

I Prologue 1

1 Introduction 3
1.1 The Challenges of Software Understanding . 4
1.2 Reverse Engineering with Software Visualization . 4
1.3 Metaphor-Based Visualization . 5
1.4 Software and the City . 5
1.5 Our Approach . 6
1.6 Contributions . 7
1.7 Roadmap . 7

2 A History of Software Visualization 9
2.1 Foundations of Visualization . 9
2.2 Pre-1980s . 10
2.3 The 1980s . 11
2.4 The 1990s . 12
2.5 The 21st Century . 16

2.5.1 The Quest for Evidence . 21
2.6 Summary . 22

II Approach 23

3 A City Metaphor for Program Comprehension 27
3.1 Introduction . 27
3.2 Modeling Software Systems . 28
3.3 The City Metaphor . 28

3.3.1 Concept Mapping . 29
3.3.2 Property Mapping . 29
3.3.3 Rectangle Packing Layout . 33

vii

viii Contents

3.3.4 Fine-Grained Representation . 38
3.3.5 The Progressive Bricks Layout . 38
3.3.6 Depicting Relations . 42

3.4 Case Studies . 44
3.4.1 JDK’s java Namespace . 45
3.4.2 A City Tour of ArgoUML . 46
3.4.3 Analysis Summary . 51

3.5 Related Work . 51
3.5.1 Remotely Related Work . 51
3.5.2 Closely Related Work . 52

3.6 Summary . 54

4 Visual Analysis of System Evolution 55
4.1 Introduction . 55
4.2 Modeling Software System History . 55
4.3 Overview of the Approach . 57
4.4 Case Studies . 58
4.5 Coarse-Grained Age Map . 60
4.6 Coarse-Grained Time Travel . 61
4.7 Fine-Grained Age Map & Time Travel . 64
4.8 Fine-Grained Timeline . 67
4.9 Discussion . 72
4.10 Related Work . 73

4.10.1 Remotely Related Work . 73
4.10.2 Closely Related Work . 74

4.11 Summary . 75

5 Visual Assessment of Design Quality 77
5.1 Introduction . 77
5.2 Design Harmony . 78

5.2.1 An Overview of Design Disharmonies . 78
5.2.2 Example of Detection Strategy: The God Class Disharmony 79

5.3 Design Disharmony Maps . 80
5.3.1 Design Problem Presentation . 80

5.4 Case Study Validation . 82
5.4.1 Class-Level Disharmonies . 82
5.4.2 Method-Level Disharmonies . 88

5.5 Related Work . 90
5.6 Summary . 91

6 Tool Support 93
6.1 The Process of Visualizing Software Systems as Cities 94
6.2 CodeCity’s Architecture . 95
6.3 Flexibility through View Configurations . 96
6.4 Prototyping Visualizations with Scripting . 99
6.5 Interaction & Navigation . 100
6.6 Usability . 101

ix Contents

6.7 Language-Independence, Scalability, and Performance 101
6.8 Availability . 107
6.9 Summary . 107

III Evaluation 109

7 Experimental Design 113
7.1 Introduction . 113
7.2 Learning from Related Work . 113

7.2.1 Guidelines for Information Visualization Evaluation 113
7.2.2 Empirical Evaluation in Information Visualization 114
7.2.3 The Challenges of Software Visualization . 116
7.2.4 Program Comprehension Tasks . 117
7.2.5 Guidelines for Software Visualization Evaluation 117
7.2.6 Empirical Evaluation in Software Visualization 118

7.3 Wish List Extracted from the Literature . 122
7.4 Experimental Design . 124

7.4.1 Research Questions & Hypotheses . 124
7.4.2 Dependent & Independent Variables . 125
7.4.3 Controlled Variables . 127
7.4.4 Tasks . 127
7.4.5 Treatments . 131

7.5 Summary . 131

8 Experimental Operation and Results 133
8.1 Introduction . 133
8.2 Operation . 133

8.2.1 The Pilot Study . 134
8.2.2 The Experimental Runs . 135

8.3 Data Collection and Marking . 137
8.3.1 Personal Information . 137
8.3.2 Timing Data . 137
8.3.3 Correctness Data . 138
8.3.4 Participants’ Feedback . 139

8.4 Data Analysis . 139
8.4.1 Preliminary Data Analysis . 139
8.4.2 Outlier Analysis . 140

8.5 Subject Analysis . 141
8.6 Experimental Results . 143

8.6.1 Analysis Results on Correctness . 143
8.6.2 Analysis Results on Completion Time . 145
8.6.3 Task Analysis . 146
8.6.4 Qualitative Analysis . 149
8.6.5 Debriefing Questionnaire . 151
8.6.6 Experience Level . 152
8.6.7 Background . 153

x Contents

8.7 Threats to Validity . 154
8.7.1 Internal Validity . 154
8.7.2 External Validity . 155
8.7.3 Construct Validity . 156
8.7.4 Conclusion Validity . 156

8.8 Summary . 157

IV Epilogue 159

9 Conclusions 161
9.1 Reflections . 161

9.1.1 Versatility . 161
9.1.2 Efficiency . 162
9.1.3 People & Tools . 162

9.2 Contributions . 163
9.3 Future Work . 164
9.4 Final Thoughts . 165

V Appendix 167

A Experimental Data 169
A.1 Pre-Experiment Questionnaire . 169
A.2 Experiment Questionnaire . 170

A.2.1 Introduction . 170
A.2.2 Tasks . 170

A.3 Debriefing Questionnaire . 174
A.4 Task Solution Oracles . 175

A.4.1 T1: Azureus, analyzed with CodeCity . 175
A.4.2 T2: Findbugs, analyzed with CodeCity . 181
A.4.3 T3: Azureus, analyzed with Eclipse + Spreadsheet with metrics 184
A.4.4 T4: Findbugs, analyzed with Eclipse + Spreadsheet with metrics 190

A.5 Data . 193

VI Bibliography 201

Figures

2.1 The first generation of diagrams . 10
2.2 Excerpt from a program book produced with the SEE Program Visualizer 11
2.3 The Balsa (left) and Balsa-II (right) algorithm visualization systems 11
2.4 Examples of prominent systems from the 1980s . 12
2.5 Examples of dynamic visualization . 13
2.6 Early visualizations of software evolution . 13
2.7 Examples of static visualization of system structure 14
2.8 Early examples of 3D software visualization . 14
2.9 Information visualization techniques that inspired software visualization 15
2.10 A UML class diagram . 15
2.11 Visualizations of software evolution . 17
2.12 Modern dynamic visualizations . 18
2.13 Software visualizations as web applications . 19
2.14 Software visualizations based on 3D metaphors (1/3) 19
2.15 Software visualizations based on 3D metaphors (2/3) 20
2.16 Software visualizations based on 3D metaphors (3/3) 20

3.1 The core of the FAMIX meta-model . 28
3.2 An example illustrating the principles of our city metaphor 29
3.3 The magnitude property mapping presented in the grand scheme of our metaphor 30
3.4 The code city of ArgoUML, with annotated building archetypes 31
3.5 Building type representations . 32
3.6 Mapping strategies aimed at reducing the complexity within code cities 32
3.7 Identity, box plot based, and threshold based mappings compared 34
3.8 A top-down view of the layout in the code city of ArgoUML 35
3.9 Example: four elements (top) laid out (middle) using a partition tree (bottom) . . 37
3.10 Fine-grained representation . 38
3.11 The first four levels in the Progressive Bricks layout 40
3.12 Comparison between the bricks (left) and progressive bricks (right) layouts on Jmol 41
3.13 A top-down view of the progressive bricks layout in the code city of Jmol 41
3.14 Skyline perspective over the code city of ArgoUML . 42
3.15 Top perspective over the code city of ArgoUML . 43
3.16 Aerial perspective over the code city of ArgoUML . 44
3.17 The code city of JDK’s java namespace . 45
3.18 A glimpse in the code city of ArgoUML . 46

xi

xii Figures

3.19 Tallest buildings in the code city of ArgoUML . 47
3.20 The methods defined in Facade are popular in ArgoUML 48
3.21 Office buildings exclusively served by their private parking lots 49
3.22 ui.explorer.rules, a package made of mainly sibling classes 50

4.1 Modeling the history of object-oriented systems with Hismo 56
4.2 Coarse-grained age map of ArgoUML . 60
4.3 Coarse-grained time travel through the history of ArgoUML 62
4.4 Applying both time travel and age map to ArgoUML 63
4.5 Fine-grained age map applied to the most recent version of JHotDraw 65
4.6 Combining fine-grained time travel with age map on JHotDraw 66
4.7 Example illustrating the principles of the timeline technique 67
4.8 The timeline of class standard.StandardDrawingView at different granularities . 68
4.9 The timeline of package standard in JHotDraw . 68
4.10 Timeline of class Graphics3D . 69
4.11 Learning from the past by correlating several class timelines of Jmol 71

5.1 The God Class detection strategy [LM06] . 79
5.2 The God Classes of JDK’s java namespace in MooseBrowser 81
5.3 The God Class disharmony map of JDK’s java namespace in CodeCity 81
5.4 Class-level disharmonies in JDK’s java namespace . 83
5.5 Class-level disharmonies in iText . 84
5.6 Class-level disharmonies in ArgoUML . 85
5.7 Class-level disharmonies in Jmol . 87
5.8 Yellow-colored Feature Envy in Jmol . 88
5.9 Red-colored Shotgun Surgery in the model district of ArgoUML 89

6.1 CodeCity’s main window . 93
6.2 CodeCity’s module-level architecture . 95
6.3 User interface to the view configuration . 96
6.4 Class diagram of CodeCity’s mappers . 97
6.5 User interface widgets for the various mapping strategies 98
6.6 Scripting example (bottom) and the produced output (top) 99
6.7 iText, implemented in both Java and C# . 102
6.8 Moose, a Smalltalk system . 103
6.9 ScummVM, a C++ system . 103
6.10 Google Web Toolkit (GWT), a system of 200+ KLOC 104
6.11 JBoss Application Server, a system of 400+ KLOC . 104
6.12 JDK, a system of 1+ MLOC . 105
6.13 Eclipse, a system of nearly 3 MLOC . 105
6.14 A cross-language visualization of ten systems, totaling 1.7+ MLOC 106

8.1 The timeline of the experiment . 134
8.2 The output of our timing web application . 137
8.3 Histograms of perceived difficulty per task . 140
8.4 Histograms of the subjects’ expertise level . 141
8.5 The participants’ age for each of the three blocks . 142

xiii Figures

8.6 Graphs for correctness . 144
8.7 Graphs for completion time, in minutes . 146
8.8 Average correctness per task . 147
8.9 Average completion time per task . 148
8.10 Performance comparison between experience levels: Beginner vs Advanced 152
8.11 Performance comparison between background: Academia vs Industry 153

A.1 The enrollment online questionnaire we used for collecting personal information 169
A.2 Handout for Treatment 1 (Part 1 of 2) . 199
A.3 Handout for Treatment 1 (Part 2 of 2) . 200

xiv Figures

Tables

3.1 Dimensions and building types . 32
3.2 Case study systems for program comprehension . 44

4.1 Roadmap for presenting the techniques at each granularity level 57
4.2 The history of ArgoUML’s major releases in numbers 58
4.3 The sampled history of JHotDraw in numbers . 58
4.4 The sampled history of Jmol in numbers . 59
4.5 The number of methods for the class histories in Figure 4.11 70

5.1 Case studies for the application of the city metaphor to design quality assessment 82

6.1 The results from the questionnaire on CodeCity’s usability 101
6.2 Visualization build time for a sample of our battery of visualized systems 101

7.1 Null and alternative hypotheses . 125
7.2 The object systems corresponding to the two levels of system size 126
7.3 The relation between our tasks and the activities defined by Pacione et al. 130
7.4 Independent variables and the resulting treatment combinations 131

8.1 Subject distribution . 141
8.2 Descriptive statistics related to correctness . 144
8.3 Descriptive statistics related to completion time, in minutes 145

A.1 The subjects’ personal information, clustered by treatment combinations 194
A.2 The assignment of the subjects to treatments and blocks 195
A.3 The correctness of the subjects’ solutions to the tasks 196
A.4 The subjects’ task completion time, in minutes . 197
A.5 The subjects’ perceived time pressure and task difficulty 198

xv

xvi Tables

Part I

Prologue

1

Chapter 1

Introduction

“Software is hard”, remarked Donald Knuth[Knu02], one of the most respected researchers in
computer science. Software has been defined as the set of computer programs, procedures, and
possibly associated documentation and data pertaining to the operation of a computer system
[IEE90]. Building well-crafted software is hampered both by external factors (i.e., changes in
hardware and software, changing requirements, time pressure) and by internal characteristics
related to the nature of software—an aspect we address later in more detail.

The consequences of these adverse conditions can sometimes be critical, e.g., the introduc-
tion of software defects, due to the time pressure. Finding ways to deal with such problems is
the object of software engineering, which is defined as the application of systematic, disciplined,
quantifiable approach to the development, operation, and maintenance of software [IEE90].

Due to the aforementioned external factors, namely a changing environment which triggers
new requirements on the system, even the best design degrades over time, leading to a phe-
nomenon aptly termed as “architectural drift” [Pin05], “design erosion” [vGB02], or “code de-
cay” [EGK+01]. This problem is addressed by reengineering [CCI90], which aims at improving
the design of parts of the system to make it more capable of embracing future changes [Bec00].

A preliminary step towards modifying a software system is understanding the software sys-
tem, which remains an open research challenge, in spite of the existing solutions. One solution
is reverse engineering, which is the process of analyzing a subject system to identify the system’s
components and their interrelationships and to create representations of the system in another
form or at a higher level of abstraction [CCI90].

A subdomain of software reverse engineering is software visualization, which has been de-
fined by Price et al. as the use of the crafts of typography, graphic design, animation, and cine-
matography with modern human-computer interaction technology to facilitate both the human
understanding and effective use of computer software [PBS93].

With our approach, we address the understanding of software systems, which represents a
daunting and costly activity. Software maintenance claims a share estimated to 60%–90% of the
total software costs [ZSG79, LS81, McK84, Erl00]. A significant part of the maintenance effort
is spent on software understanding [Cor89].

Understanding a software system requires obtaining a mental model of the system, similar
to the one of a system expert, who spends large amounts of time reading and writing its code.
Building such a mental model is a tedious activity, due not only to the aforementioned external
factors, but also to a number of properties of software, described next.

3

4 1.1 The Challenges of Software Understanding

1.1 The Challenges of Software Understanding

Software is large and complex. The sheer size and complexity of software systems hinders
even the comprehension of smaller parts of such a system in isolation, let alone the under-
standing of the system as a whole. There is a broad range of reverse engineering techniques
and patterns that support software understanding, such as the ones proposed by Demeyer et al.
[DDN02]: from lightweight techniques with wider focus (e.g., “skim the documentation”, “read
the code in one hour”) to more heavyweight techniques with narrowed focus (e.g., “refactor to
understand”, “step through the execution”). One problem with these techniques is that they do
not approach the system as a whole.

Software evolves. Software systems are subject to modifications over time. According to the
second of Lehman’s laws of software evolution [LB85], as systems evolve, they grow in com-
plexity, and consequently more resources are needed to preserve and simplify their structure.
However, change is not necessarily harmful; the XP (i.e., eXtreme Programming) community is
built on the idea that change should not be resisted, but actually embraced [Bec00]. Moreover,
the rich evolution data stored in versioning system repositories provides a valuable resource for
both retrospective analyses and for trend prediction. As a consequence, the research commu-
nity devised specific reverse-engineering techniques, such as “learning from the past” [DDN02].
However, from a software understanding perspective, dealing with even more data, due to the
analysis of multiple versions of a system, further exacerbates the scalability problem.

Software is intangible. A less obvious impediment in the process of understanding software
systems is the virtual nature of software—a man-made product aptly described by Ball and Eick
as “intangible, having no physical shape or size” [BE96]. In his book on visual perception, Ware
affirms that humans acquire more information through vision than through all the other senses
combined [War04]. Consequently, software understanding is severely hindered by the lack of
visual presence that characterizes software.

Software visualization is able to increase the perceived tangibility of software systems through
intuitive visual representations. Over the last two decades, software visualization has earned a
place among the most effective program comprehension techniques, widely used in the context
of software maintenance, reverse engineering and re-engineering [Kos03].

1.2 Reverse Engineering with Software Visualization

The wide variety of software visualization approaches over the last two decades led to a plethora
of visualizations, documented in several compendia [SDBP98, Zha03, GME05, Die07] and clas-
sifiable according to several taxonomies [Mye86, PBS93, RC93, MMC02].

Each visualization targets one or more of the many aspects of a software system and encodes
information according to its own visual language. Performing an analysis of several aspects of
a software system (e.g., design and evolution) would require conducting separate analyses for
each targeted aspects, using a different visualization. Learning a new language for each new
visualization may lead to a cognitive overload of its users, which would defeat the very purpose
of visualization. A promising means to reduce the cognitive load are metaphors.

5 1.3 Metaphor-Based Visualization

1.3 Metaphor-Based Visualization

According to the conceptual metaphor theory developed in the field of cognitive linguistics
[LJ80], a metaphor is a stable and systematic relationship between two conceptual domains,
i.e., source and target. Projecting the structure of the source domain onto the target domain,
enables one to express the target in terms of the source. By analogy, one is able to understand
the novel in terms of the familiar or, in the case of software visualization, the invisible in terms
of the visible. Research has shown that metaphors, far from being just figures of speech, are
paramount to everyday communication and learning [LJ80, LN00].

To compensate the intangibility of software [BE96], an abundance of metaphors have pop-
ulated the software engineering field. Simple metaphors, initially used to explain the abstract
concepts, ended up being assimilated by the terminology, e.g., tree structure, data stream, data
flow, class inheritance, software tool, waterfall model. Other metaphors illustrate complex pro-
cesses, from a more philosophical perspective, e.g., the life cycle of a software system is like a
river [Boo09].

There are metaphors that go beyond words and build on the idea that “a picture is worth a
thousand words”. Visualization has the potential of reinforcing metaphors, making them more
intuitive and memorable. Therefore, software visualization is a fertile ground for the study of
software-related metaphors. Over the last decade, the availability of 3D graphics enabled the
appearance of more realistic and easier to grasp visual metaphors, such as landscapes [BNDL04],
cities [KM00, PBG03], or solar systems [GYB04].

We conducted our research in the context of the EvoSpaces1 project, which aimed at exploit-
ing multi-dimensional navigation spaces to visually explore object-oriented, evolving software
systems [LGD09]. In the first phase of the project, Boccuzzo and Gall experimented with various
metaphors taken from everyday life [BG07]. However, none of them appeared as promising
as the city metaphor. Apart from a structural complexity which fits the inherent complexity of
large-scale software, the city’s notions of locality and habitability [Gab96] help avoid disorien-
tation in the 3D environment. For these reasons, we adopted the city as the central metaphor of
the project.

Another reason why the city metaphor has been one of the most popular metaphors used for
the visualization of software systems is the large number of similarities between the software
and the urban domain.

1.4 Software and the City

Conceptually, both cities and software systems are complex, man-made entities. From a life
cycle perspective, they are conceived during a planning phase, in which architects strive to fulfill
the requirements, while maintaining a balance between functionality and design. Thereafter,
cities and software systems are built incrementally and, once in place, they require perpetual
maintenance to keep their value over time.

The influence of civil architecture on software engineering extends beyond terminology and
reaches its best practices: The prominent design patterns by Gamma et al. [GHJV95] are rooted
in the architectural pattern language proposed by Alexander et al. [AIS77] almost two decades
before.

1http://www.inf.usi.ch/projects/evospaces

http://www.inf.usi.ch/projects/evospaces

6 1.5 Our Approach

The city metaphor has been explored by other researchers before us [KM00, PBG03, MFM03,
BNDL04, LSP05]. However, the existing approaches are plagued by one or more of the following
problems: limited coverage of the various facets of software systems, poor tool support, and most
of all, the scarcity of empirical evaluation.

Problem Statement:

The current software visualization approaches based on a city metaphor fail at demon-
strating the value of this metaphor for reverse engineering.

We claim that the city metaphor holds an intrinsic value in the context of software visualiza-
tion for reverse engineering. On the one hand, the similarities between software systems and
cities may ease the understanding of the metaphor. On the other hand, the consistent use of
one central metaphor to illustrate several facets of software systems may reduce the cognitive
load of the metaphor’s adopters. However, the potential of the city metaphor has yet to be
demonstrated. In this context, we formulate our thesis.

1.5 Our Approach

Thesis:

Depicting software systems as cities is a versatile metaphor which enables the creation
of efficient software visualizations to support reverse engineering.

We start our systematic exploration of the city metaphor with the design of the visual lan-
guage, i.e., the mapping between the source domain (i.e., the city) and target domain (i.e., the
software system). The software system is represented as a city, its packages as the city’s dis-
tricts, and its classes as the buildings. We enrich the city visualization with software metrics, i.e.,
the physical properties of the city artifacts (e.g., color, dimensions) reflect a set of measurable
properties of the software artifacts.

To prove the claim of our thesis related to the versatility of the metaphor, we applied the
metaphor in three distinct contexts, i.e., program comprehension, software evolution analysis,
and design quality assessment. We first provided support for program comprehension based on
static data relative to a single version of a software system. Then, we extended the approach to
support software evolution analysis, by taking into account several versions of the same system.
Finally, we added support for the assessment of the quality of a system’s design, based on infor-
mation extracted using detection strategies [Mar04a]. To illustrate our metaphor’s versatility, we
analyzed several open-source systems of various sizes for each of the three application contexts.

To prove the claim related to the efficiency of the software visualizations built on top of
the city metaphor, we designed and conducted a controlled experiment aimed at discovering
whether, under which circumstances, and to whom our approach is useful. With this experiment,
we aimed at comparing our visualization approach, based on the city metaphor, to the state-of-
the-practice in program comprehension, in terms of both correctness and completion time in
supporting task solving.

To apply our approach on real software systems, we implemented a tool called CodeCity
[WL08b], based on the design of our metaphor. We built CodeCity on top of the Moose reengi-
neering framework [NDG05], which allows us to use FAMIX [DTD01], a language-independent
meta-model for object-oriented software (e.g., Smalltalk, Java, C/C++, and C#).

7 1.6 Contributions

1.6 Contributions

In the light of the described thesis, the contributions of this dissertation are:

1. The definition of a versatile city metaphor for software visualization [WL07b]. The
building blocks of our city metaphor (i.e., domain mapping, concept mapping, property
mapping) as well as the set of techniques we used to materialize this metaphor for software
visualization (e.g., two novel layout algorithms, a comparison between different mapping
strategies) are described and illustrated in Chapter 3.

2. The application of the city metaphor to program comprehension [WL07a]. We em-
ployed the different visualization techniques implemented in our metaphor to support the
understanding of software systems, based on their most recent version. To validate this
application, we performed an analysis on two case studies, presented in Chapter 3.

3. The application of the city metaphor to software evolution [WL08c]. To enable our ap-
proach to support evolution analyses, we extended our metaphor and devised three tech-
niques aimed at exposing historical information at various granularity levels. We present
the visualization techniques for software evolutions and the way we validated them by
means of three case studies in Chapter 4.

4. The application of the city metaphor to design quality assessment [WL08d]. To en-
able our approach to support the analysis of software design, we devised a visualization
technique called disharmony map, which allows one to get an overview of the design prob-
lems, i.e., detected violations of design guidelines. The technique and the four case studies
we used to validate this application are presented in Chapter 5.

5. The implementation of a tool which supports our city metaphor [WL08b, WL08a,
Wet08]. We implemented CodeCity, a scalable tool which supports all the three aforemen-
tioned applications, is publicly available and has been used in both academic research and
industry. We present our tool support in Chapter 6.

6. The empirical validation of our approach through a repeatable controlled experi-
ment [WLR10]. Starting from the shortcomings found in the literature, we designed a
controlled experiment for the empirical validation of our approach and conducted it with
participants from both academia and industry. The design, operation, and analysis of the
data coming from this experiment are presented in detail in Chapter 7 and Chapter 8.
Moreover, the entire experimental data set and everything that is required to make the
experiment repeatable and transparent is presented in Appendix A.

1.7 Roadmap

The remainder of this dissertation is organized as follows.

Part I: Prologue

• In Chapter 2 we describe the software visualization research context from a historical
perspective, by focusing on the main contributions in the field along the timeline of the
last fifty years and observing the events that triggered the progress of this research field.

8 1.7 Roadmap

Part II: Approach deals with the first claim of our thesis, which refers to the versatility of the
city metaphor.

• In Chapter 3, we describe in detail our city metaphor for software visualization and we
discuss a number of visualization techniques aimed to support program analyses of single
versions of software systems. We illustrate the application of our approach to program
comprehension, by means of two case studies.

• In Chapter 4, we describe how we extended our city metaphor for software visualization to
enable analyses of software system evolution, by means of three visualization techniques,
i.e., age map, time traveling, and timeline. Then, we validate this application of the city
metaphor by means of three case studies.

• In Chapter 5, we deal with the third application of the metaphor, i.e., design quality as-
sessment. To this end, we describe a visualization technique called disharmony maps,
which enriches our original city visualizations with design problem data. We illustrate this
application of our city metaphor by means of four case studies.

• In Chapter 6 we describe CodeCity, the tool that supports our city metaphor and all three
applications, i.e., program comprehension, software evolution analysis, and design quality
assessment.

Part III: Evaluation deals with the second claim of our thesis, which refers to the efficiency of
the visualizations built on top of the city metaphor.

• In Chapter 7 we discuss the design of our controlled experiment, based on a list of desirable
features emerged from the study of the body of literature.

• In Chapter 8 we present both the operation and the analysis of the data. First, we describe
how we conducted the experiment. Then, we present the analyses we performed on the
data collected from our subjects and discuss the results.

Part IV: Epilogue

• In Chapter 9, we reflect over the results of the research we performed, in the context of
our thesis. Then, we present the contributions and discuss the differences between expec-
tations and realizations. Before concluding, we delineate several future work directions.

Part V: Appendix

• In Chapter A, we describe all the details concerning the repeatability of our controlled ex-
periment, complementary to Part III. We first present the various questionnaires we used
in our experiment for collecting personal data, task solutions, and feedback. Then we pro-
vide the oracle sets we used to grade the solutions of the participants to the experimental
tasks. Finally, we present the data collected from our subjects.

Part V: Bibliography. The last part lists the bibliography used in this dissertation.

Note: This dissertation makes intensive use of color pictures. We recommend reading it on screen
or as a color-printed paper version.

Chapter 2

A History of Software Visualization

Price et al. defined software visualization as the use of the crafts of typography, graphic de-
sign, animation, and cinematography with modern human-computer interaction and computer
graphics technology to facilitate both the human understanding and effective use of computer
software [PBS93].

According to Diehl, software visualization is concerned with visualizing the structure, be-
havior and evolution of software [Die07]. Structure visualizations focus on the static parts and
relations of a system that can be extracted directly from the source code, without running the
program. Behavior focuses on the dynamic information that can be extracted from the execution
of the program. Evolution visualization focuses on the changes that a software system is subject
to over its lifetime. In this context, our research focuses on both the structure and the evolution
of software systems.

Today, software visualization is an established software engineering field, with dedicated
venues and a flourishing community around it. However, getting to this state required five
decades. In this chapter we present the major contributions to software visualization, in the
context of progress triggering factors.

2.1 Foundations of Visualization

The interest in using vision to understand facts has started long time before software came
to existence. The first data graphs have been published in 1786 by Playfair [Pla86], a Scottish
engineer, considered the founder of graphical methods in statistics, who invented the line graphs,
bar charts, and the pie charts.

However, the first theoretical foundation to the information visualization field were placed
by Bertin in 1967 with his remarkable semiology of graphics [Ber67], in which the French car-
tographer describes a framework for designing diagrams.

9

10 2.2 Pre-1980s

2.2 Pre-1980s

The earliest form of software visualizations were diagrams. Regarded as helpful for program
comprehension, diagrams were the object of considerable research effort. In 1959, Haibt cre-
ated a system able to draw flowcharts (See Figure 2.1(a)) based on programs written in as-
sembly language or Fortran [Hai59]. In 1963, Knuth developed a system which could produce
flowcharts (See Figure 2.1(b)) as documentation artifacts [Knu63]. The more structured Nassi-
Schneiderman diagrams (See Figure 2.1(c)) appeared in 1973, as an alternative to flowcharts
[NS73].

(a) Haibt’s flowcharts (b) Knuth’s flowcharts (c) Nassi-Shneiderman

Figure 2.1. The first generation of diagrams

A rather primitive form of software visualization was source code presentation, which ad-
dressed the need for more readable representations of programs. The oldest type of source code
presentation was pretty-printing, which employed the use of spacing, indentation, and layout
to increase code readability. The first pretty-printers appeared in the 1970s and were dedicated
to programs written in several programming languages, such as LISP, which included a built-in
pretty printer, PL/I [CS70], or Pascal [HL77].

Another precursor of modern visualization was the animation of program behavior, used
mainly for educational purposes. The two films of Knowlton from 1966, which demonstrated a
low-level programming language developed at Bell Laboratories [Kno66a, Kno66b], represented
the first documented use of animation techniques to illustrate program behavior.

11 2.3 The 1980s

2.3 The 1980s

The next step in pretty-printing employed the use of typeface, math notations, and headings,
such as the one adopted by the Xerox Cedar community [Tei85]. In a similar vein, Knuth’s
WEB system [Knu84] combined source code and documentation in a single publication using
a markup language, while the SEE Program Visualizer by Baecker and Marcus [BM86, BM89]
could typeset a C program according to a style guide based on graphic design principles, and
build a “program book” (See Figure 2.2) from a set of C programs.

Figure 2.2. Excerpt from a program book produced with the SEE Program Visualizer

Probably the most researched software visualization direction of the 1980s was program
behavior, used mainly for educational purposes. The most popular early example of program
behavior animation was Baecker’s film from 1981 “Sorting Out Sorting”, which provided a visual
aid for understanding some of the most important sorting algorithms, such as shell-sort, bubble-
sort, or quick-sort [Bae98]. The most prominent visualization systems of this period were Balsa
[BS84], a system for animating algorithms used as an educational aid, and its direct successor,
Balsa-II [Bro88], both illustrated in Figure 2.3.

Figure 2.3. The Balsa (left) and Balsa-II (right) algorithm visualization systems

12 2.4 The 1990s

In 1983, Myers published his work at Xerox Palo Alto Research Center on Incense, a system
for the visualization of data structures, such as records and pointers [Mye83].

The availability of personal computers equipped with displays enabled researchers to create
interactive software visualization systems for a wide audience. Reiss envisioned the use of mul-
tiple views including simple visualizations (See Figure 2.4(a)) in an early IDE (i.e., Integrated
Development Environment) from 1984, called Pecan [Rei84].

In 1986, Müller et al. presented Rigi, a software visualization system aimed at visualizing
the structure of software systems in terms of components and relationships [Mül86, MK88],
which stood the test of time and ended up becoming one of the most popular early software
visualization systems (See Figure 2.4(b)).

The growing number of object-oriented programming languages emerging in the mainstream
raised the interest in understanding not only the structure, but also the behavior of systems
written according to this paradigm. Kleyn et al. proposed GraphTrace [KG88], a tool using
concurrently animated views to visualize dynamic information, illustrated in Figure 2.4(c).

(a) Pecan (b) Rigi (c) GraphTrace

Figure 2.4. Examples of prominent systems from the 1980s

The various types of emerging visualizations raised the need to categorize and organize them.
A first attempt in this direction was Myers’s taxonomy of program visualization systems [Mye90].
Myers classified program visualization systems along two axes. The first axis determines what
part of a program is visualized (i.e., code, data, or algorithms), while the second shows whether
the displayed information is static or dynamic.

A few years after, Price et al. proposed a more detailed taxonomy [PBS93], according to
which software visualization is categorized along six dimensions: scope, content, form, method,
interaction, and effectiveness. The relative orthogonality of these taxonomies reveals the diffi-
culty of categorizing software visualization.

2.4 The 1990s

With time, more and more researchers gained interest in software visualization and started
to investigate this novel research field. As a consequence, several seminal works in software
visualization date are born in this period.

In 1992 Eick et al. presented SeeSoft [ESEE92], a software visualization tool able to provide
fine-grained (i.e., down to the level of line of code) visualizations of software systems.

13 2.4 The 1990s

Later, Ball and Eick [BE96] successfully applied SeeSoft in several contexts, each with a dif-
ferent perspective on software, e.g., static properties, performance profiles (See Figure 2.5(a)),
or version histories (i.e., evolution).

In 1993, in the context of dynamic program visualization, De Pauw et al. introduced Jin-
sight (See Figure 2.5(b)), a tool with novel views of the behavior of object-oriented systems
[PHKV93].

Browser

Indent Animate

0-

67-

134-

201-

268-

counts
0

100

200

300

400

500

600

700

800

cgrep.c
command.c

compath.c
crossref.c

dir.c display.c
find.c help.c

history.c
input.c

invlib.c
lookup.c

main.c
scanner.c

counts: 162998
Code: /*<162998>*/ *lsp++ = yystate = yyt->advance+yysvec;

Lines: 13416 / 13416

301 / 301

counts162998

0.50

Slow

Fast
301 / 301301 / 301

counts: 162998counts: 162998

162998

162998
Code: /*<162998>*/ *lsp++ = yystate = yyt->advance+yysvec;Code: /*<162998>*/ *lsp++ = yystate = yyt->advance+yysvec;

162998

Lines: 13416 / 13416Lines: 13416 / 13416

(a) Program execution in SeeSoft (b) Inter-class call matrix in Jinsight

Figure 2.5. Examples of dynamic visualization

The first contributors to software evolution visualization were Holt and Pak in 1996, who
used their tool called GASE (See Figure 2.6(a)) to visualize architectural data for eleven versions
of an industrial software system [HP96]. Three years later, Gall et al. used both conventional 2D
and novel 3D (See Figure 2.6(b)) visualizations to analyze the evolution of another industrial
system, as captured by its release history [GJR99].

(a) Changing dependencies in GASE

RSN

(b) 3D Visualization of release histories

Figure 2.6. Early visualizations of software evolution

14 2.4 The 1990s

In 1995, Storey et al. presented SHriMP [SM95], a tool for the visualization of software
structures (See Figure 2.7(a)), obtained by augmenting the Rigi environment with multi-perspective
views and fisheye [Fur86] techniques.

In 1999, Lanza proposed a lightweight visualization of software systems called polymetric
views (See Figure 2.7(b)), implemented in the CodeCrawler tool [Lan99, DDL99]. The polymet-
ric views, which employed simple, yet effective visualizations enriched with software metrics,
were able to reveal outliers and patterns in object-oriented software systems.

(a) Fisheye views of nested graphs in SHriMP (b) Polymetric views in CodeCrawler

Figure 2.7. Examples of static visualization of system structure

This period was favorable also for experimenting with novel research directions for visualiza-
tion, such as 3D (i.e., three-dimensional) visualization and Virtual Reality (VR). In 1995, Reiss
presented a configurable engine for building 3D visualization of programs (See Figure 2.8(a)),
called PLUM [Rei95]. In 1998, Young and Munro explored representations of software for pro-
gram comprehension in VR [YM98], such as the one illustrated in Figure 2.8(b).

G i ll h di l i i bj

(a) PLUM (b) Software visualized in a VR environment

Figure 2.8. Early examples of 3D software visualization

15 2.4 The 1990s

The abundance and diversity of contributions are evidence of the momentum gained by the
software visualization field during the 1990s.

The broader field of information visualization has been a source of inspiration for software
visualization research. First, the excellent work of Edward Tufte on the use of visual means to ef-
ficiently present information [Tuf90, Tuf97, Tuf01] has influenced the entire field of information
visualization, including software visualization. Furthermore, several information visualization
techniques—such as the Cone Trees (See Figure 2.9(a)) of Robertson et al. [RMC91], the In-
formation Pyramids (See Figure 2.9(b)) of Andrews et al. [AWP97], or the tree-maps (See Fig-
ure 2.9(c)) devised by Shneiderman [Shn92]—have inspired software visualization techniques.

(a) Cone Trees (b) Information Pyramids (c) Tree-map

Figure 2.9. Information visualization techniques that inspired software visualization

The Birth of UML. Although not a visualization approach, the Unified Modeling Language
(UML) is closely related to software visualization. UML is a diagram-based language used to
describe both static aspects (e.g., class diagrams, package diagrams, or component diagrams)
and dynamic aspects (e.g., sequence diagrams, timing diagrams) of software. UML, as part of
the Unified Software Development Process [JBR99], is the current de-facto industry standard
for modeling.

The most popular use of UML was to visually support the description of the famous design
patterns, i.e., general reusable solutions to commonly occurring problems in software design
[GHJV95]. Figure 2.10 shows the class diagram corresponding to the Observer design pattern.

Figure 2.10. A UML class diagram

16 2.5 The 21st Century

2.5 The 21st Century

By the beginning of the 21st century, information visualization was a research field of its own,
with many dedicated venues, as opposed to software visualization, which was perceived as an
esoteric means to addressing program comprehension or reverse engineering problems.

In 2001, an International Seminar on Software Visualization was organized in Dagstuhl to
bring together the most significant practitioners and researchers working in the area of soft-
ware visualization. Fifty researchers from all around the world discussed the state of the art
in software visualization and identified the challenges for the future of the field [Die02]. More
importantly, they decided to initiate a series of international venues on software visualization.

In the following years, two new venues dedicated to software visualization have been inau-
gurated. First, the IEEE International Workshop on Visualizing Software for Understanding and
Analysis (i.e., VISSOFT) started in 2002, followed by the ACM Symposium on Software Visual-
ization (i.e., SoftVis) in 2003. The momentum gained by the software visualization field in this
period is reflected in the subsequent explosion of software visualization approaches.

Software Evolution Visualization. Before the beginning of the 21st century, researching the
evolution of software systems was a tempting, yet unfeasible perspective, due to the lack of data.
However, with the spread of the open-source movement, a growing number of version control
repositories containing entire development histories of software systems, became publicly ac-
cessible. As a consequence, many researchers turned the focus of their work towards software
evolution. The following contributions illustrate this new direction in software visualization.

In 2001, using the Evolution Matrix polymetric view to analyze the evolution of classes,
Lanza identified class evolution patterns [Lan01].

The Revision Towers [TM02] proposed by Taylor and Munro in 2002 showed change infor-
mation at the file level, as extracted from the log file of the versioning repository.

The Evolution Spectrographs of Wu et al. presented the evolution of the system’s components
from the perspective of a single property [WHH04].

Fischer and Gall et al. visualized the evolution of features in large-scale software [FG04].
The visualizations of Pinzger et al. (See Figure 2.11(c)) implemented in RelVis encapsulated
multiple evolution metrics [PGFL05]. Ratzinger et al. described EvoLens, a technique aimed at
easing navigation in the immense exploration space created by the inclusion of time [RFG05].

Gîrba et al. studied the evolution of class hierarchies using the Class Hierarchy History
Complexity polymetric view [GLD05]. Two interesting approaches focusing on developers were
the study of the evolution of code ownership by Gîrba et al. [GKSD05], using a visualization
called Ownership Maps (See Figure 2.11(a)) and the Fractal Figures (See Figure 2.11(b)) of
D’Ambros et al., which focused on the development effort [DLG05].

D’Ambros and Lanza visualized the evolution of software bugs (See Figure 2.11(d)) with
BugsCrawler [DL06b] and the evolution of logical coupling (See Figure 2.11(e)) between classes
(i.e., classes that change together) with Evolution Radar [DL06a]. Lungu and Lanza visualized
the evolution of inter-module relationships (See Figure 2.11(f)) using Softwarenaut [LL07].

Telea and Auber proposed a technique called Code Flows [TA08], which allowed tracking
fine-grained changes of source code, i.e., at the level of the line of code. Voinea et al. provided
overviews of system evolution extracted from CVS repositories (See Figure 2.11(g)), using the
dedicated tools CVSscan and CVSgrab [VLT07].

Inspired by cartography, Kuhn et al. visualized the evolution of an application’s vocabulary
(See Figure 2.11(h)) using a tool called Software Cartographer [KLN08].

17 2.5 The 21st Century

(a) Ownership map (b) Fractal Figures

2 entropy

DOM

3 nrMRs

5 in_nrACalls7 in_nrCalls

8 nrAttrs

9 nrClasses

10 nrDirs

11 nrFiles

12 nrFuncs

13 nrGlobalFuncs

14 nrGlobalVars

15 nrMeths
16 nrPackages

17 nrVars

1 nrACouples

20 out_nrCalls

18 out_nrACalls

6 in_nrCallers

19 out_nrCallers

4 nrCouples

(c) Evolution of multiple metrics (d) Evolution of bugs (e) Logical coupling

Evolution of
the selected

relation

Selected
relation

(f) Evolution of dependencies (g) Visualization of CVS repositories

(h) Evolving software map

Figure 2.11. Visualizations of software evolution

18 2.5 The 21st Century

Noticing the richness and abundance of visualizations directed at evolution, Diehl divided
software visualization approaches in three categories [Die07], by adding visualization of the
evolution of software systems to the static and dynamic dynamic program visualization direc-
tions previously established by Price et al. [PBS93].

Dynamic Software Visualization. The biggest challenge in visualizing dynamic data is scala-
bility, because of the large amounts of data that need to be manipulated in this context. However,
due to the increasing computational power available today, dynamic visualization is starting to
become feasible. Greevy et al. proposed a 3D dynamic visualization tool called TraceCrawler
(See Figure 2.12(a) for the analysis of feature interactions [GLW06]. Another trace analysis tool
which provided extremely appealing visualizations was ExTraVis (See Figure 2.12(b)) of Holten
et al. [CHZ+07]. De Pauw et al. described a tool called Streamsight (See Figure 2.12(c)), aimed
at visualizing large-scale streaming applications [PAA08].

(a) TraceCrawler (b) ExtraVis (c) Streamsight

Figure 2.12. Modern dynamic visualizations

Software Visualization on the Web. Over the last decade, the Internet has become a basic
commodity in many countries. To increase accessibility to their technology and reduce the inher-
ent problems related to the installation and configuration of conventional tools, some researchers
moved their software visualizations to the web, in the form of web applications. Mesnage and
Lanza developed White Coats [ML05], a 3D web application for the visualization of software
evolution, based on the data stored in versioning system repositories (See Figure 2.13(a)).
Anslow et al. explored the web as a medium for 3D software visualization and animation
[AMNB07]. Lungu et al. described the Small Project Observatory (See Figure 2.13(b)), an ap-
plication whose holistic and focused views provides support for reverse engineering of software
ecosystems [LLGH07, LLGR10]. D’Ambros and Lanza implemented Churrasco, a tool supporting
the collaborative visual analysis of evolving software systems (See Figure 2.13(c)), through a
methodology that combines software visualization and concurrent annotations [DL10].

Configurable Software Visualization. Due to the increasing popularity of software visualiza-
tion and to the availability of rich data, a number of researchers invested in building highly-
configurable visualization engines, to allow fast prototyping of new visualizations or the adapta-
tion of existing visualizations to new types of data. Two examples of such engines were GSEE by
Favre [Fav01] and Mondrian [MGL06], a visualization framework by Meyer et al. which allowed
the interactive building of software visualizations.

19 2.5 The 21st Century

1

2

3

4

5

6

7

8

9
11

10

12

(a) White Coats

2. Available

Perspectives

4. View

Conguration

3. Active Filters

5. Detail

Perspective

1.Interactive

View

(b) The Small Project Repository

Recent annotations
added

People participating
to the collaboration

Selected figure
information

Metrics mapping
configurator

Package selector

Regular expression
matcher

Report generator

SVG Interactive
Visualization

Selected figure

User

Context menu

(c) Churrasco

Figure 2.13. Software visualizations as web applications

Software Visualization Integration. Many researchers moved their visualizations closer to
practitioners, by integrating them in popular IDEs. Examples of such integrations in Eclipse
include Creole [LMSW03], an Eclipse plugin by Lintern et al. for SHriMP views [SM95] and
X-Ray [Mal07], a plugin by Malnati for integrating polymetric views [Lan03] in Eclipse.

3D Metaphor-Based Visualization. The advances in hardware over the last decade led to a
proliferation of three-dimensional solutions in software visualization. The instances of a first
“generation” of 3D software visualization approaches, documented in an early survey [SB99]
were mostly 3D extensions of popular 2D graph-based representations, which did not bene-
fit of the real potential of 3D. However, the approaches representing the current state of the
art [TC09] stepped away from metaphors inspired by 2D visualization and proposed novel
metaphors, more suited for an immersive experience, such as the ones presented next.

In 2000, Knight et al. described and implemented a 3D visual metaphor for virtual reality
called Software World [KM00], according to which a system was represented as the world,
source files as cities, classes as districts, and methods as buildings (See Figure 2.14(a)).

In 2001, Maletic et al. [MLMD01] presented Imsovision, a system for visualizing object-
oriented software in a Virtual Reality environment. Later, based on this experience, Marcus et
al. proposed a new 3D representations for software visualization revolving around the concept
of poly cylinders [MFM03] and implemented in sv3D (See Figure 2.14(b)).

(a) Software World: a city representing a source file (b) sv3D: a poly cylinder representing a source file

Figure 2.14. Software visualizations based on 3D metaphors (1/3)

20 2.5 The 21st Century

In 2004 Balzer proposed the Software Landscapes visualization [BNDL04], based on the
landscape metaphor (See Figure 2.15(a)) whose familiarity should facilitate intuitive navigation
and comprehension.

In 2003, Panas et al. envisioned and described a draft for a 3D city metaphor that would
illustrate both static and dynamic aspects of software [PBG03]. Two years later, the authors fol-
lowed up on the idea with an architecture for a framework that would allow the implementation
of various 3D metaphors and a prototype called Vizz3D [PLL05]. After two more years, aware
of the importance of system overviews, Panas et al. proposed a unified single-view visualization
(See Figure 2.15(b)) based on their city metaphor [PEQ+07].

(a) Software Landscapes: a landscape metaphor (b) Vizz3D: a city metaphor

Figure 2.15. Software visualizations based on 3D metaphors (2/3)

A third approach using a landscape-like metaphor (See Figure 2.16(a)) was the work of
Langelier et al., whose implementation called Verso represented classes as 3D boxes with metrics
mapped on their visual properties and employed two space efficient layouts to represent the
structure of software systems [LSP05].

Finally, Lange and Chaudron enriched UML diagrams with software metrics [LC07] and
obtained a set of views, including a 3D view based on a city metaphor, called UML-city (See
Figure 2.16(b)).

(a) Verso: 3D boxes (b) UML City: UML diagram enriched with metrics

Figure 2.16. Software visualizations based on 3D metaphors (3/3)

21 2.5 The 21st Century

2.5.1 The Quest for Evidence

The last decade has revealed an increasing interest in the search for evidence of the efficiency
and effectiveness of software engineering approaches. Wohlin et al. [WRH+00] addressed the
issue of experimentation in software engineering. Kitchenham et al. [KPP+02] drafted a set of
preliminary guidelines for empirical research in software engineering. Two years later, Kitchen-
ham et al. proposed the adoption of evidence-based methodology in software engineering, in-
spired by its successful application to medicine [KDJ04].

The growing demand for empirical validation in software engineering has inevitably reached
the software visualization field. As a side effect, the lack of empirical validation has become the
“ultimate” cause invoked—often blindly—by reviewers when rejecting visualization approaches
from major software engineering venues. Conversely, the mere inclusion of a controlled experi-
ment has the magic effect of rendering “respectable” a software visualization paper, in particular
in the presence of “statistical significance”.

What makes software visualization so difficult to validate empirically, compared to other
software engineering fields? Many software engineering fields have a clearly defined problem
and working frame (i.e., can be easily abstracted as black boxes), their operation does not require
human intervention (i.e., they are automated) and their outcome is deterministic. In contrast,
software visualization approaches typically lack a clearly defined problem and working frame
(i.e., due to the exploratory nature of the activities they support), do require human intervention
in operation (i.e., they are semi-automated), and their outcome depends on the observational
and visual analytical human skills. Software visualization alone rarely solves problems; instead,
it supports human problem-solving processes. Measuring its contribution, i.e., the efficiency and
effectiveness of software visualization, is quite a challenge.

A symptom of this difficulty is the complete lack of benchmarks for software visualization, as
remarked by Maletic et al. [MM03]. While several fields of software engineering have dedicated
benchmarks (e.g., distributed systems) that allow researchers to compare the performance of a
new approach with that of the state of the art, there are no benchmarks for software visualiza-
tion. The lack of benchmarks leads to an increased amount of effort required to set up such an
experiment and to an increased number of threats to validity, due to the lack of standardization.

In spite of the adverse conditions, a number of empirical validations of software visualization
approaches have seen light over the last three years. A successful empirical validation provides
an advantage to any software visualization approach. Therefore, most of the authors of these
experiments aimed at validating their own visual approaches, such as the interactive views for
UML models by Lange et al. [LC07], the dynamic object process graphs by Quante [Qua08], or
the trace visualizations by Cornelissen [CZRvD09].

Other researchers looked for general insights on visualization by evaluating tools developed
by other researchers. For instance, Sensalire et al. presented a series of evaluation experiments
involving the use of several existing tools with the goal of building a model of desirable features
of a visualization tool [SOT09].

Undoubtedly, empirical validation has reached software visualization. It will be interesting
to see its long term effect on the future of this field.

22 2.6 Summary

2.6 Summary

In this chapter, we presented a historical perspective of software visualization. It all started
five decades ago with diagrams, pretty printers, and movies that illustrated program behavior.
In the 1980s, the focus moved towards creating advanced pretty printers, but also algorithm
animation and a few early static visualization approaches. In the 1990s, the points of interest
for software visualization research were distilled to three distinct directions, triggered by the
aspect of the software system being visualized: static information, dynamic information, and
system evolution. However, the turning point towards the thrive of software visualization was
in 2002, when the most prominent researchers in the field decided to initiate a series of venues
dedicated to software visualization.

These are exciting times for software visualization research. On the one hand, the advances
in hardware open new horizons barely imaginable two decades ago. One the other hand, the in-
vasion of software visualization approaches—some of them rather futile—raises skepticism and
calls for methods for evaluating their usefulness.

The first claims of our thesis is that depicting software systems as cities is a versatile metaphor
for software visualization. In Part II we present our approach, based on the city metaphor, and
three application contexts we use to demonstrate the versatility of the metaphor.

Part II

Approach

23

25

Preview

After looking at the history of software visualization and the challenges that lie in front of us, we
start our exploration of the city metaphor. This part describes our city metaphor and the three
application contexts we employ to demonstrate the versatility of the metaphor.

In Chapter 3, we look at the ideas underlying our city metaphor and how they influenced the design
of the metaphor. After describing the metaphor, we apply it in the context of program com-
prehension, on two case studies. The insights we learn are a good indication of the usefulness
of the metaphor, while the questions remained unanswered drive our research towards the
second application context.

In Chapter 4, we extend our approach to enable the visualization of software evolution, by creating
three complementary techniques. Using three case studies, we illustrate how we apply our
approach in the context of software evolution. We obtain the answers to a number of questions
that we could not address in the context of program comprehension. Moreover, we ask the
developers of the systems to assist us with fragments of system history they witnessed.

In Chapter 5, we present our third application context of our approach, i.e., design quality assess-
ment. We describe a technique called disharmony map, which relies on actual design problem
data acquired using an existing technique called detection strategies. We use this approach on
several case studies to observe software systems in terms of their deficiencies.

In Chapter 6, we present the tool support we developed to enable us to apply our approach on real
systems and discuss how we dealt with a number of challenges related to tool support, such as
performance and scalability, configurability, usability, and availability.

26

Chapter 3

A City Metaphor
for Program Comprehension

3.1 Introduction

There’s no place like home. Developers spend an important part of their time constructing com-
plex software systems, an activity termed as programming, which is according to Weinberg “a
kind of writing” [Wei98]. The more familiar we are with a program, the easier it is to under-
stand the impact of any modification we may want to perform, i.e., familiarity has an important
influence on program comprehension strategies [SFM99].

Familiarity is strongly related to habitability, which is what makes a place livable, like home.
Gabriel [Gab96] states that “habitability is the characteristic of source code that enables pro-
grammers, coders, bug-fixers, and people coming to the code later in life to understand its
construction and intentions [...]”. While Gabriel’s position stems from the point of view of lan-
guage design, we focus on the creation of habitable visual representations of software systems,
as support for program comprehension and reverse engineering activities.

We argue that habitability is an important, yet neglected concept in software visualization.
The existing approaches fail at conveying a sense of habitability to the viewer. Inherently, 2D
visualizations lack the realism required for making the viewer feel immersed in the environment,
as opposed to 3D visualization. However, most of the existing 3D visualization do not exploit the
locality of their exploration space, allowing objects to be freely moved. In such environments,
viewers are vulnerable to disorientation, one of the main arguments against 3D visualizations.

We chose a city metaphor [WL07b] for our software visualization approach, due to the many
similarities between software and civil engineering, which enable a straightforward and intuitive
mapping between the two domains. Moreover, a city is an intrinsically complex construct and
can only be incrementally explored, in the same way the understanding of a complex system
increases step by step.

Before describing our vision of the city metaphor, we briefly describe the underlying meta-
model of our approach, which enables us to visualize software systems written in different pro-
gramming languages, such as Java, C++, C#, or Smalltalk.

27

28 3.2 Modeling Software Systems

3.2 Modeling Software Systems

To model the software systems we aim to visualize, we rely on FAMIX [DTD01], a language-
independent meta-model, whose core is synthesized in Figure 3.1. Since we focus on object-
oriented systems, the entities that we need to understand in this context are packages, classes,
methods, and attributes, while the relationships among these entities are inheritance definitions,
invocations, and accesses.

Class

Method Attribute

AccessInvocation

InheritanceDefinition

superclass

subclass

belongsTo

belongsTo

accessedIn accesses

invokedBy

candidates

Package

packagedIn

childPackages

packagedIn

1

0..*

1

0..*

1

0..*

1
0..*

1

0..* 0..*

1

0..*

1

0..*

1

1

0..*

Figure 3.1. The core of the FAMIX meta-model

3.3 The City Metaphor

We propose a 3D visualization approach based on a city metaphor, i.e., we visually represent
software systems as cities. Since a city, with its downtown and suburbs, is a familiar concept with
a clear notion of orientation, our city representations enable the users to employ their natural
wayfinding skills, reducing thus the risk of disorientation often associated with 3D visualization.

Moreover, our code cities revolve around the notion of locality, which enables users to incre-
mentally build familiarity with the represented software systems. By choosing the metaphor, we
defined the domain mapping: “Software systems as cities” sets software as the target domain
and city as the source domain. The next step in defining our metaphor is concept mapping.

29 3.3 The City Metaphor

3.3.1 Concept Mapping

In our code cities, classes are visualized as buildings and packages as districts, as illustrated
in Figure 3.2. This choice is rooted in the fact that classes are the cornerstone of the object-
oriented paradigm and, together with the packages they reside in, the primary orientation point
for developers.

The position of a city artifact depends on the “location” of the depicted software entity in
the grand scheme of the software system it belongs to. Since many modern object-oriented
programming languages provide the package mechanism as a solution for organizing classes,
we chose to reflect the package hierarchy in the city’s districts.

height m
etric

width metric

packages

length metric

color metric

color

metric

classes

Figure 3.2. An example illustrating the principles of our city metaphor

The final step in defining our metaphor is the property mapping, according to which the
visual properties of the city artifacts reflect properties of the software elements.

3.3.2 Property Mapping

Software metrics have been extensively used in software visualization to obtain highly con-
densed views. An influential approach in this context is the polymetric views of Lanza et al.
[LD03], which are 2D visualizations enriched with software metric information. In a polymet-
ric view, nodes represent software entities, edges represent relationships between the entities,
and their visual properties (i.e., width, height, position, and color) reflect the values of a set of
software metrics.

30 3.3 The City Metaphor

Our approach is an extension of the polymetric views, in that we also map a set of software
metrics on the visual properties of artifacts, as shown in Figure 3.2. The five properties of the
city artifacts able to depict software metrics are the three dimensions (i.e., width, length, and
height), the color, and the transparency, while the position property expresses locality.

We have access to a broad set of software metrics provided by the Moose reengineering
platform [NDG05, DGKR09], which allows the creation of a whole range of visualizations to
support reverse engineering activities. However, finding the right combination of mappings for
a particular task remains an open challenge, given the limited number of visual properties that
can be visualized at any moment.

After experimenting with several property mappings we found one, called magnitude, which
is well suited for the creation of software system overviews. According to this mapping, depicted
in Figure 3.3, the Number Of Methods (NOM) metric (i.e., a measure of a class’s functionality) is
mapped on the height of the buildings, the Number Of Attributes (NOA) metric (i.e., a measure
of a class’s state) on both their width and length1, and the number of Lines Of Code (LOC) metric
(i.e., a typical measure of size) on the color of the buildings, from dark gray (low) to intense
blue (high). For packages, the value of the Nesting Level (NL) metric is mapped on the color of
the districts, according to a gray color scheme: the deeper a package is nested in the hierarchy,
the lighter is the shade of gray of the district depicting the package.

class

NOM height

building
NOA

length

LOC

package NL district

NOA

width

color

color

software city

domain

property

concept

Figure 3.3. The magnitude property mapping presented in the grand scheme of our metaphor

We exemplify this mapping by applying it on version 0.23.4 of ArgoUML, a Java system with
88 packages, 1,817 classes, and 143,682 lines of code. The resulting city is shown in Figure 3.4.

Visualization is known to reveal reveal patterns and code cities make no exception. The code
city of ArgoUML exemplifies several building archetypes:

• “skyscrapers” — classes with few attributes and many methods (i.e., thin and very tall),

• “parking lots” — classes with many attributes and few methods (i.e., wide and flat),

• “office buildings” — classes with many attributes and many methods (i.e., wide and tall),

• small houses — classes with few attributes and few methods.

1Mapping different metrics on the two horizontal axes is unpractical. While one can easily identify the vertical axis
due to the effect of gravity, one cannot distinguish between the two horizontal axes without additional visual clues.

31 3.3 The City Metaphor

parking lot

skyscraper

office building

house

Figure 3.4. The code city of ArgoUML, with annotated building archetypes

The resulting overview represents a good starting point for further analysis, according to
the visual information seeking mantra of Shneiderman: “Overview first, zoom and filter, then
details-on-demand” [Shn96].

Figure 3.3 shows the pairs of properties that are connected via mapping, but not the mapping
functions, i.e., the mathematical functions that take the value of one of the input property (i.e.,
the software metric) and compute the value of the output property (i.e., the visual property of a
city artifact). To learn the effect of the mapping function on the habitability of the code cities,
we experimented with several mapping functions.

Identity mapping. The identity mapping strategy is the most straightforward mapping strategy,
based on the identity function: f (x) = x . With this type of mapping, a visual property reflects
most accurately the value of the assigned software metric. We used this mapping strategy to
map the metrics onto the three dimensions of the buildings shown in Figure 3.4.

One problem associated with this mapping is that the variety of shapes and sizes of the
buildings in this code city goes against one of the gestalt principles [Few04], which shows that
humans are able to distinguish efficiently only four to six different shape sizes. We addressed
this issue by building mapping functions that reduce the cardinality of the output range to five,
corresponding to a five-point scale (i.e., very low, low, average, high, and very high).

For each building dimension, i.e., width (w), length (l), and height (h), we conceived a
five-point scale and each of the five categories corresponds to a building type, as illustrated in
Table 3.1. The unit corresponds to the size of a “floor”, e.g., an apartment block is a six-floor
building. Figure 3.1 exemplifies the visual representation of the buildings. However, given that
we map two different metrics, it is possible to have combinations that make more or less sense,
such as a one-floor house with the base size of an apartment block.

32 3.3 The City Metaphor

Category h w & l Building Type

very low 1 1 House
low 3 2 Mansion
average 6 4 Apartment Block
high 12 8 Office Building
very high 40 12 Skyscraper

Table 3.1. Dimensions and building types

Skyscraper

Office Building

Apartment Block

Mansion

House

Figure 3.5. Building type representations

The final step in reducing the variety of building sizes was finding the means to split the
input range into five contiguous sub-ranges and map them to the five output values. Next, we
present two mappings, based on two different splitting strategies.

Box plot based mapping. The first technique we used for splitting the input range is the box
plot [Tuk77], widely used in statistics to reveal the center of the data, its spread, its distribution,
and the presence of outliers. The construction of a box plot implies the computation of the
following three quartiles: the lower or first quartile (Q1), the median or the second quartile,
and the upper or third quartile (Q3). The range between the first and the third quartiles, called
interquartile range (IQR), hosts the middle 50% of the values. Besides the three quartiles, the
box plot separates the normal values from the outliers.

We use the lower outlier limit, the lower quartile, the upper quartile, and the upper outlier
limit to split the input range into five value ranges, corresponding to the five-point scale. Conse-
quently, this function will map any input value to one of the five output values, according to the
sub-range that the input value belongs to, as illustrated in Figure 3.6(a).

very low

low

average

high

very high

outputinput

max

min

Q3

Q1

Q3 + 1.5 IQR

Q1 - 1.5 IQR

(a) Box plot based mapping

very low

low

average

high

very high

outputinput

max

min

AVG + STDEV

AVG - STDEV

(AVG + STDEV) * 1.5

(AVG - STDEV) * 0.5

(b) Threshold based mapping

Figure 3.6. Mapping strategies aimed at reducing the complexity within code cities

An advantage of the box plot based mapping is that the boundaries can be computed auto-
matically from the input data set. Moreover, by mapping the interquartile range to the central
building type, we ensure that at least half of the buildings are apartment blocks, which leads to
well-balanced code cities, in terms of their building types. We consider this an increase in hab-
itability. However, we achieve this improvement at the cost of comparability and generalization,

33 3.3 The City Metaphor

given that the boundaries obtained from the box plot only depend on the input data set (i.e.,
the metric values present in the system). A visual comparison of two code cities using such a
mapping is not possible, because there is no correspondence between the input ranges of two
different systems.

Threshold based mapping. Comparing code cities in this context requires some “magic num-
bers” for the boundaries that hold across system frontiers. Lanza and Marinescu measured a
wide range of commercial and open-source systems in terms of sizes, domain, and type and
presented a set of statistics for several software metrics [LM06]. We used the data from this
work to split our input range into five sub-ranges, as illustrated in Figure 3.6(b). For example,
the resulting set of boundaries for the number of methods metric in the case of Java systems is
{2,4, 10,15}.

The advantage of this approach is that the code cities have common splitting boundaries and
therefore can be visually compared. The main disadvantage is that it relies on the statistic data,
which is currently limited to just a number of metrics and for only two programming languages,
i.e., Java and C++.

Comparison between the mapping strategies. To illustrate the effect of the mapping functions
on the appearance of code cities, we present in Figure 3.7 the code city of ArgoUML using each
of the three described strategies (i.e., identity mapping, box plot based mapping, and threshold
based mapping) to map the number of methods on the height of the buildings. To enable a clean
observation of the variance in height, we maintained the same strategy (i.e., box plot based) for
mapping the number of attributes on the base size.

The detail in Figure 3.7 shows the effect on the three mapping strategies on one of the
system’s packages. The top detail shows the broad variety of building heights in such a small
district: The 28 classes in this small package exhibit a broad range of values for the number
of methods metric. With a box plot based strategy, most of the buildings in the district are
skyscrapers: Most of the classes in this package are outliers in terms of the number of methods
metric. However, according to the statistics we used for the threshold based strategy, only some
of them are considered outliers for Java systems.

The two mapping strategies aimed at reducing the complexity of code cities have advantages
and disadvantages. On the one hand, the box plot based mapping improves the habitability in
an artificial way. After all, if a software system is not habitable, it should not be represented as
a habitable city. On the other hand, the threshold mapping is of limited use, since it relies on
hard to get statistical data. After experimenting with the different strategies, we settled on the
identity mapping, because of its accuracy of representation. Therefore, in the remainder of the
dissertation we use the identity mapping.

3.3.3 Rectangle Packing Layout

To achieve a scalable visualization for large-scale software systems, we were interested in a
layout algorithm which:

1. does not waste much of the cities’ real-estate,

2. reflects the given containment relationships, and

3. takes into account the dimensions and proportions of the buildings.

34 3.3 The City Metaphor

identity

box plot based

threshold based

Figure 3.7. Identity, box plot based, and threshold based mappings compared

An efficient layout for hierarchical data is the tree-map technique proposed by Shneiderman
in 1992 [Shn92], which splits the available rectangular space in rectangular areas proportional
to an attribute of the node, without any waste of space. However, the tree-map technique does
not satisfy our last requirement.

Our layout must deal with elements of given dimensions, which makes it similar to rectangle
packing, a well-known problem in the chip design field. Moreover, contrary to the tree-map
algorithm, our layout cannot establish a priori how much space it will need to place the element.

We started designing our algorithm from an algorithm for packing lightmaps2, i.e., data
structures used to encapsulate the brightness of surfaces in video games. Our layout, whose
algorithm is presented next, is able to handle very large code cities. Figure 3.8 presents a top
view of the same code city of ArgoUML, containing 1,817 buildings (i.e., very dark gray to blue
squares) laid out on top of 88 districts (i.e., gray rectangles).

2http://www.blackpawn.com/texts/lightmaps

http://www.blackpawn.com/texts/lightmaps

35 3.3 The City Metaphor

Figure 3.8. A top-down view of the layout in the code city of ArgoUML

The Layout Algorithm

The core of the algorithm deals with laying out a set of rectangles. The structure of a code city
is a tree, i.e., the city contains main districts (i.e., representing root packages), which contain
other districts or buildings (i.e., classes), etc..

Laying out the entire city implies performing the algorithm recursively at each hierarchical
level starting with the leaves and resizing the containers to fit their content as the algorithm
goes up the hierarchy, in a post-order traversal.

To partition the space, the algorithm uses pt ree, a 2-dimensional kd-tree [Ben75]. The root
of pt ree corresponds to the entire available space, while each of the other nodes of pt ree cor-
responds to a particular partition of the space. A node is aware of its assigned space rectangle
and whether it has been occupied or not. The algorithm also keeps tracks of the area currently
covered by elements, i.e., covrec.

36 3.3 The City Metaphor

Algorithm 3.1 Rectangle Packing Layout for a collection of elements

Require: elements are sorted by size, descending
Ensure: elements are efficiently laid out efficiently and without overlapping

1. pt ree.root.rectangle.size←
∑

i elements[i].size
2. covrec← (0, 0)
3. for el in elements do
4. pnodes← empty leaf nodes in pt ree with pnode.rectangle.size ≥ el.size
5. preservers← new dictionary
6. ex panders← new dictionary
7. for pnode in pnodes do
8. if placing el in pnode would preserve the size of covrec then
9. waste← amount of remaining space if pnode was split to place el

10. add pnode : waste to preservers
11. else
12. rat io← aspect ratio of covrec if pnode was used to place el
13. add pnode : rat io to ex panders
14. end if
15. end for
16. if preservers is not empty then
17. tar getnode← key corresponding to the lowest value in preservers
18. else
19. tar getnode← key corresponding to value in ex panders closest to 1
20. end if
21. if tar getnode.rectangle perfectly fits el then
22. f i tnode← tar getnode
23. else
24. f i tnode← perfect fitting node for el after splitting tar getnode
25. end if
26. f i tnode.occupied ← TRU E
27. move el to f i tnode.rectangle.posi t ion
28. if f i tnode is a boundary expander then
29. expand covrec to the newly covered area
30. end if
31. end for

In addition to the basic form presented here, the algorithm we use in CodeCity also deals
with spatial separators, i.e., margins and gaps between elements.

Example. To illustrate our algorithm, we walk the reader through a simple example, depicted
in Figure 3.9. The figure has a grid structure, i.e., it is split both horizontally and vertically.
The five columns correspond to the initial state and to the four steps required to place the four
elements, one at a time. The rows illustrate various aspects of the algorithms. The top row
shows the elements that have not yet been placed, with the next element in the highest position.
The middle row shows the configuration of the layout space, which includes elements that have
already been processed. Finally, the bottom row shows the evolution of the binary partition tree,
whose structure reflects the layout space.

37 3.3 The City Metaphor

A A

B C

El.1 D

A

B C

El.1 D FE

GEl.2

A

B C

El.1 D FE

GEl.2

HEl.3

A

B C

El.1 D FE

GEl.2

HEl.3

I J

KEl.4

El.1
(8 x 6)

C
D El.1

(8 x 6)

El.2
(7 x 3)

F

D
G

El.1
(8 x 6)

El.3
(5 x 3)

El.2
(7 x 3)

F
H

D
141 3 5 7 9 120 2 4 6 8 1011 13

1
2
3
4
5
6
7
8
9

10
11
12

0

El.1
(8 x 6)

El.3
(5 x 3)

El.4
(4 x 4)

El.2
(7 x 3)

F
H

J

K

A

El.2
(7 x 3)

El.3
(5 x 3)

El.4
(4 x 4)

El.1
(8 x 6)

El.2
(7 x 3)

El.3
(5 x 3)

El.4
(4 x 4)

El.3
(5 x 3)

El.4
(4 x 4)

El.4
(4 x 4)

141 3 5 7 9 120 2 4 6 8 1011 13

1
2
3
4
5
6
7
8
9

10
11
12

0
141 3 5 7 9 120 2 4 6 8 1011 13

1
2
3
4
5
6
7
8
9

10
11
12

0
141 3 5 7 9 120 2 4 6 8 1011 13

1
2
3
4
5
6
7
8
9

10
11
12

0
141 3 5 7 9 120 2 4 6 8 1011 13

1
2
3
4
5
6
7
8
9

10
11
12

0

Figure 3.9. Example: four elements (top) laid out (middle) using a partition tree (bottom)

We start with the four elements (i.e., El.1 to El.4) whose sizes are specified beneath their
names, e.g., element El.1 has a dimension of 8× 6 units. To increase the efficiency of the space
usage, we order the elements by one of the sizes.

Since we initially do not know how much space we need, we assign a space of 24× 16 units
(i.e., wid th= 8+ 7+ 5+ 4; height = 6+ 3+ 3+ 4) to the root node (i.e., node A) of the space
partitioning tree, which makes up for the worst case scenario. However, instead of showing the
entire layout space in the figure, we limit ourselves to show only the space that is relevant for
this scenario. Initially, there are no placed elements yet, and therefore the covered area (i.e.,
coverec) is initialized to (0, 0), as illustrated by the two boundary markers in the figure (i.e.,
second row, first column).

In the first step after initialization, the first element is placed in the only available node, i.e.,
A. However, this node’s assigned space is larger than the size of the element. Therefore, it is split
with two cuts. The first is a horizontal cut performed at the height of the element which splits A
into nodes B and C . The second is a vertical cut performed at the width of El.1, which further
splits B into a node of the exact needed size (f i tnode) and node D. El.1 is placed in f i tnode,
covrec is updated to (8, 6), and the algorithm passes to the next element.

For El.2 there are two potential candidates, namely C and D, both large enough to host the
element and both boundary expanders. Between the two, we need to chose the one that expands
the boundaries such that the resulting covered area has an aspect ratio closer to a square. Placing
El.2 in C would lead to a covered area of 8× 9, while placing it in D would lead to an area of
13× 6. Since C is clearly our tar getnode, the algorithm continues with splitting C in a similar
manner to the one in which we split A earlier.

The algorithm continues in the same way until it reaches the last step, when placing El.4.
Although there are three free nodes (i.e., D, F , and H), only two of them (i.e., D and F) are

38 3.3 The City Metaphor

large enough to host the element. While F is a boundary expander, D turns out to be a boundary
preserver, because it would allow placing the element in it and preserve the current boundaries.
Consequently, this node is chosen and the algorithm continues. Finally, after cropping the space
along the two axes pointed by the boundary markers, the only wasted space in this example
remains between elements El.3 and El.4.

3.3.4 Fine-Grained Representation

The representation granularity presented so far is coarse, i.e., it only shows packages and classes.

class C m1

m2
m3

m5

m6
m7

m8

age

(a) Principle (b) District cognitive in the code city of ArgoUML

Figure 3.10. Fine-grained representation

To address the need for a more fine-grained representation, we depict methods as cuboids
(“bricks”) laid out on top of each other in layers of four, as seen in Figure 3.10). The method
bricks are placed in the order of their creation (i.e., older down, newer up)—according to the
information from the versioning repository—on top of a platform, which represents the class
itself. The height of a building continues to be proportional to the class’s number of methods.

However, when using the fine-grained representation for cities with extremely tall buildings,
the overview of the system is compromised. Next, we illustrate this problem and our solution.

3.3.5 The Progressive Bricks Layout

Applying the fine-grained representation to a software system whose classes include at least one
with an extremely high number of methods, the building representing this class will contribute to
a dominantly vertical appearance of its code city. Given that the orientation of computer screens
is typically landscape, the use of the screen real estate for the representation of such code cities
is suboptimal. Looking at the whole city is only possible from a distance, which invalidates the
point of having a finer-grained representation, for details are no longer visible.

To address this drawback, we developed a self-adapting vertical layout called Progressive
Bricks, which maps the functional magnitude of a class on the volume of the building. Depending
on its number of methods, the layout will place the “bricks” along the imaginary walls of the
building representing the class, such that there is a harmonious ratio between the building’s
base size and its height. In other words, the width of the walls, in terms of number of bricks,

39 3.3 The City Metaphor

is adapted to the total number of bricks of the building in order to obtain reasonable heights.
The result of this is not only a visual categorization (i.e., the number of bricks per layer side) of
the classes in terms of functionality, but also a categorization within each category, based on the
number of layers of the building. The layout algorithm we devised is presented next.

Algorithm 3.2 Progressive Bricks Layout for a collection of elements

1. sc← 0
2. repeat {find the side capacity sc such that it satisfies: bcmin ≤ sc ≤ bcmax}
3. sc← sc+ 1
4. lc(sc+ 1)← sc ∗ 4
5. nolmin(sc+ 1)← sc ∗ 2
6. bcmin(sc+ 1)← lc(sc+ 1) ∗ nolmin(sc+ 1)
7. bcmax(sc)← bcmin(sc+ 1)− 1
8. until bcmax ≥ elements.size
9. for i = 0 to elements.size− 1 do

10. if sc = 1 then
11. lc← 1
12. biws← 0
13. si← 0
14. else
15. lc← (sc− 1) ∗ 4
16. biwl ← i mod lc
17. biws← biwl mod (sc− 1)
18. si← biwl ÷ (sc− 1)
19. end if
20. if si = 0 then {northern side}
21. pix ← biws
22. piy ← 0
23. else if si = 1 then {eastern side}
24. pix ← sc− 1
25. piy ← biws
26. else if si = 2 then {southern side}
27. pix ← sc− biws− 1
28. piy ← sc− 1
29. else {western side}
30. pix ← 0
31. piy ← sc− biws− 1
32. end if
33. piz ← i÷ lc
34. move element i to the position corresponding to pi
35. end for

The algorithm first computes the side capacity sc (i.e., the number of bricks that can be placed
horizontally along a wall’s side) that best fits the given number of elements, i.e., the maximum
capacity of the building bcmax is large enough. The ratio between the buildings’ dimensions is
set by means of the relation on line 5, which establishes that the minimum number of layers of a

40 3.3 The City Metaphor

building is double the size capacity of the previous category. Then, for each element we compute
the position index pi, according to the following variables: layer capacity lc (i.e., the number of
bricks that can be placed on an entire horizontal layer), brick index within the layer biwl, brick
index within the side biws, and side index si (i.e., north, east, south, west). The position of each
element is computed from its position index and the dimensions of the elements.

To enable a deeper understanding of the algorithm, we illustrated the algorithm by means
of a practical example. Figure 3.11 shows the ranges covered by the first four categories of
buildings in the Progressive Bricks layout from both a top-down (top) and a lateral (bottom)
perspective. Each of the columns in the figure represents one of the first four categories, cor-
responding to sc = 1..4. The top part of the column shows the positioning of the bricks and
the indices of the bricks belonging to the first layer biwl. The lower part of the figure shows,
for each column, the configuration (from a lateral perspective) corresponding to the minimum
(bcmin) and the maximum (bcmax) number of bricks for the category, which appear under each
configuration. The number of layers corresponding to the bcmin value is nolmin.

0 7 8 31 32 71 72 127..

11

10

9 8 7

5
0

0

0
0 1

1

1 2

2

2 3

3

3

4

4

56 6

7

Figure 3.11. The first four levels in the Progressive Bricks layout

We exemplify the computation of these key values for the third category in Figure 3.11:
sc(3) = 3, lc(3) = 8, nolmin(3) = 4, bcmin(3) = 32, bcmax(3) = bcmin(4) − 1 = 71. These
numbers appear in the column corresponding to the third category: There are 8 bricks per layer,
as shown by the configuration at the top of the column, a minimum of 4 layers corresponding to
32 placed bricks (bottom of the column, left) and a maximum of 71 bricks distributed in 9 layers
(bottom, right) for the category. The value 72 is computed using the same formulas applied to
the next category (i.e., where BP LS = 4).

To illustrate the improvement of the adaptive layout over the non-adaptive one, we present
in Figure 3.12 a parallel between the two in the same screen-estate. The visualized system is
Jmol (i.e., a 3D viewer for chemical structures) and the problematic class is Viewer with its
750 methods, which has been annotated in both views. In the right part of the figure, this class
appears as a building with 10-bricks-wide walls, which continues to stand out due to its unusual
volume, without obstructing the overview of the city anymore. Apart from the efficiency of the
overview, the code cities resulting after using the algorithm are more habitable than the ones
obtained with the conventional layout, as seen in Figure 3.12.

41 3.3 The City Metaphor

 Viewer
 viewer
 NOM: 750
 NOA: 57

Figure 3.12. Comparison between the bricks (left) and progressive bricks (right) layouts on Jmol

The building categories can be easily identified from a top perspective of the Jmol city (See
Figure 3.13), whose org.jmol.viewer district exhibits seven different categories.

1

3

4

2

6

10

5

org.jmol.viewer

Figure 3.13. A top-down view of the progressive bricks layout in the code city of Jmol

42 3.3 The City Metaphor

3.3.6 Depicting Relations

Visualizing relations is an open challenge in software visualization. Naive representations of
relations, such as direct edges, are not feasible for visualizing software systems, because they
lead to over-plotting problems. The reason for this is the difference in cardinality between rela-
tions and entities in a software system: One pair of classes may share tens or more relations of
different types, such as class inheritance definitions, method invocations, and attribute accesses.

To tackle this problem, we looked into efficient representations for relations. A very promis-
ing technique is Holten’s bundled edges [Hol06] used in dynamic visualization for program
comprehension [CHZ+07]. The technique bundles edges that follow similar routes to reduce
complexity. During the history of visualization presented earlier in Chapter 2, we presented an
example of bundled edges visualization (See Figure 2.12(b)).

By extending the bundled edges approach to 3D, we obtained intriguing code city visual-
izations. In spite of the increase in complexity over 2D, there are advantages of using a 3D
interactive environment. One of them is the variety of perspectives one can get by navigating
the environment, in search for vantage points. By navigating our 3D environment, one is able to
look at the code cities in one of the three fundamentally different types of overview perspectives:

1. Skyline. This perspective shows the city skyline, i.e., the artificial horizon created by
the city’s overall structure. Figure 3.14 shows a code city skyline of ArgoUML, whose
invocations are visualized as bundled edges.

Figure 3.14. Skyline perspective over the code city of ArgoUML

2. Top, which shows the city from above, similar to a satellite view. This perspective emulates
a 2D visualization of the city’s map, which allows an understanding of the overall structure
of the system. Figure 3.15 shows the top perspective of the code city of ArgoUML.

3. Aerial, which covers the entire range of perspectives between the skyline and the top
perspectives. To illustrate the added value of bundled edges for code cities, we show in
Figure 3.16 how very different the code city of ArgoUML presented earlier (See Figure 3.4)
looks, when all the invocations in the system are visualized as bundled edges.

Although visualizing relations as bundled edges in code cities provides a raw view of the
structure of software systems, it raises two main problems. The first is a complexity problem.
In spite of the efficiency of the bundled edges, showing all the relations may still lead to over-
plotting, due to the magnitude of the relations in software systems, in particular in large ones.

43 3.3 The City Metaphor

Figure 3.15. Top perspective over the code city of ArgoUML

Although the 3D environment allows the viewer to tackle occlusion by moving around and find-
ing better perspectives, oftentimes the view is just too complex. We looked for solutions to
presenting the dependency information, while maintaining the views clean and uncluttered.

One solution to showing dependencies is by means of the entities that share them, i.e., we
can perform a query on the dependencies of a certain entity and as a result we see the entities
in the system selected.

Another solution we came up with is an opportunistic display of relations, which enables the
viewer to show or hide the relations for only one entity or for a reduced set of entities. This
on-demand technique addresses the issue of visualizing relations, but avoids the visual clutter
that comes with showing all the edges, all the time. This technique maps well on the last part
Shneiderman’s information visualization mantra: “overview first, zoom and filter, then details-
on-demand” [Shn96].

The second problem is that this visual representation of relations is not compliant with the
city metaphor, unless we are talking about a futuristic one. This shows one of the limitations of
metaphor-based visualization: the creativity of the approach is constrained by the boundaries of
the metaphor.

This was only one example of dependencies representation and it was clear to us that we
had barely scratched the surface. Although there is plenty of space for improvement, we believe

44 3.4 Case Studies

Figure 3.16. Aerial perspective over the code city of ArgoUML

that the visual representation of dependencies is a topic in itself and therefore, we preferred
to concentrate our effort on extending our city metaphor to support other facets of software,
complementary to the structural program comprehension, i.e., software evolution and design
assessment.

At this point, the description of our city metaphor contains all the elements required for
applying our approach to supporting program comprehension on case studies.

3.4 Case Studies

To illustrate the first application of our city metaphor to program comprehension, we use two
Java systems as case studies. The characteristics of these systems in terms of the number of
packages (NOP), number of classes (NOC), and number of lines of code (LOC) metrics are
described in Table 3.2.

Name Version NOP NOC LOC

JDK’s java namespace 1.5 53 1,966 160,287
ArgoUML 0.23.4 96 1,768 136,325

Table 3.2. Case study systems for program comprehension

45 3.4 Case Studies

3.4.1 JDK’s java Namespace

We use the java namespace of the Java Development Kit (JDK) version 1.5, to illustrate how
to interpret the language of the city metaphor. The code city of this sub-system is presented in
Figure 3.17.

ICC_Profile
java.awt.color
LOC: 849
NOM: 41
NOA: 130

Component
java.awt
LOC: 3'324
NOM: 280
NOA: 88

Character
java.lang
LOC: 1'414
NOM: 86
NOA: 69

DatabaseMetaData
java.sql
LOC: 0
NOM: 165
NOA: 48

Bits
java.nio
LOC: 484
NOM: 115
NOA: 10 Calendar

java.util
LOC: 749
NOM: 71
NOA: 81

KeyEvent
java.awt.event
LOC: 483
NOM: 18

NOA: 205

Figure 3.17. The code city of JDK’s java namespace

From this first overview, we learn that the java namespace is a moderately large subsystem,
with a shallow package nesting level (i.e., we count at most four stacked district platforms) and
a broad variety of classes, in terms of the mapped metrics.

There are wide and flat buildings, similar to parking lots, such as class KeyEvent, which is
characterized by relatively few methods (i.e., reflected by the low height of the building) and
many attributes (i.e., reflected by the building’s large base size). The blue shade of the building
shows that the 18 methods of this class hide a relatively large number of lines of code, i.e., 483.

One can spot very thin towers, which represent classes with the number of methods much
higher (i.e., very tall building) then the number of attributes (i.e., thin). An example of such
tower is Bits, with 115 methods and only 10 attributes.

Other types of buildings are the massive office buildings, whose massiveness reflects a rela-
tively large number of attributes and an even larger number of methods. An example of massive
building is class Component, whose intense blue color depicts it as the class with the largest
number of lines of code in this namespace, i.e., 3,324.

Moreover, there are also large cubical buildings, which represent classes that have roughly
the same number of methods and attributes, such as Character or Calendar.

Besides various outliers, we can also see how functionality is distributed within packages, for
example java.awt.event contains classes with a similar amount of functionality (NOM) and
state (NOA), with the exception of KeyEvent, which has many more attributes (the events for
each key are saved as constant attributes).

46 3.4 Case Studies

3.4.2 A City Tour of ArgoUML

Initially, we conceived our city metaphor to primarily support program comprehension activities.
The very first experience with our approach was trying to gain insights into a software system,
based on its most recent version [WL07a]. In this context, we decided on ArgoUML3, the leading
open source UML modeling tool, whose most recent version at the time was 0.23.4.

First impressions are lasting impressions: The city overview gives us a first sense of both
the magnitude and the structural complexity of a software system, which is a first step towards
building a mental model required for understanding the “big picture”. Moreover, this first contact
influences one’s decisions on where to start the investigation of a software system. The code city
in Figure 3.18 depicts ArgoUML as a fairly large system, composed of many classes built on
top of a complex package hierarchy, in which the functionality seems to be distributed rather
heterogeneously, as depicted by the variety of building heights.

FacadeMDRImpl
org.argouml.uml.model
LOC: 3413
NOM: 349
NOA: 3

Facade
org.argouml.uml.model

LOC: 0
NOM: 337

NOA: 1 JavaRecognizer
org.argouml.uml.reveng.java
LOC: 5654
NOM: 176
NOA: 79

JavaTokenTypes
org.argouml.uml.reveng.java
LOC: 0
NOM: 0
NOA: 173

CPPParser
org.argouml.uml.reveng.classfile
LOC: 9111
NOM: 204
NOA: 85

STDCTokenTypes
org.argouml.uml.reveng.classfile

LOC: 0
NOM: 0

NOA: 152

JavaTokenTypes
org.argouml.uml.language.java.generator
LOC: 0
NOM: 0
NOA: 146

JavaRecognizer
org.argouml.uml.language.java.generator

LOC: 3406
NOM: 91
NOA: 24

ui.explorer.rules

Figure 3.18. A glimpse in the code city of ArgoUML

We can identify a number of hot spots, pointed out by several striking buildings, which rep-
resent classes whose LOC, NOM, or NOA metric values qualify them as outliers: two antenna-
shaped skyscrapers, which are the tallest buildings in the city, and three parking lots that
each have at least one large office building in their vicinity. There are also interesting dis-
tricts that do not exhibit any outlier building, yet stand out precisely for this reason, e.g., the
ui.explorer.rules district which is made exclusively of small houses. Next, we take a closer
look at each of these interesting artifacts, annotated in Figure 3.18 with the values of the soft-
ware metrics mapped on their visual properties.

3http://argouml.tigris.org

http://argouml.tigris.org

47 3.4 Case Studies

The Antenna-Shaped Skyscrapers

The appearance of these two tall and thin buildings indicate that the two underlying classes
have many methods and few attributes. Moreover, the high resemblance of the two buildings
may indicate a relation between the two entities.

A closer look at the underlying data reveals interesting details. The leftmost antenna-shaped
building in Figure 3.18 is org.argouml4.uml.model.Facade, an interface with 0 lines of code
(i.e., a normal situation for an interface), 337 methods, and 1 attribute. The rightmost antenna-
shaped building in Figure 3.18 is uml.model.mdr.FacadeMDRImpl, a class with over 3,400 lines
of code, 349 methods, and 3 attributes. And indeed, there is a relation between the two: As
the name suggests, the class FacadeMDRImpl implements the enormous Facade interface. The
similar height of the buildings, hence the similar number of methods of the two software entities
is rooted in the fact that in Java, a class that implements an interface is contractually bound to
provide implementations for all the methods defined in the interface.

In a code city, a class implementing an interface is represented by a building at least as tall
as the building that represents the interface. An interesting insight in this context, which is
revealed by the city skyline perspective in Figure 3.19 is that FacadeMDRImpl is the only class
that implements the huge Facade interface.

Facade
org.argouml.uml.model

JavaRecognizer
org.argouml.uml.reveng.java

CPPParser
org.argouml.uml.reveng.classfile

204176

337349
FacadeMDRImpl

org.argouml.uml.model

Figure 3.19. Tallest buildings in the code city of ArgoUML

A Java interface is used to either provide a flexibility point for further extensions, as in the
“Program to an interface, not an implementation” principle [GHJV95], or to group together a
set of global attributes which are made accessible to the classes that implement the interface.
The Facade interface clearly falls in the first category, given that it defines a huge number of
methods. However, implementing the interface in just one class seems pointless and defeats the
purpose of this practice. Why is there only one class implementing the Facade interface?

While trying to find a rationale for this apparently questionable design, we have formulated
several hypotheses. The first hypothesis was that, during the history of the system, there were
other classes that implemented Facade, which are not parts of the system anymore. Second, it
could reveal the developers’ intention of writing further implementations of the Facade inter-
face. Third, it may just be a poor use of the interface mechanism. However, without further
information about the history of the system, all these remain speculations.

Modifying an interface with the magnitude of Facade or any class that implements it, is
very likely to cause changes in many other classes that depend on one or more of its numerous
methods.

4From here on, we omit the common prefix org.argouml from package names and qualified class names in ArgoUML.

48 3.4 Case Studies

We use our opportunistic edge representation to display only the incoming invocations of the
Facade interface. The top perspective in Figure 3.20 shows that more than one third (i.e., 767
out of 1,817) of ArgoUML’s classes depend on this interface and its implementing classes, which
makes changing this interface a maintainer’s nightmare.

Figure 3.20. The methods defined in Facade are popular in ArgoUML

The Office Buildings and the Parking Lots

Since buildings that look like parking lots, i.e., wide and flat, depict classes or interfaces with
many attributes and few methods, we analyze them in the context of the classes that access their
attributes.

One of these parking lots is an interface called JavaTokenTypes, with 0 methods and 173
attributes, defined in package uml.reveng.java. The only class that accesses the interface’s
attributes is JavaRecognizer, a huge class (i.e., with 5,654 lines of code and 176 methods)
defined in the same package. The role of the uml.reveng.java package is to support the parsing
of Java source code.

49 3.4 Case Studies

Next, we move to the next instance of this visual pattern, manifested through two neigh-
bor buildings, one massive and the other wide and flat. The visual similarity with the previ-
ous pair is by no means accidental. The parking lot is another token-related interface, called
uml.reveng.classfile.STDCTokenTypes, with 0 methods and 152 attributes that represent
tokens found in the standard C language. And similarly to its Java peer, the interface’s attributes
are exclusively used by another huge (i.e., having 204 methods and 85 attributes) parser class
for C++, called uml.reveng.classfile.CPPParser. Confident enough that this is the package
that provides the parsing support for C++ source code, we continue with the next pair.

With some expectations to find a third parsing duo, we turn our attention to the last instance
of this pattern, located in package language.java.generator. To our surprise, we discover
another interface called JavaTokenTypes with 0 methods and 146 attributes and a unique data
accessor called JavaRecognizer with 91 methods and 24 attributes.

As illustrated by Figure 3.21, each of the three parking lots is used exclusively by the large
nearby office building, i.e., the numerous attributes in each of the three interfaces are only
accessed by the large parser class defined in the same package.

Figure 3.21. Office buildings exclusively served by their private parking lots

The two pairs of classes and interfaces defined in two different packages share more than just
names; they also share a significant amount of duplicated code. The two JavaTokenTypes have
145 duplicated attributes, while the two JavaRecognizer share 88 methods and 22 attributes.
A closer look at the source code showed that these classes are very likely generated, i.e., built
automatically by a programming language parser generator.

From an economical perspective, this insight is reassuring, because it implies that these
classes are not being manually maintained. However, from a logical point of view, we do not
know the reason behind this situation. It is possible that they are the result of an incremental
migration of a class hierarchy from one package to another, with both source and destination
coexisting in the same version of the system. However, getting a clear idea of the situation would
require additional information, such as the rich data buried in the history of the system.

50 3.4 Case Studies

The Suburbs

We complete our tour in the green district5 made entirely of small houses, shown in Figure 3.22.

Figure 3.22. ui.explorer.rules, a package made of mainly sibling classes

This suburb represents ui.explorer.rules, a package containing 80 classes, all featuring
roughly the same number of methods and attributes. The main hierarchy implemented in this
package is made of the abstract class AbstractPerspectiveRule and its 72 subclasses. It turns
out that AbstractPerspectiveRule is the only class in the system that implements the interface
PerspectiveRule, which is suboptimal: If there was no common functionality, the interface
would suffice; in the opposite case, the abstract class could take over the contract from the
interface. Given that the abstract class only overrides the very common toString() method
in Object and superfluously declares as abstract methods two of the three methods already
declared in the interface, the obvious solution is to declare the remaining method from the
interface as an abstract method in the abstract class and remove the interface.

Most of AbstractPerspectiveRule’s subclasses provide only the implementation for the
three abstract methods in their superclass, which is why all these buildings have the same height.
However, a closer look at the source code showed that even these classes, in spite of the low com-
plexity, have their share of design problems. First, there are some NOP method implementations
(return null), which imply that the method makes sense in only some of the subclasses, which
questions the current structure of this class hierarchy. Second, there are many type checks in
these methods, which is a sign of bad object-oriented design. According to design guidelines,
type checks should be removed by using subclassing and polymorphism. In this package, the
type checking is performed both directly (i.e., via the instanceof operator) and indirectly, by
using the methods of the notorious Facade.

This takes us back to Facade, where we find that dozens of its methods are only meant to
perform type checking, such as isAAssociationRole, isAState, isAStereotype, or isANode.
This insight might show the intention of the developers to keep the “bad” code in one place, in
spite of occasional direct type checks outside Facade.

5An artifact which has been selected in CodeCity is colored in bright green.

51 3.5 Related Work

3.4.3 Analysis Summary

To illustrate the types of insights one can build using our visualization approach for program
comprehension, built on the presented city metaphor, we presented two case studies.

The first case study consisted in the java namespace, a sub-system of JDK, which we used to
illustrated how one interprets the information presented in a code city and how one is able to
seek for artifacts according to different criteria, relatively to the displayed metrics.

The second case study was ArgoUML, which we used to perform a more in-depth analysis.
The city overviews allowed us to identify and localize some of the system’s outliers in terms
of size. Based on these first impressions, we looked closer at some of them and discovered
interesting insights. We learned that ArgoUML contains a large interface with an extremely
high change impact and only one implementation. Next, we learned about the Java and C++
language support in ArgoUML and discovered a strange duplication in the Java part. Finally, we
learned that even small packages are prone to design problems.

The city tour of ArgoUML gave us a first positive indication of the metaphor’s usefulness
in the context of program comprehension. Moreover, it showed that performing investigations
based on only one version of a software system is not sufficient and that we needed to investigate
the history of the system, which eventually led to the second application context of our city
metaphor, i.e., software evolution.

3.5 Related Work

Although there are several 3D software visualization approaches, only few of them use a metaphor.
In fact only 1% of the software visualizations approaches are metaphor-based [Kos03]. Among
these metaphor-based 3D visualization approaches, only a handful use a city-like metaphor.

Before presenting the closely related work, we briefly describe several contributions, only
remotely related to our approach, i.e., they are only related to particular aspects of our work.

3.5.1 Remotely Related Work

Andrews et al. created a 3D visualization of file systems called the Information Pyramids
[AWP97]. In this work, directories are represented as platforms, while files are depicted as
cubes, colored according to a particular measure of the file, e.g., file type, age. Our visual
representation resembles the representation of the Information Pyramids.

DeLine proposed a software visualization approach called Software Terrain Map [DeL05],
based on the metaphor of cartographic map. In this work, DeLine aims at helping developers
avoid disorientation in IDEs, by providing an overview of the system enriched with additional
cues specific to the development process, such as the currently edited part of the system, or the
program execution path up to the breakpoint in the debugger. The main similarity between our
approaches consists in the fact that they rely on the particularities of the analyzed system to
produce a memorable “big picture” of the system. However, our approaches are not comparable,
because they are based on different metaphors and support different types of activities (i.e.,
program comprehension and reverse engineering, as opposed to forward engineering).

A more recent work related to maps, is the work of Kuhn et al. on software cartography. The
main contribution of this approach is that it uses the vocabulary extracted from the source code
to compute the locations of the elements on the map, and thus obtain a layout which is resistant
to evolution [KLN08], because the vocabulary of the domain is not very likely to change.

52 3.5 Related Work

Another work remotely related to our approach is the work of Lange, who proposed a col-
lection of views, similar to UML diagrams and enriched with software metrics [LC07]. One of
these views, called the UML-city, was presented earlier in Figure 2.16(b). This visualization is
similar to a certain extent to a code city, in that it has structures similar to the buildings in our
approach with software metrics mapped on their properties. Unlike our approach, the buildings
are placed on UML diagrams, while in our case the terrain represents the package hierarchy.

3.5.2 Closely Related Work

Knight and Munro [KM00] proposed a visual approach based on a world metaphor, called Soft-
ware World (See Figure 2.14(a)). They presented a representation for Java systems, in which
classes were represented as districts and methods as buildings. Our work differs from the work
of Knight et al. in several aspects. First, their approach is limited to Java systems, while ours is
based on a language-independent meta-model, which enables us to apply our approach to sys-
tem written in various languages (e.g., Smalltalk, Java, C++, C#). Second, the domain mapping
they chose is suboptimal (i.e., each method is a building), because it leads to very large cities for
even small systems and thus raises the issue of scalability. Moreover, this work completely omits
the representation of packages, which is a key concept for the organization of object-oriented
software systems.

Two years later, the same authors joined by Charter and Thomas extended the Software
World approach work from source code to components (i.e., units of executable code, which can
take the form of packages, libraries, frameworks), in a work called Component City. Accord-
ing to their approach, the buildings represent components in this approach, while the districts
are functionality groups of components. In Component City, there are three distinct types of
buildings which encode the number of components: i.e., houses (1 component), mansions (2
components), and skyscrapers (more than 2 components). Moreover, there are monuments
which act like landmarks, i.e., they help users getting oriented. Similarly to this approach, we
attempted reducing the number of building types for our box plot based and threshold-based
mapping strategies. The main difference between our approach and the work of Charter et al.
lies in the domain mapping, i.e., the representation granularity in Component City is coarser
than the one in our approach. Given that classes and packages are the main orientation points
for the object-oriented paradigm, we believe that our domain mapping offers a good tradeoff
between the information density and the scalability of the approach. Moreover, although the
authors describe a scenario in which a user navigates the environment to search for a specific
feature, they do not accompany their narrative with any screenshots of the tool in action, as one
would expect. In addition, as with the other approach, the tool is not available either. We believe
that every software visualization approach should demonstrate how it facilitates understanding
of the software system, at least by means of case studies.

Marcus et al. proposed an approach called sv3D (i.e., Source Viewer 3D), based on an
abstract geometric metaphor [MFM03]. We presented an example of sv3D visualization in Fig-
ure 2.14(b), in the context of the history of visualization presented in Chapter 2. The main
representation in this approach is the poly cylinder and several poly cylinders are grouped to-
gether in floating containers. Since the representation looks similar to a landscape, we consider it
related work. Marcus et al. extended the fine-grained SeeSoft approach by Eick et al. [ESEE92]
through a 3D representation. Each poly cylinder represents a line of code and the containers
represent files. We believe that the granularity of this mapping is not appropriate for software
systems, because it does not scale well: The visualization of an even relatively small system of

53 3.5 Related Work

50 kLOC implies the manipulation of 50’000 graphical objects. The interaction with the visual-
ization is closer to a graphical editor than to an exploration environment: The user is allowed
to move, rotate, and scale the graphical representations. Other interactions, such as queries, are
only mentioned as future work. The similarities between our approach and the work of Marcus
et al. are limited to the mapping of software metrics on the visual properties of very simple
3D graphical elements. The main difference between our approaches is that Marcus et al. aim
to support source code analysis, while our goal is to support higher-level analyses of software
systems. Consequently, in terms of scalability, the approach of Marcus et al. has been found to
work well up to 40-50 kLOC, while our approach, with its coarser-grained representation, has
allowed us to visualize larger software systems (i.e., up to almost 3 MLOC). Another advantage
of our approach over this work is the representation of the package hierarchy. Moreover, in our
approach there is a clear notion of locality, which helps the users get oriented in the 3D environ-
ment, as opposed to the approach based on the concept of poly cylinder, in which artifacts can
be freely moved.

Software Landscapes is a visualization approach, proposed by Balzer et al., based on a land-
scape metaphor [BNDL04]. Using a granularity level similar to ours, this approach represents
the hierarchy of packages as nested spheres, classes as circular discs, and the methods and the
attributes as cuboids on top of the discs (See Figure 2.15(a)). For the representation of relations,
the authors proposed an elegant solution called Hierarchical Net, which depicts relations as hier-
archically routed connections. Balzer et al. visualized Java systems of different sizes, including
a version of Eclipse with over 1 MLOC. This approach uses the level of detail technique, which
renders only the details of elements that are close enough to the viewer. While this work repre-
sents an exquisite contribution, there are aspects in which we feel our approach has advantages.
The first is that our approach makes use of software metrics to provide a “big picture” of the
system that goes beyond just plain structure. In the case of the Software Landscapes, the use of
software metrics has only been mentioned as future work. Moreover, due to their level-of-detail
based navigation, it is difficult to build a mental overview of the system, since at any time details
are only partially visible. Although Balzer et al. presented screenshots of their visualizations ap-
plied to several Java systems including large ones, they only showed these examples to illustrate
the metaphor. However, none of the works on Software Landscapes [BNDL04, BD04] contains
any demonstration of the use of the Software Landscape approach to gain insights in any of the
described systems. This is unfortunate, because after all, the main goal of software visualization
is to enable the understanding of software systems.

Another contribution involving a city metaphor is the work of Panas et al., who initially en-
visioned a city metaphor [PBG03], in which the city is a package and contains, for increased
realism, elements with no semantic load, such as trees or street lamps, aimed to facilitate nav-
igation. The metaphor would not only represent static, but also dynamic data, i.e., a program
run would be represented as cars which leave traces from the origin to the destination. Although
never implemented quite in this form, this concept metaphor represented a good starting point
for Panas’s later work.

Two years later, Panas et al. presented a concrete 3D visualization architecture implemented
in a configurable tool called Vizz3D [PLL05], which supported supported several metaphors,
including a city metaphor. Similarly to our approach, the authors employ the use of software
metrics and strive for configurability. Differently from our approach, in which we focus on the
extensive exploration of the city metaphor, Panas et al. deal only superficially with metaphors,
as part of their complex visualization architecture. Unfortunately, this work does not contain
any practical application of the approach to program comprehension, either.

54 3.6 Summary

After two more years, Panas et al. [PEQ+07] present an approach called multi-aspect single-
view architectural visualization (See Figure 2.15(b)), which unifies the presentation of various
kinds of architecture-level information to different types of stakeholders. The underlying idea
was to present the structure of the system using a graph-based model and augment the model
with a number of static and dynamic analyses for C and C++ programs. However, the illustra-
tion of this approach by means of real case studies is completely absent, the authors limiting
themselves to imagine a number of scenarios in which their approach could be useful. In the
absence of any demonstration of the application of their approach to a case study, it is difficult
to make head-to-head comparisons between our approaches.

A somewhat similar approach to ours is the one of Langelier et al. [LSP05], who use 3D
visualization to display structural information, by representing classes as boxes with metrics
mapped on height, color and twist, and packages as borders around the boxes, which are placed
using a tree layout or a sunburst layout (See Figure 2.16(a)). To support their approach, the
authors implemented a tool called Verso. Unlike our layout, these layouts do not enable an
easy visual interpretation of the package hierarchy. Similarly to our approach, Langelier et al.
demonstrate, by means of case studies, the usefulness of their approach. Although the authors
do not present their approach as driven by a city metaphor, they briefly address this issue.

In the context of IDE integration, Biaggi presented Citylyzer [Bia08], an Eclipse plugin based
on our city metaphor, which supports the program comprehension application context.

Finally, several researchers collaborating with us in the context of the EvoSpaces project
[ABW+09] have contributed to the field with work which is implicitly related to our approach.

The work of Alam and Dugerdil represents their vision of the city metaphor [AD07], with an
implementation which is integrated in the Eclipse IDE and design decisions that differ from ours
(e.g., using textures to distinguish between building types). A later application of their approach
is the visualization of execution traces, based on the same city metaphor [DA08].

Another line of work from the same project is the work of Boccuzzo and Gall, who explored
other metaphors [BG07] than the city metaphor to find the most appropriate one for our project.
Later, Boccuzzo and Gall took an interesting take on reverse engineering, by enriching visualiza-
tion with audio support [BG08].

3.6 Summary

We defined a city metaphor for software visualization, according to which software systems are
represented as cities, packages as districts, and classes as buildings. We described the details
of our metaphor in terms of property mapping strategies, novel layouts, and representation
granularities, and discussed the advantages and disadvantages of each visualization technique.

The first step in demonstrating the versatility of our city metaphor, was to apply it in the
context of program comprehension. A code city visualization provides an overview of an entire
software system and allows the user to identify outliers in terms of the mapped metrics. We
illustrated the program comprehension application by means of two case study. We performed
an analysis of the ArgoUML software system, by exploring its code city. The insights we picked
up during a short tour through the city of ArgoUML confirmed us the usefulness of the city
metaphor in the context of program comprehension, which supports the first claim of our thesis.

However, we feel that many of the raised questions that were left unanswered could find an
answer in the system’s past versions. Therefore, in Chapter 4, we turn our attention towards
extending our approach to enable the visualization of software system evolution.

Chapter 4

Visual Analysis of System Evolution

4.1 Introduction

One of the lessons we learned from applying our approach based on the city metaphor to pro-
gram comprehension was that looking at only the most recent version of a software system is
not enough: We need to broaden our perspective, by looking at the system’s history, i.e., the
sequence of transformations that a complex system went through to get to its current state. As
a result, the second application of our approach, which we use to demonstrate the versatility of
the city metaphor, is software evolution.

Visualizing evolving software raises a number of challenges. The first one is scalability, which
is severely affected by the amounts of data extracted from a sequence of versions of the same
system. Another challenge is finding a visualization able to illustrate the process of system
evolution itself.

In this context, we present a set of elaborate interactive 3D visualizations which illustrate the
structural evolution of large software systems at both a coarse-grained and a fine-grained level.
The visualizations make the complex and intangible process of software evolution tangible and
visible, and allow for insights into a system’s evolution.

We illustrate this second application of the city metaphor by means of three case studies from
two different perspectives. First, we look at one system that we have previously studied in the
context of program comprehension (See Chapter 3) and whose evolution we expect to reveal
insights complementary to the ones we previously acquired. Second, we look at the histories of
two systems of which we have zero knowledge.

4.2 Modeling Software System History

For modeling software system evolution, we use the Hismo meta-model proposed by Gîrba
[Gîr05], which extends the FAMIX meta-model with historical data.

In Hismo, the evolution of an element is captured by a model history, which is composed of
a sequence of versions. Each version is built around an element snapshot, which captures the
element’s state at a certain moment in time. Figure 4.1 shows how the main structural entities
of an object-oriented system (i.e., packages, classes, methods, and attributes) are modeled with
Hismo.

55

56 4.2 Modeling Software System History

*

ModelHistory ModelVersion MooseModel

PackageHistory

HISMO

ClassHistory

AttributeVersion FAMIXAttributeAttributeHistory

FAMIXPackage

FAMIXClass

FAMIX

11

version
entity

11

version
entity

11

version
entity

11

version
entity

11

version
entity

1 2..*

versionshistory

1 2..*

versionshistory

1 2..*

versionshistory

1 2..*

versionshistory

1 2..*

versionshistory

0..*1

containing
package

history
package
histories

re
fe

re
nc

eV
er

si
on

MethodVersion

ClassVersion

PackageVersion

re
fe

re
nc

eV
er

si
on

re
fe

re
nc

eV
er

si
on

re
fe

re
nc

eV
er

si
on

0..*1
packaged

in
child
packages

1

0..*

belongs
to

attributes

1

0..*

containing
package
history

class
histories

1

0..*

packaged
in

defined
classes

1

0..*

belongs
to

methods

1

0..*

containing
class

history

method
histories

1

0..*

containing
class
history

attribute
histories

MethodHistory FAMIXMethod

moose
model

1
1
1
1

reference
history

1
1
1
1

pa
ck

ag
e

hi
st

or
ie

s

0..*

cl
as

s
hi

st
or

ie
s

0..*

m
et

ho
d

hi
st

or
ie

s

0..*

at
tri

bu
te

 h
is

to
rie

s

0..*

0..*

0..*

0..*

0..*

pa
ck

ag
es

cl
as

se
s

m
et

ho
ds

at
tri

bu
te

s

1111

1

1

1

1

Figure 4.1. Modeling the history of object-oriented systems with Hismo

The rightmost column of Figure 4.1 is the snapshot layer, which is provided by FAMIX. The
middle column is the version layer, which links the history layer on the left to the snapshot layer.

For the program comprehension application of our metaphor, the underlying model was
limited to the snapshot layer. For the evolution analysis application, the underlying model of the
cities is the version layer, which provides access to both the snapshot and the history layer.

57 4.3 Overview of the Approach

4.3 Overview of the Approach

Each of our evolutionary visualizations is characterized by the granularity of the representation
and by the technique (or combination of techniques) applied to reveal a particular evolutionary
aspect of the system under investigation. We have experimented with two levels of granularity
for the representation:

1. Coarse-grained, in which classes are represented as monolithic buildings.

2. Fine-grained, in which the representation is refined by representing the methods as pieces
of the buildings’ walls (i.e., bricks).

For visualizing the evolution of software systems, we conceived three visualization techniques:

1. Age map, for depicting the age distribution,

2. Time travel, for stepping through the system’s history, and

3. Timeline, for capturing the entire evolution of a software artifact in a single view.

We introduce the different combinations of techniques and granularity levels according to the
sequence described in Table 4.1, using a structure which contains the following information:

• a description,

• a set of comprehension goals,

• an exemplification of its application, illustrated by means of one or more of the case study
systems,

• an optional “reality check”, which implied discussions with the actual developers of the
visualized systems, aimed at confirming or denying our findings, and

• a discussion of the drawbacks, which typically leads to another combination that solves the
discussed shortcomings.

Technique
Age map Time travel Timeline

Granularity
Coarse Section 4.5 Section 4.6 -
Fine Section 4.7 Section 4.7 Section 4.8

Table 4.1. Roadmap for presenting the techniques at each granularity level

Before presenting the five combinations of visualization technique and representation gran-
ularity, we describe the three system histories we used as case studies for the application of our
city metaphor to software evolution.

58 4.4 Case Studies

4.4 Case Studies

To illustrate the application of our approach to evolution analysis, we use the histories of three
open-source Java systems as case studies.

ArgoUML is a UML modeling tool, whose version 0.23.4 we analyzed in Chapter 3, in the con-
text of program comprehension. To shed light on the questions left unanswered from the
aforementioned analysis, we chose to analyze the system’s evolution. Instead of perform-
ing a periodic sampling of its history, we took a developer-oriented perspective and built a
history from the system’s major releases, including the one released after version 0.23.4.
The eight versions, covering a period of four years and a half, are described in Table 4.2.

Sample no. Rel. no. Rel. date NOP NOC LOC

1 0.10.1 Oct 2002 77 838 64,865
2 0.12 Aug 2003 90 937 71,903
3 0.14 Dec 2003 93 1,249 79,253
4 0.16 Jul 2004 97 1,240 85,601
5 0.18.1 Apr 2005 89 1,409 105,405
6 0.20 Feb 2006 97 1,647 148,751
7 0.22 Aug 2006 97 1,701 133,632
8 0.24 Feb 2007 98 1,776 138,468

Table 4.2. The history of ArgoUML’s major releases in numbers

JHotDraw1 is a 2D graphics framework. In a first step, we sampled the four-years history
of JHotDraw, using a 24-weeks sampling period and ended up with the eight versions
described in Table 4.3. In a second step, to better understand a particular part of the
system’s evolution, we sampled its history using a one-week period and, after removing
the duplicates2, we obtained 57 unique samples.

Sample no. Rev. no. Rev. date NOP NOC LOC

1 18 Oct 2000 15 177 8,413
2 21 Mar 2001 15 190 8,923
3 31 Sep 2001 15 194 9,011
4 41 Mar 2002 15 265 12,552
5 47 Aug 2002 22 384 18,651
6 155 Jan 2003 37 578 29,445
7 217 Jul 2003 37 586 29,969
8 230 Jan 2004 37 600 29,546

Table 4.3. The sampled history of JHotDraw in numbers

Jmol3 is a 3D molecular viewer for chemical structures. We sampled its eight-years evolu-
tion using an eight-weeks sampling period and obtained a history containing 51 unique
samples, presented in Table 4.4.

1http://sourceforge.net/projects/jhotdraw
2It is possible to obtain duplicate snapshots of the system using a periodic sample, in the case in which there were no

commits in the period between the two consecutive sample dates.
3http://sourceforge.net/projects/jmol

http://sourceforge.net/projects/jhotdraw
http://sourceforge.net/projects/jmol

59 4.4 Case Studies

Sample no. Rev. no. Rev. date NOP NOC LOC

1 69 Dec 1999 7 285 17,594
2 82 Feb 2000 7 289 17,766
3 94 Apr 7 290 17,852
4 141 May 7 297 18,496
5 148 Jul 7 298 18,604
6 162 Sep 7 295 18,185
7 180 Nov 7 318 19,654
8 206 Jan 2001 7 325 20,203
9 212 Mar 7 327 20,351

10 242 Apr 5 289 17,997
11 295 Jun 5 296 18,592
12 334 Aug 6 279 17,536
13 335 Oct 6 281 17,640
14 340 Dec 6 279 17,499
15 352 Feb 2002 6 279 17,499
16 385 Apr 7 268 18,882
17 498 May 7 277 19,822
18 500 Jul 7 277 19,831
19 538 Sep 7 295 20,457
20 641 Nov 7 324 24,432
21 780 Jan 2003 11 351 26,873
22 976 Mar 13 379 29,388
23 993 Apr 13 378 29,309
24 1,171 Jun 15 402 32,297
25 1,275 Aug 19 384 30,813
26 1,525 Oct 21 408 33,869
27 1,717 Dec 21 432 36,278
28 1,835 Feb 2004 21 423 36,763
29 2,128 Mar 19 297 24,729
30 2,307 May 19 311 26,680
31 2,486 Jul 19 333 28,067
32 2,584 Sep 19 336 28,730
33 2,748 Nov 18 340 30,319
34 3,116 Jan 2005 17 374 33,760
35 3,377 Feb 18 397 37,102
36 3,508 Apr 21 418 39,490
37 3,716 Jun 22 423 40,331
38 3,927 Aug 22 432 42,268
39 4,208 Oct 23 449 45,208
40 4,304 Dec 24 455 46,055
41 4,414 Jan 2006 26 452 47,240
42 4,709 Mar 26 450 51,641
43 5,154 May 27 452 48,533
44 5,319 Jul 27 452 48,347
45 5,480 Sep 27 452 48,347
46 6,098 Nov 29 503 67,265
47 6,555 Jan 2007 29 508 71,782
48 6,932 Feb 30 516 76,189
49 7,458 Apr 37 550 81,506
50 7,882 Jun 49 549 83,514
51 8,065 Aug 50 558 84,984

Table 4.4. The sampled history of Jmol in numbers

60 4.5 Coarse-Grained Age Map

4.5 Coarse-Grained Age Map

Description. We overlay the city representing a version of a system with colors mapping the
age of the artifacts. The age represents the number of sampled versions that the artifact “sur-
vived” up to the reference version. To encode numerical values, we designed a sequential
color scheme, ranging from light yellow (i.e., new-born entities), passing through a spectrum
of greens, all the way to dark blue (i.e., oldest entities).

Choosing the color scheme. This color scheme is based on several guidelines for the use of
colors in computer graphics [Mac99]. First, it is known that a large percent of the human
population (i.e., 8% of the males and 1% of the females in Europe and North America) suffer
from at least one form of color deficiency, and therefore, have difficulties in discriminating colors
by hue only. To address this issue, the two ends of our color scheme’s spectrum are very different
in terms of both hue (i.e., yellow vs. blue) and luminance (i.e., light vs. dark). Moreover, the
luminous efficiency function of CIE (i.e., the International Commission of Lighting) peaks at
a wavelength of 555nm, corresponding to a greenish-yellow hue, which represents the hue to
which the human eye is most sensitive. Incorporating the yellow–green range in the spectrum of
our color scheme allow us to maximize the range of values that can be encoded with our color
scheme, such that they can be discriminated by the human eye.

Goals. Obtain a starting point for the evolution analysis. Discover the old parts of the sys-
tem, discover the recently changed parts of the system. Get an overall feeling on the system’s
evolution by “looking back in time”.

Application. In Figure 4.2 we see an age map of ArgoUML’s history in version 0.24, a system
with many of its “first generation” classes still in place.

JavaTokenTypes
uml.reveng.java
AGE 8
NOM 0
NOA 175

JavaRecognizer
uml.reveng.java
AGE 8
NOM 176
NOA 79

JavaTokenTypes
language.java.generator
AGE 8
NOM 0
NOA 146 JavaRecognizer

language.java.generator
AGE 8
NOM 91
NOA 24

CPPParser
language.cpp.reveng

AGE 3
NOM 200

NOA 85

STDCTokenTypes
language.cpp.reveng

AGE 3
NOM 0

NOA 152

language.php

language.php

FacadeMDRImpl
model.mdr
AGE 3

NOM 348
NOA 3

Facade
model
AGE 4
NOM 337
NOA 1

age 1 2 3 4 5 6 7 8
color

Legend:

Figure 4.2. Coarse-grained age map of ArgoUML

61 4.6 Coarse-Grained Time Travel

Following up on our investigation from a previous analysis, presented in Section 3.4.2, we
notice that the pairs of JavaTokenTypes and JavaRecognizer buildings which appear in two
different districts (i.e.,language.java and in uml.reveng.java) are all as old as the city itself,
which is indicated by their common dark color. With the help of this fresh information, revealed
by the historical data, we can discard the hypothesis that it is a migration/replacement of one
pair of classes with the other, since both pairs have been part of the system since its inception.

Another insight we obtained using the age map technique is that ArgoUML at the beginning
has only supported the Java language. The support for C++, C#, and PHP has been added at a
later stage, as shown by the light green color of the packages language.cpp, language.csharp,
and language.php, respectively.

Drawbacks. The age map flattens the evolutionary information with respect to the currently
visualized system version. What we need is a technique to visualize the process of evolution
itself, i.e., we need to travel through time.

4.6 Coarse-Grained Time Travel

Description. Time traveling is achieved by stepping back and forth through the history of the
system while the city updates itself to reflect the currently displayed version. Locality plays a
major role: We make sure that every element history gets assigned an individual lifetime real
estate in the city, i.e., if an artifact is removed from the system or it has not yet been created
at a certain point in time, this is denoted by an empty space that cannot be occupied by other
artifacts.

Goals. Observe the evolution both of the entire system and of individual artifacts, e.g., pack-
ages or classes. At the system level, discover which districts have been under heavy maintenance
or barely touched between two consecutive versions or along their entire evolution. By focusing
on a particular artifact in a city, observe its “birth”, its evolution in terms of the chosen set of
metrics, and in some cases its “death”, i.e., its removal from the system.

Application. In Figure 4.3 we see the sequence of views obtained during our time travel
through ArgoUML’s major release history4. We omitted showing the version 0.24, for it was
irrelevant for this discussion, because there were almost no observable changes between the
last two samples. To provide a better sense of time, we marked the release numbers and dates
on the figure. One question left unanswered during our program comprehension case study
presented in Section 3.4.2, was the intriguing case of the Facade interface, whose over 300 de-
clared methods were implemented by one class only. Stepping through time reveals the origin
of this apparently questionable design decision: In version 0.14, a large building emerges, rep-
resenting class ModelFacade with 60 attributes, 183 methods, and 1,280 lines of code, which
becomes enormous (i.e., 108 attributes, 426 methods, and 3,275 lines of code) in version 0.16.
In version 0.18.1 ModelFacade disappears, but its disappearing coincides with the appearance of
two other tall and thin buildings: the interface Facade (1 attribute and 306 declared methods)
and the concrete class NSUMLModelFacade (2 attributes, 316 methods, and 2,102 lines of code)
implementing Facade.

4A movie of this time travel is located at http://www.inf.usi.ch/phd/wettel/codecity-movies.html#ArgoCTT

http://www.inf.usi.ch/phd/wettel/codecity-movies.html#ArgoCTT

62 4.6 Coarse-Grained Time Travel

0.10.1
Sept. 2002

0.12
Aug. 2003

0.14
Dec. 2003

0.16
Jul. 2004

0.18.1
Apr. 2005

0.20
Feb. 2006

0.22
Aug. 2006

ModelFacade

ModelFacade

Facade

NSUMLModelFacade

Facade

NSUMLModelFacade

FacadeMDRImpl

Facade

FacadeMDRImpl

Figure 4.3. Coarse-grained time travel through the history of ArgoUML

This large-scale city transformation reflects a massive refactoring, caused either by the fact
that ModelFacade was growing into a maintainer’s nightmare, or by the developers’ need to
define variations of its behavior. They declared the common functionality (i.e., 306 meth-
ods) in an interface and moved the concrete behavior from ModelFacade to the new class

63 4.6 Coarse-Grained Time Travel

0.10.1
Sept. 2002

0.12
Aug. 2003

0.14
Dec. 2003

0.16
Jul. 2004

0.18.1
Apr. 2005

0.20
Feb. 2006

0.22
Aug. 2006

0.24
Feb. 2007

age 1 2 3 4 5 6 7 8
color

Legend:

Figure 4.4. Applying both time travel and age map to ArgoUML

NSUMLModelFacade, the first implementor of Facade. Version 0.20 gives birth to a second im-
plementor of Facade, called FacadeMDRImpl, with 2 attributes, 329 methods, and 2,709 lines
of code. Version 0.20 is the only version in our sampled history in which the two implementors

64 4.7 Fine-Grained Age Map & Time Travel

coexist, as in version 0.22 the class NSUMLModelFacade is removed, leaving FacadeMDRImpl the
only implementation of Facade.

Reality Check. A key developer of ArgoUML confirmed our insights gained during the time
travel and provided more details: “ModelFacade was an implementation of the model subsystem
using NSUML repository. When the change was made to MDR we turned this to a regular
interface allowing for several different repositories. The attributes in the ModelFacade are not
attributes but constant tokens used in the NSUML repository implementation. Because this was
for JDK1.3, and JDK1.4 enums were not available so the number exploded. When we refactored
the ModelFacade I think these constants were partly not needed and partly replaced by methods
to retrieve the constants from the chosen implementation.”

Drawbacks. At this granularity level, the technique does not depict the internal evolution of
classes, which is the level at which the changes happen. For example, if a developer removes
and adds the same number of methods between two consecutive versions, the NOM metric value
remains the same, and so does the building’s height, in spite of the substantial changes. This loss
of detail is evident in Figure 4.4, which shows a combination of age map and time travel applied
to the history of ArgoUML5. Between versions 0.22 and 0.24 not much seems to have happened
in the system, in spite of the amount of changes typically implied by a new major release.

4.7 Fine-Grained Age Map & Time Travel

Description. The same techniques described previously, applied at fine granularity.

Goals. Obtain insights into the method-level evolution. Discover classes created in one “bang”
versus classes grown in an incremental manner.

Application. Our first history of JHotDraw was obtained by sampling the evolution of the sys-
tem based on a sampling period of 24 weeks, which resulted in eight versions, described earlier
in Table 4.3. By applying the fine-grained age map technique on this history we obtained the
visualization in Figure 4.5, which provides a look back in the past from the most recent version
of the system. This first view leads to several interesting facts about its evolution, discussed next.

The districts colored in dark blue represent the most rooted packages of the system, such
as CH.ifa.draw6.standard, framework, and figures, because they have been there since the
system’s inception. The city’s tallest buildings are the classes application.DrawApplication

and standard.StandardDrawingView, which not only have been part of the system starting with
its first version (their bases have the same color as the city’s ground), but they have permanently
required adaptation during the system’s evolution (they are painted in a wide range of colors).

The light green color of district test shows that the package is relatively new. Indeed, the
test package first appears in the sixth version of our sampled history. The small buildings
colored in light yellow, represent classes called test.AllTests, which have been added in the
seventh version. Each of these classes contains two methods: main and suite. Each main

method is the starting point for running the suite of tests located in the sub-packages of test.

5A movie of this time travel is located at http://www.inf.usi.ch/phd/wettel/codecity-movies.html#ArgoCTTAM
6From here on, we omit the common prefix CH.ifa.draw from package names and qualified class names in JHotDraw.

http://www.inf.usi.ch/phd/wettel/codecity-movies.html#ArgoCTTAM

65 4.7 Fine-Grained Age Map & Time Travel

AllTests
CH.ifa.draw.test.*

AGE 1
NOM 2

StandardDrawingView
CH.ifa.draw.standard
AGE 8
NOM 85

DrawApplication
CH.ifa.draw.application

AGE 8
NOM 90

CH.ifa.draw.test
AGE 3

CH.ifa.draw.figures
AGE 8

CH.ifa.draw.standard
AGE 8

CH.ifa.draw.framework
AGE 8

age 1 2 3 4 5 6 7 8
color

Legend:

Figure 4.5. Fine-grained age map applied to the most recent version of JHotDraw

To learn more about the test package, we employ again a combination of the time travel
technique and age map, presented in Figure 4.6, which confirmed what the age map depicted:
the entire package appeared all at once towards the end of JHotDraw’s history7. Since our
sampled history of JHotDraw contained only eight versions covering 31/2 years, we did not
want to jump to conclusions: The sudden appearance of all the unit tests could have happened
gradually over a period of 6 months, between January and July 2003. To reason more accurately
about this evolutionary fact, we sampled the system using a weekly sampling period but, to our
surprise, this did not change our conclusion. We were able to reduce the period in which the
entire test package was created to one week, spanning from revision 121 (24/01/2003) to
revision 155 (31/01/2003), during which 34 commits were performed.

Writing all tests at once and at a late stage in a project is awkward. We thought of two
hypotheses that could explain the sudden appearance of the entire test package at a late stage
in the lifetime of the system. It was possible that, although the tests were written gradually, they
were added to the versioning repository only very late. The second hypothesis was that, since
JHotDraw is a Java port of the well-designed HotDraw system written in Smalltalk [Joh92], the
tests were only later ported to the project.

Reality Check. The main developer of JHotDraw shed light on this matter: “Regarding your
question of the new test package: I used a JavaDoc-based code generator to automatically
generate test cases for the JHotDraw. Therefore, the test methods are still not implemented and
only the work to do is outlined. Because it is an incomplete package and only created as an
example for the test generator I think it it best to ignore this package.” One lesson we learned
from this case study is that, although we perform most of the analyses at a higher abstraction
level, a look at the source code is every now and then required.

7A movie of this time travel is located at http://www.inf.usi.ch/phd/wettel/codecity-movies.html#

JHotDrawFTTAM

http://www.inf.usi.ch/phd/wettel/codecity-movies.html#JHotDrawFTTAM
http://www.inf.usi.ch/phd/wettel/codecity-movies.html#JHotDrawFTTAM

66 4.7 Fine-Grained Age Map & Time Travel

r18
Oct. 2000

r21
Mar. 2001

r31
Sep. 2001

r41
Mar. 2002

r47
Aug. 2002

r155
Jan. 2003

r217
Jul. 2003

r230
Jan. 2004

age 1 2 3 4 5 6 7 8
color

Legend:

CH.ifa.draw.test

Figure 4.6. Combining fine-grained time travel with age map on JHotDraw

67 4.8 Fine-Grained Timeline

Drawbacks. One problem with the techniques that display only one version of the system at a
time is that they do not show, without traveling back and forth, when a particular method disap-
peared, since its representation is an empty space. Moreover, they are prone to scalability issues,
due to the large number of graphical elements employed to visualize a system (e.g., ArgoUML
is represented by over 16’000 elements). In addition, if one visualizes complete systems, the
methods of a class are barely visible. To address these issues, we devised the timeline technique.

4.8 Fine-Grained Timeline

Description. The class versions are represented as platforms next to each other along a time-
line, from left (first version) to right (last version) and the methods are represented as “bricks”.
We combine this with the age map technique to enable a clearer visual distinction between the
different “generations” (i.e., groups of methods created in the same version) of methods.

time

version 1

version 2

version 3

m1
m2

m3
m5

m6
m7

m12

m17

m9
m10

m11

m13
m14

m15

m18

m1

m9

m1

m2

Figure 4.7. Example illustrating the principles of the timeline technique

Figure 4.7 illustrates these principles applied to the three-versions history of class C. In the
first version, class C has seven methods (m1 to m7). In the second version, method m7 is removed
and five other methods (m8 to m12) are added to the class. The new bricks appear at the top of
the building in a lighter color than the rest of the bricks. The place formerly occupied by m7 will
remain empty from here on. In the third version, the older method m2 is removed and six new
methods (m13 to m18) are added. The benefit of this visualization is that it provides a complete
representation of an artifact’s evolution, thus allowing for the detection of evolutionary patterns.

68 4.8 Fine-Grained Timeline

We use this technique mostly at the class level, by visualizing the evolution of a class in
terms of its methods. The importance of choosing the right granularity is shown in Figure 4.8
by means of a comparison: The fine-grained timeline of class standard.StandardDrawingView
from JHotDraw, depicts interesting events, such as the creation or removal of methods (See
Figure 4.8(a)). In contrast, the coarse-grained timeline of the same class is only able to show
details at the class level, such as the modification of the NOA or NOM metric values (See Fig-
ure 4.8(b)). We consider the coarse-grained timeline a poor combination for evolution analysis
and, therefore, exclude it from the discussion.

(a) Fine-grained (b) Coarse-grained

Figure 4.8. The timeline of class standard.StandardDrawingView at different granularities

This technique can also be applied at package level, to depict the evolution of a package
in terms of its sub-packages and classes. Figure 4.9 shows a fine-grained timeline of a district,
whose tallest building represents precisely the class whose timeline was shown in Figure 4.8(a).

Figure 4.9. The timeline of package standard in JHotDraw

69 4.8 Fine-Grained Timeline

Goals. Isolate a reduced set of artifacts to create a view of their entire history including all the
inner components. Observe evolution patterns, such as incrementally grown classes, recurring
methods, etc.

Application. We analyzed a number of Jmol’s classes using the timeline technique. Figure 4.10
shows the timeline of the org.jmol8.g3d.Graphics3D class, which spreads over the last 22
versions of Jmol’s history made of 51 versions. This class is likely to be an important one, given
the structure of its timeline. Already in its first version, it contained 103 methods and it has been
subject to massive changes. With each new version, new functionality (i.e., methods) was added
to this class and at the same time old functionality was removed. Gradually, the initial structure
of the class got lost in time and the final column of the timeline accurately reflects its continuous
adaptation: Out of the 311 methods that existed throughout its history, only 158 have made it
to the current version.

fillQuadrilateral
fillTriangle

applyBlueAnaglyph

Figure 4.10. Timeline of class Graphics3D

The timeline of Graphics3D illustrates an interesting pattern, manifested through bricks
exhibiting color anomalies. After looking into this pattern, we learned that this pattern indicates
a restoration of groups of methods after a period of time from their removal.

8From here on, we omit the common prefix org.jmol from package names and qualified class names in Jmol.

70 4.8 Fine-Grained Timeline

Through the combined effect of the age map technique and the chronological order imposed
on the layout, the color of the brick representing a restored method stands out as an anomaly in
every subsequent version of the class, i.e., it breaks the color pattern of its surrounding bricks.
Although its position denotes the fact that it has been created at roughly the same time as its
neighbor bricks, the color reflects a shorter life (i.e., fewer versions) than the one of its neighbors.

Figure 4.10 shows three examples of such methods. The first one is fillQuadrilateral,
which disappeared after the first version of the class, reappeared in the ninth version and after
six more versions was removed again. The second method is fillTriangle which was created
in the first version of the class, survived for five versions, and then disappeared for fifteen more
versions. As this case illustrates, the more versions pass between removal and restoration, the
more striking the color anomaly is. The third method is applyBlueAnaglyph, which was created
later (i.e., in the tenth version), removed right after that, and restored in version 17.

We looked at the timelines of several long-lived classes in Jmol, four of which are illustrated
in Figure 4.11 along with a description of their evolution in numbers (See Table 4.5). At a first
glance, we see how each timeline reflects the evolutionary characteristics of the underlying class
history. For instance, the peak of each timeline (the height of the last version of the building) de-
picts the number of method histories: Eval is twice as tall as JmolViewer or TransformManager,
but half the height of Viewer, which encapsulates 1,029 method histories in its evolution. Eval
lost many of its initial methods during its evolution (166 out of 432) and this is well reflected
in its timeline: the most recent version (i.e., the last column) looks unstable, with many missing
bricks in its structure.

Class History Total Current Removed

api.JmolViewer 177 150 27
viewer.Viewer 1,029 750 279
viewer.TransformerManager 220 161 59
viewer.Eval 432 266 166

Table 4.5. The number of methods for the class histories in Figure 4.11

Table 4.5 presents the timelines of the classes Viewer, JmolViewer (i.e., the superclass of
Viewer), Eval, and TransformManager. An intriguing observation we made was that each of
these timelines shows a group of bricks, which disappears in revision 5,154 from 22/05/2006
and reappears after exactly three sampled versions, in revision 6,098 from 6/11/2006, as illus-
trated by the common time coordinates in the top left part of Figure 4.5.

The hypothesis that first came to our mind was that the developers massively removed meth-
ods from these logically coupled classes, thus generating bugs which were not detected right
away and which could only be fixed later by reviving the removed methods.

Reality Check. Our hypothesis was confirmed both indirectly and directly. We first looked at
the logs of the Jmol versioning repository. The version in which the methods were removed
had to be in the range between revisions 4,709 and 5,154. The log of revision 5,091 from
10/05/2006 reads: “No more javax.vecmath.Point3f in g3d shape drawing routines. There
were some cases where screen coordinates were being passed in as Point3f objects [. . .] ”.
Similarly, we searched for a revision which would give away the recovery of the previously

71 4.8 Fine-Grained Timeline

Viewer
org.jmol.viewer

NOMH: 1'029
18 versions

Eval
org.jmol.viewer

NOMH: 432
18 versions

TransformerManager
org.jmol.viewer

NOMH: 220
18 versions

JmolViewer
org.jmol.api
NOMH: 177
18 versions

4'709

5'154

5'319

5'480

6'098 time

Figure 4.11. Learning from the past by correlating several class timelines of Jmol

removed methods, in the range between revisions 5,480 and 6,098. We found revision 5,579
from 17/09/2006 whose log acknowledges the restoration: “Revert of vecmath lib change”.

72 4.9 Discussion

This was a fortunate case, because oftentimes the developers do not document their modi-
fications in the logs of the versioning system. However, since we wanted to learn more about
this system, we contacted the developers who committed in the repository during that period.
Three of the developers shared with us interesting insights on this period in the system’s evolu-
tion. Developer1 agreed with us: “Your hypothesis is probably correct” and recalled: “We found
some major problems, and diagnostic was too difficult, so we reverted to a stable version and
tried to apply patches in small batch.” Developer2 remembered that “It was quite a nightmare
for everyone involved. The issue was that I was new to the project and had committed quite a
few additions to Jmol thinking that Developer3 was monitoring; as it turned out he found my
additions too much too fast, and because there was a problem with the graphics display module
g3d that resulted in some slow performance, he opted to revert to an earlier state. In the end it
turned out to be a recent addition to transparency in the graphics, not anything I had done, that
caused the problem. In any case, we did sort of start over – or at least I did. I think I have that
right. So I think your hypothesis is correct [. . .] ”.

Drawbacks. Given the real estate of the screen, there are scalability issues in the case of arti-
facts with hundreds or more revisions.

4.9 Discussion

We take a step back and reflect on several issues related to the application of the city metaphor
to the analysis of software system evolution.

Tracking events in time. The actual time at which a particular event happened can be any-
where between the commit times of the earliest sampled version in which the event occurs and
the time of the previous sampled version. In this context, the sampling period plays a major role
in establishing accurate time localization of events.

Sampling policies. The sampling policy has a major influence on the information that can be
extracted from the history and intuitively, one is tempted towards using shorter sampling periods
and obtaining richer histories. However, manipulating numerous versions of an industrial sys-
tem raises the issue of scalability with respect to memory requirements and processing time. We
believe that an incremental approach can be applied in such cases, by starting first with a sparse
history, i.e., few samples distant from each other in time, and then focusing on interesting inter-
vals by increasing the number of samples and decreasing their temporal distance. We applied
this approach in the case of JHotDraw. We also experimented with two different sampling poli-
cies, namely time-based (JHotDraw and Jmol) and release-based (ArgoUML). The time-based
sampling allows us to observe the evolutionary process as a “slow motion movie” with the draw-
back of potential duplicated samples. The release-based sampling has the advantage that the
frames are steps of the actual development cycle. This eliminates duplicate samples but has the
disadvantage that one needs to correlate the development steps with the actually elapsed time.

Entity identity. Since we rely on the Hismo meta-model to model system histories, the entity
identity is reduced to name identity, i.e., if two entities of the same type have the same name
in two different versions, they are considered to be part of the same history[Gîr05]. Therefore

73 4.10 Related Work

a simple rename refactoring performed on an entity (e.g., package, class, method) leads to the
loss of its identity. The consequence of this shortcoming of the underlying meta-model is that a
method renaming is represented in a fine-grained representation as a brick removal and a brick
addition.

Color scheme limitations. Any linear color scheme can be expressed as a finite series of colors
and the human eye’s color sensitivity cannot differentiate among very close colors in terms of
hue, luminosity and contrast. Therefore, the more versions there are in a system history, the
smaller will be the difference between two colors representing successive ages. Although we
strived for efficiency and picked very carefully the colors while designing our color scheme,
our experience taught us that this color scheme works best up to a maximum of ten versions.
Increasing this number hinders the visual distinction among consecutive versions.

Consistent locality. Due to the evolutionary layout which takes into account the entire history
of every software element in the system, we support consistent locality, which helps in keep-
ing the viewer oriented at any time. This enables the user to observe hot-spot neighborhoods
with respect to the evolutionary phenomenon: conservative districts (i.e., which rarely change),
districts permanently “under construction” or moving districts. However, the price payed for
providing consistent locality is the extra space used by the layout for allocating lifetime estates
to every element, including those with a short life.

The techniques. Despite the evolutionary structural overview that the age map and the time
travel techniques provide with the coarse-grained representation, their drawback is the low level
of detail provided for classes. To make up for this, we created a fine-grained representation, to
see how method addition and removal drives the evolution of classes. However, this level of
detail raises scalability problems in the case of very large systems. Moreover, the overview is
lost for such large systems, i.e., the details are not visible from far away and zooming in leads
to context loss. Since our views present only one version of the system at a time, with the
possibility to perform time travels, we needed to be able to focus on a single element throughout
its entire evolution. The timeline technique makes this possible and allows for the detection of
evolutionary patterns.

4.10 Related Work

As illustrated in Chapter 2, many visualization approaches aimed at software evolution have
been proposed over the last decade. Visualizing the evolution of software structure is by no
means new and many researchers have proposed various approaches, which we consider only
remotely related to our work.

4.10.1 Remotely Related Work

Eick et al. [ESEE92] also used color to depict the age, however at at a lower abstraction level:
Each line of code is visualized as a row and the files are visualized as columns in SeeSoft, in
which the color of the row depicts the age of a line of code. The age maps in our approach
depict information at a higher abstraction level and from an object-oriented point of view (i.e.,
the age of packages, classes, and methods, rather than that of the lines of code in a file) and

74 4.10 Related Work

puts all of these in the structural context of the system. Gall et al. [GJR99] used 3dSoftVis to
visualize evolution, by means of a compacted 3D visualization that shows 2D tree graphs aligned
in time and a compact 2D visualization obtained by projecting 3D diagrams onto 2D space.

Our timeline representation is partially inspired from the Evolution Matrix of Lanza et al.
[Lan01], which shows the evolution of classes, represented as rectangles, in terms of a set of
metrics mapped on the dimensions of the rectangles. Girba et al. [GLD05] raised the granularity
level and looked into the evolution of class hierarchies using a 2D visualization which correlates
the histories of classes and inheritance relationships.

Wu et al. [WHH04] proposed a visualization technique called evolution spectrographs,
which portrays the evolution of a spectrum of components based on a particular property mea-
surement which reduces every version of a file to a just number. Similarly to our age map
technique, Wu et al. made use of color to depict the recency of the last change.

Pinzger et al. [PGFL05] work at a higher granularity and visualize various evolutionary
aspects of complex software systems using Kiviat diagrams to depict multiple evolution met-
rics, which provide static visualizations of a large number of metrics for the entire evolution of
modules. However, this work lacks both the system overview and a fine-grained level of detail.

In spite of all this work targeted at visualizing software evolution, the contributions in the
context of the city metaphor applied to evolution are rather scarce.

4.10.2 Closely Related Work

One of the many visualizations of VizzAnalyzer mentioned by Panas in its work on generic soft-
ware visualization [PLL05] is program evolution visualization, exemplified with a visualization
similar to a timeline. However, their evolution visualization is not based on the city metaphor.

Xie et al. extended the SourceViewer3D approach to enable the visualization of CVS repos-
itory information [XPM06]. However, the approach is very low-level (i.e., it computes every
metric at the level of the line of code) and follows the structure of the CVS repository, which
is organized in terms of files. Our work is aimed at object-oriented systems and its focus is on
higher-level entities, e.g., packages, classes. The approach of Xie et al. is not a visualization
of the process of evolution, such as our time travel technique, but a metric-based static visual-
ization, which employs evolution-related metrics instead of the typical structural metrics. From
this point of view this work is more related to the work of Pinzger et al., who visualized multiple
evolution metrics [PGFL05].

Langelier et al. proposed an application of their approach to analyze the evolution of soft-
ware quality using animated visualization [LSP08]. To characterize software quality, the authors
employ a set of structural software metrics and version control information. The similarity to our
approach is the technique they propose, which apart from the use of animation, is very similar
to our time traveling technique. The authors enable the user to go back and forth in time and to
observe the visualization changing gradually, according to the changes in the system. Moreover,
similarly to our consistent locality, the authors use what they call static position, which employs
maintaining the same position for each element in the visualization. One of the differences be-
tween our approaches is that we allow observing the evolution at different levels of granularity,
i.e., a coarse-grained, similar to their representation, and a fine-grained, which does not have a
correspondent in their approach and enables us to track finer-grained changes. Another differ-
ence of our approach is that, apart from the time travel, we devised two other complementary
techniques, i.e., age map and timeline, whose usefulness we demonstrated by means of several
case studies.

75 4.11 Summary

A somewhat related contemporary work, although not very related to ours, is the approach of
Kuhn et al. called Software Cartography [KLN08], which visualizes software evolution in a sim-
ilar manner to our time travels. We showed a picture of this approach earlier, in Figure 2.11(h),
in the context of the history of software visualization. The authors employ techniques from
cartography, such as hill-shading and contour lines, to represent the properties of the software
entities. However, the focus of the visualization in their case is not the system’s structure as in
our approach, but the vocabulary extracted from the source code of software systems.

4.11 Summary

To further demonstrate the versatility of the city metaphor defined in Chapter 3, we applied it in
a second context, namely software evolution. We described a number of visualizations obtained
by combining one of three techniques we devised (i.e., age map, time travel, and timeline) with
one of the two granularity levels of our metaphor (i.e., coarse and fine). The fact that we were
able to build new visualizations aimed at a different aspect of software systems on top of the
same metaphor is an indication of the versatility of the metaphor, which supports our thesis.

We validated the described set of visualizations by applying them to the histories of three
open-source software systems, including one that we already had experience with. By using our
visualizations to analyze these evolutions, we were able to find explanations for several open
questions from a previous case study. Furthermore, we were able to learn interesting facts from
the lifetime of two systems we had not previously analyzed. Overall, the facts we learned using
this application context could have not been revealed by any of the versions of these systems in
isolation, but only in the historical context.

Moreover, the insights we acquired during our analyses were not only interesting, but also
accurate: Some of the main developers of the systems we analyzed confirmed the correctness
of our findings. The results we obtained encourage us to carry on in Chapter 5 with the third
application, i.e., the design quality assessment.

76 4.11 Summary

Chapter 5

Visual Assessment of Design Quality

5.1 Introduction

The third application of our city metaphor for software visualization, after program comprehen-
sion and software evolution, is the quality assessment of software systems.

Designing complex software systems is a difficult task, a process which takes a long time
to learn and a skill that must be perfected constantly. Over the past two decades a number of
design guidelines and recipes have been formulated, usually in the form of patterns [GHJV95]
or heuristics [Rie96].

Nonetheless, due to external factors, namely a changing environment which triggers new re-
quirements on a system, even the best design degrades over time, leading to a phenomenon aptly
termed as “architectural drift” [Pin05], “design erosion” [vGB02], or “code decay” [EGK+01].
At a fine-grained level such a decline in quality appears in the form of “bad smells” [FBB+99].

One approach to assessing the quality of software design is based on Marinescu’s detection
strategies [Mar04a, LM06], i.e., metric-based logical functions able to find violations of design
guidelines in source code. The approach defines the concept of “design disharmony” by translat-
ing a set of design guidelines into detection strategies, with which violations against the design
disharmonies can be discovered.

We present a visualization technique which focuses on the software artifacts affected by
design disharmonies, based on the city metaphor presented in Chapter 3. Using an approach
inspired by geographical information systems, we enrich the described visualizations with re-
sults returned by a number of design anomaly detection strategies. The resulting visualizations,
called disharmony maps, focus on the design flaws [Mar04a], while maintaining the system’s
structural context. The main advantage of disharmony maps is that they provide an overview
of the system’s design and allow the viewer to mentally map the disharmony-affected entities to
locations within the city.

We apply our approach on several open-source medium to large Java system, both at a coarse
granularity, which targets classes-level disharmonies, and at the fine granularity, which targets
method-level disharmonies.

77

78 5.2 Design Harmony

5.2 Design Harmony

One aspect of particular interest when analyzing a software system is the quality of its design,
which influences both its comprehensibility and the required amount of maintenance over its
lifetime. One approach to assessing design is centered around the concept of design harmony
and its opposite, design disharmony.

5.2.1 An Overview of Design Disharmonies

Design disharmonies are formalized design shortcomings to denote pieces of a system that ex-
hibit design problems [LM06]. Informal design rules and guidelines [Rie96, FBB+99] are trans-
formed into detection strategies [Mar04a] which are metrics-based logical conditions that detect
violations against design guidelines. The antonym of design disharmony is design harmony: a
software artifact is found to be harmonious when it is implemented in an “appropriate” way. This
“appropriateness” is composed of three distinct harmonies that concern every software artifact:

1. Identity harmony, which translates to the question “How do I define myself?”. Every entity
in a software system must justify its existence: does it implement a specific concept and
how does it do that? Is it doing too many things or nothing at all? In the context of this
dissertation we focus on the following identity disharmonies:

God Class is a class that performs too much on its own and does not collaborate much with
other classes, but uses data from other classes.

Brain Class is a class that accumulates an excessive amount of intelligence, usually in the
form of several Brain Methods.

Data Class is a “dumb” data holder class without complex functionality and on which other
classes rely on.

Brain Method is a method that tends to centralize the functionality of a class.

Feature Envy refers to methods that seem more interested in the data of other classes than
in their own data.

2. Collaboration harmony, which translates to the question “How do I interact with others?”.
Every entity collaborates with others to fulfill its tasks. Does it do that all on its own, or
does it use other entities? How does it use them? Does it use too many? We focus on the
following collaboration disharmonies:

Intensive Coupling refers to a method that is tied to many other operations located in only
a few classes within the system.

Dispersed Coupling is complementary to the Intensive Coupling and it refers to a method
which is tied to many operations dispersed among many classes throughout the system.

Shotgun Surgery refers to the fact that a change in a method implies many changes of
different methods and classes [FBB+99].

3. Classification harmony, which translates to the question “How do I define myself with re-
spect to my ancestors and descendants?” This harmony combines the two other harmonies
in the context of inheritance. For example, does a subclass use all the inherited services,
or does it ignore some of them? Since we do not focus on this type of disharmonies, we
omit the presentation of these disharmonies, and refer the interested reader to [LM06].

79 5.2 Design Harmony

5.2.2 Example of Detection Strategy: The God Class Disharmony

The God Class design flaw, first described by Riel [Rie96], refers to classes that tend to incor-
porate an overly large amount of intelligence and whose characteristics are described by the
following rules:

1. They heavily access data of simpler classes, either directly or using accessor methods;

2. They are large and complex;

3. They have a lot of non-communicative behavior, i.e., there is a low cohesion between the
methods belonging to that class.

These informal rules can be transformed into the detection strategy depicted in Figure 5.1.

Figure 5.1. The God Class detection strategy [LM06]

The filtering conditions are expressed in terms of the following metrics (the left part of the
expressions) and related to thresholds (the right part of the expressions):

• Access To Foreign Data (ATFD) represents the number of external classes whose any subset
of attributes are accessed by the given class.

• Weighted Method Count (WMC) is the sum of the statistical complexity in a class [CK94],
using McCabe’s cyclomatic complexity metric [McC76].

• Tight Class Cohesion (TCC) is the relative number of methods connected via attribute ac-
cesses [BK95, BDW98].

The thresholds included by the logical conditions have been statistically determined by Lanza
and Marinescu using a large number of software systems [LM06]. We already encountered
these thresholds in the context of the metaphor, when we used them to compute the boundaries
required by the threshold-based property mapping strategy, described in Section 3.3.2.

As illustrated in Figure 5.1, the result of applying the God Class detection strategy on a class
is a boolean value, which indicates whether the class is affected or not by the design problem
associated with the detection strategy. In fact, all the detection strategies can be considered as
tests for a particular design “affection” and their result is either positive or negative.

80 5.3 Design Disharmony Maps

5.3 Design Disharmony Maps

To integrate the results of running detection strategies with our city metaphor, we drew inspira-
tion from a particular type of theme map, called disease map. In a disease map, the regions of a
world map are colored according to the diseases that affected the regions at some point in time.
Such a disease map allows one to quickly assess which are the dominating diseases in the world
for a particular period of time, and also how they are distributed around the globe.

On the one hand, the metaphor fits the problem well, because with this approach we target
design problems, which can be seen as software “diseases”. On the other hand, it does not clash
with the city metaphor, because they are strongly linked by the geographical context.

Similarly to the disease maps, we assign a vivid colors to each disharmony. We color af-
fected elements of the city with the color corresponding to the design problems they suffer from
and unaffected elements with a neutral gray. This technique enables us to focus on the design
problems in a non-distracting global context.

We integrate this technique with our city metaphor, which provides the concept of locality to
the software elements and suits well the geographical context. Since the only resource used for
representing the design problems is the color, we are still able to display structural metrics on the
dimensions of the buildings. The resulting visualization, which we call disharmony map, provides
an overview of the problems affecting a software system in terms of proportion, distribution and
dominant types.

By combining the results of design problem detection with our visual city metaphor, we
obtain the big picture of the system’s design problems, which can hardly be imagined using a
non-visual, text-based approach. To illustrate this aspect, we further present the same data of
detection strategy results, using both a textual representation and our visualization.

5.3.1 Design Problem Presentation

Running the God Class detection strategy on the java namespace of JDK 1.5 returns a list of 81
affected classes out of the system’s almost 1’700 classes.

Figure 5.2 shows this data in MooseBrowser, an exploration tool from the Moose tool suite
[NDG05]. In this view, the second rightmost panel shows all the classes and serves as the
context, while the rightmost panel contains only the God Classes and serves as the focus.

Although it includes all the data we display in a God Class disharmony map, the text-based
presentation has several shortcomings:

1. It lacks the overview, since it is impossible to look at the results as a whole, due to the
limited screen real-estate, and scrolling through the list leads to context loss.

2. To localize the God Classes, one has to process the list by clustering it based on the pack-
ages in which the classes are defined and then sort the clusters based on the number of
occurrences.

3. Finally, it is completely unfeasible to correlate several disharmony types, even in the case
of more effective textual representations, such as trees.

To enable a direct comparison, we present a disharmony map of the God Classes in JDK from
both an aerial perspective, in Figure 5.3(a), and a top perspective, in Figure 5.3(b). While the
dimensions of the buildings depict the same metrics (i.e., NOA and NOM) as in the code city

81 5.3 Design Disharmony Maps

Figure 5.2. The God Classes of JDK’s java namespace in MooseBrowser

presented earlier in Figure 3.17, the colors of the buildings reveal the presence of the God Class
design disharmony: red buildings are affected classes, while gray ones are unaffected classes.

(a) Aerial perspective (b) Top perspective

Figure 5.3. The God Class disharmony map of JDK’s java namespace in CodeCity

Compared to the textual presentation, the disharmony map provides a number of advantages.
First, the entire map fits in one screen, which allows the viewer to perceive the system as a
whole. Second, it allows the user to estimate the distribution of God Classes in the system, which
in this case is dispersed. Finally, by assigning different colors to different design problems, it can
address multiple disharmonies simultaneously.

To illustrate this and to demonstrate the insights one can acquire using the disharmony maps,
we apply our approach on a number of open-source systems and explore several design dishar-
monies in correlation.

82 5.4 Case Study Validation

5.4 Case Study Validation

We applied our approach on four open-source Java systems: the java namespace of JDK (Java
Development Kit), ArgoUML, Jmol, and iText1 (i.e., a PDF library). In Table 5.1 we present the
version for each system and their magnitudes in terms of lines of code, number of packages,
number of classes, and number of methods (NOM).

System Version NOP NOC NOM LOC

iText r. 2,892 75 711 6,320 80,389
Jmol r. 8,065 50 558 6,653 84,984
ArgoUML v. 0.24 98 1,776 12,528 138,468
JDK’s java namespace v. 1.5 53 1,966 18,355 160,287

Table 5.1. Case studies for the application of the city metaphor to design quality assessment

5.4.1 Class-Level Disharmonies

We encode each disharmony in a different color: yellow for Brain Class, red for God Class, orange
(i.e., the combination of yellow and red) for the classes that suffer from both Brain & God Class,
and violet for Data Class. For better visibility, in the case of some buildings obstructing other
buildings relevant to the discussion, we manually set their transparency (user-modifiable) to
20%. Each visualization provides an interactive legend which displays, for each of the design
disharmonies, the color that encodes it and the number of entities affected by it.

JDK’s java Namespace

Before diving into details, the first impression we get by looking at the overview of JDK (See
Figure 5.4) is that the system, although apparently well-organized, buries many class-level de-
sign disharmonies: we see violet districts, where mostly Data Classes are localized and districts
of increased complexity, in which several God Classes and Brain Classes are defined.

An interesting district is java.awt.event, made of one wide and flat building, which rep-
resents the class KeyEvent and many small houses, of which many violet ones, all representing
other type of events (e.g.,InputEvent). Although by looking at the properties of the classes one
would be tempted to categorize KeyEvent as a Data Class due to its 205 attributes and only 18
methods, it actually is one of the few classes in this package which is not affected by the dishar-
mony. This is due to the fact that it contains a number of non-accessor methods, some of which
are fairly complex. Another interesting area of the city is the “violet” district, located next to the
largest orange building in the city. This district represents the package java.awt.geom, which
hosts 17 of the 109 Data Classes in JDK.

Many of the classes that are both God Classes and Brain Classes (i.e., depicted by orange
buildings) are defined in the java.awt package, which handles the core graphics functionality
in Java: Component (the dominating building in the city, due to the class’s 88 attributes and 280
methods), Container, or Font. Moreover, some of the most commonly used core classes in JDK

1http://sourceforge.net/projects/itext

http://sourceforge.net/projects/itext

83 5.4 Case Study Validation

Component
java.awt
NOM: 280
NOA: 88

KeyEvent
java.awt.event

NOM: 18
NOA: 205

InputEvent
java.awt.event
NOM: 14
NOA: 21java.awt.event

java.awt.geom

String
java.lang

NOM: 81
NOA: 7

Font
java.awt
NOM: 78
NOA: 34

Container
java.awt
NOM: 127
NOA: 21

Class
java.lang

NOM: 107
NOA: 27

BigInteger
java.math

NOM: 103
NOA: 28

BigDecimal
java.awt
NOM: 90
NOA: 18

Calendar
java.utils

NOM: 71
NOA: 81

Security
java.security

NOM: 30
NOA: 3

Pattern
java.util.regex
NOM: 66
NOA: 29

Matcher
java.util.regex
NOM: 38
NOA: 17

Logger
java.util.logging
NOM: 53
NOA: 18

LogRecord
java.util.logging
NOM: 28
NOA: 18

Figure 5.4. Class-level disharmonies in JDK’s java namespace

are either Brain Classes (e.g., String), God Classes (e.g., BigInteger, Class, Calendar), or both
(e.g., BigDecimal).

Some of the God Classes are easy to overlook in the absence of disharmony data. An exam-
ple of such class is java.security.Security with its only 3 attributes and 30 methods, which
encodes some complex encryption algorithms. Our approach allows us to complement the struc-
tural information of the elements with the actual disharmony data, revealing even the more
subtle design disharmonies.

An interesting package is java.util.regex with its share of complexity in the form of God
Class Matcher and God & Brain Class Parser, which practically accumulate the entire intelli-
gence of the package, used for the processing of regular expressions. This is illustrated by a
district containing two rather large “corporate” buildings contrasting with the small houses that
surround them.

Package java.util.logging illustrates another pattern, a God Class together with the Data
Class it misuses: Logger (18 attributes, 53 methods), and LogRecord (17 attributes, 28 meth-
ods), a Data Class in spite of its many methods. To verify this hypothesis, we inspected the
relations of the involved classes, which revealed that more than one half (48 out of 86) of the
statically-determined invocations of class LogRecord’s methods (most of which are getters and
setters) are performed by class Logger.

iText

The first impression given by the overview of iText is one of a bulky system (See Figure 5.5),
with a large number of outlying classes. The system seems to have a poor organization and the
disharmonies are chaotically spread all over it. The dominating colors in the disharmony map

84 5.4 Case Study Validation

reveal many problems: 8 pure Brain Classes, 32 pure God Classes, 20 classes affected by both
God Class and Brain Class disharmonies, and 35 Data Classes.

PdfName
text.pdf

NOM: 7
NOA: 510

PdfWriter
text.pdf

NOM: 139
NOA: 120

ArabicLigaturizer
text.pdf

NOM: 11
NOA: 39

PdfReader
text.pdf

NOM: 133
NOA: 42

RtfList
text.rtf.list
NOM: 19
NOA: 40

PdfDocument
text.pdf

NOM: 85
NOA: 46 RtfWriter

text.rtf
NOM: 55
NOA: 148

RtfCell
text.rtf.table
NOM: 25
NOA: 14

PdfContentByte
text.pdf
NOM: 170
NOA: 26

BaseFont
text.pdf

NOM: 63
NOA: 66

PdfSignatureAppearance
text.pdf

NOM:69
NOA: 56

text

examples

Image
text

NOM: 123
NOA: 62 Paragraph

text
NOM: 37
NOA: 10

Document
text

NOM: 49
NOA: 19

Phrase
text
NOM: 33
NOA: 3

SpecialSymbol
text
NOM: 3
NOA: 0

Cell
text
NOM: 73
NOA: 15

Table
text
NOM: 83
NOA: 17

List
text
NOM: 42
NOA: 17

Figure 5.5. Class-level disharmonies in iText

The lower-left part of Figure 5.5 shows a top perspective over the class-level disharmony map
of iText, composed of two districts, i.e., the core package com.lowagie2.text and examples.

Since examples seems to be a small utility package, we only focus on the rest of the system,
i.e., the text package, which is presented as an annotated detailed aerial view in Figure 5.5. The
main package consists of several sub-packages, one for each file format: text.xml, text.html,
text.rtf, and text.pdf.

The text.pdf package is vast, with 239 classes (out of which 61 affected by at least one
class-level disharmony) and only 8 sub-packages, each with just a few defined classes. With
that many classes defined in it, this single package has grown into a module which is difficult to
understand and manage—a fact reflected by the over one quarter of disharmonious classes.

The system contains hierarchies spreading over the packages specialized on different file-
formats (i.e.,text.xml, text.html, text.rtf, and text.pdf), whose base classes are defined
in the main package text. Among these base classes there are many God Classes (e.g.,Cell,
Table, List, Phrase, Document, Paragraph), all annotated on Figure 5.5.

In package text.rtf, we see some examples of “hereditary” disharmony, illustrated by the
Brain & God Class RtfWriter, and by the God Classes RtfCell and RtfList, all disharmonious
like their superclasses. The most striking harmony breakers reside in the text.pdf package,
in which the orange color dominates, due to the large number of Brain & God Classes, such
as PdfWriter (with 139 methods and 120 attributes), PdfReader (with 133 methods and 42
attributes), or PdfDocument (with 85 methods and 46 attributes).

2From here on, we omit the common prefix com.lowagie from package names and qualified class names in iText.

85 5.4 Case Study Validation

Another remarkable phenomenon comes in the form of the apparently tiny buildings affected
by design disharmonies that imply an increased complexity (i.e., God Class or Brain Class). In-
specting one of these classes, called Phrase reveals that its scale is reduced only in the context
of the iText system, as NOM=33 is a value considered very large for a Java class [LM06]. The
disharmony map indicates it as a God Class and thus does not allow the maintainers of the system
to overlook this potentially problematic class.

An extreme example is the one of class SpecialSymbol, which is a God Class, in spite of its
apparently reduced size, i.e., only three methods and no attribute. However, a closer look at this
class reveals that in terms of its 122 lines of code, it is by no means small. Another example of
deluding disharmonious class is ArabicLigaturizer, which contains enough complexity in its
only 11 methods to qualify as both a God Class and a Brain Class.

During our experiments we noticed no evident correlation between simple metric values
(e.g., NOA and NOM) for a class and the disharmonies affecting it. To illustrates this observation,
we present two classes with more or less the same magnitude in terms of the NOM and NOA
metrics, yet which are complete opposites: While BaseFont, with 63 methods and 66 attributes,
appears as a healthy class with respect to the class-level harmony, PdfSignatureAppearance,
with 69 methods and 56 attributes, is both a God Class and a Brain Class, due to the complexity
of its methods and to the way it collaborates with other classes.

ArgoUML

ArgoUML has 17 Brain Classes and 33 God Classes, 9 of which affected by both disharmonies,
and 17 Data Classes. As revealed by the disharmony map in Figure 5.6, these disharmonious
elements are not distributed all over the system, but rather sparsely.

JavaRecognizer
uml.reveng.java
NOM: 176
NOA: 79CPPParser

uml.reveng.classfile
NOM: 204
NOA: 85 Modeller

uml.reveng.java
NOM: 52
NOA: 15

JavaTokenTypes
uml.reveng.java
NOM: 0
NOA: 173

STDTokenTypes
uml.reveng.classfile
NOM: 0
NOA: 152

GeneratorCPP
uml.reveng.classfile
NOM: 116
NOA: 37

CPPLexer
uml.reveng.classfile
NOM: 78
NOA: 8

GeneratorPHP4
uml.reveng.classfile
NOM: 33
NOA: 4

FigNodeModelElement
uml.diagram.ui
NOM: 98
NOA: 39

FigEdgeModelElement
uml.diagram.ui

NOM: 73
NOA: 13

FigAssociation
uml.diagram.ui
NOM: 15
NOA: 8

JavaRecognizer
language.java.generator

NOM: 91
NOA: 24

GeneratorJava
language.java.generator

NOM: 66
NOA: 11

JavaLexer
language.java.generator

NOM: 72
NOA: 9

JavaTokenTypes
language.java.generator

NOM: 0
NOA: 146

Facade
uml.model

NOM: 337
NOA: 1

Facade
uml.model.mdr
NOM: 349
NOA: 3

UmlFactoryMDRImpl
uml.model.mdr
NOM: 22
NOA: 9

CoreHelperMDRImpl
uml.model.mdr
NOM: 154
NOA: 2

uml.notation.uml

Figure 5.6. Class-level disharmonies in ArgoUML

86 5.4 Case Study Validation

We look at the three formations—known to us from a previous case study presented in Sec-
tion 3.4.2—each composed of one wide, flat building and two to three massive neighbor build-
ings. The first one resides in the uml.reveng.java district, and is made of the huge orange build-
ing (i.e., Brain & God Class JavaRecognizer), a smaller orange building (i.e., class Modeller),
and a wide and flat building which looks like a parking lot (i.e., class JavaTokenTypes which
contains 173 attributes). Although we would expect the latter to be a Data Class it is not, because
all its attributes are declared as final public, i.e., they are pure Java constants.

The second similar package is uml.reveng.classfile, with two Brain Classes: the city’s
dominating building, class CPPParser (204 methods, 85 attributes), and the smaller affected
one, class GeneratorCPP (100 methods, 34 attributes). The “parking lot” representing class
STDCTokenTypes (152 attributes) serves as the repository for constants dedicated to the C++
parsing. Another example of elusive Brain Class, revealed only due to the availability of the
disharmony data, is GeneratorPHP4 with its 33 methods and 4 attributes.

The third similar package is language.java.generator, whose district is on the left side
of Figure 5.6. It contains three Brain Classes: JavaRecognizer (91 methods, 24 attributes),
GeneratorJava (66 methods, 11 attributes), and JavaLexer (72 methods, 9 attributes). As
reported in our previous case study for program comprehension previously described in Sec-
tion 3.4.2, having the same code twice (i.e., the two JavaTokenTypes interfaces share almost
150 constants) is questionable, yet less harmful in the case of generated classes and interfaces,
which are not subject to manual maintenance.

By contrast, the three red buildings, which represent the God Classes FigNodeModelElement,
FigEdgeModelElement and FigAssociation, located in uml.diagram.ui, are core classes and
thus, very likely to be subject to continuous maintenance and changing requirements.

Another disharmonious agglomeration is a district characterized by a “forest” of very thin
and extremely tall buildings (i.e., few attributes and many methods), representing package
model.mdr. Out of its 35 classes, 8 are God Classes and 2 are God & Brain Classes. The doubly-
affected classes are UmlFactoryMDRImpl (22 methods, 9 attributes) and CoreHelperMDRImpl

(154 methods, 2 attributes). The largest affected class of this package, depicted by a build-
ing that literally touches the sky, is the God Class FacadeMDRImpl (349 methods, 3 attributes).
All these classes are the only implementations of the interfaces UmlFactory, CoreHelper, and
Facade, respectively. In spite of their large number of methods, the interfaces are not affected by
disharmonies due to their lack of functionality. However, perceived through their implementing
classes, these apparently harmless interfaces qualify as God Class and Brain Class factories. By
analyzing ArgoUML’s history in Chapter 4, we learned that the Facade interface (and by analogy
the other interfaces in the hierarchy) had two concrete implementations in one of the versions of
the system. Some versions later, one of the implementations disappeared, leaving the MDR im-
plementations as the only one until these days. This potentially problematic package is therefore
one of the case studies for the method-level disharmony maps, presented in Section 5.4.2.

Finally, we observed several hardly visible colored buildings in district uml.notation.uml:
the God & Brain Classes NotationUtilityUML (24 methods, 6 attributes), MessageNotationUML
(29 methods, 2 attributes), AttributeNotationUML (8 methods, 2 attributes), and the negligible
OperationNotationUML (9 methods, 0 attributes). Since both disharmonies require high com-
plexity, it was unexpected to find these apparently low-functional classes (i.e., reduced height)
among the affected. To our surprise, these classes privately held the following amounts of code
expressed in LOC: 1,240, 1,538, 432, and 450, respectively. These classes were not programmed
in the object-oriented spirit and should be reviewed by ArgoUML’s maintainers.

87 5.4 Case Study Validation

Jmol

The disharmony map of Jmol in Figure 5.7 shows the class-level problems of this system. Jmol
contains 5 pure Brain Classes, 21 God Classes, 9 God & Brain Classes, and 83 Data Classes, the
latter being also dominant disharmony of the Jmol.

java.awt.event

Token
org.jmol.viewer
NOM: 18
NOA: 350

JmolConstants
org.jmol.viewer
NOM: 32
NOA: 317

ModelSet
org.jmol.modeset
NOM: 193
NOA: 76

Viewer
org.jmol.viewer
NOM: 750
NOA: 57

Graphics3D
org.jmol.g3d
NOM: 158
NOA: 95

Eval
org.jmol.viewer
NOM: 266
NOA: 49

FileManager
org.jmol.viewer

NOM: 29
NOA: 18

TransformManager
org.jmol.viewer

NOM: 161
NOA: 110

Compiler
org.jmol.viewer

NOM: 102
NOA: 37

JmolViewer
org.jmol.api
NOM: 150
NOA: 0

Figure 5.7. Class-level disharmonies in Jmol

The huge orange building in the center is class Viewer, whose 750 methods and 57 attributes
make it the largest God & Brain Class we have visualized so far. To the right of this building we
see the yellow building of Brain Class Eval (266 methods, 49 attributes) and at its base we see
the tiny red building representing God Class FileManager (29 methods, 18 attributes). These
three harmony breaking classes, which appear close to each other clearly illustrate the fact that
there are degrees of severity with respect to design disharmony.

Around the central tower, there are three God Classes: ModelSet (193 methods, 76 at-
tributes), TransformManager (161 methods, 110 attributes) and Graphics3D (158 methods,
95 attributes), the first two being also Brain Classes. This system would benefit from a reengi-
neering effort, especially since it is a rather active project, given its over 8,000 revisions.

The Jmol system was also a case study for the software evolution application of our metaphor
presented in Chapter 4, in the context of the timeline technique presented in Section 4.8. Unsur-
prisingly, many of the disharmonious classes which where discussed there are also key players
in the design disharmony context, e.g.,Graphics3D, Viewer, or Eval.

88 5.4 Case Study Validation

5.4.2 Method-Level Disharmonies

To visualize method-level disharmonies, we use the fine-grained representation. Due to the
fact that looking at entire systems using this granularity is impractical (i.e., too many depicted
entities), we focus on specific parts of the systems.

Feature Envy in Jmol

After visualizing the method level disharmonies of Jmol using a fine-grained representation,
we noticed that the Feature Envy design problem is by far the dominant design problem in
Jmol. Figure 5.8 shows the Feature Envy disharmony map of the system using the Progressive
Bricks adaptive layout. The methods affected by this problem are colored in yellow, while the
unaffected methods are gray. The disharmony maps transmits the viewer the fact that this
problem is rather severe in this system. Indeed, more than one quarter of Jmol’s methods (e.g.,
1,555 out of 5,968) exhibit the Feature Envy disharmony.

Figure 5.8. Yellow-colored Feature Envy in Jmol

Our visualization depicts the Feature Envy “epidemic” in a suggestive way and the picture
says it all: the system could benefit from a serious session of reengineering.

Shotgun Surgery in ArgoUML

Figure 5.9 shows a visualization of package model in ArgoUML. This package, which was sub-
ject to discussions also during the class-level analysis, contains in this representation the two
most massive buildings in the city of ArgoUML (i.e., depicting the classes or interfaces with
the highest number of methods), representing the interface Facade and the only class that it,
i.e.,model.mdr.FacadeMDRImpl.

89 5.4 Case Study Validation

FacadeMDRImpl
uml.model.mdr
NOMSS: 0
NOM: 349 Facade

uml.model
NOMSS: 140
NOM: 337

Model
uml.model

NOMSS: 31
NOM: 54

PseudostateKind
uml.model

NOMSS: 7
NOM: 7

VisibilityKind
uml.model

NOMSS: 4
NOM: 4

AggregationKind
uml.model
NOMSS: 3
NOM: 3

Figure 5.9. Red-colored Shotgun Surgery in the model district of ArgoUML

The dominating design disharmony characterizing this package is by far Shotgun Surgery,
depicted by the many buildings “tainted” with the dark red color. Moreover, we see that most
of the dark red “bricks” belong to only a reduced set of classes. The largest building affected by
this disharmony is the Facade interface. In contrast to the class-level disharmonies discovered in
this package, the method-level disharmonies are detected on the interface and not on the classes
implementing it, due to the fact that the calls are done using polymorphism, i.e., they target
references to the interface.

Of the 337 methods defined in Facade, 140 exhibit the Shotgun Surgery disharmony, as it
is shown by the Number of Methods with Shotgun Surgery (NOMSS) metric. Apart from the
Facade interface, there is another interface called Model which has many methods affected by
Shotgun Surgery (31 out of 54) and three small classes made entirely of methods with Shotgun
Surgery: AggregationKind (with 3), VisibilityKind (with 4), and PseudostateKind (with
7), respectively.

This disharmony is somewhat expected in this package, since it is part of the system’s model
and all the other modules depend on it. A class with an increased number of methods affected by
Shotgun Surgery is fairly difficult to change, since any change is likely to require many changes
throughout the system.

90 5.5 Related Work

5.5 Related Work

Among the approaches based on a city metaphor, only two addressed the visualization of design
anomalies.

Panas et al. describe a visualization which shows a city with buildings in flames, obtained
using their city metaphor, enriched with the Lack of Documentation (LOD) metric on fire textures
[PEQ+07]. However, the design problems we illustrate are much more complex than such simple
metrics. We consider the approach of Panas et al. more related to the program comprehension
application of the city metaphor, where we also mapped simple metrics on the city’s visual
properties.

The second approach is the one of Langelier et al., who addressed the problem of detecting
design principle violations or anti-patterns by visually correlating outlying properties of the rep-
resentations, e.g., a twisted and tall box represents a class for which the two mapped metrics
have an extremely high value [LSP05]. There are several drawbacks of this approach in compar-
ison to ours. First, the approach is prone to both false positives (e.g., classes which may seem
good candidates for God Class or Brain Class due to their magnitude, but they are not, as seen in
Section 5.4) and false negatives (i.e., classes delude through their apparently insignificant size,
but in reality suffer from design problems typically found in very large classes). We have seen
how the availability of precise design problem data removes the uncertainty and helps focusing
on the parts of the city that are actually affected by such problems. The second problem with the
approach of Langelier et al. is that for each anomaly one needs to map a different sets of metrics,
because the number of metrics needed for the detection oftentimes exceeds the mapping limit
of the representation (i.e., three visual properties: height, twist, and color). By using only one
of the visual properties (i.e., color), we provide an overview of several design problems and, at
the same time, allow the user to complement the mapping with other software metrics that may
contribute to obtaining interesting insights, such as the ones we presented in the case studies.

To our best knowledge, all the previous work depicts software artifacts in terms of such low-
level metrics and does not address the visual representation of such high-level design problems.
To enable an efficient visualization of a system’s design problems, we drew inspiration from
disease maps and built on top of the previous techniques revolving around our city metaphor a
technique called disharmony maps.

However, a key part of the success of applying the city metaphor to design quality assessment
is owed to the detection strategies that we relied on for computing the precise design data we
have access to in our approach. The detection strategies [Mar04a]were introduced by Marinescu
as a mechanism to formulate complex rules using the composition of metrics-based filters, and
extended later by Lanza and Marinescu [LM06] by formalizing the detection strategies and
providing solutions for recovering from detected problems. The 2D polymetric views provided
as means to visualize the systems do not explicitly illustrate the disharmonious artifacts, nor
do they provide an overview and distribution of the disharmonies within the observed systems.
In the context of detection strategies, Ra̧tiu et al. aimed at further improving the design flaw
detection by taking into account information from the history of the candidate classes to compute
their persistency in exhibiting a particular design flaw during their lifetime [RDGM04].

91 5.6 Summary

5.6 Summary

The third application context for our city metaphor was design quality assessment. We presented
a novel visualization called disharmony map, which is a code city whose color denotes the spread
and distribution of design problems. By integrating the design problem data obtained by running
detection strategies on software systems with the city metaphor, we obtain a visual approach
able to provide an overview from the perspective of the quality of the system’s design. This third
extension of the city metaphor supports the claim of our thesis related to the versatility of our
city metaphor.

We validated this third application of our city metaphor by means of several case studies. Us-
ing our approach, we learned about false appearances (e.g., small classes suffering from design
problems that are typical for large classes), we saw how a bad organization of the package struc-
ture is accompanied by many disharmonies of its classes and how disharmonies can conquer
a system in the absence of reengineering. All these insights are indications of another useful
application of our city metaphor.

We believe that, with the three applications of our city metaphor, we demonstrated the first
claim of our thesis, which refers to the versatility of the city metaphor for software visualization.
The second part, which is yet to be proven, refers to the efficiency of the approach.

However, both the application of the city metaphor in different contexts and the empirical
validation of our approach—presented later in this thesis—strongly rely on the tool support
presented in Chapter 6.

92 5.6 Summary

Chapter 6

Tool Support

To support our approach we implemented a software visualization tool called CodeCity, with
an essential role in both demonstrating the versatility of our metaphor for reverse engineering,
by enabling us to apply our approach on real software systems, and supporting our empirical
evaluation aimed at proving the efficiency of our approach.

Figure 6.1. CodeCity’s main window

CodeCity is a sovereign visualization tool, i.e., an application that tends to occupy the entire
screen estate [CR03]. Its user interface, presented in Figure 6.1, is composed of three panels:

• main panel (left), which enables visualizing, interacting with, and navigating code cities,

• information panel (top right), which shows contextual data on the inspected artifacts, and

• structure panel (bottom right), which shows the system’s structure in a tree view.

93

94 6.1 The Process of Visualizing Software Systems as Cities

6.1 The Process of Visualizing Software Systems as Cities

Visualizing software systems as code cities requires three steps:

1. Extracting the model. It is believed that the use of frameworks as underlying technology
for software tools leads to faster tool innovation, as less time is spent on reinventing
the wheel [Sto06]. CodeCity is implemented in Smalltalk and built on top of Moose1, a
reengineering platform whose energetic community has produced over 150 publications
in its fourteen years of existence [NDG05, DGKR09].

Moose provides an implementation of both the language-independent FAMIX [DTD01]
meta-model, which is able to model software systems, regardless of the programming lan-
guages they have been written in (currently, it supports Java, Smalltalk, C++, and C#)
and an implementation of a meta-model for history, called Hismo [Gîr05]. In Hismo, a
history is a sequence of versions of the same kind of entity (e.g., class history, package
history, etc.), where a version is a snapshot of an entity at a certain point in time. By
building on top of the Moose technology, we get access to large amounts of rich, struc-
tured information—including a extensive set of software metrics—contained in the FAMIX
models of software systems.

The model extraction step implies parsing the software system’s source code to produce
a FAMIX model of the system. Depending on the programming language that the sys-
tem is written in, we use different tools to parse the system: For Smalltalk, we use the
parsing technology implemented in Moose. For Java and C++ systems, we use iPlasma
[MMM+05], an analysis platform courtesy of the Loose Research Group2. For C# systems
we use the PMCS (i.e., Parsing and Modeling C# Systems) tool [Dak09].

Both external tools, i.e., iPlasma and PMCS allow exporting the FAMIX model using the
MSE3 exchange format. After importing the FAMIX models, CodeCity handles software
systems uniformly, unconstrained by programming language boundaries. Moreover, if the
models represent different versions of the same system, they can be merged in a model of
the system’s history.

2. Building the visualization model. Based on a FAMIX model of a software system, CodeCity
builds a visual model of the software system, according to the user’s preferences, in terms
of property mapping strategies, layouts, granularity of the representation.

3. Rendering the code city. We built our rendering layer on top of the Jun graphics library
[AHK+01], which enables us to render, using OpenGL4 technology, the visual model of the
software system as an interactive code city visualization.

1http://www.moosetechnology.org
2http://loose.upt.ro/iplasma
3http://scg.unibe.ch/wiki/projects/fame/mse
4http://www.opengl.org

http://www.moosetechnology.org
http://loose.upt.ro/iplasma
http://scg.unibe.ch/wiki/projects/fame/mse
http://www.opengl.org

95 6.2 CodeCity’s Architecture

6.2 CodeCity’s Architecture

The module-level architecture of CodeCity, depicted in Figure 6.2, describes the system in terms
of four modules, discussed next.

View Management Core

Model

Rendering

GUI

Scripting

Tests

Transformations

VisualMappings

ColorSchemes

Layouts

GlyphsViewConfigurations

ViewBuilders

ModelExtensions

Display

Jun

Moose

Figure 6.2. CodeCity’s module-level architecture

Model deals with modeling the software systems we visualize with CodeCity. We built our tool
on top of the Moose framework and extended the FAMIX meta-model using Smalltalk’s
class extension mechanism, in package MooseExtensions.

Core handles the visual model, which is made of figures (Glyphs), layouts (Layouts), and the
mapping mechanism (VisualMappings). The latter, provides the means to map model
properties (i.e., software metrics) onto glyph properties (e.g., size, color), and involves
the computational parts of the packages Transformations and ColorSchemes.

View Management handles the process of building views (ViewBuilders) and the view con-
figuration mechanism (ViewConfigurations), presented next.

Rendering deals with making the visual model visible on the screen. We currently use the Jun

framework as an OpenGL implementation, on top of which we built the Display package,
which serves as an interface between CodeCity and Jun, and deals with the rendering,
navigation, and interaction.

96 6.3 Flexibility through View Configurations

6.3 Flexibility through View Configurations

Measuring complex “organisms” such as software systems involves a broad range of different
metrics. The display is a precious, yet limited resource, because the amount of information a
view is able to present at any moment is limited. Moreover, displaying too many details can
overwhelm the users. Therefore, it is crucial to allow the users to chose the software characteris-
tics that are important for the task at hand. To provide assistance for a broad range of tasks, we
strived for extensive configurability of CodeCity, achieved mainly through the view configuration
mechanism. A view configuration is a specification defining for each model element type:

1. the visibility, i.e., whether to incorporate it in the visualization,

2. the associated glyph type,

3. the layout to use for its components (e.g., the layout for packages will be used to place
sub-packages and classes), and

4. the visual mappers associated with each property of the chosen glyph.

Figure 6.3. User interface to the view configuration

View configuration tuning is done visually, using the graphical user interface in Figure 6.3,
which enables the modification of every view configuration parameter. The preview panel shows
how a very small code city would look like with the current view configuration, which allows
one to quickly understand the effect of each configuration parameter on the visualization.

In terms of view configuration management, CodeCity allows both saving a useful configu-
ration and loading a saved configuration, either for direct use or as a starting point to building
new configurations. The view configuration objects are able to construct a building script, i.e.,
a string which, once evaluated by the Smalltalk compiler, returns a ViewConfiguration object
equivalent to the original one. This mechanism, which relies on the reflection supported by
Smalltalk, allows us to store a view configuration as source code and therefore manage it with
the versioning system. The major advantage of this approach over a text-based one (e.g., saving
the view configuration in an XML file) is that whenever a class that is part of the view con-
figuration (i.e., any Glyph, Layout, or Mapper) is subject to a renaming refactoring [FBB+99],
the view configurations are updated automatically. The most complex components of a view
configuration are the mappers, described next.

97 6.3 Flexibility through View Configurations

The Property Mapping Mechanism

The mapper class hierarchy, presented in Figure 6.4, provides access to various mapping strate-
gies, including the three examples detailed in Section 3.3.2, i.e., identity mapping, box plot
based mapping, and threshold based mapping. Each concrete mapper type has a corresponding
user interface component, presented in Figure 6.5.

computeValueOn:
asScript

Mapper

computeValueOn:
defaultConstantValue
asScript

constantValue
ConstantMapper

block
computeValueOn:
defaultBlock
asScript

BlockMapper

computeValueOn:

IdentityMapper

inputRangeResolution

LinearMapper
minimumInput
maximumInput

buildConverter
asScript

minimumOutput
maximumOutput

NumericalLinearMapper

computeValueOn:
buildColorScheme
buildConverter
asScript

startColor
endColor
spectrumwise

ColorLinearMapper

computeValueOn:
asScript

codomain
ClusterMapper

buildConverter
BoxplotMapper

buildConverter
buildEquidistantThresholds
asScript

thresholds
ThresholdMapper

defaultFunction
asScript

function
FunctionalMapper

computeValueOn:
defaultPopulation
buildConverter
computeMaximumInput
computeMinimumInput
sortedFunctionValues

population
converter

PopulationMapper

computeValueOn:
clashingColorNames
preferredFirstColorNames

colorNames
colorCodesDictionary
nextColorIndex

ColorCodeMapper

Figure 6.4. Class diagram of CodeCity’s mappers

The key method of the mappers is computeValueOn, which is defined in the abstract class
Mapper. This method takes a model element as parameter and returns the value of the corre-
sponding visual property. For example, it takes a FAMIXClass object (i.e., the model of a class) as
input and returns the numerical value corresponding to the height of the building representing
that class.

A ConstantMapper returns the same value regardless of the input and is therefore used
to map a common value to all elements of a particular type, e.g., all the edges representing
inheritance are colored orange (See Figure 6.5(a)).

An IdentityMapper provides the most accurate representation of a metric. For example, we
use an identity mapper to map the number of methods of a class on the building’s height, as
shown in Figure 6.5(b)).

For more complex mappings, we need to consider the metric values of all the elements—
the population—of a particular model type. The simplest type of PopulationMapper is the
LinearMapper, which scales the input values to a specified output range.

98 6.3 Flexibility through View Configurations

(a) Constant (b) Identity (c) Linear for colors

(d) Box plot based (e) Threshold based (f) Block (generic)

Figure 6.5. User interface widgets for the various mapping strategies

For example, the ColorLinearMapper uses a color scheme to convert the input property
value into a color included in a specified range of the continuos optical spectrum. Figure 6.5(c)
shows the color mapper we use for classes: the number of lines of code mapped on a color range
from dark gray to intense blue.

The next mapper hierarchy, whose root class is ClusterMapper, divides the input range into
five or six sub-ranges and assigns a single output value for each of them. The BoxplotMapper

uses the box plot based technique to compute the boundaries between the sub-ranges corre-
sponding to the extremely low, low, average, high, and extremely high categories. The box plot
based mapper in Figure 6.5(d) maps a value h ∈ {1, 3,6, 12,40} on the building’s height, accord-
ing to the cluster to which its number of methods metric value belongs to. Each output value
corresponds to a building type in Figure 3.5.

The ThresholdMapper also divides the input range into sub-ranges, whose boundaries are
based on statistical data. The threshold mapper in Figure 6.5(e) maps on the building’s height a
value h ∈ {1,3, 6,12, 40}, according to the cluster to which the number of methods metric value
of its class belongs to. This example’s input clusters, corresponding to the number of methods
metric for Java classes, are: [0,2), [2, 4), [4,10), [10,15), and [15,∞).

Finally, the BlockMapper is a generic mapper which requires Smalltalk skills5 to “program”
new ad-hoc mappers. Figure 6.5(f) presents a mapper which makes abstract classes semi-
transparent (α= 0.5) and concrete classes opaque (α= 1).

5A block closure in Smalltalk is a self-contained piece of code which can be evaluated.

99 6.4 Prototyping Visualizations with Scripting

6.4 Prototyping Visualizations with Scripting

In spite of the extended flexibility of CodeCity, the graphical user interface does not grant full
access to CodeCity’s core, such as the one a programmer could benefit from. Moreover, the tool
can only be used to visualize software system models based on a particular view configuration.
However, by replacing the view building part, it is possible to visualize any type of structured
information.

Therefore, inspired by Mondrian [MGL06] we implemented basic scripting support for build-
ing ad-hoc visualizations [Wet08]. This allowed us to experiment the feasibility of new visualiza-
tions before fully embedding them in CodeCity. Although in the meanwhile it would be possible
to write the view building part of CodeCity using scripts, for performance reasons we preferred
to keep it as it was, i.e., using domain knowledge to optimize the building step. An example of
a simple script applied to the model of CodeCity itself is presented in Figure 6.6.

Figure 6.6. Scripting example (bottom) and the produced output (top)

100 6.5 Interaction & Navigation

6.5 Interaction & Navigation

Interactivity is a key feature that pushes visualization beyond beautiful pictures. In the context
of 3D visualization, navigability is a major feature, because it puts the users in control over the
environment. CodeCity supports the following types of user interaction:

• Examine. To get a brief explanation on the physical properties of a city artifact, the user
can hover the mouse cursor over the artifact and get a description of the underlying model
and the values of the software metrics reflected by every visual property of the city artifact.

• Select. To interact with a city artifact in any way other than a quick examination, the user
must first select it, by left-clicking on the element. With the current selection one can
then perform operations, such as adding to or removing from the selection, clearing the
selection, and inverting the selection.

• Spawn. Spawning a complementary view, i.e., isolating a group of elements in a new
visualization is useful whenever the user needs to focus solely on a particular part of the
system.

• Mark. During a longer exploration of a code city, color and transparency can be used as
a marking mechanism. For example, after a first visual examination of a code city, one
could assign a flashy color, such as red, to the buildings that make good starting points
in the exploration of the system. Another example is using transparency to make the
uninteresting artifacts less visible.

• Query. CodeCity provides the means to perform automated searches by indicating a set of
criteria, which enable searching for artifacts that match a particular string, or type (e.g.,
all packages), or terms (i.e., vocabulary), or artifacts related to the current selection (e.g.,
all classes that invoke any of the methods of the selected classes). To enable the fast
prototyping of new queries, we implemented a query engine and provided a generic query
in CodeCity that allows us to build new queries, by writing short Smalltalk code snippets.

• View contextual dependencies. Using an opportunistic approach, CodeCity allows the user
to visualize the dependencies of only the selected artifacts. The user can choose the types
of dependencies (i.e., inheritance, invocation, or access), their direction (i.e., incoming or
outgoing), and the color of the visual representation. The selection mechanism in this case
is crucial, for it allows the user to change the scope of the dependency query. For example
if a package is selected, the dependency context is made of all the classes defined in the
package, while if only a class is selected, the context is reduced to that class only.

• Navigate. As opposed to some 3D visualization systems, where the viewer can rotate or
move elements, our approach bears more similarity to video games, where the player is
placed within an environment, and assigned limited capabilities. CodeCity allows a whole
range of available movements: looking around, moving forward or backward, moving
laterally, and orbiting horizontally or vertically.

• Explore evolution. The viewer can apply the age map color scheme and perform time travels
through the history of a software system, and also generate timelines for any city artifacts.

• Open disharmony maps. The disharmony map functionality enables the users to get an
overview of the design problems in the system.

101 6.6 Usability

6.6 Usability

In 2008, in the context of a Master’s course on Software Design at the University of Lugano, we
performed a usability study for CodeCity (and for other tools developed in our research group),
with six students as participants. Prior to the study, CodeCity has been introduced to the subjects
during a tool demonstration. After the subjects performed an analysis of the JHotDraw system
in the context of software evolution, they were asked to answer a set of four questions aimed at
informally evaluating its usability and its capability to support real software engineering tasks.
The answers from our subjects are presented in Table 6.1, using a five-point Likert scale.

Statement
Strongly
disagree

Disagree Undecided Agree
Strongly

agree

S1 CodeCity is easy to use. 2 4

S2 CodeCity helps in building a first impression
of the analyzed system.

4 2

S3 CodeCity’s interactivity helps in analyzing
systems beyond the first impression.

1 4 1

S4 CodeCity would increase your efficiency in
solving software engineering tasks.

4 2

Table 6.1. The results from the questionnaire on CodeCity’s usability

For each of the four questions, the mode of the data was Agree, which is an indication that
most of the participants of our study agreed with all our four statements about CodeCity. No-
tably, we performed this study almost two years ago, when CodeCity was far from its current
maturity. This study showed that early investments in the tool’s usability do pay off.

6.7 Language-Independence, Scalability, and Performance

We illustrate the language-independence and the scalability of our approach by means of eight
example systems, presented in Table 6.2, along with the time required to build the visualization.

Name Version Date Language NOP NOC LOC time (s)

iText 5.0.2 Apr 2009 Java 36 566 59,346 2.9
iTextSharp 5.0.2 Apr 2010 C# 22 485 57,917 2.7
Moose 3.2.171 Jun 2009 Smalltalk 48 474 35,555 2.8
ScummVM 1.1.1 May 2010 C++ 141 3,117 304,815 7.5
GWT rev. 25 Oct 2009 Java 302 4,372 211,858 8.5
JBoss 5.1.0.GA May 2009 Java 1,507 7,881 434,943 10.4
JDK 1.5 Sep 2004 Java 664 12,888 1,084,606 31.6
Eclipse 3.5 Jun 2009 Java 1,800 27,900 2,871,016 34.4

Table 6.2. Visualization build time for a sample of our battery of visualized systems

102 6.7 Language-Independence, Scalability, and Performance

Language-independence

The language-independence of our underlying meta-model (i.e., FAMIX), enables us to take our
visual analyses beyond programming language barriers. We demonstrate this trait by visualizing
software systems written in different programming language, i.e., Java, C#, C++, and Smalltalk.

First, we look at the code cities of the two implementations of iText, presented in Figure 6.7.
iText6 is a PDF library, started as a Java project in 2000, and ported to C# starting with 2003.
In spite of the language differences, the two cities are very similar.

(a) iText, the Java version

(b) iTextSharp, the C# version

Figure 6.7. iText, implemented in both Java and C#

6http://itextpdf.com

http://itextpdf.com

103 6.7 Language-Independence, Scalability, and Performance

Figure 6.8 presents the code city of Moose, a rather small system written in Smalltalk. Moose
is the platform for software analysis used in our approach as underlying technology.

Figure 6.8. Moose, a Smalltalk system

In contrast with this Smalltalk code city, Figure 6.9 shows a bulky code city representing a
C++ software system, called ScummVM7. ScummVM is a cross-platform interpreter for several
point-and-click adventure engines.

Figure 6.9. ScummVM, a C++ system

7http://www.scummvm.org

http://www.scummvm.org

104 6.7 Language-Independence, Scalability, and Performance

Scalability

Scalability has been acknowledged as one of the challenges of software visualization [Kos03,
Sto06]. To illustrate the scalability of our approach, we present the code city visualizations of
four other software systems. The first is GWT8 (Google Web Toolkit), a development toolkit
for building and optimizing complex browser-based applications. The source code of the GWT
system has over 200,000 lines. The code city of GWT is presented in Figure 6.10.

Figure 6.10. Google Web Toolkit (GWT), a system of 200+ KLOC

A software system more than twice the size of GWT is JBoss Application Server, with over
400,000 lines of code. Figure 6.11 presents the code city of the JBoss Application Server9, which
is an open source Java EE-based application server.

Figure 6.11. JBoss Application Server, a system of 400+ KLOC

8http://code.google.com/webtoolkit
9http://www.jboss.org/jbossas.html

http://code.google.com/webtoolkit
http://www.jboss.org/jbossas.html

105 6.7 Language-Independence, Scalability, and Performance

The third code city, presented in Figure 6.12, represents JDK, a system with over one million
lines of code. The Java Development Kit (JDK) is a Java platform10, consisting of the API classes,
a Java compiler, and the Java Virtual Machine interpreter.

Figure 6.12. JDK, a system of 1+ MLOC

The largest system we have visualized so far is Eclipse, a system which totals almost three
million lines of code. Eclipse11 is a multi-language software development environment compris-
ing an integrated development environment (IDE) and an extensible plug-in system.

Figure 6.13. Eclipse, a system of nearly 3 MLOC

10http://java.sun.com/javase
11http://www.eclipse.org

http://java.sun.com/javase
http://www.eclipse.org

106 6.7 Language-Independence, Scalability, and Performance

In the context of scalability and language-independence, we built—as an exercise for the
scripting support of our approach—a visualization which allows cross-language analyses, pre-
sented in Figure 6.14. The visualization presents ten of our case studies presented so far, each
written in one of the four programming language supported so far by our fact extractors.

JBoss
Java

ScummVM
C++

GWT
Java

Jmol
Java

iTextSharp
C#

iText
Java

ArgoUML
Java

JHotDraw
Java

Moose
Smalltalk

JDK java + javax
Java

Figure 6.14. A cross-language visualization of ten systems, totaling 1.7+ MLOC

For this visualization we used the scripting support, because the visualization of several soft-
ware systems simultaneously is something for which CodeCity has not been intended. However,
the scripting allows us to experiment with ideas and evaluate a direction before implementing
it in the tool. A potential materialization of the idea illustrated in Figure 6.14 is the visual-
ization software ecosystems, i.e., collections of software projects which co-evolve in the same
environment [Lun09].

Performance

To assess the time performance, we measured the average visualization build time over ten runs,
based on the following hardware configuration: MacBook Pro with one 2.4 GHz Intel Core 2
Duo processor and 4GB RAM, running Mac OS X version 10.6.4.

The performance times presented in Table 6.2 show that, even for a large system such as
Eclipse, building its code city which comprises around 30,000 artifacts takes less than one
minute. This is an encouraging result in the context of scalability, i.e., a challenge that every
software visualization tool needs to face.

The scalability of CodeCity is owed to an appropriate granularity level, to the underlying
meta-model, and to the numerous optimizations that our tool was subject to over time.

107 6.8 Availability

6.8 Availability

Although the city metaphor has been explored in the past in an academic context, the software
industry had practically no contact with such visualizations. For we believe in the value of tool
building and in the credibility that a robust tool can bring to the scientific research, from the
very beginning we backed our research activity with the development of CodeCity.

With each new application of our city metaphor to a new context (i.e., program compre-
hension, software evolution, and design quality assessment), CodeCity accordingly enlarged its
application realm.

In March, 2008, we made CodeCity publicly available12 for download, with support for every
major platform (i.e., Mac OS X, Windows, Linux). Making CodeCity public has been a great op-
portunity for improvement, because it allowed users everywhere to experience our approach and
consequently to send us feedback. Our users have given us several ideas, of which some ended
up being integrated in the tool, such as exporting CodeCity visualizations to high-resolution
images, a feature added by popular request.

The web site features a “hall of fame” page, which is a collection of various code cities. During
our work on software evolution analysis, discussed in Chapter 4, we asked several developers
to confirm several hypotheses we proposed about some insights we gained on the systems they
were developing. Using the ‘hall of fame” we were able to present preliminary results to these
developers, one of whom was quite enthusiastic to look at their system from a new perspective:
“I had a look at your city of JHotDraw and it looks like a city I would like to live in”.

To support our users, we created a suite of video tutorials, which by means of hands-on
examples help new users learn the basic functionality of CodeCity. Later, when we designed
and conducted a controlled experiment for the validation of our approach, we used the video
tutorials as learning material for the participants.

We have evidence that CodeCity is being used in both academic research and industry. Over
the last two years, the tool which has reached its fifth release, has been downloaded 5,000+
times.

6.9 Summary

In the software visualization field, research and tool building intertwine, in a perpetual play
between ideas and feasible solutions. In spite of the lack of attention from a large part of the
community, the tool is often the supporting actor in promoting the research ideas behind it. A
visualization approach is perceived at most as good as its implementation, because the tool is
the means to present the approach. A brilliant idea demonstrated with a poor implementation
may never reach the audience. Second, a tool provides the means to validate a new approach
on case studies and find out whether it meets the expectations early on. Finally, a solid tool is
mandatory for a controlled experiment for the empirical evaluation of the approach, in particular
with subjects from industry.

In this chapter, we presented CodeCity, a tool that supports our city metaphor in all the
three application contexts we designed it for, i.e., program comprehension, software evolution
analysis, and design quality assessment. CodeCity allowed us to apply our approach based on
the city metaphor on several open-source software systems and incrementally build confidence
in our approach.

12http://codecity.inf.usi.ch

http://codecity.inf.usi.ch

108 6.9 Summary

We aimed for the increased configurability of our tool, which we acquired by means of both
a flexible design and scripting support. As opposed to the typical research prototypes, CodeCity
has been improved in terms of usability, which made the tool more prepared for the use in an
industrial context and easier to use, as witnessed by the subjects of our usability study. Further-
more, we performed several optimizations of CodeCity, which led to better time performance
and increased scalability.

Since we can only perform the evaluation of our approach by means of the tool, the outcome
of such an evaluation depends not only on the soundness of the approach, but also on the effi-
ciency and usability of its implementation. Once again, the role of the tool is essential because it
enables us to perform a controlled experiment for the evaluation of the city metaphor, presented
in Part III.

Part III

Evaluation

109

111

Preview

By instantiating our city metaphor in the contexts of program comprehension, software evolu-
tion analysis, and software design quality assessment, we demonstrated the versatility of the city
metaphor for reverse engineering. Moreover, by means of several case studies we showed that our
approach supports the users in performing various analyses, which led to a number of interesting
insights in the analyzed systems.

In this part we address the second claim of our thesis, which states that the city metaphor
enables the building of efficient software visualizations. To assess the efficiency of our approach in
supporting various reverse engineering analyses, we planned and conducted a controlled experiment
whose main goal was to discover whether, under which circumstances, and to whom our approach
is useful.

In this part we describe the controlled experiment in terms of design, operation, and results.

Chapter 7 deals with the design of our experiment, which is partly inspired from the strengths
and weaknesses identified during an extensive survey of the work related to the empirical
validation of visualization approaches.

In Chapter 8, we describe both the operation of the experiment and the results of the various
analyses we performed based on the collected data.

112

Chapter 7

Experimental Design

7.1 Introduction

A successful experiment is one that reveals the facts, regardless whether it supports or rejects
the tested hypothesis. However, there are many factors that can negatively affect the success of
a controlled experiment. The first key factor is the set of decisions known as the experiment’s
design. Poor experimental designs may cause the rejection of true hypotheses or the acceptance
of false hypotheses. To minimize this risk, we invested a great effort into the design of our
experiment, which started from a study of the related work, presented next.

7.2 Learning from Related Work

There is a rich body of research on empirical evaluation by means of controlled experiments. To
identify both good practices and commonly occurring mistakes, we first conducted an extensive
study of the literature. The lessons extracted from this study are synthesized in a list of desiderata
for the design of our experiment. Given the wide span of related work, we limit the discussion
of the related work to the contributions that influenced the design of our experiment.

7.2.1 Guidelines for Information Visualization Evaluation

Software visualization is rooted in information visualization. Therefore, we start our study with
the empirical evaluations of information visualization approaches.

Plaisant acknowledges the challenge of information visualization evaluation, but also its ma-
jor role in increasing the credibility of tools towards industry adoption [Pla04]. Two important
matters emphasized in this work are the use of real datasets and the demonstration of realistic
tasks. Moreover, based on several reviewed experiments, Plaisant observed that tools perform
differently for different tasks and, consequently, the composition of tasks can favor one tool over
another when measuring overall performances. Therefore, to allow potential adopters to match
tools with their own tasks, Plaisant recommends reporting on individual tasks rather than over-
all. The author also signals the urgent need for both task taxonomies and benchmark repositories
of datasets and tasks.

In their analysis of user evaluation studies in information visualization [ED06], Ellis and Dix
identified a set of problems that occur in user evaluation studies and discussed a number of

113

114 7.2 Learning from Related Work

solutions to these problems, which can be applied when designing and conducting evaluation
studies in information visualization. The authors claim that empirical evaluation of visualiza-
tions is methodologically unsound, because of the generative nature of visualizations. It turns
out that we cannot find perfect justifications of the observed results, because reasoning based on
our incomplete knowledge of human perception is flawed. The authors do not advocate against
empirical evaluations, but rather plead for a restrained interpretation of their results. Another
issue they discussed was finding a balance between good science and “publishability”: On the
one hand, when evaluating solely aspects that are questionable, one is more likely to find prob-
lems in the visualization. On the other hand, when evaluating aspects that are on the safe side,
it is practically impossible to learn something from the experiment, in spite of the potentially sig-
nificant results. An interesting observation was that in open-ended tasks, the time a user spent
on a task does not necessarily reflect the actual time required to finish it, but may also show how
much they enjoyed themselves solving it.

Zhu proposed a framework for the definition and measurement of effective data visualization
[Zhu07], according to three principles: accuracy (i.e., the attributes and structure of a visual ele-
ment should match the ones of the represented data item), utility (i.e., an effective visualization
should help users achieve the goal of specific tasks), and efficiency (i.e., an effective visualization
should reduce the cognitive load for a specific task over non-visual representations). However,
the great challenge in this context, which is finding concrete means to measure these effective-
ness metrics, has unfortunately not been solved by the author with concrete solutions.

7.2.2 Empirical Evaluation in Information Visualization

In information visualization there are many controlled experiments which compare the efficiency
of several tools presenting the same data. Since information visualization tools are more general
than software visualization tools, the evaluations are not always task-centered, and even if they
are, the tasks tend to be less focused than the ones in software visualization.

Petre shares some timeless insights which, although aimed at visual programming, are valid
for software visualization as well [Pet95]. In this work, the author focused mostly on the differ-
ences between novice users and experts, briefly discussed here. First, the expert knows where to
look, which is not so obvious for a novice. Second, there is a major difference in the strategies
employed by experts and novices in using a graphical environment. While reading a textual
representation is straightforward—due to the sequential nature of text—reading a graphical
representation in two or three dimensions requires the reader to identify an appropriate reading
strategy. Finally, an expert knows how to exploit cues outside of what is formally defined—
information invisible to a novice. To support her claim that “looking isn’t always seeing”, Petre
distinguishes experts by their ability to “see”, which allows them to both perceive as important
the information relevant to solve a task and to filter out inessential information. We support
this observation and take it into account in the design of our experiment, by using blocking—
distributing our subjects in groups featuring similar characteristics—based on the experience
level of our subjects.

An early work in evaluating 3D visualization designs is the one of Wiss et al. [WCJ98]. The
authors tried to isolate the design from the implementation and to evaluate it in isolation. For
this, they implemented three existing 3D information visualization designs: the Cam Tree, the
Information Cube, and the Information Landscape. The object system was a data set with 30
leaves and 8 internal nodes and an electronic newspaper’s table-of-contents with 56 leaves and
14 internal nodes. The authors compared the three designs and concluded that each approach

115 7.2 Learning from Related Work

encountered problems with different data sets and that there was no absolute winner. At the end,
however, the authors acknowledged that, by evaluating any information visualization design in
isolation, one can only look at whether it can be used for implementing a task or not. This
conclusion strengthens our belief that, in order to test a visual approach, one needs to test its
implementation.

Stasko et al. [Sta00] presented the results of two empirical studies of two visualization tools
for depicting hierarchies, implementing two space-filling layout methodologies, i.e., Treemap
and Sunburst. The authors, who have developed certain assumptions about the strengths and
weaknesses of each of the two approaches, used the empirical studies to test these assumptions.
The experiment had 32 students as participants and 16 short tasks (i.e., with a maximum time
limit of 1 minute), typical of operations that people perform on file systems. Besides correctness,
the authors also analyzed average completion time per task, but only on correct tasks. An
interesting fact about this work is that the authors analyzed the strategies taken (in terms of
basic operations upon the tools) by the users to solve each task.

Kobsa presented the results from an empirical study, in which he compared three commer-
cial information visualization systems (i.e., Eureka, InfoZoom, and Spotfire), based on tasks
performed on three different databases [Kob01]. There were 82 student participants, and they
had to solve 26 tasks (i.e., small tasks that can be solved in 1-2 minutes each) in three blocks of
30 minutes. Kobsa acknowledges that the more complex the tasks are, more factors may influ-
ence the outcome of the study, such as the ability of the subjects to understand the tasks and to
translate them into available visualizations and operations upon these visualizations.

In another work, Kobsa compared five tree visualization systems (i.e., Treemap, Sequoia
View, BeamTrees, Star Tree, and Tree Viewer) to the Windows Explorer baseline[Kob04]. There
were 15 tasks and the object system was a hierarchy representing a subset of a taxonomy of items
on eBay. The participants were 48 students with at least one year of experience working with
computers, and the design of the experiment was between-subjects. The subjects were allowed a
maximum of 5 minutes per task and were recorded with screen recording software. This allowed
the experimenters to perform a post-experiment analysis in order to try to explain the differences
in performance, and to observe interesting insights in relation to each tool. Interestingly, the
most preferred tool turned out to be the non-visual, yet popular, Windows Explorer.

Kosara et al. [KHI+03] addressed a set of questions around user studies, drawing attention
upon the importance of studying a technique in an application setting, since one cannot assume
that low-level results automatically apply to more complex contexts. The authors remark that
the comments from participants are often more important than the other data an experimenter
collects and that observing how professionals use a tool or technique is vital. They also acknowl-
edge that, unfortunately, researchers are discouraged from publishing null results (i.e., original
hypotheses not supported by the data), in spite of the intrinsic value of such shared experiences.

We applied several lessons we learned from this work. First, we designed tasks that are not
trivial, but rather close in complexity to realistic tasks, and yet solvable in a limited amount of
time. During our experiment runs, we gathered many observations from our subjects, both for-
mally, via questionnaires, and informally, by verbal communication. Moreover, on one occasion,
we had the chance to watch professionals using our tool in their own after-work environment,
i.e., during a user group meeting.

O’Donnell et al. [ODB06] present an evaluation experiment for their PieTree visualization.
Before the formal evaluation (i.e., the actual experiment run) the authors performed two rounds
of informal evaluation to discover usability problems. For the informal evaluation the subjects
were eight postgraduate students and the objects two fictional data hierarchies of 12 and 125

116 7.2 Learning from Related Work

nodes. The formal evaluation was conducted with 16 students, most of them postgraduate.
While in the informal evaluation they compared PieTree in conjunction to a TreeView with
TreeMap, in the formal experiment they compared the use of PieTree in conjunction with a
TreeView to the use of the PieTree or of the TreeView alone. This comparison chosen by the
authors is poor, because it shows at best that the two approaches are better than any one of
them taken separately, instead of trying to prove the usefulness of the PieTree approach created
by the authors. The experiment took place with one subject at a time, which allowed the authors
to observe a number of common strategies used by the subjects to solve the tasks and discuss
how these strategies influenced the results. The main lesson that the authors learned with their
experiment is that the results depend not only on the support provided by the tool, but also
on the users and on their capability to translate the tasks into interactions with the visualiza-
tion. The results of the comparison, which indicated that the combination of the two tools was
outperformed by the use of one of the tools in every task, show that more is not always better.

7.2.3 The Challenges of Software Visualization

Since tool support is a key factor for the evaluation of software visualization approaches, the
challenges of software visualization tools are important for empirical evaluations.

In the context of the theories, tools, and research methods used in program comprehension,
Storey places an important emphasis on visualization [Sto06], whose challenges include dealing
with scalability, choosing the right level of abstraction, and selecting which views to show—all
problems we needed to handle to provide a tool that can stand the test of evaluation.

Koschke performed a research survey on the use of software visualization in the fields of
software maintenance, reverse engineering and re-engineering and synthesized the perspectives
of 82 researchers [Kos03]. According to this survey, the vast majority of the researchers believe
that visualization is absolutely necessary or at least very important to their domain, a result con-
sidered overrated by the author of the survey. Koschke brings up a set of observations, pointing
out the space for improvement. Despite the fact that visualization has come to be perceived as
particularly appropriate to give an overview of a large information space, several researchers
stated that it is only suited for small-to-medium-sized systems, and one of the participants in-
dicated that for large systems or for systems with an overwhelming number of dependencies,
queries are preferred over visualization.

From the perspective of existing representations for software visualization, graphs are by far
the dominant one, while metaphors are covered by only 1% of the approaches. This insight gives
a clear indication of the quantity of research invested in each of these directions and strengthens
our belief that we are investigating a less uncovered, and thus potentially valuable direction.

Some of the challenges of visualization mentioned by Koschke are scalability and complexity,
source code proximity (i.e., maintaining a link with source code), and integrability of visualiza-
tion in processes and tools for maintenance, reverse engineering, re-engineering, and forward
engineering. Finally, an interesting aspect is the subjectivity of most researchers, who consider
the appropriateness of their own visualization as a given, without any empirical evidence what-
soever. However, the justified expectation of the research community for evaluation through
controlled experiments is challenged not only by the creators’ subjectivity, but also by the cogni-
tive nature of the tasks supported by software visualization.

117 7.2 Learning from Related Work

7.2.4 Program Comprehension Tasks

Differently from the information visualization field, where the focus is more on perception, the
evaluations of software visualization approaches are based on task solving. Therefore, finding
the tasks for the experiments is of major importance. We looked at the existing frameworks
and at the tasks used in controlled experiments for the validation of reverse engineering and
program comprehension approaches.

Based on qualitative studies performed with participants from both industry and academia,
Sillito et al. defined a set of questions that developers ask during a programming change task
[SMDV06]. However, this valuable framework focuses on the source code level and supports
mainly developers. Therefore, it is not appropriate for the evaluation of our approach, which
supports not only developers, but also architects, designers, and to a certain extent project
managers, in solving high-level reverse engineering and comprehension tasks.

Pacione et al. [PRW04] proposed a model for evaluating the ability of software visualiza-
tion tools to support software comprehension. According to their model, a tool or approach is
characterized by three dimensions: level of abstraction (i.e., the granularity of the visualized
data), facets of software (i.e., structure, behavior, data), and type of analyzed data (i.e., static
or dynamic). The authors defined a set of comprehension activities that should be supported by
visualization tools and a set of tasks which are mapped on the comprehension activities. How-
ever, in spite of its apparent generality, this model is heavily biased towards dynamic data (e.g.,
execution traces) visualizations, and therefore is not usable for the evaluation of our approach,
which relies solely on static information. The authors themselves acknowledged the fact that
none of their tasks can be solved in the absence of dynamic information.

7.2.5 Guidelines for Software Visualization Evaluation

Kitchenham et al. [KPP+02] proposed a set of guidelines for designing, conducting, and eval-
uating empirical research in the more general context of software engineering. Some of these
are applicable to empirical research in software visualization, in particular the ones related to
the presentation of the results. An observation mentioned in this work is that in a validation ex-
periment one can compare two defined technologies, one against the other, but “it is usually not
valid to compare using a technology with not using it”. Although this sounds like a reasonable
observation, we found this anti-pattern in the designs of several of the controlled experiments
for the evaluation of software visualization approaches discussed later.

One of the problems in designing and performing evaluations of software visualization ap-
proaches is the lack of software visualization benchmarks. Maletic and Marcus acknowledged
this problem and launched a call for such contributions, to raise the awareness of the scientific
community [MM03].

Di Penta et al. synthesized a set of guidelines for designing empirical studies in the field of
program comprehension [PSK07]. Some of the pitfalls of breaking these guidelines are severe,
such as data that fails to support even true hypotheses, or conclusions that are not statistically
significant due to insufficient data points. A major concern raised by the authors was the repli-
cability of the empirical studies. They proposed a “recipe” for presenting the results and making
materials available to facilitate replication and evaluation. We used this recipe to present our
controlled experiment in a replicable way.

After performing several experiments for the evaluation of visualization approaches, Sen-
salire et al. [SOT09] share a number of lessons learned during the process. One of these lesson

118 7.2 Learning from Related Work

refers to the risk of involving participants covering a wide range of experience levels, which
could bias the results of the study. To address this issue in our experiment, we use blocking
based on the experience level, which allows us to perform separate analyses on the different
blocks. Following the authors’ advice against exposing the participants to the tool for just a few
minutes before the experiment, we planned to perform a session to present our approach before
each experimental run.

With respect to tasks, Sensalire et al. make a distinction between tasks aiming at program
discovery and tasks aiming at program maintenance, and admit that in case of the former, it is
harder to quantify the effectiveness of the tool. CodeCity is a tool that supports mainly program
discovery and only indirectly maintenance. We demonstrated its usefulness in finding unex-
pected facts only by means of our case studies. However, testing its effectiveness in performing
precise tasks can give a complementary measure of its practical value. The authors suggested
that professionals are interested in tools supporting maintenance, rather than program discov-
ery. The positive feedback we received on CodeCity support our somewhat different viewpoint:
Lower-level maintenance tools and higher-level analysis tools (e.g., visualizations) are not recip-
rocally exclusive, but rather complementary in supporting the understanding of today’s software
systems. Some of the more experienced industry practitioners that participated in our exper-
iment or attended a presentation specifically mentioned the lack and need of overview tools,
such as CodeCity.

Another concern raised by the authors of this work relates to the motivation of participants,
in particular professionals, who may require a measurable return to invest time in learning to
use a tool. To this end, we precede each experimental session with a presentation session. The
opening presentation session includes a description of the approach and a tool demonstration,
which provide motivation for both professional interested in new tools, and academics active in
software visualization, reverse engineering, or program comprehension.

7.2.6 Empirical Evaluation in Software Visualization

Koschke states that the lack of proper evaluation to demonstrate the effectiveness of tools is
detrimental to the development in the field [Kos03]. Consequently, there is a growing request
for empirical evaluations in the software visualization field.

Storey and Müller count among the first researchers to have performed empirical evaluations
for their visualization tools (i.e., SHriMP and Rigi, respectively) by means of controlled experi-
ments. In a first step, the authors drafted a controlled experiment for the evaluation of reverse
engineering tools, and reported on preliminary results obtained from a pilot study [SMW96]. In
a second step, Storey et al. performed the actual experiment [SWM97], in which they compared
their two tools to a baseline (i.e., SNIFF+). Based on the experiment, performed with 30 stu-
dents, of which 5 graduates and 25 undergrads, the authors compared the support provided by
their tools in solving a number of program comprehension tasks. The authors focused on iden-
tifying both the types of tasks that are best supported by their tools and the tools’ limitations,
which is also one of the goals of our controlled experiment. However, the tasks of their user
study are more oriented towards code change and lower-level comprehension, while the aim
of our approach and therefore, of the tasks in our experiment, is on higher-level analyses and
overall comprehension of the system’s structure.

Apart from the positive lessons we could extract from this work, we identified a couple of is-
sues with this user study. First, in spite of the practical nature of the tasks (i.e., maintenance and
program understanding), the subjects were exclusively students and therefore might not have

119 7.2 Learning from Related Work

been a representative sample for the tasks’ target population, namely industry practitioners. Sec-
ond, the two experimental treatments required a decomposition of the object system manually
built by the authors of the tools (i.e., a sub-system hierarchy, based on the modularization of
the source code into files), which turned out to be a key factor on the outcome of these groups.
Although semi-automatic approaches are common in program comprehension, this intervention
may have influenced the results of the experiment.

Marcus et al. [MCS05] described a study aimed at testing the support provided by their
tool called sv3D in answering a set of program comprehension questions. To this purpose,
the authors compared the performances obtained by using their tool to the ones obtained by
exploring a text file containing all the metrics data and of source code in an IDE. We consider
this to be a more spartan version of our choice for a baseline, i.e., we provided a spreadsheet
with all the metric data, which is structured and allows advanced operations, such as sorting or
filtering. The questions that the subjects were supposed to address mostly related to the metrics
represented by the tool (i.e., number lines of text, number of lines of comments, complexity
measures, number of control structures).

The object system of their experiment was a small Java application of only 27 classes and
42 kLOC, which is not a representative size for typical software systems. Moreover, the fact
that all the participants (i.e., 24 in the experiment and 12 in the pilot study) were students
raises the threat of representativeness of the subject sample. In the pilot, the authors performed
the training session just before the test, while for the experiment they decided to schedule the
training session few days prior to the test. The authors developed additional software to capture
statistics, such as the amount of time needed to answer a question or the number of times a
participant changed an answer. A surprising result of the experiment was that from the viewpoint
of completion time, the text group performed better than the visualization group. From the
accuracy point of view, the experimental group performed slightly better, but the difference was
not statistically significant. An important lesson shared by the authors is that their subjects
would have required several hours of training to get to use the tool in a similar manner as the
authors themselves.

One fundamental threat to internal validity we see in the design of this experiment is the fact
that the authors changed too many elements (i.e., level of experience of the subjects, the amount
of time passed between the training and the test) between the two phases of the experiment and
thus were not able to determine which of these confounding factors was the real cause of the
difference between the results of the two runs.

Arisholm et al. [ABHL06] performed an experiment to validate the impact of UML docu-
mentation on software maintenance. Although documentation does not have much in common
with interactive visualization— and yet, so many people consider ULM as visualization, rather
than a visual language—there is a number of interesting insights about the design of evaluation
experiments and the presentation of the results. The independent variable was the use of UML,
which goes against one of the guidelines of Kitchenham et al. [KPP+02], because it compares
using a technology to not using it. Moreover, providing the experimental group with the same
toolset as the control group, in addition to the new tool, opened the possibility for the subjects
in the experimental group to use only the baseline tools, a fact the authors found out from the
debriefing interviews. Apart from the questionable validity of such a comparison, the presence
of this confounding factor is another reason to avoid such a design. The two objects of this
experiment were very small systems: a simple ATM system of 7 classes and 338 LOC and a soft-
ware system controlling a vending machine with 12 classes and 293 LOC. The UML documents
provided were a use case diagram, sequence diagrams, and a class diagram.

120 7.2 Learning from Related Work

Although the authors were mainly interested in demonstrating the usefulness of UML doc-
umentation in practice, the size of the two object systems is not comparable with the size of
software systems in industry and the few UML diagrams used in the experiment do not reflect
the huge amount of UML diagrams present in a system documented using this modeling lan-
guage. We claim that anything that is demonstrated under such artificial conditions can hardly
be generalized for a real setting, such as an industrial context. Moreover, all 98 subjects of the
experiment were students, which is another external threat to validity.

A positive characteristic of this experiment’s design was the realism of the tasks, reflected
also by the significant amount of time required for an experiment run (8–12 hours). The authors
used blocking to ensure comparable skills across the two student groups corresponding to the
two treatments. We also use blocking in our experiment, not only based on the experience level,
but also on the background (i.e., industry or academia), since we had a large share of industry
practitioners. The experiment of Arisholm et al. took place on two sites, i.e., Oslo (Norway)
and Ottawa (Ontario, Canada). In a similar vein, our experiment had eleven runs over four sites
in three different countries. For the analysis, Arisholm et al. considered each task separately,
since different results were observed due to the variation in complexity. For the same reason, we
also consider each task separately, complementary to the overall results. The authors concluded
that although in terms of time UML documentation did not seem to provide an advantage when
considering the additional time needed to modify models, in terms of correctness, for the most
complex tasks, the subjects who used UML documentation performed significantly better than
those who did not.

Lange et al. presented the results of a controlled experiment in which they evaluated the
usefulness of four enriched UML views they have devised, by comparing them with traditional
UML diagrams [LC07]. The experiment was conducted over two runs, in which the second was
a replication of the first. There were 29 multiple-choice questions divided in four categories.
The subjects of this experiment, conducted within a course on software architecture, were 100
master students unaware of the goal and research questions of the experiment. The baseline
of the experiment was composed of a UML tool and a metric analysis tool. Similarly to this
approach, we compose a baseline from several tools in order to cover the part of our tool’s
functionality that we were able to evaluate. Probably due to the lack of scalability of UML in
general, the size of the object systems in this experiment was rather modest (i.e., 40 classes)
compared to our object systems, which are up to two orders of magnitude larger (i.e., 4,656
classes in the case of Azureus). The measured dependent variables in the experiment of Lange et
al. were the total time and the correctness, which is defined as the ratio between the number of
correct answers and the total number of questions. This form of recall allows direct comparison
in terms of correctness between the experiment and its future replications, even if the number
of questions varies.

For our experiment, we considered that measuring the total time alone was a rather imprecise
measure of performance, given the variety in difficulty of the tasks, and therefore we decided to
complement the overall time analysis with a task-by-task time analysis.

Quante performed a controlled experiment for the evaluation of his dynamic object process
graphs in supporting program understanding [Qua08]. The experiment had 25 computer science
students as subjects, a homogeneous composition lacking any representation from industry. An
interesting choice of the author was the use of not one, but two object systems. The tool was
introduced using slides and an experimenter’s handbook, followed by a set of training tasks
for both the experimental and the control group, of which the first half performed in parallel
with the experimenter. For each of the two systems, the author devised three tasks and allowed

121 7.2 Learning from Related Work

the participants to take as much time as needed to finish each task, to avoid placing any time
pressure on the subjects. The participants were not told how many tasks there were, yet after
two hours, they were stopped. The lack of time constraints led to several participants using the
entire allotted time in solving the first task. For this reason, only the first task for each object
system had complete data.

A very interesting outcome of this experiment is the fact that the two object systems led
to significantly different results. The improvement of the experimental group could only be
detected in the case of one of the object systems, while in the case of the other, the performances
of the participants were not significantly better. This work gave us the valuable insight that
relying on solely one subject system is unsound. Another lesson we learned from Quante’s work
is that an experiment that failed with respect to the expected results is not necessarily a failure.

Knodel et al. presented the results of a controlled experiment for the evaluation of the
role of graphical elements in visualization of software architecture [KMN08]. In a preliminary
step, the authors verified the soundness of the tasks with the help of two experts in the object
system (i.e., Tomcat). The participants of the experiment were 12 experienced researchers and
17 students from Fraunhofer in Kaiserslautern (Germany) and Maryland (United States). The
tested hypotheses were either about the impact of the configuration of the visualization on the
results of different types of tasks, or about the difference in performance between experienced
researchers and students in solving the tasks. In our experiment, we use blocking based on
the experience level to identify the type of user best supported by our approach. Interestingly,
the authors asked for results in the form of both written answers and screenshots created with
the tool. From the debriefing questionnaire the authors found out that the configuration of the
visualization does make a difference when solving tasks and that an “optimal configuration”
does not exist, because the results depend on both the user and the task. Moreover, they were
able to identify the more efficient of the two configurations they tested. Knodel et al. consider
configurability to be a key requirement and recommend the visualization tool developers to
invest effort into it — a point we fully support.

Cornelissen et al. [CZRvD09, CZvDVR09] performed a controlled experiment for the evalu-
ation of EXTRAVIS, an execution trace visualization tool. The experiment consisted of solving
four tasks, divided into a total of eight sub-tasks, which—as the authors claimed—cover all the
activities in Pacione’s model [PRW04]. The choice of the model fits the nature of their approach,
i.e., the analysis of dynamic data. The purpose of the experiment was to evaluate how the avail-
ability of EXTRAVIS influences the correctness and the time spent by the participants in solving
the tasks. The subject population was composed of 23 participants from academia and only one
participant from industry, which the authors claimed to mitigate the concern of unrepresenta-
tive population. However, as the authors themselves admit in the discussion on the threats to
validity, one single subject from industry cannot generate any statistically relevant insights that
holds for industry practitioners in general.

We drew inspiration from this experiment in some of the organizational aspects, such as
the pre-experiment questionnaire (i.e., a self-assessment of the participant candidates on a set
of fields of expertise) or the debriefing questionnaire (i.e., a set of questions related to the
difficulty and the time pressure experienced while solving the tasks). We also learned that
training sessions of 10 minutes are probably too short, something acknowledged even by some
of their participants. The authors designed the treatments as follows: The control group gets
Eclipse, while the experimental group gets Eclipse, EXTRAVIS, and the execution traces.

We found two issues with this design. First, the two groups do not benefit from the same
data, since only the experimental group has the execution traces. Under these circumstances,

122 7.3 Wish List Extracted from the Literature

it is not clear whether the observed effect is owed to the availability of the data, of the tool,
or of both. Second, in addition to the evaluated tool (i.e., EXTRAVIS), the experimental group
also had the tool of the control group, which goes back to the problem signaled by Kitchenham
et al., who question the validity of comparing using a technology with not using it [KPP+02].
Nevertheless, the work has inspired us from many points of view, such as organization, the
questionnaire, or the amount of details in which they presented the experiment’s design and
procedure, which makes it replicable.

7.3 Wish List Extracted from the Literature

The literature survey we conducted allowed us to build the following list of desiderata for our
experiment, extracted from both the strengths and the weaknesses of the current body of re-
search:

1. Avoid comparing using a technique against not using it. Although in their guidelines for
empirical research in software engineering Kitchenham et al. characterized this practice
as invalid, many of the recent controlled experiments are based on such a design, which
tends to become an anti-pattern. To be able to perform a head-to-head comparison with
a reasonable baseline, we invested effort into finding a good combination of state-of-the-
practice tools to compare our approach to.

2. Involve participants from industry. Our approach, which we devised to support practi-
tioners in analyzing their software systems, should be evaluated by a subject population
that includes a fair share of software practitioners. Moreover, professionals are less likely
to provide a positive evaluation of the tool if it does not actually support them in solving
their tasks [SOT09]. Unfortunately, the literature study we performed showed that most
evaluations of software visualization approaches have been performed with academics, in
particular students.

3. Provide a not-so-short tutorial of the experimental tool to the participants. It is im-
portant for the participants to choose an appropriate visualization and to translate the
tasks into actions upon the visualization. On the one hand, for a fair comparison of a new
tool with the state-of-the-practice, the experimental group would require many hours of
intensive training, to even come close to the skills of the control group acquired in years
of operation. On the other hand, the most an experimenter can hope for from any par-
ticipant, in particular from professionals in both research and industry, is a very limited
amount of time. Therefore, the experimenter needs to design an interesting yet concise
tutorial which is broad enough to cover all the features required by the experiment, yet is
not limited to solely those features.

4. Avoid, whenever possible, to give the tutorial right before the test. One of the lessons
learned from the experiment of Marcus et al. [MCS05] is that allowing the subjects to
get in contact with the tool in advance (i.e., performing the training a few days before
the test) is quite useful. Although we tried to give the tutorial in advance, sometimes this
was just impossible due mostly to the limited amount of time we could afford to get from
our subjects. To compensate for this, we provided a set of online video tutorials that the
subjects could consult in advance.

123 7.3 Wish List Extracted from the Literature

5. Use the tutorial to cover both the research behind the approach and the implementa-
tion. Different types of subjects have different incentives to participate in the experiment.
Practitioners are probably more interested in what the tool is able to support them with,
while academics are more likely to be interested in the research behind the tool. If the
experiment is designed to have both categories of subjects, dividing the tutorial in two
distinctive parts can be helpful. Each of our experimental sessions is preceded by a pre-
sentation and tool demonstration of about 45 minutes.

6. Find a set of relevant tasks. In task-based evaluations, the relevance of the results de-
pends directly on the relevance of the tasks with respect to the purpose of the approach.
In the absence of a definitive set of typical higher-level software comprehension tasks in
the literature, we naturally look for the tasks among the ones that we had in mind when
devising our approach. However, for objectivity, we placed the tasks in the context of their
rationale and of their target users. Moreover, we avoided very basic or trivial tasks and
chose tasks close in complexity to the real tasks performed by practitioners. This alleviates
the concern about performing the study in an artificially simple environment, raised by
Kosara et al. [KHI+03].

7. Choose real object systems that are relevant for the tasks. Many of the experiments in
the literature used very small systems as objects and therefore, led to results that cannot
be generalized for the case of real systems, such as the ones in industry. Since with our re-
search we aim at supporting the understanding and analysis of medium-to-large software
systems, for our experiment we consider only real systems of relevant size, a decision that
goes along the guidelines of Plaisant et al. [Pla04].

8. Include more than one subject system in the experimental design. The experiment of
Quante [Qua08] showed that performing the same experiment on two different systems
can lead to significantly different results. Therefore, in our experiment, we consider two
systems, different in both scale and application domain.

9. Provide the same data to all participants. No matter which groups the participants
belong to, they should have access to the same data. Thus, the observed effect of the
experiment is more likely to be due to the independent variables.

10. Limit the amount of time allowed for solving each task. Allowing unbounded time for
a task to avoid time pressure may lead to participants spending the entire allotted time for
the experiment solving a single task. Moreover, in an open-ended task setup, a long time
does not necessarily reflect the difficulty of the task, but also the fun one has solving it.
Our solution for this was to provide a maximum time per task and to check with an expert
for each of the tools whether the time window is feasible for the task.

11. Provide all the details needed to make the experiment replicable. We followed the
guidelines of Di Penta et al. [PSK07] and made available the materials and results to
facilitate its evaluation and replication:

• subject selection criteria and justification

• subject screening materials and results, with subject names replaced by identifiers

• pre-test questions, and results keyed to the unique subject identifiers, as well as ex-
planation of the skills that the questions are designed to evaluate

124 7.4 Experimental Design

• control and treatment groups (i.e., sets of subject identifiers)

• post-test design and control/treatment group materials, as well as an explanation of
the knowledge the post-test questions are designed to evaluate

• if different instructions are given to the control and treatment groups, some summary
of the contents of these instructions

12. Report results on individual tasks. A precise identification of the types of tasks that
mostly benefit from the evaluated tool or approach allows a more informed decision for
potential adopters. Moreover, due to the variation in complexity, differences in time per-
formances from one task to another are expected [ABHL06].

13. Include tasks on which the expected result is not always to the advantage of the tool
being evaluated. This allows the experimenter to actually learn something during the
experiment, including shortcomings of the approach. However, given the limited amount
of time—and thus tasks—participants have, these tasks should be a minority with respect
to the tasks for which superiority from the evaluated tool is expected.

14. Take into account the possible wide range of experience level of the participants.
To allow an analysis based on the experience level which is supposed to influence the
participants’ performance in solving the given tasks [Pet95, KMN08], we use blocking,
which implies dividing the subjects of each treatment into blocks based on their experience
and skills.

Guided by this list, we conceived the design of our controlled experiment, described next.

7.4 Experimental Design

The purpose of the experiment is to provide a quantitative evaluation of the effectiveness and
efficiency of our approach when compared to state-of-the-practice exploration approaches.

7.4.1 Research Questions & Hypotheses

The research questions underlying our experiment are:

Q1 : Does the use of CodeCity increase the correctness of the solutions to program comprehen-
sion tasks, compared to non-visual exploration tools, regardless of the object system size?

Q2 : Does the use of CodeCity reduce the time needed to solve program comprehension tasks,
compared to non-visual exploration tools, regardless of the object system size?

Q3 : Which are the task types for which using CodeCity makes a difference in either correctness
or completion time over non-visual exploration tools?

Q4 : Do the potential benefits of using CodeCity in terms of correctness and time depend on the
user’s background (i.e., academic versus industry practitioner)?

Q5 : Do the potential benefits of using CodeCity in terms of correctness and time depend on the
user’s experience level (i.e., novice versus advanced)?

125 7.4 Experimental Design

The null and alternative hypotheses corresponding to the research questions Q1 and Q2 are
synthesized in Table 7.1. The remaining three questions, although secondary, allow us to search
for more precise insights about our approach. To address the question Q3, we perform a separate
analysis of correctness and completion time for each of the tasks, while for the questions Q4 and
Q5 we perform an analysis of the data within blocks.

Null hypothesis Alternative hypothesis

H10 : The tool does not impact the correct-
ness of the solutions to program com-
prehension tasks.

H1 : The tool impacts the correctness of the
solutions to program comprehension
tasks.

H20 : The tool does not impact the time re-
quired to complete program compre-
hension tasks.

H2 : The tool impacts the time required
to complete program comprehension
tasks.

Table 7.1. Null and alternative hypotheses

7.4.2 Dependent & Independent Variables

Similarly to other empirical evaluations of software visualization approaches [LC07, Qua08,
CZRvD09], the dependent variables of our experiment are the correctness of the task solution and
the completion time. While the correctness of the task solutions is a measure of the effectiveness
of the approach, the completion time represents a measure of the efficiency of the approach.

The purpose of the experiment is to show whether CodeCity’s 3D visualizations provide bet-
ter support to software practitioners in solving program comprehension tasks than state-of-the-
practice non-visual exploration tools. Additionally, we want to see how well CodeCity performs
compared to the baseline when analyzing systems of different magnitudes, given that one of the
goals of our approach was to provide support in analyzing large-scale systems.

Hence, our experiment has two independent variables: the tool used to solve the tasks and
object system size. The tool variable has two treatments, i.e., CodeCity and a baseline, while
the object system size has two treatments, i.e., medium and large, because visualization starts
to become useful only when the analyzed system has a reasonable size. The baseline and the
objects systems, as well as the criteria based on which we chose them, are presented next.

Finding a Baseline. There is a subtle interdependency between the baseline and the set of
tasks for the experiment. In an ideal world, we would have devised tasks for each of the three
contexts in which we applied our approach: software understanding, evolution analysis, and
design quality assessment. Instead, we had to find a reasonable trade-off. In our search for
an appropriate baseline, we looked for two characteristics: data & feature compatibility with
CodeCity and recognition from the community (i.e., a state-of-the-practice tool).

Unfortunately we could not find a single tool satisfying both criteria. The first candidate was
a highly configurable text-based reverse engineering tool called MooseBrowser [NDG05], built
on top of the Moose reengineering platform1. MooseBrowser is data-compatible with CodeCity,
for it uses the same underlying meta-model for object-oriented software (i.e., FAMIX [DTD01])

1http://www.moosetechnology.org

http://www.moosetechnology.org

126 7.4 Experimental Design

and is able to cover the features of CodeCity we wanted to test. However, in spite of the enthu-
siastic Moose community, MooseBrowser is not yet state-of-the-practice in reverse engineering.

To allow a fair comparison, without having to excessively limit the task range, we opted to
build a baseline from several tools. The baseline needed to provide exploration and querying
functionality, support for the presenting at least the most important software metrics, support
for design problems exploration, and if possible support for evolutionary analysis.

In spite of the many existing software analysis approaches, software understanding is still
mainly performed at the source code level. Since the most common source code exploration
tools are integrated development environments (IDEs), we chose Eclipse2, an IDE popular in
both academia and industry. The next step was finding support for exploring meta-data, such as
software metrics and design problem data, since they were not available in Eclipse. We looked
for a convenient Eclipse plugin for metrics or even an external tool (such as Sonar3) that would
either include the metrics we needed for the tasks, or would provide support for entering user-
defined metrics, or would even allow us to hard-code the data we had in CodeCity. Again,
none of the tools we found enabled us to do so. Since we did not want to confer an unfair
data advantage to the subjects in the experimental group, we chose to provide the control group
with a table containing both the metrics and the design problem data, and the popular Excel
spreadsheet application for exploring the data.

Finally, due to Eclipse’s lack of support for multiple versions, we decided to exclude the
evolution analysis from our evaluation, although we consider it one of the strong points of our
approach. We felt that providing the users in the control group with several projects in Eclipse
representing different versions of the same system, with no relation among them, would have
been unfair.

Objects. We chose two Java systems, both large enough to potentially benefit from visualiza-
tion, yet of different size, so that we can reason about this independent variable. The smaller of
the two systems is FindBugs4, a tool using static analysis to find bugs in Java code, developed as
an academic project at the University of Maryland [HP04], while the larger system is Azureus5, a
popular P2P file sharing client and one of the most active open-source projects hosted at Source-
Forge. In Table 7.2, we present the main characteristics of the two systems related to the tasks
of the experiment.

medium large

Name FindBugs Azureus
Lines of code 93,310 454,387
Packages 53 520
Classes 1,320 4,656
God classes 62 111
Brain classes 9 55
Data classes 67 256

Table 7.2. The object systems corresponding to the two levels of system size

2http://www.eclipse.org
3http://www.sonarsource.org
4http://findbugs.sourceforge.net
5http://azureus.sourceforge.net

http://www.eclipse.org
http://www.sonarsource.org
http://findbugs.sourceforge.net
http://azureus.sourceforge.net

127 7.4 Experimental Design

7.4.3 Controlled Variables

For our controlled experiment we identified two factors that can have an influence on the per-
formance, i.e., the background and the experience level of the participants.

The background represents the working context of a subject, i.e., the context in which they are
currently conducting their work. The background factor has two levels: industry and academia.
The background information is directly extracted from the personal information provided by the
participants at the time of their enrollment. Given that some of the participants were active in
both academia and industry, we considered them as practitioners.

The second factor is experience level, which represents the domain expertise gained by each
of the participants. To keep things simple, we limited the experience level also to two levels:
beginner and advanced. The level of experience of the participants is also derived from the
information provided at the time of their enrollment. For the participants from academia, stu-
dents (i.e., bachelor and master) are considered beginner, while researchers (i.e., PhD students,
post-docs and professors) are considered advanced. For industry, we considered as beginners
the participants with up to three years of experience, and as advanced the remaining ones.

We used a randomized block design, with background and experience level as blocking factors.
We assigned each participant—based on personal information collected before the experiment—
to one of the four categories (i.e., academia-beginner, academia-advanced, industry-beginner,
and industry-advanced). We then randomly assigned one of the four treatments (i.e., combina-
tions of tool and system size) to the participants in each category. The outcome of this procedure
is described in Section 8.5, in the context of the subjects’ analysis.

7.4.4 Tasks

Our approach, implemented in CodeCity, provides aid in comprehension tasks supporting adap-
tive and perfective maintenance. We considered using a previously-defined maintenance task
definition framework to design the tasks of our evaluation. However, the existing framework
proved ill-suited. Due to the fact that CodeCity relies exclusively on static information extracted
from the source code, it was not realistic to map our tasks over the model of Pacione et al.
[PRW04], which is biased towards dynamic information visualization. On the other hand, the
set of questions asked by developers, synthesized by Sillito et al. [SMDV06], although partially
compatible with our tasks refers to developers exploring source code only. Our approach sup-
ports software architects, designers, quality-assurance engineers, and project managers, in addi-
tion to developers. These additional roles assess software systems at higher levels of abstraction
not covered by the the framework proposed by Sillito et al.

In spite of the lack of frameworks and task models for higher-level assessments of software
systems, we describe each task in terms of its concern and rationale, which illustrate operation
scenarios and identify the targeted user types. The questions in the tasks were designed to fit
in one of the following categories: structural understanding, concept location, impact analysis,
metric-based analysis, and design problem assessment.

The questionnaires corresponding to the four treatments are specific to each combination of
toolset and object system, but conceptually equal. In the following, we present the conceptual
set of tasks, while in Section A.1 we include the full questionnaire with all the variations corre-
sponding to the four treatments. In the handed questionnaires, apart from the tasks themselves,
we included spots for the participants to log the begin and end times, as well as the split times
between each two consecutive tasks.

128 7.4 Experimental Design

The task set is split in two parts, i.e., part A concerned with program comprehension and
part B concerned with the design quality assessment.

A1 Task. Locate all the unit test classes of the system and identify the convention (or lack of
convention) used by the system’s developers to organize the unit tests.
Concern. Structural understanding.
Rationale. Unit testing is a fundamental part of quality software development. For object-
oriented systems, the unit tests are defined in test classes. Typically, the test classes are
defined in packages according to a project-specific convention. Before integrating their
work (which ideally includes unit tests) in the structure of the system, developers need
to understand how the test classes are organized. Software architects design the high-
level structure of the system (which may include the convention by which test classes are
organized), while quality assurance engineers monitor the consistency of applying these
rules throughout the evolution of the system.

A2.1 Task. Look for the term T1 in the names of the classes and their attributes and methods,
and describe the spread of these classes in the system.
Concern. Concept Location.
Rationale. Assessing how the domain knowledge is encapsulated in the source code is
important for several practitioner roles. To understand a system they are not familiar
with, developers often start by locating familiar concepts in the source code, based on their
knowledge of the application domain [HM08]. From a different perspective, maintainers
use concept location on terms extracted from bug reports and change requests to iden-
tify the parts of the system where changes need to be performed [MRB+05]. And finally,
at a higher level, software architects are interested in maintaining a consistent mapping
between the static structure and the domain knowledge. The dispersion provides an in-
dication of the logical modularization of a program [RMJ09]. For each of these tasks,
an initial step is locating a particular term or set of terms in the system and assessing its
dispersion.

A2.2 Task. Look for the term T2 in the names of the classes and their attributes and methods,
and describe the spread of these classes in the system.
Concern & Rationale. See task A2.1.
Note. The term T2 was chosen such that it had a different type of spread than T1.

A3 Task. Evaluate the change impact of class C defined in package P, by considering its caller
classes (classes invoking any of its methods). The assessment is done in terms of both
intensity (number of potentially affected classes) and dispersion (how these classes are
distributed in the package structure).
Concern. Impact Analysis.
Rationale. Impact analysis provides the means to estimate how a change to a restricted
part of the system would impact the rest of the system. Although extensively used in main-
tenance activities, impact analysis may also be performed by developers when estimating
the effort needed to perform a change. It also gives an idea of the quality of the system:
A part of the system which requires a large effort to change may be a good candidate for
refactoring.

A4.1 Task. Find the three classes with the highest number of methods (NOM) in the system.
Concern. Metric Analysis.

129 7.4 Experimental Design

Rationale. Classes in object-oriented systems ideally encapsulate one single responsibility.
Given that the method represents the class’s unit of functionality, the number of methods
metric is a measure of the amount of functionality of a class. Classes with an exceptionally
large number of methods make good candidates for refactoring (e.g., split class), and
therefore are of interest to practitioners involved in maintenance or quality assurance.

A4.2 Task. Find the three classes with the highest average number of lines of code per method
in the system.
Concern. Metric Analysis.
Rationale. The number of lines of code (LOC) is a popular and easily accessible soft-
ware metric for the size of source code artifacts (e.g., methods, classes, modules, system).
Moreover, it has been shown to be one of the best metrics for fault prediction [GFS05].
A method, as a unit of functionality, should encapsulate only one function and should
therefore have a reasonable size. Classes with a large ratio of lines of code per method
(i.e., classes containing long and complex methods) represent candidates for refactoring
(e.g., extract method), and therefore are of interest to practitioners involved in either
maintenance activities or quality assurance.

B1.1 Task. Identify the package with the highest percentage of god classes in the system. Write
down the full name of the package, the number of god classes in this package, and the
total number of classes in the package.
Concern. Focused Design Problem Analysis.
Rationale. God class is a design problem first described by Riel [Rie96] to characterize
classes that tend to incorporate an overly large amount of intelligence. The size and
complexity of god classes makes them a maintainer’s nightmare. To enable the detection
of design problems in source code, Marinescu provide a formalization called detection
strategies [Mar04b]. In spite of the fact that the presence alone of this design problem does
not qualify the affected class as harmful [RDGM04], keeping these potentially problematic
classes under control is important for the sanity of the system. We raise our analysis at the
package level, because of its logical grouping role in the system. By maintaining the ratio of
god classes in packages to the minimum, the quality assurance engineer keeps this problem
at a manageable level. For a project manager, in the context of the software process,
packages represent work units assigned to the developers. Assessing the magnitude of this
problem allows him to take informed decisions in assigning resources.

B1.2 Task. Identify the god class containing the largest number of methods in the system.
Concern. Focused Design Problem Analysis.
Rationale. God classes are characterized by a large amount of encapsulated functionality,
and thus, by a large number of methods. The fact that the result of applying the god class
strategy on a class is a boolean indicating that a class is either a god class or not, makes
it difficult to prioritize refactoring candidates in a list of god classes. In the absence of
other criteria (such as the stability of a god class over its entire evolution), the number of
methods can be used as a measure of the amount of functionality for solving this problem
related to maintenance and quality assurance. For the participants of the experiment, this
task is an opportunity to experience how a large amount of functionality encapsulated in
a class is often related to the god class design problem.

B2.1 Task. Identify the dominant class-level design problem (the design problem that affects
the largest number of classes) in the system.

130 7.4 Experimental Design

Concern. Holistic Design Problem Analysis.
Rationale. God class is only one of the design problems that can affect a class. A similar
design problem is the brain class, which accumulates an excessive amount of intelligence,
usually in the form of brain methods (i.e., methods that tend to centralize the intelligence
of their containing class). Finally, data classes are just “dumb” data holders without com-
plex functionality, but with other classes strongly relying on them. Gaining a “big picture”
of the design problems in the system would benefit maintainers, quality assurance engi-
neers, and project managers.

B2.2 Task. Write an overview of the class-level design problems in the system. Are the design
problems affecting many of the classes? Are the different design problems affecting the
system in an equal measure? Are there packages of the system affected exclusively by only
one design problem? Are there packages entirely unaffected by any design problem? Or
packages with all classes affected? Describe your most interesting or unexpected observa-
tions about the design problems.
Concern. Holistic Design Problem Analysis.
Rationale. The rationale and targeted user roles are the same as for task B2.1. However,
while the previous one gives an overview of design problems in figures, this task provides
qualitative details and has the potential to reveal the types of additional insights obtained
with visualization over raw data.

Our set of tasks maps partially on the program comprehension framework described by Pa-
cione et al. [PRW04], which consists of 9 activities and 14 tasks (of which 8 general compre-
hension tasks and 6 specific reverse engineering tasks). We found this framework to be biased
towards dynamic analysis: four of the activities (A1, A5, A6, and A7) and six of the tasks (G2, G5,
G6, S1, S2, and S6) rely heavily or completely on information gathered at runtime. Moreover,
the authors themselves acknowledge the fact that the activities cannot be performed without
dynamic information.

In spite of this bias, it is interesting to see the extent to which these activities are covered by
our task set (See Table 7.3).

ID Activity Description Compatible tasks (IDs)

A1 Investigating the functionality of the system -
A2 Adding to or changing the system’s functionality A1
A3 Investigating the internal structure of an artifact A2.1, A2.2
A4 Investigating dependencies between artifacts A3
A5 Investigating runtime interactions in the system -
A6 Investigating how much an artifact is used -
A7 Investigating patterns in the system’s execution -
A8 Assessing the quality of the system’s design A4.1, A4.2, B1.1, B1.2, B2.1, B2.2
A9 Understanding the domain of the system A2.1, A2.2

Table 7.3. The relation between our tasks and the activities defined by Pacione et al.

131 7.5 Summary

7.4.5 Treatments

By combining the two levels of each of the two independent variables we obtain four treatment
combinations, illustrated in Table 7.4.

Azureus FindBugs

CodeCity T1 T2
Ecl+Excl T3 T4

Table 7.4. Independent variables and the resulting treatment combinations

We provided the treatments as virtual images for VirtualBox6, which was the only piece of
software required to be installed by each participant. Each virtual image contained only the
necessary pieces of software (i.e., either CodeCity or Eclipse+Excel), installed on a Windows XP
operating system with Service Pack 2 (SP2) installed.

The two images corresponding to the experimental groups (i.e., T1 and T2) contained:

1. an installation of CodeCity,

2. the FAMIX model of the object system loaded in CodeCity, and

3. the source code of the object system, directly accessible from the visualizations (i.e.,
CodeCity allows the user to view the source code of any visualized class).

The two images corresponding to the control groups (i.e., T3 and T4) contained:

1. an Eclipse installation with all default development tools,

2. an Eclipse workspace containing the entire source code of the object system in one compi-
lable Eclipse project, and

3. an Excel installation and a sheet containing all the metrics and design problem data re-
quired for solving the tasks and available to the experimental groups.

The design of our experiment is a between-subjects design, i.e., a subject is part of either the
control group or of the experimental group.

7.5 Summary

The design of the experiment is a key factor to the success of the experiment. Therefore we
carefully designed our experiment, taking into account a list of guidelines we built based on the
strengths and weaknesses we encountered in the related work.

We believe that our experimental design, although far from perfect, represents a good trade-
off between objectivity, relevance, and attainability.

The contribution of this reliable design to the overall success of the experiment is twofold, as
demonstrated in the next chapter. On the one hand, the elaborate design allowed us to conduct
the operation phase of the experiment with high confidence. On the other hand, the design
permitted us to collect rich data, which enabled us to perform a broad range of analyses which
led to a number of promising results.

6http://www.virtualbox.org

http://www.virtualbox.org

132 7.5 Summary

Chapter 8

Experimental Operation and Results

8.1 Introduction

Apart from the experimental design, a key factor that contributes to the success of a controlled
experiment is the operation, which boils down to the struggle of the experimenters to conduct
the experiment along the lines of the experimental design, in the presence of unexpected per-
turbations. While the design phase is an iterative, error-tolerant process, the operation phase is
in general unrepeatable, because it “uses up” the subjects—the most expensive resource of an
experiment—by exposing them to the treatments. Therefore, the experimental operation is a
critical phase which requires a thorough preparation, because in a controlled experiment, as in
real life—to paraphrase Murphy’s law—anything that can go wrong, will go wrong.

8.2 Operation

Our experiment’s operation covered a time span of six months, between Nov 2009 and Apr 2010,
and can be divided in two phases, i.e., the pilot phase and the experiment phase, each consisting
of a series of experimental runs.

An experimental run consists of a presentation session of about one hour, followed by one or
more experimental sessions of up to two hours each. A presentation session consists of a talk in
which the experimenter presents our approach, concluded with a CodeCity tool demonstration.
During the experimental sessions following the presentation session, the subjects solve the tasks
with the assigned tool on the assigned object system, under the experimenter’s observation.

Although in an ideal world, the experiment would shortly follow the presentation, due to lo-
gistical reasons (i.e., it is already very difficult to be granted four hours of someone’s spare time,
let alone four consecutive hours), these two phases of the experimental session were separated
by time windows whose lengths range from 20 minutes to four weeks.

Figure 8.1 shows the timeline of our experiment. Apart from the dates and locations of
the different experiment runs, the timeline also shows the succession between presentation ses-
sions and experimental sessions and the distribution of experimental and control units in the
experimental session. The numbers in the figure reflect only the participants whose data points
were taken into account during the analysis and do not include the four exceptional conditions
excluded from the analysis, as explained in Section 8.4.2.

133

134 8.2 Operation

2009 2010
FebruaryJanuaryDecemberNovember

14 28 18 22 24 252 9 21 2818 24 25

1
Lugano

Bologna

Antwerp

Bern

April
14

..

5
6

1 1
3

3 1
1 1 1

1
1

5 8

2 6
1 1

1
1 1

R

R R

4 1
6

R

Training session

n n subjects with CodeCity (experimental)

Legend:

followed by an experimental session with

m subjects with Eclipse+Excel (control)m

remote, self-controlled sessionR

Pilot Experiment

Figure 8.1. The timeline of the experiment

8.2.1 The Pilot Study

Before taking our experiment design to industry practitioners, we wanted to make it reliable,
if not foolproof. With this goal in mind we designed a pilot study with the Master students of
the University of Lugano (Switzerland) enrolled in a course of Software Design and Evolution.
Improving the questionnaire and solving problems as they emerged required several iterations.
Since we wanted to make the most of our resources, of which the most important one consisted
of the participants, we assigned only two participants per experiment session.

The study was conducted from the 25th of November to the 9th of December 2009, in the
window of four academic hours assigned weekly for the course’s laboratory work. In the first lab
session, we presented the approach and gave a tool demonstration, followed in the next three
weeks by experimental sessions. Before the first of these sessions, we conducted the experiment
with a Ph.D. student from our group, who has extensive experience with Eclipse, to make sure
the tasks for the control group are doable in the allotted time. During these three weeks we
managed to obtain a stable form for the questionnaires, to incrementally fix the encountered
problems, and to come up with a reliable and scalable timing solution (i.e., before creating
the timing web application, we used third-party timing software, which did not give enough
configurability and scalability).

Unfortunately, although the design of this study was exactly the same with the one of the
experimental phase, we could not include these data points in our analysis, due to the changes
in the questionnaire’s form, which made the first drafts incompatible with the final version.

135 8.2 Operation

8.2.2 The Experimental Runs

At this point in time, we were confident enough to start our experiment. We had the luck to
benefit from the industry contacts of one of the members of our research group, who acted as
a mediator between us and two groups of industry practitioners from Bologna (Italy). Each
of these groups were meeting regularly to discuss various technology-related topics. Many of
the practitioners of these two groups were quite enthusiastic about our invitation to attend a
CodeCity presentation and volunteered to participate in our experiment.

Bologna I. The first group was composed of practitioners working for several companies from
and around Bologna, including Cineca1, an Italian consortium between several large Italian
universities (i.e., Bologna, Florence, Padova, and Venice), founded to support the transfer of
technology from academical research to industry. The subjects of this run were eight practition-
ers (i.e., developers, software engineers, and software architects) with 4–10 years of experience
in object-oriented software development.

During this experimental run, conducted on the Dec 21 2009, we encountered the first scal-
ability challenges, with its eight subjects and two experimenters. First, due to some OS-related
issues of the virtualization software, three of the participants could not import the virtual images
containing their treatments. We provided our only extra machine to one of them, but unfortu-
nately this subject eventually gave up the experiment, due to fatigue and the late time (i.e.,
the experimental session started at 10 PM). The two remaining subjects offered to perform the
experiment remotely and to send us the results later. Given the reliability of the persons and the
value of their data points (i.e., one of them was probably the most experienced of the group), we
were happy to accept their offer, despite the lack of “control”. In the end, we got the data points
from these experiment runs performed remotely. Moreover, the more experienced practitioner
performed the experiment two times, once with CodeCity and once with Ecl+Excl, but every
time with a different object system, to avoid any learning effect on the participant. Of the five
subjects that performed the experiment in controlled conditions, we had to exclude two from the
analysis because of the reasons detailed in Section 8.4.2. In spite of all these, the practitioners
reacted quite positively, found CodeCity useful, and were looking forward to use it on their own
systems.

Bologna II. The second group of software practitioners we conducted our experiment with was
part of the eXtreme Programming User Group (XPUG) in Bologna2. This rather heterogeneous
group included eight practitioners covering a wide range of roles at their working places (i.e.,
developer, consultant, architect, trainer, project manager, system manager/analyst, CTO) and
one student. The practitioners had 7–20 years of experience in object-oriented programming
and up to 10 years in Java programming. During this run, performed in the evening of Jan 14
2010, an interesting event took place.

After the presentation, almost the entire audience remained for the experiment, including
not only the enrolled volunteers we were counting on, but also other practitioners who wished
to assist as spectators. To our surprise, very likely in the vein of their group meetings, these spec-
tators soon formed small groups around a couple of the subjects, mostly working with CodeCity.
Although this unplanned situation was not part of the design of our controlled experiment (i.e.,
where the unit of the experiment was the individual), we did not wish to intervene and break the

1http://www.cineca.it
2http://bo-xpug.homeip.net

http://www.cineca.it
http://bo-xpug.homeip.net

136 8.2 Operation

ad-hoc dynamics of the group. Instead, we chose to observe these enthusiastic clusters perform-
ing pair-analysis and enjoying every moment, which was one of the most gratifying experiences
throughout the experiment.

Lugano I. In between the two experiment sessions in Bologna, we received in Lugano the visit
of a fellow post-doctoral researcher from Bern (Switzerland), who is also development leader in
a successful small company, and we performed an experiment session with him.

Lugano II & III. The third group of industry practitioners we approached was the Java User
Group (JUG) in Lugano3. First, we gave a presentation at the end of January 2010 and made
contact with potential participants. Later, we performed two experimental runs (i.e., on the
18th and the 25th of January 2010, respectively) with five practitioners in total, all Java experts
with 10 or more years of experience in both object-oriented and Java programming, occupying
various positions (i.e., architect, head of IT, developer, project manager).

In the week between the two experiment sessions in Lugano, we performed a tour-de-force
with stops in Antwerp (Belgium) and Bern (Switzerland).

Antwerp. First, we went to Antwerp, where we were hosted by Prof. Serge Demeyer and his
research group LORE4. We performed the experiment session during the Software Reengineering
course with both Master students enrolled in the course and Ph.D. students from our hosting
research group.

The first problem we had to deal with was that the low amount of RAM memory on the
workstations would not allow us to run the virtual machines. To solve this problem, during
the presentation session, one of our hosts copied the content of the virtual machines directly
on the workstations hard drives, which allowed running the tools on the host operating system
of the workstations. Later on, some of our subject signaled us another problem, this time with
the spreadsheet. While the data in the spreadsheet has been entered with a ’.’ separator for
decimals, in Belgium the correct separator is ’,’. Due to this incompatibility, some of the numeric
data was by default considered string and interfered with the sorting operations. The problem
was solved by the participants either by modifying the regional settings in their operating system
or by performing a search and replace operation. Most of the participants of this experimental
run were very well prepared with operating CodeCity, which showed that they have studied the
video tutorials in advance.

Bern. Only two days after Antwerp, we went to Bern, where we were hosted by Prof. Oscar
Nierstrasz and his research group SCG5. We performed the experiment session with mostly Ph.D.
students and a couple of Master students from the research group. During this experimental run
we did not encounter any problem.

Some of the participants had already seen CodeCity earlier, given that this was the research
group that built Moose, the reverse-engineering platform underlying CodeCity. With this occa-
sion, we asked the main developer behind Moose, who is currently working as a consultant and
who was not available for that afternoon, to perform the experiment remotely and to send us the
result. With this last data point, received three weeks later, we concluded our data collection.

3http://www.juglugano.ch
4http://lore.ua.ac.be
5http://scg.unibe.ch

http://www.juglugano.ch
http://lore.ua.ac.be
http://scg.unibe.ch

137 8.3 Data Collection and Marking

8.3 Data Collection and Marking

Using different mechanisms, we collected several types of information at different moments in
time: before, during the experiment, and after the experiment. We used blind marking for
grading the correctness of the participants’ solutions.

8.3.1 Personal Information

Before the experiment, we collected both personal information (e.g., gender, age, nationality)
used for statistics and professional information (e.g., current job position and experience levels
in a set of four skills identified as important for the experiment) used for blocking, by means of
an online questionnaire presented in Section A.1. The collected data allowed us to know at all
times the number of participants that we can rely on and to plan our experimental runs.

8.3.2 Timing Data

To measure the completion time, we asked the participants to log the start time, split times, and
end time. However, we learned that this measure alone did not represent a reliable solution, on
an occasion in which several participants, excited by the upcoming task, simply forgot to write
down the split times. Moreover, we needed to make sure that none of them would use more
than ten minutes per task, which was not something we could ask them to watch for.

To tackle this issue, we developed a timing web application in Smalltalk using the Seaside
framework6. During the experimental sessions, the timing application would run on the experi-
menter’s computer and project the current time (See Figure 8.2).

Figure 8.2. The output of our timing web application

6http://www.seaside.st

http://www.seaside.st

138 8.3 Data Collection and Marking

The displayed time was used as common reference by the participants whenever they were
required in the questionnaire to log the time. In addition, the application displayed the following
information for each participant: the name, the current task, and the maximum remaining time
for the current task.

The subjects were asked to notify the experimenter every time they log the time, so that the
experimenter could reset their personal timer by clicking on the hyperlink marked with the name
of the subject. Whenever a subject was unable to finish a task in the allotted time, the message
“overtime” would appear beside his name, which would make the experimenter ask the subject
to immediately pass to the next task, before resetting his timer.

Since most of the times the experimenter would only get to meet the subjects just before the
experiment, associating names with the persons by memory was not something we wanted to
rely on. Therefore, the experimenter would always bring with him a set of name tags which
would be placed near the corresponding subject and would thus help the experimenter identify
the subjects in a timely manner.

At the end of an experimental session, the experimenter would export the recorded times
of every participant. This apparently redundant measure allowed us to recover the times of
participants who either forgot to log the time, or logged it with insufficient details (i.e., only
hours and minutes) in spite of the clear guidelines.

Conversely, relying completely on the timing application would have also been suboptimal:
On one occasion, the timing application froze and the only timing information available for the
particular tasks the participants were solving were their own logs. On another isolated occasion,
a participant raised a hand to ask a question and the experimenter assumed that the participant
announced his move to the next task and reset his timer. In this case, the incident was noted
by the experimenter and the time was later recovered from the participant’s questionnaire. The
timing data we collected is presented in Table A.4 in Section A.4.

8.3.3 Correctness Data

The first step towards obtaining the correctness data points was to collect the solutions from our
subjects using the questionnaires presented in detail in Section A.1.

Then, to convert task solutions into quantitative information, we needed an oracle set, which
would provide both the superset of correct answers and the grading scheme for each task. How-
ever, given the complexity of our experiment’s design, one single oracle set was not enough. On
the one hand we needed a separate oracle for each of the two object systems. On the other
hand, we needed separate oracles for the solutions obtained by analyzing an object system with
different tools. This happens because for the first few tasks, the data resource of the control
groups is source code, while the one of the experimental groups is a FAMIX model of the object
system extracted from the source code, which in practice is never 100% accurate [JS03].

To obtain the four oracle sets, three experimenters independently solved the tasks with each
combination of treatments (i.e., on the assigned object system, using the assigned tool) and
came up with a grading scheme for the tasks. In addition, for the two experimental groups, they
computed the results using queries on the model of the object system, to make sure that they
did not miss any information caused by limitations of the visualization (e.g., occlusion, too small
buildings, etc.). Eventually, by merging the solutions and after discussing the divergences, we
obtained the four oracle sets, presented in Section A.4.

Finally, we needed to grade the solution of the subjects. To remove subjectivity when grading,
we employed blinding, which implies that, when grading a solution, the experimenter is not

139 8.4 Data Analysis

aware whether the subject that provided the solution has used an experimental treatment or a
control treatment. For this, one of the experimenters created four code names for the groups and
created a mapping between groups and code names, known only by him. Then he provided the
other two experimenters with the encoded data, along with the encoded corresponding oracle,
which allowed them to perform blind grading. In addition, the experimenter who encoded the
data performed his grading unblinded. Eventually, the experimenters discussed the differences
and converged to the final grading, presented in Table A.3 of Section A.4.

8.3.4 Participants’ Feedback

The questionnaire handout ends with a debriefing section, in which the participants are asked
to assess the level of difficulty for each task and the overall time pressure, to give us feedback
that could potentially help us improve the experiment, and optionally, to share with us any
interesting insights they encountered during the analysis.

8.4 Data Analysis

Before performing the hypothesis testing, we had a preliminary look at the collected data, pre-
sented in Section 8.4.1. In addition, we looked for outliers in our data, caused by exceptional
conditions, which could compromise the soundness of our hypothesis testing results. The out-
liers analysis is described in Section 8.4.2.

8.4.1 Preliminary Data Analysis

On a first look at the data, we observed an exceptional condition related to task A4.2. The data
points for this task showed that the experimental group was not able to solve this task, while the
control group was quite successful at solving it.

The experimental groups had an average correctness score of 0.06. Out of 22 solutions of the
experimental group only one subject achieved a perfect score for this task, while 19 achieved a
null score (see the individual scores in Table A.3), in spite of the fact that most of the participants
used up the entire ten minutes window allotted for the task (The data on completion time is
presented in Figure 8.9). It turned out that the only perfect score was provided by a participant
who had used CodeCity on several previous occasions. Moreover, as a central figure in the Moose
community, he had a deep knowledge of CodeCity’s underlying meta-model. Therefore, he was
the only one in the experimental group able to access CodeCity functionality beyond the features
presented during the tutorial sessions.

The control groups, on the other hand, had an average correctness score of 0.86, with 15
perfect scores and only 2 null scores. Moreover, the subjects of the control groups were able to
complete the task in roughly half the time, on average, allotted for the task.

This task had the highest discrepancy in correctness between control and experimental
groups and the participants also perceived its difficulty accordingly. According to the subjects’
feedback, most of the subjects in the experimental group described the task as “impossible”,
while the majority of subjects in the control group described it as “simple” (See Figure 8.3).

The reason for this is that we underestimated the knowledge of CodeCity required to perform
this task. Solving this task with CodeCity implies the use of its customization features, which
requires a deep knowledge of CodeCity and of the underlying Smalltalk programming language,

140 8.4 Data Analysis

Difficulty A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1 B2.2
trivial
simple
intermediate
difficult
impossible

7 7 5 1 2 0 2 4 8 1
7 10 12 11 7 0 2 11 9 4
3 4 3 5 11 3 6 5 3 6
4 0 1 4 1 8 9 1 1 8
0 0 0 0 0 10 2 0 0 2

0

3

6

9

12

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1 B2.2

Fr
eq

ue
nc

y

Task

trivial simple intermediate difficult impossible

Difficulty A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1 B2.2
trivial
simple
intermediate
difficult
impossible

3 1 1 1 9 4 1 5 1 0
6 10 8 2 7 9 7 6 6 0
8 8 10 7 3 4 5 8 10 6
2 0 0 5 0 2 4 0 1 8
0 0 0 4 0 0 2 0 1 5

0

3

6

9

12

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1 B2.2

Fr
eq

ue
nc

y

Task

trivial simple intermediate difficult impossible

tool = CodeCity

tool = Ecl+Excl

(a) Ecl+Excl

Difficulty A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1 B2.2
trivial
simple
intermediate
difficult
impossible

7 7 5 1 2 0 2 4 8 1
7 10 12 11 7 0 2 11 9 4
3 4 3 5 11 3 6 5 3 6
4 0 1 4 1 8 9 1 1 8
0 0 0 0 0 10 2 0 0 2

0

3

6

9

12

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1 B2.2

Fr
eq

ue
nc

y

Task

trivial simple intermediate difficult impossible

Difficulty A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1 B2.2
trivial
simple
intermediate
difficult
impossible

3 1 1 1 9 4 1 5 1 0
6 10 8 2 7 9 7 6 6 0
8 8 10 7 3 4 5 8 10 6
2 0 0 5 0 2 4 0 1 8
0 0 0 4 0 0 2 0 1 5

0

3

6

9

12

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1 B2.2

Fr
eq

ue
nc

y

Task

trivial simple intermediate difficult impossible

tool = CodeCity

tool = Ecl+Excl

(b) CodeCity

Figure 8.3. Histograms of perceived difficulty per task

as demonstrated by the only subject that managed to solve the task in the experimental group.
These were unreasonable requirements to expect from the experimental subjects. To eliminate
this unusually large discrepancy between the two groups, we excluded the task from the analysis.

8.4.2 Outlier Analysis

Before performing our statistical test, we also followed the suggestion of Wohlin et al. [WRH+00]
regarding the removal of outliers caused by exceptional conditions, in order to allow us to draw
valid conclusions from our data. During the first experiment run in Bologna, one of the par-
ticipants experienced serious performance slowdowns, due to the relative low performance of
the computer. One of the experimenters made a note about this fact during the experiment
and the participant himself complained about it in the debriefing questionnaire. Although this
participant was not the only one reporting performance slowdowns, he was by far the slowest
as measured by the completion time and, since this represented an exceptional condition, we
excluded his data from the analysis. In the same session, another participant got assigned to
a Ecl+Excl treatment by mistake, although he specified he did not have any experience with
Eclipse, but with another IDE. For this reason, this subject took more time in the first tasks than
the others, because of his complete lack of experience with Eclipse. Since we did not want to
compromise the analysis by disfavoring any of the groups (i.e., this data point provided the high-
est completion time and would have biased the analysis by disadvantaging one of the control
groups using Ecl+Excl), we excluded also this data point from the analysis.

During the Bologna II run, two participants had compatibility problems with the virtualiza-
tion software installed on their machines. After unsuccessfully trying for a while to make it work
on their machines, they eventually were given our two replacement machines. However, due to
these delays and to the tight schedule of the meeting room, we were not able to wait for them
to finish the last couple of tasks. We decided to also exclude these two data points from our
analysis, for we consider these to be conditions that are unlikely to happen again.

141 8.5 Subject Analysis

8.5 Subject Analysis

We first performed a pilot study with nine participants, followed by the experiment with 45
participants in several runs. After removing four data points during the outlier analysis, based
on the criteria presented Section 8.4.2, we were left with 41 subjects, described next.

All 41 subjects are male, and represent 7 countries: Italy (18 subjects), Belgium (12),
Switzerland (7), and Argentina, Canada, Germany, and Romania (1 participant each).

With respect to professional background, our aim was to involve both industry practitioners
and people in academia. We managed to obtain valid data for 41 subjects, of which 20 industry
practitioners (all advanced), and 21 from academia (of which 9 beginners and 12 advanced).
For each of the 4 treatment combinations, we have 8–12 data points.

For each of the four treatment combinations, we obtained a fair distribution of subjects within
the remaining three blocks, described in Table 8.1.

Treatment
T1 T2 T3 T4 Total

Block
Academia

Beginner 2 3 2 2 9
Advanced 2 2 3 5 12

Industry
Beginner 0 0 0 0 0
Advanced 6 7 3 4 20

Total 10 12 8 11 41

Table 8.1. Subject distribution

Moreover, the random assignments of treatment within blocks led to a fair distribution of the
subjects’ expertise among treatment combinations, as seen in Figure 8.4.

Experience Level
CodeCity

OOP Java Eclipse Reverse
Engineering

none
beginner
knowledgeable
advanced
expert

0 0 1 0
0 3 5 10
5 4 10 7
9 12 6 4
8 3 0 1 0

3

6

9

12

15

OOP Java Eclipse Reverse Engineering

Fr
eq

ue
nc

y

Expertise field

none
beginner
knowledgeable
advanced
expert

Experience Level
Eclipse+Excel

OOP Java Eclipse Reverse
Engineering

none
beginner
knowledgeable
advanced
expert

0 0 0 0
0 0 0 7
2 2 8 7

12 13 10 4
5 4 1 1 0

3

6

9

12

15

OOP Java Eclipse Reverse Engineering

Fr
eq

ue
nc

y

Expertise field

none
beginner
knowledgeable
advanced
expert

tool = CodeCity

tool = Ecl+Excl

(a) Ecl+Excl

Experience Level
CodeCity

OOP Java Eclipse Reverse
Engineering

none
beginner
knowledgeable
advanced
expert

0 0 1 0
0 3 5 10
5 4 10 7
9 12 6 4
8 3 0 1 0

3

6

9

12

15

OOP Java Eclipse Reverse Engineering

Fr
eq

ue
nc

y

Expertise field

none
beginner
knowledgeable
advanced
expert

Experience Level
Eclipse+Excel

OOP Java Eclipse Reverse
Engineering

none
beginner
knowledgeable
advanced
expert

0 0 0 0
0 0 0 7
2 2 8 7

12 13 10 4
5 4 1 1 0

3

6

9

12

15

OOP Java Eclipse Reverse Engineering

Fr
eq

ue
nc

y

Expertise field

none
beginner
knowledgeable
advanced
expert

tool = CodeCity

tool = Ecl+Excl

(b) CodeCity

Figure 8.4. Histograms of the subjects’ expertise level

142 8.5 Subject Analysis

In only a few cases we intervened in the assignment process. First, when one researcher
expressed his wish to be part of a control group, we allowed him to do so. This kept him
motivated and he proved to be the fastest subject from a control group. Second, in one of
the early experimental runs, we randomly assigned a subject with no Eclipse experience to a
Ecl+Excl group. Later, we had to exclude his data point from the analysis (See Section 8.4.2).
We learned our lesson from this and later assigned the few subjects with no experience with
Eclipse to one of the experimental groups in order not to penalize the control group. However,
even in these cases we did not assign them manually, but we randomized the other independent
variable, i.e., the object system size. As Figure 8.4 shows, while some of the subjects assigned
with CodeCity have little or no experience with Eclipse, every subject assigned with Ecl+Excl is
at least knowledgeable in using this IDE.

In spite of the fact that we completely lacked subjects in the industry-beginner group, our
rich set of data points and the design of our experiment allowed us to perform the complemen-
tary analyses presented in Section 8.6.7 (i.e., academia versus industry) and Section 8.6.6 (i.e.,
beginners versus advanced) .

The age of the participants covers the range 21–52, with an average of 29.8, a median of 29
and the interquartile range of 24–34. The box plots in Figure 8.5 show the age of our participants
in each of the three blocks: academia-beginner, academia-advanced, and industry-advanced.

Block

Industry
Advanced

Academia
Advanced

Academia
Beginner

A
ge

5 5

5 0

4 5

4 0

3 5

3 0

2 5

2 0

Page 19

Figure 8.5. The participants’ age for each of the three blocks

The age of the academia-beginners has a median of 22 and is fully enclosed in the 21–23
interval (representative for this category, covered almost exclusively by master students), with
the exception of one outlier at 28, representing a Ph.D. student with less experience in the
required skills.

The age of the academia-advanced group has a median of 26 and an interquartile range of
24–29.5 (also representative for the category, made almost entirely of Ph.D. students), with an
outlier representing a university professor.

Finally, the age of the advanced-industry group described by a minimum of 25, a maximum
of 42, a median of 34, and an interquartile range of 30–38, shows that industry population is
also well represented.

143 8.6 Experimental Results

8.6 Experimental Results

Based on the design of our experiment, i.e., a between-subjects design with two independent
variables, the suitable parametric test for hypothesis testing is a two-way ANalysis Of VAriance
(ANOVA). We performed this test for both correctness and completion time, using the SPSS7

statistical package. Before looking at the results of our analysis, we made sure that our data
fulfills the three assumptions of the ANOVA test:

1. Homogeneity of variances of the dependent variables. We tested our data for homogeneity
of both correctness and completion time, using Levene’s test [Lev60] and in both cases the
assumption was met.

2. Normality of the dependent variable across levels of the independent variables. We tested
the normality of correctness and completion time across the two levels of tool and object
system size using the Shapiro-Wilk test for normality [SW65], and also this assumption
was met in all cases.

3. Independence of observations. This assumption is implicitly met through the choice of a
between-subjects design.

We chose a significance level of .05 (α= .05), which corresponds to a 95% confidence interval.
Next, we present the results of the analysis, separately for each of the two dependent vari-

ables, i.e., correctness and completion time. Apart from the effect of the main factors, i.e., tool
and system size, the ANOVA test allows one to test the interaction between the two factors.

8.6.1 Analysis Results on Correctness

Interaction effect between tool and system size on correctness. First, it is important that
there is no interaction between the two factors, that could have affected the correctness. The
interaction effect of tool and system size on correctness was not significant, F(1, 37) = .034,
p = .862. According to the data, there is no evidence that the variation in correctness between
CodeCity and Ecl+Excl depends on the size of the system, which strengthens any observed effect
of the tool factor on the correctness.

The effect of tool on correctness. There was a significant main effect of the tool on the cor-
rectness of the solutions, F(1, 37) = 14.722, p = .001, indicating that the mean correctness
score for CodeCity users was significantly higher than the one for Ecl+Excl users, regardless of
the object system’s size.

Overall, there was an increase in correctness of 24.26% for CodeCity users (M = 5.968,
SD = 1.294) over Ecl+Excl users (M = 4.803, SD = 1.349). In the case of the medium size
system, there was a 23.27% increase in correctness of CodeCity users (M = 6.733, SD = .959)
over Ecl+Excl users (M = 5.462, SD = 1.147), while in the case of the large size system, the
increase in correctness was 29.62% for CodeCity users (M = 5.050, SD = 1.031) over Ecl+Excl
users (M = 3.896, SD = 1.085). The data shows that the increase in correctness for CodeCity
over Ecl+Excl was higher for the larger system.

7http://www.spss.com

http://www.spss.com

144 8.6 Experimental Results

The effect of system size on correctness. Although not the object of the experiment, an ex-
pected significant main effect of system size on the correctness of the solutions was observed,
F(1,37) = 26.453, p < .001, indicating that the correctness score was significantly higher for
users performing the analysis on the medium size system than for users performing the analysis
on the large size system, regardless of the tool they used to solve the tasks.

A detailed description of the statistics related to correctness is given in Table 8.2.

System size Medium Large Overall
Tool Ecl+Excl CodeCity Ecl+Excl CodeCity Ecl+Excl CodeCity

mean 5.462 6.733 3.896 5.050 4.803 5.968
difference +23.27% +29.62% +24.26%
min 3.50 5.00 2.27 3.00 2.27 3.00
max 6.50 8.00 6.00 6.30 6.50 8.00
median 5.800 6.585 3.900 5.100 4.430 6.065
stdev 1.147 .959 1.085 1.031 1.349 1.294

Table 8.2. Descriptive statistics related to correctness

The main effect of both tool and object system size on correctness, as well as the lack of
the effect of interaction between tool and object system size on correctness, are illustrated in
Figure 8.6(a), while the correctness box plots across treatments are shown in Figure 8.6(b).

Object system size
LargeMedium

C
or

re
ct

ne
ss

7 .00

6.00

5.00

4.00

3.00

2.00

1.00

0.00

5.05

6.73

3.90

5.46

CodeCity
Ecl+Exl
Tool

time

Page 4

(a) Means, overall

Object system size
LargeMedium

C
or

re
ct

ne
ss

8 .00

7.00

6.00

5.00

4.00

3.00

2.00

CodeCity
Ecl+Exl
Tool

EXAMINE VARIABLES=time BY Syssize BY Tool
 /PLOT=BOXPLOT
 /STATISTICS=NONE
 /NOTOTAL.

Explore

Page 7

(b) Box plots, across treatments

Figure 8.6. Graphs for correctness

Result Summary for Correctness. The analyzed data allows us to reject the first null hypothesis
H10 in favor of the alternative hypothesis H1, which states that the tool impacts the correctness
of the solutions to program comprehension tasks. Overall, CodeCity enabled an increase in
correctness of 24.26% over Ecl+Excl. This result is statistically significant.

145 8.6 Experimental Results

8.6.2 Analysis Results on Completion Time

Interaction effect between tool and system size on completion time. Similarly, it is important
that there is no interaction between the two factors, that could have affected the completion
time. The interaction effect of tool and system size on completion time was not significant,
F(1,37) = .057, p = .813. According to the data, there is no evidence that the variation in
completion time between CodeCity and Ecl+Excl depends on the size of the system, which
strengthens any observed effect of the tool factor on the completion time.

The effect of tool on completion time. There was a significant main effect of the tool on
the completion time F(1,37) = 4.392, p = .043, indicating that the mean completion time,
expressed in seconds, was significantly lower for CodeCity users than for Ecl+Excl users.

Overall, there was a decrease in completion time of 12.01% for CodeCity users (M = 36.117,
SD = 6.910) over Ecl+Excl users (M = 41.048, SD = 9.174). In the case of the medium
size system, there was a 14.51% decrease in completion time of CodeCity users (M = 33.178,
SD = 5.545) over Ecl+Excl users (M = 38.809, SD = 6.789), while in the case of the large
size system, there is a 10.16% decrease in completion time for CodeCity users (M = 39.644,
SD = 6.963) over Ecl+Excl users (M = 44.128, SD = 11.483). The data shows that the time
decrease for CodeCity users over Ecl+Excl users is only slightly lower in the case of the larger
system compared to the time decrease obtained on the medium sized one.

The effect of system size on completion time. Although not the object of the experiment, an
expected significant main effect of system size on the completion time was observed, F(1, 37) =
5.962, p = .020, indicating that the completion time was significantly lower for the users per-
forming the analysis on the medium size system than for users performing the analysis on the
large size system.

A detailed description of the statistics related to completion time is given in Table 8.3.

System size Medium Large Overall
Tool Ecl+Excl CodeCity Ecl+Excl CodeCity Ecl+Excl CodeCity

mean 38.809 33.178 44.128 39.644 41.048 36.117
difference -14.51% -10.16% -12.01%
min 31.92 24.67 22.83 27.08 22.83 24.67
max 53.08 39.50 55.92 48.55 55.92 48.55
median 38.000 35.575 48.260 40.610 40.080 36.125
stdev 6.789 5.545 11.483 6.963 9.174 6.910

Table 8.3. Descriptive statistics related to completion time, in minutes

The main effect of both tool and object system size on completion time, as well as the lack of
the effect of interaction between tool and object system size on completion time, are illustrated in
Figure 8.7(a), while the completion time box plots across treatments are shown in Figure 8.7(b).

Result Summary for Completion Time. The analyzed data allows us to reject the second null
hypothesis H20 in favor of the alternative hypothesis H2, which states that the tool impacts the

146 8.6 Experimental Results

Object system size
LargeMedium

C
om

pl
et

io
n

tim
e

50.00

40.00

30.00

20.00

10.00

0.00

39.64

33.18

44.13

38.81

CodeCity
Ecl+Exl
Tool

EXAMINE VARIABLES=correctness BY Syssize
 /PLOT=BOXPLOT
 /STATISTICS=NONE
 /NOTOTAL
 /ID=Tool.

EXAMINE VARIABLES=correctness BY Syssize BY Tool
 /PLOT=BOXPLOT
 /STATISTICS=NONE
 /NOTOTAL.

Explore

Page 5

(a) Means, overall

Object system size
LargeMedium

C
om

pl
et

io
n

tim
e

60.00

50.00

40.00

30.00

20.00

CodeCity
Ecl+Exl
Tool

EXAMINE VARIABLES=correctness BY Experience BY Tool
 /PLOT=BOXPLOT
 /STATISTICS=NONE
 /NOTOTAL.

Explore

Page 9

(b) Box plots, across treatment combinations

Figure 8.7. Graphs for completion time, in minutes

time required to complete program comprehension tasks. Overall, CodeCity enabled a reduction
of the completion time of 12.01% over Ecl+Excl. This result is also significant.

8.6.3 Task Analysis

One of the research goals of our experiment was to identify the types of tasks for which CodeCity
provides an advantage over Ecl+Excl. To this end, we compared for each task described in
Section 7.4.4 the performances (i.e., in terms of correctness and time) of the two levels of
the tool and reasoned about the potential causes behind the differences. See Figure 8.8 and
Figure 8.9 for a graphical overview supporting our task analysis.

A1 - Identifying the convention used to organize unit tests with respect to the tested classes.
While Ecl+Excl performed constantly, CodeCity clearly outperformed it on the medium system
and underperformed it on the large system. The difference in performance is partially owed
to the lack of unit tests in the large system, in spite of the existence of a number of classes
named *Test. Only a small number of CodeCity users examined closer the inheritance relations;
the majority relied only on the name. The completion time is slightly better for the CodeCity
subjects, because they could look at the overview of the system, while in the case of Eclipse, the
subjects needed to scroll through the package structure, which rarely fits into one screen.

A2.1 - Determining the spread of a term among the classes. CodeCity performed marginally
better than Eclipse in both correctness and completion time. In CodeCity once the search for the
term is completed, finding any kind of spread is straightforward with the overview. In Eclipse,
the search for a term produces a list of the containing classes, including the packages where
these are defined. Given that in this case the list showed many packages belonging to different
hierarchies, a dispersed spread is a safe guess.

147 8.6 Experimental Results

Correctness A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1
T1: CodeCity, large
T2: CodeCity, medium
T3: Ecl+Excl, large
T4: Ecl+Excl, medium

0.10 0.86 0.75 0.54 1.00 0.00 0.10 0.90 0.80
1.00 0.96 0.98 0.62 1.00 0.11 0.33 0.83 1.00
0.50 0.78 0.46 0.04 0.75 0.67 0.00 0.75 0.63
0.55 0.95 0.62 0.26 1.00 1.00 0.17 1.00 0.91

0

0.20

0.40

0.60

0.80

1.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

1.00

0.83

0.33

0.11

1.00

0.62

0.980.961.00
0.91

1.00

0.17

1.001.00

0.26

0.62

0.95

0.55

A
ve

ra
ge

 c
or

re
ct

ne
ss

 (p
oi

nt
s)

Task

tool = Ecl+Excl tool = CodeCity

0

0.20

0.40

0.60

0.80

1.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

0.80
0.90

0.10
0

1.00

0.54

0.75
0.86

0.10

0.63

0.75

0

0.67
0.75

0.04

0.46

0.78

0.50

A
ve

ra
ge

 c
or

re
ct

ne
ss

 (p
oi

nt
s)

Task

tool = Ecl+Excl tool = CodeCity

Time A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1
T1: CodeCity, large
T2: CodeCity, medium
T3: Ecl+Excl, large
T4: Ecl+Excl, medium

7.22 5.49 2.95 7.66 5.63 9.35 6.86 2.14 1.69
4.82 3.53 4.76 6.32 4.41 8.74 4.94 1.88 2.52
7.29 6.51 3.56 7.95 5.14 7.33 7.13 2.65 3.91
5.39 4.34 5.54 7.75 4.30 4.50 6.23 2.10 3.14

0

2.00

4.00

6.00

8.00

10.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

2.52
1.88

4.94

8.74

4.41

6.32

4.76

3.53

4.82

3.14
2.10

6.23

4.504.30

7.75

5.54

4.34
5.39

A
ve

ra
ge

 t
im

e
(m

in
ut

es
)

Task

tool = Ecl+Excl tool = CodeCity

0

2.00

4.00

6.00

8.00

10.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

1.692.14

6.86

9.35

5.63

7.66

2.95

5.49

7.22

3.91

2.65

7.137.33

5.14

7.95

3.56

6.51
7.29

A
ve

ra
ge

 t
im

e
(m

in
ut

es
)

Task

tool = Ecl+Excl tool = CodeCity

system size = large

system size = medium system size = medium

system size = large

(a) System size = medium

Correctness A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1
T1: CodeCity, large
T2: CodeCity, medium
T3: Ecl+Excl, large
T4: Ecl+Excl, medium

0.10 0.86 0.75 0.54 1.00 0.00 0.10 0.90 0.80
1.00 0.96 0.98 0.62 1.00 0.11 0.33 0.83 1.00
0.50 0.78 0.46 0.04 0.75 0.67 0.00 0.75 0.63
0.55 0.95 0.62 0.26 1.00 1.00 0.17 1.00 0.91

0

0.20

0.40

0.60

0.80

1.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

1.00

0.83

0.33

0.11

1.00

0.62

0.980.961.00
0.91

1.00

0.17

1.001.00

0.26

0.62

0.95

0.55

A
ve

ra
ge

 c
or

re
ct

ne
ss

 (p
oi

nt
s)

Task

tool = Ecl+Excl tool = CodeCity

0

0.20

0.40

0.60

0.80

1.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

0.80
0.90

0.10
0

1.00

0.54

0.75
0.86

0.10

0.63

0.75

0

0.67
0.75

0.04

0.46

0.78

0.50

A
ve

ra
ge

 c
or

re
ct

ne
ss

 (p
oi

nt
s)

Task

tool = Ecl+Excl tool = CodeCity

Time A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1
T1: CodeCity, large
T2: CodeCity, medium
T3: Ecl+Excl, large
T4: Ecl+Excl, medium

7.22 5.49 2.95 7.66 5.63 9.35 6.86 2.14 1.69
4.82 3.53 4.76 6.32 4.41 8.74 4.94 1.88 2.52
7.29 6.51 3.56 7.95 5.14 7.33 7.13 2.65 3.91
5.39 4.34 5.54 7.75 4.30 4.50 6.23 2.10 3.14

0

2.00

4.00

6.00

8.00

10.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

2.52
1.88

4.94

8.74

4.41

6.32

4.76

3.53

4.82

3.14
2.10

6.23

4.504.30

7.75

5.54

4.34
5.39

A
ve

ra
ge

 t
im

e
(m

in
ut

es
)

Task

tool = Ecl+Excl tool = CodeCity

0

2.00

4.00

6.00

8.00

10.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

1.692.14

6.86

9.35

5.63

7.66

2.95

5.49

7.22

3.91

2.65

7.137.33

5.14

7.95

3.56

6.51
7.29

A
ve

ra
ge

 t
im

e
(m

in
ut

es
)

Task

tool = Ecl+Excl tool = CodeCity

system size = large

system size = medium system size = medium

system size = large

(b) System size = large

Figure 8.8. Average correctness per task

A2.2 - Determining the spread of a term among the classes. Although the task is similar to the
previous, the results in correctness are quite different: CodeCity outperformed Eclipse by 29–
38%. The list of classes and packages in Eclipse, without the context provided by an overview
(i.e., How many other packages are there in the system?) deceived some of the subjects into
believing that the spread of the term is dispersed, while the CodeCity users took advantage of
the “big picture” and correctly identified the localized spread of this term.

A3 - Estimating impact. CodeCity outperformed Eclipse in correctness by 40–50%, while for
completion time CodeCity was again slightly faster than Eclipse. Finding the caller classes of a
given class in Eclipse, as opposed to CodeCity, is not straightforward and the result list provides
no overview.

A4.1 - Identifying the classes with the highest number of methods. In terms of correctness,
CodeCity was on a par with Excel for the medium size and slightly better than it for the large
size. In terms of completion time, the spreadsheet was slightly faster than CodeCity. We learned
that, while CodeCity is faster at building an approximate overview of systems, a spreadsheet is
faster at finding precise answers in large data sets.

A4.2 - Identifying the classes with the highest ratio of lines of code per method. This task
was discarded from the analysis based on the impartiality criteria detailed in Section 8.4.1. We

148 8.6 Experimental Results

Correctness A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1
T1: CodeCity, large
T2: CodeCity, medium
T3: Ecl+Excl, large
T4: Ecl+Excl, medium

0.10 0.86 0.75 0.54 1.00 0.00 0.10 0.90 0.80
1.00 0.96 0.98 0.62 1.00 0.11 0.33 0.83 1.00
0.50 0.78 0.46 0.04 0.75 0.67 0.00 0.75 0.63
0.55 0.95 0.62 0.26 1.00 1.00 0.17 1.00 0.91

0

0.20

0.40

0.60

0.80

1.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

1.00

0.83

0.33

0.11

1.00

0.62

0.980.961.00
0.91

1.00

0.17

1.001.00

0.26

0.62

0.95

0.55

A
ve

ra
ge

 c
or

re
ct

ne
ss

 (p
oi

nt
s)

Task

tool = Ecl+Excl tool = CodeCity

0

0.20

0.40

0.60

0.80

1.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

0.80
0.90

0.10
0

1.00

0.54

0.75
0.86

0.10

0.63

0.75

0

0.67
0.75

0.04

0.46

0.78

0.50

A
ve

ra
ge

 c
or

re
ct

ne
ss

 (p
oi

nt
s)

Task

tool = Ecl+Excl tool = CodeCity

Time A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1
T1: CodeCity, large
T2: CodeCity, medium
T3: Ecl+Excl, large
T4: Ecl+Excl, medium

7.22 5.49 2.95 7.66 5.63 9.35 6.86 2.14 1.69
4.82 3.53 4.76 6.32 4.41 8.74 4.94 1.88 2.52
7.29 6.51 3.56 7.95 5.14 7.33 7.13 2.65 3.91
5.39 4.34 5.54 7.75 4.30 4.50 6.23 2.10 3.14

0

2.00

4.00

6.00

8.00

10.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

2.52
1.88

4.94

8.74

4.41

6.32

4.76

3.53

4.82

3.14
2.10

6.23

4.504.30

7.75

5.54

4.34
5.39

A
ve

ra
ge

 t
im

e
(m

in
ut

es
)

Task

tool = Ecl+Excl tool = CodeCity

0

2.00

4.00

6.00

8.00

10.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

1.692.14

6.86

9.35

5.63

7.66

2.95

5.49

7.22

3.91

2.65

7.137.33

5.14

7.95

3.56

6.51
7.29

A
ve

ra
ge

 t
im

e
(m

in
ut

es
)

Task

tool = Ecl+Excl tool = CodeCity

system size = large

system size = medium system size = medium

system size = large

(a) System size = medium

Correctness A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1
T1: CodeCity, large
T2: CodeCity, medium
T3: Ecl+Excl, large
T4: Ecl+Excl, medium

0.10 0.86 0.75 0.54 1.00 0.00 0.10 0.90 0.80
1.00 0.96 0.98 0.62 1.00 0.11 0.33 0.83 1.00
0.50 0.78 0.46 0.04 0.75 0.67 0.00 0.75 0.63
0.55 0.95 0.62 0.26 1.00 1.00 0.17 1.00 0.91

0

0.20

0.40

0.60

0.80

1.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

1.00

0.83

0.33

0.11

1.00

0.62

0.980.961.00
0.91

1.00

0.17

1.001.00

0.26

0.62

0.95

0.55

A
ve

ra
ge

 c
or

re
ct

ne
ss

 (p
oi

nt
s)

Task

tool = Ecl+Excl tool = CodeCity

0

0.20

0.40

0.60

0.80

1.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

0.80
0.90

0.10
0

1.00

0.54

0.75
0.86

0.10

0.63

0.75

0

0.67
0.75

0.04

0.46

0.78

0.50

A
ve

ra
ge

 c
or

re
ct

ne
ss

 (p
oi

nt
s)

Task

tool = Ecl+Excl tool = CodeCity

Time A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1
T1: CodeCity, large
T2: CodeCity, medium
T3: Ecl+Excl, large
T4: Ecl+Excl, medium

7.22 5.49 2.95 7.66 5.63 9.35 6.86 2.14 1.69
4.82 3.53 4.76 6.32 4.41 8.74 4.94 1.88 2.52
7.29 6.51 3.56 7.95 5.14 7.33 7.13 2.65 3.91
5.39 4.34 5.54 7.75 4.30 4.50 6.23 2.10 3.14

0

2.00

4.00

6.00

8.00

10.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

2.52
1.88

4.94

8.74

4.41

6.32

4.76

3.53

4.82

3.14
2.10

6.23

4.504.30

7.75

5.54

4.34
5.39

A
ve

ra
ge

 t
im

e
(m

in
ut

es
)

Task

tool = Ecl+Excl tool = CodeCity

0

2.00

4.00

6.00

8.00

10.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

1.692.14

6.86

9.35

5.63

7.66

2.95

5.49

7.22

3.91

2.65

7.137.33

5.14

7.95

3.56

6.51
7.29

A
ve

ra
ge

 t
im

e
(m

in
ut

es
)

Task

tool = Ecl+Excl tool = CodeCity

system size = large

system size = medium system size = medium

system size = large

(b) System size = large

Figure 8.9. Average completion time per task

failed to provide the subjects in the experimental groups the knowledge required to solve this
task. The task could not be solved visually, because this would have implied performing an imag-
inary division between two metrics, i.e., one depicted by size and another by color. Although
CodeCity provides a mechanism which allows advanced users to define complex mappings pro-
grammatically, by writing Smalltalk code snippets (i.e., this is what subject IE13 did to get his
perfect score), we did not cover this feature in our tutorial.

B1.1 - Identifying the package with the highest percentage of god classes. In both correctness
and completion time, CodeCity slightly outperformed Excel on this task. The low correctness
scores of both tools shows that none of them is good enough to solve the problem alone, although
they would complement each other: CodeCity lacks Excel’s precision, while Excel would benefit
from CodeCity’s overview abilities.

B1.2 - Identifying the god class with the highest number of methods. Both tools obtain very
good correctness scores, i.e., over 75% in average. Excel is slightly better than CodeCity in
the case of the medium size system, while CodeCity outperforms Excel in the case of the large
system. While CodeCity’s performance is consistent across systems with different sizes, Excel’s
support is slightly more error-prone in the case of a larger system, which implies the handling of
more data.

149 8.6 Experimental Results

B2.1 - Identifying the dominant class-level design. In terms of correctness, CodeCity out-
performs Excel regardless of the system size. The aggregated information found in CodeCity’s
disharmony map was less error-prone than counting rows in Excel. In terms of correctness,
CodeCity slightly outperforms Excel and the difference is probably owed to the scrolling required
for solving the task with Excel.

As expected, at focused tasks such as A4.1, A4.2, or B1.1 CodeCity does not perform bet-
ter than the baseline, because Excel is extremely efficient in finding precise answers (e.g., the
largest, the top N , etc.). However, it is surprising that, in most of these tasks, CodeCity man-
aged to be on a par with the baseline. At tasks that benefit from an overview, such as A2.1,
A3, or B1.2, CodeCity constantly outperformed Ecl+Excl, in particular in terms of correctness,
mainly because the overview allowed for a more confident and quicker answer in the case of the
experimental group compared to the control group.

8.6.4 Qualitative Analysis

Task B2.2, which dealt with a high-level design problem assessment, is the only qualitative task.
The task was excluded from the quantitative analysis upfront, given the difficulty of modeling a
right answer, let alone to grade the participants’ solutions.The qualitative task was the last one
to solve in the experiment, to avoid any side-effects it could place (i.e., fatigue, frustration) on
the quantitative tasks. The goal we had in mind when designing the task was to compare the
solutions obtained with CodeCity to the ones obtained with the baseline and see whether we can
spot some insights exclusively supported by our visual approach.

Although we provided a set of guidance questions for the subjects that needed a starting
point (See Section 7.4), we encouraged the subjects to share with us the most interesting or
unexpected observations regarding the design problems, in this open-ended task.

Ecl+Excl

As expected, many of the subjects working with Ecl+Excl, limited by the lack of overview, could
not provide any insights. Some subjects used the guiding questions as a starting point, and were
able to address them partially, as the following examples illustrate:

• “Many packages suffer only of data class and also of god class.” (IA01)

• “The design problems do not affect many of the classes. Many god classes are also brain
classes. It’s hard to get a clear overview by using the spreadsheet. So I don’t have any
interesting observation to report.” (AB07)

• “data classes: 65, god classes: 60, brain classes: 9, on total: 1208.” (AA14)

• “Relatively few classes are affected: 64 data classes, 60 god classes, 9 brain classes, out of
1208 classes.” (AB09)

• “The majority of the problems seems concentrated in a few packages. Package findbugs.detect
has a large number of god classes and data classes. 15% of the classes in this package have
one of the two problems (30 classes).” (IA20)

• “Only a few classes are affected by any design problem (10%). The design problems affect
the system in specific packages; some parts of the system do not show design problems.

150 8.6 Experimental Results

There are packages without any design problems. Could not find a package of which all
classes are affected.” (AA06)

Only very few of the subjects in an experimental group managed to build some insights,
either by using advanced functionality of the spreadsheet or by using experience to overcome
the limitations of the tool:

• “Most of the god class and data class problems appear in the findbugs and findbugs.detect

packages. Probably the detection algorithms are complex and procedural.” (AA12)

• “High correlation of God and Brain class, low correlation of Data class.” (AA07) Obser-
vation. The participant enriched his observations with graphs, probably synthesizing the
ones he produced with Excel.

• “There are many design problems. I can’t really say how big the problems are, because I
don’t know the purpose of the specific class or if the class is in USE. detect seems to be a
HOTSPOT for possible defect search.” (IA19)

CodeCity

Similarly, many of the subjects in the experimental groups followed the guiding questions. How-
ever, they were able to address most of the questions:

• “Almost all the packages are affected by design problems. The only package that seems to
be well built is org.gudy.azureus2.plugins. The god class and brain class problems are
very spread.” (IA01)

• “brain classes: 9, god classes: 20, data classes: 67. Most problems seem to occur in the
GUI classes, which is not really a surprise. The detect and workflow classes are also
affected, these packages seem to be core packages. There’s only 1 brain class located in
the detect core package. The following packages are not affected: jaif, xml, bcel, bcp.”
(AA04)

• “About 10% of the classes have design problems. Data classes are the most frequent prob-
lem, but those classes are not very big. Packages not affected by this are findbugs.detect,
findbugs.workflow, and findbugs.classfile.analysis. I think the god classes are a bigger
problem, 62 god classes is a lot, and most packages are affected.” (AB05)

• “The biggest problem according to the method are god classes and brain classes. There
are 110 god classes and 54 brain classes. The problems affect most of the system, but not
all. Notably, the packages org.gudy.azureus2 and org.bouncy.castle aren’t affected.
Of the infected packages, none really stands out (I think, not sure). The design problem is
near ubiquitous!” (AA01)

• “Brain classes are only 16 and mostly limited to a few packages, and only 1 or 2 per
package. God classes: 72; also spread out. More god+brain in az1 than az2; in az2 in
peer.impl and disk.impl. Packages org.gudy.az2.plugins and edu.harvard... are
mostly unaffected. org.bouncycastle has mostly only data classes” (AA02)

• “The biggest part of the classes (>90%) are not affected by any design problem. The most
relevant design problem is the huge percentage of data classes (256). There are packages
in the system affected by only data class problem.” (IA06)

151 8.6 Experimental Results

Many of the subjects in the experimental groups provided interesting insights into the ana-
lyzed system’s design problems. The different approaches to gain the insights (i.e., semantics,
dependencies), often revealed within the answers, lead to a wide range of points of view:

• “Data classes are far more apparent than god/brain classes. There’s about 256 data
classes, ca. 55 brain classes and 111 god classes. Most data classes can be found in
the ui.swt.views.stats package, which isn’t very surprising, considering the nature of
stats. However, the number of classes using these data suppliers is quite limited (15). The
org.gudy.core3.peer and org.gudy.core3.download packages contain a high concen-
tration of god classes. The packages org.gudy.azureus2.platform and org.plugins.*
seem to be mostly free of problem classes.” (AB02)

• “The three types of problems are distributed in all the packages of the project. In particular,
data classes are uniformly distributed, while the god classes, having a presence, are being
identified as the largest classes of the main packages. There are no packages with all
the classes affected by problems, but there are packages with no design problems. As an
observation about the project, I observed that the largest and most problematic classes are
those which implement the GUI, but also the access to the DB and command-line, hence
the parts of the system interfaced with other external software.” (IA07)

• “MainBugFrame and MainFrame are obviously god classes that would be worth refactoring.
The detect package seems to be a data package, but it’s ok. DBCloud seems odd, could not
understand what it does based on outgoing/incoming calls. anttask could be improved.
BugInstance has lots of incoming calls, and is yet a god class which can introduce fragility
in the design.” (AA04)

• “As the name says, package detect is the central package with most classes. It also con-
centrates the most design problems and it manages to feature all of these: GodClasses,
BrainClasses, DataClasses. The most problematic BrainClass is DBCloud. The rest 7 Brain-
Classes are either in the UI, which is partly expected, or in the detect package, which
should define mostly standalone detection components. The most interesting DataClass is
ba.vna.ValueNumber because it is accessed by many classes also from the outside of the
ba.vna package. It looks like the most important packages feature one Brain Class. Only
small/marginal packages are unaffected by design problems.” (IA13)

Quite as expected, the lack of the overview in the control group is strongly felt. The answers
in the experimental groups are visibly richer and contain more insights, while the ones in the
control groups, with few exceptions, only prove that having the raw data is far from “seeing”.

8.6.5 Debriefing Questionnaire

In the following we briefly summarize the formal and informal feedback obtained during the
debriefing.

Four subjects in the experimental group complained about the fact that they were not shown
how to access the advanced mapping customization features in CodeCity, which caused their
frustration in front of the task A4.2, which was one failure of our design. One subject in the ex-
perimental group suggested a shortcomings of the tool, i.e., “small buildings are barely visible”.

Eight subjects in the control group complained about the fact that the pre-experiment assess-
ment did not contain a question about the skills with Excel. We discuss this threat to validity in

152 8.6 Experimental Results

Section 8.7. Two other subjects in the control group said they hated the search functionality in
Eclipse.

Two subjects praised the setup and the organization of the experimental runs. One subject
found the experiment very stimulating. Several industry developers expressed their interest in
using CodeCity in their line of work after the experiment.

Two participants, one in the experimental group and one in the control group, expressed their
concern about the fact that Eclipse was not an appropriate baseline for our high-level analysis
and suggested Sonar or a UML tool as alternative. One other participant wondered about the
practical relevance of the results.

A subject in the experimental group suggested another debriefing question: “What have you
learned about the system?”. He shared with us that: “I gave the stats, but learned 0”.

One subject in the experimental group had several suggestions: “The experiment does not
evaluate CodeCity in the presence of deeper knowledge about the system. However, I believe it
can prove useful in the more advanced steps of analysis, because a map becomes more useful as
we get more comfortable with the larger parts[...]”

8.6.6 Experience Level

We compared the correctness and time scores across the two levels of experience, i.e., beginner
and advanced. The data shows that CodeCity outperforms Ecl+Excl in both correctness and
completion time, regardless of the experience level, as shown in Figure 8.10.

Experience
AdvancedBeginner

C
or
re
ct
ne
ss

8 .00

7.00

6.00

5.00

4.00

3.00

2.00

CodeCity
Ecl+Exl
Tool

EXAMINE VARIABLES=time BY Experience BY Tool
 /PLOT=BOXPLOT
 /STATISTICS=NONE
 /NOTOTAL.

Explore

Page 11

(a) Correctness

Experience
AdvancedBeginner

C
om

pl
et

io
n

tim
e

60.00

50.00

40.00

30.00

20.00

CodeCity
Ecl+Exl
Tool

EXAMINE VARIABLES=correctness BY Background BY Tool
 /PLOT=BOXPLOT
 /STATISTICS=NONE
 /NOTOTAL.

Explore

Page 13

(b) Completion time

Figure 8.10. Performance comparison between experience levels: Beginner vs Advanced

An interesting observation is that CodeCity users have much less variability in performance
than the users of Ecl+Excl, which shows a more consistent performance of CodeCity compared
to Ecl+Excl. This can be assessed visually, as the boxes of the box plots for CodeCity are much
smaller than the one for the baseline.

153 8.6 Experimental Results

The correctness data shows that the difference with which CodeCity outperforms Ecl+Excl
is slightly higher for beginners than for advanced users. Moreover, among CodeCity users, the
beginners slightly outperform the advanced. One possible explanation is that our only beginners
were the students from Antwerp, which have used the video tutorials prior to the experiment
and were therefore very well prepared in using CodeCity.

The time data shows that the difference with which CodeCity outperforms Ecl+Excl is higher
for beginners than for advanced. While among CodeCity users the time performance is almost
constant across experience levels, among Ecl+Excl users the advanced outperform the beginners.

These results are an indication of the ease of use and the usability of CodeCity, which enables
its users to obtain better results than with conventional, non-visual approaches, even without
extensive training.

8.6.7 Background

We also compared the correctness and time scores across the two levels of background, i.e.,
academia and industry. The performance for CodeCity is better in both correctness and comple-
tion time, regardless of the background, as shown in Figure 8.11.

Background
IndustryAcademia

C
or
re
ct
ne
ss

8 .00

7.00

6.00

5.00

4.00

3.00

2.00
CodeCity
Ecl+Exl
Tool

EXAMINE VARIABLES=time BY Background BY Tool
 /PLOT=BOXPLOT
 /STATISTICS=NONE
 /NOTOTAL.

Explore

Page 15

(a) Correctness

Background
IndustryAcademia

C
om

pl
et

io
n

tim
e

60.00

50.00

40.00

30.00

20.00

CodeCity
Ecl+Exl
Tool

EXAMINE VARIABLES=Age BY Block
 /PLOT=BOXPLOT
 /STATISTICS=NONE
 /NOTOTAL.

Explore

Page 17

(b) Completion time

Figure 8.11. Performance comparison between background: Academia vs Industry

Again, the box plots of CodeCity users (in particular the ones from academia) have shorter
boxes than the ones of Ecl+Excl, which show a more consistent performance of CodeCity, com-
pared to Ecl+Excl.

In terms of correctness, the difference with which CodeCity outperforms Ecl+Excl is only
slightly higher for academia than for industry.

In terms of completion time, the difference between CodeCity and Ecl+Excl is minimal in
the case of academia and more consistent for industry practitioners.

The results show that in terms of correctness the benefits of CodeCity over the non-visual
approach are visible for both academics and industry practitioners, while in terms of completion
time CodeCity provides a boost in particular to industry practitioners.

154 8.7 Threats to Validity

8.7 Threats to Validity

In this section, we discuss the threats to our experiment’s validity. For experiments that vali-
date applied research, the categories are—in decreasing order of importance: internal, external,
construct and conclusion validity [WRH+00].

8.7.1 Internal Validity

The internal validity refers to uncontrolled factors that may influence the effect of the treatments
on the dependent variables.

Subjects. Several threats to internal validity refer to the subjects. One threat is that subjects
may not have been competent enough. To reduce this threat, before the experiment we analyzed
the subjects’ competence in several relevant fields and made sure that they had at least a minimal
knowledge of object-oriented programming, Java, and for the subjects assigned with Ecl+Excl,
of Eclipse. A second threat was that the expertise of the subjects may not have been fairly
distributed across the control and experimental groups. We mitigate this threat by using blocking
and randomization when assigning treatments to subjects. A third internal threat is that the
subjects may not have been properly motivated. This treatment is diminished by the fact that all
the subjects’ volunteered to participate in the experiment, by filling out the online questionnaire.

Tasks. First, the choice of tasks may have been biased to the advantage of CodeCity. We alle-
viate this threat by presenting the tasks in context, with rationale and targeted users. Moreover,
we tried to include tasks which clearly do not advantage CodeCity (e.g., any task which focuses
on precision, rather than on locality), which is visible from the per-task results and from the
perceived difficulty of the subjects in the experimental groups. Another threat is that the tasks
may have been too difficult or that not enough time was allotted for them. To alleviate this
threat we performed a pilot study and we collected feedback about the perceived task difficulty
and time pressure. As a consequence, we excluded one task which was extremely difficult for
one group and trivial for the other. In addition, this task was the only one that showed a ceiling
effect (i.e., most subjects used up the entire time) for the affected group.

Baseline. The baseline was composed of two different tools (i.e., Eclipse and Excel), while
CodeCity is one tool, and this might have affected the performance of the control group. We
attenuate this threat by designing the task such that no task requires the use of both tools.
Moreover, all the tasks that were to be solved with Eclipse were grouped in the first half of the
experiment, while all the tasks that were to be solved with Excel were grouped in the second
half of the experiment. This allowed us to minimize the effect of switching between tools to only
one time, between tasks A3 and A4.1. The good scores obtained by the Ecl+Excl subjects on
task A4.1, in both correctness and time, do not provide any indication of such a negative effect.

Data differences. CodeCity relies on FAMIX models of the systems, while Eclipse works with
the source code. These data differences might have an effect on the results of the two groups and
this represents a threat to internal validity. To alleviate it, we accurately produced the answer
model based on the available artifact, i.e., source code or FAMIX model, and made sure that the
slight differences between the two data sources do not lead to incompatible answers.

155 8.7 Threats to Validity

Session differences. There were seven sessions and the differences among them may have
influenced the result. To mitigate this threat, we performed four different sessions with nine
subjects in total during a pre-experiment pilot phase and obtained a stable and reliable experi-
mental setup (i.e., instrumentation, questionnaires, experimental kit, logistics). Even so, there
were some inconsistencies among sessions. For instance the fact that some of the participants
in the Bologna XPUG paired to perform the experiment was an unexpected factor, but watch-
ing them in a real work-like situation was more valuable for us than imposing the experiment’s
constraints at all costs. Moreover, there were four industry practitioners who performed the
experiment remotely, controlled merely by their conscience. Given the value of data points from
these practitioners and the reliability of these particular persons (i.e., one of the experimenters
knew them personally), we trusted them without reservation.

Training. The fact that we only trained the subjects with the experimental treatment may have
influenced the result of the experiment. We afforded to do so because we chose a strong baseline
tool set, composed of two state-of-the-practice tools, and we made sure that the control subjects
had a minimum of knowledge with Eclipse. Although many of the Ecl+Excl subjects remarked
the fact that we should have included Excel among the assessed competencies, they scored well
on the tasks with Excel, due to the rather simple operations (i.e., sorting, arithmetic operations
between two columns) required to solve the tasks. As many of the CodeCity subjects observed,
one hour of demonstration of a new and mostly unknown tool will never leverage years of use,
even if sparse, of popular tools such as Eclipse or Excel.

Paper support. From our experience and from the feedback of some of our subjects, we have
indications that the fact that the answers had to be written on paper may have influenced the
results. The influence of this threat is not changing the result, but it reduces the effect of the
tool, since for some of the tasks (i.e., the one requiring writing down some package or class
names) the writing part takes longer than the operations required to reach the solution. If this
effect does exist, it affects all subjects regardless of the tool treatment. Removing it would only
increase the difference with which CodeCity outperformed Ecl+Excl.

8.7.2 External Validity

The external validity refers to the generalizability of the experiment’s results.

Subjects. One threat to external validity is the representativeness of the subjects for the tar-
geted population. To mitigate this threat, we categorized our subjects in four categories along
two axes (i.e., background and experience level) and strived to cover all the categories. We ob-
tained a balanced mix of academics (both beginners and advanced) and industry practitioners
(only advanced). The lack of industry beginners may have had an influence on the results. How-
ever, our analysis of the performances across experience levels indicates that CodeCity supported
beginner users well, who were better than the advanced at outperforming Ecl+Excl. Therefore,
we believe that the presence of industry beginners would only strengthen these results.

Tasks. Another external validity threat is the representativeness of the tasks, i.e., that the tasks
may not reflect real reverse engineering situations. We could not match our analysis with any
of the existing frameworks, because they do not support design problem assessment and, in

156 8.7 Threats to Validity

addition, they are either too low-level (e.g., the questions asked by practitioners during a pro-
gramming change task by Sillito et al. [SMDV06]), or biased towards dynamic analysis tools
(e.g., the framework of comprehension activities by Pacione et al. [PRW04]). To alleviate this
threat, we complemented our tasks with usage scenarios and targeted users.

Object systems. The representativeness of the object systems is another threat. In spite of
the increased complexity in organizing the experiment and analyzing the data, introduced by
a second independent variable, we chose to perform the experiment with two different object
systems. Besides our interest in analyzing the effect of the object system size on the performance
of CodeCity’s users, we also applied the lessons learned from Quante’s experiment [Qua08] that
the results obtained on a single object system are not reliable. The two object systems we
opted for are well-known open-source systems of different, realistic sizes (see Table 7.2) and
of orthogonal application domains. It is not known how appropriate these systems are for the
reverse-engineering tasks we designed, but the variation in the solutions to the same task shows
that the systems are quite different.

Experimenter effect. One of the experimenters is also the author of the approach and of the
tool. This may have influenced any subjective aspect of the experiment. Although, we tried
to mitigate this threat in several ways (e.g., objective oracle set, blinded marking), we cannot
exclude all the possible influences of this factor on the results of the experiment.

8.7.3 Construct Validity

The construct validity concerns generalizing the result of the experiment to the concepts or
theories behind the experiment.

Hypothesis guessing. Another threat to internal validity is that the subjects were aware that
the author of CodeCity was among the experimenters and that the purpose of the experiment
was to compare the performance of CodeCity with a baseline. To alleviate this threat, we clearly
explained to them before each experiment session that it was the tool’s support that was being
measured and not the subjects’ performances and we asked them to do their best in solving the
tasks, regardless of the tool they have been assigned with. An indication that this was clearly
understood by the participants is that the absolute best completion time and one of the best
correctness scores in the case of the large object system were obtained by subjects in control
groups (i.e., AA07 and AA05, respectively).

8.7.4 Conclusion Validity

The conclusion validity refers to the ability to draw the correct conclusions about the relation
between the treatment and the experiment’s outcome.

Fishing for results. Searching for a specific result is a threat to conclusion validity, for it may
influence the result. In this context, a threat is that task solutions may not have been graded
correctly. To mitigate this threat, three experimenters independently built a model of the answers
and a grading scheme and then reached consensus. Moreover, the grading was performed in a
similar manner and two of the three experimenters graded the solutions blinded, i.e., without
knowing the treatments (e.g., tool) used to obtain the solutions.

157 8.8 Summary

8.8 Summary

In this part, we addressed our claim that the city metaphor enables the creation of efficient
software visualizations. To demonstrate this claim, we designed and performed an extensive
experiment which spanned over six months of time. We managed to engage large samples of
our target population, which covered both academia and industry, and included both beginner
and advanced participants.

By performing various analyses of the data we gathered from our controlled experiment, we
learned several facts about our approach. The main result of our experiment is the fact that our
approach outperforms in both correctness and completion time the combination of two state-of-
the-practice exploration tools. This result is statistically significant, which is a solid indication
that, at least for the program comprehension and design quality assessment, our city metaphor
enables the creation of efficient software visualizations.

Apart from an aggregated analysis, we performed a detailed analysis of each task, which
provided a number of insights on the type of tasks that our approach best supports. Unsurpris-
ingly, in the case of focused tasks, i.e., tasks which require very precise answers, CodeCity did
not perform better than Excel. However, for most of these tasks, our approach managed to be
on a par with the baseline, which is an unexpected result. As for the tasks that benefit from an
overview of the system, CodeCity constantly outperformed the baseline, in particular in terms of
correctness. The qualitative task confirmed our view that our code city visualizations present the
data such that it provides an advantage over conventional presentations, such as a spreadsheet.

The last type of analysis we performed was to try to find evidence on whether the benefits
of our approach are received differently, depending on the background or experience level. An
interesting find was that the beginners performed more consistently in terms of correctness than
the advanced, which shows our approach does not have a steep learning curve and supports the
user in obtaining good results even without much training. Another interesting insight was that
in terms of completion time, our approach provides a boost in particular to the industry practi-
tioners. This is a very positive result in the context of a potential adoption of our visualization
approach in industry.

We believe that researchers interested in evaluating their tools should benefit from our expe-
rience. Therefore, we provided the complete raw and processed data (i.e., the pre-experiment
questionnaire, the experiment questionnaires, solution oracles and grading systems, correction
scores and measured completion time) to allow reviewers to evaluate the experiment more thor-
oughly and fellow researchers replicate the experiment or start from its design, as a base for
their own experiment.

After successfully addressing both claims of our thesis, we look back at the “big picture” of
our research and reflect on the meaning and consequences of our findings, in Part IV.

158 8.8 Summary

Part IV

Epilogue

159

Chapter 9

Conclusions

We built our thesis starting from the observation that, in spite of the relatively many instances of
the city metaphor in software visualization, there is no evidence on the value of this metaphor
for reverse engineering. The research goal that guided our work was finding out whether the
city metaphor is valuable for reverse engineering through software visualization.

At the beginning of this dissertation we claimed that the city metaphor is versatile and that
it enables the building of efficient visualizations for reverse engineering. From that point on, we
presented evidence which supports our claim. At this point, we take a step back and reflect on
the results of our research in the context of the thesis.

9.1 Reflections

In the following, we discuss the achievements and limitations of our work in the light of the
thesis, and share a number of insights related to people and tools.

9.1.1 Versatility

The first claim of the thesis was that the city metaphor is versatile. To demonstrate this aspect
of the metaphor, we chose to apply it in three different contexts related to reverse engineering,
i.e., program comprehension, software evolution analysis, and design quality assessment. For
each of the three application contexts, we devised a number of visualizations aimed at revealing
certain aspects of the software systems which are important for that particular context.

With the visualizations in place, we illustrated our approach by means of case studies. For
each case study, we found interesting insights, i.e., a form of subjective evidence that our ap-
proach works. In the case of the evolution analysis application, several key developers of the
software systems we used as case studies confirmed the correctness of our findings regarding the
history of their systems.

The approach we built around the city metaphor has several limitations.
First, our search for meaningful visual representations for the various software artifacts was

to a certain extent restricted by the central metaphor. Regardless of how appealing an idea
was for a visualization technique, it needed to fit the city metaphor. For instance, although the
bundled edges make a promising visualization technique, they do not fit well the city metaphor.

161

162 9.1 Reflections

Second, due to our choice of layout and building orientation (i.e., buildings are always paral-
lel), the code cities in our visualizations are more similar to the New York’s Manhattan borough
rather than to any other city. Moreover, one may argue that the artifacts in a code city (e.g.,
buildings, districts) are merely schematic representations of real city artifacts. We chose simplic-
ity over accuracy to allow for a simple visual language which facilitates the interpretation of the
visualized data.

9.1.2 Efficiency

Our second claim in this dissertation is that the city metaphor enables the creation of efficient
software visualizations. The analysis of the data obtained from the controlled experiment pro-
vided evidence that, for the two application contexts that we evaluated, our approach overall
outperformed the baseline, in terms of both correctness of solutions and task completion time.

However, because of the complexity of such a controlled experiment, there are many threats
to validity. Therefore, these results should be interpreted with moderation. It is possible that
under different circumstances (e.g., including a third system, having female subjects), the results
would have not been the same.

Moreover, the application to software evolution of the city metaphor was not evaluated. We
regret our inability of finding a baseline for this, because we consider this to be one of the
strongest application contexts of our approach.

9.1.3 People & Tools

From our experience with the users of CodeCity we have evidence that learning the language
of the metaphor is fairly easy. Adopting the simple conventions allows the users to look at, and
reason about, software in a different way than the traditional one (i.e., source code and UML
diagrams). There is a genuine curiosity most people manifest when they first see a visualization
of CodeCity: “I would really like to see my system visualized as a code city”.

After discussing our approach with different developers, we realized that the slow pace of
tool adoption in industry is not caused by the people, but rather by the organizations: Most
of the practitioners we discussed with were quite enthusiastic about our approach and some of
them were looking forward to using CodeCity to complement their working activities.

Moreover, the feedback we received from CodeCity users is encouraging. An experienced
industry practitioner shared with us his experience with CodeCity: “ [. . .] I loaded my music
composition application into CodeCity. See the attached picture. Interestingly, the resulting
image looks like expected. To a large extent, it matches the image I always had in my head. [. . .]
It feels rewarding and satisfying to see a beautiful visualization of the work that took so many
years to accomplish.” The fact that our approach produced a visualization of a software system
which matched the developer’s mental model is a valuable insight.

We strived to build a highly configurable and flexible tool, which would allow us to extend it
to unforeseen directions. This touches again the topic of research intertwined with tool building.
Had we built a badly designed tool or had we not invested the time and effort into the design
and implementation of the tool, we would have not been able to extend the metaphor’s imple-
mentation so easily. Moreover, the language-independent meta-model that we rely on allowed
us to apply our approach on systems written in different programming languages and opened a
larger user base for CodeCity.

163 9.2 Contributions

We invested significant time to make CodeCity robust, to optimize it for scalability, and to
take it beyond the “research prototype” status. The robustness, scalability, and usability of the
tool were all important for both the outcome of the experiment and for allowing us to chose
from a large number of case studies.

The availability of the tool allowed industry practitioners to try CodeCity out before enrolling
as subjects in the experiment. After experimenting with CodeCity, many of them believed that it
could help them in their daily work and this was enough motivation for them to want to learn
how to use it.

9.2 Contributions

After demonstrating our thesis, we reflect on the contributions of the work presented in this
dissertation:

The definition of a versatile city metaphor for software visualization. We defined an initial
metaphor for program comprehension and iteratively enriched it to support two new ap-
plications, i.e., software evolution analysis and design quality assessment. With a similar
amount of effort as the one we invested for each new application, we believe we could
further extend our city metaphor to other facets of software.

The application of the city metaphor to program comprehension. We first applied our
approach based on the city metaphor in the context of program comprehension and ob-
tained a rough “big picture” of our case study system. Moreover, our approach allowed us
to detect a number of system hotspots. We used these outliers as starting points for more
in-depth analyses that led us to interesting insights about the system.

The application of the city metaphor to software evolution. We described three visualization
techniques we devised for the software evolution applications. The visualizations enabled
us to acquire valuable insight about the system unattainable outside the evolutionary con-
text and complementary to the insights gained in the context of program comprehension.
For this application, we consulted the developers of the case study systems, who confirmed
our findings.

The application of the city metaphor to design quality assessment. We described a software
visualization technique inspired from disease maps, called disharmony map. Disharmony
maps enabled us to focus on the design problems, while maintaining the general con-
text, i.e., the overview of the system. Due to the precise information obtained by using
detection strategies, our approach is less prone to false positive and false negatives than
traditional visualization approaches, which rely on spotting outliers in terms of simple
software metrics.

The implementation of a tool which supports our city metaphor. We implemented CodeCity,
a tool that supports all three applications of our city metaphor. The effort we invested into
the design and implementation of the tool payed off from several perspectives: it demon-
strated the value of our approach, it allowed us to confidently perform an experiment in
front of experimented industry practitioners and academics, and it enabled us to illus-
trate our applications by means of case studies. Moreover, the scalability of CodeCity, and
implicitly of our approach, allowed us to visualize large software systems of up to three
million lines of code.

164 9.3 Future Work

The empirical validation of our approach through a replicable controlled experiment.
Although our intention has been to empirically evaluate our city metaphor in all three
application contexts, we only managed to evaluate two, i.e., program comprehension and
software design quality assessment. For reasons described in Section 7.4.2, we dropped the
evaluation of the software evolution analysis application context. However, we conducted
an extensive experiment, which spanned over six months of time. We were able to engage
large samples of our target population, which covered both academia and industry, and
included both beginner and advanced participants. The design of our experiment, which
followed a set of guidelines extracted from the body of literature, enabled us to collect rich
data, which allowed us to perform a number of interesting analyses. The most important
results of our controlled experiment was that our approach outperformed in terms of both
correctness of the solution and task completion time the state-of-the-practice. The result
is statistically significant. Moreover, by providing the entire experimental data set, we
ensured the replicability of our experiment.

9.3 Future Work

One part of our metaphor which may be considered insufficiently covered is the representation
of relations, which is an open challenge in software visualization. We found a visual representa-
tion for relations able to reduce complexity, in particular when combined with an opportunistic
approach. The problem of this representation in the context of our research is that it does not
fit the city metaphor. Therefore, a potential future work research direction is finding city-related
representations for the relations, such as the plumbing system, or the street infrastructure. We
briefly explored the possibility of mapping relations to streets, but the resulting layout algorithm
turned out to be too computationally expensive.

The layout could also be improved by taking dependencies into account when placing the
buildings, i.e., the more connected two software entities are, the closer their city representation.
The advantage of such a spring-based layout is that it optimizes the length of the edges: Strongly
coupled buildings have shorter edges.

Due to the difficulties in building a fair baseline, we gave up the evaluation of the software
evolution application context of our city metaphor. Given that we consider it one of the strong
points of our approach, we believe that such an evaluation would complement well the results
obtained from our controlled experiment. Moreover, since we have already evaluated the other
two application contexts, it would probably be easy to find a state-of-the-practice tool for soft-
ware system evolution analysis.

Another part at which our approach is deficient is the lack of integration with IDEs and other
tools that make up the workflow of practitioners.

An future work direction in this context would be integrating CodeCity with a popular IDE
such as Eclipse. A first step towards this goal is Biaggi’s Citylyzer [Bia08], a port of CodeCity as
an Eclipse plugin.

A second direction we envision is including our approach in the versioning workflow. An
example scenario is the following: Whenever a system has a new release or version, the source
code of the system is parsed and the model is passed to CodeCity, which produces a canonical
visualization of the system. An alternative to performing a diff between two revisions would be
observing the evolution of the system’s code city.

165 9.4 Final Thoughts

9.4 Final Thoughts

Through the work presented in this dissertation, we demonstrated the usefulness of the city
metaphor in building software visualizations that support reverse engineering. Although “soft-
ware systems as cities” is just one way of visualizing software systems, it illustrates well the
advantages of software visualization.

Although many of the practitioners we talked to acknowledge the shortage of tools that
support a holistic perception of software systems, visualization is still underrepresented in the
current software development workflows. In this context, objective results obtained from empir-
ical evaluations may increase the credibility of software visualization, which should be deemed
not as a replacement of the state of the practice in industry, but rather as a complement.

Our vision is to see the day in which software developers will use visualization, while coding,
to stay aware of the way their systems evolve. Some might argue that this will never happen.
We believe it is just a question of time.

166 9.4 Final Thoughts

Part V

Appendix

167

Appendix A

Experimental Data

In this chapter, we present all the details about our experiment, complementary to the ones
presented in Part III, which make our experiment repeatable: questionnaires, oracle sets, and
the entire experimental data set collected from our subjects.

A.1 Pre-Experiment Questionnaire

Using Google Docs1, we designed an online questionnaire that served both to provide an easily
accessible platform for the volunteers to enroll and to allow capturing the personal information
that we used to assign the subjects to blocks and treatments (See Figure A.1).

Figure A.1. The enrollment online questionnaire we used for collecting personal information

1http://docs.google.com

169

http://docs.google.com

170 A.2 Experiment Questionnaire

A.2 Experiment Questionnaire

The content of the questionnaires, with all the variations due to the different treatment com-
binations, is presented in the following. Their actual form and presentation is exemplified in
Figure A.2 and Figure A.3, which show the questionnaire for the treatment combination T1.

A.2.1 Introduction

The aim of this experiment is to compare tool efficiency in supporting software practitioners
analyzing medium to large-scale software systems.

You will use <toolset>2 to analyze <object system name>3, a <object system description>4

written in Java.

You are given maximum 100 minutes for solving 10 tasks (10 minutes per task).

You are asked:

• not to consult any other participant during the experiment;

• to perform the tasks in the specified order;

• to write down the current time each time before starting to read a task and once after
completing all the tasks;

• to announce the experimenter that you are moving on to another task, in order to reset
your 10-minutes-per-task allocated timer;

• not to return to earlier tasks, because it affects the timing;

• for each task, to fill in the required information. In the case of multiple choices check the
most appropriate answer and provide additional information, if requested.

The experiment is concluded with a short debriefing questionnaire.

Thank you for participating in this experiment!
Richard Wettel, Michele Lanza, Romain Robbes

A.2.2 Tasks

A1 [Structural Understanding]

Task
Locate all the unit test classes of the system (typically called *Test in Java) and identify
the convention (or lack of convention) used by the system’s developers to organize the
unit tests.

2CodeCity for treatments 1 and 2, Eclipse + Excel with CSV data concerning metrics and design problems for treatments
3 and 4

3Azureus for treatments 1 and 3, FindBugs for treatments 2 and 4
4a BitTorrent client for treatments 1 and 3, a bug searching tool based on static analysis for treatments 2 and 4

171 A.2 Experiment Questionnaire

Solution (multiple choice)

◦ Centralized. There is a single package hierarchy, whose root package is (write down
the full name of the package): . . . 5.

◦ Dispersed. The test classes are located in the same package as the tested classes.

◦ Hybrid. Some test classes are defined in the central test package hierarchy, with the
root in package (provide the full name of the package) . . . , while some test classes
are defined elsewhere. An example of such a test class is: . . . , defined in package
(write down the full name):

◦ Other. Detail your answer:

A2.1 [Concept Location]

Task
Using the<feature name>6 (and any other) feature in<toolset>, look for the term<term
1>7 in the names of the classes and their attributes and methods, and describe the spread
of these classes in the system.

Solution (multiple choice)

◦ Localized. All the classes related to this term are located in one or two packages.
Provide the full name of these packages:

◦ Dispersed. Many packages in the system contain classes related to the given term.
Indicated 5 packages (or all of them if there are less than 5) writing their full names:
. . . .

A2.2 [Concept Location]

Task
Using the <feature name> (and any other) feature in <toolset>, look for the term <term
2>8 in the names of the classes and their attributes and methods, and describe the spread
of these classes in the system9.

Solution (multiple choice)

◦ Localized. All the classes related to this term are located in one or two packages.
Provide the full name of these packages:

◦ Dispersed. Many packages in the system contain classes related to the given term.
Indicated 5 packages (or all of them if there are less than 5) writing their full names:

5The placeholders presented here are not proportional in length to the variable-size blanks used in the actual ques-
tionnaires.

6search by term for treatments 1 and 2, Java search for treatments 3 and 4
7skin for treatments 1 and 3, annotate for treatments 2 and 4
8tracker for treatments 1 and 3, infinite for treatments 2 and 4
9The task is similar to the previous one, but the terms are chosen such that they cover the opposite solution.

172 A.2 Experiment Questionnaire

. . . .

A3 [Impact Analysis]

Task
Evaluate the change impact of class <class A3>10, by considering its caller classes (classes
invoking any of its methods). The assessment is done in terms of both intensity (number
of potentially affected classes) and dispersion (how these classes are distributed in the
package structure).

Solution (multiple choice)

◦ Unique location. There are . . . classes potentially affected by a change in the given
class, all defined in a single package, whose full name is

◦ Global. Most of the system’s packages (more than half) contain at least one of the . .
. classes that would be potentially affected by a change in the given class.

◦ Multiple locations. There are . . . classes potentially affected by a change in the
given class, defined in several packages, but less than half of the system’s packages.
Indicate up to 5 packages containing the most of these classes:

A4.1 [Metric Analysis]

Task
Find the 3 classes with the highest number of methods in the system.

Solution (ranking)
The classes with the highest number of methods are (in descending order):

1. class . . . defined in package (full name) . . . , containing . . . methods.

2. class . . . defined in package (full name) . . . , containing . . . methods.

3. class . . . defined in package (full name) . . . , containing . . . methods.

A4.2 [Metric Analysis]

Task
Find the 3 classes with the highest average number of lines of code per method in the
system. The value of this metric is computed as:

lines of code per method= number of lines of code
number of methods

Solution (ranking)
The classes with the highest average number of lines of code per methods are (in descend-
ing order):

10org.gudy.azureus2.ui.swt.Utils for treatments 1 and 3, edu.umd.cs.findbugs.OpcodeStack for treatments 2
and 4

173 A.2 Experiment Questionnaire

1. class . . . defined in package (full name) . . . , has an average of . . . lines of code
per method.

2. class . . . defined in package (full name) . . . , has an average of . . . lines of code
per method.

3. class . . . defined in package (full name) . . . , has an average of . . . lines of code
per method.

B1.1 [God Class Analysis]

Task
Identify the package with the highest percentage of god classes in the system. Write down
the full name of the package, the number of god classes in this package, and the total
number of classes in the package.

Solution
The highest percentage of god classes in the system is found in package . . . , which
contains . . . god classes out of . . . classes.

B1.2 [God Class Analysis]

Task
Identify the god class containing the largest number of methods in the system.

Solution
The god class with the largest number of methods in the system is class . . . , defined in
package (write down the full name) . . . , which contains . . . methods.

B2.1 [Design Problem Assessment]

Task
Based on the design problem information available in <toolset>11, identify the dominant
class-level design problem (i.e., the design problem that affects the largest number of
classes) in the system.

Solution (multiple choice)
The dominant class-level design problem is

◦ Brain Class, which affects a number of . . . classes.

◦ Data Class, which affects a number of . . . classes.

◦ God Class, which affects a number of . . . classes.

11CodeCity for treatments 1 and 2, the spreadsheet for treatments 3 and 4

174 A.3 Debriefing Questionnaire

B2.2 [Design Problem Assessment]

Task
Write an overview of the class-level design problems in the system. Are the design prob-
lems affecting many of the classes? Are the different design problems affecting the system
in an equal measure? Are there packages of the system affected exclusively by only one
design problem? Are there packages entirely unaffected by any design problem? Or pack-
ages with all classes affected? Describe your most interesting or unexpected observations
about the design problems.

Solution (free form)
. . .

A.3 Debriefing Questionnaire

Time pressure. On a scale from 1 to 5, how did you feel about the time pressure? Please write
in the box below the answer that matches your opinion the most:
. . .
The time pressure scale corresponds to:

1. Too much time pressure. I could not cope with the tasks, regardless of their difficulty.

2. Fair amount of pressure. I could certainly have done better with more time.

3. Not so much time pressure. I had to hurry a bit, but it was OK.

4. Very little time pressure. I felt quite comfortable with the time given.

5. No time pressure at all.

Difficulty. Regardless of the given time, how difficult would you rate this task? Please mark
the appropriate difficulty for each of the tasks12:
. . .

Comments. Enter comments and/or suggestions you may have about the experiment, which
could help us improve it.
. . .

Miscellaneous. It is possible that you have discovered some interesting insights about the sys-
tem during the experiment and that the format of the answer did not allow you to write it, or
that it was not related to the question. In this case, please share with us what you discovered
(optional).
. . .

12The scale for difficulty was, in decreasing order: impossible, difficult, intermediate, simple, trivial

175 A.4 Task Solution Oracles

A.4 Task Solution Oracles

The four oracles we used to grade the task solutions of our subjects are presented in the follow-
ing.

A.4.1 T1: Azureus, analyzed with CodeCity

A1

Either
There are no unit tests in the system [1pt],
or
Centralized in a single package hierarchy whose root is in org.gudy.azureus2.ui.console.multiuser
[1pt]. Since there is only one test class (i.e., TestUserManager), if they don’t give the full correct
answer, the answer is completely wrong.

A2.1

Dispersed [0pts otherwise]
in the following (max. 5) packages [0.2pts for each]:

• com.aelitis.azureus.core

• com.aelitis.azureus.core.content

• com.aelitis.azureus.core.download

• com.aelitis.azureus.core.impl

• com.aelitis.azureus.core.lws

• com.aelitis.azureus.core.peermanager.peerdb

• com.aelitis.azureus.core.stats

• com.aelitis.azureus.core.torrent

• com.aelitis.azureus.plugins.net.buddy

• com.aelitis.azureus.plugins.net.buddy.swt

• com.aelitis.azureus.plugins.net.buddy.tracker

• com.aelitis.azureus.plugins.removerules

• com.aelitis.azureus.plugins.sharing.hoster

• com.aelitis.azureus.plugins.startstoprules.defaultplugin

• com.aelitis.azureus.plugins.tracker.dht

• com.aelitis.azureus.plugins.tracker.local

• com.aelitis.azureus.plugins.tracker.peerauth

176 A.4 Task Solution Oracles

• com.aelitis.azureus.ui.swt.content.columns

• com.aelitis.azureus.ui.swt.shells.main

• com.aelitis.azureus.util

• org.gudy.azureus2.core3.download

• org.gudy.azureus2.core3.download.impl

• org.gudy.azureus2.core3.global

• org.gudy.azureus2.core3.global.impl

• org.gudy.azureus2.core3.ipfilter.impl.tests

• org.gudy.azureus2.core3.logging

• org.gudy.azureus2.core3.peer

• org.gudy.azureus2.core3.peer.impl.control

• org.gudy.azureus2.core3.tracker.client

• org.gudy.azureus2.core3.tracker.client.impl

• org.gudy.azureus2.core3.tracker.client.impl.bt

• org.gudy.azureus2.core3.tracker.client.impl.dht

• org.gudy.azureus2.core3.tracker.host

• org.gudy.azureus2.core3.tracker.host.impl

• org.gudy.azureus2.core3.tracker.protocol.udp

• org.gudy.azureus2.core3.tracker.server

• org.gudy.azureus2.core3.tracker.server.impl

• org.gudy.azureus2.core3.tracker.server.impl.dht

• org.gudy.azureus2.core3.tracker.server.impl.tcp

• org.gudy.azureus2.core3.tracker.server.impl.udp

• org.gudy.azureus2.core3.tracker.util

• org.gudy.azureus2.core3.util

• org.gudy.azureus2.plugins

• org.gudy.azureus2.plugins.download

• org.gudy.azureus2.plugins.torrent

• org.gudy.azureus2.plugins.tracker

177 A.4 Task Solution Oracles

• org.gudy.azureus2.plugins.tracker.web

• org.gudy.azureus2.plugins.ui.config

• org.gudy.azureus2.plugins.ui.tables

• org.gudy.azureus2.pluginsimpl.local

• org.gudy.azureus2.pluginsimpl.local.download

• org.gudy.azureus2.pluginsimpl.local.torrent

• org.gudy.azureus2.pluginsimpl.local.tracker

• org.gudy.azureus2.pluginsimpl.remote

• org.gudy.azureus2.pluginsimpl.remote.download

• org.gudy.azureus2.pluginsimpl.remote.tracker

• org.gudy.azureus2.ui.console.commands

• org.gudy.azureus2.ui.swt

• org.gudy.azureus2.ui.swt.mainwindow

• org.gudy.azureus2.ui.swt.maketorrent

• org.gudy.azureus2.ui.swt.views

• org.gudy.azureus2.ui.swt.views.configsections

• org.gudy.azureus2.ui.swt.views.stats

• org.gudy.azureus2.ui.swt.views.tableitems.mytorrents

• org.gudy.azureus2.ui.swt.views.tableitems.mytracker

• org.gudy.azureus2.ui.webplugin

A2.2

Either
Localized in:

• com.aelitis.azureus.ui.skin [0.5pts]

• com.aelitis.azureus.ui.swt [0.5pts]

or
Localized in com.aelitis.azureus.ui [1pt].

178 A.4 Task Solution Oracles

A3

Multiple locations.
There are 211/212 classes [0.5pts]
defined in the following (max. 5) packages [0.1 for each]:
either aggregated

• com.aelitis.azureus.core.metasearch.impl

• com.aelitis.azureus.plugins.net.buddy.swt

• com.aelitis.azureus.ui.swt

• org.gudy.azureus2.plugins.ui.tables

• org.gudy.azureus2.ui

– org.gudy.azureus2.ui.common.util

– org.gudy.azureus2.ui.swt

– org.gudy.azureus2.ui.systray

or detailed

• com.aelitis.azureus.core.metasearch.impl

• com.aelitis.azureus.plugins.net.buddy.swt

• com.aelitis.azureus.ui.swt

• com.aelitis.azureus.ui.swt.browser

• com.aelitis.azureus.ui.swt.browser.listener

• com.aelitis.azureus.ui.swt.browser.msg

• com.aelitis.azureus.ui.swt.columns.torrent

• com.aelitis.azureus.ui.swt.columns.vuzeactivity

• com.aelitis.azureus.ui.swt.content

• com.aelitis.azureus.ui.swt.content.columns

• com.aelitis.azureus.ui.swt.devices

• com.aelitis.azureus.ui.swt.devices.add

• com.aelitis.azureus.ui.swt.devices.columns

• com.aelitis.azureus.ui.swt.imageloader

• com.aelitis.azureus.ui.swt.shells

• com.aelitis.azureus.ui.swt.shells.main

• com.aelitis.azureus.ui.swt.shells.uiswitcher

179 A.4 Task Solution Oracles

• com.aelitis.azureus.ui.swt.skin

• com.aelitis.azureus.ui.swt.subscriptions

• com.aelitis.azureus.ui.swt.uiupdater

• com.aelitis.azureus.ui.swt.utils

• com.aelitis.azureus.ui.swt.views

• com.aelitis.azureus.ui.swt.views.skin

• com.aelitis.azureus.ui.swt.views.skin.sidebar

• org.gudy.azureus2.plugins.ui.tables

• org.gudy.azureus2.ui.common.util

• org.gudy.azureus2.ui.swt

• org.gudy.azureus2.ui.swt.associations

• org.gudy.azureus2.ui.swt.auth

• org.gudy.azureus2.ui.swt.components

• org.gudy.azureus2.ui.swt.components.graphics

• org.gudy.azureus2.ui.swt.components.shell

• org.gudy.azureus2.ui.swt.config

• org.gudy.azureus2.ui.swt.config.generic

• org.gudy.azureus2.ui.swt.donations

• org.gudy.azureus2.ui.swt.help

• org.gudy.azureus2.ui.swt.ipchecker

• org.gudy.azureus2.ui.swt.mainwindow

• org.gudy.azureus2.ui.swt.maketorrent

• org.gudy.azureus2.ui.swt.nat

• org.gudy.azureus2.ui.swt.networks

• org.gudy.azureus2.ui.swt.osx

• org.gudy.azureus2.ui.swt.pluginsimpl

• org.gudy.azureus2.ui.swt.progress

• org.gudy.azureus2.ui.swt.sharing.progress

• org.gudy.azureus2.ui.swt.shells

180 A.4 Task Solution Oracles

• org.gudy.azureus2.ui.swt.speedtest

• org.gudy.azureus2.ui.swt.update

• org.gudy.azureus2.ui.swt.views

• org.gudy.azureus2.ui.swt.views.clientstats

• org.gudy.azureus2.ui.swt.views.columnsetup

• org.gudy.azureus2.ui.swt.views.configsections

• org.gudy.azureus2.ui.swt.views.file

• org.gudy.azureus2.ui.swt.views.peer

• org.gudy.azureus2.ui.swt.views.piece

• org.gudy.azureus2.ui.swt.views.stats

• org.gudy.azureus2.ui.swt.views.table.impl

• org.gudy.azureus2.ui.swt.views.tableitems.mytorrents

• org.gudy.azureus2.ui.swt.views.tableitems.peers

• org.gudy.azureus2.ui.swt.views.utils

• org.gudy.azureus2.ui.swt.welcome

• org.gudy.azureus2.ui.swt.wizard

• org.gudy.azureus2.ui.systray

A4.1

The 3 classes with the highest number of methods are [1
3
pts each correctly placed and 1

6
pts each

misplaced]:

1. class PEPeerTransportProtocol
defined in package org.gudy.azureus2.core3.peer.impl.transport
contains 161 methods;

2. class DownloadManagerImpl
defined in package org.gudy.azureus2.core3.download.impl
contains 156 methods;

3. class PEPeerControlImpl
defined in package org.gudy.azureus2.core3.peer.impl.control
contains 154 methods.

181 A.4 Task Solution Oracles

A4.2

The 3 classes with the highest average number of lines of code per method are [1
3
pts each

correctly placed and 1
6
pts each misplaced]:

1. class BouncyCastleProvider
defined in package org.bouncycastle.jce.provider
has an average of 547 lines of code per method;

2. class 9 (anonymous)
defined in package com.aelitis.azureus.core.dht.nat.impl
has an average of 222 lines of code per method;

3. class MetaSearchListener
defined in package com.aelitis.azureus.ui.swt.browser.listener
has an average of 219 lines of code per method.

Just in case the participant thought class 9 must be an error, the 4th classified is
class MultiPartDecoder
defined in package com.aelitis.azureus.core.util
has an average of 211 lines of code per method.

B1.1

The package with the highest percentage of god classes in the system is
com.aelitis.azureus.core.metasearch.impl.web.rss [0.8pts]
which contains 1 [0.1pts] god classes
out of a total of 1 [0.1pts] classes.

B1.2

The god class containing the largest number of methods in the system is
class PEPeerTransportProtocol [0.8pts]
defined in package org.gudy.azureus2.core3.peer.impl.transport [0.1pts]
which contains 161 [0.1pts] methods.

B2.1

The dominant class-level design problem is
DataClass [0.5pts]
which affects a number of 256 [0.5pts] classes.

A.4.2 T2: Findbugs, analyzed with CodeCity

A1

Dispersed. [1pt]

182 A.4 Task Solution Oracles

A2.1

Localized [0.5pts]
in package edu.umd.cs.findbugs.detect [0.5pts].

A2.2

Dispersed [0pts otherwise]
in the following (max. 5) packages [0.2pts for each]:

• edu.umd.cs.findbugs

• edu.umd.cs.findbugs.anttask

• edu.umd.cs.findbugs.ba

• edu.umd.cs.findbugs.ba.deref

• edu.umd.cs.findbugs.ba.jsr305

• edu.umd.cs.findbugs.ba.npe

• edu.umd.cs.findbugs.ba.vna

• edu.umd.cs.findbugs.bcel

• edu.umd.cs.findbugs.classfile

• edu.umd.cs.findbugs.classfile.analysis

• edu.umd.cs.findbugs.classfile.engine

• edu.umd.cs.findbugs.classfile.impl

• edu.umd.cs.findbugs.cloud

• edu.umd.cs.findbugs.cloud.db

• edu.umd.cs.findbugs.detect

• edu.umd.cs.findbugs.gui

• edu.umd.cs.findbugs.gui2

• edu.umd.cs.findbugs.jaif

• edu.umd.cs.findbugs.model

• edu.umd.cs.findbugs.visitclass

• edu.umd.cs.findbugs.workflow

183 A.4 Task Solution Oracles

A3

Multiple locations.
There are 40/41 [0.5pts] classes
defined in the following 3 packages [1/6pts for each]:

• edu.umd.cs.findbugs

• edu.umd.cs.findbugs.bcel

• edu.umd.cs.findbugs.detect

A4.1

The 3 classes with the highest number of methods are [1
3
pts each correctly placed and 1

6
pts each

misplaced]:

1. class AbstractFrameModelingVisitor
defined in package edu.umd.cs.findbugs.ba
contains 195 methods;

2. class MainFrame
defined in package edu.umd.cs.findbugs.gui2
contains 119 methods;

3. class BugInstance
defined in package edu.umd.cs.findbugs
contains 118 methods
or
class TypeFrameModelingVisitor
defined in package edu.umd.cs.findbugs.ba.type
contains 118 methods.

A4.2

The 3 classes with the highest average number of lines of code per method are [1
3
pts each

correctly placed and 1
6
pts each misplaced]:

1. class DefaultNullnessAnnotations
defined in package edu.umd.cs.findbugs.ba
has an average of 124 lines of code per method;

2. class DBCloud.PopulateBugs
defined in package edu.umd.cs.findbugs.cloud.db
has an average of 114.5 lines of code per method;

3. class BytecodeScanner
defined in package edu.umd.cs.findbugs.ba
has an average of 80.75 lines of code per method.

184 A.4 Task Solution Oracles

B1.1

The package with the highest percentage of god classes in the system is
edu.umd.cs.findbugs.ba.deref [0.8pts]
which contains 1 [0.1pts] god classes
out of a total of 3 [0.1pts] classes.

B1.2

The god class containing the largest number of methods in the system is
class MainFrame [0.8pts]
defined in package edu.umd.cs.findbugs.gui2 [0.1pts]
which contains 119 [0.1pts] methods.

B2.1

The dominant class-level design problem is
DataClass [0.5pts]
which affects a number of 67 [0.5pts] classes.

A.4.3 T3: Azureus, analyzed with Eclipse + Spreadsheet with metrics

A1

Either
There are no unit tests in the system [1pt],
or
Centralized in a single package hierarchy whose root is in org.gudy.azureus2.ui.console.multiuser
[1pt]. Since there is only one test class (i.e., TestUserManager), if they don’t give the full correct
answer, the answer is completely wrong.

A2.1

Dispersed
in the following (max. 5) packages [0.2pts each]:

• com.aelitis.azureus.core

• com.aelitis.azureus.core.content

• com.aelitis.azureus.core.download

• com.aelitis.azureus.core.impl

• com.aelitis.azureus.core.lws

• com.aelitis.azureus.core.peermanager.peerdb

• com.aelitis.azureus.core.stats

• com.aelitis.azureus.core.torrent

185 A.4 Task Solution Oracles

• com.aelitis.azureus.plugins.net.buddy

• com.aelitis.azureus.plugins.net.buddy.swt

• com.aelitis.azureus.plugins.net.buddy.tracker

• com.aelitis.azureus.plugins.removerules

• com.aelitis.azureus.plugins.sharing.hoster

• com.aelitis.azureus.plugins.startstoprules.defaultplugin

• com.aelitis.azureus.plugins.tracker.dht

• com.aelitis.azureus.plugins.tracker.peerauth

• com.aelitis.azureus.ui

• com.aelitis.azureus.ui.swt.content.columns

• com.aelitis.azureus.ui.swt.shells.main

• com.aelitis.azureus.util

• org.gudy.azureus2.core3.download

• org.gudy.azureus2.core3.download.impl

• org.gudy.azureus2.core3.global

• org.gudy.azureus2.core3.global.impl

• org.gudy.azureus2.core3.logging

• org.gudy.azureus2.core3.peer

• org.gudy.azureus2.core3.peer.impl.control

• org.gudy.azureus2.core3.tracker.client

• org.gudy.azureus2.core3.tracker.client.impl

• org.gudy.azureus2.core3.tracker.client.impl.bt

• org.gudy.azureus2.core3.tracker.client.impl.dht

• org.gudy.azureus2.core3.tracker.host

• org.gudy.azureus2.core3.tracker.host.impl

• org.gudy.azureus2.core3.tracker.protocol.udp

• org.gudy.azureus2.core3.tracker.server

• org.gudy.azureus2.core3.tracker.server.impl

• org.gudy.azureus2.core3.tracker.util

186 A.4 Task Solution Oracles

• org.gudy.azureus2.core3.util

• org.gudy.azureus2.plugins

• org.gudy.azureus2.plugins.download

• org.gudy.azureus2.plugins.torrent

• org.gudy.azureus2.plugins.tracker

• org.gudy.azureus2.plugins.tracker.web

• org.gudy.azureus2.plugins.ui.config

• org.gudy.azureus2.plugins.ui.tables

• org.gudy.azureus2.pluginsimpl.local

• org.gudy.azureus2.pluginsimpl.local.download

• org.gudy.azureus2.pluginsimpl.local.tracker

• org.gudy.azureus2.pluginsimpl.remote

• org.gudy.azureus2.pluginsimpl.remote.download

• org.gudy.azureus2.pluginsimpl.remote.tracker

• org.gudy.azureus2.ui.console.commands

• org.gudy.azureus2.ui.swt

• org.gudy.azureus2.ui.swt.mainwindow

• org.gudy.azureus2.ui.swt.maketorrent

• org.gudy.azureus2.ui.swt.views

• org.gudy.azureus2.ui.swt.views.configsections

• org.gudy.azureus2.ui.swt.views.tableitems.mytorrents)

• org.gudy.azureus2.ui.webplugin

A2.2

Localized in
com.aelitis.azureus.ui [1pt].

To ease the grading for the case in which the answer is incomplete, here is the complete
hierarchy:

• com.aelitis.azureus.ui.common.viewtitleinfo

• com.aelitis.azureus.ui.skin

187 A.4 Task Solution Oracles

• com.aelitis.azureus.ui.swt

– com.aelitis.azureus.ui.swt.content

– com.aelitis.azureus.ui.swt.devices

com.aelitis.azureus.ui.swt.devices.add

– com.aelitis.azureus.ui.swt.imageloader

– com.aelitis.azureus.ui.swt.shells.main

– com.aelitis.azureus.ui.swt.skin

– com.aelitis.azureus.ui.swt.subscription

– com.aelitis.azureus.ui.swt.toolbar

– com.aelitis.azureus.ui.swt.views

com.aelitis.azureus.ui.swt.views.skin

· com.aelitis.azureus.ui.swt.views.skin.sidebar

A3

Multiple locations [0pts otherwise]
There are 220/221 classes [0.5pts]
defined in the following (max. 5) packages [0.1 each]:

• com.aelitis.azureus.core.metasearch.impl

• com.aelitis.azureus.plugins.net.buddy.swt

• com.aelitis.azureus.plugins.startstoprules.defaultplugin.ui.swt

• com.aelitis.azureus.ui.swt

• com.aelitis.azureus.ui.swt.browser

• com.aelitis.azureus.ui.swt.browser.listener

• com.aelitis.azureus.ui.swt.browser.msg

• com.aelitis.azureus.ui.swt.columns.torrent

• com.aelitis.azureus.ui.swt.columns.vuzeactivity

• com.aelitis.azureus.ui.swt.content

• com.aelitis.azureus.ui.swt.content.columns

• com.aelitis.azureus.ui.swt.devices

• com.aelitis.azureus.ui.swt.devices.add

• com.aelitis.azureus.ui.swt.devices.columns

• com.aelitis.azureus.ui.swt.imageloader

• com.aelitis.azureus.ui.swt.shells

188 A.4 Task Solution Oracles

• com.aelitis.azureus.ui.swt.shells.main

• com.aelitis.azureus.ui.swt.shells.uiswitcher

• com.aelitis.azureus.ui.swt.skin

• com.aelitis.azureus.ui.swt.subscriptions

• com.aelitis.azureus.ui.swt.uiupdater

• com.aelitis.azureus.ui.swt.utils

• com.aelitis.azureus.ui.swt.views

• com.aelitis.azureus.ui.swt.views.skin

• com.aelitis.azureus.ui.swt.views.skin.sidebar

• org.gudy.azureus2.plugins.ui.tables

• org.gudy.azureus2.ui.common.util

• org.gudy.azureus2.ui.swt

• org.gudy.azureus2.ui.swt.associations

• org.gudy.azureus2.ui.swt.auth

• org.gudy.azureus2.ui.swt.components

• org.gudy.azureus2.ui.swt.components.graphics

• org.gudy.azureus2.ui.swt.components.shell

• org.gudy.azureus2.ui.swt.config

• org.gudy.azureus2.ui.swt.config.generic

• org.gudy.azureus2.ui.swt.config.wizard

• org.gudy.azureus2.ui.swt.donations

• org.gudy.azureus2.ui.swt.help

• org.gudy.azureus2.ui.swt.ipchecker

• org.gudy.azureus2.ui.swt.mainwindow

• org.gudy.azureus2.ui.swt.maketorrent

• org.gudy.azureus2.ui.swt.minibar

• org.gudy.azureus2.ui.swt.nat

• org.gudy.azureus2.ui.swt.networks

• org.gudy.azureus2.ui.swt.osx

189 A.4 Task Solution Oracles

• org.gudy.azureus2.ui.swt.pluginsimpl

• org.gudy.azureus2.ui.swt.progress

• org.gudy.azureus2.ui.swt.sharing.progress

• org.gudy.azureus2.ui.swt.shells

• org.gudy.azureus2.ui.swt.speedtest

• org.gudy.azureus2.ui.swt.update

• org.gudy.azureus2.ui.swt.views

• org.gudy.azureus2.ui.swt.views.clientstats

• org.gudy.azureus2.ui.swt.views.columnsetup

• org.gudy.azureus2.ui.swt.views.configsections

• org.gudy.azureus2.ui.swt.views.file

• org.gudy.azureus2.ui.swt.views.peer

• org.gudy.azureus2.ui.swt.views.piece

• org.gudy.azureus2.ui.swt.views.stats

• org.gudy.azureus2.ui.swt.views.table.impl

• org.gudy.azureus2.ui.swt.views.tableitems.mytorrents

• org.gudy.azureus2.ui.swt.views.tableitems.peers

• org.gudy.azureus2.ui.swt.views.utils

• org.gudy.azureus2.ui.swt.welcome

• org.gudy.azureus2.ui.swt.wizard

• org.gudy.azureus2.ui.systray

A4.1

The 3 classes with the highest number of methods are [1
3
pts each correctly placed and 1

6
pts each

misplaced]:

1. class PEPeerTransportProtocol
defined in package org.gudy.azureus2.core3.peer.impl.transport
contains 161 methods;

2. class DownloadManagerImpl
defined in package org.gudy.azureus2.core3.download.impl
contains 156 methods;

3. class PEPeerControlImpl
defined in package org.gudy.azureus2.core3.peer.impl.control
contains 154 methods.

190 A.4 Task Solution Oracles

A4.2

The 3 classes with the highest average number of lines of code per method are [1
3
pts each

correctly placed and 1
6
pts each misplaced]:

1. class BouncyCastleProvider
defined in package org.bouncycastle.jce.provider
has an average of 547 lines of code per method;

2. class 9 (anonymous)
defined in package com.aelitis.azureus.core.dht.nat.impl
has an average of 222 lines of code per method;

3. class MetaSearchListener
defined in package com.aelitis.azureus.ui.swt.browser.listener
has an average of 219 lines of code per method.

Just in case the participant thought class 9 must be an error, the 4th classified is
class MultiPartDecoder
defined in package com.aelitis.azureus.core.util
has an average of 211 lines of code per method.

B1.1

The package with the highest percentage of god classes in the system is
com.aelitis.azureus.core.metasearch.impl.web.rss [0.8pts]
which contains 1 [0.1pts] god classes
out of a total of 1 [0.1pts] classes.

B1.2

The god class containing the largest number of methods in the system is
class PEPeerTransportProtocol [0.8pts]
defined in package org.gudy.azureus2.core3.peer.impl.transport [0.1pts]
which contains 161 [0.1pts] methods.

B2.1

The dominant class-level design problem is
DataClass [0.5pts]
which affects a number of 255 [0.5pts] classes.

A.4.4 T4: Findbugs, analyzed with Eclipse + Spreadsheet with metrics

A1

Dispersed. [1pt]

191 A.4 Task Solution Oracles

A2.1

Localized [0.5pts]
in package edu.umd.cs.findbugs.detect [0.5pts].

A2.2

Dispersed
in the following 5 packages [0.2pts each]:

• edu.umd.cs.findbugs.ba

• edu.umd.cs.findbugs.ba.jsr305

• edu.umd.cs.findbugs.classfile.analysis

• edu.umd.cs.findbugs.detect

• edu.umd.cs.findbugs.gui

A3

Multiple locations. [0pts otherwise]
There are 41/42 [0.5pts] classes
defined in the following 4 packages [0.125pts each]:

• edu.umd.cs.findbugs

• edu.umd.cs.findbugs.ba

• edu.umd.cs.findbugs.bcel

• edu.umd.cs.findbugs.detect

A4.1

The 3 classes with the highest number of methods are [1
3
pts each correctly placed and 1

6
pts each

misplaced]:

1. class MainFrame
defined in package edu.umd.cs.findbugs.gui2
contains 119 methods;

2. class BugInstance
defined in package edu.umd.cs.findbugs
contains 118 methods;

3. class TypeFrameModelingVisitor
defined in package edu.umd.cs.findbugs.ba.type
contains 118 methods;

192 A.4 Task Solution Oracles

A4.2

The 3 classes with the highest average number of lines of code per method are [1
3
pts each

correctly placed and 1
6
pts each misplaced]:

1. class DefaultNullnessAnnotations
defined in package edu.umd.cs.findbugs.ba
has an average of 124 lines of code per method;

2. class DBCloud.PopulateBugs
defined in package edu.umd.cs.findbugs.cloud.db
has an average of 114.5 lines of code per method;

3. class BytecodeScanner
defined in package edu.umd.cs.findbugs.ba
has an average of 80.75 lines of code per method.

B1.1

The package with the highest percentage of god classes in the system is
edu.umd.cs.findbugs.ba.deref [0.8pts]
which contains 1 [0.1pts] god classes
out of a total of 3 [0.1pts] classes.

B1.2

The god class containing the largest number of methods in the system is
class MainFrame [0.8pts]
defined in package edu.umd.cs.findbugs.gui2 [0.1pts]
which contains 119 [0.1pts] methods.

B2.1

The dominant class-level design problem is
DataClass [0.5pts]
which affects a number of 65 [0.5pts] classes.

193 A.5 Data

A.5 Data

To provide a fully transparent experimental setup, we make available the entire data set of our
experiment.

In Table A.1 we present the subjects and the personal information that we relied on when
we assigned them to the different blocks (i.e., based on experience and background).

Once the subjects were assigned to the three blocks (i.e., we did not have any subjects in the
industry-beginner block), within each block we assigned the subjects to treatment combinations
using randomization. The assignment of subjects to treatments and blocks is presented in Ta-
ble A.2, clustered by the treatment combination, to ease comparison between the different levels
of the independent variables.

Using the criteria described in detail in Section 8.3.3, we obtained the correctness levels
presented in Table A.3. Based on the reasoning presented in the Section 8.4.2, we decided to
eliminate the correctness and timing results for task A4.2. Therefore, the last column of the
table, which represents the correctness after discarding the aforementioned task, presents the
data that we used for our analysis on correctness.

The completion times for each tasks and overall are presented in Table A.4. Since we dis-
carded the correctness results for task A4.2, we also discard the completion time data for the
same task. The last column of the table, which represents the overall completion time after dis-
carding the aforementioned task, presents the data that we used for our analysis on completion
time.

Finally, Table A.5 presents the data we collected from the subjects regarding the perceived
time pressure and the difficulty level per task, as experienced by our subjects. This data allowed
us to determine whether there was a task which was highly unfair for one of the groups. More-
over, it provided us important hints on the type of tasks where CodeCity is most beneficial and
for which type of users.

194 A.5 Data

Su
bject

ID
A

ge
Job

Position
Experien

ce
Level

N
u

m
ber

of
Years

O
O

P
Java

Eclipse
R

ev.En
g.

O
O

P
Java

Eclipse
R

ev.En
g.

IA
01

30
D

eveloper
know

ledgeable
advanced

know
ledgeable

beginner
7–10

7–10
4–6

1–3
IA

02
34

D
eveloper

advanced
advanced

know
ledgeable

know
ledgeable

7–10
4–6

1–3
4–6

IA
03

42
C

TO
,D

eveloper
expert

know
ledgeable

beginner
know

ledgeable
>

10
1–3

1–3
>

10
IA

04
37

D
eveloper

advanced
advanced

know
ledgeable

beginner
7–10

7–10
4–6

1–3
A

B
01

21
M

aster
Student

advanced
advanced

advanced
beginner

4–6
4–6

4–6
<

1
A

B
02

21
M

aster
Student

advanced
advanced

advanced
beginner

1–3
1–3

1–3
<

1
IA

05
29

C
onsultant,Ph.D

.Student
expert

beginner
beginner

know
ledgeable

7–10
7–10

4–6
4–6

A
A

01
26

Ph.D
.Student

expert
expert

know
ledgeable

beginner
>

10
>

10
1–3

<
1

A
A

02
26

Ph.D
.Student

expert
advanced

know
ledgeable

know
ledgeable

4–6
1–3

1–3
1–3

IA
06

35
H

ead
of

IT
expert

expert
advanced

advanced
>

10
>

10
4–6

7–10

IA
07

27
Softw

are
Engineer

know
ledgeable

know
ledgeable

beginner
know

ledgeable
7–10

7–10
1–3

4–6
IA

08
25

Softw
are

Engineer
know

ledgeable
advanced

know
ledgeable

beginner
4–6

4–6
1–3

<
1

IA
09

32
D

evelopm
ent

Leader,R
esearcher

advanced
beginner

none
advanced

7–10
7–10

<
1

4–6
A

B
03

28
Student

know
ledgeable

know
ledgeable

beginner
beginner

4–6
1–3

1–3
1–3

IA
10

39
Project

M
anager

expert
advanced

know
ledgeable

know
ledgeable

>
10

7–10
7–10

4–6
IA

11
38

C
onsultant,System

M
anager/A

nalyst
know

ledgeable
beginner

beginner
advanced

7–10
7–10

1–3
7–10

IA
12

34
Senior

Java
A

rchitect
expert

expert
advanced

advanced
>

10
>

10
>

10
>

10
A

B
04

22
M

aster
Student

advanced
advanced

advanced
know

ledgeable
4–6

1–3
1–3

<
1

A
A

03
22

M
aster

Student
advanced

advanced
advanced

beginner
7–10

4–6
4–6

<
1

A
B

05
22

M
aster

Student
advanced

advanced
know

ledgeable
beginner

4–6
1–3

1–3
1–3

A
A

04
29

Ph.D
.Student

advanced
advanced

know
ledgeable

beginner
4–6

4–6
1–3

<
1

IA
13

32
C

onsultant
expert

know
ledgeable

know
ledgeable

expert
7–10

4–6
1–3

7–10

IA
14

31
Softw

are
A

rchitect
advanced

know
ledgeable

know
ledgeable

beginner
7–10

7–10
1–3

1–3
A

B
06

23
M

aster
Student

advanced
advanced

advanced
beginner

4–6
1–3

1–3
<

1
A

B
07

23
M

aster
Student

advanced
advanced

advanced
beginner

4–6
1–3

1–3
<

1
A

A
05

30
Ph.D

.Student
advanced

advanced
advanced

know
ledgeable

7–10
7–10

7–10
4–6

A
A

06
26

Ph.D
.Student

expert
know

ledgeable
advanced

expert
7–10

7–10
4–6

4–6
A

A
07

30
Ph.D

.Student
advanced

advanced
know

ledgeable
know

ledgeable
7–10

7–10
1–3

1–3
IA

15
40

Project
M

anager
expert

expert
advanced

advanced
>

10
>

10
7–10

4–6
IA

16
39

Softw
are

A
rchitect

advanced
advanced

know
ledgeable

know
ledgeable

4–6
4–6

4–6
1–3

IA
01

30
D

eveloper
know

ledgeable
advanced

know
ledgeable

beginner
7–10

7–10
4–6

1–3
IA

17
27

Softw
are

Engineer
know

ledgeable
advanced

know
ledgeable

beginner
4–6

4–6
4–6

<
1

IA
19

39
C

onsultant,Project
M

anager,A
rchitect

expert
expert

know
ledgeable

advanced
>

10
7–10

7–10
4–6

A
B

08
21

M
aster

Student
advanced

advanced
advanced

beginner
1–3

1–3
1–3

<
1

A
B

09
23

Ph.D
.Student

advanced
advanced

advanced
know

ledgeable
4–6

1–3
1–3

1–3
A

A
10

24
Ph.D

.Student
advanced

advanced
advanced

advanced
4–6

4–6
4–6

1–3
A

A
11

23
Ph.D

.Student
advanced

advanced
advanced

know
ledgeable

4–6
4–6

4–6
1–3

A
A

12
52

Professor
expert

advanced
know

ledgeable
advanced

>
10

>
10

4–6
>

10
A

A
13

28
Ph.D

.Student
advanced

advanced
know

ledgeable
know

ledgeable
4–6

4–6
4–6

1–3
A

A
14

24
M

aster
Student

expert
expert

expert
know

ledgeable
4–6

4–6
4–6

1–3
IA

20
36

D
eveloper

advanced
expert

advanced
beginner

>
10

7–10
7–10

1–3

Table
A

.1.
The

subjects’personalinform
ation,clustered

by
treatm

entcom
binations

195 A.5 Data

Subject ID
Treatment Blocking Criteria

No. Tool System size Background Experience

IA01 1 CodeCity large industry advanced
IA02 1 CodeCity large industry advanced
IA03 1 CodeCity large industry advanced
IA04 1 CodeCity large industry advanced
AB01 1 CodeCity large academia beginner
AB02 1 CodeCity large academia beginner
IA05 1 CodeCity large industry advanced
AA01 1 CodeCity large academia advanced
AA02 1 CodeCity large academia advanced
IA06 1 CodeCity large industry advanced

IA07 2 CodeCity medium industry advanced
IA08 2 CodeCity medium industry advanced
IA09 2 CodeCity medium industry advanced
AB03 2 CodeCity medium academia beginner
IA10 2 CodeCity medium industry advanced
IA11 2 CodeCity medium industry advanced
IA12 2 CodeCity medium industry advanced
AB04 2 CodeCity medium academia beginner
AA03 2 CodeCity medium academia advanced
AB05 2 CodeCity medium academia beginner
AA04 2 CodeCity medium academia advanced
IA13 2 CodeCity medium industry advanced

IA14 3 Ecl+Excl large industry advanced
AB06 3 Ecl+Excl large academia beginner
AB07 3 Ecl+Excl large academia beginner
AA05 3 Ecl+Excl large academia advanced
AA06 3 Ecl+Excl large academia advanced
AA07 3 Ecl+Excl large academia advanced
IA15 3 Ecl+Excl large industry advanced
IA16 3 Ecl+Excl large industry advanced

IA01 4 Ecl+Excl medium industry advanced
IA18 4 Ecl+Excl medium industry advanced
IA19 4 Ecl+Excl medium industry advanced
AB08 4 Ecl+Excl medium academia beginner
AB09 4 Ecl+Excl medium academia beginner
AA10 4 Ecl+Excl medium academia advanced
AA11 4 Ecl+Excl medium academia advanced
AA12 4 Ecl+Excl medium academia advanced
AA13 4 Ecl+Excl medium academia advanced
AA14 4 Ecl+Excl medium academia advanced
IA20 4 Ecl+Excl medium industry advanced

Table A.2. The assignment of the subjects to treatments and blocks

196 A.5 Data

Subject ID
Correctness Per Task

Total
Correctness

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1 (excl. A4.2)

IA01 0.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 6.00 6.00
IA02 1.00 0.80 0.50 1.00 1.00 0.00 0.00 1.00 1.00 6.30 6.30
IA03 0.00 0.00 1.00 0.00 1.00 0.00 0.00 1.00 0.00 3.00 3.00
IA04 0.00 1.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00 5.00 5.00
AB01 0.00 1.00 1.00 0.80 1.00 0.00 0.00 1.00 1.00 5.80 5.80
AB02 0.00 1.00 1.00 0.70 1.00 0.00 0.00 0.00 1.00 4.70 4.70
IA05 0.00 1.00 1.00 0.20 1.00 0.00 0.00 1.00 1.00 5.20 5.20
AA01 0.00 0.80 1.00 0.40 1.00 0.00 0.00 1.00 0.00 4.20 4.20
AA02 0.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 1.00 6.00 6.00
IA06 0.00 1.00 0.00 0.30 1.00 0.00 0.00 1.00 1.00 4.30 4.30

IA07 1.00 1.00 1.00 0.17 1.00 0.00 0.00 1.00 1.00 6.17 6.17
IA08 1.00 0.50 1.00 0.83 1.00 0.00 1.00 1.00 1.00 7.33 7.33
IA09 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 8.00 8.00
AB03 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 8.00 8.00
IA10 1.00 1.00 1.00 0.17 1.00 0.00 0.00 1.00 1.00 6.17 6.17
IA11 1.00 1.00 1.00 0.00 1.00 0.16 0.00 0.00 1.00 5.16 5.00
IA12 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 8.00 8.00
AB04 1.00 1.00 1.00 0.67 1.00 0.00 0.00 1.00 1.00 6.67 6.67
AA03 1.00 1.00 0.80 0.33 1.00 0.16 0.00 1.00 1.00 6.29 6.13
AB05 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 7.00 7.00
AA04 1.00 1.00 1.00 0.50 1.00 0.00 0.00 1.00 1.00 6.50 6.50
IA13 1.00 1.00 1.00 0.83 1.00 1.00 0.00 0.00 1.00 6.83 5.83

IA14 0.00 0.80 0.33 0.30 1.00 0.67 0.00 1.00 1.00 5.10 4.43
AB06 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 4.00 4.00
AB07 0.00 0.60 0.67 0.00 0.00 0.00 0.00 0.00 1.00 2.27 2.27
AA05 1.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 7.00 6.00
AA06 0.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 4.00 3.00
AA07 1.00 1.00 0.00 0.00 1.00 1.00 0.00 1.00 0.00 5.00 4.00
IA15 1.00 0.80 0.00 0.00 1.00 1.00 0.00 1.00 0.00 4.80 3.80
IA16 0.00 0.00 0.67 0.00 1.00 0.67 0.00 1.00 1.00 4.34 3.67

IA01 1.00 1.00 1.00 0.50 1.00 1.00 0.00 1.00 1.00 7.50 6.50
IA18 1.00 1.00 1.00 0.50 1.00 1.00 0.00 1.00 1.00 7.50 6.50
IA19 0.00 1.00 0.60 0.00 1.00 1.00 0.00 1.00 0.00 4.60 3.60
AB08 0.00 1.00 0.40 0.38 1.00 1.00 1.00 1.00 1.00 6.78 5.78
AB09 1.00 1.00 0.60 0.50 1.00 1.00 0.00 1.00 1.00 7.10 6.10
AA10 1.00 1.00 0.80 0.38 1.00 1.00 0.00 1.00 1.00 7.18 6.18
AA11 1.00 1.00 0.80 0.00 1.00 1.00 0.00 1.00 1.00 6.80 5.80
AA12 0.00 0.50 0.00 0.00 1.00 1.00 0.00 1.00 1.00 4.50 3.50
AA13 0.00 1.00 0.00 0.25 1.00 1.00 0.00 1.00 1.00 5.25 4.25
AA14 1.00 1.00 0.60 0.00 1.00 1.00 0.90 1.00 1.00 7.50 6.50
IA20 0.00 1.00 1.00 0.38 1.00 1.00 0.00 1.00 1.00 6.38 5.38

Table A.3. The correctness of the subjects’ solutions to the tasks

197 A.5 Data

Subject ID
Completion Time Per Task

Total
Compl. Time

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1 (excl. A4.2)

IA01 8.80 4.32 5.38 10.00 7.28 4.42 9.85 1.90 1.02 52.97 48.55
IA02 2.42 6.08 1.75 8.58 5.33 10.00 5.25 2.92 2.33 44.67 34.67
IA03 6.25 6.92 2.42 9.43 5.62 9.37 2.55 2.95 1.83 47.33 37.97
IA04 9.08 6.00 4.00 6.08 7.92 10.00 10.00 1.33 1.08 55.50 45.50
AB01 1.33 4.83 3.92 4.75 6.25 10.00 6.92 2.25 2.58 42.83 32.83
AB02 10.00 5.58 1.67 4.25 8.08 10.00 9.42 2.58 1.67 53.25 43.25
IA05 6.33 3.67 1.33 4.75 3.50 10.00 3.75 1.58 2.17 37.08 27.08
AA01 9.67 4.42 2.08 8.75 3.17 10.00 5.17 1.33 1.42 46.00 36.00
AA02 8.33 7.17 2.50 10.00 5.00 9.75 8.33 3.25 1.33 55.67 45.92
IA06 10.00 5.92 4.42 10.00 4.17 10.00 7.33 1.33 1.50 54.67 44.67

IA07 7.25 5.67 6.25 6.33 4.58 10.00 2.42 1.42 2.33 46.25 36.25
IA08 2.67 2.25 2.95 4.55 3.75 10.00 3.33 4.00 1.17 34.67 24.67
IA09 10.00 3.67 3.00 10.00 5.25 7.83 3.67 2.50 1.42 47.33 39.50
AB03 6.33 2.00 9.33 5.00 5.00 8.50 7.17 1.50 1.25 46.08 37.58
IA10 3.25 3.67 7.33 6.83 3.83 7.75 3.08 1.75 8.08 45.58 37.83
IA11 3.83 2.40 5.92 7.17 4.00 6.92 7.42 2.83 1.75 42.23 35.32
IA12 3.75 2.67 4.17 5.58 5.17 10.00 5.75 2.00 1.25 40.33 30.33
AB04 2.67 3.92 2.58 3.67 5.58 9.75 2.00 0.50 3.83 34.50 24.75
AA03 2.50 3.17 3.75 10.00 3.17 6.33 4.08 1.25 2.58 36.83 30.50
AB05 5.50 4.67 4.33 5.58 5.83 10.00 9.58 1.83 1.67 49.00 39.00
AA04 7.08 3.67 5.17 6.33 3.50 7.83 6.00 1.25 2.83 43.67 35.83
IA13 3.00 4.67 2.33 4.75 3.25 10.00 4.83 1.67 2.08 36.58 26.58

IA14 6.67 9.00 2.42 10.00 4.50 5.83 5.33 1.83 4.17 49.75 43.92
AB06 5.67 5.75 2.05 6.95 10.00 10.00 10.00 3.85 2.00 56.27 46.27
AB07 8.75 9.33 4.67 10.00 6.83 10.00 10.00 3.67 2.67 65.92 55.92
AA05 7.00 6.08 3.75 8.42 5.25 4.42 10.00 3.17 6.67 54.75 50.33
AA06 6.83 2.00 3.67 6.58 3.25 6.75 5.33 1.58 1.58 37.58 30.83
AA07 3.67 3.67 2.50 2.17 2.92 5.17 2.75 3.33 1.83 28.00 22.83
IA15 9.75 8.83 5.08 10.00 4.33 10.00 5.08 1.75 7.83 62.67 52.67
IA16 10.00 7.42 4.33 9.50 4.00 6.50 8.50 2.00 4.50 56.75 50.25

IA01 2.55 3.90 4.38 9.20 4.03 4.30 9.92 2.10 2.93 43.32 39.02
IA18 5.28 5.13 4.58 9.82 4.72 3.98 9.77 4.13 3.12 50.53 46.55
IA19 3.33 3.83 4.50 3.50 3.83 5.08 6.58 1.92 5.58 38.17 33.08
AB08 6.08 1.08 10.00 8.83 3.50 5.92 9.42 3.58 1.92 50.33 44.42
AB09 5.83 4.83 4.33 10.00 3.42 6.00 2.00 1.92 1.50 39.83 33.83
AA10 3.17 6.08 5.08 7.33 8.00 3.33 4.83 1.17 2.33 41.33 38.00
AA11 6.17 4.08 6.08 3.83 3.50 5.17 3.67 1.67 2.92 37.08 31.92
AA12 6.75 4.75 3.92 4.75 5.25 3.33 4.42 1.42 3.00 37.58 34.25
AA13 7.00 7.00 10.00 10.00 5.92 5.67 6.33 1.42 5.42 58.75 53.08
AA14 6.33 1.50 3.33 10.00 2.83 3.25 9.17 2.42 4.50 43.33 40.08
IA20 6.83 5.58 4.75 8.00 2.33 3.42 2.42 1.42 1.33 36.08 32.67

Table A.4. The subjects’ task completion time, in minutes

198 A.5 Data

Su
bject

ID
D

iffi
cu

lty
LevelPer

Task
Tim

e
Pressu

re
A

1
A

2.1
A

2.2
A

3
A

4.1
A

4.2
B

1.1
B

1.2
B

2.1
B

2.2

IA
01

difficult
interm

ediate
interm

ediate
sim

ple
sim

ple
im

possible
difficult

trivial
trivial

interm
ediate

fair
am

ount
IA

02
fair

am
ount

IA
03

difficult
interm

ediate
interm

ediate
difficult

interm
ediate

difficult
sim

ple
sim

ple
sim

ple
im

possible
fair

am
ount

IA
04

sim
ple

sim
ple

sim
ple

sim
ple

interm
ediate

im
possible

difficult
sim

ple
trivial

difficult
too

m
uch

A
B

01
trivial

trivial
trivial

sim
ple

sim
ple

interm
ediate

difficult
sim

ple
sim

ple
interm

ediate
very

little
A

B
02

trivial
trivial

trivial
trivial

sim
ple

difficult
im

possible
sim

ple
trivial

sim
ple

fair
am

ount
IA

05
sim

ple
sim

ple
sim

ple
sim

ple
interm

ediate
im

possible
difficult

difficult
trivial

sim
ple

not
so

m
uch

A
A

01
interm

ediate
trivial

sim
ple

interm
ediate

trivial
im

possible
im

possible
trivial

sim
ple

trivial
very

little
A

A
02

trivial
trivial

trivial
sim

ple
sim

ple
im

possible
difficult

sim
ple

trivial
interm

ediate
not

so
m

uch
IA

06
interm

ediate
sim

ple
sim

ple
sim

ple
sim

ple
interm

ediate
interm

ediate
sim

ple
sim

ple
difficult

fair
am

ount

IA
07

difficult
interm

ediate
interm

ediate
sim

ple
sim

ple
difficult

sim
ple

sim
ple

interm
ediate

interm
ediate

not
so

m
uch

IA
08

trivial
trivial

sim
ple

interm
ediate

interm
ediate

im
possible

difficult
interm

ediate
sim

ple
interm

ediate
very

little
IA

09
difficult

sim
ple

sim
ple

interm
ediate

interm
ediate

difficult
interm

ediate
sim

ple
trivial

difficult
not

so
m

uch
A

B
03

sim
ple

sim
ple

sim
ple

sim
ple

sim
ple

interm
ediate

interm
ediate

sim
ple

sim
ple

interm
ediate

very
little

IA
10

sim
ple

sim
ple

sim
ple

sim
ple

difficult
im

possible
interm

ediate
interm

ediate
interm

ediate
difficult

not
so

m
uch

IA
11

sim
ple

sim
ple

sim
ple

difficult
interm

ediate
difficult

difficult
sim

ple
sim

ple
difficult

fair
am

ount
IA

12
sim

ple
sim

ple
sim

ple
interm

ediate
interm

ediate
difficult

trivial
sim

ple
sim

ple
difficult

none
A

B
04

trivial
trivial

trivial
sim

ple
interm

ediate
difficult

trivial
trivial

sim
ple

difficult
very

little
A

A
03

trivial
trivial

trivial
difficult

trivial
im

possible
difficult

trivial
trivial

sim
ple

not
so

m
uch

A
B

05
sim

ple
sim

ple
sim

ple
interm

ediate
interm

ediate
im

possible
difficult

interm
ediate

trivial
sim

ple
not

so
m

uch
A

A
04

interm
ediate

interm
ediate

difficult
difficult

interm
ediate

im
possible

interm
ediate

interm
ediate

difficult
im

possible
fair

am
ount

IA
13

trivial
sim

ple
sim

ple
sim

ple
interm

ediate
difficult

interm
ediate

interm
ediate

interm
ediate

difficult
none

IA
14

interm
ediate

interm
ediate

interm
ediate

interm
ediate

interm
ediate

interm
ediate

interm
ediate

interm
ediate

interm
ediate

interm
ediate

fair
am

ount
A

B
06

sim
ple

sim
ple

sim
ple

interm
ediate

interm
ediate

difficult
im

possible
interm

ediate
interm

ediate
interm

ediate
fair

am
ount

A
B

07
interm

ediate
sim

ple
sim

ple
im

possible
trivial

difficult
sim

ple
interm

ediate
interm

ediate
difficult

too
m

uch
A

A
05

sim
ple

sim
ple

sim
ple

interm
ediate

interm
ediate

interm
ediate

difficult
interm

ediate
interm

ediate
interm

ediate
fair

am
ount

A
A

06
interm

ediate
sim

ple
sim

ple
difficult

trivial
interm

ediate
sim

ple
sim

ple
interm

ediate
difficult

very
little

A
A

07
trivial

interm
ediate

interm
ediate

trivial
trivial

sim
ple

interm
ediate

trivial
sim

ple
interm

ediate
none

IA
15

difficult
interm

ediate
interm

ediate
difficult

sim
ple

sim
ple

interm
ediate

interm
ediate

im
possible

im
possible

fair
am

ount
IA

16
interm

ediate
interm

ediate
interm

ediate
im

possible
sim

ple
sim

ple
interm

ediate
sim

ple
interm

ediate
difficult

fair
am

ount

IA
01

interm
ediate

interm
ediate

interm
ediate

difficult
trivial

sim
ple

im
possible

trivial
sim

ple
difficult

not
so

m
uch

IA
18

interm
ediate

sim
ple

interm
ediate

difficult
sim

ple
sim

ple
difficult

interm
ediate

sim
ple

difficult
fair

am
ount

IA
19

sim
ple

sim
ple

interm
ediate

sim
ple

trivial
sim

ple
sim

ple
sim

ple
interm

ediate
im

possible
fair

am
ount

A
B

08
interm

ediate
interm

ediate
sim

ple
interm

ediate
trivial

trivial
difficult

trivial
sim

ple
interm

ediate
not

so
m

uch
A

B
09

trivial
sim

ple
sim

ple
im

possible
sim

ple
sim

ple
interm

ediate
interm

ediate
sim

ple
difficult

fair
am

ount
A

A
10

sim
ple

interm
ediate

interm
ediate

interm
ediate

trivial
trivial

sim
ple

sim
ple

interm
ediate

im
possible

very
little

A
A

11
difficult

sim
ple

interm
ediate

interm
ediate

sim
ple

sim
ple

sim
ple

interm
ediate

interm
ediate

im
possible

not
so

m
uch

A
A

12
sim

ple
sim

ple
sim

ple
sim

ple
sim

ple
interm

ediate
sim

ple
sim

ple
interm

ediate
difficult

not
so

m
uch

A
A

13
sim

ple
interm

ediate
interm

ediate
difficult

sim
ple

sim
ple

sim
ple

sim
ple

sim
ple

interm
ediate

not
so

m
uch

A
A

14
trivial

trivial
trivial

im
possible

trivial
trivial

difficult
trivial

difficult
im

possible
not

so
m

uch
IA

20
interm

ediate
sim

ple
sim

ple
interm

ediate
trivial

trivial
trivial

trivial
trivial

difficult
not

so
m

uch

Table
A

.5.
The

subjects’perceived
tim

e
pressure

and
task

difficulty

199 A.5 Data

Introduction

The aim of this experiment is to compare tool efficiency in supporting software
practitioners analyzing medium to large-scale software systems.

You will use CodeCity to analyze Azureus, a BitTorrent client written in Java.

You are given maximum 100 minutes for solving 10 tasks (10 minutes per task).

You are asked:
• not to consult any other participant during the experiment;
• to perform the tasks in the specified order;
• to write down the current time each time before starting to read a task and once

after completing all the tasks;
• to announce the experimenter that you are moving on to another task, in order

to reset your 10-minutes-per-task allocated timer;
• not to return to earlier tasks because it affects the timing;
• for each task, to fill in the required information. In the case of multiple choices

check the most appropriate answer and provide additional information, if
requested.

The experiment is concluded with a short debriefing questionnaire.

Thank you for participating in this experiment!

	 	 	 	 Richard Wettel, Michele Lanza, Romain Robbes

CodeCity Experiment

Participant:

T1

Tasks

Current Time - Notify the experimenter

_ _ : _ _ : _ _
 hours minutes seconds

(c) Start time

Structural Understanding

Locate all the unit test classes of the system (typically called *Test in Java) and
identify the convention (or lack of convention) used by the system’s developers to
organize the unit tests.

Centralized. There is a single package hierarchy, whose root package is (write down the
full name of the package):

_ .

Dispersed. The test classes are located in the same package as the tested classes.

Hybrid. Some test classes are defined in the central test package hierarchy, with the root
in package (provide the full name of the package):

_ _ ,

while some test classes are defined elsewhere. An example of such a class is:

_

defined in package (write down the full name):

_ .

Task A1

There are no unit tests in the system.

Current Time - Notify the experimenter

_ _ : _ _ : _ _
 hours minutes seconds

(e) Time split, logged after each task

Concept Location Task A2.1

Using the “search by term” (and any other) feature in CodeCity, look for the term
‘tracker’ in the names of classes and their attributes and methods, and describe
the spread of these classes in the system.

Localized. All the classes related to this term are located in one or two packages.
Provide the full name of these packages:

_

_ .

Dispersed. Many packages in the system contain classes related to the given term.
Indicate 5 packages (or all of them if there are less than 5) writing their full names:

_ _

_ _

_ _

_ _

_ _ .

Concept Location Task A2.2

Using the “search by term” (and any other) feature in CodeCity, look for the term
‘skin’ in the names of classes and their attributes and methods, and describe the
spread of these classes in the system.

Localized. All the classes related to this term are located in one or two packages.
Provide the full name of these packages:

_

_ .

Dispersed. Many packages in the system contain classes related to the given term.
Indicate 5 packages (or all of them if there are less than 5) writing their full names:

_ _

_ _

_ _

_ _

_ _ .

Impact Analysis Task A3

Evaluate the change impact of class Utils defined in package
org.gudy.azureus2.ui.swt, by considering its caller classes (classes invoking any of
its methods). The assessment is done in terms of both intensity (number of
potentially affected classes) and dispersion (how these classes are distributed in the
package structure).

Unique location. There are _ _ _ _ _ classes potentially affected by a change in the
given class, all defined in a single package, whose full name is:

_ .

Multiple locations. There are _ _ _ _ _ classes potentially affected by a change in the
given class, defined in several packages, but less than half of the system’s packages.
Indicate up to 5 packages containing the most of these classes:

_

_

_

_

_

Global. Most of the system’s packages (more than half) contain at least one of the
_ _ _ _ _ classes that would be potentially affected by a change in the given class.

Metric Analysis Task A4.1

Find the 3 classes with the highest number of methods (NOM) in the system.

The classes with the highest number of methods are (in descending order):

1. class _

 defined in package (full name):

 _

 contains _ _ _ methods;

2. class _

 defined in package (full name):

 _

 contains _ _ _ methods;

3. class _

 defined in package (full name):

 _

 contains _ _ _ methods.

Figure A.2. Handout for Treatment 1 (Part 1 of 2)

200 A.5 Data

Find the 3 classes with the highest average number of lines of code per method in
the system. The value of this metric is computed as:

Metric Analysis Task A4.2

The classes with the highest number of lines of code per method are (in descending order):

1. class _

 defined in package (full name):

 _

 	 has an average of _ _ _ _ lines of code per method

2. class _

 defined in package (full name):

 _

 	 has an average of _ _ _ _ lines of code per method

3. class _

 defined in package (full name):

 _

 	 has an average of _ _ _ _ lines of code per method

God Class Analysis Task B1.1

Identify the package with the highest percentage of god classes in the system. Write
down the full name of the package, the number of god classes in this package, and
the total number of classes in the package.

The highest percentage of god classes in the entire system is found in package:

_ _

which contains _ _ _ _ god classes out of a total of _ _ _ _ classes.

God Class Analysis Task B1.2

Identify the god class containing the largest number of methods in the system.

The god class with the largest number of methods in the system is class:

_ _

defined in package (write down the full name):

_ _

which contains _ _ _ _ methods.

Design Problem Assessment Task B2.1

Based on the design problem information available in CodeCity, identify the
dominant class-level design problem (the design problem that affects the largest
number of classes) in the system.

The dominant class-level design problem is Brain Class, which affects a number of

_ _ _ _ _ _ _ _ classes.

The dominant class-level design problem is Data Class, which affects a number of

_ _ _ _ _ _ _ _ classes.

The dominant class-level design problem is God Class, which affects a number of

_ _ _ _ _ _ _ _ classes.

Design Problem Assessment Task B2.2

Write an overview of the class-level design problems in the system. Are the design
problems affecting many of the classes? Are the different design problems affecting
the system in an equal measure? Are there packages of the system affected
exclusively by only one design problem? Are there packages entirely unaffected by
any design problem? Or packages with all classes affected? Describe your most
interesting or unexpected observations about the design problems.

(e) Qualitative task

Current Time - Notify the experimenter

_ _ : _ _ : _ _
 hours minutes seconds

(f) End time

Debriefing

On a scale from 1 to 5, how did you feel about the time pressure? Please write in
the box below the answer that matches your opinion the most:

1. Too much time pressure. I could not cope with the tasks, regardless of their
difficulty

2. Fair amount of pressure. I could certainly have done better with more time.
3. Not so much time pressure. I had to hurry a bit, but it was ok
4. Very little time pressure. I felt quite comfortable with the time given
5. No time pressure at all

Regardless of the given time, how difficult would you rate the tasks? Please mark
the appropriate difficulty for each of the tasks:

impossible difficult intermediate simple trivial

Task A1

Task A2.1

Task A2.2

Task A3

Task A4.1

Task A4.2

Task B1.1

Task B1.2

Task B2.1

Task B2.2

Enter comments and/or suggestions you may have about the experiment, which
could help us improve it.

It is possible that you have discovered some interesting insights about the system
during the experiment and that the format of the answer did not allow you to write it,
or that it was not related to the question. In this case, please share with us what you
discovered. (optional)

Figure A.3. Handout for Treatment 1 (Part 2 of 2)

Part VI

Bibliography

201

Bibliography

[ABHL06] Erik Arisholm, Lionel C. Briand, Siw Elisabeth Hove, and Yvan Labiche. The impact
of UML documentation on software maintenance: An experimental evaluation.
IEEE Transactions on Software Engineering, 32(6):365–381, 2006.

[ABW+09] Sazzadul Alam, Sandro Boccuzzo, Richard Wettel, Philippe Dugerdil, Harald Gall,
and Michele Lanza. EvoSpaces - multi-dimensional navigation spaces for software
evolution. In Human Machine Interaction, LNCS, pages 167–192. Springer, 2009.

[AD07] Sazzadul Alam and Philippe Dugerdil. EvoSpaces: 3D visualization of software
architecture. In SEKE ’07: Proceedings of the 19th International Conference on
Software Engineering and Knowledge Engineering, pages 500–505. IEEE Computer
Society Press, 2007.

[AHK+01] Atsushi Aoki, Kaoru Hayashi, Kouichi Kishida, Kumiyo Nakakoji, Yoshiyuki Nishi-
naka, Brent Reeves, Akio Takashima, and Yasuhiro Yamamoto. A case study of
the evolution of Jun: an object-oriented open-source 3D multimedia library. In
ICSE ’01: Proceedings of the 23rd International Conference on Software Engineering,
pages 524–533. IEEE Computer Society Press, 2001.

[AIS77] Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A Pattern Language:
Towns, Buildings, Construction. Oxford University Press, 1977.

[AMNB07] Craig Anslow, Stuart Marshall, James Noble, and Robert Biddle. X3D software
visualization. In NZCSRSC ’07: Proceedings of the New Zealand Computer Science
Research Students Conference, 2007.

[AWP97] Keith Andrews, Josef Wolte, and Michael Pichler. Information pyramids: A new
approach to visualising large hierarchies. In VIS ’97: Proceedings of the 8th confer-
ence on Visualization, pages 49–52. IEEE Computer Society Press, 1997.

[Bae98] Ronald M. Baecker. Sorting out sorting: A case study of software visualization for
teaching computer science. In John T. Stasko, John B. Domingue, Marc H. Brown,
and Blaine A. Price, editors, Software Visualization: Programming as a Multimedia
Experience, pages 369–381. MIT Press, 1998.

[BD04] Michael Balzer and Oliver Deussen. Hierarchy based 3D visualization of large
software structures. In VIS ’04: Proceedings of the 15th Conference on Visualization,
Poster Session, page 4. IEEE Computer Society Press, 2004.

203

204 BIBLIOGRAPHY

[BDW98] Lionel C. Briand, John W. Daly, and Jürgen Wüst. A Unified Framework for Co-
hesion Measurement in Object-Oriented Systems. Empirical Software Engineering:
An International Journal, 3(1):65–117, 1998.

[BE96] Thomas Ball and Stephen G. Eick. Software visualization in the large. Computer,
29(4):33–43, 1996.

[Bec00] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,
2000.

[Ben75] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509–517, 1975.

[Ber67] Jacques Bertin. Sémiologie graphique. Mouton, 1967.

[BG07] Sandro Boccuzzo and Harald C. Gall. CocoViz: Towards cognitive software visu-
alizations. In VISSOFT ’07: Proceedings of the 4th IEEE International Workshop on
Visualizing Software for Understanding and Analysis, pages 72–79. IEEE Computer
Society Press, 2007.

[BG08] Sandro Boccuzzo and Harald Gall. Software visualization with audio supported
cognitive glyphs. In ICSM ’08: Proceedings of the 24th IEEE International Conference
on Software Maintenance, pages 366–375. IEEE Computer Society Press, 2008.

[Bia08] Andrea Biaggi. Citylyzer - a 3D visualization plug-in for eclipse. Bachelor’s thesis,
University of Lugano, June 2008.

[BK95] J.M. Bieman and B.K. Kang. Cohesion and reuse in an object-oriented system. In
SSR ’95: Proceedings of the 1995 ACM Symposium on Software Reusability, pages
259–262. ACM Press, 1995.

[BM86] R. Baecker and A. Marcus. Design principles for the enhanced presentation of
computer program source text. In CHI ’86: Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 51–58. ACM Press, 1986.

[BM89] Ronald M. Baecker and Aaron Marcus. Human Factors and Typography for More
Readable Programs. ACM Press, 1989.

[BNDL04] Michael Balzer, Andreas Noack, Oliver Deussen, and Claus Lewerentz. Software
landscapes: Visualizing the structure of large software systems. In VisSym ’04:
Symposium on Visualization, pages 261–266. Eurographics Association, 2004.

[Boo09] Grady Booch. Like a river. IEEE Software, 26(3):10–11, 2009.

[Bro88] Marc H. Brown. Exploring algorithms using Balsa-II. Computer, 21(5):14–36,
1988.

[BS84] Marc H. Brown and Robert Sedgewick. A system for algorithm animation. ACM
SIGGRAPH Computer Graphics, 18(3):177–186, 1984.

[CCI90] Elliot Chikofsky and James Cross II. Reverse engineering and design recovery: A
taxonomy. IEEE Software, 7(1):13–17, 1990.

205 BIBLIOGRAPHY

[CHZ+07] Bas Cornelissen, Danny Holten, Andy Zaidman, Leon Moonen, Jarke J. van Wijk,
and Arie van Deursen. Understanding execution traces using massive sequence
and circular bundle views. In ICPC ’07: Proceedings of the 15th International Con-
ference on Program Comprehension, pages 49–58. IEEE Computer Society Press,
2007.

[CK94] Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for object oriented
design. IEEE Transactions on Software Engineering, 20(6):476–493, 1994.

[Cor89] T. A. Corbi. Program understanding: challenge for the 1990’s. IBM Systems Jour-
nal, 28(2):294–306, 1989.

[CR03] Alan Cooper and Robert Reimann. About Face 2.0 - The Essentials of Interaction
Design. Wiley, 2003.

[CS70] Kenneth Conrow and Ronald G. Smith. NEATER2: a PL/I source statement refor-
matter. Communications of the ACM, 13(11):669–675, 1970.

[CZRvD09] Bas Cornelissen, Andy Zaidman, Bart Van Rompaey, and Arie van Deursen. Trace
visualization for program comprehension: A controlled experiment. In ICPC ’09:
Proceedings of the 17th IEEE International Conference on Program Comprehension,
pages 100–109. IEEE Computer Society Press, 2009.

[CZvDVR09] Bas Cornelissen, Andy Zaidman, Arie van Deursen, and Bart Van Rompaey. Trace
visualization for program comprehension: A controlled experiment. Technical
Report TUD-SERG-2009-001, Delft University of Technology, 2009.

[DA08] Philippe Dugerdil and Sazzadul Alam. Execution trace visualization in a 3D space.
In ITGN ’08: Proceedings of the 5th International Conference on Information Tech-
nology: New Generations, pages 38–43. IEEE Computer Society Press, 2008.

[Dak09] Ermira Daka. Parsing and modeling C# systems. Master’s thesis, University of
Lugano, June 2009.

[DDL99] Serge Demeyer, Stéphane Ducasse, and Michele Lanza. A hybrid reverse engi-
neering approach combining metrics and program visualisation. In WCRE ’99:
Proceedings of the Sixth Working Conference on Reverse Engineering, 1999.

[DDN02] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Object-Oriented Reengi-
neering Patterns. Morgan Kaufmann, 2002.

[DeL05] Robert DeLine. Staying oriented with software terrain maps. In DMS ’05: Proceed-
ings of the 11th International Conference on Distributed Multimedia Systems, pages
309–314. Knowledge Systems Institute, 2005.

[DGKR09] Stéphane Ducasse, Tudor Gîrba, Adrian Kuhn, and Lukas Renggli. Meta-
environment and executable meta-language using Smalltalk: an experience re-
port. Journal of Software and Systems Modeling (SOSYM), 8(1):5–19, February
2009.

[Die02] Stephan Diehl, editor. Software Visualization, International Seminar Dagstuhl Cas-
tle, Germany, May 20-25, 2001, Revised Lectures, Lecture Notes in Computer Sci-
ence. Springer, 2002.

206 BIBLIOGRAPHY

[Die07] Stephan Diehl. Software Visualization: Visualizing the Structure, Behaviour, and
Evolution of Software. Springer, 2007.

[DL06a] Marco D’Ambros and Michele Lanza. Reverse engineering with logical coupling.
In WCRE ’06: Proceedings of the 13th Working Conference on Reverse Engineering,
pages 189–198. IEEE Computer Society Press, 2006.

[DL06b] Marco D’Ambros and Michele Lanza. Software bugs and evolution: A visual ap-
proach to uncover their relationship. In CSMR ’06: Proceedings of the 10th Euro-
pean Conference on Software Maintenance and Reengineering, pages 227–236. IEEE
Computer Society Press, 2006.

[DL10] Marco D’Ambros and Michele Lanza. Distributed and collaborative software evolu-
tion analysis with Churrasco. Journal of Science of Computer Programming (SCP),
75(4):276–287, April 2010.

[DLG05] Marco D’Ambros, Michele Lanza, and Harald Gall. Fractal figures: Visualizing de-
velopment effort for CVS entities. In VISSOFT ’05: Proceedings of the 3rd IEEE In-
ternational Workshop on Visualizing Software for Understanding and Analysis, pages
46–51. IEEE Computer Society Press, 2005.

[DTD01] Serge Demeyer, Sander Tichelaar, and Stéphane Ducasse. FAMIX 2.1 — The
FAMOOS Information Exchange Model. Technical report, University of Bern, 2001.

[ED06] Geoffrey Ellis and Alan Dix. An explorative analysis of user evaluation studies in
information visualisation. In BELIV ’06: Proceedings of the 2006 AVI workshop on
BEyond time and errors, pages 1–7. ACM Press, 2006.

[EGK+01] Stephen Eick, Todd Graves, Alan Karr, J. Marron, and Audris Mockus. Does code
decay? Assessing the evidence from change management data. IEEE Transactions
on Software Engineering, 27(1):1–12, 2001.

[Erl00] Len Erlikh. Leveraging legacy system dollars for e-business. IT Professional,
2(3):17–23, 2000.

[ESEE92] Stephen G. Eick, Joseph L. Steffen, and Sumner Eric E., Jr. SeeSoft—a tool for
visualizing line oriented software statistics. IEEE Transactions on Software Engi-
neering, 18(11):957–968, November 1992.

[Fav01] Jean-Marie Favre. GSEE: A generic software exploration environment. In IWPC
’01: Proceedings of the 9th International Workshop on Program Comprehension,
pages 233–244. IEEE Computer Society Press, 2001.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refac-
toring: Improving the Design of Existing Code. Addison-Wesley, 1999.

[Few04] Stephen Few. Show me the numbers: Designing Tables and Graphs to Enlighten.
Analytics Press, 2004.

[FG04] Michael Fischer and Harald Gall. Visualizing feature evolution of large-scale soft-
ware based on problem and modification report data. Journal of Software Mainte-
nance and Evolution: Research and Practice, 16(6):385–403, 2004.

207 BIBLIOGRAPHY

[Fur86] G. W. Furnas. Generalized fisheye views. In CHI ’86: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 16–23. ACM Press, 1986.

[Gab96] Richard P. Gabriel. Patterns of Software. Oxford University Press, 1996.

[GFS05] Tibor Gyimóthy, Rudolf Ferenc, and István Siket. Empirical validation of object-
oriented metrics on open source software for fault prediction. IEEE Transactions
on Software Engineering, 31(10):897–910, October 2005.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[Gîr05] Tudor Gîrba. Modeling History to Understand Software Evolution. PhD thesis, Uni-
versity of Berne, November 2005.

[GJR99] Harald Gall, Mehdi Jazayeri, and Claudio Riva. Visualizing Software Release His-
tories: The Use of Color and Third Dimension. In ICSM ’99: Proceedings of the
15th IEEE International Conference on Software Maintenance, pages 99–108. IEEE
Computer Society Press, 1999.

[GKSD05] Tudor Gîrba, Adrian Kuhn, Mauricio Seeberger, and Stéphane Ducasse. How de-
velopers drive software evolution. In IWPSE ’05: Proceedings of the Eighth Inter-
national Workshop on Principles of Software Evolution, pages 113–122. IEEE Com-
puter Society Press, 2005.

[GLD05] Tudor Gîrba, Michele Lanza, and Stéphane Ducasse. Characterizing the evolution
of class hierarchies. In CSMR ’05: Proceedings of the 9th European Conference
on Software Maintenance and Reengineering, pages 2–11. IEEE Computer Society
Press, 2005.

[GLW06] Orla Greevy, Michele Lanza, and Christoph Wysseier. Visualizing live software
systems in 3D. In SoftVis ’06: Proceedings of the 2006 ACM Symposium on Software
Visualization, pages 47–56. ACM Press, 2006.

[GME05] Denis Gracanin, Kresimir Matkovic, and Mohamed Eltoweissy. Software visualiza-
tion. Innovations Syst. Softw. Eng., 1(2):221–230, 2005.

[GYB04] Hamish Graham, Hong Yul Yang, and Rebecca Berrigan. A solar system metaphor
for 3D visualisation of object oriented software metrics. In APVis ’04: Proceedings
of the 2004 Australasian symposium on Information Visualisation, pages 53–59.
Australian Computer Society, Inc., 2004.

[Hai59] Lois M. Haibt. A program to draw multilevel flow charts. In Proceedings of the
Western Joint Computer Conference, pages 131–137. ACM Press, 1959.

[HL77] Jon Hueras and Henry Ledgard. An automatic formatting program for PASCAL.
ACM SIGPLAN Notices, 12(7):82–84, 1977.

[HM08] Sonia Haiduc and Andrian Marcus. On the use of domain terms in source code.
In ICPC ’08: Proceedings of the 16th IEEE International Conference on Program
Comprehension, pages 113–122. IEEE Computer Society Press, 2008.

208 BIBLIOGRAPHY

[Hol06] Danny Holten. Hierarchical edge bundles: Visualization of adjacency relations in
hierarchical data. IEEE Trans. Vis. Comput. Graph., 12(5):741–748, 2006.

[HP96] Richard Holt and Jason Pak. GASE: Visualizing software evolution-in-the-large.
In WCRE ’96: Proceedings of the Third Working Conference on Reverse Engineering,
pages 163–167. IEEE Computer Society Press, 1996.

[HP04] David Hovemeyer and William Pugh. Finding bugs is easy. ACM SIGPLAN Notices,
39(12):92–106, December 2004.

[IEE90] IEEE Std 610.12-1990. IEEE Standard Glossary of Software Engineering Terminol-
ogy, 1990.

[JBR99] Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Software Develop-
ment Process. Addison-Wesley, 1999.

[Joh92] Ralph E. Johnson. Documenting frameworks using patterns. In OOPSLA ’92:
Proceedings of the 7th Annual Conference on Object Oriented Programming Systems
Languages and Applications, pages 63–76. ACM Press, 1992.

[JS03] Juanjuan Jiang and Tarja Systä. Exploring differences in exchange formats - tool
support and case studies. In CSMR ’03: Proceedings of the 7th European Confer-
ence on Software Maintenance and Reengineering, pages 389–398. IEEE Computer
Society Press, 2003.

[KDJ04] Barbara A. Kitchenham, Tore Dyba, and Magne Jorgensen. Evidence-based soft-
ware engineering. In ICSE ’04: Proceedings of the 26th International Conference on
Software Engineering, pages 273–281. IEEE Computer Society Press, 2004.

[KG88] Michael F. Kleyn and Paul C. Gingrich. Graphtrace–understanding object-oriented
systems using concurrently animated views. SIGPLAN Not., 23(11):191–205,
1988.

[KHI+03] R. Kosara, C.G. Healey, V. Interrante, D.H. Laidlaw, and C. Ware. User studies:
Why, how, and when? IEEE Computer Graphics and Applications, 23(4):20–25,
July-Aug. 2003.

[KLN08] Adrian Kuhn, Peter Loretan, and Oscar Nierstrasz. Consistent layout for thematic
software maps. In WCRE ’08: Proceedings of the 15th Working Conference on Reverse
Engineering, pages 209–218. IEEE Computer Society Press, 2008.

[KM00] Claire Knight and Malcolm C. Munro. Virtual but visible software. In IV ’00: Pro-
ceedings of the International Conference on Information Visualisation, pages 198–
205. IEEE Computer Society Press, 2000.

[KMN08] Jens Knodel, Dirk Muthig, and Matthias Naab. An experiment on the role of
graphical elements in architecture visualization. Empirical Software Engineering,
13(6):693–726, 2008.

[Kno66a] Kenneth C. Knowlton. L6: Bell Telephone Laboratories low-level linked list lan-
guage. 16-minute black-and-white film, 1966.

209 BIBLIOGRAPHY

[Kno66b] Kenneth C. Knowlton. L6: Part II. an example of L6 programming. 30-minute
black-and-white film, 1966.

[Knu63] Donald E. Knuth. Computer-drawn flowcharts. Communications of the ACM,
6(9):555–563, 1963.

[Knu84] Donald E. Knuth. Literate programming. The Computer Journal, 27(2):97—111,
1984.

[Knu02] Donald Knuth. All questions answered. Notices of the AMS, 49(3):318–324, 2002.

[Kob01] Alfred Kobsa. An empirical comparison of three commercial information visual-
ization systems. In InfoVis ’01: Proceedings of the 2001 IEEE Symposium on Infor-
mation Visualization, pages 123–130. IEEE Computer Society Press, 2001.

[Kob04] Alfred Kobsa. User experiments with tree visualization systems. In InfoVis ’04:
Proceedings of the 2004 IEEE Symposium on Information Visualization, pages 9–16.
IEEE Computer Society Press, 2004.

[Kos03] Rainer Koschke. Software visualization in software maintenance, reverse engi-
neering, and re-engineering: a research survey. Journal of Software Maintenance,
15(2):87–109, 2003.

[KPP+02] Barbara A. Kitchenham, Shari Lawrence Pfleeger, Lesley M. Pickard, Peter W.
Jones, David C. Hoaglin, Khaled El Emam, and Jarrett Rosenberg. Preliminary
guidelines for empirical research in software engineering. IEEE Transactions on
Software Engineering, 28(8):721–734, 2002.

[Lan99] Michele Lanza. Combining metrics and graphs for object-oriented reverse engi-
neering. Master’s thesis, University of Berne, Switzerland, 1999.

[Lan01] Michele Lanza. The evolution matrix: Recovering software evolution using soft-
ware visualization techniques. In IWPSE ’01: Proceedings of the 4th International
Workshop on Principles of Software Evolution, pages 37–42. ACM Press, 2001.

[Lan03] Michele Lanza. CodeCrawler — lessons learned in building a software visualiza-
tion tool. In CSMR ’03: Proceedings of the 7th European Conference on Software
Maintenance and Reengineering, pages 409–418. IEEE Computer Society Press,
2003.

[LB85] Manny Lehman and Les Belady. Program Evolution: Processes of Software Change.
London Academic Press, 1985.

[LC07] Christian F. J. Lange and Michel R. V. Chaudron. Interactive views to improve
the comprehension of UML models - an experimental validation. In ICPC ’07:
Proceedings of the 15th International Conference on Program Comprehension, pages
221–230. IEEE Computer Society Press, 2007.

[LD03] Michele Lanza and Stéphane Ducasse. Polymetric views — a lightweight visual
approach to reverse engineering. Transactions on Software Engineering (TSE),
29(9):782–795, September 2003.

210 BIBLIOGRAPHY

[Lev60] Howard Levene. Robust tests for equality of variances. In Ingram Olkin, editor,
Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling,
pages 278–292. Stanford University Press, 1960.

[LGD09] Michele Lanza, Harald Gall, and Philippe Dugerdil. EvoSpaces: Multi-dimensional
navigation spaces for software evolution. In CSMR ’09: Proceedings of the 13th
European Conference on Software Maintenance and Reengineering, pages 293–296.
IEEE Computer Society Press, 2009.

[LJ80] George Lakoff and Mark Johnson. Metaphors We Live By. University of Chicago
Press, 1980.

[LL07] Mircea Lungu and Michele Lanza. Exploring inter-module relationships in evolv-
ing software systems. In CSMR ’07: Proceedings of the 11th European Conference
on Software Maintenance and Reengineering, pages 91–100. IEEE Computer Society
Press, 2007.

[LLGH07] Mircea Lungu, Michele Lanza, Tudor Gîrba, and Reinout Heeck. Reverse engineer-
ing super-repositories. In WCRE ’07: Proceedings of the 14th Working Conference
on Reverse Engineering, pages 120–129. IEEE Computer Society Press, 2007.

[LLGR10] Mircea Lungu, Michele Lanza, Tudor Gîrba, and Romain Robbes. The Small Project
Observatory: Visualizing software ecosystems. Journal of Science of Computer Pro-
gramming (SCP), 75(4):264–275, April 2010.

[LM06] Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Practice. Springer,
2006.

[LMSW03] Rob Lintern, Jeff Michaud, Margaret-Anne Storey, and Xiaomin Wu. Plugging-in
visualization: Experiences integrating a visualization tool with Eclipse. In SoftVis
’03: Proceedings of the 2003 ACM Symposium on Software Visualization, pages 47–
56. ACM Press, 2003.

[LN00] George Lakoff and Rafael E. Núñez. Where Mathematics Comes From: How the
Embodied Mind Brings Mathematics into Being. Basic Books, 2000.

[LS81] Bennet P. Lientz and E. Burton Swanson. Problems in application software main-
tenance. Communications of the ACM, 24(11):763–769, 1981.

[LSP05] Guillaume Langelier, Houari A. Sahraoui, and Pierre Poulin. Visualization-based
analysis of quality for large-scale software systems. In ASE ’05: Proceedings of
the 20th IEEE/ACM International Conference on Automated Software Engineering,
pages 214–223. ACM Press, 2005.

[LSP08] Guillaume Langelier, Houari A. Sahraoui, and Pierre Poulin. Exploring the evolu-
tion of software quality with animated visualization. In VL/HCC ’08: Proceedings
of the IEEE Symposium on Visual Languages and Human-Centric Computing, pages
13–20. IEEE Computer Society Press, 2008.

[Lun09] Mircea Lungu. Reverse Engineering Software Ecosystems. Phd thesis, University of
Lugano, October 2009.

211 BIBLIOGRAPHY

[Mac99] Lindsay W. MacDonald. Tutorial: Using color effectively in computer graphics.
IEEE Computer Graphics and Applications, 19:20–35, 1999.

[Mal07] Jacopo Malnati. X-Ray - an Eclipse plug-in for software visualization. Bachelor’s
thesis, University of Lugano, June 2007.

[Mar04a] Radu Marinescu. Detection strategies: Metrics-based rules for detecting design
flaws. In ICSM ’04: Proceedings of the 20th IEEE International Conference on Soft-
ware Maintenance, pages 350–359. IEEE Computer Society Press, 2004.

[Mar04b] Radu Marinescu. Measurement and Quality in Object-Oriented Design. PhD thesis,
“Politehnica” University of Timi̧soara, 2004.

[McC76] T.J. McCabe. A measure of complexity. IEEE Transactions on Software Engineering,
2(4):308–320, December 1976.

[McK84] James R. McKee. Maintenance as a function of design. In AFIPS ’84: Proceedings of
the July 9-12, 1984, National Computer Conference and Exposition, pages 187–193.
ACM Press, 1984.

[MCS05] Andrian Marcus, Denise Comorski, and Andrey Sergeyev. Supporting the evolution
of a software visualization tool through usability studies. In IWPC ’05: Proceedings
of the 13th International Workshop on Program Comprehension, pages 307–316.
IEEE Computer Society Press, 2005.

[MFM03] Andrian Marcus, Louis Feng, and Jonathan I. Maletic. 3D representations for
software visualization. In SoftVis ’03: Proceedings of the 2003 ACM Symposium on
Software Visualization, pages 27–36. ACM Press, 2003.

[MGL06] Michael Meyer, Tudor Gîrba, and Mircea Lungu. Mondrian: An agile visualization
framework. In SoftVis ’06: Proceedings of the 2006 ACM Symposium on Software
Visualization, pages 135–144. ACM Press, 2006.

[MK88] H.A. Muller and K. Klashinsky. Rigi: a system for programming-in-the-large. In
ICSE ’88: Proceedings of the 10th International Conference on Software Engineering,
pages 80–86. IEEE Computer Society Press, 1988.

[ML05] Cédric Mesnage and Michele Lanza. White Coats: Web-visualization of evolving
software in 3D. In VISSOFT ’05: Proceedings of the 3rd IEEE International Work-
shop on Visualizing Software for Understanding and Analysis, pages 40–45. IEEE
Computer Society Press, 2005.

[MLMD01] J. Maletic, J. Leigh, A. Marcus, and G. Dunlap. Visualizing object-oriented software
in Virtual Reality. In IWPC ’01: Proceedings of the 9th International Workshop on
Program Comprehension, pages 26–35. IEEE Computer Society Press, 2001.

[MM03] Jonathan Maletic and Andrian Marcus. CFB: A call for benchmarks - for software
visualization. In VISSOFT ’03: Proceedings of the 2nd IEEE International Workshop
on Visualizing Software for Understanding and Analysis. IEEE Computer Society
Press, 2003.

212 BIBLIOGRAPHY

[MMC02] Jonathan I. Maletic, Andrian Marcus, and Michael Collard. A task oriented view
of software visualization. In VISSOFT ’02: Proceedings of the 1st IEEE International
Workshop on Visualizing Software for Understanding and Analysis, pages 32–40.
IEEE Computer Society Press, 2002.

[MMM+05] Cristina Marinescu, Radu Marinescu, Petru Florin Mihancea, Daniel Ra̧tiu, and
Richard Wettel. iPlasma: An integrated platform for quality assessment of object-
oriented design. In ICSM ’05: Proceedings of the 21st IEEE International Conference
on Software Maintenance, Industrial and Tool Volume, pages 77–80. IEEE Computer
Society Press, 2005.

[MRB+05] Andrian Marcus, Václav Rajlich, Joseph Buchta, Maksym Petrenko, and Andrey
Sergeyev. Static techniques for concept location in object-oriented code. In IWPC
’05: Proceedings of the 13th International Workshop on Program Comprehension,
pages 33–42. IEEE Computer Society Press, 2005.

[Mül86] Hausi A. Müller. Rigi — A Model for Software System Construction, Integration, and
Evaluation based on Module Interface Specifications. PhD thesis, Rice University,
1986.

[Mye83] Brad A. Myers. Incense: A system for displaying data structures. In SIGGRAPH
’83: Proceedings of the 10th annual conference on Computer graphics and interactive
techniques, pages 115–125. ACM Press, 1983.

[Mye86] Brad A. Myers. Visual programming, programming by example, and program
visualization: a taxonomy. SIGCHI Bulletin, 17(4):59–66, 1986.

[Mye90] Brad A. Myers. Taxonomies of visual programming and program visualization.
Journal of Visual Languages and Computing, 1(1):97–123, 1990.

[NDG05] Oscar Nierstrasz, Stéphane Ducasse, and Tudor Gîrba. The story of Moose: an agile
reengineering environment. In ESEC/FSE-13: Proceedings of the 10th European
Software Engineering Conference held jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 1–10. ACM Press, 2005.

[NS73] I. Nassi and B. Shneiderman. Flowchart techniques for structured programming.
ACM SIGPLAN Notices, 8(8):12–26, 1973.

[ODB06] Richard O’Donnell, Alan Dix, and Linden J. Ball. Exploring the PieTree for rep-
resenting numerical hierarchical data. In HCI ’06: Proceedings of International
Workshop on Human-Computer Interaction, pages 239–254. Springer, 2006.

[PAA08] Wim De Pauw, Henrique Andrade, and Lisa Amini. Streamsight: a visualization
tool for large-scale streaming applications. In SoftVis ’08: Proceedings of the 4th
ACM Symposium on Software Visualization, pages 125–134. ACM Press, 2008.

[PBG03] Thomas Panas, Rebecca Berrigan, and John Grundy. A 3D metaphor for software
production visualization. In IV ’03: Proceedings of the Seventh International Confer-
ence on Information Visualization, pages 314–319. IEEE Computer Society Press,
2003.

213 BIBLIOGRAPHY

[PBS93] Blaine A. Price, Ronald M. Baecker, and Ian S. Small. A principled taxonomy of
software visualization. Journal of Visual Languages and Computing, 4(3):211–266,
1993.

[PEQ+07] T. Panas, T. Epperly, D. Quinlan, A. Saebjornsen, and R. Vuduc. Communicating
software architecture using a unified single-view visualization. In ICECCS ’07:
Proceedings of 12th the IEEE International Conference on Engineering Complex Com-
puter Systems, pages 217–228. IEEE Computer Society Press, 2007.

[Pet95] Marian Petre. Why looking isn’t always seeing: readership skills and graphical
programming. Commun. ACM, 38(6):33–44, 1995.

[PGFL05] Martin Pinzger, Harald Gall, Michael Fischer, and Michele Lanza. Visualizing mul-
tiple evolution metrics. In SoftVis ’05: Proceedings of the 2005 ACM Symposium on
Software Visualization, pages 67–75. ACM Press, 2005.

[PHKV93] Wim De Pauw, Richard Helm, Doug Kimelman, and John Vlissides. Visualizing the
behavior of object-oriented systems. In OOPSLA ’93: Proceedings of the 8th annual
conference on Object-oriented programming systems, languages, and applications,
pages 326–337. ACM Press, 1993.

[Pin05] Martin Pinzger. ArchView – Analyzing Evolutionary Aspects of Complex Software
Systems. PhD thesis, Vienna University of Technology, 2005.

[Pla86] William Playfair. The Commercial and Political Atlas. Corry, London, 1786.

[Pla04] Catherine Plaisant. The challenge of information visualization evaluation. In AVI
’04: Proceedings of the Working Conference on Advanced Visual Interfaces, pages
109–116. ACM Press, 2004.

[PLL05] Thomas Panas, Rüdiger Lincke, and Welf Löwe. Online-configuration of software
visualizations with Vizz3D. In SoftVis ’05: Proceedings of the 2005 ACM Symposium
on Software Visualization, pages 173–182. ACM Press, 2005.

[PRW04] Michael J. Pacione, Marc Roper, and Murray Wood. A novel software visualisation
model to support software comprehension. In WCRE ’04: Proceedings of the 11th
Working Conference on Reverse Engineering, pages 70–79. IEEE Computer Society
Press, 2004.

[PSK07] Massimiliano Di Penta, R.E.K. Stirewalt, and Eileen Kraemer. Designing your next
empirical study on program comprehension. In ICPC ’07: Proceedings of the 15th
International Conference on Program Comprehension, pages 281–285. IEEE Com-
puter Society Press, 2007.

[Qua08] Jochen Quante. Do dynamic object process graphs support program understand-
ing? - a controlled experiment. In ICPC ’08: Proceedings of the 16th IEEE In-
ternational Conference on Program Comprehension, pages 73–82. IEEE Computer
Society Press, 2008.

[RC93] Gruia-Catalin Roman and Kenneth C. Cox. A taxonomy of program visualization
systems. Computer, 26(12):11–24, 1993.

214 BIBLIOGRAPHY

[RDGM04] Daniel Ra̧tiu, Stéphane Ducasse, Tudor Gîrba, and Radu Marinescu. Using history
information to improve design flaws detection. In CSMR ’04: Proceedings of the 8th
European Conference on Software Maintenance and Reengineering, pages 223–232.
IEEE Computer Society Press, 2004.

[Rei84] Steven P. Reiss. Pecan: Program development systems that support multiple views.
In ICSE ’84: Proceedings of the 7th International Conference on Software Engineer-
ing, pages 324–333. IEEE Computer Society Press, 1984.

[Rei95] Steven P. Reiss. An engine for the 3D visualization of program information. Journal
of Visual Languages and Computing, 6(3):299–323, 1995.

[RFG05] J. Ratzinger, M. Fischer, and H. Gall. EvoLens: lens-view visualizations of evolu-
tion data. In IWPSE ’05: Proceedings of the 8th International Workshop on Principles
of Software Evolution, pages 103–112. IEEE Computer Society Press, 2005.

[Rie96] Arthur Riel. Object-Oriented Design Heuristics. Addison-Wesley, 1996.

[RMC91] George G. Robertson, Jock D. Mackinlay, and Stuart K. Card. Cone Trees: animated
3D visualizations of hierarchical information. In CHI ’91: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 189–194. ACM Press,
1991.

[RMJ09] Daniel Ra̧tiu, Radu Marinescu, and Jan Jürjens. The logical modularity of pro-
grams. In WCRE ’09: Proceedings of the 16th Working Conference on Reverse Engi-
neering, pages 123–127. IEEE Computer Society Press, 2009.

[SB99] Matthew L. Staples and James M. Bieman. 3-D visualization of software structure.
Advances in Computers, 49:96–143, 1999.

[SDBP98] John T. Stasko, John Domingue, Marc H. Brown, and Blaine A. Price, editors.
Software Visualization - Programming as a Multimedia Experience. The MIT Press,
1998.

[SFM99] M.-A. D. Storey, F. D. Fracchia, and H. A. Müller. Cognitive design elements to
support the construction of a mental model during software exploration. J. Syst.
Softw., 44(3):171–185, 1999.

[Shn92] Ben Shneiderman. Tree visualization with tree-maps: 2-d space-filling approach.
ACM Trans. Graph., 11(1):92–99, 1992.

[Shn96] Ben Shneiderman. The eyes have it: A task by data type taxonomy for informa-
tion visualizations. In VL ’96: Proceedings of the 1996 IEEE Symposium on Visual
Languages, pages 336–343. IEEE Computer Society Press, 1996.

[SM95] M.-A. D. Storey and H. A. Müller. Manipulating and documenting software struc-
tures using SHriMP views. In ICSM ’95: Proceedings of the 11th IEEE Interna-
tional Conference on Software Maintenance, pages 275–284. IEEE Computer Soci-
ety Press, 1995.

215 BIBLIOGRAPHY

[SMDV06] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. Questions programmers ask
during software evolution tasks. In SIGSOFT ’06/FSE-14: Proceedings of the 14th
ACM SIGSOFT international symposium on Foundations of Software Engineering,
pages 23–34. ACM Press, 2006.

[SMW96] M.-A. D. Storey, H.A. Müller, and K. Wong. Manipulating and documenting soft-
ware structures. In Peter D. Eades and Kang Zhang, editors, Software Visualisation,
volume 7, pages 244–263. World Scientific Publishing Co., 1996.

[SOT09] Mariam Sensalire, Patrick Ogao, and Alexandru Telea. Evaluation of software visu-
alization tools: Lessons learned. In VISSOFT ’09: Proceedings of the 5th IEEE Inter-
national Workshop on Visualizing Software for Understanding and Analysis, 2009.

[Sta00] John Stasko. An evaluation of space-filling information visualizations for depicting
hierarchical structures. Int. J. Hum.-Comput. Stud., 53(5):663–694, 2000.

[Sto06] Margaret-Anne Storey. Theories, tools and research methods in program com-
prehension: past, present and future. Software Quality Control, 14(3):187–208,
2006.

[SW65] S. Shapiro and M. Wilk. An analysis of variance test for normality (complete
samples). Biometrika, 52(3–4):591–611, 1965.

[SWM97] Margaret-Anne D. Storey, Kenny Wong, and Hausi A. Müller. How do program
understanding tools affect how programmers understand programs? In WCRE
’97: Proceedings of the Fourth Working Conference on Reverse Engineering, pages
12–21. IEEE Computer Society Press, 1997.

[TA08] Alexandru Telea and David Auber. Code flows: Visualizing structural evolution of
source code. Computer Graphics Forum, 27(3):831–838, May 2008.

[TC09] A.R. Teyseyre and M.R. Campo. An overview of 3D software visualization. IEEE
Transactions on Visualization and Computer Graphics, 15(1):87–105, Jan.-Feb.
2009.

[Tei85] W. Teitelman. A tour through Cedar. IEEE Transactions on Software Engineering,
11:285–302, 1985.

[TM02] Christopher Taylor and Malcolm Munro. Revision towers. In VISSOFT ’02: Pro-
ceedings of the 1st IEEE International Workshop on Visualizing Software for Under-
standing and Analysis, pages 43–50. IEEE Computer Society Press, 2002.

[Tuf90] Edward Tufte. Envisioning Information. Graphics Press, 1990.

[Tuf97] Edward Tufte. Visual Explanations. Graphics Press, 1997.

[Tuf01] Edward Tufte. The Visual Display of Quantitative Information. Graphics Press, 2nd
edition, 2001.

[Tuk77] John W. Tukey. Exploratory Data Analysis. Addison-Wesley, 1977.

[vGB02] Jilles van Gurp and Jan Bosch. Design erosion: problems and causes. Journal of
Systems and Software, 61(2):105–119, 2002.

216 BIBLIOGRAPHY

[VLT07] Lucian Voinea, Johan Lukkien, and Alexandru Telea. Visual assessment of software
evolution. Science of Computer Programming, 65(3):222–248, 2007.

[War04] Colin Ware. Information visualization: perception for design. Morgan Kaufmann
Publishers Inc., 2 edition, 2004.

[WCJ98] U. Wiss, D. Carr, and H. Jonsson. Evaluating three-dimensional information vi-
sualization designs: A case study of three designs. In IV ’98: Proceedings of the
International Conference on Information Visualisation, pages 137–145. IEEE Com-
puter Society Press, 1998.

[Wei98] Gerald M. Weinberg. The Psychology of Computer Programming. Dorset House,
1998.

[Wet08] Richard Wettel. Scripting 3D visualizations with CodeCity. In FAMOOSr ’08: Pro-
ceedings of the 2nd Workshop on FAMIX and Moose in Reengineering, 2008.

[WHH04] J. Wu, A. Hassan, and R. Holt. Exploring software evolution using spectrographs.
In WCRE ’04: Proceedings of the 11th Working Conference on Reverse Engineering,
pages 80–89. IEEE Computer Society Press, 2004.

[WL07a] Richard Wettel and Michele Lanza. Program comprehension through software
habitability. In ICPC ’07: Proceedings of the 15th International Conference on Pro-
gram Comprehension, pages 231–240. IEEE Computer Society Press, 2007.

[WL07b] Richard Wettel and Michele Lanza. Visualizing software systems as cities. In VIS-
SOFT ’07: Proceedings of the 4th IEEE International Workshop on Visualizing Soft-
ware for Understanding and Analysis, pages 92–99. IEEE Computer Society Press,
2007.

[WL08a] Richard Wettel and Michele Lanza. CodeCity. In WASDeTT ’08: In Proceedings of
the 1st International Workshop on Advanced Software Development Tools and Tech-
niques, 2008.

[WL08b] Richard Wettel and Michele Lanza. CodeCity: 3D visualization of large-scale soft-
ware. In ICSE ’08: Proceedings of the 30th International Conference on Software
Engineering, Tool Demo, pages 921–922. ACM Press, 2008.

[WL08c] Richard Wettel and Michele Lanza. Visual exploration of large-scale system evo-
lution. In WCRE ’08: Proceedings of the 15th Working Conference on Reverse Engi-
neering, pages 219–228. IEEE Computer Society Press, 2008.

[WL08d] Richard Wettel and Michele Lanza. Visually localizing design problems with
disharmony maps. In SoftVis ’08: Proceedings of the 4th ACM Symposium on Soft-
ware Visualization, pages 155–164. ACM Press, 2008.

[WLR10] Richard Wettel, Michele Lanza, and Romain Robbes. Empirical validation of
CodeCity: A controlled experiment. Technical Report 2010/05, University of
Lugano, June 2010.

[WRH+00] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Bjöorn Regnell, and
Anders Wesslén. Experimentation in software engineering: an introduction. Kluwer
Academic Publishers, 2000.

217 BIBLIOGRAPHY

[XPM06] Xinrong Xie, Denys Poshyvanyk, and Andrian Marcus. Visualization of CVS repos-
itory information. In WCRE ’06: Proceedings of the 13th Working Conference on
Reverse Engineering, pages 231–242. IEEE Computer Society Press, 2006.

[YM98] P. Young and M. Munro. Visualizing software in Virtual Reality. In IWPC ’98:
Proceedings of the 6th International Workshop on Program Comprehension, pages
19–27. IEEE Computer Society Press, 1998.

[Zha03] Kang Zhang, editor. Software Visualization: From Theory to Practice. Kluwer Aca-
demic Publishers, 2003.

[Zhu07] Ying Zhu. Measuring effective data visualization. In ISVC (2), volume 4842 of
Lecture Notes in Computer Science, pages 652–661. Springer, 2007.

[ZSG79] Marvin Zelkowitz, Alan Shaw, and John Gannon. Principles of Software Engineering
and Design. Prentice Hall, 1979.

218 BIBLIOGRAPHY

	Contents
	List of Figures
	List of Tables
	I Prologue
	Introduction
	The Challenges of Software Understanding
	Reverse Engineering with Software Visualization
	Metaphor-Based Visualization
	Software and the City
	Our Approach
	Contributions
	Roadmap

	A History of Software Visualization
	Foundations of Visualization
	Pre-1980s
	The 1980s
	The 1990s
	The 21st Century
	The Quest for Evidence

	Summary

	II Approach
	A City Metaphor for Program Comprehension
	Introduction
	Modeling Software Systems
	The City Metaphor
	Concept Mapping
	Property Mapping
	Rectangle Packing Layout
	Fine-Grained Representation
	The Progressive Bricks Layout
	Depicting Relations

	Case Studies
	JDK's java Namespace
	A City Tour of ArgoUML
	Analysis Summary

	Related Work
	Remotely Related Work
	Closely Related Work

	Summary

	Visual Analysis of System Evolution
	Introduction
	Modeling Software System History
	Overview of the Approach
	Case Studies
	Coarse-Grained Age Map
	Coarse-Grained Time Travel
	Fine-Grained Age Map & Time Travel
	Fine-Grained Timeline
	Discussion
	Related Work
	Remotely Related Work
	Closely Related Work

	Summary

	Visual Assessment of Design Quality
	Introduction
	Design Harmony
	An Overview of Design Disharmonies
	Example of Detection Strategy: The God Class Disharmony

	Design Disharmony Maps
	Design Problem Presentation

	Case Study Validation
	Class-Level Disharmonies
	Method-Level Disharmonies

	Related Work
	Summary

	Tool Support
	The Process of Visualizing Software Systems as Cities
	CodeCity's Architecture
	Flexibility through View Configurations
	Prototyping Visualizations with Scripting
	Interaction & Navigation
	Usability
	Language-Independence, Scalability, and Performance
	Availability
	Summary

	III Evaluation
	Experimental Design
	Introduction
	Learning from Related Work
	Guidelines for Information Visualization Evaluation
	Empirical Evaluation in Information Visualization
	The Challenges of Software Visualization
	Program Comprehension Tasks
	Guidelines for Software Visualization Evaluation
	Empirical Evaluation in Software Visualization

	Wish List Extracted from the Literature
	Experimental Design
	Research Questions & Hypotheses
	Dependent & Independent Variables
	Controlled Variables
	Tasks
	Treatments

	Summary

	Experimental Operation and Results
	Introduction
	Operation
	The Pilot Study
	The Experimental Runs

	Data Collection and Marking
	Personal Information
	Timing Data
	Correctness Data
	Participants' Feedback

	Data Analysis
	Preliminary Data Analysis
	Outlier Analysis

	Subject Analysis
	Experimental Results
	Analysis Results on Correctness
	Analysis Results on Completion Time
	Task Analysis
	Qualitative Analysis
	Debriefing Questionnaire
	Experience Level
	Background

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Summary

	IV Epilogue
	Conclusions
	Reflections
	Versatility
	Efficiency
	People & Tools

	Contributions
	Future Work
	Final Thoughts

	V Appendix
	Experimental Data
	Pre-Experiment Questionnaire
	Experiment Questionnaire
	Introduction
	Tasks

	Debriefing Questionnaire
	Task Solution Oracles
	T1: Azureus, analyzed with CodeCity
	T2: Findbugs, analyzed with CodeCity
	T3: Azureus, analyzed with Eclipse + Spreadsheet with metrics
	T4: Findbugs, analyzed with Eclipse + Spreadsheet with metrics

	Data

	VI Bibliography

