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Abstract

Mining Software Repositories (MSR) has become a complete and mature research field, also
due to the increasing number of open source projects publicly available. Repository hosting
services such as GitHub provide unprecedented access to millions of events generated during
development activities (e.g., code commits, pull requests), that can be mined and analyzed
to extract new pieces of knowledge. By analyzing the source code of a large corpus of soft-
ware systems, recent work showed that most software is natural, meaning that it is likely to
be repetitive and predictable. In other words, development and maintenance activities are
likely the results of unexposed code change patterns that, if properly exploited, can be used to
support code-related activities (e.g., implementing a new feature).

Starting from these observations, we formulate our thesis statement: Mining code change
patterns from open source repositories enables researchers to gather large-scale, historical infor-
mation about development and maintenance activities performed by developers. The collected
empirical knowledge, once converted into actionable items, can support software developers on
code-related tasks.

We investigated the possibility of acquiring new empirical knowledge from mining three
specific types of code change patterns in open source repositories: (i) the introduction and
fix of code-comment inconsistencies, (ii) omitted code changes in developers’ commits and
(iii) implementation patterns followed by developers when implementing a new feature. We
leveraged the knowledge acquired from the last type of patterns, to design and build FeaRS,
an approach and a tool that, given the methods developers already wrote in the IDE, is able
to suggest the complete code of the next method they are likely to implement. Our results
show that mining unexposed code change patterns from open source repositories can help
in better understanding development activities and potentially support developers during
software development.
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1
Introduction

The rise of open source development and the adoption of version control systems as a de
facto standard when developing software, has resulted in an unprecedented amount of data
that can be mined and analyzed to collect new knowledge about how software systems are
developed and maintained. In the last decade, this resulted in the growth of a new research
field named Mining Software Repositories (MSR) [1], having the aim of analyzing and cross-
linking the rich data available in software repositories to discover interesting and actionable
information about software systems and projects. While most MSR studies focus on gath-
ering empirical knowledge about specific research questions of interest [2, 3, 4, 5, 6, 7],
researchers are also using the data mined from software repositories to create a new gen-
eration of recommender systems supporting software developers in everyday activities [8].
The goal of these tools is to increase the productivity of software developers, by lowering
their learning curves when dealing with unfamiliar code, and by maximizing the quality of
the code they write.

One research direction enabled by MSR is the identification of unexposed code change
patterns (i.e., recurrent coding patterns performed by software developers). Recent research
showed that source code is natural [7, 9, 10, 11, 12, 13, 14], meaning that most of it is
likely to be repetitive and predictable. This observation led to many studies investigating
the phenomenon. For example, Nguyen et al. [15] found that, on average, 71% of an API’s
usage in a project is covered by API usage patterns (i.e., repetitive code snippets using an
API and sharing the same variables and control structures). They also indicated that 12%
of the routines are repeated within a project [16], where a routine is defined as a portion
of code that performs a specific task independently and can be called by the remaining code
(e.g., a procedure, function, or method). Based on these findings, we believe that useful and
important code change patterns can be uncovered from the huge amount of data collected
from open source repositories. For example, a change to the code which writes data to a
file may require changes to the code which reads data from the file, despite the absence of
dependencies between these two pieces of code.

Despite the many works in the MSR field, there is still little evidence about how unex-
posed code change patterns can be exploited to support and automate code-related tasks.
This is the main goal of this thesis.

1



2 Introduction

1.1 Thesis Statement

We formulate our thesis statement as follows:

Mining code change patterns from open source repositories enables researchers to
gather large-scale, historical information about development and maintenance ac-
tivities performed by developers. The collected empirical knowledge, once converted
into actionable items, can support software developers on code-related tasks.

To validate our thesis, we investigated the possibility of acquiring new empirical knowl-
edge from mining three specific types of code change patterns in open source repositories:
(i) the introductions and fixes of code-comment inconsistencies, (ii) omitted code changes in
developers’ commits and (iii) implementation patterns followed by developers when imple-
menting a new feature. We leveraged the knowledge acquired from the last type of patterns,
to design and build FeaRS, an approach and a tool that, given the methods developers al-
ready wrote in the IDE, is able to suggest the complete code of the next method they are
likely to implement.

The three code change patterns we address, while not strictly related to each other, have
been selected since they share the following characteristics: (i) all of them can be exploited,
in principle, to support developers during coding tasks (e.g., by automatically identifying
code-comment inconsistencies or, as we did, by recommending the next method to imple-
ment); (ii) while there are a few studies on these code change patterns, most of them have
been performed on a small scale, not taking full advantage of recent MSR techniques; (iii)
they can all be investigated by looking at the same data source (i.e., historical data in open
source repositories), making it easier to integrate, in future, techniques built on top of them.

Also, these three code change patterns cover the four major activities in developers’ com-
mits [17]: forward engineering (e.g., implementing a new feature) as a development activity;
and reengineering (e.g., refactoring the code), corrective engineering (e.g., fixing an issue)
and management (e.g., updating documentation) as maintenance activities. For instance,
the introduction of code-comment inconsistencies often result from a reengineering activity
and the fixing of those inconsistencies always represent a management activity. Thus, in the
most ideal situation, a highly integrated technique can be developed to support practition-
ers on different stages during the software development process. In addition, the empirical
knowledge we gained from this thesis can provide a hint for researchers to explore other
unexposed code change patterns (e.g., see Section 4.2.2).

1.2 Research Contributions

The contributions of our research can be grouped in two high-level categories: i) Mining
change patterns to build new empirical knowledge about development and maintenance
activities in open source systems, and ii) Developing techniques and tools leveraging mined
patterns to support developers in code-related tasks.
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1.2.1 Mining change patterns to build new empirical knowledge about development
and maintenance activities performed in open source systems

Introductions and Fixes of Code-Comment Inconsistencies

Any code-related activity lays its foundations in program comprehension: before fixing a
bug, refactoring a class, or writing new tests, developers first need to acquire knowledge
about the involved code components. While code comments usually plays an important
role to comprehend the source code, developers do not always have the chance to carefully
comment new code and/or to update comments as consequence of code changes. This lat-
ter scenario might result in the introduction of code-comment inconsistencies, manifesting
when the source code does not co-evolve with the related comments. To raise the knowl-
edge about code-comment inconsistencies, we performed a large-scale empirical study on
the co-evolution of code and comments. We mined the complete change history of 1,500
Java projects and, for each commit, we captured fine-grained changes performed in code
(e.g., change of a selection statement) as well as update, delete, and insert operations per-
formed in the related comments. Overall, this process resulted in a database of ∼476 GB
containing ∼1.3 Billion AST-level operations impacting code or comments. Using this data,
we studied the extent to which code changes impacting different code constructs (e.g., liter-
als, iteration statements) trigger the update of the related code comments (e.g., the developer
adds a try statement and updates the method comment to “document” the changed code be-
havior). Then, we manually analyzed 500 commits related to the fixing of code-comment
inconsistencies. The output of this analysis is a taxonomy of code comment-related changes
implemented by developers, from which we present relevant cases related to code-comment
inconsistencies, and discuss implications for researchers and practitioners. Our investigation
resulted in the following publication:

A Large-Scale Empirical Study on Code-Comment Inconsistencies

Fengcai Wen, Csaba Nagy, Gabriele Bavota and Michele Lanza. In Proceedings of the 27th International
Conference on Program Comprehension (ICPC 2019) – Technical Research, pp. 53-64, 2019

Omitted Code Changes in Developers’ Commits

During software development and maintenance, a single cohesive change (e.g., a bug fix)
could be split across several commits. This can be due to omitted code changes and/or the
need for fixing a mistake in the first attempt to implement the change. Park et al. [18]
showed that 22% to 33% of bugs require more than one fix attempt (i.e., supplementary
patches). Also, studying supplementary patches can be instrumental in designing recom-
mender systems able to reduce omission errors by alerting developers. In a subsequent work
by Park et al. [19], the authors tried to predict additional change locations for real-world
omission errors. Due to the limited empirical evidence about the nature of omitted changes,
this is still an open challenge. Indeed, while the work by Park et al. [18] investigates omit-
ted changes, it explicitly focuses on supplementary patches for bug-fixing activities, ignoring
other types of code changes (e.g., implementation of new features, refactoring).

To understand the types of omitted code change in software repositories, we performed
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a qualitative study focusing on “quick remedy commits” performed by developers. We de-
fine as quick remedy commits those commits that (i) quickly succeed a commit performed by
the same developer in the same repository; and (ii) aim at remedying to issues introduced
as the result of code changes omitted in the previous commit (e.g., fix references to code
components that have been broken as a consequence of a rename refactoring) and/or of
introduced errors. We decided to focus on remedy commits that are temporally close to the
original change they fix for two reasons. First, it is easier to establish a clear link between
two commits by the same developer if they are performed within a few minutes one from the
other. Second, it is challenging to prevent omission errors automatically; thus, we decided
to focus on omission errors that, since fixed within few minutes, are likely not so complex.
This allows gathering empirical knowledge to take a first step in automating the prevention
of a basic set of omission errors that, as we show, can be responsible for bugs and major code
inconsistencies if not promptly fixed. We manually analyzed 500 quick remedy commits to
identify the rationale behind them and to define a taxonomy categorizing the types of issues
introduced by developers during commit activities that trigger a remedy commit. Our in-
vestigation resulted in the following publication, awarded with an ACM Distinguished Paper
Award:

An Empirical Study of Quick Remedy Commits

Fengcai Wen, Csaba Nagy, Michele Lanza, and Gabriele Bavota. In Proceedings of the 28th Interna-
tional Conference on Program Comprehension (ICPC 2020) – Technical Research, pp. 60-71, 2020 (ACM
Distinguished Paper Award)

In a followup study, we investigated the impact of quick remedy commits in MSR stud-
ies. We assume that, depending on the specific research questions an MSR study wants to
answer, different choices must be taken about whether quick remedy commits should be con-
sidered separately from the original commit they are fixing. For example, in studies aimed
at characterizing the expertise of software developers by analyzing their past code changes,
the two commits should be likely considered as a single change. Instead, for studies looking
for bug-introducing commits, the two commits could be considered separately. In this thesis,
we particularly focus on investigating the impact of one specific type of quick remedy com-
mits (reverted commits) on two frequently performed “data collection tasks” in MSR studies
(identifying bug-fixing commits and mining refactoring operations). The results show the
potential impact that these commits have on the data collection in MSR studies. The results
of this work has been accepted by the Springer Journal of Empirical Software Engineering
as an extension of the previous publication:

Quick Remedy Commits and Their Impact on Mining Software Repositories

Fengcai Wen, Csaba Nagy, Michele Lanza, and Gabriele Bavota. In Springer Journal of Empirical
Software Engineering 27, 14 (2022),

Implementation Patterns Followed by Developers when Implementing a New Feature

Code completion techniques assist developers in speeding up the implementation of new
code. However, they are only able to recommend the next few code token(s) developers are
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likely to write. One goal of our research is to collect knowledge about implementation pat-
terns followed by developers at a more abstract granularity level (e.g., which are the methods
usually implemented together?). We started by building a knowledge base of method-level
implementation patterns followed by Android developers. We mined from commits per-
formed in the change history of open source Android apps, the set of new methods created
in each commit. Using this information, we identified implementation patterns repeatedly
followed by Android developers, e.g., the implementation of m1 could imply the implemen-
tation of m2, . . . , mn, and exploit them to build a recommender system pushing automated
coding beyond the capabilities of modern code completion.

1.2.2 Leverage mined patterns to develop techniques and tools supporting devel-
opers in code-related tasks

Recommending the Next Full Method to Implement in a Given Context

Using the knowledge base previously described, we can identify implementation patterns
repeatedly adopted by Android developers. However, the identification of these implemen-
tation patterns is far from trivial. Indeed, two commits ck and c j performed in two differ-
ent repositories may implement different sets of new methods (e.g., Mk = {m1, m2} and
M j = {m3, m4}) that, however, represent the same implementation pattern (i.e., m1 = m3
and m2 = m4). Recognizing this situation requires to identify groups of methods that are
repeatedly implemented together in different commits/apps, and not just by chance in a
single/few commit(s).

By combining MSR with clustering techniques and static code analysis, we built FeaRS, an
approach and an IDE plugin that monitors the code written by Android developers in the IDE.
It recommends the complete code of the next method (i.e., signature and method body) they
are likely to implement based on method(s) they have already implemented. The performed
empirical evaluation showed that FeaRS can successfully generate useful recommendations
with a precision of 72% in a simulated real usage scenario, but also highlights some future
challenges. This work has been published on ICSE 2021:

Siri, Write the Next Method

Fengcai Wen, Emad Aghajani, Csaba Nagy, Michele Lanza and Gabriele Bavota. In Proceedings of the
43rd International Conference on Software Engineering (ICSE 2021) – Technical Track, pp. 138-149,
2021

We also present FeaRS as a tool demonstration at ICSME 2021 focusing on the engineer-
ing part of building FeaRS and release FeaRS as an open source project:

FeaRS: Recommending Complete Android Method Implementations

Fengcai Wen, Valentina Ferrari, Emad Aghajani, Csaba Nagy, Michele Lanza and Gabriele Bavota. In
Proceedings of the 37th International Conference on Software Maintenance and Evolution (ICSME 2021)
– Tool Demo Track, To appear



6 Introduction

1.3 Outline

This dissertation is structured in the following chapters:

Chapter 2 presents an overview of the state of the art, including the most relevant literature
according to the three sub-topics covered in this thesis: (i) studying code-comment
inconsistencies, (ii) investigating quick remedy commits and their impact on mining
software repositories, and (iii) using code change patterns for code recommendations.

Chapter 3 describes our investigation in the co-evolution of code and comments in a large-
scale setting. This chapter also presents our qualitative analysis on the fixing of code-
comment inconsistencies in the studied systems.

Chapter 4 presents our investigation on omitted code changes in software repositories. To
be more specific, we defined and studied “quick remedy commits” which are related to
the introduction and fix of simple omission errors.

Chapter 5 presents our approach for a source code recommender system that can take
existing code written by developers as input, and recommends the next full method
they are likely to implement.

Chapter 6 concludes this dissertation by summarizing our work and indicating future re-
search directions based on the results we achieved.



2
State of the Art

2.1 Introduction

With the rapid growing of MSR research field, researchers have conducted many studies min-
ing and leveraging change patterns from open source repositories to build empirical knowl-
edge and support developers in coding tasks. In this chapter, we introduce the most relevant
literature according to the three sub-topics covered in this thesis: (i) studying code-comment
inconsistencies, (ii) investigating quick remedy commits and their impact on mining software
repositories, and (iii) using code change patterns for code recommendations. Our goal is to
broaden the empirical knowledge in these three directions and move one step forward to
support developers leveraging the acquired knowledge, by quantitatively and qualitatively
mining open source repositories in a larger scale at the same time.

2.2 Empirical Studies on Developers’ Commits

There is a vast literature of empirical studies investigating developers’ commits for various
purposes: e.g., summarizing the reasons for code changes, investigating the effects of a
change on code quality, analyzing the relation between code changes and time, and iden-
tifying code change patterns. Meanwhile, considering the validity of those MSR studies,
researchers also have realized that some commits can be meaningless or deceptive which
might introduce bias and noise in mining change histories. In this section, we present an
overview of the related work that close to the topic of our study described in Chapter 4.
Compared to the literature we are going to discuss, our study defines a new type of commits
(i.e., quick remedy commits) where developers claimed to fix or improve a change recently
committed. We build a taxonomy trying to understand the rational behind this specific type
of commits and their possible impact on code quality. We also look into the possible bias
and noise introduced by this type of commits while performing some data collection tasks in
MSR studies.

7
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2.2.1 Reasons for Changes

Mockus et al. [20] studied a large legacy telecommunication system to identify reasons for
software changes. Using an automatic classification algorithm, they discovered three pri-
mary reasons for changes according to maintenance activities: adding new functionality
(adaptive), repairing faults (corrective), and restructuring the code to accommodate future
changes (perfective). Besides, they noticed that several changes fall under the fourth cate-
gory of inspection rework changes, i.e., changes to implement the recommendations of code
inspections. They also found a strong relationship between the type and size of a change
and the difficulty of a change.

Hattori and Lanza [17] conducted an empirical study on nine large open source systems.
They defined the size of a commit based on the number of involved files. They classified
commits according to the comments information into development (forward engineering)
or maintenance (reengineering, corrective engineering, and management) categories.

Hindle et al. [4] conducted a study on large commits and created a taxonomy of the
purpose of large commits. They also found that large commits are more focused on perfective
maintenance, while small commits are more related to corrective maintenance.

2.2.2 Effects of a Change on Code Quality

Small Changes. Purushothaman and Perry [21] investigated small source code changes (i.e.,
one-line changes) during the development process. An interesting finding of their work is
that there is less than a four percent probability that a one-line change introduces a fault in
the code.
Large Changes. Sliwerski et al. [22] studied fix-inducing changes (i.e., changes that lead to
problems indicated by fixes) in Eclipse and Mozilla. They located bug-fix commits by extract-
ing information from bug report, and determined the earlier changes at the same location
as fix-inducing commits. Then they investigated the size of those commits (i.e., number of
files touched) and found out that large commits have higher chances of introducing bugs.
Social Characteristics. Eyolfson et al. [23] investigated the bug-fix time as the time from
the earliest commit that introduced the bug to the bug-fixing commit. Their findings suggest
that the time and date of a code update may affect the quality of the code. Sliwerski et al.
[22] also investigated the relation between the quality of code changes and the day of week
they were applied. The results show that commits performed on Friday are more likely to
lead to problems.

In an earlier study, Claes et al. [24] also studied developers’ working hours by investigat-
ing the timestamps of commit activities. They found that developers mainly work in regular
office hours, and they did not find support that project maturation would decrease irregular
working hours.

Bird et al. [25] mined commits in Windows Vista and Windows 7 to investigate the
relationship between code ownership and software quality. They found that high levels of
ownership, specifically high values for the proportion of ownership for the top owners, or
high values for major, and low values of minor contributors, are associated with fewer de-
fects.
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Rahman et al. [26] found that implicated code is more closely related to the contribution
of a single developer. Their findings also indicate that an author’s specialized experience in
the target file is more important than general experience.

Gonzales-Barahona et al. [27] investigated in FLOSS projects from the Mozilla commu-
nity whether contributors fixing a bug are the same introducing and seeding them in the first
place. Their results show that in 80% of the cases, the bug-fixing activity involves source
code modified by at most two developers. Hence, in most of the cases, the bug fixing process
is not carried out by the same developers.
Supplementary Patches. Park et al. [18] studied bugs whose initial patches were later
considered incomplete and to which programmers applied supplementary patches. They ex-
amined three open source projects: Eclipse JDT core, Eclipse SWT, and Mozilla. They found
that a significant portion of bugs fall in this category while their causes are often diverse,
e.g., missed port changes, incorrect handling of conditional statements, or incomplete refac-
toring. In their follow-up work [19, 28] they further investigated supplementary patches,
and the results showed that only 7 % to 17 % of supplementary patches had content similar
to their initial patches, which implies that a separate code clone analysis could not predict
the supplementary patch location.

An et al. [29] found that supplementary bug fixes accounted for 10.3% to 26.9% of total
bug reports. Also, in the subject systems, a high percentage of the supplementary fixes (i.e.,
from 21.6% to 33.8%) had been re-opened.
Consecutive Changes. Dai et al. [30] investigated the relationship between consecutive
changes and software quality. They introduced two novel concepts of consecutive changes:
chain of consecutive bug-fixing file versions, and chain of consecutive file versions where
each pair of adjacent versions has different authors. They found that those consecutive
changes have a negative impact on the later file versions in the short term, especially when
the length of the change chain is four or five.
Inconsistent Changes. Bettenburg et al. [31] conducted an empirical study on inconsistent
changes to code clones in two large open source software systems. They observed that the
number of defects caused by inconsistent changes to code clones was substantially lower at
the release level, compared to the revision level. Their findings suggest that developers can
effectively manage and control the evolution of cloned code at the release level.
Incorrect Changes. Yin et al. [32] presented a comprehensive characteristic study on in-
correct bug-fixes from large operating system code bases, including Linux, OpenSolaris, and
FreeBSD. They found that at least 14.8%-24.4% of sampled fixes for post-release bugs in
these large operating systems were incorrect.
Changes and Refactoring. Palomba et al. [33] conducted a quantitative investigation of the
relationship between different types of code changes and different refactoring types. They
found that developers tend to apply a higher number of refactoring operations when they
are fixing bugs.

Bavota et al. [34] presented a study aimed at investigating to what extent refactoring
activities induce faults. They showed that refactorings involving hierarchies (e.g.,pull down
method) induce faults very frequently. Conversely, other kinds of refactorings are likely to
be harmless in practice.
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Differently from the above-discussed studies, we focus on investigating what types of
omission errors performed by developers can be quickly spotted and fixed, and their possible
impact on code quality.

2.2.3 Changes and Time

Rodriguez-Perez et al. [35] conducted two case studies and studied the Time To Notify (TNN)
metric which describes how much time it takes for a bug to be notified/reported since the bug
was introduced into the source code. They examined how this metric is related to software
maintenance and evolution. Interestingly, they found relatively high mean values of TTN in
the projects: 312 and 431 days.

Kim et al. [36] studied the bug-fix time of files in ArgoUML and PostgreSQL. Their statis-
tics showed that fixing 50% of the bugs requires 100 to 300 days, while the median bug-fix
time is about 200 days.

2.2.4 Change Patterns

Pan et al. [37] presented an automatic approach in which software history data is mined
to find patterns in bug fix changes and automatically categorize bugs. They defined bug fix
patterns (e.g., method call with different actual parameter values) which covered 45-63 %
of bug fixes in seven open source projects.

Zhao et al. [38] conducted an empirical study to investigate the characteristics of change
types in bug fixing code. They proposed a change classification schema and developed an
automatic classification tool to categorize changes into five change types. They found that
interface related code changes are the most frequent bug-fixing changes.

In a related research thread, Martinez and Monperrus [39] presented Coming, a tool to
mine change pattern (i.e., a set of changes between two revisions and the elements affected
by those changes) instances from git commits. The main purpose of this tool is to help a
researcher to (i) filter the revisions of a studied system that are relevant for his research,
and (ii) captures the commits that introduce a set of particular code changes (e.g., adding
if-return statements).

Change patterns have also been exploited recently to train neural networks in order to
automatically reproduce code changes implemented by developers in pull requests of open
source projects [40] or to learn how to automatically fix bugs [41].

2.2.5 Bias and Noise in Mining Change Histories

Many approaches and studies depend on the quality of the dataset produced by mining
change histories. Discussions about the bias in data collected by mining repositories have
gained more attention recently. As Bird et al. [3] say in a study on bias in bug-fix datasets:
“bias is a critical problem that threatens both the effectiveness of processes that rely on biased
datasets to build prediction models and the generalizability of hypotheses tested on biased data”.
Here, we overview the potential causes and impact of bias and noise in mining studies.
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Impact of Non-Essential Changes. Kawrykow and Robillard [42] observed that software
changes are often accompanied by non-essential modifications, such as local variable refac-
torings, or textual differences induced as part of a rename refactoring. They studied code
changes in over 24,000 changesets of seven open-source systems and observed non-essential
changes in their history. They found that up to 15.5% of a system’s method updates were
due to non-essential differences among interesting observations.

The authors also investigated the impact of non-essential changes on change-based anal-
yses in their same research work [42]. They implement a method-pair association rule min-
ing analysis similar to the approach of Zimmermann et al. [43]. This approach, given a set
of changes, suggests and predicts likely further changes. They found that removing non-
essential method updates improved the precision of the recommendations by 10.5% and
decreased their recall by 4.2%.
Impact of Tangled Changes. Herzig et al. [44] defined a tangle change as a single commit
which consists of separate changes (e.g., fixing a bug and adding a new feature). They found
that up to 15% of all bug fixes include tangled changes.

Later, they also showed that tangled changes could significantly impact the accuracy of
defect prediction models assessed in empirical studies [45].
Impact of Untracked Changes. Hora et al. [46] claimed that changes affecting code entities’
names (untracked changes) present a potential threat to MSR studies. For example, a method
rename could be misinterpreted as the deletion and the addition of a method, thus, splitting
its history. Based on an empirical analysis of 15 Java systems, they found that between
10 and 21% of the method level changes are untracked, hence, should be systematically
considered by MSR studies.
Bias in Bug Localization and Prediction. Kochhar et al. studied biases in bug localization
[47]. They identified potential causes that can impact the validity of the results reported in
studies. One of the main reasons is that files modified in commits that fix the bugs might not
contain the bug. Instead, files are often changed because of refactorings or modifications to
program comments.

Kim et al. [48] measured the impact of noise on defect prediction models built using
historical defect data obtained by mining software repositories. They consider false positives
and false negatives as noise in such dataset. They found that, for large defect datasets,
noises alone do not lead to substantial performance differences. However, their prediction
performance decreased significantly when the dataset contained 20%-35% of both FP and
FN noises.

Rahman et al. [49] assessed whether the size of the dataset or bias affects the perfor-
mance of defect prediction approaches. Similar to the findings of Kim et al. [48], they
conclude that size matters at least as much as bias.
Noise in History Slicing. Li et al. [50] presented a semantic history slicing approach to
extract changes related to a particular functionality. As they say, state-of-the-art techniques
tend to over-approximate the inferred changes, and their slice histories may contain irrel-
evant changes. Their approach implements a method to untangle unrelated changes intro-
duced in a single commit.
Threats in Aggregating Software Repository Data. Robillard et al. [51] investigated po-
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tential threats to validity associated with metrics that summarize software repository data.
They conducted a case study in which they retrieved and analyzed every file considered aban-
doned to investigate the files’ properties, including size, file type, and amount of comments.
As a result, they identified eight major threats that can generalize to software process met-
rics derived from repository data. These threats are fragility, file content, file role, comment,
contributor involvement, quantization, architectural sensitivity, and exceptional action.

Apart from these studies, our research also investigates the possible bias and noise intro-
duced by one type of quick remedy commits while mining the change history of open source
repositories.

2.2.6 Summing Up

As discussed above, previous work investigated code changes from several different points
of view. However, to the best of our knowledge, the study presented in Chapter 4 is the first
shedding some light on the phenomenon of quick remedy commits. Indeed, while previous
studies looked at supplementary bug-fixes [18, 19, 28], their focus was limited to bug-fixing
activities, while we looked at remedy commits from a broader perspective. For this reason,
our work complements previous findings reported in the literature. Also, we complement
studies related to bias and noise in MSR studies by investigating the role played by reverted
commits (i.e., a specific type of quick remedy commits in which changes from a previous
commit are undone) on data collected for MSR studies.

2.3 Introduction and Fix of Code-Comment Inconsistencies

In Chapter 3 we study code-comment inconsistencies to understand how code and comments
co-evolve, to identify coding activities triggering/not-triggering the introduction of code-
comment inconsistencies, and to investigate the types of inconsistencies fixed by developers.
In this section, we discuss related work concerning (i) empirical studies on code comments,
and (ii) approaches for the detection of code-comment inconsistencies. Compared to these
works, we present the largest empirical study to date on code-comment evolution and incon-
sistencies. As a result, our research provided an extensive database and a taxonomy which
already enabled other works on detecting code-comment inconsistencies [52, 53].

2.3.1 Empirical Studies on Code Comments

Woodfield et al. [54] conducted a user study with 48 programmers and showed that com-
mented code is better understood by developers as compared to non-commented code.

Ying et al. [55] analyzed the usage of code comments in the IBM internal codebase.
They show that comments are not only a means to document the source code, but also a
communication channel towards colleagues, e.g., to assign tasks and keep tracks of ongoing
coding activities. Their work also showed that comments are very challenging to analyze
automatically because they have ambiguous context and scope.
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Arnaoudova et al. [56] analyzed how developers perceive linguistic antipatterns (LAs),
e.g., poor software documentation practices that result in code-comment inconsistencies.
Aghajani et al. [57] showed that LAs lead to a 29% higher chance of introducing bugs,
highlighting that outdated code comments have a negative impact on code quality.

McBurney and McMillan [58] compared code summaries written by code authors and
readers (i.e., non-authors performing code understanding). They used the Short Text Se-
mantic Similarity (STSS) metric to assess the similarity between source code and summaries
written by the authors and compared it to the similarity between the code and the summaries
written by the readers. They found that readers rely more on source code than authors when
summarizing the code.

Padioleau et al. [59] proposed a taxonomy based on meanings of comments and man-
ually classified 1,050 comments. They found 52.6% of these comments can be leveraged
to improve software reliability and increase programmer productivity. Pascarella and Bac-
chelli [6] presented a hierarchical taxonomy of types of code comments for Java projects and
experimented with automatically classifying code comments. Such a taxonomy, composed
of six top categories and 16 inner categories, was built by manually analyzing 2,000 code
comments. Later, Pascarella [60] conducted a similar study in the context of Java mobile
applications, and the result shows only a marginal difference exists between desktop and
mobile apps. The taxonomy presented later in our study, differently from the one in [6, 59],
aims at classifying the types of code-comment inconsistencies fixed by software developers.

Other authors studied the evolution of code comments. Jiang and Hassan [61] con-
ducted a study on the evolution of comments in PostgreSQL. They investigated the trend
over time of the percentage of commented functions in PostgreSQL. Their results reveal that
the proportion of commented functions remains constant over time.

Arafat et al. [62] studied the density of comments (i.e., the number of comment lines
divided by the number of code lines) in the history of 5,229 open source projects written in
different programming languages. They show that the average comment density depends
on the programming language (with the highest one of 25% measured for Java systems),
while it is not impacted by the project and team size.

Ibrahim et al. [63] investigated the relationship between comment update practices and
software bugs introduction in three open-source systems. Their findings show that abnor-
mal comment update behavior (e.g., missing to update a comment in a subsystem whose
comments are always updated) leads to a higher probability of introducing bugs.

Linares-Vasquez et al. [64] looked at how developers described database usages in
method comments and found that database-related method comments are far less frequently
updated than the source code.

Fluri et al. [65] investigated how comments and source code co-evolved over time in
three open source systems. They observed that 23%, 52%, and 43% of all comment changes
in ArgoUML, Azureus, and JDT Core respectively, were due to source code changes, and in
97% of these cases the comment changes occurred in the same revision as the associated
code change. However, newly added code barely got commented.

In a follow-up work, Fluri et al. [66] investigated the co-evolution between code and
comment in eight systems. They found that the ratio between the growth of code and com-
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ments is constant but confirmed the previous observation about the frequent lack of comment
updates for newly added code. They also found that: (i) the type of code entity impacts its
likelihood of being commented (e.g., if statements are commented more often than other
types of statements), (ii) 90% of comment changes represent a simultaneous co-evolution
with code (i.e., they change in the same revision), and (iii) surprisingly API comments are
often adapted retroactively.

2.3.2 Automatic Assessment of Comments Quality

Researchers have developed tools and metrics to capture the quality of code comments.
Khamis et al. [67] developed JavadocMiner, an approach to assess the quality of Javadoc
comments. JavadocMiner exploits Natural Language Processing (NLP) to evaluate the “qual-
ity” of the language used in the comment as well as its consistency with the source code.
The quality of the language is assessed using several heuristics (e.g., checking whether the
comment uses well-formed sentences including nouns and verbs) combined with readability
metrics such as the Gunning Fog Index. The consistency between code and comments is also
checked with a heuristic-based approach, e.g., a method having a return type and parame-
ters is expected to have these elements documented in the Javadoc with the @return and
@param tags.

Steidl et al. [68] also proposed an approach for the automatic assessment of comments’
quality. First, their approach uses machine learning to classify the “type” of code comment
(e.g., copyright comment, header comment). Second, a quality model is defined to assess
the comments’ quality. Also in this case, the model is based on a number of heuristics (e.g.,
the coherence of the vocabulary used in code and comments). On a similar line of research,
Scalabrino et al. [69] used the semantic (textual) consistency between source code and
comments to assess code readability, conjecturing that the higher this consistency, the higher
the readability of the commented code.

Other authors explicitly focused on the automatic detection of code-comment inconsis-
tencies. Seminal in this area are the works by Tan et al. [70, 71]. First, they presented
iComment [70], a technique using NLP, machine learning, and program analysis to detect
code-comment inconsistencies. iComment is able to detect inconsistencies related to the us-
age of locking mechanisms in code and their description in comments. This technique was
evaluated on four systems (Linux, Mozilla, Wine, and Apache) showing its ability to identify
inconsistencies confirmed by the original developers.

In a follow-up work, Tan et al. [71] also presented @TCOMMENT, an approach able to
test the consistency between Javadoc comments related to null values and exceptions with
the behavior of the related method’s body. @TCOMMENT has been experimented on seven
open source projects, identifying inconsistencies confirmed by developers.

Similarly, Zhou et al. [72] devised a first-order logic-based approach detecting inconsis-
tencies related to parameter constraints and exceptions in API documentation. The approach
was able to detect 1,146 defective document directives with a ∼80% precision.

A rule-based approach named Fraco was proposed by Ratol et al. [73] to detect code-
comment inconsistencies resulting from rename refactoring operations performed on iden-
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tifiers. Their evaluation shows the superior performance ensured by FRACO as compared to
the rename refactoring support implemented in Eclipse.

Recent works also started investigating on detecting just-in-time inconsistencies instead
of pre-existing inconsistencies. Liu et al. [74] analyzed historical versions of existing projects
to train a machine learner able to identify comments that need to be updated during code
changes. The approach uses a random forest classifier with 64 hand-engineered features cap-
turing, for example, the diff of the implemented changes, to automatically detect outdated
comments. The authors report a ∼75% detection precision for their approach.

Stulova et al. [52] present a preliminary investigation of a technique that uses BOW-
based similarity metrics to map a comment to the AST nodes of the method signature (be-
fore the code changes). This mapping is used to check whether the code changes have
triggered an inconsistency in the corresponding comments.

Liu et al. [53] propose a novel approach, namely CUP, to not only detect just-in-time
inconsistent comments, but also automatically update them. CUP is based on a neural
sequence-to-sequence (seq2seq) model learning comment update patterns from historical
data. Their experiments show that CUP achieves significant improvements over three base-
lines on just-in-time comment updating.

Finally, a related research thread is the one presenting techniques to detect self-admitted
technical debt (SATD) in code comments [75, 76, 77, 78, 79]. These techniques, while not
directly related to the quality of code comments, use these latter to make the development
team aware of SATD.

2.3.3 Summing Up

While seminal work investigating the co-evolution of code and comments [61, 63, 65, 66]
limited their analyses to the change history of a few software systems (less than 10), our
study presented in Chapter 3 is performed on a much larger scale, involving the change
history of 1,500 projects. Also, we complement this quantitative analysis with a manually
defined taxonomy of code-comment inconsistencies fixed by developers. While our work
is not related to the automatic assessment of comments’ quality, it still provides empirical
knowledge useful to devise novel approaches for the detection of “problematic” code com-
ments (e.g., the dataset built as output of our study has been already exploited in works on
detecting inconsistent comments [52, 53]).

2.4 Source Code Recommender Systems

One of the contributions of this thesis is FeaRS, an approach that recommends to developer
the next method to write (see Chapter 5). FeaRS is one of the many recommender systems
proposed in the software engineering literature. The latter have been proposed to support
many different tasks such as, the recommendation of formal and informal documentation
(see e.g., [80, 81, 82]), the automatic generation of code for different purposes (e.g., [40, 41,
83, 84, 85, 86]), or the recommendation of relevant code examples/discussions for a task at
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hand (e.g., [87, 88, 89, 90, 91]). We focus our discussion on the most related works, and in
particular on those dealing with code completion techniques and code search engines.

2.4.1 Code Completion Techniques

The first attempts to support code completion in IDEs mostly relied on the static type system
of a programming language and did not consider other actual code context: Suggestions
were usually sorted in alphabetical order. As a result, relevant recommendations were not
always easy to identify.

An alternative approach was presented by Bruch et al. [9]. Their intelligent code com-
pletion system provides context-sensitive recommendations for method calls against object
instances of a given framework. Their approach is based on a variant of the machine learn-
ing K-nearest neighbors algorithm, called Best Matching Neighbors (BMN). The context of
variables is extracted and variables used in similar circumstances are searched in an example
code base, followed by method suggestions synthesized from these closest clippings.

Proksch et al. [92] proposed a Bayesian network for code completion based on similar
ideas. Method call completion was also explored by Asaduzzaman et al. [93]. Their ap-
proach, called CSCC (Context-sensitive code completion), relies on a database of method
call usage contexts collected from open source projects and applies a hash function to find
relevant recommendations.

Another context-aware approach called GraccPacc was developed by Nguyen et al. [11],
which is a graph-based, pattern-oriented code completion method based on a database of
API usage patterns. GraPacc uses graphs to model API usage patterns, where nodes represent
actions (e.g., method calls) and control points (e.g., while), and edges represent control and
data flow dependencies between nodes. It also collects context-sensitive characteristics (e.g.,
the relation between API elements and other code elements) from the code being modified
and utilizes them to find and rank the patterns that best fit it. When a pattern is chosen, the
graph-based code technique is used to finish the present code.

Robbes and Lanza used information extracted from the change history to improve code
completion of method calls and class names: Whenever a method is modified, this method
and all the references to other methods and classes in its body are more likely to be reused by
developers. Their evaluation on different code completion strategies shows that giving the
priority to the matches with most recent change date can outperform the alphabetical and
structure-aware ordering. Their tool is able to propose a correct match in the top-3 results
in 75% of cases [13].

Machine learning-based language models have also been used for code completion. The
main idea is to avoid extracting hand-coded features and rely on structural representations
of code (e.g., lexemes, ASTs, dataflow) and learn how to perform code prediction using these
representations. In their seminal work on the naturalness of software, Hindle et al. [10] de-
veloped a code completion engine for Java based on an n-gram language model. Their work
has been extended by Nguyen et al. [7] who performed a large-scale study on the repetitive-
ness of source code at the routine level (i.e., a portion of code that performs a specific task
independently). They found that 12.1% of the routines are repeated within a project, and
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14.3% of the routines have all of their subroutines repeated, which provide implications to
code completion tools for better recommendations. In addition to the naturalness of source
code, Tu et al. [12] also noticed that source code tends to have a localness property, i.e.,
tokens tend to be repeated within specific areas of source code.

Another language model approach, named SLANG, has been implemented by Raychev
et al. [14]. SLANG is a Java code completion tool that generates full method (API) call
sequences, including the parameters of each call. They extract sequences of method calls
from a large codebase to train a model able to take as input code snippets lacking API calls
and can suggest which APIs to invoke. Their approach achieves an accuracy of 90% when
considering the top three results.

In the most recently proposed code recommender systems, deep learning models have
been more and more exploited, thanks to their ability of learning coding patterns from a
large amount of data. Karampatsis et al. [94] suggested that neural networks are the best
language-agnostic algorithm for code completion, showing its superiority compared to the
state-of-the-art language model [95]. Starting from this work, several researchers have lever-
aged the latest Transformer-based models [96] to create code recommender systems (see
e.g., [97, 98, 99]) which outperform previous approaches. The recently proposed GitHub
Copilot tool [100] builds on top of this literature.

Popular IDEs have also recognized the importance of supporting context-sensitive recom-
mendations. For example, IntelliJ IDEA has a feature called Smart completion to filter and
show suggestions applicable to the current context. NetBeans has a Smart Code Completion
feature to display at the top of the suggestions the most relevant ones for the context. Eclipse
has plugins to extend its core code completion, among these, aiX Code Completer[101] and
Codota[102] use AI techniques and can even recommend a full line of code.

2.4.2 Code Search Engines

FeaRS is also related to approaches implementing code search engines that allow retriev-
ing code samples and reusable open source code from the Web. Indeed, FeaRS explores
the history of thousands of open source repositories and generate a pre-processed database
containing reusable, representative code samples which will be recommended to developers
when specific rules are triggered.

Umarji et al. [103] performed a web-based survey to better understand why program-
mers search for code. They classified code search objectives along two orthogonal dimen-
sions: motive (reuse vs. reference example) and size of search target. They observed that
developers search for code components at different granularity levels (e.g., from a single line
of code to a subsystem, to libraries). The majority of queries are performed to look for code
examples, finding a library implementing specific features, or learning how to use an API.

Early online code search engines (e.g., codesearch.google.com, koders.com, and krugle.org)
offered keyword-based search and file-level retrieval. These approaches could be improved
by considering structural and semantic information of code.

Bajracharya et al. [104] developed Sourcerer, a code search engine that extracts struc-
tural information from the code and stores it in a relational model so it can be queried for
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code search. It supports queries for control structures, Java types, and micro patterns (e.g.,
implementation of Semaphore). Reiss developed an approach to combine code search with
transformations to map the retrieved code, to meet user specifications [105]. For the search-
ing, it allows the user to specify multiple semantic rules, which also form the basis for the
transformations.

RACS [50] generates an action connection graph from query data and depicts API use
patterns as method dependency graphs from the gathered code snippets. In this manner, the
issue of identifying comparable method dependency graphs for a given action connection
graph is simplified to the problem of code search. The findings have been used in query
formulation by CodeExchange and CodeLikeThis. The former uses a set of criteria to find
comparable results for new queries, whereas the latter looks directly for results that are
similar to existing results [106].

Thummalapenta et al. developed an approach to support code search engines with static
analysis to return fewer, but more relevant code samples for search queries [107, 108]. Their
primary goal was to support a user in reusing a given API. Later they extend their approach
with SpotWeb [109] to assist users by detecting hotspots that can serve as starting points for
reusing APIs.

API usage was also proposed by McMillan et al. [110, 111] to return highly relevant
matches for a source code search engine. Their approach combines three sources of infor-
mation to locate relevant software: the textual descriptions of applications, the API calls
used inside each application, and the dataflow among those API calls.

2.4.3 Summing Up

As discussed above, previous code completion techniques are undoubtedly valuable to speed
up code writing. However, they are limited to recommendations related to the next few to-
kens the developer is likely to type given the current context. In the best case, they can
recommend a few APIs that the developer is likely to use next. With FeaRS we forge an-
other step ahead, to predict the next full method a developer is likely to implement. FeaRS
also relies on an extensive database of methods’ source code in open source applications,
compared to code search engines. These methods are organized in clusters based on a simi-
larity algorithm implemented in the ASIA clone detector [112]. In addition, FeaRS does not
require the user to write a “query” to identify relevant pieces of code, but extrapolates this
need by monitoring the IDE.

2.5 Conclusion

In this chapter we reviewed the state of the art focusing on three major lines of research
related to our studies in this thesis, namely (i) Empirical studies on developers’ commits, (ii)
Introductions and fixes of code-comment inconsistencies, and (iii) source code recommender
systems.

In Section 2.2, we discussed the related work in investigating developers’ commits from
different aspects. Many studies tackle when/where/why/how developers change their source
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code. However, there has been little research on quick fixes, or consecutive changes per-
formed by software developers, as well as on the impact of some specific types of commits in
the data collection of MSR studies. In Chapter 4, we define a new type of commits (i.e., quick
remedy commits) which usually represent a quick fix or a consecutive change associated to
a previous code change. We also analyze when/where/why/how developers perform this
type of commit and their possible impact on MSR studies.

In Section 2.3, we reviewed the state of the art related to code-comment inconsistencies.
Some researchers studied the co-evolution of code and comments, while others proposed
techniques and tools able to detect code-comment inconsistencies automatically. These tech-
niques are able to identify specific types of code-comment inconsistencies (e.g., inconsisten-
cies introduced as result of rename refactoring operations). Still, more research is needed
in this area to increase the types of code-comment inconsistencies that can be automatically
identified. Also, the empirical evidence provided by studies that pioneered the investigation
of code-comment evolution is limited to the analysis of the change history of a few software
systems. In Chapter 3, we present the largest empirical study at date on code-comment
evolution and inconsistencies, which has also contributed to further investigation on code-
comment inconsistencies detection.

In Section 2.4, we presented an overview of related work on source code recommender
systems, and we focused the discussion on code completion techniques and code search en-
gines in particular. For several years, most of the effort in code completion development
targeted the improvement of the recommendations in terms of accuracy (i.e., the ability to
correctly predict the code tokens the developer is going to type). However, little progress has
been made regarding the type of support these tools can provide to developers. Indeed, tech-
niques and tools able to recommend more complex code elements such as entire statements
or even functions have been proposed only very recently. In Chapter 5, we present FeaRS,
an approach and a tool that can recommend the next full method to be implemented in a
given context. Also, compared to typical code search engines, FeaRS relies on an extensive
database of source code in open source repositories, and does not need a written “query” to
trigger the recommendations.
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3
Studying Code-Comment Inconsistencies

Code comments are a primary means to document source code. Keeping comments up-to-
date during code change activities requires substantial time and attention. For this reason,
researchers have proposed methods to detect code-comment inconsistencies (i.e., comments
that are not kept in sync with the code they document) and studies have been conducted
to investigate this phenomenon. However, these studies were performed at a small scale,
relying on quantitative analysis, thus limiting the empirical knowledge about code-comment
inconsistencies.

In this chapter, we present the largest study at date investigating how code and comments
co-evolve. The study has been performed by mining 1.3 Billion AST-level changes from the
complete history of 1,500 systems. Moreover, we manually analyzed 500 commits to define
a taxonomy of code-comment inconsistencies fixed by developers. Our analysis discloses the
extent to which different types of code changes (e.g., change of selection statements) trigger
updates to the related comments, identifying cases in which code-comment inconsistencies
are more likely to be introduced. The defined taxonomy categorizes the types of inconsisten-
cies fixed by developers. Our results can guide the development of tools aimed at detecting
and fixing code-comment inconsistencies.

3.1 Introduction

Any code-related activity lays its foundations in program comprehension: before fixing a
bug, refactoring a class, or writing new tests, developers first need to acquire knowledge
about the involved code components. As recently shown by Xia et al. [113], this results in
58% of developers’ time spent comprehending code. Besides the code itself, code comments
are considered as the most important form of documentation for program comprehension
[114]. Indeed, not surprisingly, studies showed that commented code is easier to compre-
hend than uncommented code [54, 115]. This empirical evidence also pushed researchers to
consider code comments as a pivotal factor to study technical debt [74, 75, 76], or to assess
code quality [69, 116]. While the importance of code comments is undisputed, developers
do not always have the chance to carefully comment new code and/or to update comments

21
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as consequence of code changes [68]. This latter scenario might result in the introduc-
tion of code-comment inconsistencies, manifesting when the source code does not co-evolve
with the related comments. For example, if a method comment is not updated after major
changes to the method’s application logic, the comment might provide misleading informa-
tion to developers comprehending the method, hindering program comprehension rather
than fostering it. Furthermore, recent studies have shown that code-comment inconsisten-
cies lead a higher chance of introducing bugs, highlighting that outdated code comments
have a negative impact on code quality [57].

To raise the knowledge about the co-evolution of code and comments and the intro-
duction/fixing of code-comment inconsistencies, we present a large-scale empirical study
quantitatively and qualitatively analyzing these phenomena. We mine the complete change
history of 1,500 Java projects hosted on GitHub for a total of 3,323,198 analyzed commits.
For each commit, we use GUMTREEDIFF [117] to extract AST operations performed on the
files modified in it. In this way, we captured fine-grained changes performed in code (e.g.,
change of a selection statement) as well as update, delete, and insert operations performed
in the related comments. Overall, this process resulted in a database of ∼476 GB containing
∼1.3 Billion AST-level operations impacting code or comments. Using this data, we study
the extent to which code changes impacting different code constructs (e.g., literals, iteration
statements) trigger the update of the related code comments (e.g., the developer adds a try
statement and updates the method comment to “document” the changed code behavior).

Then, we manually analyze 500 commits identified, via a keywords-matching mecha-
nism, as likely related to the fixing of code-comment inconsistencies. The output of this
analysis is a taxonomy of code comment-related changes implemented by developers, from
which we present relevant cases related to code-comment inconsistencies, and discuss im-
plications for researchers and practitioners.

As a contribution to the research community, we make the database of fine-grained code
changes publicly available [118]. This enables the replication of this work, making also other
types of investigations possible.

Structure of the Chapter

Section 3.2 presents the design of the study we performed to how we study code-comment
inconsistencies quantitatively and qualitatively. Section 3.3 reports the results of the study
including a statistic analysis on fine-grained code-comment co-evolution and a taxonomy re-
lated to the introduction and fix of code-comment inconsistencies. Finally, after a discussion
of threats that could affect the validity of our results(Section 3.4), Section 3.5 concludes this
chapter.

3.2 Study Design

The goal of the study is to investigate code-comments inconsistencies from a quantitative
and a qualitative perspective. The purpose is to (i) understand how code and comments
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co-evolve, to identify coding activities triggering/not-triggering the introduction of code-
comment inconsistencies; (ii) define a taxonomy of inconsistencies that developers tend to
fix. The study addresses the following research questions (RQ):

RQ1: To what extent do different code change types trigger comment updates? This RQ
studies the code-comments co-evolution in open source projects. We investigate the extent
to which different types of fine-grained code changes (e.g., changes to selection statements)
trigger the update of the related code comments. This analysis provides empirical evidence
useful to quantify the cases in which code-comment inconsistencies could possibly be intro-
duced and to identify the types of code changes having a higher chance of introducing these
inconsistencies. This evidence can be used, for example, to develop context-aware tools
warning developers when code changes are likely to require code comments’ updates.

RQ2: What types of code-comment inconsistencies are fixed by developers? This research
question aims at identifying the types of code-comment inconsistencies that are fixed by
software developers e.g., updating a comment as a consequence of a previously performed
refactoring that renamed an identifier. Knowing the types of code-comment inconsistencies
fixed by developers can guide the development of tools aimed at automatically detecting
them.

3.2.1 Data Collection and Analysis

Table 3.1. Dataset Statistics

Overall
Per Project

Mean Median Std. Dev.
Java files 1,599,323 1,068 360 2,838

Effective LOC 162,243,714 108,379 31,392 305,704
Stars 2,895,219 1,930 762 3,455

Commits analyzed 3,323,198 2,215 832 5,089

To answer RQ1 we mine the fine-grained changes at AST (Abstract Syntax Tree) level
performed in commits from the change history of 1,500 open source Java projects hosted
on GitHub. Then, we analyze the extent to which different types of code changes trigger
updates in the related code comments. The 1,500 projects representing the context of our
study have been selected from GitHub in November 2018 using the following constraints:

Programming language. We only consider projects written in Java since, as it will be
clear later, Java is the reference language for the infrastructure used in this study.

Change history. Since in RQ1 we study the co-evolution of code and comments, we only
focus on projects having a long change history, composed of at least 500 commits.

Popularity. The number of stars [119] of a repository is a proxy for its popularity on
GitHub. Starring a repository allows GitHub users to express their appreciation for the
project. Projects with less than ten stars are excluded from the dataset, to avoid the in-
clusion of likely irrelevant/toy projects.
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6,563 projects satisfy these constraints. Then, we manually filtered out repositories
that do not represent real software systems (e.g., JAVA-DESIGN-PATTERNS [169] and SPRING-
PETCLINIC [170]), and checked for projects with shared history (i.e., forked projects). When
we identified a set of forked projects, we only selected among them the one with the longest
commit history (e.g., both FINDBUGS [171] and its successor SPOTBUGS [172] fall under our
search criteria, but we only kept the latter one). Finally, considering the high computational
cost of the data extraction process needed for our study (details follow), we decided to only
analyze a subset of the remaining projects: We sorted the projects in descending order based
on their number of stars (i.e., the most popular on top), and we selected from the list the top
1,500 projects for our study. Table 3.1 reports descriptive statistics for size, change history,
and popularity of the selected projects. The complete list of considered projects is available
in our replication package [118].

We cloned the 1,500 GitHub repositories and extracted the list of commits performed over
the change history of each project. To do so, we iterated through the commit history related
to all branches of each project with the git log --topo-order command. This allowed us to
analyze all branches of a project, without intermixing their history and avoiding unwanted
effects of merge commits. We then excluded commits unrelated to Java files (i.e., commits
that do not impact at least one Java file). For each remaining commit ci , we use GumTreeDiff
[117]with its JavaParser generator to extract AST operations performed on the files modified
in ci .

GumTreeDiff considers the following edit actions performed both on code and comment
nodes: (i) updatedValue replaces the value of a node in the AST; (ii) add/insert inserts a new
node in the AST; (iii) delete, which deletes a node in the AST; (iv) move, which moves an
existing node in a different location in the AST. Also, to store more details of the changed AST
nodes, such as their parent method and class (needed to know the code component to which
a comment AST node belongs to), we extended GumTree with our own reporter. Overall, we
extracted 1.3 Billion AST-level changes, resulting in a 476 GB database (excluding indexes)
we make publicly available [118].

From our analysis we disregard any file added/deleted in ci , since our primary goal is
to study how changes to different types of code constructs trigger (or not) updates in code
comments. In an added/deleted file, all code and comment AST nodes would trivially be
added or deleted. Also, we work at method-level granularity, meaning that we only focus
on code changes affecting the body or the signature of methods, discarding code changes
impacting e.g., a class attribute. This is done since it is easy, from the AST, to identify the
comment related to a method (and, thus, to study how changes in the method impact the
related comments) while it is not trivial to precisely link a class attribute to its related com-
ments. Finally, we ignore the move actions detected by GumTreeDiff because we noticed that
they generate a lot of noise in the data, since also deleting a blank line can result in an AST
node move.

Once collected the list of AST operations performed in each commit on the code and com-
ments of modified files, we classified the code changes into categories as shown in Table 3.2.
The idea is to group together AST-level operations performed on related code constructs.
For example, all operations performed on if and switch statements are grouped into the
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Table 3.2. Categories of AST-level Code Changes

Category GumTreeDiff Changes

Annotation
MarkerAnnotationExpr, MemberValuePair, NormalAnnotationExpr,
SingleMemberAnnotationExpr

Array
ArrayAccessExpr, ArrayCreationExpr, ArrayCreationLevel, ArrayIni-
tializerExpr

Casting CastExpr, InstanceOfExpr
Constructor ConstructorDeclaration
Empty State-
ment

EmptyStmt

Exception
Handling

CatchClause, ThrowStmt, TryStmt

Expression
AssignExpr, BinaryExpr, ClassExpr, ConditionalExpr, EnclosedExpr,
FieldAccessExpr, SuperExpr, ThisExpr, UnaryExpr

Iteration
BreakStmt, ContinueStmt, DoStmt, ForeachStmt, ForStmt,
WhileStmt

Lambda
Expression

LambdaExpr, MethodReferenceExpr

Literal
BooleanLiteralExpr, CharLiteralExpr, DoubleLiteralExpr, IntegerLit-
eralExpr, LongLiteralExpr, NullLiteralExpr, StringLiteralExpr

Method Invo-
cation

ExplicitConstructorInvocationStmt, MethodCallExpr

Method
Signature

MethodDeclaration, Parameter

Name Name, SimpleName

Others
AssertStmt, BlockStmt, InitializerDeclaration, LabeledStmt, Ob-
jectCreationExpr, SynchronizedStmt

Return ReturnStmt
Selection IfStmt, SwitchEntryStmt, SwitchStmt

Type
ArrayType, ClassOrInterfaceDeclaration, ClassOrInterfaceType, In-
tersectionType, LocalClassDeclarationStmt, PrimitiveType, TypeExpr,
TypeParameter, UnionType, VoidType, WildcardType

Variable Dec-
laration

VariableDeclarationExpr, VariableDeclarator
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Selection category. Such a grouping is done for the sake of easing the RQ1 data analysis. In
particular, for each code change category CHi in Table 3.2, we compute MCC(CHi) as the
percentage of AST changes falling in the CHi category that triggered a Method Comment
Change in comments related to the impacted method. Using the AST, we classify as com-
ments related to the method those present in the method body plus its Javadoc comment (if
any). As “Comment Changes” we consider (i) the addition of a comment inside the method
or of the Javadoc; (ii) modifications applied to any of the already existing method-related
comments; and (iii) deletions of any of the existing method-related comments. Important
to highlight is that, to better isolate the triggering effect of the CHi type of change on the
method’s comments, we only consider CHi ’s changes performed in isolation on a given
method when computing MCC(CHi). Let us explain this design choice with an example: In
a given commit two methods are modified, M1 and M2. Both methods are subject to AST
changes belonging to the category CHi , but M2 is also affected by changes of type CH j , with
i 6= j. When computing MCC(CHi), we consider the changes in M1, since possible M1’s
comments updates are likely to be triggered by the change type CHi , while this is not true
for possible comment updates observed in M2, since this latter has been subject to different
categories of changes.

Since a comment in a method could also have a major impact on the responsibilities
implemented by a class, for each CHi we also compute CCC(CHi) as the percentage of
changes falling in the CHi category that triggered a Class Comment Change in comments
related to the class the impacted method belongs to. In this case, we only focus on the
Javadoc comment of the class, since the comments related to the methods it implements
are already considered by the MCC metric. Also in this case, we only consider changes
performed in isolation for a given change category, as explained for the MCC .

We answer RQ1 by comparing the distributions of MCC and CCC for the change cate-
gories reported in Table 3.2 via bar charts, showing the percentage of times that each change
category CHi triggered comment updates. We also use the Fisher’s exact test [120] to test
whether the chance of triggering method’s and class’s comments update significantly differ
across change categories. To control the impact of multiple pairwise comparisons (e.g., the
chance of triggering method’s comment changes of the Array category is compared against
that of 17 other categories), we adjust p-values using the Holm’s correction [121]. We use
the Odds Ratio (OR) [120] as effect size measure. An OR of 1 indicates that the event un-
der study (i.e., the chance of triggering comment updates) is equally likely in two compared
groups (e.g., Array vs Casting).

An OR greater than 1 indicates that the event is more likely in the first group, while an
OR lower than 1 indicates that the event is more likely in the second group.

Concerning RQ2, we manually analyzed a set of commits in which the developers fixed
code-comment inconsistencies. We extracted, from the same set of 1,500 systems used in
RQ1, all commits having a commit note matching lexical patterns likely indicating the fixing
of code-comment inconsistencies. To define these lexical patterns, we experimented with
different combinations of words and inspected the resulting commits (details in [118]). we
found the following pattern to be the best suited for the identification of the commits of
interest: (update* or outdate*) and comment(s). In other words, all commit notes containing
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the word update or outdate in different derivations (e.g., updates, updated) and the word
comment or comments have been selected, for a total of 3,641 commits matched. From this
set, we randomly selected for the manual analysis a sample of 500 commits, representing a
99% statistically significant sample with a 5% confidence interval.

The 500 commits were randomly distributed among three researchers including the au-
thor, making sure that each commit was classified by two researchers. The goal of the process
was to identify the exact reason behind the changes performed in the commit. If the commit
was unrelated to code comments, the evaluator classified it as false positive. Otherwise, a
tag explaining the reason for the change (e.g., update comment to correct a wrong method’s
parameter description) was assigned, even in the case the commit was not related to a code-
comment inconsistency, but just to changes in a comment (e.g., fixed a typo in a comment).
We did not limit our analysis to the reading of the commit message, but we analyzed the
source code diff of the changes implemented in the GitHub commit. The tagging process
was supported by a Web application that we developed to classify the commit and to solve
conflicts between the researchers. Each researcher independently tagged the commits as-
signed to him by defining a tag describing the reason behind the commit. Every time the
researchers had to tag a commit, the Web application also showed the list of tags created
so far, allowing the tagger to select one of the already defined tags. Although, in principle,
this is against the notion of open coding, in a context like the one encountered in this work,
where the number of possible tags (i.e., cause behind the commit) is extremely high, such a
choice helps using consistent naming and does not introduce a substantial bias. In cases for
which there was no agreement between the two evaluators (51% of the classified commits),
the document was assigned to an additional evaluator to solve the conflict.

After having manually tagged all commits, we defined a taxonomy of code comment-
related changes through an open discussion involving all the researchers (see Fig. 3.3). We
qualitatively answer RQ2 by discussing specific categories of commits likely related to the
fixing of code-comment inconsistencies. For each category, we present interesting examples
and common solutions, and discuss implications for researchers and practitioners.

3.3 Results

3.3.1 To what extent do different code change types trigger comment updates?

Fig. 3.1 compares the MCC (top) and the CCC (bottom) for the categories of AST-level
changes described in Table 3.2. It is worth remembering that the MCC and the CCC values
for a change category CHi represent the percentage of times that a change of type CHi trig-
gered a change in a related method (MCC) or class (CCC) comment. Fig. 3.2 summarizes
the results of the statistical comparison between the chance of triggering method (left) and
class (right) comment changes for different categories of change categories in the form of a
heatmap: A white block indicates that the difference between two categories is not statisti-
cally significant (adjusted p-value ≥ 0.05) or that the odds ratio between the two categories
indicate a similar chance of triggering changes in code comments (0.8 ≤ d ≤ 1.25).

Blocks with four different grayscale values from light to dark represent a significant dif-
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Figure 3.1. Code-comment evolution: MCC and CCC by change category (Table 3.2)
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Figure 3.2. Statistical comparison of the chance of triggering method (top) and class (bottom)
comment update by change category (Table 3.2)
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ference between two change categories CHi and CH j accompanied by an odds ratio indicat-
ing that CHi ’s changes have at least 25%, 50%, 100%, or 200% higher chance of triggering
method or class comment changes than CH j (or vice versa). The arrows in the heatmap point
to the change category having the highest chance of triggering comment changes among the
compared two. For example, when comparing the categories Type and Constructor, Fig. 3.2-
left shows that Type’s changes have a higher chance of triggering updates in the related com-
ments (at least 200% higher — black square). The detailed results with adjusted p-values
and odds ratio are available in our online appendix for all comparisons [118].

From the analysis of Fig. 3.1 and 3.2 it is clear that different categories of code changes
have a different likelihood of triggering updates in the related method and class comments.
Also, the MCC and the CCC values show that changes to method and class comments are
triggered by different categories of code changes. For example, changes impacting the Con-
structor are much more likely to trigger updates in the class comment (CCC = 0.83) as
compared to the method comment (MCC = 0.06). This is expected since changes to the
constructor can impact the way the whole class is instantiated and, as a consequence, are
likely to require updates to the class’s comment description. A similar trend can be seen
for changes impacting the Method Signature (CCC = 0.68 vs MCC = 0.04), while the op-
posite is true for Variable declaration-related changes, i.e., these changes trigger more fre-
quently updates in the related method comments (MCC = 0.69) than in the class comment
(CCC = 0.19). This result is reasonable, considering that we only take into account code
changes affecting the methods’ body, as we previously explained. Thus, changes to a vari-
able declared inside a method are likely to only impact the logic of that method, without
necessarily involving the overall class functioning.

One general trend that can be observed from Fig. 3.1 is that most of the code change
categories rarely trigger changes in the related method and class comments. Our results point
in the same direction of the findings by Fluri et al. [65]: They found that 23%, 52%, and 43%
of all comment changes in ArgoUML, Azureus, and JDT Core respectively, were triggered by
source code changes. Working on a much larger corpus of 1,500 systems, when considering
all change types together we observe a co-evolution of code and comments happening in
7% of cases for method’s comments and 13% of cases for class’s comments. This means
that, according to our data, 13% to 20% of code changes trigger a comment change in the
class and/or in the methods’ comments: 13% in case there is complete overlap between the
two sets of changes (i.e., those triggering methods’ and those triggering class’s comments
changes), 20% in case they are completely disjointed.

Categories exhibiting low values of both MCC and CCC and showing statistically sig-
nificant lower chance to trigger comment updates when compared to most of the other cat-
egories are Array, Lambda Expression, Iteration, Literal, Method Invocation, and Name. Due
to the lack of space, we only discuss two exemplary cases from these categories, while more
qualitative analysis will be reported in RQ2.

The Name category includes changes performed on identifiers (e.g., rename refactor-
ing). We found cases of code-comment inconsistencies introduced as result of renamed
identifiers. For example, in a commit performed in the alluxio project [173], the de-
veloper implements a rename refactoring on the mIn identifier, changing it to mStream.
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This change affects several methods implemented in the class, but only one of them, namely
openStream(), mentions the renamed identifier in its comment. In this commit, the devel-
oper forgets to update the comment, thus referring in it to an identifier that does not exist
anymore in the code. The issue is fixed 20 days later [174].

The second example of inconsistency refers to the Literal category, grouping changes re-
lated to fixed values in code. A commit from the bitcoinj project [175] changed the value
of a String literal from "connectionTimeoutMillis" to "connectTimeoutMillis".
This literal was used as a parameter value in a call to the setOption method. As explained
in the commit note, this change was needed to fix a bug: “Fix typo that prevented connection
timeouts from being set properly”. Indeed, the parameter value "connectionTimeoutMillis"
was not a valid one. While the commit fixed the problem in the code, it did not fix an exam-
ple reported in one of the comments of the class including an invocation to the setOption
method, still using the old, wrong parameter value. The problem has been fixed in a later
commit [176].

We answer RQ1 with the following observations:

We confirm previous findings in the literature [65], showing that between 13% and 20% of
code changes trigger comment updates. This does not imply that in the remaining ∼80% of
cases code-comment inconsistencies are introduced, but they represent a possibility, as we
observed through manual inspection, and as further demonstrated by the qualitative analysis
we present in RQ2.

Code changes to the Array, Lambda Expression, Iteration, Literal, Method Invocation, and
Name categories are the ones less frequently triggering comment updates. This is also confirmed
by the statistical analysis (Fig. 3.2), in which these categories exhibit, as compared to other
categories, statistically significant lower chance of triggering comment updates, accompa-
nied by at least a “small” and in most cases by a “large” effect size.

Change categories Variable Declaration and Selection are among those more likely to trigger
comment updates, both at the method and at the class level. This is possibly due to the fact that
these changes could severely impact the application logic (Selection) or the data manipulated
in the code Variable Declaration. Also, changes in the Method Signature and Constructor
categories are often accompanied by changes to the class’s comment.

The other change categories (e.g., Return, Annotation, etc.) exhibit MCC and CCC val-
ues mostly in the range 0.1-0.2, showing that they still represent possible scenarios for the
introduction of code-comment inconsistencies.

3.3.2 What types of code-comment inconsistencies are fixed by developers?

We addressed RQ2 by labeling 500 commits identified as candidates to fix code-comment
inconsistencies (see Section 3.2). We identified 138 false positives and 362 commits actually
related to comment changes. Note that, while not all these commits are strictly related to
code-comment inconsistencies, they are all related to improvement actions performed on
comments. Overall, we identified 69 types of comment changes tackled by developers, 25
of which relevant for code-comment inconsistencies.

Fig. 3.3 presents the results in the form of a hierarchical taxonomy composed by six root
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categories: Application Logic, Code Design/Quality, Maintenance, Formatting/Readability,
Copyright/License and Others. The more specific types of comment-related changes are
represented either as intermediate nodes or leaves, and changes relevant for the fixing of
code-comment inconsistencies are marked with a V sign.

For each root category, we next describe representative examples and, at the end of
this section, we discuss implications for researchers and/or practitioners derived from our
findings.
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Figure 3.3. Taxonomy of Code Comment-Related Changes

Application Logic (136)

This category groups comment changes in which the impacted comments are related to the
implemented application logic, such as a Javadoc describing the steps of an algorithm imple-
mented in a method, its parameters or return type. In most cases, the change occurred in the
form of a comment update (113), while in a few cases (12) a new comment was added. We
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observed three main reasons why developers update comments: (i) the comment wrongly
describes the application logic (35), due to an error done when the comment was written
in the first place or to an inconsistency introduced later (in these cases we were not able to
trace back to the specific cause of the problem); (ii) the comment needs to be updated as a
consequence of a new implementation logic (25); (iii) the comment is improved to explain
the implementation in more details (53).

For instance, in a commit of QRCodegenerator [177] an inline comment describing
how an array element is calculated was updated to fix a copy/paste mistake done when the
code was firstly written. The comment was copied from another line of code also calculating
an array, but in a different way. This commit fixed the inconsistency between the code
implementation and the comment description.

In WordPressforAndroid [178], the previously misleading comment of the getPath()
method was replaced from “descendants must implement this to send their specific request to
the stats api” to “descendants must implement this to return their specific path to the stats rest
api”. Similarly to the example discussed in RQ1, also in RQ2 we found cases in which the
comment was fixed to update a code usage example reported in the comment and not aligned
with the actual code implementation (see [179]).

Comments can also be used to explain the rationale for implementation choices (e.g., to
justify the usage of a specific collection type to represent data). We found cases in which after
a code change, these comments became outdated, pushing developers to fix the discrepancy
by simply deleting the comments (see [180]). In other commits, comments documenting
the rationale were added, as in the case of the ApacheCassandra project [181], in which
a comment was added in 2017 to explain why a variable introduced in 2015 was named
nulls.

Code Design/Quality (80)

This category groups comment improvements that originate as consequence of actions re-
lated to code quality and design (e.g., refactoring activities).

We observed three cases in which changes to the class hierarchy resulted in inconsistent
comments.

One of these is from the ApacheCordovaAndroid project [182], in which we found a
commit accompanied by the note: “Update documentation comments to match implementa-
tion”. In 2012, the developers refactored the class hierarchy and converted the abstract class
CordovaInterface to an interface [183]. However, its Javadoc comment has only been
updated one year later, in 2013 [182].

Most of the cases in this group are related to Technical Debt comments (54), i.e., com-
ments describing known issues or ‘TODOs’ in the code. Such comments are often deleted
(26) as a consequence of the developers paying back the debt. While the comment is usu-
ally removed in the same commit in which the technical debt is paid back, we found cases
in which developers fixed the technical debt issue but left the comment by mistake. This
required a subsequent commit aimed at removing the comment, e.g., “Issue #326: Remove
forgotten outdated comment” [184], from the JavaParser project.
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In 19 commits the ‘TODO comments’ were updated due to a change in the code, for
example to keep track of progress done in the fixing of the documented technical debt.

Related to technical debt, there were also cases in which comments were added to doc-
ument the fact that a class/method was deprecated (see [185], [186]).

Updated comments following refactorings were also frequent (14), particularly after re-
named methods/variables (11), but we found interesting examples also following renamed
GUI elements (2), e.g., [187], or a replace magic number refactoring (1), e.g., [188]. In the
latter case the developer replaced the inline comment “Keep only 1000 batches worth data
in queue” with “Keep only numBatchesInQueuePerPartition batches worth data in queue”, to
match a replace magic number refactoring performed in a previous commit, thus fixing the
code-comment inconsistency.

Finally, related to Code Design/Quality are comment changes aimed at fixing inconsisten-
cies originated outside of the project scope in third-party libraries. An example we found is
from the PSIProbe project [189]: “Update comment about support as TomEE now supports
tomcat 8.5”. Here the code implementation already provided support for a new Tomcat
version that, however, was not officially released yet.

This was documented in the code through a code comment, that became obsolete once
Tomcat 8.5 was released, pushing developers to delete it.

Maintenance (17)

In this category fall comment changes aimed to ease the future maintenance of comments,
for example by making them more concise. Interesting are the changes implemented in
ApacheGroovy to fix an outdated comment in such a way to also avoid uptodateness issues
in the future: They modified the comment in order to use a newly introduced variable (“The
parameter can take one of the values in @link ALLOWED_JDKS”) rather than listing the com-
plete list of supported JDK versions (“[...] can take one of the values 1.7, 1.6, 1.5, 1.4”) [190]
[191]. This makes unnecessary in the future to update these comments when new versions
are supported or old versions are not supported anymore.

Another example of comment change aimed at avoiding future uptodateness issues is the
commit “remove comment that can be very easily outdated” from JetBrainsAndroid [192].
Here the developer extracts from the Javadoc comment of the IntellijCodeNavigator
class three paragraphs detailing the logic of its main method (getNavigatable), in partic-
ular related to branches of an if statement it implements. Each of the extracted paragraphs
has then been moved closer to the specific lines of code it documents, to allow for an easier
maintainability and to avoid that future changes to the code would not be reflected in the
comment.

Formatting/Readability (63)

Changes intended to improve the formatting or readability of comments are grouped in
this category. Not surprisingly, we found many commits in which developers just improved
the wording of the comments (31) or fixed typos (9). We also grouped in this category
comments aimed at implementing general improvements in the Javadoc (6), with a mix of
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changes aimed at fixing typos, improving readability, formatting, etc. (e.g., “Fix comments to
update javadoc for a bunch of methods” from Aluxio [193]).

Although this type of changes is usually not related to code-comment inconsistencies, we
found cases in which references (e.g., related to other code elements, bug reports) became
obsolete, resulting in invalid/outdated references in comments. For example, in GoogleGuava
a commit says: “Updated a comment in ListenerCallQueue to point at SequentialExecutor in-
stead of the deprecated SerializingExecutor wrapper interface” [194].

Copyright/License (10)

We grouped fixes related to copyright/license comments separately under this category as
we found a considerable amount of commits working on updating licensing information.

These changes were mostly related to simple maintenance of copyright headers in source
files, i.e., updating authorship [195] or copyright year [196].

We also spotted cases, however, where outdated copyright comments remained in source
files for several years. In 2011 a developer of the ApacheGroovy project updated the copy-
right header of a Java file from a BSD variant to Apache License v2 [197], although the
project had already changed its license back in 2007 [198].

Others (56)

This category groups comment changes that, while not being false positives (i.e., they are
related to code comments), do not fit any of the previous categories. Comments were added
in 37 cases to document new or already existing code. In one case, automatically generated
comment skeletons were replaced with manually written comments [199], while the com-
ment deletions were generally related to outdated comments left in the code by mistake. An
example can be seen in a commit of the CrateDB project [200] where the developer deletes
the description of the error handling of SQL operations that was rewritten in earlier commits.

3.3.3 Discussion and Implications

Our large-scale study in RQ1 confirmed previous findings reported in the literature and show-
ing that, in most of the cases, code and comments do not co-evolve. It is important to high-
light that a code change does not always result in the need for updating the corresponding
comment. Thus, we are not claiming that do not updating comments as a consequence of
code changes is a bad practice. However, our qualitative analysis disclosed several cases
in which developers introduced (RQ1) or fixed previously introduced (RQ2) code-comment
inconsistencies, providing us with a number of lessons learned. In the following we dis-
cuss implications for researchers (indicated with the � icon) and/or practitioners (0 icon)
derived from our findings.

The maintainability of comments is as important as that of source code 0. As it
happens for code, comments should also deal with “functional” and “non-functional” re-
quirements. The functional aspect here is the proper documentation of the source code, and
it has always been recognized as a fundamental support for code comprehension. Not less
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important are, however, the non-functional aspects of code comments, such as their read-
ability and maintainability. As shown in our study, a simple idea such as using a variable
referenced in the comment to document the supported JDK versions as opposed to explicitly
listing them [190] can dramatically simplify the maintenance of the comment, that will not
require any future update in case of changes to the supported JDKs. Basically, as source
code is often designed to isolate and minimize future changes, the same should happen for
comments.

Refactoring code comments �. From the researchers’ perspective, our study stresses
the importance of investing effort in the development of tools to support code comments
refactoring. Indeed, most of the effort in this field has been devoted to the automatic as-
sessment of comment quality (see e.g., [67, 68, 71, 74]) without, however, recommending
how to automatically refactor it. Our findings provide insights for the future development of
approaches able to both detect and fix issues in code comments. For example, we have seen
as simple copy/paste can introduce code-comment inconsistencies, due to a wrong reuse
of comments across semantically different instructions (i.e., the same comment is reused
for two different instructions, wrongly documenting one of the two) [177]. Identifying dif-
ferent code components documented with the same comment can help in identifying these
problems.

Concerning the automatic comment refactoring, a first step in this direction could be the
definition of a catalogue of operations for comments, similarly to what has been done for
source code [122]. For example, we observed an instance of what can be defined as an “ex-
tract comment refactoring” [192], aimed at splitting a large comment into several comments
to place each one closer to the exact instruction it documents.

Code comments are first-class citizens in code refactoring � 0. We observed sev-
eral code-comment inconsistencies introduced as consequence of refactoring activities. For
example, the application of a replace magic number refactoring [188] caused the magic
number to be removed from the code but not from the related comments. Similarly, ma-
jor refactorings to the class hierarchy [182] caused outdated references in comments. This
highlights: (i) the need for developers to consider the effects on comments when applying
refactoring operations; (ii) the opportunity for researchers to investigate how to integrate
better comment support into refactoring tools.

Code-comment traceability is still an open problem �. Related to the previously dis-
cussed points, one major research challenge is the code-comment traceability (i.e., automati-
cally identifying the code instructions documented by a given comment). In 1988, Kaelbling
argued that programming languages should not have comment statements [123], but scoped
comments, explicitly indicating the code elements they refer to. As of today, documentation
tools such as Javadoc help developers to explicitly comment certain elements by referring to
them. IDEs also provide support, e.g., by showing related comments of selected items. How-
ever, popular programming languages are still bound to line and block comments. There are
many research opportunities here both for language designers and researchers to facilitate
the code-comment traceability. Solving this problem will in turn help to make substantial
steps ahead in the identification/fixing of code-comment inconsistencies.
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3.4 Threats to Validity

Threats to construct validity concern the relation between the theory and the observation, and
in this work are mainly due to the measurements we performed. This is the most important
kind of threat for our study, and is related to:

RQ1: Computation of the MCC and CCC metrics. As explained in Section 3.2 these
metrics, for a specific type of code change category CHi , measure the percentage of times
that method (MCC) or class (CCC) comments are inserted/deleted/modified in response to
CHi ’s changes. Clearly, if a modified method/class has no comments, these metrics cannot
capture the deletion or modification of the method’s comments, but only the insertion of
new comments. Considering the scale of our study and the focus on long-lived and popular
systems unlikely to have many undocumented methods, these imprecisions should not have
a major impact on the outcome of our study.

RQ1: Imprecision introduced by GumTreeDiff. As any differencing tool, GumTreeDiff could
generate wrong information. For example, we noticed that in some cases the update of a
variable type (e.g., from double to int) was reported as the deletion of a variable (the
double one) followed by the addition of a new variable (the int one). However, GumTree
is a state-of-the-art differencing tool and at least we tried to reduce possible noise caused by
“move” operations.

RQ2: Subjectivity in the manual classification. We identified through manual analysis
the reasons behind commits performed by developers to (likely) fix code-comment inconsis-
tencies. To mitigate subjectivity bias in such a process, every commit was assigned to two
researchers who manually analyzed it independently. Then, in the case of a disagreement,
a third researcher was assigned to the commit to solve the conflict.

Threats to internal validity concern external factors we did not consider that could af-
fect the variables and the relations being investigated. One aspect could be related to the
selection of projects being considered. As explained by Kalliamvakou et al. [124] mining
GitHub can be risky because projects may contain very few commits. To mitigate this threat,
we applied strict criteria (i.e., more than 500 commits, more than 10 stars) when selecting
the context of our study. To reinforce the internal validity, when possible, we integrated the
quantitative analysis with a qualitative one.

Threats to external validity concern the generalizability of our findings. RQ1 tries to
achieve a high generalizability in terms of mined projects that, however, are all written in
Java. Future work should focus on systems written in different languages to confirm or
contradict our findings. RQ2 analysis is limited to a specific set of 500 commits we randomly
selected as output of a keyword-based mechanism used for the pre-selection of commits
likely related to code-comment inconsistencies. Because of this procedure, our taxonomy
surely omits types of code-comment inconsistencies fixed in commits we did not analyze
and/or documented in diverse data sources (e.g., issues on GitHub).
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3.5 Conclusion

We presented the largest study at date about the co-evolution of code and comments. The
study involved the analysis of the complete change history of 1,500 Java systems. Then, we
manually analyzed 500 commits likely related to the improvement of code comments, clas-
sifying 362 of them (the non-false positives) into a taxonomy of comment-related changes
(Fig. 3.3). The results achieved with our quantitative and qualitative analyses have been
used to distill lessons learned resulting in actionable items for both researchers and practi-
tioners (Section 3.3.3).



4
Quick Remedy Commits and Their Impact on
Mining Software Repositories

Most changes during software maintenance and evolution are not atomic changes, but rather
the result of several related changes affecting different parts of the code. It may happen
that developers omit needed changes, thus leaving a task partially unfinished, introducing
technical debt or injecting bugs.

In this chapter, we present a study investigating “quick remedy commits” performed by
developers to implement changes omitted in previous commits. With quick remedy commits
we refer to commits that (i) quickly follow a commit performed by the same developer, and
(ii) aim at remedying issues introduced as the result of code changes omitted in the previous
commit (e.g., fix references to code components that have been broken as a consequence
of a rename refactoring) or simply improve the previously committed change (e.g., improve
the name of a newly introduced variable). Through a manual analysis of 500 quick rem-
edy commits, we define a taxonomy categorizing the types of changes that developers tend
to omit. The taxonomy can (i) guide the development of tools aimed at detecting omitted
changes and (ii) help researchers in identifying corner cases that must be properly handled.
For example, one of the categories in our taxonomy groups the reverted commits, meaning
changes that are undone in a subsequent commit. We show that not accounting for such
commits when mining software repositories can undermine one’s findings. In particular, our
results show that considering completely reverted commits when mining software reposito-
ries accounts, on average, for 0.07 and 0.27 noisy data points when dealing with two typical
MSR data collection tasks (i.e., bug-fixing commits identification and refactoring operations
mining, respectively).

4.1 Introduction

In the software life-cycle, change is the rule rather than the exception. Changes are generally
performed through commit activities to add new functionality, repair faults, and refactor
code [20]. Some of these commits can involve a substantial part of the source code, with
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dozens of artifacts impacted [17]. This is often the result of what Herzig and Zeller [44]
defined as tangled commits: Commits grouping together several unrelated activities, such as
fixing a bug and adding a new feature.

In other cases, a single cohesive change (e.g., a bug fix) is instead split across several
commits. This can be due to omitted code changes and/or the need for fixing a mistake done
in the first attempt to implement the change. Park et al. [18] showed that 22% to 33% of bugs
require more than one fix attempt (i.e., supplementary patches). Studying supplementary
patches can be instrumental in designing recommender systems able to reduce omission
errors by alerting software developers, as attempted in a subsequent work by Park et al.
[19], where the authors tried to predict additional change locations for real-world omission
errors. Due to the limited empirical evidence about the nature of omitted changes, this is
still an open challenge. Indeed, while the work by Park et al. [18] investigates omitted
changes, it explicitly focuses on supplementary patches for bug-fixing activities, ignoring
other types of code changes (e.g., implementation of new features, refactoring). Thus, there
is no study broadly investigating the types of changes that developers tend to omit during
implementation activities.

To fill this gap, we presented a qualitative study focusing on “quick remedy commits”
performed by developers. We defined as quick remedy commits those commits that (i) quickly
succeed a commit performed by the same developer in the same repository; and (ii) aim at
remedying the issues introduced as the result of code changes omitted in the previous commit
(e.g., fix references to code components that have been broken as a consequence of a rename
refactoring) and/or of introduced errors. In other words, we identified pairs of commits (ci ,
ci+1) that are temporally close (i.e., ci+1 succeeds ci by a few minutes), are performed by the
same developer, and include in the commit note of ci+1 a reference to fixing issues introduced
in ci .

Fig. 4.1 shows an example of a quick remedy commit from our dataset, and in particular
from the GitHub project bardsoftware/ganttproject. In the commit depicted in the top
part of Fig. 4.1 (i.e., commit a43b8f2), the developer implemented, among other changes,
a refactoring aimed at simplifying the code of the GPAction class. In particular, instead of
invoking three times the method GanttLanguage.getInstance() in different parts of the
class, the language variable is instantiated, and reused where needed.

Two minutes later, the same author performs a quick remedy commit (bottom part of
Fig. 4.1 — commit 2c40a07) by reporting in the commit note: Forgot 1 refactoring of ’lan-
guage’ in previous commit. The remedy commit propagates the changes introduced by the
refactoring to another location of the GPAction class, that was missed by mistake in the
original commit.

We decided to focus on remedy commits (ci+1) that are temporally close to the original
change they fix (ci) for two reasons. First, it is easier to establish a clear link between two
commits by the same developer if they are performed within a few minutes. Second, as
shown by Park et al. [19], it is challenging to prevent omission errors automatically; thus,
we decided to focus on omission errors that, since fixed within few minutes, are likely not
to be so complex.

This allows gathering empirical knowledge to take a first step in automating the preven-
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a43b8f2 Aug 14 15:23:17 2011
Author: maarten bezemer
[…] (slightly) improved GPAction

action/GPAction.java

@@ -42,10 +42,17 @@

[…]

+      private static GanttLanguage language = 
                               GanttLanguage.getInstance();

2c40a07 Aug 14 15:25:08 2011
Author: maarten bezemer
Forgot 1 refactoring of 'language' in previous commit

@@ -114,7 +114,7 @@

Commit

Quick Remedy Commit

@@ -56,7 +63,7 @@

-      GanttLanguage.getInstance().addListener(this);
+      language.addListener(this);

@@ -100,9 +107,10 @@

[…]

action/GPAction.java

-      return GanttLanguage.getInstance().getText(key);
+      return language.getText(key);

Figure 4.1. Example of quick remedy commit

tion of a basic set of omission errors that, as we show, can be responsible for bugs and major
code inconsistencies if not promptly fixed.

We defined heuristics to identify quick remedy commits automatically, and mined the com-
mits of interest from the complete change history of 1,497 Java projects hosted on GitHub.
This allowed the identification of ∼1,500 candidates quick remedy commits. We manually
analyzed 500 of them looking at the changes introduced in the remedy commit (ci+1) and
the previous commit (ci) as well as the summary of changes provided in the commit notes.

The goal of the manual analysis was to identify the rationale of the remedy commits to
define a taxonomy categorizing the types of issues introduced by developers during commit
activities that trigger a remedy commit, discussing the implications of our taxonomy for
researchers and practitioners.

As a following study, we further looked into the implications of a specific part of our tax-
onomy for researchers working in the Mining Software Repositories (MSR) field. In particu-
lar, we focused on a category in our taxonomy grouping together reverted commits, i.e., rem-
edy commits ci+1 in which the developers revert, completely or partially, the code changes
they committed in the previous commit ci . We defined a methodology to automatically iden-
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tify these commits in a given repository and studied the impact they could have on MSR
studies. The decision to focus on such a specific category in our taxonomy is two-fold: (i)
as we will explain later in the thesis, it is the type of quick remedy commits that is more
likely to affect the data collection process in MSR, possibly leading to the inclusion of noisy
data points in the study; (ii) it is the only category for which a reliable and automated de-
tection mechanism can be easily devised (i.e., it is relatively easy to detect reverted commits
as compared to other categories of commits in our taxonomy).

We took two “data collection tasks” frequently performed in MSR studies, namely the
identification of bug-fixing commits (see e.g., [41, 125, 126, 127, 128]) and the mining of
refactoring operations performed in the history of a system (see e.g., [128, 129, 130, 131,
132, 133]). Then, we applied these two tasks on 100 long-lived Github repositories; collect-
ing refactoring operations performed in each commit and a set of bug-fixing commits. Finally,
we cleaned the collected data by removing completely and partially reverted commits. For
example, a researcher may identify a bug-fixing commit in the history of a software system.
However, if such a bug-fix is later on reverted by the developer, we argue that it should not
be considered a valid data point, since it basically represents noise. We show that, for each
completely reverted commit kept in the collected data, there is a .07 increase in the number
of detected bug-fixing commits and a 0.27 increase in the number of detected refactoring
commits. The methodology we adopt to identify the reverted commits can be applied in MSR
studies to help researchers in minimizing the impact of these commits on their findings.
Clearly, the removal of reverted commits is subject to the goal of the study and the data anal-
yses researchers are interested in performing. For example, if the goal of the study is to count
the number of bugs introduced by a developer in a system, researchers may be willing to also
count bug-introducing commits that have been later on reverted. Instead, if the goal is to
assess the logical coupling between code components (i.e., how frequently they co-change),
researchers may want to ignore completely reverted changes in the coupling computation.
All in all, our study confirms the importance of careful data cleaning when mining software
repositories, as highlighted in previous works [134].

The data used in both our studies are publicly available [135].

Structure of the Chapter

In Section 4.2 we present the design and the results of our first empirical study, in which we
investigate the types of quick remedy commits performed by developers. Section 4.3 presents
the design and results of our second study, assessing the potential impact of reverted commits
in MSR studies. In Section 4.4 we discuss the threats that could affect the validity of our two
studies, while in Section 4.5 we conclude the chapter.
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4.2 Study I: Quick Remedy Commits Performed by Developers

4.2.1 Study Design

The goal of the study is to qualitatively investigate quick remedy commits. The purpose is
to define a taxonomy of quick remedy commits that developers perform to fix issues intro-
duced in a previous commit and/or finalize an uncompleted implementation task. The study
addresses the following research question (RQ):

RQ1: What types of quick remedy commits are made by developers in Java projects?

This RQ aims at identifying the types of quick remedy commits that are performed by
developers (e.g., documenting through a code comment a piece of code introduced in the
previous commit). Knowing the types of quick remedy commits made by developers can
guide the development of tools to automatically alert developers when code changes they
are committing may require a subsequent remedy commit. In some cases this could even
avoid the introduction of bugs (e.g., due to changes not propagated in all code areas where
they are required).

Data Collection and Analysis

We started the study with the same list of 1,500 GitHub repositories we collected from Sec-
tion 3.2.1 in Chapter 3. During the cloning of the 1,500 GitHub repositories, we got a cloning
error for three of them. Thus, we extracted the list of commits performed over the change
history of the remaining 1,497 projects. The complete list of considered projects is publicly
available in our replication package [135].

To extract the history of the subject systems, we iterated through the commit history
related to all branches of each project with the git log --topo-order command. This
allowed us to analyze all branches of a project, without intermixing their history and avoiding
unwanted effects of merge commits.

Then, given the commit history, our goal was to identify all pairs of subsequent commits
(ci , ci+1) in which ci+1 had been performed by a developer Dj as a quick remedy fix for
a commit ci also authored by Dj . In other words, ci+1 must (i) have been authored by the
same developer of ci and performed within a relatively short time interval from ci; (ii) clearly
be a “compensatory” fix for ci .

To identify the (ci , ci+1) pairs of interest, we adopt the following heuristic-based proce-
dure. First, we computed the time interval between all adjacent (subsequent) commits in
each system authored by the same developer. In git it is possible to retrieve the author date
(i.e., the date in which the change has been implemented by the author) or the committer
date (i.e., the date in which the change has been committed). Given the goal of our work,
we considered the author date. We analyzed the distribution of these time intervals (see
Fig. 4.2).

We considered the first quartile, exactly five minutes, as a candidate threshold to identify
remedy commits: ci+1 commits performed as quick fixes for their predecessor ci commit.
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Figure 4.2. Time differences (in minutes) between subsequent commits (without outliers)

This allowed us to select pairs of commits meeting our first requirement: They were authored
by the same developer and performed in rapid succession (i.e., within five minutes). This
filtering left us with 1,041,397 candidate commits.

Second, we set up a process to define lexical patterns allowing the identification of ci+1
commits in which the developer explicitly indicates in the commit note the fact that ci+1 is
a remedy commit for changes introduced in the previous commit (ci). We extracted from
all 1,041,397 commits output of the previous filtering step the words and 2-grams used in
their commit notes. This means that, from a commit note reporting “Fixes a bug introduced
in previous commit”, we would extract fixes, a, bug, etc. as the single words, and fixes a, a
bug, bug introduced, etc. as 2-grams. To remove noise, stop words (e.g., articles) and all
single words shorter than four characters had been excluded from the set of single words
(not from the 2-grams list). The remaining words and all 2-grams had then been sorted
by frequency in descending order, excluding the long tail of those appearing in less than
ten commits. Indeed, even if useful to identify remedy commits, lexical patterns defined
from these words/2-grams are unlikely to retrieve a substantial amount of useful commits
and, thus, are excluded a priori from reducing the inspection effort. For each remaining
word/2-gram, we randomly extracted ten commit notes in which it appears.

This dataset, composed of words/2-grams and related commit notes, had been manu-
ally and independently inspected by three researchers including the author with the goal
of defining the needed lexical patterns. After an open discussion in which each researcher
presented his list of patterns, the three evaluators agreed on the following lexical pattern to
identify remedy commits:

(former or last or prev or previous) and commit

This means that commit notes including former commit, last commit, prev commit, or pre-
vious commit would be matched and considered as relevant for our study. While this heuristic
is quite strict, our goal was to maximize precision at the expense of recall, considering the
fact that our study is qualitative in nature and does not target a large number of manually
analyzed commits. At the end of this last filtering step, we obtained 1,577 ci+1 commits
which (i) have been authored within five minutes from the commit ci previously performed
by the same author; and (ii) explicitly mention in the commit note a lexical reference to the
previous commit that can be captured by the defined pattern. Given the high cost of the
manual analysis process detailed in the following, we decided to focus our analysis on a ran-
domly selected sample of 500 commits, representing a 99% statistically significant sample
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with a 4.8% confidence interval.

The 500 commits were randomly distributed among three researchers including the au-
thor, making sure that each commit was classified by two researchers. The goal of the process
was to identify the exact reason behind the changes performed in the commit. If the commit
was unrelated to the previous one, the evaluator classified it as false positive.

Otherwise, a tag explaining the reason for the change (e.g., remove debugging code from
the previous commit) was assigned.

We did not limit our analysis to the reading of the commit message, but we analyzed
the source code diff of the changes implemented in the GitHub commits, both in the ci+1
commit as well as in its predecessor (ci). The tagging process was supported by a Web
application that we developed to classify the commit and to solve conflicts between the
researchers. The Web application is shown in Fig. 4.3. Each researcher independently tagged
the commits assigned to him by defining a tag describing the reason behind the commit.
Every time the researchers had to tag a commit, the Web application also showed the list
of tags created so far, allowing the tagger to select one of the already defined tags (visible
in the bottom part of Fig. 4.3). Although, in principle, this is against the notion of open
coding, in a context like the one encountered in this work, where the number of possible
tags (i.e., cause behind the commit) is extremely high, such a choice helps using consistent
naming and does not introduce substantial bias. In cases for which there was no agreement
between the two evaluators (44% of the classified commits), the commit was assigned to an
additional evaluator to solve the conflict. While such a percentage may look high, it is worth
considering that our task was not to assign commits to a list of predefined categories, but to
define the names for such categories during the tagging process. This naturally leads to a
higher number of conflicts. Also, we considered as a conflict cases in which a different but
“semantically equivalent” tag was used by the two evaluators (e.g., remove unnecessary code
vs remove unneeded code). In this case, the third evaluator just made sure that consistent
wording was used, and selected the proper tag. In a minority of cases, the two evaluators
applied completely different tags and the third evaluator could choose whether to reuse
one of the two labels or, instead, define a new tag by discussing and agreeing with the two
original evaluators.

Add credits for previously committed code   Add missed commit message   Add missed documentation   Add test for code implemented in last commit
Application logic fixes   Commit adds/deletes files missed in previous commit   Document the implementation logic of new code   Document the rationale 
for refactoring in previous commit   Fix compilation error   Fix checkstyle warnings for previous commit   Fix compatibility issue introduced in previous 
commit   Fixed broken references caused by rename package refactoring in previous commit   Forgot to propagate a change in a clone

Commit

Figure 4.3. Web application used to run the manual tagging
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After having manually tagged all commits, we defined a taxonomy of quick remedy com-
mits through an open discussion involving all the researchers (see Fig. 4.4). We qualitatively
answer our research question by discussing specific categories of commits likely related to
the code changes developers often forget to implement and try to immediately remedy. For
each category, we present interesting examples and discuss implications for researchers and
practitioners.

4.2.2 Results

We addressed our research question by labeling 500 commits identified as candidates to be-
ing quick remedy commits (see Section 4.2.1). We identified 42 false positives (i.e., commits
ci+1 that were not related to the preceding ci commit) and 458 commits actually classifiable
as quick remedies 1. Note that not all these quick remedy commits are compensatory fixes for
issues caused by omitted changes. They also include fixes for previously introduced errors
(e.g., the developer realizes that her previous commit introduced a bug) as well as commits
aimed at simply improving the previously committed change (e.g., improve the name of a
newly introduced variable). Finally, our taxonomy also features remedy commits aimed at
fixing simple mistakes performed during the ci commit process itself (e.g., the developer
forgot to include a modified file in commit ci and thus commits it in ci+1).

Overall, we identified 69 types of quick remedy commits made by developers, 20 of which
relevant for changes omitted in the previous commit.

Fig. 4.4 presents the results in the form of a hierarchical taxonomy composed by six root
categories: Bug Fix, Code Refactoring/Clean Up, Build Issue, Missing Code Change, Documenta-
tion, and Reverted Commit. The more specific types of quick remedy commits are represented
either as intermediate nodes or leaves, and commits relevant for the fixing of issues caused
by omitted changes are marked with aV sign. For each category, we next describe represen-
tative examples and discuss implications for researchers (indicated with the� icon) and/or
practitioners (0 icon) derived from our findings.

Bug Fix (79)

This category groups pairs of commits (ci , ci+1) in which the remedy commit (i.e., ci+1) fixes
a bug introduced in ci . We identified two main subcategories: Fix Broken Test, in which
ci+1 has been triggered by test cases failing after the change implemented in ci , and Fix
Implementation Logic, in which the developer realized that she introduced a bug in ci and
quickly submits a patch.

The commits in the Fix Broken Test category targets the fixing of the production code
or the test code modified in ci and causing the test suite to break. For example, in the
Denominator project of Netflix, a developer reported in the commit message: “Fix tests
broken by former commits” [201].

1Our online appendix features an analysis of common keywords present in the commit message of these
commits in comparison to non-quick-remedy commits [135].
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While in the cases we analyzed the issue was spotted and fixed quickly by the developer,
there might be non-trivial cases in which only a subset of the test suite is executed for re-
gression testing (e.g., due to a limited testing budget) and a non-executed broken test is not
identified by the developer.

� For researchers, this is an opportunity to study test breaking-changes and to develop
techniques able to alert the developer when a change she implemented might require a
double check of (part of) the test suite. 0 For practitioners, continuous integration practices
can help in timely spotting these issues in most of the cases.

The fixes to the implementation logic are mostly classic bugs introduced but quickly rec-
ognized and fixed by developers (e.g., errors in if conditions, wrong literal values, null
pointer exceptions, etc.). While these are not related to omitted changes, they are interest-
ing since they represent bugs fixed by developers within five minutes (due to our selection
criteria for the commits).

This indicates that these bugs, while prevalent in our taxonomy (73 instances), are likely
quite simple to fix. Thus, � researchers could investigate the possibility of creating ap-
proaches able to learn from this data on how to avoid and/or automatically fix these bugs.
For example, recent work applied Neural Machine Translation (NMT) models to automati-
cally fix bugs [41]. However, given the complexity of this task and the non-trivial bugs that
these models have to fix, they are usually only able to automatically fix a minority of the bugs
provided as input [41]. Focusing on these simpler but quite frequent bugs could represent a
good application scenario for the NMT-based bug fixing approach.

Some of the fixes in the Fix Implementation Logic category are related to omitted changes
(see Fig. 4.4). This includes the Forgot to Propagate Code Change category in which devel-
opers do not consistently propagate a change across all relevant code components. This is
typical of cases in which code clones are spread in the system and inconsistent changes are
implemented in ci [136]. An example of this can be seen in the matht tTomP2P project. In a
commit [202], the developers adapts a builder class (PutBuilder) to earlier changes of the
original class and they implement new methods such as isPutConfirm and isPutReject.
In a follow-up change [203], they fix a conditional statement to check the status of a Put ob-
ject in a new branch. Then, only a few seconds later [204], they update a conditional check
with a similar structure but in another class. For this last commit, the commit message says
“belongs to previous commit”. Another example can be seen in the matht tspacewalk project.
In a commit [205], they update a SQL script by adding a query for the removal of unnec-
essary data. Then, in the quick subsequent commit [206], they propagate the same schema
changes into a database upgrade file.

0 These examples highlight the relevance for practitioners of approaches to guide code
changes (see e.g., the seminal work in the area by Zimmermann et al. [137]) as well as the
need for � the research community to continue improving these techniques and, possibly,
making them easily pluggable into a continuous integration pipeline to foster developers’
adoption.

Interesting in this category is also the introduction of ambiguous references due to incom-
plete move package refactoring. We found this case in the apache/accumulo project, where
they migrate some classes to another package [207], but still keep the old ones.
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In a follow-up commit [208], they realize that they use, however, the wrong references
to the migrated classes. � Code clone detection techniques [138] could help in these cases
by promptly pointing the developer to the presence of multiple copies of the same classes
in the repository. The integration of these approaches in a just-in-time fashion could help in
identifying clones introduced in the last commit, thus avoiding mistakes as the one in the
discussed commit [207].

Code Refactoring/Clean up (39)

This category groups the pairs of commits (ci , ci+1) in which the remedy commit (i.e., ci+1)
implements a refactoring/cleanup of the code changed in ci (see Fig. 4.4). In these commits
developers are either not satisfied of the code they implemented or are trying to address
warnings received by static analyzers.

Some other subcategories include the simple removal of code that was only tempo-
rary implemented in ci (i.e., Remove Debugging Code) or that becomes unnecessary after
ci ’s changes (i.e., Remove Unnecessary Code). Also, code formatting issues (e.g., mainly the
inconsistencies of indentations and line breaks introduced with code changes) were fixed
by developers in the remedy commit (ie Code Formatting). Additionally, in 2 cases, devel-
opers changed the code implemented in ci to improve its performance. An example can be
seen in project rzwitserloot/lombok [209]where a developer fine tunes a cache clearing
mechanism implemented in a previous commit by turning a variable volatile and moving the
invocation for the cache clearing after a conditional check.

However, the main purpose of those code refactoring/clean up tasks is to improve the
code understandability. Variable and method renaming refactoring (i.e., renaming a variable
or method to better reflect its functionality) is the most common way to make the code easier
to comprehend. Also popular are code transformations aimed at replacing literal values with
variables or splitting long functions through extract method refactoring. The latter allows
not only to foster comprehensibility, but also the reusability of small code snippets.

Other interesting cases are the ones in which developers modify the previously committed
code to promote consistency with the coding style of the project (see e.g., Rename Method for
Consistency). For example, in a commit of the liferay− portal project [210], developers
opened an issue to “introduce tests to document current behavior” [211]. Interestingly, in this
process they very carefully review the used method names for better readability, and in a
commit they say:

“[...] where specific method names are NOT accurate, go for a generic name to force
the developer to read the code to find what the method actually does”.

The developers decided to change a method’s name from assertThatSearchResult-
HasVersion to assertSearchResult. In the next commit [210], to remain consistent,
they replace the method invocation of assertThatEverythingButSummaryIsEmpty (in
another class) to assertSearchResult. For this last commit, the commit message says
“Match previous commit even though this method name was accurate”.
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� The inconsistencies fixed with simple refactorings point to the possibility for the soft-
ware engineering research community to investigate techniques able to learn coding con-
ventions used in a given system and recommend fixes for possible violations. To the best of
our knowledge, the only attempt at date has been made by Allamanis et al. [139] with their
NATURALIZE tool able to recommend meaningful identifier names and formatting guide-
lines. Other approaches focus only on rename refactoring suggestions [140]. While these
techniques cover most of the inconsistencies fixed in the Code Refactoring/Clean up category
(e.g., Rename Method for Consistency, Fix Improper Exception Name), others are left uncov-
ered (e.g., Fields Ordering), indicating more potential for additional research in the area of
recommending coding convention fixes.

Build Issue (68)

This category is related to commits fixing build issues introduced as a result of the ci changes.
The main subcategory here is the fix of the compilation errors/warnings issued by the com-
piler due to the changes in ci (i.e., Fix Compilation Warning/Error). Unused import state-
ments are the main cause for the warnings we identified (see Fig. 4.4), and the trigger for
the remedy commits in this category. The unnecessary import statements are caused either
by import statements introduced in ci by the developer and then unused, or by previously
existing imports becoming unused due to the changes implemented in ci . These warnings
are usually raised by static analysis checks performed at commit time and, thus, are easy to
catch for developers.

In the Syntax Error category we found many cases of broken references due to rename
refactoring operations performed in ci . These rename refactorings are related to variables,
methods, classes, as well as packages. An example can be seen in the commit [212] of the
DroidPlanner/Tower project which followed a renaming of multiple classes. Some other
cases were violating the syntax of the programming language due to introduced typos (e.g.,
missing statement separators).

Considering the good refactoring support provided by modern IDEs, the identification
of these broken references as a consequence of refactorings was quite surprising for us.
�0 This may indicate either that these refactorings were performed manually, leading to the
introduction of broken references, or that bugs might affect refactoring engines, as already
found by previous work in the literature [141]. Additional investigation focused on these
specific types of errors is needed to understand the reasons behind them.

Other subcategories that also caused a build issue include the fix of introduced errors
in configuration files (i.e., Fix Error in Configuration File) or in a build script (i.e., Fix Build
Issue in Build Script). For example, in some remedy commits developers fixed broken tags in
configuration files or incorrect filepath references in build scripts.

Missing Code Change (165)

This category groups the pairs of commits (ci , ci+1) in which the remedy commit (i.e., ci+1)
adds some missing code changes that should be introduced within previous commit ci . We
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divided those commits into two subcategories: Commit Added/Deleted Files Missed in Previous
Commit and Finalizing Code Change.

The first subcategory is related to fixing a previous commit error. In this case, we are not
referring to the code changes implemented in ci , but to the commit process itself. This issue is
mainly caused by an incorrect selection of committed files by the developer. Also, sometimes
IDE cache issues can lead to a similar situation (e.g., the IDE cached the wrong version of a
committed file or lost track of some code changes during the git commit process). While this
subcategory is kind of unrelated to artifacts’ changes, it still provides hints for interesting
research directions. � For example, approaches to automatically identify the set of files to
commit can be designed to reduce the possibility of missing files or to include unrelated
changes. This could also go further and recommend to the developer when to commit in
such a way to avoid tangled commits [44] and committing cohesive sets of code changes.
To the best of our knowledge, the only step in this direction has been done by Bradley et al.
[142] with a context-aware developer assistant able to identify the files to push towards the
repository when the developer asks. However, more automation can be envisioned, with
approaches also able to (i) recommend when to commit (as previously said, to e.g., avoid
tangled commits), and (ii) summarize the changes in a meaningful commit message (as
attempted by Jiang et al. [143]).

The second subcategory (i.e., Finalizing Code Change) refers to code changes forgotten
or left incomplete for other reasons in commit ci that are then finalized in ci+1. This includes
cases in which developers add new test cases needed to test the production code introduced
in the previous commit, or to complete an implementation task. For example, in a commit
of the openpnp project [213], the developer claimed in the commit message that three
new sub-features were introduced. However, the developer forgot to actually implement
one of those sub-features and added the missing implementation in the following commit.
In another interesting case from the geoserver project [214], the developer introduced a
guard clause in commit ci to check if a processed reference is null. Meanwhile, a debugging
message was also added saying that “the reference is null, reset it to default value”. However,
the actual implementation for resetting this reference value was missing in commit ci , and
implemented in the remedy commit ci+1. �While these issues are of different natures, some
of them can be spotted automatically through techniques able to compare what described
in the commit message and what has been actually implemented in the code change. For
example, in the previously discussed example [213], a misalignment between the number
of sub-features actually implemented and claimed in the commit message could be spotted
and reported to the developer.

Reverted Commit (58)

This category groups remedy commits ci+1 in which the developers revert the code changes
they committed in the previous commit ci . The reasons pushing a developer to revert pre-
vious changes through a remedy commit include: (i) introduced bugs spotted after pushing
the changes in ci; (ii) unintended changes, pushed in ci by mistake; (iii) failing test cases,
possibly indicating a bug worth of investigation before applying the ci ’s changes. In all these
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cases, developers prefer to quickly bring the code back to its previous state to double check
the implemented changes and understand the causes for the (possible) introduced issues.

It is also worth mentioning that in many cases, we were not able to understand the rea-
sons behind the reverted changes by manually inspecting the subject commits. These cases
are just grouped in the root category Reverted Commit. Also, we observed that sometimes
the code changes were reverted backward and forward within a few subsequent commits.

Our study is not the first one investigating reverted commits in software repositories.
Shimagaki et al. [144] conducted a study to gain a better understanding of why commits
are reverted in large software systems. They found that 1%-5% of the commits from the
systems they studies are reverted and this number could be reduced by improving team
communication and developers’ awareness. However, in some cases, commits are reverted
due to external factors (e.g., requirement change by end-users, customers, or remote teams)
and, in this case, they are difficult to avoid. Yan et al. [145] proposed a model to automati-
cally identify commits that will be reverted in the future. They also found that the developer
who performs the change is the most important predictive feature among the three they
studied (i.e., code change, developer, commit message). 0 Besides the recommendations to
developers already provided by Shimagaki et al. [144], � the presence of reverted com-
mits in the history of software systems is also relevant for the mining software repositories
(MSR) research community. For example, it could be debated whether studies analyzing the
change-proneness of code components (i.e., how frequently code components are subject
to changes in software repositories) — e.g., [146, 147, 148] — should take into account
commits that are quickly reverted or, as currently done, should consider them. The same
applies for works using the history of changes implemented by developers as a proxy for
the developers’ experience — e.g., [149, 150]. In Section 4.3 we present an empirical study
aimed at assessing the impact of considering (or not) reverted commits for typical MSR data
collection tasks.

Documentation (49)

Our last category groups remedy commits related to software documentation. These com-
mits impact a number of documentation artifacts that represent the main subcategories (see
Fig. 4.4), namely: release notes, licensing statements, code comments, commit messages,
and readme files.

The errors fixed in release notes, licenses and readme files are mostly minor. For example,
some commits just update the copyright year in a previously committed file. Also, the fixes of
commit messages rarely happen, and are mostly due to adding a missing commit message for
the code changes implemented in the previous commit. � Also these cases are interesting
for the MSR community. For example, approaches using pairs 〈code changes implemented in
a commit cx , commit message of cx〉 to train models able to learn how to generate commit
notes [143], could be negatively biased by commit messages in a commit ci+1 referring to
changes implemented in ci .

Other remedy commits are related to code comments. In some cases, developers doc-
umented the rationale for a code change implemented in the previous commit. This is the
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case of commit [215] performed in the jitsi project. In a commit [216] they fix a bug due
to the wrong generation of a message where they mistakenly set a value of a parameter to
an empty string instead of a null value.

In the next commit [215] they add a comment to explain the otherwise non-trivial dif-
ference in the generated message.

Interesting is also the missed removal of Self Admitted Technical Debt (SATD) instances
[151], meaning technical debt documented by developers in the code with comments such
as TODO : . . ., TOFIX : . . ., etc. We found cases in which developers payed-back the technical
debt instance, but forgot to remove the comment documenting the SATD. This resulted in a
code-comment inconsistency [152], that could possibly confuse developers comprehending
the associated code components. One representative example of this scenario is the commit
[217] performed in the apache/tinkerpop project where the developers “Forgot to remove
todo from previous commit”, as their commit message says. Indeed, in the remedy commit
they remove a single-line comment which says “todo: need a test to enforce this condition”,
and just right in the previous commit [218] they had implemented the missing test case,
thus paying back the technical debt.

� The cases discussed above for the Documentation category provide us with some in-
teresting lessons learned. First, identifying code components in which specific types of com-
ments (e.g., to document the rationale for a given implementation and/or to detail the ap-
plication logic) are needed, can be a promising research direction. Second, automatically
classify SATD as payed-back (or not) can help in identifying obsolete and misleading com-
ments in the code. We believe this is another interesting research direction for the software
engineering community.

4.3 Study II: Impact of Reverted Commits on MSR Data Collection

4.3.1 Study Design

The goal of the study is to investigate the impact of reverted commits (one subcategory of
quick remedy commits) on data collection activities performed in the context of MSR studies.
The purpose is to show the level of noise introduced by reverted commits in MSR studies
collecting specific types of data. Our study addresses the following research question:

RQ2: What is the impact of reverted commits on data collection tasks when mining
Java projects?

We instantiate RQ2 on two popular “data collection tasks”, namely the identification of
bug-fixing commits [41, 125, 126, 127, 128] and of refactoring operations [128, 129, 130,
131, 132, 133] performed in the change history of software systems. We show the impact of
filtering-out (or not) reverted commits while mining this data (e.g., a refactoring operation
mined in the system’s history in commit ci may have been reverted in commit ci+1, thus
questioning its validity as a study data point). The results of our study help to increase the
awareness about noisy data points introduced by reverted commits, eventually leading to a
better handling of data processing in MSR studies.
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Data Collection and Analysis

To answer RQ2, we sorted the 1,497 projects used in the context of RQ1 based on the number
of commits in their change history impacting at least one source code (i.e., Java) file. We
discarded seven projects having more than 100k of such commits since the data extraction
process for refactoring operations on these systems is too costly in terms of time. In particu-
lar, we run the data collection process described in the following for two weeks, processing
in parallel up to ten systems at a time. At the end of these two weeks, the seven systems we
excluded were still far from being processed. We replaced these seven systems with those
ranked in positions 101-107, still selecting a total of 100 repositories as context for RQ2.
The list of considered projects is available in our replication package [135].

From each of the 100 selected projects we extracted the following information:

• Bug-fixing commits. To identify bug-fixing commits in open-source repositories, we
mined lexical patterns in commits, as done in previous work [153]. In particular, we
used the pattern defined by Tufano et al. [154], who reported a precision of 97.6%
(i.e., 97.6% of commits identified by this heuristic as bug-fixes are true positives): The
commit message must match the patterns (“fix” or “solve”) and (“bug” or “issue” or
“problem” or “error”) to classify the related commit as a bug-fix.

• Refactoring operations. To mine the refactoring operations in the history of a system
at commit level we used the state-of-the-art tool RefactoringMiner [155, 156]. If at
least one refactoring operation is identified in a given commit, we mark this commit as
a “refactoring commit” and store the refactoring-related information (i.e., performed
refactoring operations, code lines impacted by the refactoring).

• Reverted commits. Before detailing the procedure we adopted to identify reverted
commits, it is important to clarify that, in our study, we only focus on identifying com-
mits reverting Java code changes from the previous commit. This means that, as for
our previous study, we are still in a scenario in which we are looking at pairs of com-
mits ci and ci+1, with ci being the reverted commit and ci+1 the reverting one. We
implemented an approach similar to the one by Yan et al. [145]. First, we identify re-
verting commits by scanning commit messages, looking for the pattern reverts commit
ci . Second, to identify reverting commits ci+1 not explicitly labeled as such in their
commit note, we compare the code they change with the one changed in the previous
commit ci . To do this, we stored the changes performed in each commit in a vector
having the format: AddedFile, DeletedFile, ModifiedFile, AddedCode, DeletedCode. We
refer to this 5-element vector as a commit change vector V , in which AddedFile indi-
cates the added file paths, DeletedFile the deleted file paths, ModifiedFile the modified
file paths, and AddedCode and DeletedCode refer to the text in the inserted lines and
removed lines, respectively, with each line added together with a prefix of the changed
file path. Given the commits ci and ci+1, we mark ci as a reverted commit and ci+1 as
a reverting commit if they satisfy all of the following constraints:

– addedFilei+1 = deletedFilei ,
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– deletedFilei+1 = addedFilei ,

– modifiedFilei+1 =modifiedFilei ,

– addedCodei+1 = deletedCodei ,

– deletedCodei+1 = addedCodei .

• Partially reverted commits. Similarly to the identification of completely reverted
commits, given two commits ci and ci+1, we mark ci as a partially reverted commit
and ci+1 as a partially reverting commit if they satisfy all of the following constraints:

– addedFilei+1 ⊂ deletedFilei ,

– deletedFilei+1 ⊂ addedFilei ,

– modifiedFilei+1 ⊂modifiedFilei

– addedCodei+1 ⊂ deletedCodei ,

– deletedCodei+1 ⊂ addedCodei .

Once extracted the above described data from the change history of the 100 selected
projects, we compute the impact of considering/not-considering completely and partially
reverted commits when collecting bug-fixes and refactoring operations from the change his-
tory of software projects. In particular, given a task T ∈ {re f actorings, bug f i xes}, we
compute for each project the average number of noisy data points introduced by a single
reverted commit in the following way:

|DataPointsTall
− DataPointsTcleaned

|
|rever ted|

where DataPointsTall
represents the total number of data points collected for the task T

(i.e., in our case, number of bug-fixes or number of refactorings); DataPointsTcleaned
is the

number of data points collected for the same task T when removing reverted commits; and
|rever ted| is the total number of reverted commits identified in the repository. To make
an example, in the case of T = mining of bug-fixing commits, a value for this metric of
0.5 indicates that every reverted commit introduces in the collected data, on average, 0.5
noisy bug-fixing commits. We compute the same metric when considering both reverted and
partially reverted commits:

|DataPointsTall
− DataPointsTcleaned′

|
|rever ted|+ |par t ial l y rever ted|

In this case, the only difference is that DataPointsTcleaned′
represents the number of data

points collected for the task T when removing both reverted and partially reverted commits.
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4.3.2 Results

We start by commenting on the number of fully and partially reverted commits we identi-
fied in the 100 systems. Overall, we found 5,083 reverted (avg=51, median=30, Q1=15,
Q3=60) and 958 partially reverted (avg=10, median=7, Q1=3, Q3=13) commits. While
the number of reverted commits is non-negligible, we only found a limited number of par-
tially reverted commits, with a maximum of 44 observed for apache/hbase. Also, fully
reverted commits are found in all repositories, while for the partially reverted ones we did
not find any instance in six of the analyzed projects. Note that the number of reverted com-
mits found in our study is substantially lower as compared to the data reported in the work
by Shimagaki et al. [144] and Yan et al. [145], in which up to 5% of commits in a repo were
found to be reverted. However, it is worth noting that in our study, differently from previous
work, we only considered reverting commits ci+1 that revert changes in ci (e.g., we do not
consider ci+1 as reverting commit if it reverts changes performed in ci−1).
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Figure 4.5. Impact of reverted commits on bug-fixing commits.

Fig. 4.5 shows the results achieved for the data collection task related to bug-fixing com-
mits. The 100 projects are sorted from the left to the right in ascending order by the ab-
solute number of completely reverted commits. For example, the first project on the left is
hibernate/hibernate-search with only one reverted commit in its change history, while
the last is apache/hbase with 617. The stacked bar chart shows the number of non-impacted
bug-fixing commits (i.e., commits that are not fully nor partially reverted)—blue bar, of fully
reverted bug-fixing commits (orange bar) and of partially reverted bug-fixing commits (green
bar), using the scale on the left y-axis. The partially reverted commits are hardly visible in
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the chart due to their low number.
The line chart in Fig. 4.5 shows instead the average impact of fully reverted commits

(cyan line) and of both fully and partially reverted commits (pink line) using the formulas
presented at the end of Section 4.3.1. In this case, the reference y-axis is the one on the
right. Since the number of partially reverted commits is very low, we limit our discussion to
the impact of fully reverted commits on the collected bug-fixes. However, as it can be seen
in the line chart in Fig. 4.5, the trend of the two lines is very similar.

Ignoring reverted commits from the data collection has an impact, in terms of collected
data points, on 57 out of the 100 analyzed systems. The average impact goes from a min-
imum of 0.02 (i.e., a reverted commit results, on average, in 0.017 “wrong” bug fixes col-
lected) to a maximum of 0.24, with an average of 0.07 and a median of 0.06. The system
resulting in the highest number of noisy data points for this task is apache/tomcat, in which
the 147 reverted commits cause the collection of 27 reverted bug-fixes (on average, each
reverted commit contributes 0.18 noisy data points).

We discuss a few examples of commits that were identified as a bug-fixing commit but
had been reverted in the subsequent commit.

One commit of the apache/hadoop project was marked bug-fixing [219] as the log
message said: “Fix synchronization issues . . . ” The changes, however, were reverted by the
next commit with the message “ Revert “Fix synchronization issues . . . ” because forgot to
add JIRA Number.” In this case, the reverted commit is indeed a bug-fixing commit, but
the reverting commit should not be considered a valid bug-fix even though it contains the
expression “Fix issues.” In the worst case, a mining study might believe that there are already
two bug-fixes in the change history after the revert. While in reality, the code does not
implement the bug-fix after the revert.

In another commit of the apache/tomcat project [220], the author claimed in the com-
mit message that a reported issue had been fixed. However, the fix was reverted in the
subsequent commit as they noticed that “it fixes the reported issue but introduces other is-
sues.” Again, the fix was reverted, and the reverting commit should not be counted as a
bug-fix.

Another interesting example can be seen in [221]. The bug-fix was reverted because the
issue had been fixed before by someone else: “Revert [. . . ] Bug: 27700406" Framework bug
was fixed by ag/900274, so this is no longer needed.”

It is important to highlight that, while there is an impact of the reverted commits on the
collected bug-fixes (and, as such, excluding them from the data analysis might be preferred),
such an impact is overall limited. However, it is also worth reminding that in our study
design we favored the precision in the identification of reverted commits rather than recall.
Thus, the number of reverted commits we identify is certainly an underestimation of the
real ones. Also, in case these reverted bug-fixes are used to compute additional data (e.g.,
are provided as input to an SZZ algorithm as done in previous works [128]), such an error
can further propagate and results in additional noisy data points. Basically, a cleaning of
reverted commits when collecting bug-fixes is always desirable even though for specific study
designs (e.g., collection of bug-fixing commits for qualitative manual analysis) it might not
be needed.
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Figure 4.6. Impact of reverted commits on refactoring commits.

Fig. 4.6 shows the same data discussed before for the refactoring-related task, with the
only difference that, in this case, the reverted and partially reverted commits are “refactoring
commits”, meaning commits featuring at least one refactoring operation. Also in this case
we focus our discussion on the completely reverted commits.

Considering reverted commits during the data collection has an impact on 97 out of
the 100 systems, with an average impact for a single reverted commit of 0.27 noisy data
points (i.e., reverted refactoring commits), median=0.26. The average impact goes from a
minimum of 0.08 to a maximum of 1.00. The latter is a sort of outlier, since it refers to the
hibernate/hibernate-search that, as said before, does only have one reverted commit
that is indeed a refactoring commit.

In this case, the system that would be mostly affected by the presence of noisy refactoring
commits collected when not handling reverted commits is apache/hbase with a total of 236
reverted refactoring commits that would be wrongly considered (result of the overall 617
reverted commits in this system).

An example of refactoring-related commit that has been reverted is the one commit per-
formed in the metasfresh project [222]. The developer performed some refactoring opera-
tions (e.g., rename parameter, change return type, rename method), but the commit message
claimed that the refactoring was only partially. The subsequent commit reverted this par-
tial refactoring. Thus, specific types of empirical studies mining refactoring operations may
consider ignoring the refactorings detected in the first commit, since the refactorings were
implemented and quickly reverted by the developer. In another commit performed in the
WordPress− Android project [223], one of the private inner classes has been moved to
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a public outer class through a move class refactoring. However, the author said that this
refactoring was only for testing purpose and reverted the change in the subsequent commit.

As compared to the collection of bug-fix commits, reverted commits seem to have a higher
impact when mining refactoring operations, with an overall of 1,447 reverted (noisy) refac-
toring commits that are identified across the 100 analyzed systems. Considering our conser-
vative approach to identify reverted commits, we believe its cleaning is highly recommended
when studying refactoring operations over the history of software systems.

4.3.3 Summing Up

Both the quantitative and qualitative results of this study point to an opportunity to obtain
cleaner data by considering reverted commits: Reverted commits are noise in the recorded
history of a system, and while it looks like a negligible phenomenon, we argue that the
cleaner the data the better the analyses. In the spirit of the work by Kawrikow and Robillard
[42] on cleaning out non-essential changes from any mining software repositories research,
detecting and removing reverted commits could thus also become a part of the cleaning
preprocessing before starting an actual analysis.

4.4 Threats to Validity

Threats to construct validity concern the relation between the theory and the observation,
and in this work are mainly due to (Study I) the manual analysis we performed to identify
the reasons behind the quick remedy changes performed by developers, and (Study II) the
heuristics used to identify bug-fixing commits and reverted commits as well as to impreci-
sions introduced by the tool used to mine refactoring operations.

To mitigate subjectivity bias in the manual analysis (Study I), every commit was assigned
to two researchers who manually analyzed it independently. Then, in the case of disagree-
ment, a third researcher was assigned to the commit to solve the conflict. In addition to that,
we used lexical patterns to identify candidate remedy commits. While these lexical patterns
can return false positives, these have been excluded in our study through manual validation,
and thus do not influence our findings.

Concerning Study II, the identification of bug-fixing commits was based on a heuristic
defined and validated in previous work [154]. As for the reverted commits, we combined
two types of heuristics based on the analysis of the commit message and of the code changes.
Also, we limited the identification of reverted commits only to pairs of subsequent commits
to increase the precision in our analysis. While this likely reduces the number of reverted
commits we can identify (i.e., recall), considering the analysis we performed (i.e., assessing
the average “cost” in terms of noisy data of a single reverted commit) our findings should
not be substantially affected. Finally, refactoring operations have been mined by relying on
the state-of-the-art tool RefactoringMiner [156].

Threats to internal validity concern external factors we did not consider that could affect
the variables and the relations being investigated. One aspect could be related to the selec-
tion of projects being considered. As explained by Kalliamvakou et al. [124] mining GitHub
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can be risky because projects may contain very few commits. To mitigate this threat, we
applied strict criteria (i.e., more than 500 commits, more than ten stars) when selecting the
context of our study. Also, we manually looked into the set of retrieved projects to exclude
repositories that do not represent real software systems (e.g., tutorials, collections of code
examples) and forked projects. Also, in Study I all considered data points (i.e., commits)
have been manually checked, strengthening its internal validity.

Threats to external validity concern the generalizability of our findings. Our analysis
in Study I is limited to a specific set of 500 commits we randomly selected as the output
of a keyword-based mechanism used for the pre-selection of commits likely to be “remedy”
commits. Because of this procedure, our taxonomy inevitably omits types of remedy commits
we did not analyze and/or documented in diverse data sources. Also, we set a 5-minute
threshold to identify the quick remedy commits subject of our study. While our choice is
justified by the temporal distribution plotted in Fig. 4.2, changing this threshold value may
result in different findings. This investigation is part of our future research agenda.

As for Study II, the reported findings are related to a set of 100 Java open source projects,
which do not allow us to generalize our results to projects written in other languages which
require additional investigations.

4.5 Conclusion

We presented two empirical studies related to quick remedy commits. In the first, we qual-
itatively investigate quick remedy commits performed by developers in GitHub projects. We
defined quick remedy commits as commits performed by developers to remedy changes omit-
ted or errors introduced in a previous commit, performed just a few minutes before. This
study (Study I) is based on the manual analysis of 500 commits, that we classified by look-
ing at the objective of the remedy commit. The output of this study is represented by the
taxonomy depicted in Fig. 4.4. We used several qualitative findings to distill lessons learned
resulting in actionable items for both researchers and practitioners.

Then, we investigated the impact of a specific type of quick remedy commits, namely
reverted commits, on the data extracted for MSR studies. In particular, we focused on two
data collection tasks performed in many previous works: (i) the identification of bug-fixing
commits and (ii) the mining of refactoring operations over the change history of a system.
Our analysis disclosed the amount of potential noise brought by reverted commits for these
two data collection tasks.



5
Using Code Change Patterns for Code
Recommendations

Code completion is one of the killer features of Integrated Development Environments (IDEs),
and researchers have proposed different methods to improve its accuracy. While these tech-
niques are valuable to speed up code writing, they are limited to recommendations related
to the next few tokens a developer is likely to type given the current context. In the best
case, they can recommend a few APIs that a developer is likely to use next.

In this chapter, we present FeaRS, a novel retrieval-based approach that, given the current
code a developer is writing in the IDE, can recommend the next complete method (i.e., signa-
ture and method body) that the developer is likely to implement. To do this, FeaRS exploits
“implementation patterns” (i.e., groups of methods usually implemented within the same
task) learned by mining thousands of open source projects. We instantiated our approach
to the specific context of Android apps. A large-scale empirical evaluation we performed
across more than 20k apps shows encouraging preliminary results, but also highlights future
challenges to overcome.

5.1 Introduction

Developing high-quality software while reducing time-to-market are two classical contrast-
ing objectives in the software industry. This translates into the need for increasing the pro-
ductivity of software developers, by lowering their learning curves when dealing with un-
familiar code, and by maximizing the quality of the code they write. In response to these
needs, researchers have proposed recommender systems for software engineering, defined
by Robillard et al. as “applications that provide information items valuable for a software
engineering task in a given context” [8].

Some recommender systems pursue a long-lasting dream of software engineering re-
search: The (semi-)automatic generation of source code. The goal of these tools is speeding
up the implementation of new code. Code completion techniques are nowadays one of the
killer features of IDEs [157]. Researchers have proposed different methods to improve code
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completion accuracy and, more in general, its capabilities [7, 9, 10, 11, 12, 13, 14]. While
these approaches are certainly valuable to speed up code writing, they are limited to rec-
ommendations related to the next few tokens a developer is likely to type given the current
context. In the best case, they can recommend a sequence of APIs that a developer is likely
to use next [11, 14].

We aim at reaching the next level in supporting developers during the writing of new
code. We present FeaRS, an approach and an IDE plugin which monitors the code written
by Android developers in the IDE and is able to recommend the complete code of the next
method (i.e., signature and method body) they are likely to implement based on method(s)
they already have implemented.

FeaRS relies on a set of implementation patterns that we built by mining 20,713 open-
source Android apps available on GitHub. To give a concrete example, the code snippet in
Fig. 5.1 implements an options menu in an Android app. To perform such a task, tutorials
recommend as first step to inflate the menu in the onCreateOptionsMenu(...) method and,
then, to handle the item selection in the onOptionsItemSelected(...) method. Assuming
the existence of this implementation pattern in several apps, FeaRS can learn it and rec-
ommend the implementation of onOptionsItemSelected(...) once onCreateOptions-

Menu(...) has been implemented by the developer.

Figure 5.1. An implementation pattern in Android

We analyzed 2,721,800 commits performed during the history of the subject apps to
identify new methods that are implemented within the same commit. This results, for each
analyzed commit ck, in a set Mk = {m1, m2, . . . , mn} of n new methods created in ck. By ex-
tracting this information for thousands of commits, we can identify implementation patterns
repeatedly followed by Android developers, e.g., the implementation of m1 could imply the
implementation of m2, . . . , mn. We refer to m1 as the Left-Hand Side (LHS) of the pattern
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and to m2, . . . mn as the Right-Hand Side (RHS).
The identification of these implementation patterns is far from trivial. Indeed, two com-

mits ck and c j performed in two different repositories may implement different sets of new
methods (e.g., Mk = {m1, m2} and M j = {m3, m4}) that, however, represent the same imple-
mentation pattern (i.e., m1 = m3 and m2 = m4). Recognizing this situation is necessary to
identify groups of methods that are repeatedly implemented together in different commit-
s/apps, and not just by chance in a single/few commit(s).

FeaRS identifies clusters of methods likely to implement the same feature in the overall
set of mined added methods. Going back to the previous example, this means that m1 and
m3 are assigned to the same cluster C1, and m2 and m4 to C2. This results in the flattening
of ck and c j to the same implementation pattern (i.e., Mk = M j = {C1, C2}). Once this
processing is done for all mined commits, FeaRS applies association rule discovery [158] on
all commits, thus creating the set of implementation patterns it relies on.

When monitoring the code written by a developer in the IDE, FeaRS identifies newly
written methods and assigns, if possible, each of them to one of the clusters created in the
previous step. Then, it checks if an implementation pattern having one or more of the newly
implemented methods as LHS is available and, in case a pattern is found, the corresponding
RHS is triggered as a recommendation to the developer.

We evaluated FeaRS in a study in which we simulated its usage in the change history
of the same 20,713 apps we used to extract the implementation patterns. We used the first
80% of the apps’ histories to extract the implementation patterns, the subsequent 10% to
tune the FeaRS’s parameters, and the last 10% to assess its performance (i.e., test set). For
each commit c in the test set, we simulated the scenario in which a developer implemented a
subset S of the new methods added in c and used FeaRS to generate recommendations using
S as LHS. Then, in case a recommendation is generated, we check if the RHS corresponds to
one of the methods actually implemented in c and not part of S.

The achieved results show the feasibility of our approach, but also its strong limitations.
Indeed, while FeaRS is able to generate meaningful recommendations for thousands of meth-
ods, several of them concern small methods that are not expected to substantially boost the
developer’s productivity.

Structure of the Chapter

Section 5.2 thoroughly describes the technical details of FeaRS, the core technique behind
the system. Section 5.3 reports the design of the study we performed to build FeaRS by
mining open source repositories and assess its performance, with Section 5.4 presenting the
corresponding results. After the discussion of threats to validity (Section 5.5), Section 5.6
concludes this chapter.
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5.2 FeaRS

Fig. 5.2 depicts the inner working of FeaRS.
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Figure 5.2. The FeaRS pipeline

The black boxes represent components that we developed; the grey boxes depict external
tools we reused and/or adapted.

All components except the Android Studio IDE plugin reside on a central server providing
an access point via the FeaRS Web service. Steps 1-7 are executed offline, and continuously
mining existing or newly created Android apps to always learn new implementation patterns.
Step 8 is executed every time the developer completes the implementation of a new method.
We released FeaRS as an open source project [159].

5.2.1 Mining Android Apps

The Android apps miner identifies GitHub repositories related to Android apps. Their history
is then analyzed to identify methods implemented within the same commit. We use the
GitHub APIs to search for repositories satisfying the following criteria:

They are written in Java. While Android is transitioning to Kotlin as the official language,
the majority of Android apps is still written in Java [160]. Note that while we instantiated
FeaRS to the specific problem of recommending complete methods for Java Android apps,
all the steps in Fig. 5.2 can be customized to any programming language.
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They are Android apps. We ensure that the repository contains a build.gradle file with
an explicit dependency towards the Android SDKs, indicating the usage of the Gradle build
system, the default choice in Android Studio.

They have a non-trivial change history. We excluded apps with less than 100 commits
since we are interested in identifying the new methods added by developers within the same
commit.

5.2.2 Identifying Methods Added in Commits

The set of cloned repositories is provided as input to the History miner (step 2 in Fig. 5.2).
This component extracts the list of commits performed in all branches of each repository by
using the git log --topo-order command. This command allows analyzing all branches
of a project without intermixing their history, avoiding unwanted effects of merge commits.

History miner uses JavaParser [161] to extract, from the Java files added or modified in
each commit, the AST nodes which represent the callable declarations (i.e., methods and
constructors). In particular, we are interested in the callable declarations added in each
commit. Commits not implementing at least two new methods and/or constructors are ex-
cluded at this stage, since we want FeaRS to learn implementation patterns in the form of
{M} =⇒ mi , where M represents a set of one or more methods and mi a method that FeaRS
can recommend based on the fact that the developer implemented M . Thus, assuming M
to be a singleton, at least two new methods must be implemented in a commit (i.e., the one
in M and mi) to make it useful for learning. We excluded commits adding more than 10
new methods, since these are likely to be tangled commits not representative of any specific
implementation pattern [162].

These commits processed in this stage are provided as input to the module in charge of
the methods clustering (step 4 in Fig. 5.2).

5.2.3 Clustering Similar Methods

To identify recurring implementation patterns in the considered commits, FeaRS applies clus-
tering to group methods added in different commits, possibly from different systems, that
implement equivalent or very similar functionalities. Two commits ck and c j performed in
two different repositories may implement different sets of new methods (e.g., Mk = {m1, m2}
and M j = {m3, m4}) that represent the same implementation pattern (i.e., m1 = m3 and
m2 = m4). FeaRS can identify, through association rule discovery, that these sets of methods
represent a repetitive implementation pattern.

FeaRS builds a weighted undirected graph. Each method added in any of the commits is
considered as a node. The weight on the edges connecting each pair of nodes represents the
similarity between the two corresponding methods. To assess similarity we use the publicly
available ASIA clone detector [112], since it (i) is designed to capture the similarity between
two Android methods; and (ii) returns as output an easily interpretable value from 0 (min
similarity) to 1 (max). We customized the ASIA similarity algorithm in two ways.

First, in the original implementation all terms in the two methods to compare are low-
ercased before computing their textual similarity. This is suboptimal in FeaRS, since high
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precision in the identification of related methods is fundamental.
Experiments revealed that the similarity of methods is artificially boosted by lowercase

transformation: Given two methods m1 and m2, it happens that a term appearing in the
name of m1 (e.g., date) is matched with the type of an object appearing in m2 (e.g., Date).
By not transforming Date to lowercase, the presence of these two terms does not influence
positively the similarity between m1 and m2.

Second, while ASIA uses tf-idf (term frequency-inverse document frequency) as a weight-
ing schema for the terms during the textual similarity computation, we only employ term
frequency, because we noticed that a single term appearing in both methods and having a
very high idf (i.e., being very rare in the corpus) can result in a high similarity between the
two methods, even if they implement completely different features. This is especially true
in small methods, due to the low number of terms present in them and the strong impact a
single shared term can have on their similarity.

We prune all edges with a weight below a threshold λ (λ will be tuned in our eval-
uation). This creates a set of disconnected subgraphs, each one representing a cluster of
methods implementing strongly related functionalities. Within each subgraph (i.e., cluster)
we identify the cluster centroid: the method with the highest number of edges, which serves
as representative for that cluster. The centroid is used later on by the FeaRS Web service
when interacting with the IDE plugin.

5.2.4 Association Rule Mining

This module takes as input the list of commits generated by the History miner and the clusters
output of the previous step (step 6 in Fig. 5.2) and creates a text file reporting in each line a
set of methods added in the same commit and in the same file, using the cluster they belong
to. For example, assuming a commit adding three methods m1, m2, and m3 to a file Fi , and
those methods being assigned to clusters C12, C8, and C71, respectively, a line C12, C8, C71 will
be added to the file. We decided to split methods added in the same commit but in different
files to extract more “cohesive” association rules, and to avoid learning recommendations
that span different files (i.e., the developer is working on Fi and FeaRS recommends a method
to add in F j).

FeaRS analyzes the created file using Association Rule Mining [163] to identify imple-
mentation patterns, relying on the R arules package. The output is a set of association rules
in the form {LHS} =⇒ RHS, where the LHS can be composed by one or more methods,
while the RHS always has a single method. This means that FeaRS can only recommend the
next method to implement given the one(s) already implemented by the developer.

There are three parameters that we tune in our evaluation: minimum support (sup),
confidence for the mined rules (con), and maximum size of the LHS (maxLHS).

The support (sup) indicates how frequently a rule is observed in the dataset and, in our
case, represents the percentage of analyzed commits that contains the specific rule.

The confidence (con) assesses how often a given rule is actually true in the dataset. Given
a rule {LHS} =⇒ RHS, it is computed as the number of commits implementing in the same
file all methods in the LHS and RHS divided by the number of commits implementing the
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LHS in the same file (with or without the RHS). Finally, we also tune the maximum size of
the LHS (maxLHS).

5.2.5 FeaRS Web Service and IDE Plugin

Fig. 5.3 shows the FeaRS Android Studio IDE plugin.

1

2

3

4

Figure 5.3. The FeaRS Android Studio plugin

The plugin interacts with the server through the Web service (step 8 in Fig. 5.2). The
developer can start and stop FeaRS through simple Û and � icons in the IDE toolbar. By
clicking Û, FeaRS starts monitoring the code written by the developer and identifies when
a new method is added. When this happens, the text of the new methods added by the
developer since she pressed the start button is sent to the Web service.

The Web service identifies, for each received method, the cluster it belongs to. Our
customized version of the ASIA clone detector computes the similarity between each received
method and each centroid representative of the computed clusters. The similarity s for the
most similar centroid is compared against a γ threshold (the fifth and last FeaRS parameter
to tune): If s > γ, the method is assigned to the cluster represented by the most similar
centroid, otherwise no match is found and the method is discarded.

All combinations of received methods that are matched with a centroid are used to gen-
erate different LHSs. For example, if three methods added by the developer are matched to
clusters C1, C2, and C3, we generate 7 possible LHSs: {C1}, {C2}, {C3}, {C1, C2}, {C1, C3},
{C2, C3}, and {C1, C2, C3}.

FeaRS checks if any of these LHSs is equal to the LHS of one of the association rules
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previously extracted. In case of a match, a recommendation is generated. In the reported
example, if {C1, C2} is matched in a rule {C1, C2} =⇒ C9, then the centroid of cluster C9 is
returned by the Web service to the plugin as a recommendation. For the same LHS several
different RHSs may be recommended. The matching of the LHS of two rules can lead to
redundant recommendations. In the example, let us assume that two rules are matched,
one with {C1} and one with {C1, C2} as LHS, and that both of them have C9 as RHS. In this
case, the Web service returns the centroid of C9 reporting that it is recommended based on
the LHS belonging to the rule having the highest confidence.

The generated recommendations are shown in the IDE as depicted in the bottom part
of Fig. 5.3. 2 shows the signatures of the methods implemented by the developer that are
part of the LHS of the association rule used to recommend the method shown in 3 (i.e.,
RHS of the rule). In case several recommendations share the same LHS, the plugin displays
them as one recommendation allowing developers to switch between different RHSs using
the arrow buttons above 3 . The buttons at the bottom of the code snippet 4 allow to: (i)
provide a feedback reporting if the recommendation was useful; (ii) copy the snippet; and
(iii) delete the recommendation. The feedback, in our current implementation, is stored but
not used. We plan to use it in future to adjust the confidence of the recommendations. If the
developer decides to copy the snippet, a comment documenting the GitHub repository from
when the snippet has been taken is added to the code, so that the developer can check its
reusability from a legal perspective.

The slider at the top of the plugin GUI 1 allows the developer to customize the “chat-
tiness” of the plugin on three different levels. Low, Medium, and High sensitivity are three
different FeaRS configurations that resulted from the calibration of its parameters presented
in Section 5.4.1. By moving the slider towards Low, FeaRS becomes more strict and generates
fewer, but higher quality, recommendations, while the opposite holds for High.

5.3 Study Design

The goal of this study is to assess the performance of FeaRS when used to recommend the
next method to implement given one or more (already implemented) methods as input. It
thus addresses the following research question:

RQ1: What is the accuracy of FeaRS in recommending complete methods in the context of
Android apps?

5.3.1 Context Selection and Data Collection

To conduct the empirical study for addressing the research question, we target to build a
“static” version of FeaRS and assess its performance from mining a limited number of An-
droid apps. Besides satisfying the criteria mentioned in Section 5.2.1, we also excluded apps
having more than 1,000 commits while running the mining step. In this study, the Android
apps miner was executed once, and identified 20,713 GitHub repositories. The set of apps
that we use in this study is available in our replication package [164].
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Figure 5.4. Study Design

Fig. 5.4 overviews the steps in our experimental design. We exploit the dataset of 20,713
Android apps as the context of our study. Then, we split such a dataset into three blocks
namely training, validation, and test. Fig. 5.5 depicts how we create and use these three sets
in our study.

The black arrows represent the change history of the apps considered in our study. Note
that the history of the apps is not aligned, meaning that not all the apps exist in the same
time period. The vertical dashed lines show how we divide the change history of the apps.

We use the first 80% to extract the association rules used by FeaRS to generate recom-
mendations. We refer to this subset of the history as the “training set.” The subsequent 10%
is used to tune the parameters of FeaRS to identify the best configurations (i.e., “validation
set”), which are used to generate recommendations on the “test set” (i.e., the last 10%), with
the goal of assessing the performance of FeaRS.

One important clarification: We do not use the first 80% of each repository as the training
set, due to the misalignment of the mined change histories. Instead, given ds the date of the
oldest commit present in all analyzed apps and de the date of the most recent commit, we
take the first 80% of the time interval going from ds to de as training set. As shown in
Fig. 5.5, this may result in some apps exclusively contributing to the training set (or to the
validation/test sets).

However, such a design is needed to avoid using “data from the future” when generating
recommendations for the validation and test set and, thus, to simulate a real usage scenario
for FeaRS. Indeed, by selecting the first 80% of the history of each app to learn the association
rules, it could happen that a given Appx has the last commit of training set made on date dx ,
while for Appy the latest commit of its entire history comes on date dy , with dy < dx (i.e.,
dy is older than dx). This would mean that association rules learned on dx will be applied to
generate recommendations for commits performed on date dy (that will be part of the test
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Figure 5.5. Data splitting and processing

set), thus using data from the future to learn how to trigger recommendations, something
that cannot happen in a real usage scenario.

Table 5.1. FeaRS parameters tuning options

Parameter Experimented values
con 0.05, 0.20, 0.35, 0.50, 0.65, 0.80
sup 8.00E-06, 4.80E-05, 8.80E-05, 1.28E-04, 1.68E-04
λ 0.80, 0.85, 0.90, 0.95
maxLHS 1, 2, 3, 4, 5, 6, 7, 8, 9

Once the association rules are learned, we assess the performance of FeaRS on the val-
idation set with different parameter configurations (Table 5.1), for a total of 1,080 config-
urations. Given the number of mined commits, the minimum value of sup we experiment
(i.e., 8.00E-06) ensures that an association rule is learned from at least 5 commits to be
considered valid.

In all combinations of parameters, we used γ= λ, meaning that the minimum similarity
needed to cluster two methods together (i.e., λ) is also the minimum similarity used when
generating recommendations to assign a newly implemented method m to a cluster C (i.e.,
γ, see Section 5.2.5).

As shown in Fig. 5.5, to identify the best configuration(s) we use 10% of the apps change
history (validation set).

For each commit in the validation set (ci , c j , and ck in Fig. 5.5) we match all newly
added methods to the clusters that have been defined during the association rules extraction
from the training set (using the same similarity threshold as for the clusters definition). This
means that we simulated the scenario in which each of the added methods is written by the
developer in the IDE, and the FeaRS plugin checks if the added method can be matched with
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any of the existing clusters (i.e., if its similarity with one of the centroids is higher than γ). If
a method is not matched, no further action is taken, while all matched methods are assigned
to the corresponding cluster.

Fig. 5.5 represents our running example, in which the grey box on the left shows the
association rules learned on the training set, and the black box at the bottom shows how
performance is computed for each commit in the evaluation set. In the case of commit i,
three added methods have been matched to clusters C1, C2, and C3. Then, we compute all
possible combinations of the matched clusters involving all but one of them. In the case of
commit i, this means all possible combinations having length lower than three: {C1}, {C2},
{C3}, {C1, C2}, {C1, C3}, {C2, C3}. Then, we check if any of those combinations match the
LHS of one of the rules learned from the training set. In Fig. 5.5 the pair {C1, C2} matches
the rule {C1, C2} =⇒ C3. This means that, assuming C1 and C2 to be written before C3
(more discussion on this assumption in our threats to validity), FeaRS would be able in a
real usage scenario to successfully recommend the next method to implement (i.e., the C3
centroid). Thus, in Fig. 5.5, we count the number of recommendations generated by FeaRS
(1), column “Recomm.”, the number of correct recommendations (1), and the number of
methods added in commit i that FeaRS would have potentially been able to recommend (1
out of 3), column “Cover. Meth.” Concerning commit j, it would match the rule {C4, C5}
=⇒ C6 generating one wrong recommendation (see Fig. 5.5). No recommendation would
be triggered for commit k, since no matched rules are found.

There are two special cases that must be handled:
First, when multiple association rules have the same RHS (e.g., assume {C1} =⇒ C3

and {C2} =⇒ C3 are both available in the set of learned association rules). In this case,
both rules could be applied, for example, in the context of commit i in Fig. 5.5. However,
considering both rules as successful would inflate the performance of FeaRS since, in a real
usage scenario, if {C1} =⇒ C3 is applied, {C2} =⇒ C3 cannot be applied, since C3 already
exists.

Second, in case of a “circular dependency” between the LHS and the RHS of two rules,
e.g., r1 = {C1} =⇒ C3 and r2 = {C2, C3} =⇒ C1. The LHS of r1 matches the RHS of r2,
and the RHS of r1 is contained in the LHS of r2.

In theory both rules could be applied to commit i in Fig. 5.5, but the application of one
rule would exclude the other in a real usage scenario. If we apply r1, it means that C1 has
been implemented by the developer and it does not make sense to recommend it with r2.
Similarly, if r2 is applied, this means that C3 already exists, making r1 useless.

In both cases we select the rule with the highest confidence.

5.3.2 Data Analysis

We assess the performance of each experimented configuration by computing the following
metrics:

Recall: recal l = Commcor
Commv

, where Commcor is the number of commits for which FeaRS
generated at least one correct recommendation and Commv is the set of commits mined
in the validation set. A correct recommendation is not necessarily an exact match to the
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actual implemented code, but the similarity has to be above a certain threshold which is
consistent with the predefined clusters. Recall indicates in how many commits FeaRS could
be potentially useful for developers.

Precision: precision = Commcor
Commrec

, where Commrec is the number of commits for which
FeaRS generated at least one recommendation (correct or wrong).

Covcommits: covcommits =
Commrec
Commv

. This metric indicates the percentage of commits from
the validation set that could have triggered FeaRS to generate at least one recommendation
(correct or wrong) for developers.

Covmeth: covmeth =
Methcor

MethCommv
, where Methcor is the number of methods successfully

recommended by FeaRS and MethCommv
is the total number of methods added in Commv .

This coverage metric indicates the percentage of methods added in all commits from the
validation set that could have been automatically generated by FeaRS.

#Recom: #recom is the number of recommendations generated by FeaRS in a commit
for which it was triggered. We report both the mean and the median values.

Disttokens: dist tokens is the distance in number of tokens that must be modified, added
or deleted by a developer when they receive a correct recommendation from FeaRS, which
does not imply an exact match with the code actually implemented by the developer. Thus,
we assess the effort needed by developers to adapt the received recommendation to their
codebase (an example computation of such a metric is shown in Fig. 5.6).

Actual Implementation: 15 tokens

private static void toggle() {
    if (m_visible) {
        hide();
    } else {
        show();
    }
}

Recommendation: 14 tokens

private void toggle() { 
    if (mVisible) {
        hide();
    } else {
        show();
    }
}

DistTokens: 2  (Deleted: 0, Updated: 1, Added: 1)

%DistTokens: 2/14 = 14%

Figure 5.6. An example of dist tokens calculation
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Tuning of the lambda parameter

Values for minimum simiarity (lambda)
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Tuning of the max_LHS parameter

Values for maximum LHS size (max_LHS)
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Figure 5.7. Tuning of FeaRS’s parameters

5.4 Results Discussion

5.4.1 FeaRS Parameters Tuning

Fig. 5.7 shows the results of the parameters tuning performed on the validation set. Each
of the four graphs reports on the x-axis the values experimented for a specific parameter;
from left to right: minimum confidence (con), minimum support (sup), minimum similarity
to cluster two methods (λ), and maximum size of the LHS (maxLHS). The y-axis reports
the covcommits (left) and the precision (right) achieved, with red dots indicating covcommits
values, and black dots precision values. We decided to use these two metrics, over the others,
for the parameters tuning since we wanted to contrast the talkativeness of our tool (i.e., in
how many commits it generates a recommendation) against the precision of the generated
recommendations. To better understand what the black and red dots represent, consider
the con graph when its value is set to 0.05. The dots plotted in correspondence of this
value represent the performance achieved when fixing con = 0.05 and varying all other
parameters.

One first observation is related to the range of performance achieved by different con-
figurations: The covcommits varies from 0.02 to 0.28, while the precision from 0.08 to 0.84.
While the values of covcommits may look low, it is important to note that the validation set
includes 70,562 commits.

The trends observed for the four parameters indicate that con has the strongest influence
on performance. When the minimum confidence needed to trigger a recommendation grows,
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as expected the precision linearly increases with a corresponding linear decrease of recall
(left part of Fig. 5.7). Setting con lower than 0.50 does not ensure acceptable precision.

Concerning sup, increasing its minimum value does not substantially increase precision
while having a strong negative effect on covcommits. Low values of this parameter are prefer-
able. Instead, increasing the λ parameter results in a notable increase in precision, especially
when moving from 0.80 to 0.90/0.95. In this case, 0.90 seems to be a good compromise, also
considering the minor loss of covcommits as compared to lower values. Finally, the maxLHS
does not play a big role in the performance of FeaRS. As the output of this tuning process,
we identified three configurations that we linked to the sensitivity bar in our IDE plugin and
that are shown in the gray boxes at the right of Fig. 5.7.

These configurations have been picked using the following process. We started from the
assumption that a precision level below 0.50 (i.e., one out of two generated recommenda-
tions is correct) is not acceptable. Then, we picked as a high sensitivity configuration the one
ensuring a precision of at least 0.50 and having the highest covcommits. This configuration
is able to generate 8,355 correct recommendations in the validation set, with a precision
of 52%. Then, we increase the minimum acceptable precision by 10%, identifying the con-
figuration ensuring at least a 60% precision with the maximum covcommits. This resulted
in the medium sensitivity configuration, that can successfully recommend useful methods in
7,092 cases, with a precision of 64%. Finally, a further increase of the precision level to at
least 70%, led to the identification of the low sensitivity configuration, that can recommend
5,801 correct methods, with a precision of 72%. These three configurations are the ones we
experiment with.

5.4.2 Quantitative Results

Table 5.2 reports the results achieved by the three FeaRS’s configurations on the test set. The
top part of the table reports the raw data used to compute the performance metrics in the
bottom part of the table. In the top part, while “#commits w. corr. recomm.” indicates the
number of commits with at least one correct recommendation, “#corr. recomm.” represents
the number of correctly recommended methods, possibly more than one per commit.

The results achieved by the three configurations are in line with what we observed on
the validation set: precision goes from 0.50 (high sensitivity) to 0.72 (low sensitivity), with
recall moves in an inverse direction, decreasing from 0.07 (high sensitivity) to 0.04 (low
sensitivity).

The recall values, while low, still correspond to thousands of methods correctly recom-
mended. As we learned while performing the qualitative analysis in Section 5.4.3, a correct
recommendation does not imply a “useful” recommendation. We noticed that many of the
correct recommendations are due to small methods (e.g., a getter method triggers the im-
plementation of the corresponding setter), and decided to re-compute the performance of
FeaRS only considering recommended methods with at least four lines of code (including
signature but excluding annotations and the closing brace). To correctly compute recall,
this also required us to exclude from our analysis the commits in which a successful recom-
mendation would not be possible at all, due to the absence of newly implemented methods



5.4 Results Discussion 75

Table 5.2. Performance when considering all methods

high medium low
sensitivity sensitivity sensitivity

#commits 69,480 69,480 69,480
#added methods 219,331 219,331 219,331
#commits w. recomm. 8,757 6,447 4,116
#commits w. corr. recomm. 4,878 4,167 3,110
#recommendations 14,642 9,996 7,170
#corr. recomm. 7,383 6,183 5,149
recall 0.07 0.05 0.04
precision 0.50 0.62 0.72
coveragecommits 0.13 0.09 0.06
coveragemeth 0.03 0.03 0.02
#recom(median) 1 1 1
#recom(mean) 1.67 1.55 1.74
distancetokens(Q1,Q2,Q3) 0,1,2 0,1,2 0,1,2
distancetokens(mean) 1.94 2.03 1.81
%distancetokens(Q1,Q2,Q3) 0,13,22 0,13,22 0,13,20
%distancetokens(mean) 14% 14% 13%

having at least four lines.
Table 5.3 reports the results achieved in this scenario. The precision values are in line

with before (min: 0.59, max: 0.71), showing that the “quality” of the recommendations is
not influenced by the length of the recommended methods. Instead, we observed a drop
of recall, that does not go over 2%, with a number of correct recommendations ranging
between 522 (low sensitivity) and 778 (high sensitivity).

The number of recommendations generated by FeaRS (#recom) is usually very low (me-
dian=1 and mean<2 in both scenarios). This shows that FeaRS does not generate many
cases to inspect when triggered. Also, the results of distancetokens indicate that developers
need to modify only a few tokens to adapt the received recommendations to their code.

While these results show the potential of FeaRS, they highlight (as in cases discussed
for Table 5.2), that the recommended methods are short, with a potential small benefit for
developers. Our qualitative analysis will help in better assessing the value of these recom-
mendations.
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Table 5.3. Performance when excluding short methods

high medium low
sensitivity sensitivity sensitivity

#commits 31,088 31,088 31,088
#added methods 83,562 83,562 83,562
#commits w. recomm. 900 763 564
#commits w. corr. recomm. 568 536 413
#recommendations 1,329 1,099 738
#corr. recomm. 778 742 522
recall 0.02 0.02 0.01
precision 0.59 0.68 0.71
coveragecommits 0.03 0.03 0.02
coveragemeth 0.01 0.01 0.01
#recom(median) 1 1 1
#recom(mean) 1.48 1.44 1.30
distancetokens(Q1,Q2,Q3) 0,3,10 0,3,10 0,3,4
distancetokens(mean) 5.08 5.07 3.98
%distancetokens(Q1,Q2,Q3) 0,14,28 0,14,28 0,10,18
%distancetokens(mean) 17% 16% 13%

5.4.3 Qualitative Examples

Correct Recommendations

Fig. 5.8 shows an example of a recommendation generated for the Memento app for Android
Wear [165].

Repository: inertia-besi-c/Memento-AndroidWear          Commit: 590449d

LHS

public static boolean 
isExternalStorageReadable() {
    String state = Environment.
       getExternalStorageState();
    if 
(Environment.MEDIA_MOUNTED.
      equals(state) || 
Environment.   
      MEDIA_MOUNTED_READ_ONLY.
      equals(state)) {
        return true;
    }
    return false;
}

RHS
public static boolean 
isExternalStorageWritable() {
    String state = Environment.
       
getExternalStorageState();
    if 
(Environment.MEDIA_MOUNTED.
      equals(state)) {
        return true;
    }
    return false;
}

Figure 5.8. Correct recommendation to the usage of external storage in Android.

Suppose that the developer implements the isExternalStorageReadable() method to
check whether the external storage of the device is mounted in read-only mode. FeaRS can
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pop up and recommend the isExternalStorageWritable() method to check also if it is
writable or not. This rule had four matching instances in our test set from four different
repositories.

Fig. 5.9 shows an example of providing a custom back navigation for an Android DrawerLayout.

Repository: KaryaKita/karyakita-android                                          Commit: e811795

LHS

@Override
public boolean 
onNavigationItemSelected(MenuItem 
item) {
  int id = item.getItemId();
  if (id == R.id.nav_camera) {
  } else if (id == R.id.nav_gallery) {
  } else if (id == R.id.nav_slideshow) 
{
  } else if (id == R.id.nav_manage) {
  }
  DrawerLayout drawer = (DrawerLayout) 
     findViewById(R.id.drawer_layout);
  drawer.closeDrawer(GravityCompat.
                               START);
  return true;
}

RHS

public void onBackPressed() {
  DrawerLayout drawer = (DrawerLayout) 
        
findViewById(R.id.drawer_layout);
  if (drawer.isDrawerOpen(
    GravityCompat.START)) {
      drawer.closeDrawer
         (GravityCompat.START);
    } else {
      super.onBackPressed();
    }
}

Figure 5.9. Correct recommendation to provide a custom back navigation for an Android Drawer-
Layout.

Following the implementation of an onNavigationItemSelected(...) method that
uses a DrawerLayout, FeaRS recommends a proper implementation for the onBackPressed()
method. Interestingly, in case of a missing implementation, the DrawerLayout might not
close properly, as it is discussed in a Stack Overflow question [166]. We found 19 matching
instances for this rule in 17 different repositories.

Fig. 5.10 shows an example recommendation for the creation of a Google Map object
from the Google Maps SDK.

Repository: p-hilosophers/TravelGuide                                        Commit: f690635

LHS

@Override
protected void onCreate(Bundle 
savedInstanceState) {
  super.onCreate(savedInstanceState);
  setContentView(
     R.layout.activity_maps);
  SupportMapFragment mapFragment = 
   (SupportMapFragment) 
      getSupportFragmentManager().
      findFragmentById(R.id.map);
  mapFragment.getMapAsync(this);
}

RHS
@Override
public void onMapReady(GoogleMap 
                       googleMap) {
  mMap = googleMap;
  LatLng sydney = new 
                 LatLng(-34, 151);
  mMap.addMarker(new 
        MarkerOptions().
        position(sydney).
        title("Marker in Sydney"));
  mMap.moveCamera(
     CameraUpdateFactory.
     newLatLng(sydney));
}

Figure 5.10. Correct recommendation for the creation of a GoogleMap instance from the Google
Maps SDK for Android.

We found 68 matches for this rule in 62 repositories. FeaRS matches an onCreate(...)
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method in which an Activity creates a SupportMapFragment from the SDK. Next, it recom-
mends an initial implementation for the onMapReady(...) method, that shows how to add
a marker to the map. We found various implementations having a different initial marker
position (e.g., London, Sydney).

Unmatched Implementation Patterns

We present FeaRS’s recommendations that have been triggered during the evaluation process
(i.e., their LHS has been matched in the test commits) but that have never been successful
(i.e., the RHS has not been matched).

LHS
private boolean isValidEmail(String 
email){
  Boolean isGoodEmail = (
    email != null 
    && Patterns.EMAIL_ADDRESS.
    matcher(email).matches());
  if (!isGoodEmail) {
    mEmailEditText.setError(
   “Please enter a valid email 
    address”);
  }
  return is GoodEmail;
}

RHS
private boolean 
isValidPassword(String
Password, String confirmPassword){
  if (password.length() < 6) {
    mPasswordEditText.setError
     (“Please 
      Create a password containing
      at least 6 characters);
    return false;
  } else if (!password.equals(
             confirmPassword)){
      mPasswordEditText.setError(
        “Passwords do not match”);
      return false;
  }
  return true;
}

Figure 5.11. Unmatched recommendation for user credential validation in sign-up activity.

Fig. 5.11 shows an example of recommendation generated for the Artissans Android app
[167].

Suppose that the developer implements the isValidEmail() method to check whether
the email address provided when creating an new account is valid. FeaRS recommends the
isValidPassword() method to check, in the same scenario, if the provided password/con-
firm password fields are valid (i.e., they are composed by at least six characters, and they
match each other). This rule had been triggered twice without finding a match for the RHS,
thus being classified as an incorrect recommendation. However, when we looked into the two
commits in which this recommendation was triggered, we found that both of them actually
implemented an isValidPassword() method that, however, only validated the password
based on its length, do not making the recommended method and the implemented one
similar enough to be counted as a correct recommendation. This example is representative
of others we found.

For example, Fig. 5.12 relates to the creation of a custom filter applied to a Recycler-

View.Adapter in Android. The class Filter is used in Android to constrain data according
to a specified pattern.

Following the implementation of a UserFilter constructor, FeaRS recommends a proper
implementation of the overridden publishResults method from the Filter class that, as
explained in the Android documentation, is invoked in the UI thread to publish the filtering
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LHS
private 
UserFilter(RequestAllListAdapter 
  adapter, List<Request> 
  originalList){
  super();
  this.adapter = adapter;
  this.originalList = new 
    LinkedList<>(
     originalList);
  this.filteredList = new 
                  ArrayList<>();
}

RHS

@Override
protected void publishResults(
            CharSequence 
            constraint, 
            FilterResults 
results){
  adapter.filteredList.clear();
  adapter.filteredList.addAll(
      (ArrayList<List> 
         result.values);
  adapter.filtered = true;
  adapter.notifyDataSetChanged();
}

Figure 5.12. Unmatched recommendation for creating custom filter for filterable adapter in Android.

results in the user interface. Again, this recommendation was not matched (and considered
wrong) during our study, but also in this case looking into the test commit [168] subject
of the recommendation, we found that a similar overridden publishResults method was
implemented as well following a custom filter constructor. Unfortunately, also in this case
the similarity between the RHS of the rule and the implemented publishResults was not
high enough to identify the recommendation as useful.

These cases show that our experimental design, while useful to provide a first indication
about the quality of the recommendations triggered by FeaRS, has imprecisions in assessing
FeaRS’s performance. As previously said, only complementing this mining-based study with
experiments with developers can help in better assessing FeaRS’s usefulness.

5.5 Threats to Validity

Construct validity. In our experimental design we assumed that if a commit added three
methods belonging to clusters C1, C2, and C3 and FeaRS has an association rule {C1} =⇒
C3, FeaRS would have been useful in that commit to recommend C3 to the developer. How-
ever, we cannot know whether C3 was written before C1, thus making FeaRS’s recommen-
dation useless in practice. Such a threat can only be addressed by (i) performing a user
study in which developers code live using FeaRS, or (ii) recording IDE interaction data of
programming sessions. While this is part of our future work, we preferred as first evaluation
for FeaRS something that can be large-scale and fully automated, before moving to more
costly studies requiring human involvement. In the design of our study, we only consider
coding activities from one single commit might perform an implementation task, while ig-
noring those cases in which a given task can be separated into several commits. Actually we
considered the idea of using close commits as a single data point, but we found out that it is
hard to define a proper criterion for the selection of multiple commits and it might be risky
for the cohesiveness of the task.

Another threat is related to the criterion we used to identify a generated recommendation
as “correct.” Given a commit c in which mi and m j are added, we assume that a recommen-
dation Ck =⇒ Cs is correct if mi is matched to an existing cluster Ck and m j is matched to
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an existing cluster Cs (or vice versa, i.e., mi to Cs and m j to Ck). This implies an assumption,
meaning that the assignment of methods to cluster is correct or that, in other words, when
a method is assigned to a cluster, the method actually implements functionalities related to
those of the cluster. To partially address this threat, two researchers including the author
manually analyzed a set of 100 methods assigned by FeaRS to a specific cluster, with the
goal of verifying whether the assigned cluster actually implements the same feature of the
method.

After solving conflicts arisen in 7% of cases, they reported an accuracy of 91%. Thus, we
acknowledge possible imprecisions.

Internal validity. We tuned the FeaRS’s parameters on a set of commits not used for
the learning of the association rules nor for assessment of FeaRS’s performance. We exper-
imented with 1,080 combinations of parameters. However, it is possible that better perfor-
mance can be achieved by considering other possible values. Thus, from this point of view,
the reported performance is an underestimation. We adopted a careful experimental design
to avoid using “data from the future” when tuning and testing our approach.

External validity. Overall, our study involves 20,713 open-source Android apps. The main
issue is related to the fact that all used apps are open source, and might not be representative
of commercial apps. Also, while FeaRS is general enough to be adapted to other contexts
(e.g., Java programming in general), we decided to focus on a more narrow scenario at least
for this first work.

5.6 Conclusions

Code completion, while provenly useful and extensively used by developers [157] is just a
step in the direction of an automated pair programmer, adding complete methods that a de-
veloper would have to add anyway and thus removing from the developer the burden of rote
work. This was the ambitious goal that we set out to achieve with this work, embodied in the
creation of FeaRS, an approach and a tool [164] to automatically recommend to developers
the complete next method to write during implementation activities.

FeaRS relies on a simple but intuitive idea: programming is an eclectic activity, which
some even go as far as calling it “natural” [10]. What a developer is doing has a high chance
of having been done by someone else, somewhere else before. Leveraging this idea, FeaRS
mines vast amounts of data to recommend complete methods given a set of methods being
implemented by a developer. We evaluated FeaRS on the change history of 20,713 Android
apps. The results show the potential of FeaRS, with hundreds of correct methods recom-
mended even in its most conservative configuration.

However, our findings are not conclusive for what concerns the actual usefulness of the
generated recommendations in a real usage scenario, in which developers use FeaRS during
coding activities. This is due to two observations we made. First, some of the methods
recommended by FeaRS are quite short and, while they can still be useful, they could also
represent “trivial” recommendation for developers. We believe this can in part be made up
by introducing a user feedback loop, which is part of our future work. The quantitative
results show that around 15% of the tokens from the recommendations need to be modified,
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added or deleted to fit the user’s code base. One of our future plans is to integrate code
adaption techniques into FeaRS to avoid potential conflicts or compilation errors with the
user’s code environment, and convert the coding convention into the user’s style. Second,
due to our experimental design, the “unmatched recommendations” are always considered
false positives, while we observed that some are actually valuable recommendations. Thus,
a deeper evaluation of FeaRS including a well-designed user study represents another main
target of our future research.
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6
Conclusions and Future Work

6.1 Conclusions

In this thesis, we presented our research in the field of mining code change patterns with the
aim of acquiring new empirical knowledge on software development activities and leverag-
ing such a knowledge to facilitate code-related tasks. The research was organized into three
directions, namely (i) studying code-comment inconsistencies, (ii) investigating quick rem-
edy commits and their impact on mining software repositories, and (iii) using code change
patterns for code recommendations. In each direction, we investigated one specific type of
code change pattern and its possible applications in supporting developers. In this chap-
ter, we sum up all the contributions and findings discussed in this dissertation, and outline
possible directions for future work.

In Chapter 3, to raise the knowledge about code-comment inconsistencies, we presented
the largest study at date about the co-evolution of code and comments, which involved the
analysis of the complete change history of 1,500 Java systems. We investigated the extent
to which different types of fine-grained code changes (e.g., changes to selection statements)
trigger the update of the corresponding code comments. This analysis provided empirical ev-
idence useful to quantify the cases in which code-comment inconsistencies could possibly be
introduced and to identify the types of code changes having a higher chance of introducing
these inconsistencies. In this study, a database of∼476 GB containing∼1.3 Billion AST-level
operations impacting code and comments has been created and made accessible for other
types of inquiries. We also manually examined 500 commits likely related to the improve-
ment of code comments, categorizing them into a taxonomy of comment-related changes,
which aimed at identifying the types of code-comment inconsistencies that are fixed by soft-
ware developers.

By analyzing the same 1,500 GitHub repositories we collected from Chapter 3, we qual-
itatively investigated another type of code change pattern performed by developers, namely
quick remedy commits in Chapter 4. We defined quick remedy commits as commits performed
by developers to remedy changes omitted or errors introduced in a previous commit, per-
formed just a few minutes before. We defined a heuristic-based approach to identify quick
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remedy commits by mining the history of open source repositories. By manually analyzing
500 quick remedy commits, we defined a taxonomy documenting the main motivations for
these commits. Then, we investigated the impact of a specific type of quick remedy com-
mits, namely reverted commits, on the data extracted for MSR studies. We focused on two
data collection tasks performed in many previous works: (i) the identification of bug-fixing
commits and (ii) the mining of refactoring operations over the change history of a system.
Our analysis disclosed the amount of potential noise brought by reverted commits for these
two data collection tasks.

In Chapter 5, we attempted to mine implementation patterns followed by developers at
method level (i.e., methods usually implemented together by developers) when implement-
ing Android apps. We developed an approach that can identify these patterns. Then, we
built a tool, called FeaRS, which is able to recommend the complete code of the next method
developers are likely to implement while monitoring the code written in the IDE. We per-
formed a large-scale empirical evaluation of FeaRS by simulating its usage on the change
history of 20,713 Android apps. We reported promising results and discussed limitations of
our approach.

6.2 Future Work

We discuss in this section our plans for future work, which mostly revolve around (i) the
improvement of FeaRS and (ii) the detection and fixing of simple omission errors performed
by developers.

6.2.1 Detecting and Fixing Simple Omission Errors

In our study of “quick remedy commits” (Chapter 4), we use strict selection criteria to identify
commits suitable for manual inspection as we aimed at performing a qualitative study iden-
tifying the types of quick remedy commits performed by developers, organizing them into a
taxonomy. While working on such a taxonomy, we found that some quick remedy commits
are related to the introduction and the fix of omission errors. For example, a developer may
forget to propagate code changes into other locations that are affected by the implemented
change. Being errors that have been fixed within a few minutes from their introduction,
we believe they represent a suitable scenario for applying automated techniques aimed at
detecting and fixing them. However, to investigate this research direction, we first need to
define new and less strict heuristics to collect a large dataset of quick remedy commits fixing
omission errors. For example, we could inspect the diffs of adjacent commits to see whether
(i) they impact the same files, and (ii) the more recent commit only implements relatively
minor changes. Using the collected data, we can then investigate possible approaches to
automatically spot and fix omission errors. While recent state-of-the-art techniques are ex-
ploiting more and more deep learning models, their applicability will depend on the amount
of training data we can collect. Thus, we also plan to investigate other options based on
static code analysis.
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6.2.2 Improving FeaRS

In Chapter 5 we presented FeaRS and its empirical evaluation, which highlighted some lim-
itations of our tool that could be addressed in future.

We plan to integrate into FeaRS code transformation techniques able to automatically
improve the reusability of the generated code recommendations by adapting them to the
developer’s coding style. To be more specific, we can target: (i) compilation errors/bugs
possibly introduced through the recommended code (e.g., due to misused or undefined code
entities in the recommended code); (ii) the adaptation of the recommended code to existing
coding conventions (e.g., from simple formatting to naming conventions). For the first point,
we can use syntactic analysis to identify potential conflicts and errors caused by the usage
of the recommended code in the developers’ codebase. Classic examples here are accesses
to undefined fields. We will focus on statements causing compilation errors and try to fix
them by applying a set of predefined fixing rules (e.g., replacing undefined fields with those
available in the scope of the recommended code). As for the second point, we need to learn
the developers’ coding style from their codebase automatically. Then, the recommended
code must be adapted accordingly to the extracted style. Both approaches aim to minimize
the manual effort required by developers to reuse the recommended code. We expect the
steps above to improve FeaRS’ performance. To assess this, we also plan to conduct a deeper
evaluation of FeaRS featuring a user study (e.g., controlled experiments, surveys).

FeaRS could also benefit from additional features implemented in it. At the moment,
the implementation patterns we learned are represented as a group of methods with their
complete code. This implies that developers need to write at least one full method to trig-
ger potential recommendations from FeaRS. To overcome this problem we could summarize
each method based on specific textual and structural features it contains. In this way, when
the developer starts implementing a method, we could match features in the incomplete
implementation being able to recommend the developer how to autocomplete the current
method(e.g., from signature to method’s body). Furthermore, we can also explore the possi-
bility of learning implementation patterns at different granularity levels (e.g., lines, blocks).

6.3 Closing Words

In this dissertation, we showed that mining unexposed code change patterns from open
source repositories can help in better understanding development activities and potentially
support developers during software development. We presented several empirical studies to
build new knowledge on three specific types of code change patterns. Our research on these
MSR related topics contributes to a better understanding of some partly hidden development
activities and demonstrates other possibilities of converting those empirical knowledge into
applications for code-related tasks.

At the end, we hope more researchers will continue working on exploring new code
change patterns from open source repositories and utilizing existing empirical knowledge to
build tools, in order to further enhance practitioners’ awareness of the relevance of MSR for
their daily work.
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