Of Change and Software

Doctoral Dissertation submitted to the
Faculty of Informatics of the University of Lugano
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by
Romain Robbes

under the supervision of

Michele Lanza

December 2008

Dissertation Committee

Mehdi Jazayeri University of Lugano, Switzerland
Mauro Pezzé University of Lugano, Switzerland
Stéphane Ducasse INRIA, France

Jacky Estublier CNRS, France

Jean-Marc Jézéquel INRIA. France

Andreas Zeller University of Saarbriicken, Germany

Dissertation accepted on 1 December 2008

Supervisor PhD program director

Michele Lanza Fabio Crestani

I certify that except where due acknowledgment has been given, the work presented in this
thesis is that of the author alone; the work has not been submitted previously, in whole or in
part, to qualify for any other academic award; and the content of the thesis is the result of work

which has been carried out since the official commencement date of the approved research pro-
gram.

Romain Robbes
Lugano, 1 December 2008

Abstract

Software changes. Any long-lived software system has maintenance costs dominat-
ing its initial development costs as it is adapted to new or changing requirements.
Systems on which such continuous changes are performed inevitably decay, making
each maintenance task harder. This problem is not new: The software evolution
research community has been tackling it for more than two decades. However, most
approaches have been targeting individual tasks using an ad-hoc model of software
evolution.

Instead of only addressing individual maintenance tasks, we propose to take a
step back and address the software evolution problem at its root by treating change
as a first-class entity. We apply the strategy of reification, used with success in
other branches of software engineering, to the changes software systems experience.
Our thesis is that a reified change-based representation of software enables better
evolution support for both reverse and forward engineering activities. To this aim,
we present our approach, Change-based Software Evolution, in which first-class
changes to programs are recorded as they happen.

We implemented our approach to record the evolution of several systems. We
validated our thesis by providing support for several maintenance task. We found
that:

* Change-based Software Evolution eases the reverse engineering and program
comprehension of systems by providing access to historical information that
is lost by other approaches. The fine-grained change information we record,
when summarized in evolutionary measurements, also gives more accurate
insights about a system’s evolution.

* Change-based Software Evolution facilitates the evolution of systems by inte-
grating program transformations, their definition, comprehension and possi-
ble evolution in the overall evolution of the system. Further, our approach is
a source of fine-grained data useful to both evaluate and improve the perfor-
mance of recommender systems that guide developers as they change a soft-
ware system.

These results support our view that software evolution is a continuous process,
alternating forward and reverse engineering activities that requires the support of
a model of software evolution integrating these activities in a harmonious whole.

Acknowledgments

As 1 type this, I have spent four years working in Lugano. Four years is a long time. I was
fortunate to share that time with a number of people who made this part of my life exciting.

First of all, many thanks to Michele Lanza, my advisor, for being there all along, starting at
Lugano’s train station back in October 2004. Waiting for me as I arrived after a long night in
the train showed me how much you cared about your students. During these four years, you
showed it over and over. I wish all the best to you, Marisa and Alessandro.

Many thanks to Mehdi Jazayeri for starting the Faculty of Informatics in Lugano and for
giving me the opportunity to work there. Without you, my life would have been radically dif-
ferent. Special thanks to Mehdi and the other members of my dissertation committee, Stéphane
Ducasse, Jacky Estublier, Jean-Marc Jézéquel, Mauro Pezzé and Andreas Zeller, for showing
interest and investing a part of your precious time to evaluate my work.

Special thanks to Doru Girba for the early discussions that led me toward this subject. Thanks
also to Oscar Nierstrasz, and the rest of the Software Composition Group in Bern, for hosting me
during the summer of 2004. My stay at SCG certainly influenced me to continue my studies in
Switzerland.

Thanks to Damien Pollet, Yuval Sharon and Alejandro Garcia for your collaborations with
me. Thanks Damien for the cool research ideas, Yuval for spending much time in the internals
of Eclipse when building EclipseEye, and Alejandro for making movies of program histories —I'll
watch one over “The Dark Knight” any day. Thanks to Alejandro, Philippe Marschall, and the
second promotion of USI Informatics students for allowing me to collect the data I much needed.

Special thanks to the members of REVEAL for being the coolest research group around!
Thanks to Marco D’Ambros, Lile Hattori, Mircea Lungu and Richard Wettel for being both ex-
tremely competent coworkers, and such a great deal of fun to have around. We worked hard,
played hard and had some amazing trips together. Your presence was —as a matter of fact—
motivational.

Many thanks to my former flatmates, Cyrus Hall, Cédric Mesnage, Jeff Rose and Elodie
Salatko. We shared great times in a small office and a gigantic living room. And the french-
american struggle was always entertaining.

Thanks also to the rest of the USI Informatics staff, former and current. Thanks to Laura
Harbaugh, Marisa Clemenz, Cristina Spinedi and Elisa Larghi for making my life much easier
on the administrative side. Thanks to all the professors, and especially Amy Murphy and Cesare
Pautasso for the teaching opportunities. Thanks to Jochen Wuttke and Domenico Bianculli for
investing time in the thesis template I am presently using.

Thanks to all the coworkers I generally had fun with, in no particular order (There were too
many fun moments to keep count!): Giovanni, Giovanni, Giovanni, Nicolas, Alessandra, Alex,
Milan, Morgan, Amir, Mostafa, Anna, Paolo, Vaide, Adina, Monica, Marcin, Dmitrijs, Philippe,
Edgar, Navid, Francesco, Francesco, Mark, Avi, Onur, Sasa, Ruben, Lasaro, Alessio, Aliaksei,
Daan, Shane, Matteo, Fred, Tom, Julian. Thanks to Thanassis for the fun in Athens, even if the

\Y

timing was not best for you.

Thanks to my friends back in France. You are too numerous to mention, but you know who
you are. Visiting you once every few months was always a refreshment. A special thanks to
the ones who had the courage to visit the dangerous city of Lugano: Hurain Chevallier, Denis
Meron, Cyril Bazin, Céline Bernery and Etienne Ailloud.

Thanks to the other category of people which are too numerous to mention, the ones I met,
had scientific discussions, and had fun with at various conferences. 'm looking forward to meet
you again at the next edition of . ..well, you know.

Thanks to my extended family, which also happens to be too numerous to mention. It is
always a pleasure to see you, even if it is not often.

And most of all, many many thanks to my family: Isabelle, Didier, Mariette and Benjamin
Robbes. Without your unconditional love and support, I could not have concluded this work.

Romain Robbes
October 2008

Contents

[Contents] xi
List of Figures Xiv
List of Tables xvi
(1 Introductionl 1
1.1 The Challenges of Software Evolution| 2

ification to The Rescuelt 2

[1.3 Change-based Software Evolution| 3
... 4

I First-class Changes: The Why, The What and The How| 7
|2 Software Evolution Support in Research and Practice] 11
2.1 _Introductionl ¢ o v i i e e e e e e e e e e e e e e e e 12
[2.2 Change Representation in SCM|. ittt ittt ittt 12
[2.2.1 How SCM Handles Versioning|., 12

2.2.2 Tnteraction Modelsin SCMJ.t 13

[2.2.3 The State of the Practice in SCM|, 14

[2.3 Impact of SCM Practice on the Researchof MSR| 15
[2-3.1 The shortcomings of SCMfor MSR] v v v v i e e e 15

|2.3.2 High-level evolution analysis| 19
[2.3.3 Full model evolution analysis| 19
|2.3.4 Evolution reconstruction approaches|. 20

[2.4 Alternative Approaches| 21
|2.4.1 IDE monitoring as an Alternative to SCM Archives| 21
|2.4.2 Change-based approaches| 22
... 23
|3 Change-Based Software Evolution| 25
3.1 Introduction| e 26
[3.2 Principles of Change-based Software Evolution|. 26
[3.3 Program Representation|ttt ii ittt 29
[3.3.1 Abstract Syntax Tree Format|. 29
13.3.2 Language Independence|ttt 30
B33 Limitationslt 31

Vii

viii CONTENTS
[3.4 The Change Metamodel] 32
3.4.1 AtomicChanges| 32
[3.4.2 Composite Changes|ttt ittt 33
[3.4.3 Change histories| e 35
[3.4.4 Generating a View of the System| 35

[3.5 Recording and Storing Changes| 36
[3.6 Uses of Change-based Software Evolution| 38
[3.6.1 Example: Measuring the Evolution of Systems|. 38
[3.6.2 Validation Strategies|. i e e 39
3.6.3 WhatlIs Used Where?| 40
... 40
Il How First-class Changes Support System Understanding] 41
4 Assessing System Evolution| 45
[4.1 Introduction| i e e 46
[4.2 Assessing Systems with The Change Matrix] 47
[4.2.1 Principles| 47
[4.2.2 Patterns] o v vt e e e e e e e e 48

[4.3 Evolution of ProjectI]. e 49
4.3.1 High-level Facts|. 49
[4.3.2 Reconstructing Project I's Evolution| 50
4.3.3 Recapitulation| 56

[4.4 TImpact of Data Degradation|. 56
.. 57
4.6 SUMMATY] « « « v v o e 59
|5 Characterizing and Understanding Development Sessions| 61
5.1 Introduction] 62
[5.2 Motivations for Session-based Program Understanding| 63
[5.3 A Characterization of Development Sessions| 64
[5.3.1 Primary Session Characterization|. 64
[5.3.2 Session Metrics oo 65
|5.3.3 Quantitative Analysis of the Characterization| 65

[5.4 Incremental Session Understanding| 66
|5.4.1 A Process for Incremental Session Understanding|. 66
[5.4.2 Browsing Sessions with the Session Sparkline| 68
15.4.3 Inspecting and Characterizing Sessions with The Session Inspector| 69
15.4.4 Viewing Changes in Context with The Session Explorerf 69
15.4.5 Understanding Individual Changes with The Change Reviewer] 70
... 71
[5.5.1 Decoration Session (Project X)[. 71
[5.5.2 Painting Session (Project X)| 73
[5.5.3 Masonry & Restoration Session (ProjectX)| 75
[5.5.4 Architecture & Restoration Session (SpyWare)|. 77

5.6 DISCUSSIONI « « « v v v e e e e e e e e e e 80

ix CONTENTS
|6 Measuring Evolution: The Case of Logical Coupling| 83
[6.1 Introductionl ot i it e e e e e e e e e e 84
[6.2 Logical Coupling|. 85
6.2.1 Usages of Logical Coupling]. ovvviiiinnnnnnn. .. 85
6.2.2_Shortcomings of SCM Logical Coupling]+« oo oo oo 85
6.2.3 Alternatives to SCM Logical COUPHng| . . - . .+« o v oo v e oo 86

[6.3 SCM Logical Coupling Prediction]o vv vt 86
16.3.1 MOtIVALION|. « . « v v o v e e e e e e e e e e e e e e e e e e 87
6.3.2 Procedure] i e e e 87
6.3.3 Evaluation|. e e 87

6.3.4 ResultFormat].ttt 88
[6.3.5 Data CorpuS|. v vttt e e 88

[6.4 Logical Coupling Measurements and Results| 88
[6.4.17 SCM Logical Coupling]. o v v v vt e et e e e 89
16.4.2 Change-based Coupling|. 90
16.4.3 Interaction Coupling|. L 91
[6.4.4 Time-based Coupling| 92
[6.4.5 Close Time-based Coupling]o oot vt 93
6.4.6 Combined Coupling|, 94

6.4.7 Discussionofthe Results| 95
.. 95
... 96
I How First-Class Changes Support Software Evolution| 97
|7 Program Transformation and Evolution| 101
[7.1 Introductionl i i v it e e e e e e e e e e e e e e 102
[7.2 Change-based Program Transformations| 103
I7.2.1 Variables And TheirRoles| 103
[7.2.2 GenericChanges 104
[7.2.3 Tnstantiation and Application of Transformations| 104
[7.2.4 Control Structures| e e e e 104
[72Z5 Wrap-up|o 105

7.3 Transforming programs by examples|, 105
...................... 106
[7.3:2 Example-based Program Transformation in a Nutshell| 107
7.3.3 Does our approach fulfill the reqUITements?| o« oo v oo v oo .. 108
734 Running eXample] . . - - - o oo oo e 109

[7.4 The Six-step Program to Transformation Definition] 110
|[7.4.1 Recording theexample| 110
[7.4.2 Generalizing the example] 110
[743 Editing the Example] oo vt e 111
[7.4.4 Composing Changes|. 114
[7.4.5 Testing the Transformation]. 116
|7.4.6 Applying the Transformation| 116

[7.5 Additional Examples| L 116
[7.5.1 Defining informal aspects].ot i i 116
[7.5.2 Clone Management]ttt iieenneenn.. 117

X CONTENTS
[7.6 _Towards Transformation Integration and Evolution| 119
|7.6.1 Transformation Integration| 119
........................... 119

6 0 0 0 OI . o o o e e e e e e e e e e e e e e e e e e e 120
.. 120
[7.7.1 Change-based Program Transformation| 120
[7.7.2 Example based Program Transformation] v oo oo 121
[7.7.3 Tntegrating Transformations in The Evolution| 122

3 7 S P 123

|8 Evaluating Recommendations for Code Completion| 125
[8.1 TIntroductionlt e 126
[8.2 The Cost of Human Subject Studies| 127
[8.3 Current Approaches to Code Completion|. 128
[8.3.1 Code Completionin Eclipse] 128
[8-3:2 Code Completion in VisualWorks|o vv i 129
18.3.3 Code Completionin Squeak| 129
[8.3.4 Code Completion in Eclipse with Mylyn|. 130
------------------- 130

[8:4 A Benchmark For Code Completion] . . . « v o v vt v v e e e e e e e e 131
8.4.1 MotIVation|. v o v e e e e e e e e e e e e 131
[8.4.2 Procedure] 132
8.4.3 Evaluation|. 133
8.4.4 ResultFormatl. 134
[8.4.5 DataCorpus|. 134
B5Code Completion AIGOMRS| - . .+« « « e oo e e 134
8.5.1 Default Untyped Strategyl. oo vt it ittt e 135
[8:5.2 Default Typed Strategy] v v v v v e e e et e e 136
[8.5.3 OptimiSt STrUCLUTE|. vt vttt e e 136
8.5.4 Recently Modified Method Names| 137
[8-5.5 Recently Modified Method Bodies] 137
[8.5.6 Recently Inserted Code| 138
8.5.7 Per-Session Vocabulary] 138
B5.8 Typed OpHMISE COMPIEHON] . . .« « « v v e ee e e ee e e 139
8.5.9 oN O eresults| L 140
.. 140
8 Y o o e 142
|9 Improving Recommendations for Change Prediction| 143
9.1 Introduction] @it e 144
[9.2 Change Prediction Approaches| e 145
9.2.1 Historical Approaches|. L L 145
[0-2:2 Tmpact Analysis Approaches|o i i 146
9.2.3 IDE-based approaches|. 146

9.3 A Benchmark for Change Prediction|. 147
9.3.1 MOUIVAtION|. . « « . v v ot e e e e e e e e e e e e e e 147
9.3.2 Procedure] 147
9.3.3 Evaluation|. e 148

19.3.4 ResultFormat]. o i i i e e e e e e e 149

Xi Contents

9.3.5 DataCorpus|. 150
... 151
[9.4.1 Association Rules Mining|. 152

|9.4.2 Enhanced Association Rule M1n1n§| 153
|9.4.3 Degree of INferest] it 154
[0:44 Coupling-based]. 155

[9.4.5 Association Rules with Time Coupling|. 156
... 157

9.4.7 Merging Approaches|. L 158
............................... 159
.. 161
.. 162
IV First-class Changes: So What?| 163
165
[[0.T Contributions] . - « -« v v e e e e e e e e e e e 166
[10.1.1 Defining Change-based Software Evolution|. 166

|10.1.2 Evaluating (Thange-based Software Evolution for Reverse Engineering| . . . 166
[10.1.3 Evaluating Change-based Software Evolution for Forward Engineering| . . 167

10.1.4 Additional Contributions| e 167
MO2TIMIALIONS - « « « « e v e e e e e e e e e e 168
[10.2.1 Threatsto Validity| 168

10.2.2 AdOption ISSUES|. v o i i i e e e e e e e e e e e e 170

10.2.3 Conclusions| L e e e 171

1 L ns Learned| e e e e e e e e e 171
[10.4 Future WOrkl i e e e e e e e e e 172
[10.5 Closing Words| e 173
ppendix 175

|IA Inside the Change-based Repository| 177

Bibliography 179

Xii Contents

Figures

[1.1 Roadmapofourworkl 5
[2.1 Simple refactoring scenario leading to evolution information loss.| 17
[3.1 A node of the program’s AST| it e 29
[3.2 An example object-oriented program AST| 30

[3.3 Metamodel of atomic changes| 32
[3.4 Effects of atomic changes on an AST|ot v e i e e e e e 33

[3.5 Change and usage history of method foo()|. 35
[3.6 A partial view importing method foo()| oo 36
[3.7 Architecture of our change-based tools| o . 37
[4.1 Anexample Change MatrixX| ottt 47
.2_Size evolutionof amethod| L 48

4.3 System size (top) and average method complexity (bottom) of projectl 50
4.4 Change matrix of project I, 27/03t031/03]ttt 52
4.5 Change matrix of project I, 31/03t0 03/04f 53
4.6 Change matrix zoomed on the class Combat|. 54
4.7 Impact of data loss: Original (Top), Commits (Middle), Version Sampling (Bottom)| 58
[5.1 Session exploration and understanding process|.t 68
[5.2 Asessionsparklinel i i 69
[5.3 Overview of the Session eXplOTe. . . « . v v v v v v v e et e e e e e e 70
[5.4 Decoration SeSSION| v v v v it e e e e e e e e e e e e e 71
[5.5 Painting SessiOn| o it e e e e e e 73
[5.6 Masonry & Painting Session].t e e 75
[5.7 Session F: Architecture and Restoration| 79
[6.1 A development session involving four entities|. 85
[6.2 Graphs of Precision (X axis) and Recall (Y axis) of Change Coupling: |

| T session (red), 2 sessions (green), 3 sessions (BIue)| 90
[6.3 Graphs of Precision (X axis) and Recall (Y axis) of Interaction Coupling: |
[T session (red), 2 sessions (green), 3 sessions (DIUE)| . . v v v v v v v v v v v v s . 91
[6.4 Graphs of Precision (X axis) and Recall (Y axis) of Time Coupling: |

| 1 session (red), 2 sessions (green), 3 sessions (blue)| 92
[6.5 Graphs of Precision (X axis) and Recall (Y axis) of Close Time Coupling: |

| 1 session (red), 2 sessions (green), 3 sessions (blue)| 93

Xiii

Xiv

Figures

[6.6 Graphs of Precision (X axis) and Recall (Y axis) of Combined Coupling: |
[1 session (red), 2 sessions (green), 3 sessions (BDIUE)| oo v v v v oot .. 94
[7.1 Actual vs expected behavior of extract method| 109
7.2 Recorded changes|. e 110
[7.3_The Change Chooser shows the recent changes to the system]. 111
|7.4 TEe Change Factory’s main interface, shown editing a deletion change| 112
-------------------------- 114
7.6 'Two possible generic change designs|, 118
[7.7 Sample clones in the Change FACIOTY] - « « « v« v v v v v v e e e et e e e e e 119
[8.1 Code completionin Eclipse| oL, 129
[8.:2 Code completion in VISUAIWOIKS| o v o v v e ittt e e e e e 130

9.1 Prediction Results] e e e 160

Tables

[2.1 Per-author commit frequency in several open-source projects| 18
3.1 Sample program-level metrics (top) and change-level metrics (bottom)|. 39
[3.2 Uses of various parts of the model across chapters of this document] 40
[5.1 SesSion MELTICS. . « « v v v o e 66
[5.2 Definition of our characterization.. 67
[5.3 Session Types, for Project X and SpyWare| 67
6.1 Best F-measures for SCM Logical Coupling|. 89
6.2 Best F-measures for Change COUpIIng| . - - - . - -« oo oo oot 90
6.3 Best F-measures for Interaction Coupling|. 91
6.4 Best F-measures for Time Coupling| 92
6.5 Best Fmeasures for Close THe COUPINE| . . « « « « o v oveeeee e 93
6.6 Best E-measures or CombBINed GOUPIING « - - - « « v v e e e e oo e e 94
[7.1 Advantages and drawbacks of approaches in automated program transformation|. 107
[7:2 Refactoring alternatives|ovvi i e et ettt .. 109
[7.3_The properties that can be edited for each atomic change) 113
|7.4 Aval!able constraints iIn ASTpatterns|t ..., 114
[7.5 The supported composite generic ChAanges.o v eun. ... 115
8.1 Number of completion attempts|, 135
82 Results for the default algorithmm] . . . « .« v o' ovee e e ool 135
8.3 Results for the default typed completion]o v i e ... 136
8.4 Results for Optimist StrUCtUTE] o v v v vttt e e 136
8.5 Results for recent method names|. 137
8.6 Results for recently modified bodies|. 0 L. 137
8.7 Results for recently serted Code]« o v oo os e e 138
8.8 Results for per-session VOCabUIAIY] v v oo v v i e e e 139
8.9 Results for typed optimist completion|. 139
8.10 Scores for the untyped algorithms of all projects| 140
[9.1 Sample results for an algorithm| 150
02 Development histories in the benchmark] ovooveenen ... 150
9.3 Results for AssoCiation RUIEs MIMIE - . « « « « « « v e e eveeeee el 152
0.4 Results for Enhanced Association Rules Mining|o oot v oo on .. 153
9.5 Results for Degree of Interest] i 154

XV

Tables

XVi
9.6 Results for Coupling with PIM|, 155
9.7 Results for Association Rules with Time Coupling| 156
9.8 Results for Hits, besthubs| 157
[9.9 Results for Hits, best sinks|. e 157
9.10 Results when merging two prediction approaches| 158
9.11 Comprehensive results for each predicto] 159

IA.1 The case studies in our change repository| 177

Chapter 1

Introduction

Software evolution consists in adapting software to new or updated requirements,
and prevent or fix defects. Software evolution causes problems which have no satis-
fying solution yet —and perhaps never will. We argue that reifying change itself, that
is, representing changes as explicit, manipulable entities, gives us more leverage to
deal with the problems.

We first describe the problems associated with software evolution. We then mo-
tivate why a change-based model of software evolution would be helpful to support
software evolution. The intuition behind our thesis is that the process of reifica-
tion has always been a powerful tool to address software problems, but has not
been fully applied to the change process. We present our thesis and the research
questions we use to validate it, before giving a roadmap to the remainder of this
work.

2 1.1 The Challenges of Software Evolution

1.1 The Challenges of Software Evolution

Lehman’s laws of software evolution state that as software systems grow and change over time,
each further modification is more difficult [[LB85]]. In particular, a system must continuously
change to remain useful in a changing environment (law 1). If nothing is done to prevent it,
the system decays: Its complexity increases (law 2) while its quality decreases (law 7). Since
their enunciation in the 1970s, the laws have been corroborated on several systems [LRWT97]],
[EGKT01]].

Another indicator of the difficulty of changing systems is the cost of maintenance compared
to the global cost of software. Estimates vary between 50% and 90% [Erl0Q], with a tendency
for the most recent estimates to be higher. Erlikh’s 90% estimate is incorporated in the recent
editions of Sommerville’s book on software engineering [[SomOQ6]].

Software maintenance and evolution is hard because maintainers have to deal with large
code bases. This means that a large part of the time involved in maintenance is spent under-
standing the system. Corbi [[Cor89] estimates the portion of time invested in program compre-
hension to be between 50 and 60 %.

Even with a considerable time spent understanding code, maintenance is not trouble-free.
Purushothaman and Perry found that 40% of bugs are introduced while fixing other bugs [[PP0O5],
because understanding the complete implications of a change in a large code base is barely
possible.

Performing a change is not an easy task either: A simple change can be scattered around the
system because of code duplication or because a changing assumption is widely relied upon.

In short, change is hard. Maintainers need all the help they can get.

Do they?

In practice, programmers are spending most of their time in static and textual views of a
system. Historical information is available in the form of text-based versioning system archives,
but is rarely used actively when programming. Thus there is a mismatch between complex
evolutionary processes, where software entities are continuously changed, and how maintainers
view and interact with software systems. To address this mismatch, evolving systems need to be
supported by a better model of evolution itself.

1.2 Reification to The Rescue

Reification is the process of transforming an abstract and immaterial concept, into a concrete
and manipulable one. Reification is a powerful tool in software engineering. It is a standard
practice in object-oriented design: When designing a software system, a good heuristic is to
reify important entities of the problem domain. These entities take a more prominent role in the
overall design and are clearly localized in the system.

Reification has also been used successfully to make programming languages more effective
by reifying programming language constructs. In general, reifying a construct makes it more
expressive, more accessible and altogether more powerful. Some examples are:

* First-class functions passed as arguments to other functions (closures) are used to build
higher-level control structures and domain-specific languages. This concept was first found
in functional languages.

* The reification of the interpreter in reflective systems [[Smi84], or of the object system in an
object-oriented language [Mae87]], make systems more flexible. Non-functional behavior

3 1.3 Change-based Software Evolution

such as tracing, distribution or debugging can be added to parts or the whole of the system
without changing its implementation. A reified interpreter provides hooks to achieve this,
while a reflective object-oriented system uses metaclasses.

¢ Aspect-oriented programming [KLM™97] is a further reification of non-functional concerns
as language constructs. Aspects ease the definition and the application of crosscutting
concerns to large parts of the system.

* Reifying the call stack in Smalltalk environments was used to implement exception han-
dling and continuations as simple Smalltalk libraries, without modifying the virtual ma-
chine or the language itself.

» Osterweil showed that software processes such as testing should be reified [[Ost87]. Pro-
cesses should be described by process descriptions in order to be manipulated and modified
by programmers.

In this work, we apply the reification principle to the changes performed on a software sys-
tem. Our goal is to record and make accessible all the changes performed on a system. We name
our approach Change-based Software Evolution.

We are not the first to consider the evolution of programs as changes. This is a prominent
concept in the fields of Software Configuration Management (SCM) and Mining Software Repos-
itories (MSR). These change models have been however incomplete: SCM systems favor versions
of text documents for simplicity and genericity. This decision impacts MSR as SCM archives are
their primary data sources.

1.3 Change-based Software Evolution

We take a “clean slate” approach to software evolution in order to define a change metamodel
freed from the limitations imposed by external circumstances. The change metamodel we intro-
duce has the following characteristics:

* Contrary to SCM systems, it trades generality for semantic awareness, i.e., it deals with the
evolution of actual programs and the entities that constitute them, not only lines of text in
files.

* It models changes at several granularity levels, from the finest (changes to individual
statements) up to the coarsest (aggregating all changes performed during a development
session).

* The changes to a system are recorded from an IDE, instead of being recovered from arbi-
trary snapshots of the program’s source code. The recorded history is more accurate as it
does not depend on how often the developer commits or how many versions are selected
for study.

* We designed our change metamodel for flexibility. It supports a variety of uses, from ana-
lyzing the past evolution of a system, to defining and applying program transformations.

We claim that software evolution can be better supported by reifying the changes program-
mers make to the system they work on. In this dissertation, we show that an explicit rep-
resentation of the changes performed on a system helps one to better understand it —reverse
engineering—, and then to actually change it -forward engineering.

4 1.4 Roadmap

We formulate our thesis as:

Modeling the evolution of programs with first-class changes improves both their
comprehension and their evolution.

To validate our thesis, we answer the following two research questions:

* How, and how well, can a change-based model of software evolution assist the reverse engi-
neering of a system?

* How, and how well, can a change-based model of software evolution assist the forward engi-
neering of a system?

The following section breaks down these research questions in sub-questions, states our con-
tributions and maps them to the overall structure of the document.

1.4 Roadmap

Figure shows how the work was performed in the course of this thesis. Research topics
are placed in the tree according to their similarity. The chapter in which they are described
(if applicable) is indicated. On the right, we indicate the venue in which we published each
topic. This thesis is structured in four parts. The first part is the trunk of our work: Based
on the shortcomings of evolution models in the literature [RLO5[, we defined a general model
of software evolution emphasizing changes [RLO6; [RL0O7a], implemented in a platform named
SpyWare [RLO8c]. Each branch of the tree represents an area to which we applied change-based
software evolution. The branches span spectrum from understanding (part 2) to supporting
(part 3) software evolution. The branches covers the topics of reverse engineering and program
comprehension [[RLLO7; [Rob07; [RLO7b[|, benchmarking for reverse [RPLO8] and forward en-
gineering [[RLO8D; [RL.PO8[|, and program transformation [RLO8al]. Finally, the last part of the
dissertation ties these branches together in a unified vision of future work [RLO7c].

Part I, First-class Changes: The Why, The What and The How gives the context and explains
the concepts of Change-based Software Evolution.

* Chapter |2} Software Evolution Support in Research and Practice, explores approaches
in the domains related to our thesis: SCM, MSR, and IDE monitoring. In the course of this
review, we point out limitations of current approaches and extract requirements for our
change metamodel.

Contribution: Requirements for a change-based model of software evolution.

* Chapter |3, Change-based Software Evolution, presents our change metamodel and the
principles which led to its construction. We detail the capabilities of our metamodel and
show how it addresses the requirements outlined in Chapter [2}

Contributions: A change-based model of software evolution satisfying the requirements
stated above. An implementation of it for Smalltalk, and a proof of concept for Java.

Part II, How First-class Changes Support System Understanding answers our first research
question: How can Change-based Software Evolution assist the reverse engineering of a system?
We answer on the levels of reverse engineering, program comprehension and metric definition.

1.4 Roadmap

Part 4: Towards
Harmonious Evolution?

(.':ontlnuous evolution [RLO7q] TechReport
with change-aware tools

2 N A%
Y A}

N
\ N
/ / N

~
~

\
\
! \
N e 3
Change prediction @ [RPLO8b] TechReport

'| [RPLO8a] WCRE

Code completion | [RLO8b] ASE

Program transformations | @ [RLO8a] MODELS

[
[
1 [}
\

Logical coupling

[RLO7b] ICPC

@l Development sessions |

| Refactoring usage |

A\
@l Assessing the evolution |

Part 2:
Understanding Evolution

/l Platform implementation | \ [RLO8c] ICSE

Defining Change-based @ (RLO7a) ENTOS
Software Evolution [RLO6] EVOL

[Rob07] MSR

[RLLO7] FASE

Part 3:
Supporting Evolution

o

Z VYO X

Part 1:
Modeling Evolution

State of the art
K and its shortcomings 9 [RLO5a] IWPSE

Figure 1.1: Roadmap of our work

* Chapter [4] Assessing System Evolution, shows how fine-grained changes can be ab-
stracted to high-level evolutionary facts for the reverse engineering of systems. To support
this we introduce a visualization of the change data called the change matrix. Using the
change matrix, one can easily locate evolution patterns and extract a high-level evolution
scenario of how the system was developed.

Contributions: A technique supported by an interactive visualization to globally assess
the changes performed on parts or the whole of a software system. A catalogue of visual
change patterns to characterize the relationships between entities.

* Chapter 5| Characterizing and Understanding Development Sessions, investigates the
use of session-level metrics and session-level visualizations for incremental understanding
of sessions. These metrics and visualizations use information which is not recorded by
a conventional SCM system. We show how the application of these techniques on fine-
grained development session data eases program understanding.

1.4 Roadmap

Contributions: Several metrics and a characterization of development sessions based on
change-based information. A process for the incremental understanding of sessions

Chapter|6] Measuring Evolution: The Case of Coupling, shows that fine-grained changes
increase the accuracy of evolutionary measurements. Logical coupling recovers relation-
ships between entities which might be hidden otherwise. Logical coupling is usually com-
puted at the SCM transaction level. We introduce alternative measures of logical coupling
using fine-grained changes, and compare them with the original.

Contributions: Alternative and more accurate measures of logical coupling, and a bench-
mark to compare them.

Part III, How First-class Changes Support Software Evolution answers our second research
question: How can Change-based Software Evolution assist the forward engineering of systems?
We applied Change-based Software Evolution to program transformation and recommender sys-

* Chapter |7, Program Transformation and Evolution, extends Change-based Software
Evolution to support program transformations as change generators. We evaluate how the
extension fits in our model, and present a process called example-based program transfor-
mation, through which one can record a concrete change and generalize it in a program
transformation. Finally, we show that transformations are fully integrated in the system’s
evolution and discuss the consequences of this.

Contributions: An extension of our change model to define program transformations. A
process to convert concrete recorded changes in generic program transformations.

Chapter 8] Evaluating Recommendations for Code Completion, uses the information in
our change repository to define a benchmark for a recommender system that is otherwise
hard to evaluate, code completion. Based on this benchmark we also define several com-
pletion ranking algorithms which are a significant improvement over the state of the art.
Contributions: A benchmark to evaluate code completion tools. Several algorithms im-
proving completion tools evaluated with the benchmark.

Chapter|[9] Improving Recommendations for Change Prediction, adopts the same bench-
marking strategy for the goal of change prediction. We show that a benchmark based on
Change-based Software Evolution is more realistic than one based on SCM data. We imple-
ment and evaluate several change prediction algorithms with the help of the benchmark.
Contributions: A benchmark to evaluate change prediction tools. Several algorithms eval-
uated with the benchmark.

Part IV, First-class Changes: So What? takes a step back from individual validation strategies
by considering our techniques as a whole, and concludes the work.

* Chapter Perspectives, concludes this dissertation by evaluating how well we an-
swered our research questions, discusses our approach and the lessons we learned, and
outlines future research directions.

Part |

First-class Changes: The Why, The
What and The How

Executive Summary

This part of the thesis introduces our central contribution, Change-based Software
Evolution. Our goal is to support maintenance and evolution of software systems
by modeling the phenomenon of software evolution as it actually happened.

We start in Chapter 2| by reviewing the literature in order to compare existing
models of software evolution and the maintenance tasks they support. From this
review, we infer limitations of each model hindering their support of maintenance
tasks. This allows us to draw requirements for a more comprehensive model of
software evolution.

Based on these requirements, we conclude that a unified, clean-slate approach
is needed. Chapter presents our proposal: Change-based Software Evolution
models changes as first-class entities affecting language-specific models of evolving
programs. To avoid information loss, we record the changes instead of recovering
them

Chapter 2

Software Evolution Support in
Research and Practice

Many approaches have been proposed to address problems related to software evolu-
tion. How they model the phenomenon of software evolution has a direct influence
on how they can support it. Unfortunately, most approaches model software evo-
lution in an ad-hoc manner. Many reproduce the software evolution model of the
SCM system they use as a data source. However the SCM model of software evo-
lution is not adapted to maintenance tasks beyond the ones they directly address,
such as versioning and system building.

We review a number of software evolution approaches, and how they model the
software evolution phenomenon. In the process, we identify shortcomings in their
change model and extract requirements to better support software evolution.

11

12 2.1 Introduction

2.1 Introduction

Software evolution has been identified as a source of problems since the 1970s. In nearly 40
years a large amount of research has been performed to ease the changes to evolving systems.
We analyze approaches featuring a model of software evolution and list their strengths and
shortcomings. From these we extract requirements for a more accurate representation of change
in software. The research areas we survey are:

Software Configuration Management (SCM): Although software evolution has only gained
wide interest as a research area since the 90’s, previous work has been done in SCM. SCM
systems had a considerable impact on the practice of software engineering [[ELvdH" 05]].
We review SCM research prototypes and SCM systems used in practice. We outline the
characteristics of successful versioning systems and explain them.

Mining Software Repositories (MSR): The field of MSR uses the information contained in soft-
ware repositories (from SCM systems to mail archives and bug repositories) to analyze
their evolution. Applications vary from verifying the laws of software evolution, assisting
reverse engineering to building recommender systems. Most approaches based on SCM
data reuse their evolution model. We analyze the impact of SCM systems on the kind of
research performed in MSR, and find that design decisions beneficial for SCM systems are
detrimental to MSR.

Alternatives to SCM and approaches to MSR: More detailed information is available in IDEs,
by monitoring programmers while they are interacting with the IDE. We review these
approaches and investigate whether and how much they include the concept of change in
the data they gather. Finally, we review several approaches which share some of our goals,
and use a primarily change-based representation of their data. Most of these approaches
are very recent and started while we were working on ours. Some were actually influenced
by it. We highlight the differences between these approaches and Change-based Software
Evolution.

2.2 Change Representation in SCM

Software Configuration Management is one of the most successful areas of software engineering.
The Impact report of Estublier et al. [[ELvdH"05]] gives a thorough account of what character-
istics of SCM were successful, or not, and why. In the following we focus on only a few of the
many aspects of SCM systems. The characteristics we are interested in are how versioning of
resources is performed, and how changes are tracked between versions. Other characteristics
such as configuration selection, system building or workspace management are out of our scope.
We first list and explain the characteristics we are comparing, before recalling the impact they
had on practice, i.e., on the kind of data available for MSR approaches.

2.2.1 How SCM Handles Versioning

There is a slew of approaches to versioning. We refer the interested reader to the survey by Con-
radi and Westfechtel [CW98]] for a comprehensive account of the field. We are more specifically
interested in the following dimensions of versioning:

13 2.2 Change Representation in SCM

State-based versus change-based versioning: In the state-based model, the versioning sys-
tem stores the states of the entity, most often in a version tree or graph. Early examples are
Rochkind’s SCCS [[Roc75]] and Tichy’s RCS [[Tic85]]. Today, the majority of versioning systems
are state-based. To be space-efficient, only one version of a resource (initial of final) can be
stored, the other versions being then computed from deltas. In change-based versioning, the
changes are stored and the versions are computed from them. Examples are COV by Gulla et
al. [[GKY91]] and PIE by Bobrow et al. [[GB8Q]. The advantage of change-based versioning is
that it allows to easily express change sets, i.e., changes which span more than one resource.
Change sets usually have a logical meaning, such as fixing a bug, or implementing a given fea-
ture. Although easier to have in a change-based versioning system, change sets are also found in
advanced state-based versioning systems. Some systems support both kinds of versioning, such
as ICE by Zeller and Snelting [[ZS95]).

Extensional versus intensional versioning: Using an SCM which features extensional version-
ing allows one to retrieve any version of the system which was previously committed to the
versioning system. Intensional versioning on the other hand allows one to specify and build a
version based on a query or configuration rule. A query may also compute on demand a configu-
ration which was not committed to the repository. Intensional versioning is usually implemented
in systems based on change sets (the program is composed of a baseline and a combination of
change sets), while extensional versioning is the realm of state-based versioning systems, al-
though exceptions do occur. An example is the Adele by Estublier, which supports intensional
versioning even if it is state-based [Est95]].

General versus domain-specific versioning: A general versioning system is able to version any
kind of resource as it does not assume any knowledge about it. In most cases, resources are
text files, or binary files. A domain-specific versioning system —such as a programming language
aware versioning system- uses the knowledge it has about the domain to handle it with a greater
precision. In particular, merging two versions of a resource is much more predictable if the
syntax (or even the semantics) of the domain is known. On the other hand, a domain-specific
versioning system can only handle its specific domain, and needs to be adapted to be used in
another domain. Examples of domain-specific versioning can be found in Perry’s Inscape [[Per87]]
and Gandalf by Habermann and Notkin [HN86]].

2.2.2 Interaction Models in SCM

Beyond versioning, how people interact with the versioning system is critical. There are several
models of interaction with a versioning system:

Checkout/checkin: The checkout/checkin model is the most common interaction model. A
developer typically checks out a copy of the files he wants to modify, performs the needed
changes, and then checks the files back in. Only then will the versioning system compute the
changes or the deltas with respect to the previous version and store them in the repository.
Nearly all versioning systems use this model or one of its variants explained below.

Pessimist versus optimist version control: Pessimist and optimist version control are the two
main variants of the checkout/checkin model dealing with concurrency issues. Pessimist version
control uses locking to prevent more than one user to access a file at the same time. This
eliminates conflicts, at the cost of a potentially slower development pace. Optimist version

14 2.2 Change Representation in SCM

control posits that conflicts are infrequent, and does not restrict the number of people who can
access a given file. However, merging algorithms must be implemented to support the occasions
in which a conflict actually occurs.

Advanced process support: Advanced SCM systems support other policies beyond optimist
and pessimist version control to incorporate changes. For example, the Celine system by Es-
tublier and Garcia [[EG06] has flexible policies. One policy is to broadcast changes first to
members of the same team, and have a team leader broadcast the changes to the rest of the
organization when it is necessary.

Distributed versioning systems: Distributed versioning systems do not rely on a central repos-
itory. Getting a snapshot of the source code also involves getting a local copy of the repository
which subsequent commits will be stored into. This makes branching easy. When branches are
merged in a central repository, the history can be brought back as well if needed. Distributed
versioning is quickly gaining supporters among open-source projects. Example systems are gitEl,
darcs Pl and mercurial Pl

Operation recording: All of the interaction models described so far are variants of the check-
out/checkin model. Few approaches really diverge from it. The alternative is to record the
changes performed in an environment, rather than inferring them at commit time. Such an
approach was employed in the CAMERA system by Lippe and van Oosterom, which recorded
operations to implement an advanced merging algorithm producing better results [LvO92].

2.2.3 The State of the Practice in SCM
So what makes an SCM system successful? The Impact report on SCM states it plainly:

“Of note is that virtually every SCM system is carefully designed to be independent
from any programming language or application semantics. [...] We believe this is a
strong contributor to the success of SCM systems.” [ELvdH ' 05]]

The majority of SCM systems in use today are general-purpose, file-based SCM systems rely-
ing on the optimist checkout/checkin interaction model. The most advanced versioning systems
have a degree of changeset support built on top of state-based versioning, but do not fully use
change-based versioning.

This is not surprising: A typical project needs to version a large number of entities of differ-
ent types, from source code files to documentation in various formats (web pages, PDF manu-
als, READMEs), build files (Makefiles), or binary data (images, etc.). A project may be imple-
mented in several languages. This renders language-specific versioning not really usable for most
projects. One could conceive using two versioning systems, but this incurs too much overhead.

In practice, people are willing to compromise on merging capabilities in order to keep using
a generic versioning system. This is also a reason why checkout/checkin systems are still used:
If operation recording offers only advantages when merging, it is not worth switching versioning
systems and giving up the support for other file types.

Inertia is another factor. Changing from a versioning system to another implies learning a
new tool, so the benefit needs to be substantial. Switching during the life of a project is even

Thttp://git.or.cz
2http://darcs.net
Shttp://www.selenic.com/mercurial

15 2.3 Impact of SCM Practice on the Research of MSR

riskier, as the data in the old repository is valuable. If no repository conversion tool exists, the
data risks being lost or forgotten.

If we analyze the versioning systems used in the open-source world, we see these forces in
action. A few years ago, CVS was the dominant versioning system, with barely any competition.
In a survey of versioning systems [RLO5]| we predicted that open-source software developers
would switch to Subversion. Today, Subversion is the dominant open-source versioning sys-
tem for several reasons. It is a significant improvement over CVS: It versions both files and
directories, whereas CVS versions only files, and features some support for changesets as it has
transactions. Yet, it remains very close to CVS, as the commands are very similar. Its stated goal
was to be an incremental improvement over CVS. Finally, automated support exist to convert a
CVS repository to a Subversion repository.

Distributed versioning systems are increasingly popular: Git hosts Linux (which is not sur-
prising since the same person is behind both projects). Distributed versioning is a significant
improvement as it makes branching a system much easier, which is a key point for open-source
software. However, these versioning systems still keep their language-independent design and
follow the checkout/checkin model.

2.3 Impact of SCM Practice on the Research of MSR

The Impact report on SCM states that:

“A side effect of the popularity and long-term use of SCM systems has been the recent
discovery that they serve as an excellent source of data [...]. A new field, mining
software repositories, has sprung up [...]. Without SCM systems, this entire field
would not be in existence today.” [[ELvdH"05]]

SCM has indeed caused the existence of the MSR field. Their goals are however not the same.
As a consequence, the design decisions taken by SCM systems which contributed to their success
are obstacles for MSR research. Since no other information source is available, MSR research
must adapt to the versioning systems which are widely used in practice. Today, these are CVS
and Subversion.

Two particular SCM design decisions, language-independence and the checkout/checkin
model, cause a significant part of MSR research to be either focused on reconstructing the evo-
lution of software, or on making high-level observations about it. Girba’s metamodel Hismo
[[Gir05]] is the most advanced formalization of version-based evolution models. It addresses the
first shortcoming to some extent, but not the second, and is still sensible to their interplay.

2.3.1 The shortcomings of SCM for MSR

Versioning files increases data processing Being language-independent makes SCM systems
versatile: They can version any kind of file, even binaries. This automatically makes any detailed
analysis of a software system version much harder, as each system version must be parsed,
which is an expensive process. Without parsing the system, only high-level analyses such as the
evolution of the number of lines of code or the number of files in the system are possible.

Since several versions of the system must be considered, the problem of traceability arises.
Entities must be matched across multiple versions of the system. The usual heuristic to consider
that entities with the same name are the same, does not cover all the cases. Each entity could
have been renamed, or could have moved from one place in the system to another. Without a
good matching algorithm, spurious additions and deletions of entities will be recorded. Careful

16 2.3 Impact of SCM Practice on the Research of MSR

and costly examination of two successive versions of the system is needed to map an entity to
its sibling in the next version: Multi-version entity matching, or origin analysis, is still an active
research area.

Parsing and multi-version matching may be costly, but they allow one to analyze the evolution
of systems with more precision than by using only files and lines. For instance, Girba et al.
examined the evolution of class hierarchies [[GLDOS[|. Zimmermann et al. used lightweight
parsing of the entities added or deleted in a transaction for change prediction [[ZWDZ04]], while
Dagenais et al. used it to recommend changes when a framework evolves [DROS].

Taking snapshots loses data The second problem lies with the interaction model of major SCM
systems, the checkout/checkin or any of its variants. In this model, a developer interacts with
the SCM system only when he wants to update his working copy or when he commits his changes
to the repository. This is the only time in which the SCM system can determine the changes the
developer made to the system.

However, there are no guarantees of how often developers commit. An arbitrary amount
of change can have taken place before a commit. If only a few changes are committed at the
same time, it is still easy to differentiate between them. On the other hand, if more changes
are committed at the same time, then inferring what each change does becomes a problem.
While the design choice of being language-independent is merely an inconvenience incurring
extra preprocessing of the data, the checkout/checkin model makes SCM systems actually lose
information.

In addition the checkout/checkin model does not record the exact sequence of changes per-
formed in a commit. All changes in a transaction will have the same time-stamp. Their order
can not be inferred.

Example: Meet Alice One might think these two shortcomings are not too much a problem,
especially since only one of them involves information loss. Figure shows how this loss of
information can significantly degrade the knowledge inferred about a system. In this simple
scenario, Alice, a developer, starts a short refactoring session, in which she refactors the method
doFoo. She:

* applies the “Extract Method” refactoring to doFoo: This extracts a block of statements she
selects in a new method bar;

* applies “Create Accessors” to attributes x and y. The refactoring replaces direct accesses
to instance variables x and y with accessors throughout the entire system;

* applies “Rename Method” to doFoo. doFoo is renamed to baz, replacing all references to
doFoo in the code base.

Alice then commits these changes. This is a very small commit, less than a minute of work,
since all these refactoring operations can be semi-automated: In current IDEs, they are only a
right-click away. According to the information gathered from the versioning system, the follow-
ing physical changes happened:

* The method doFoo changed name and is now significantly shorter. This makes it hard to
detect if the new method baz is really the same entity that doFoo was. A simple analysis
could conclude that method doFoo disappeared.

* There are several new methods: bar, baz, and accessor methods getX, getY, setX, setY.

17 2.3 Impact of SCM Practice on the Research of MSR
class Foo { class Foo { class Foo { class Foo {
public int x; public int x; public int x; private int x;
public inty; public inty; public inty; private int y;
public doFoo() { public doFoo() { public baz() { public getX() { return x; }
blah.blah(blah); blah.blah(blah); blah.blah(blah); public setX(newX) { x = newX; }
Z=X+Y; Z=X+Y; Z=X+Y;
blu =blu * 2; return bar(z); return bar(z); public getY() { return y; }
t = blurg(z); } } public setY(newY) { y = newY; }
bli[t] = blu;
return t; public baz() {
} public quux() { public quux() { blah.blah(blah);
returny +4; returny +4; z = getX() + getY();
public quux() { } } return bar();
returny + 4; }
} public asdf() { public asdf() {
return x * 8 +y; return x * 8 +y; public quux() {
public asdf() { } } return getY() + 4;
return x * 8 +y;
} private bar(z) { private bar(z) {
} blu = blu * 2; blu =blu * 2; public asdf() {
t = blurg(z); t = blurg(z); return getX() * 8 + getY();
blift] = blu; bli[t] = blu;
f = new Foo(); return t; return t;
f.doFoo(); } } private bar(z) {
print f.x + f.y; } } blu =blu * 2;
t = blurg(z);
bli[t] = blu;
f = new Foo(); f = new Foo(); return t;
f.doFoo(); f.baz(); }
print f.x + f.y; print f.x +f.y;
}
f = new Foo();
f.baz();

print f.getX() + f.getY();

Extract Method

_/\/

Rename Method Create Accessors

l’

bold italic changes caused by refactorings
gray background | lines changed between commits

Figure 2.1: Simple refactoring scenario leading to evolution information loss.

* Several methods had their implementation modified because of the renaming of doFoo and
the introduction of accessors, possibly scattered among several files of the entire codebase.

In this example, only refactorings —by definition behavior-preserving[[Fow02]]- have been
performed. There were no logical changes to the system, yet this commit caused many physical
changes: Its importance measured in lines of code is overestimated. CVS would report that 11
lines were removed, and 18 lines were added. Extra processing is needed to make that figure
accurate.

The simple scenario depicted above assumes that a developer commits after every couple of
minutes of work. Table presents statistics gathered on 16 open-source projects using the
Subversion version control system. All the commits were grouped by author and by date. The
next to last column shows that an average developer will perform more than one commit per
day barely 15% of the time. A developer such as Alice would on the other hand perform dozens
of commits daily. When two or more commits are performed on the same day, the average
distance between them is nearly four hours, far more than the five minutes taken above (We

18 2.3 Impact of SCM Practice on the Research of MSR

Project Number of %1 %24 %59 %10+ | % days with interval
name commits file files files files | 24 commits (minutes)
Ant 14,078 | 96.25 3.35 0.27 0.13 17.35 227
Django 4,812 | 87.43 12.57 0 0 10.83 232
Gee 87,900 | 47.26 40.64 6.64 5.46 24.72 209
Gimp 23,215 | 91.68 7.85 0.33 0.13 21.39 235
Glib 5,684 | 88.79 10.66 0.44 0.11 32.12 181
Gnome-desktop 4,195 | 89.92 9.58 0.38 0.12 41.12 178
Gnome-utils 6,611 | 80.34 19.32 0.33 0.02 29.53 183
Httpd 39,801 | 56.17 40.76 2.89 0.17 19.96 209
Inkscape 14,519 | 90.92 8.83 0.22 0.03 17.65 228
Jakarta 70,654 | 77.43 20.74 1.64 0.18 17.04 217
Jboss 5,962 | 95.67 429 0.03 0 19.52 220
KDE 817,795 | 78.48 20.59 0.83 0.10 13.05 231
Lucene 14,078 | 80.52 18.45 0.93 0.10 17.35 227
Ruby on Rails 9,251 | 96.25 3.35 0.27 0.13 12.88 240
Spamassassin 10,270 | 91.17 8.26 0.50 0.08 17.58 222
Subversion 21,729 | 50.26 47.83 1.70 0.21 25.70 222
Total 1,158,824 | 75.69 22.41 1.38 0.52 15.16 226

Table 2.1: Per-author commit frequency in several open-source projects

used a sliding time window of 8 hours to determine whether two commits took place on the
same day). Finally, a quick look at the distribution of commits by size shows that if 75% of them
change a single file, 25% change a larger number of files. This is particularly problematic for the
2% of commits which span changes across more than 5 files, indicating either large changes or
crosscutting.

Another factor at play when analyzing open-source repositories is the patch practice. A
core group of developers are free to commit to the central repository, but most people do not
have access to it. If they want to submit a change to the system, they will submit a patch file
(essentially a delta between their version and the standard version). The patch will be reviewed
by some of the core committers, and if deemed satisfactory, committed to the central repository.
This means that features are proposed to the core team when they are stable: The evolution
which led to the feature implementation happened outside of the repository and is hence lost.

When 1 + 1 = 3 Finally, the conjunction of both shortcomings yields further problems. To
dampen the checkout/checkin problem, one would want to have as many SCM commits as
possible, in order to get a more accurate vision of the evolution of the system. In essence, one
would want to analyze as many versions as possible to get the smallest differences between each
version.

This however directly conflicts with the first shortcoming. Since fully parsing an entire sys-
tem is an expensive operation, parsing 10,000 versions of one system is even more so. This
is why most software evolution analyses use sampling, and select only a few versions of the
system they study, typically under a dozen. Sampling is so common, that Kenyon by Bevan et
al. [BEJWKGO35], a tool platform aimed at easing software evolution analyses by automating
common tasks, listed sampling as a requirement for the tool.

In short, even if the developers of the system are disciplined enough to commit early and

19 2.3 Impact of SCM Practice on the Research of MSR

often to the SCM system in order to minimize differences between versions, the sheer number of
versions forces evolution researchers to only select a few of them. The farther apart two versions
are, the more changes between them, and the more difficult it becomes to tell individual changes
apart. Selecting 10 versions out of five years of history leaves one version every six months, a
far cry from the two minutes scenario we used as an example. Entire parts of the system seem
to appear at once with no history whatsoever, essentially defeating the purpose of evolution
analysis. How can one pinpoints shortcomings of a system based on its history if there is no
history to be found?

Conclusion Given the shortcomings of SCMs as an accurate evolutionary source and the con-
siderable data loss they incuy, it is not surprising that among the currents of MSR research, two
of the main ones are high-level analysis, and evolution reconstruction. In the following sections,
we review high-level approaches, contrast them with full-model approaches, and then review
evolution reconstruction solutions.

2.3.2 High-level evolution analysis

High-level analysis considers that it is too costly to parse the system and hence uses information
which is more easily accessible such as commit logs, number of lines of code and the number of
files in a system. A commit log stores for each commit its author, its date, and the files modified
during the commit. Transactions have to be reconstructed with CVS. SVN on the other hand
does not mention in the commit log the number of lines added and deleted for each file.

Logical coupling introduced by Gall et al. is a high-level solution to the coupling problem
[GHJ98]. Instead of detecting which entity depends on which other by analyzing method calls
between them, logical coupling counts the number of times two entities changed together.

Robles, Herraiz et al. showed that simply counting the number of lines of code of mod-
ules evolving over time can give some insights about the evolution of systems [[RAGBHO5],
[HGBROS]]. Godfrey and Tu found that some open-source systems such as Linux have a super-
linear growth [[GTOQ]], instead of the expected linear one. A finer analysis can consider, beyond
lines of code, the physical structure of the system as files and directories, as done by Capiluppi
et al. [CMRO4].

Authorship patterns in evolutionary files has been analyzed through the ownership maps
of systems by Girba et al. [[GKSDOS]] and fractal figures by D’Ambros [[DLGO5!]]. The former
emphasizes the time dimension, the latter the structure of the system. Other sources of data
are considered. Fischer et al. linked version control and bug tracking information [FPGO3[],
which was visualized by D’Ambros and Lanza [[DLO6D]]. Recently, Bird et al. analyzed mailing
list archives [BGD"06]).

Conclusion If a large number of versions can be considered when performing high-level anal-
ysis, its insights are limited. In addition, their accuracy has been questioned by Chen et al.
[ICSYT04]] who expressed doubts about the accuracy of commit logs, when they compared them
with the actual changes found in the files.

2.3.3 Full model evolution analysis

Full model evolution analysis is more coarse-grained in terms of number of versions, but yields
more precise results. Analyzing the evolution of more complete program models, researchers
were able to identify more precise characteristics or shortcomings of systems. Among the nu-
merous approaches that have been tried, we mention a few.

20 2.3 Impact of SCM Practice on the Research of MSR

Holt and Pak visualized the evolution of the architecture of a system across two versions
[HP96]]. Xing and Stroulia [XSO05] focus on detecting evolutionary phases of classes, such as
rapidly developing, intense evolution, slowly developing, steady-state, and restructuring.

Girba formalized the evolution of systems for which the SCM data is available in his Hismo
metamodel [|Gir05]. Based on Hismo, Girba et al. analyzed the evolution of entire class hi-
erarchies [[GLDO5]], while Lungu et al. analyzed the relationships between packages [[LLGO6]],
and subsequently the evolution of their relationships [[LLO7]]. Wettel and Lanza analyzed the
evolution of systems at the system level, while also taking into account the evolution of classes
and methods [WL08]. Ratiu et al. defined and evaluated the concept of history-based detection
strategies, which differentiates between stable and unstable defects [RDGMO04].

Conclusion Fuller analyses permit deeper insights about the evolution of language-level enti-
ties in the system. However the number of versions analyzed is usually limited. For instance,
Holt and Pak [[HP96] considers two versions at a time. Xing and Stroulia [[XSO5]] analyses 31
versions in 4 years, which amounts to less than 1 per month. Ratiu et al. [RDGMO04] analyses
40 versions out of the 600 available on a 10 year period. This means that the history available
is significantly reduced, in turn reducing the accuracy of the approaches.

2.3.4 Evolution reconstruction approaches

Evolution reconstruction tries to make up for the lost information by inferring the changes that
happened during the evolution.

Refactoring detection According to Dig and Johnson, refactorings are a significant portion
(80%) of API-breaking changes [[DJO5]. It is nevertheless possible to automatically update code
which was broken by a refactoring, as demonstrated by Henkel and Diwan [[HDO5] or by Savga
et al. [SRGOS]], provided they are recorded (from the IDE) or detected (from MSR archives).

Weiligerber and Diehl present an approach to detect refactorings which were performed
between two versions of a system [[WDO6]. So do Dig et al. [DCMJ06]] and Taneja et al. [TDX07].
Earlier, Demeyer et al. used metrics [DDNOQ]. These approaches however detect only a subset
of refactorings, mainly “Rename” and “Move” refactorings.

Version matching Matching entities across versions is a well-known problem, since entities
can be renamed or moved between two versions. It is however essential if one wants to analyze
the entire history of a given entity. Without it, the entity’s history will be split, with one entity
disappearing while the other appears.

Tu and Godfrey [TGO02[use origin analysis to determine if an entity is effectively the same
in several versions of a system. The approach was refined in [[GZ05], to detect entities being
merged or split with another. The problem of renamed functions was also tackled by Kim, Pan
and Whitehead [KPEJWO5]]. Kim, Notkin and Grossman propose another approach [[KNGO7]
using change rules and an inference algorithm.

Clone detection Detecting duplicated code and showing how it evolves is a relevant problem.
Duplicated code poses a maintenance problem, since a change to one clone usually implies
changing all the other clones to avoid bugs. Detecting clones across versions allows one to see
which clone instance is the originator, and see the evolution of a clone group across time, as
shown by Adar and Kim [JAKO7]]. Since clone detection is resource intensive, a small amount of
work has been performed in this area.

21 2.4 Alternative Approaches

Contradictory claims have been made about the harmfulness of clones. The conventional
wisdom is that clones should be avoided: When a clone group is found, it should be refactored
to remove the duplication by abstracting away the common behavior. However, recent work by
Kim et al. [[KSNMO5], or Kapser and Godfrey [[KGO6]] suggest that this is not always the best
course of action. Some clones are better left alone, as they are too hard to refactor, or are going
to evolve differently. To handle that situation, Toomin et al. proposed linked editing [TBGO4],
while Duala-Ekoko and Robillard presented a clone tracking tool [DER07]]

Line-based evolution At an even lower level, an approach by Canfora et al. is dedicated to
differentiate between lines added, deleted and simply changed in a CVS commit [[CCP07]]. By
itself, the only information CVS gives is the number of lines added and deleted. Even a single
character change would be interpreted as the addition of one line and the removal of another.
Of note, Subversion does not provide any estimation of the number of lines added and deleted
in a transaction: This has to be computed separately.

Conclusion A lot of approaches exist to recover a system’s evolution with more accuracy. All
of them are limited by the change amount between versions. They are all time-consuming,
strengthening the problem of limited versions. To date, these techniques have been used in
isolation rather than being combined.

2.4 Alternative Approaches

2.4.1 IDE monitoring as an Alternative to SCM Archives

In recent years, a sizable proportion of programmers have begun to use Integrated Develop-
ment Environments (IDEs)[[LW07]. Modern IDEs are also very flexible and feature a plug-in
architecture third-parties can build on.

For these reasons, Eclipse, the most used Java IDE, is frequently adopted by the research
community as a platform to implement research prototypes. A review of these shows that by
using IDEs, one can get around the limitations of SCMs, by getting some development informa-
tion during the time where the SCM is not solicited. This is possible since an IDE such as Eclipse
features an event notification mechanism to which interested parties can suscribe.

Context-building tools Mylyn (formerly Mylar) by Kersten and Murphy [[KMO5; [KMO06] deter-
mines what entities are interesting to a developer based on his recent interactions. It uses a
degree-of-interest (DOI) model in which entities which are browsed or edited see their degree
of interest increased, while it otherwise slowly fades with time. Mylyn tracks navigation and
editions in the IDE at a shallow level: It tracks which entity was changed, but not how or to
what extent.

NavTracks by Singer et al. employs a similar approach [[SESO5]], but focuses on the navigation
in files, proposing files which are likely to be navigated to next. TeamTracks by DeLine et al.
[DCRO5] features a similar name and approach: It displays a filtered view of entities based on
the entity in focus. Finally, Parnin and Gorg propose another similar approach were they reify
usage contexts [[PG06].

Interaction Coupling Zou et al. propose an alternative to logical coupling, called interac-
tion coupling, which takes into account both the changes to the program and the navigation

22 2.4 Alternative Approaches

[ZGHO7]. In particular, it needs less data (i.e., a shorter history) than SCM-based logical cou-
pling before returning results.

Awareness Awareness tools, which tell developers when they are working on the same part of
the system, can be implemented using a finer-grained IDE monitoring, as shown by Schiimmer
and Haake [SHOT]] (at the method level), instead of the more widespread monitoring of files
taken by Estublier and Garcia [[EGO5]] or Sarma et al. [SNvdHO3]].

Conclusion If these approaches use a finer type of information, none so far feature a deep
analysis of the entities they monitor, such as detecting the kind of change that was applied to it.
Parnin et al. proposed to combine traditional MSR with IDE data [PGRO6, so that interactions
are also considered. However, this does not help in finding more precise changes.

2.4.2 Change-based approaches

The approaches we saw above have some kind of change representation which is either based on
version in the case of SCM and MSR, or very shallow in the case of IDE monitoring (presence or
absence of changes). Here we review more complete change representations which are similar
to ours.

Change-based and refactoring-aware versioning systems Smalltalk has featured a change
model for some time, in the form of change sets. This model however is limited since only
changes to methods and classes are described. This model has been extended to build a fuller
SCM system named PIE by Goldstein and Bobrow [[GB80]|, in which features of the system are
each represented as a distinct layer. The closest approach to ours is operation-based merging by
Lippe and van Oosterom as used in the CAMERA system [LvO92]], where operations are recorded
and manipulated to perform the merging of conflicting edits. However, the operations are not
explicitly specified as the paper describes operation-based merging from a generic standpoint.
Operation-based merging focuses only on the merging problem, as part of collaborative devel-
opment [[Lip92]]. The approach has been extended by Freese [Fre07], with the objective to also
include refactoring-aware versioning. However the approach considers only the merging prob-
lem. Another similar approach is taken by Koégel [KO8]. First-class changes are used to version
UML models. This representation is natural since UML models are not text-based. Kogel employs
a change hierarchy similar to ours at the lowest levels, but is interested mainly in versioning.

Several versioning systems are change-based, but still remain language-independent, and
as such keep much of the same problems: Translating first-class changes to lines in AST-level
changes is not trivial. These systems are also snapshot-based systems. Those are too numerous
to list here. A recent and interesting system is the patch-based Darcsﬂ where every change is
stored as a patch, and a theory of patches and the operation they support is provided.

Several versioning systems support explicit refactoring as a kind of change. Ekman and
Asklund’s system [JEAO4] stores ASTs of entities, and separates edit operations from refactor-
ings. Dig et al. present a system [DMJNO7[] based on Molhado [NMBTO5[, a flexible SCM
infrastructure by N’Guyen et al. MolhadoRef separates edits which are versioned normally, from
refactorings, which are stored separately.

4http://en.wikibooks.org/wiki/Understanding_darcs/Patch_theory

http://en.wikibooks.org/wiki/Understanding_darcs/Patch_theory

23 2.5 Summary

Accurate evolution reconstruction A few approaches use versioning system archives to build
a detailed change representation.

ChangeDistilling by Fluri et al. [FWPGOQ7]] parses source code files and uses AST differencing
to build a more accurate change representation. The AST they use goes down to the control
flow level: Instructions such as iterations and loops are modeled, but individual statements are
strings only. Change Distilling has been used for software evolution analysis, including a change
classification [[FGO6]] by their significance.

Schneider et al. mined the local edit history they recorded [[SGPPO4]]. Their tool, Project-
Watcher, uses a “shadow repository” where they commit changes automatically, thus not relying
on the developer to commit. A fact extractor is then used to infer relations between entities in
Java, such as classes, packages, methods and calls. Not everything is parsed. The system was
primarily used for awareness visualization.

Change-based models Finally, several models feature change representations similar to ours,
or similar tactics to record them.

Blanc et al. [BMMMO8] encode models as a sequence of construction operation (changes) to
detect inconsistencies in them. They however do not record or use any history.

Changeboxes by Zumkher et al. [[Zum07};[DGL"07]] model changes as a first-class entity with
the goal to make several versions of a system coexist at runtime. It also features basic SCM
capabilities, such as merging. The change representation models entities up to the method level,
but not below it.

Cheops [EVCT07] is another model of first-class changes aimed at run-time evolution of
systems. The authors took an early version of our change model as an example and extended
it. They also use the FAMIX model as their program model [TDDOO], while we use our own
program model which is simpler.

Omori and Maruyama implemented a tool named OperationRecorder for Eclipse [[OMO0S].
Their approach is directly inspired by ours, but features a different change recording approach.

Chan et al. also record changes as they happen from Eclipse [CCB07]]. However they adopted
a language-independent approach, trading accuracy in analyses for genericity. They propose
several visualizations of the change data.

Conclusion. Over time, several approaches explicitly modeling software change have been pro-
posed; their number have increased recently. The domains of application are quite specific and
vary from versioning systems (targeting merging, collaboration and domain-specific areas such
as MDE), to evolution reconstruction approaches aiming for accuracy, and runtime evolution of
systems.

2.5 Summary

Versioning systems have to cover a variety of tasks, such as workspace management, policies,
system configuration and building, beyond mere versioning. So far, successful versioning systems
have been language-independent and non-intrusive. This led them to version files according to
the checkout/checkin version model.

MSR approaches depend on the versioning system to gather evolutionary data. They hence
rely on general change models which do not provide many insights about the evolution of sys-
tems, beyond high level observations. Post-processing of the data is possible to parse successive

24 2.5 Summary

versions of the system, but is expensive. There is thus a trade-off between the number of ver-
sions considered i.e., the accuracy of the history, and the accuracy of the system’s model. The
more precise the system model is, the larger the time periods between two successive versions.

IDE monitoring tools bypass or complement the information found in SCM repositories with
IDE usage information obtained by tracking what the programmer is doing. So far, the change
models used in IDE monitoring (when one was used), have been shallow: One knows that a
program entity was changed, but now how or by how much. Other approaches only use the
navigation information, where by definition there is no change model whatsoever.

Change-based approaches are few and recent for the most part. Several models have been
proposed. Some only model refactorings, and use classical versioning for other edits. Some
infer changes from CVS archives, while other record them. The granularity varies: Some stay
language independent, other model several kinds of entities. Some of them model entire ASTs,
others parts of it, and others stop at the method level. None model all changes while also
adapting to the language and recording the changes from the IDE.

Conclusions From our literature review, we extract the following conclusions:

* SCM systems are an inadequate source of information if one wants to build an accurate
model of software evolution.

* MSR has found a variety of uses, from reverse engineering to change prediction, to an-
alyzing clone evolution and refactoring detection. Our change-based model of software
evolution should support a variety of activities, from high-level ones to lower-level ones.

* Precise approaches such as refactoring detection, change prediction, generally rely on at
least some knowledge of the language being used, while reverse engineering rely on a
fuller knowledge of it. Hence supporting language-level entities is critical.

* IDEs allow one to gather very precise information about the way programmers use the
IDE. The open architecture of IDEs allows one to be notified of what developers do fairly
easily. So far, the use of this information has been limited. We believe much more can be
achieved with more detailed IDE monitoring.

Chapter 3

Change-Based Software Evolution

At the heart of the software life cycle is change. We established that to better support
change, we need an accurate model of it. We present our change-based model of
software evolution and explain how it addresses some of the shortcomings of other
approaches. Our model is based on the following principles:

* Programs need to be represented accurately: A program state is represented by
an Abstract Syntax Tree of the entities composing it.

* Changes need to be represented accurately: A program’s history is a sequence
of changes. Each change, when executed, produces a program state in the form
of an AST. Changes can be composed to form higher-level changes.

* Changes should be recorded, not recovered: To achieve a greater accuracy,
changes are recorded in an IDE as they happen, rather than being recovered
from versioning system archives.

25

26 3.1 Introduction

3.1 Introduction

This chapter details our model of change-based software evolution. From our literature review
we identified strengths and shortcomings of state of the art approaches. From these we extracted
high-level guidelines, or principles, that support our approach. We first list and justify each of the
principles behind our approach, before describing our change meta-model, our program model
and our change recording strategies. Finally, we outline the validation steps we took.

3.2 Principles of Change-based Software Evolution

Principle 1: Programs instead of Text

Systems use the finest possible representation, abstract syntax trees.

If we wish to model and analyze evolution accurately, we need to adopt the most accurate data
representation we can. The state of a program is most accurately described as an Abstract Syntax
Tree (AST). We model the structure of the system as a tree of entities (at both coarse and fine
levels), and the references between entities such as accesses to variables, calls to methods, etc.

Pros:

* We build an accurate representation from the ground up: We have seen that multiple
analyses are performed to assist both reverse and forward engineering. If some are
lightweight (like file-level change coupling), others require either shallow parsing (method
level change prediction and coupling), or full parsing (class hierarchy evolution analysis).
According to the saying, if one can do the most, he can also do the least: A fully parsed so-
lution contains the information needed for less detailed analyses. For instance, it is always
possible to generate source code if counting the lines of code is needed.

* To perform accurate analyses, an accurate representation is needed. We also know that
parsing and matching entities is expensive. It seems more economical to perform it only
once and have a direct representation that can be accessed from then on.

* ASTs are insensible to layout modifications. A class of low-significance changes can be
filtered out without needing a special analysis. Other kinds of changes are detected more
easily.

Cons:

* Lightweight representations would be less memory intensive. Maintaining a full system
AST occupies more memory than a simpler model encoding only file names and number
of lines. The scalability of our approach could be an issue for large systems. We think how-
ever that the amount of memory available in today’s —and tomorrow’s— machines makes it
usable. As we show with the second principle, we do not maintain AST representations of
every versions of the system at every time: The ASTs are computed on demand.

* Parsing is language dependent. We need at least a parser for the given language: If none is
available, a substantial effort will be needed to build one. However, without such a parser,
no advanced analysis would be possible anyways.

27 3.2 Principles of Change-based Software Evolution

Principle 2: Changes instead of versions

Changes are represented as first-class entities —as executable AST operations supporting composition.

We want to model the phenomenon of change itself. If our base representation is the AST
of a program, it follows that changes are AST operations, hence simple tree operations. We
also need a composition mechanism to support higher-level changes, such as changes touching
several parts of the tree. An example is refactoring [[Fow02]]: A refactoring such as “Rename
Method” actually changes several methods since it has to update all the references to the re-
named method. Since there are many types of changes that can occur in a system, each with
different mechanisms, our change model needs to be flexible enough to accommodate them all.

If changes at the low level are simple tree operations, they can be made executable and can
then produce ASTs. If a mapping exists between a change and its opposite, each change can be
undone. These two properties can also be transmitted to higher-level changes.

Pros:

* First-class changes are more accurate than versions. The only way to encode that a refac-
toring occurred between two versions is to state it outside of the version model. First-class
changes do just that, except that they model every change that happened between two
arbitrary versions of the system.

* First-class changes are a superset of versions. Since they can be executed and undone,
they can produce a version of the system as an AST if this is needed. One can see first-class
changes as deltas used behind the scenes by most versioning systems, with the difference
that deltas must work with every kind of file, and are as such either text-based, or binary.

* Changes use less memory than versions. Accurate approaches to evolution analysis model
a system as successive versions. The default approach is to have a copy of each entity
for each version, even if it has not changed between these two versions. A more space-
efficient scheme could of course be implemented (such as deltas in SCM), but a change-
based implementation provides it “for free”. One could add that the more space-efficient
this encoding scheme is, the more similar to an accurate change representation it becomes.

Cons:

* One could argue that executing changes to produce versions may not be scalable. Beyond
a certain size, it would become intractable. Initial evidence for medium-sized projects —
such as our own prototype, which ranges in the tens of thousands of lines of code during
the course of 3 implementation years— shows that we have not reached that point yet.
Replaying the entire history of a system is in the order of minutes. Optimizations are of
course possible: Storing snapshots of the system at several points in time to have a hybrid
between changes and versions is an approach we have not investigated yet. We have on
the other hand experimented with a scheme to access quickly given entities by selecting
only necessary changes (Section[3.4.4). This makes accessing the state of any entity at any
time a matter of seconds.

28

3.2 Principles of Change-based Software Evolution

Principle 3: Record instead of recover

Changes are recorded from the IDE —instead of being reconstructed from SCM archives.

Our review of the evolution reconstruction research in MSR convinced us to look for another

appro

ach. We want to avoid the trade-off between the number of versions one can consider

and the depth of the analysis one can perform on them. IDE monitoring gives access to a
large amount of information that the checkout/checkin interaction model of SCM system loses.

There

Pros:

Cons:

fore, we decided to record changes as they happen in the IDE, rather than recovering them.

Recording is simpler than reconstructing. Whenever our system is informed of a change,
it can query the IDE for more information about it, in order to build our change represen-
tation. This amounts to perform a difference between two versions of a program, but with
two advantages: (1) the difference is as small as possible since we are notified of changes
immediately (2) we know which part of the system just changed, so the differencing algo-
rithm is used on less data, and entity matching is simplified.

Recording gives us more information. When we are notified of a change, one of the sim-
plest query we can make is to ask for the time stamp. This allows us to give a timestamp
to each change with a precision up to the second. In essence, we can record the entire
working session which resulted in a commit, rather than only reconstructing its outcome.

IDE integration is anyway necessary. Tool implementation are more and more released as
IDE extensions. If we want to produce tools that assist a programmer, it is only natural
to also use the IDE to record the changes. In the last two Future of Software Engineering
conferences (co-located with ICSE), invited papers in reverse engineering by Miiller et
al., and by Canfora and Di Penta, evoked the vision of “continuous reverse engineering”,
where developers themselves interleave forward and reverse engineering in their day-to-
day activities [MJST00; [CPO7]. Continuous reverse engineering requires easy access to
the reverse engineering tools while programming.

Our approach requires the programmer to use an IDE. Programmers using a classical text
editor are left in the cold. However, we believe that in a few years the overwhelming
majority of programmers will be using IDEs for all their daily tasks. Most students today
learn to program using IDEs and prefer them over classical text editors [LWO7].

Our approach is IDE-specific. Since we rely on IDE monitoring, at least one part of our
approach has to be reimplemented every time we adapt it to a new IDE. However, the
problem would be still be valid since we would need to build tools as IDE plugins anyway.

What if some changes are performed outside of the IDE? Sometimes, programmers do
quick changes outside of the IDE, which would not be recorded. These cases are however
a small minority of all edits: Any long programming task is much more comfortable if done
in an IDE. In such cases, evolution reconstruction approaches such as ChangeDistilling by
Fluri et al. [[FWPGO7[] could be employed to import those changes in the model. Of
course, those would appear as a “clump” of changes —as they would not have a precise
timestamp—, but this still would give us a reasonable approximation of the evolution, under
the assumption that these changes are small.

29 3.3 Program Representation

3.3 Program Representation

Our first principle is that we should adopt a domain-specific representation of programs. It
should however be easy to define a new problem domain and adapt our approach to it. This
section describes our program representation and how it adapts to particular programming lan-
guages.

3.3.1 Abstract Syntax Tree Format

Generic AST representation First-class changes are applied to programs. Our first task is to
define an adequate representation of a program in our model. Our program representation has
the following goals:

Simplicity: The program representation is not the primary focus of interest — the changes are.

Genericity: Our program representation will contain language-dependent data. It should how-
ever be as language-independent as possible. The program model should be adaptable
with minimal effort to other languages, and support a variety of analyses.

Flexibility: If an extension is needed for a programming language or a new kind of analysis,
then it should require minimal effort to add it.

Fine-grained: For maximum accuracy, we want to model entities up to the statement level.

With these constraints at hand, we decided to define our own program model instead of
adopting a program model which was already defined. FAMIX, by Tichelaar et al. [[TDDO0] was
considered. FAMIX does however not model the entire AST of a method, only the invocation of
messages and accesses to variables in it, a decision reasonable for a model geared towards re-
verse engineering. The author of FAMIX furthermore stated that UML is not adequate for reverse
engineering without extensions, and chose to use FAMIX rather than extend UML [DDT99]]. Both
models would also require extensive effort to be implemented, failing the simplicity constraint.

Since our system needs to support several types of analysis, we opted for the simplest AST
representation possible. Each of our AST nodes can be described by Figure The attributes
of the AST nodes are detailed below:

parent
0.1

EntityState
id

properties * children

Figure 3.1: A node of the program’s AST

id: Each AST node has a unique identifier to unequivocally identify it.

30 3.3 Program Representation

parent: The parent of an entity is another entity. Each node keeps a link to its parent to ease
navigation. The only entities who do not have a parent are (1) the root of the AST, a
special-purpose entity at the top of the tree, and (2) entities which are not part of the
system’s AST, because they either are not added to the tree yet, or were removed from it.

children: The collection of children of an entity. Leaves of the tree have no children. The model
does not impose any restriction on the number of children.

properties: All other properties of a node are domain-specific; they are not specified in the
generic model. Each node has a dictionary of key-value pairs for these properties, allowing
the model to accommodate any type of property. In particular, the name of an entity is a
property, independent from its identity.

Specific types of nodes are defined when adapting the model to a specific language.

3.3.2 Language Independence

We want to support several programming languages. Our model is hence generic, but specialized
for the language needed. We applied our approach to Smalltalk and Java, two object-oriented
languages. To support the discussion, we show an object-oriented AST in Figure in which
packages, classes, variables, methods and statements are represented.

System]
[Package A] [Package B] [Package C]

v o v

[][case] ClssF | [.]
— v v

[private int x] [public void foo(int y)] C]

'

Figure 3.2: An example object-oriented program AST

Application to Smalltalk Smalltalk is an object-oriented, dynamically typed programming lan-
guage supporting single inheritance. From the coarsest to the finest, the various types of entities
we model are:

Packages: A package is the coarsest unit in a Smalltalk program. The parent of a package is the
root.

31 3.3 Program Representation

Classes: Each package can contain any number of classes. In Smalltalk, each class has a super-
class. The superclass is one of the properties of the class since its parent is a package.

Attributes: Each class can contain any number of attributes. Attributes are leaves of the AST:
They have no children. The attributes are ordered.

Methods: Each class can have any number of methods. There is no particular order for methods
in a class. Methods contain statements.

Statements: There are several kinds of statements. The most common ones are variable refer-
ences (referring to a local variable, argument, instance variable or global variable), vari-
able declarations, variable assignments, message sends (i.e., method calls) and return
statements. Statements can either be leaves or have other statements as children. The
parent of a statement is either a method or another statement.

The kind of each node (package, class, etc.) is a property, as well as the name. Classes have
their superclasses as a property as well. Smalltalk also features method protocols, which are
classifications of methods for documentation purposes. These are also defined as properties.

Application to Java The Java model is very similar to Smalltalk, with the following changes:

* Packages can be nested. A package can have both classes and packages as children. The
parent of a package is either another package or the root.

* The interfaces a class implements are encoded as properties.

* The access modifiers for classes, methods, attributes, such as public, protected, private,
static, final etc. are also encoded as properties.

* Finally, the type declarations (void, primitive types, classes and interfaces) are also en-
coded as properties.

Our implementation as a proof of concept does not model statements yet. This would require
a full Java parser. Hence the body of a method is represented by lines.

3.3.3 Limitations

Genericity Our model is very generic; it can not easily enforce constraints on certain kinds of
nodes (for example that a node can only have a limited number of children). Such constraints
are implemented during the adaptation of our model to a given language.

Tree Representation Sometimes the parent/children relation is not enough to describe ev-
erything. For example, in the case of object-oriented languages we use containment for the
parent/children relation. Inheritance relationships have to be encoded in an alternative way;
we use properties. With languages featuring multiple inheritance, the problem would be even
more prevalent.

Ordering In an object-oriented language, the classes contained in a package are not ordered,
while the statements in a method certainly are. Specifying which parts are and are not ordered
is one of the specialization steps.

32 3.4 The Change Metamodel

3.4 The Change Metamodel

Our change metamodel embodies the second principle of change-based software evolution:
Changes should be first-class citizens. Before diving into details and describing the changes
in order of increasing granularity, we briefly list the key properties of our change model:

* Changes are transitions from one state (i.e., one AST) to the next. Each change can be
seen as a function taking one program state and returning a program state in which the
change is applied. Our changes are thus executable.

* Changes also have an opposite change, whose effect when executed on an AST is to cancel
out the original change. Our changes can hence be undone.

* At the lowest level, changes operate on a program state, that we defined as a tree: Atomic
changes —as we call them- are tree operations.

* Nevertheless our change model supports composition in order to group low-level changes
in higher-level changes. Composite changes keep the same execute and undo properties.

* Any number of AST states can coexist (created by the execution of different changes)
independently of each other. Applying changes to one will not change the others.

3.4.1 Atomic Changes

AtomicChange <}

—>{~entiy
JAN JAN

PropertyChange Insertion Deletion

- property - parent - parent

- value - location -location
Destruction Creation Addition Removal

- kind - kind - parent - parent

Figure 3.3: Metamodel of atomic changes

Atomic changes are the lowest level of changes in our model (Figure [3.3). Atomic changes
are tree operations performed on the system AST. Each atomic change refers to at least the id of
the entity it primarily affects, and keeps a link to its parent change (next section). The following
tree operations are sufficient to describe any AST change (Figure 3.4):

Creation: Create and initialize a new node with id n of type t. The node is created, but is not
added to the AST yet. The opposite of a creation change is a Destruction.

Destruction: Remove node n from the system. Destructions only occurs as undos of Creations,
never otherwise (removed nodes are kept as they could be moving to a new branch).

33 3.4 The Change Metamodel

Change execution Description
Change undo Opposite Description

Class Create 42 as a class
42 Foo
Destroy 42

Change property name

Class Class of 42 from Foo to Bar
2 Foo (2 Bar Change property name
of 42 from Bar to Foo
Class
Add 4 42
42 Eoo dd 43 to

ol Td |

Remove 43 from 42

3 Method
N bar()

Add 52 to 43
before 44

Remove 52 from 43

before 44
52 baz() <14 returr> (45 foo)

aigl

(52 baz()

Y

44 returr> GS foo)

Figure 3.4: Effects of atomic changes on an AST

Addition: Add a node n as the last child of parent node p. This is the addition operation for
unordered parts of the tree. The opposite of an addition is a Removal.

Removal: Remove node n from parent node p. The opposite of the Addition change.

Insertion: Insert node n as a child of node p, at position m (m is the node just before n, after
n is inserted). Contrary to an addition, an insertion addresses the edition of ordered parts
of the tree. The opposite change is a Deletion.

Deletion: Delete node n from parent p at location m. The opposite of Insertion.

Change Property: Change the value of property p of node n, from v to w. The opposite opera-
tion is a property change from value w to value v. The property can be any property of the
AST node, and as such depends on the properties defined in the model.

3.4.2 Composite Changes

Changes can be composed into higher-level changes, which keep the same execute and undo
properties. Our model features several levels of composite changes.

Developer-level actions are composed of atomic changes. They represent an individual change
to the system by a developer. Developer-level actions have a timestamp, and an author. Examples
for the Smalltalk language are:

34 3.4 The Change Metamodel

Create package: Contains 3 atomic changes: The creation of the package, the addition of it to
the root, and the change of the package’s name property.

Create class: Contains 4 or more atomic changes: class creation, addition of the class to a
package, initialization of the class’s name, and initialization of the class’s superclass. For
each instance variable added to the class, 3 atomic changes (creation, insertion, property)
would also be included.

Modify class: Changes the definition of the class. It could be any subset of “Create class”,
excluding the change actually creating the class. It could also include the deletion of some
instance variables.

Create method: Contains 3 changes for the method’s creation, and any number of changes for
the addition of statements in the method.

Modify method: The same as “Modify class”, but for methods.

Refactorings Refactoring are behavior-preserving program transformations [Fow02[]. Most are
automated in IDEs nowadays. Refactorings may potentially change several places in the pro-
gram, for instance if all the references to an entity are systematically updated. In our model,
refactorings are composed of one or more developer-level actions. Example of refactorings in
our model are:

Rename Method: Features one method modification for the method which is renamed, and one
method change for each reference to the renamed method in any other method.

Extract Method: Features one method addition for the newly extracted method, and one method
modification to replace the extracted code with a call to the new method in the original
method.

Push up method: Removes a method from one class and adds it to its superclass.

Development Sessions A development session groups all the developer-level actions and refac-
torings that happened in one coding session in the IDE. We use the following heuristic to split the
development history in sessions: If the difference between the timestamps of successive changes
(by the same author) is more than one hour, we consider that there has been a hiatus in the
development large enough to warrant starting a new session. This is the closest equivalent in
our model to an SCM commit, if one assumes that developers commit at the end of each working
session. We use that assumption in the following chapters.

Other possible divisions Beyond behavior-preserving transformations, our model supports
more general, non-behavior preserving program transformations, as described in Chapter
Each transformation application results in a sequence of changes referencing the transformation
they originate from.

A change may belong to several logical groups of changes. It may be part of a given devel-
opment session, but also of bug fix number 12345, and of feature X. Bug fixes and features are
concerns that need to have their evolution monitored as well as any program-level entities such
as classes.

Thus changes can be grouped in any arbitrary way which does not match the decomposition
in sessions, refactorings and development-level actions: The implementation of a feature may

35 3.4 The Change Metamodel

span several sessions, and not include every single change in it. A further example of these
groupings would be a crosscutting concern.

In these cases changes can be grouped manually in a special purpose composite change, and
annotated for documentation purposes. The possibilities offered by grouping arbitrary changes
in this fashion are still to be explored.

3.4.3 Change histories

Our model features three kinds of change histories. Given our change description, our model of
the evolution of a system is simply a list of changes. The global change history contains all the
changes performed on the system.

For convenience, each program entity (represented by its ID) also has a per-entity change
history, which contains all the atomic changes concerning each entity. From this per-entity change
history, it is easy to recover the composite changes in which an entity was involved, such as all
the development sessions in which it was modified.

foo() change history:

— — S = —Hh

Create foo() Add foo() to Bar insert return insert baz() delete baz() insert bad() remove foo()
in foo() call in foo() call in foo() callin foo() from Bar

foo() usage history:

— o o p» C» oD

insert foo() delete foo() insert foo() insert foo() delete foo() delete foo() insert foo()
callin asdf() callinasdf() callin qwer() call in foo() call in foo() call in qwer call in qwer()

Figure 3.5: Change and usage history of method foo()

Finally, the usage history of an entity refers to all the changes which increased or decreased
the usage of the entity in the whole system. For example, a variable has an increased usage when
a statement referencing it is inserted in the system, while a message has a decreased usage when
a statement sending it is removed from the body of a method. Figure shows the difference
between entity and usage histories.

If we want to focus on a subset of the entities of the system, we can extract a partial history
of all the changes concerning these entities. This can be easily built from the per-entity change
histories of the entities in question. Some changes of other entities may be needed, such as the
changes creating entities referenced by one of the entity in focus (but not all of their histories).
For instance, if entity A (in focus) is added to entity B, we need several changes from B’s history
such as its creation and its addition to the model.

3.4.4 Generating a View of the System

Generating a view corresponds to executing part or the whole of the system’s change history.
This creates a system AST (or view) corresponding to the application of all the changes which
were executed.

36 3.5 Recording and Storing Changes

Complete view Given our change description, generating a view of a system at any date d is
simple: One simply needs to execute all the developer-level actions prior to d. As stated in the
previous section, several views of the system at different times can coexist without any problem.

Partial view Building a complete view can be quite costly if the history of the system is long.
When the state of only a few entities is needed, it is possible to generate a view containing only
these entities, which is much less costly. To do so, one extracts from the model the partial history
needed to build the entities at a given date. Accessing the state of an entity using a partial view is
much faster than if one is using a global view. Figure shows the entities which are imported
for the partial view of a method of the system. Of course, all of its statements are imported, but
its parents are partially imported as well.

System |
e e —— -, ..
RS S S ___i__\ R I
Package A ' \ Package B | . Package C '
B TREEE 4 —_——— == B - 4
A (___K\ -y G . A
. . [.
. . N Class E | . Class F . e
[NE— _-'-__ -— S e .- e .- = - - = = . [NE—
A A
.

. private int x . [public void foo(int y)] W e

"~ “notimported !
{partially imported

Figure 3.6: A partial view importing method foo()

Lazy view A lazy view is a complete view of the system whose elements are computed on
request only. When an element is requested, the lazy view dynamically creates a partial view
containing it, and imports it in its cache. A lazy view can also dynamically change the date in
the history of the system it is viewing. This involves purging the cache, so that it can query the
same entities with a new timestamp.

3.5 Recording and Storing Changes

Our third principle states that instead of being recovered from version archives, first-class changes
should be recorded from the IDE when possible. This is the only way one can capture the actual
changes performed on the system, and not merely reconstruct an approximation of them. We
show the general architecture of our platform in Figure A notifier informs our plugin of
developer events. It uses the IDE’s API to query relevant metadata which is added to the events.
The events are either stored on disk, or directly converted to changes. These changes are then
stored in a repository, from which they can be loaded and manipulated by change-aware tools
extending the functionality of the IDE.

37 3.5 Recording and Storing Changes

Notifications ¢ =~~~] — '— —_ -
: ' : Events < Event Events <
+ Filter Event repository | Change
IDE . ' :
----- converter] construction
)

Metadata (date, location ...

191ION

_——— - |

> €Iy

_____ | ! I
: Integrated | i ! 1 cn I oarde, 1 cn
| n _T_gcf)fllse |< models and views J model loader | Changes ' renository anges
| |
| |

_______ | | P S——=--

N +Eclipse Only \ ISqueak Only : Both IDEs
...... . _———u

Figure 3.7: Architecture of our change-based tools

-——em e = = d

Requirements for the IDEs To monitor the changes we need to build a plugin for an IDE which
is open enough for us to get the information we need. In particular, we need an IDE that provides
the following:

An event notification system: The IDE should notify our plugin of events of interest, which
are first and foremost where and what kind of change occurred in the system, but also
when a refactoring is being performed. Knowing where, i.e., on which entity a change
was performed is critical as we avoid an exhaustive iteration of the entities in the system
to detect which one has changed. The matching problem is greatly simplified as changing
entities are known and the changes are minimal.

Access to the program representation: The IDE should answer queries about its model of the
program it is editing, such as the source code of its classes and methods.

Access to various metadata: The IDE should also answer queries about who is performing the
change, and at what time the change did occur.

Squeak Smalltalk Plugin The plugin we implemented in Squeak provides all of the information
mentioned above, and some additional information recorded for future use: User navigation in
the system, execution of code, errors and exceptions occurring during code execution, and usage
of Squeak’s SCM system, Monticello.

Smalltalk is peculiar since changes methods or classes must be individually accepted, i.e.,
compilation of classes and methods is requested on an individual basis. The event handling
mechanisms therefore issues high-level events such as “method compiled” or “class modified”.
This proved to be a sweet spot, as it is accurate enough, yet does not run the risk of having
changes which make the system unparsable.

Eclipse Java Plugin Our current implementation of our plugin for Java is more of a feasibility
study: as such, it records the information stated above, and nothing more [[Sha07].

Change notification is also a bit trickier in Java. We could be notified of files being saved,
but this is too coarse-grained. We chose to use keystroke notifications instead, making the
Eclipse plugin notified much more often than the Smalltalk version of our plugin. We thus had
to implement a filtering mechanism which groups all the successive notifications when they
concern the same entity, which raised the notification frequency to the level of the Smalltalk
implementation.

38 3.6 Uses of Change-based Software Evolution

Model construction Constructing the model of the program’s evolution based on the notifica-
tions can be performed either online or offline. When performed online, the plugin reacts to IDE
notifications, queries the IDE and build the changes corresponding to the action the developer
just did. It maintains a change model and an AST view at all times. When offline, the plugin
queries the IDE for the necessary information and stores it in a file. That file can be read later
on to build the change model.

3.6 Uses of Change-based Software Evolution

This section illustrates several usages of our model and illustrates how its various features inter-
act. We also describe the strategies we took in order to validate our model, and outline which
chapter uses which particularity of our model.

3.6.1 Example: Measuring the Evolution of Systems

We can compute two kinds of metrics: Program-level metrics, which are metrics on the AST of
the system, and change-level metrics, which are metrics on the change themselves.

Program-level metrics are evolutionary metrics, which can be computed after each change in
the system. Algorithm [I] shows how a metric is computed.

Input: Change History M
Output: Values of the metric

view = newView(M);
metricValues = Dictionary();
foreach Change ch in M do
view = execute(ch,view);
insert(metricValues, date(ch), computeMetric(view));
end
Algorithm 1: Algorithm to compute a metric’s evolution

The evolution of the metric varies with the level of change considered. One can compute
it for every developer-level action, or for every development session. Higher-level groupings
are also possible, such as grouping the changes by month or by year. Each metric can also be
computed on subsystems (using partial histories) to get a finer view of its evolution.

Since our program representation is rich, we can compute a variety of metrics using it. Ex-
amples of program-level metrics are shown in Table on top.

Change-level metrics are not computed on the AST of the system, but directly on the changes
themselves. No AST view needs to be built and modified for each change as done above. These
metrics are also applicable on any subsequence of changes, like on a set of sessions. Some of
these are shown in Table at the bottom. Furthermore, some of the program-level metrics can
be computed more efficiently in this way. For instance, the number of classes can be computed
not by counting the number of class nodes in the tree after each change, but with an accumulator
which is incremented when the current change is a class addition, and decremented when it is a
class removal.

39 3.6 Uses of Change-based Software Evolution

Metric | Description

NOC Number of classes

NOM Number of methods

NOS Number of statements

AMSS Average method size (in statements)

AMSS2 | Average method size (in statements, excluding accessors)
NORE | Number of references to an entity

NOAX | Number of added entities.

Entities can be packages (NOAP), class (NOAC), method (NOAM) etc.
NOMX | Number of modified entities

NORX Number of removed entities

ANCC | Average number of changes per children

Table 3.1: Sample program-level metrics (top) and change-level metrics (bottom)

3.6.2 Validation Strategies

The general strategy we undertook to validate our model’s usefulness for both forward and
reverse engineering is to define use cases in which our evolutionary information is intuitively
useful, and test this hypothesis either through proof-of-concept tools or benchmarks. In all case,
we use the change histories of the systems we monitored. These are detailed in Appendix Al

Case studies We defined two reverse engineering approaches and one program transformation
approach, all supported by tool implementations. Chapter [4] and Chapter [5| use visualization,
and Chapter 5| also uses metrics. Chapter |7| presents an approach aimed at defining program
transformations.

Such approaches, especially in a reverse engineering context, are hard to validate formally as
they rely a lot on human judgment. Since these approaches also rely on a novel source of data,
there are too many variables and not enough data points to perform a controlled experiment or
a comparative study. Our evaluation was performed with case studies based on the histories of
monitored programs. We plan to do comparative studies in the future when we have more data
at our disposition.

When possible, we performed comparisons with SCM equivalent data, in Chapter |4, The
other approaches rely explicitly on changes and their ordering, hence a comparison with SCM
data was not possible.

Prediction Benchmarks Some problems lend themselves better to numerical validations. When
the occasion showed itself, we took this strategy preferably. We found that recording a very de-
tailed development history allowed us to easily define benchmarks in certain contexts, where
we were able to assess the predictive power of our model. The general structure of such a
benchmark is shown in algorithm

Of course, such a benchmark has limitations: We can only run it on the systems for which we
have a recorded change history, which are not numerous, thus the result are not generalizable
to every system. On the other hand, our detailed history allows us to test each system in great
depth. We adopted a benchmark strategy to validate our approaches in Chapter [6] Chapter
and Chapter 9]

40 3.7 Summary

Input: Change history M, predictor P
Output: Benchmark results
view = newView(M);
foreach Change ch in Change history do

prediction = predict(P);

compareOracle(prediction, M, view);

process(P,ch);
end

Algorithm 2: The benchmark’s main algorithm

3.6.3 What Is Used Where?

Our model was designed to support several development and maintenance tasks, so it intro-
duces several new concepts at once. Table shows which part of our model is used in which
chapter of this dissertation. The first part displays the granularity of changes considered in each
validation technique. The second part tells if they use our model extension for generic changes.
The third part tells if they consider usage histories of entities. The fourth part of the table tells
if the techniques used views of the state of the model, or only the change information itself. If
they use views, it tells which kind of views they use. Finally, we recall the type of validation we
undertook for each chapter.

Chapter Chapter Chapter E] Chapter Chapter Chapter E]

Change matrix Sessions Coupling Transformations | Completion | Prediction
Atomic changes v N v v
Developer actions Vv v v N v Vv
Refactorings v N v
Sessions v v
Generic changes N
References v N
System view N N N
Partial view N
Lazy view v
Validation cases cases benchmark cases benchmark | benchmark

Table 3.2: Uses of various parts of the model across chapters of this document

3.7 Summary

In this chapter we described our model of change-based software evolution, aimed at supporting
a wide array of maintenance tasks. We explained the principles behind the choices we took,
described in details the features and concepts behind our model, and illustrated its usage on
selected examples. We also outlined the validation steps we undertook.

In the next two parts, we will evaluate how comprehensive our approach really is by applying
it to several problems across the reverse and forward engineering spectrum. Part[[]jdescribes how
our approach supports the reverse engineering of systems, i.e., understanding their evolution,
while Part[[I] shows how our approach can be used to support the evolution of systems.

Part 1l

How First-class Changes Support
System Understanding

41

Executive Summary

This part of the dissertation demonstrates how one can use the information gath-
ered by Change-based Software Evolution (CBSE) in a reverse engineering context.
We show that:

CBSE is useful at all levels of analysis. In Chapter 4 we showed how CBSE
assists the reverse engineering of a system through visual change pattern detection
and evolution scenario reconstruction. In Chapter |5| we introduce a top-down
process for development session comprehension. It starts with the entire history
and ends with program comprehension at the individual change level.

CBSE measures evolutionary characteristics with more accuracy. In Chap-
ter |5 we define change-based metrics to characterize sessions based on their indi-
vidual changes. Our approach is the only one that can measure these metrics. In
Chapter [6|we measure logical coupling with a shorter history than needed by other
approaches.

The fundamental reason behind these results is that CBSE frees us from the usual
evolutionary trade-offs. Our approach tracks fine-grained entities (up to individual
statements) and their individual changes. When classic views of software evolution
wish to be fine-grained, they usually need to limit the number of versions they
analyze. The alternative is to analyze all versions from a high level. By recording
fine-grained changes instead of recovering them, we sidestep this problem.

Chapter 4

Assessing System Evolution

When dealing with an unknown system, one first needs to acquire a high-level
understanding of it. Typical questions asked during that process are:

* What are the most complex entities?
* What are the most changing entities?

* How did the system evolve to its current state?

We present and evaluate an evolutionary visualization, the Change Matrix,
which uses our fine-grained change representation to answer these questions. The
Change Matrix displays evolving entities by giving precedence to the changes hap-
pening to them, rather than the successive versions of the system. The user can
easily spot how the system changes and reconstruct a scenario of how the system
evolved. Interactive system exploration is available: Any set of entities or time
period can be explored further.

45

46 4.1 Introduction

4.1 Introduction

During the first contact with a system, or when attempting to understand a rapidly evolving
system, the first questions that arise are reverse engineering questions: One first uncovers high-
level relationships between entities in the large amount of data available. Based on the answers
to these questions, a more detailed exploration of parts of the system relevant to the task at hand
is possible, i.e., reverse engineering of a smaller subsystem, or actual program comprehension if
the set of entities of interest has been restricted enough.

Some of these questions are best answered by analyzing the evolution of the system, rather
than only its actual state. The following categories of questions are examples:

* Complexity. Which entities are complex? What are the important entities in the system,
whose comprehension is crucial to understand the system as a whole?

* Activity. Which parts of the system have changed recently? Conversely, which parts of the
system are stable or dead code? Are some parts of the system constantly active?

* Crosscutting concerns. Which changes are implemented as crosscutting concerns over
several entities? Are these entities often changing together? Can one link a given func-
tionality to one or more entities?

* Overall evolution. Can one outline periods in the project’s evolution? Based on function-
alities and periods, can one reconstruct a high-level evolution narrative of the system?

In this chapter, we investigate how much the fine-grained evolutionary history provided by
Change-based Software Evolution helps in answering these questions. To that aim, we summa-
rized our change data in a comprehensive visualization, called the Change Matrix. The change
matrix displays change data according to its location, timestamp, and type. We used the change
matrix on several case studies to determine how well it supports answering evolutionary ques-
tions. Further, we investigated the effect of data degradation on the answers to these questions,
i.e., if and how much the use of coarser-grained data as is conventionally used makes answering
these questions more difficult.

Contributions. In this chapter we make the following contributions:

* The Change Matrix, a comprehensive, high-level and interactive visualization of fine-
grained change data.

* A catalogue of visual change patterns based on fine-grained changes supporting the answer
to the questions above.

* An evaluation of the approach on a case study.

* An estimation of the impact of fine-grained data on the quality of the answers to these
questions.

Structure of the chapter. Section presents the principles of the change matrix visualization
and explains how it can answer the questions raised in the introduction. Section presents
the results we obtained from applying the visualization to one case study. Section [4.4] evaluates
the impact of fine-grained data on the results, while Section discusses our visualization and
compares it with related work and Section concludes the chapter.

47 4.2 Assessing Systems with The Change Matrix

4.2 Assessing Systems with The Change Matrix

4.2.1 Principles

The change matrix is a simple visualization of change information which emphasizes their type,
their location in the system and their date. Additional information about the size of the changes
is available interactively. The change matrix can be used to assess the evolution of a system in a
given period.

Figure[4.1] shows an example of a change matrix, focused on classes and methods (a coarser-
grained version focused on packages and classes is also available). The change matrix focuses
on a period of the system’s evolution, which is split into intervals. Intervals can be either of the
same size (to emphasize periods of time), or time-warped to adapt to higher change density. The
entities displayed in the visualization are classes, methods, and changes.

Class B

Class C

Class D

1 creation I ciass separator }

Modification Method life lines 1

M Removal . -.

Figure 4.1: An example Change Matrix

Classes are laid out in their order of appearance, bordered by class separators featuring the
name of the class.

Methods in each class are also laid out in chronological order, using a life-line figure starting
at their creation and ending either when they are removed or at the end of the observed
period.

Changes are displayed on the life-lines of entities. Each change is displayed as a block over the
time interval during which it happened. The three main change kinds at the method level
are displayed: Additions, Modifications and Removals.

The class separators can encode additional information. They can display the intensity of the
changes during the interval, or the time of day they represent as a gradient of yellow and black
(provided the resolution of the interval is fine enough).

48 4.2 Assessing Systems with The Change Matrix

When clicking on an individual change, an extra figure is created for each change in the
method’s history. The figure displays a finer-grained level of detail, showing the evolution of the
size of the method before and after each change (Figure . The initial size of the method (in
number of AST nodes) is shown on the left of each figure, and its final size on the right. If some
statements are replaced by newer ones, the slope of the figure first decreases before increasing
again. Clicking again reveals the actual state of the method and shows its source code before
and after the change.

} Replaced Removed
Statements } Statements
Added
Statements

Figure 4.2: Size evolution of a method

Class A

4.2.2 Patterns

We identified several patterns which help us reply to the reverse engineering questions we for-
mulated in the introduction. We show the patterns and explain how they can indicate the char-
acteristics we are looking for. When possible, examples are illustrated on Figure[4.1] mentioning
the classes and the date concerned. The dates of interest, D1 to D4, are highlighted with dashed
lines. When method numbers are mentioned, the numbering starts at the top of the class.

Locating activity in the system. Locating activity is simple, as activity is directly denoted by
the presence or absence of changes. During the initial phases of the development of the system
pictured in Figure (at date D1), classes A and B were active, whereas towards the end (date
D4), classes A, C and D were active, while B was inactive.

Locating complex classes and methods. Considering the activity at a class level allows one to
quickly characterize classes and methods in the system. Several patterns arise:

* Data class. A data class is usually small. Its method are created and are almost never —or
never- changed afterwards. This is the case of class B.

 Stable or dead class. A class which has no or few recent activity. Further inspection is
needed to see which of the case it is.

* God class. A class with a large number of methods and which has a sustained activity.
Whenever the system needs to change, this class will be probably modified [Rie96]. It
is critical to understand such a class to break it down into smaller, more manageable
components. Class A fits the activity requirements, but is still too small to be a God Class.

* Brain method. The equivalent of a God Class at the method level. It is a method which has
been modified continuously. Further examination by analyzing the evolution of the size of
the method is necessary to confirm the diagnostic (i.e., if the method is large). A candidate
would be the first method of class C.

49 4.3 Evolution of Project |

Locating crosscutting changes. Crosscutting changes are changes that span several entities in
the system. Such changes manifest themselves as vertical lines in the visualization, i.e., they af-
fect several entities in a limited period of time. They indicate functionality which is not properly
compartmentalized and may be a maintenance problem [EZS™08]]. An example is found at date
D4, when three classes (A, C and D) are modified during two time intervals.

A variant is the moving functionality pattern, in which some entities are deleted, while oth-
ers are created in another spot of the system. This denotes some refactoring efforts. Some
functionality may have moved around date D3.

Finally, another pattern is co-changing entities denoting entities that tend to change together
[[GIKT97]. This happens when several entities change closely together repeatedly. The fourth
method of class A and the first method of class C exhibit characteristics from this pattern.

Locating periods in the system. We can visually identify development sessions as clumps of
activity separated by periods of inactivity. We can easily see four sessions in Figure 4.1} one
around each of the highlighted dates. For each session, it is easy to see at a glance which classes
were concerned and to which extent.

¢ Session D1 seems to be a definition session, where a few methods are created but none
are further modified. Further examination of their size and complexity may confirm the
hypothesis.

* Session D2 is longer and contains many more feature additions.

* Session D3 is also long and features some cleanup towards the end. The first method of
class C is constantly changed and seems central.

* Finally, session D4 seems to revolve entirely around a crosscutting change.

4.3 Evolution of Project |

We applied the Change Matrix to several of the histories we gathered. In the following, we only
have space for one detailed report on a project’s evolution. We chose project I for a detailed
study, because it had the most classes in it, and was the second largest in statements. Project I
is a role-playing game in which a player has to choose a character, explore a dungeon and fight
the creatures he finds in it. In the process, he can find items to improve his capabilities, as well
as gaining experience.

4.3.1 High-level Facts

Figure[4.3|shows the evolution of two system-level metrics throughout the lifetime of the project.
The unit of measure we used to evaluate project size is the number of AST nodes in the system.
The projects grows regularly, with two activity spikes on the first and the third of April. On
the other hand, the average complexity of the methods stays rather constant at around 30 AST
nodes per method, after the evening of the 31st. This trend stays the same even towards the
end of the project, where the system grows by 20 to 25% in the last hours before the deadline,
reaching 8 thousand AST nodes. The slope of the system size curve is very high, only slowing
down for the last 30 minutes. The constant complexity seems to indicate the project was in
control until its end. Some other projects exhibited a continuously increasing complexity rate
with no stabilization period.

50 4.3 Evolution of Project |

8KA

, 31/03 L 01/04 ' 02/04 ' 03/04 >

0 . t t t '
27103 30/03 —
soh 28/03 29/03 i L

o M ~,

¥

Y

Figure 4.3: System size (top) and average method complexity (bottom) of project I

Figure [4.4] and Figure [4.5] are the two parts of project I's change matrix. In it, intervals last
15 minutes. The first activity we perform with the matrix is to visually delimit major periods of
activity in the system. To ease comprehension, these sessions are delimited by rectangles with
dashed borders in both parts of the matrix. Figure illustrates the zooming capabilities of the
visualization: It displays the Change Matrix of project I focused on the class Combat. Since its
lifespan is shorter, we can increase the resolution to five minutes per interval.

Considering the classes and their order of creation, we can see that the first parcels of func-
tionality were, in order: The characters; the weapons; the enemies; the combat algorithm; the
healing potions and finally the dungeon itself, defined in terms of rooms.

4.3.2 Reconstructing Project I’s Evolution

After seeing these high-level facts about the evolution of the system, we can examine it session
by session. Each session has been identified visually and numbered as shown in Figure and
Figure 4.5

To help infer the roles of entities in the evolution, several patterns can be detected: Hero,
RPG and Combat are god classes. Items, Race, Attack, Minor, Medium and Greater are data
classes. Mage and Warrior, two character classes, experience co-change. Co-change also charac-
terizes Ranged and Melee, two weapon classes, and Lightning and Ice, two spell classes. In
this project, co-change seems to happen mainly on sibling classes, which is not as alarming as
coupling between unrelated classes. Sessions 6,7,8 and 10 seem to be particularly crosscutting.
We now explain the evolution of the project session by session.

Session 1

Date: March 27, afternoon

Goal: Data definitions

Key classes: Hero, Spell
The project starts by laying out the foundations of the main class of the game, Hero. As we
see on the change matrix, it evolves continually throughout the life of the project, reflecting
its central role. At the same time, a very simple test class is created (HeroTest), and the class
Spells is defined.

51 4.3 Evolution of Project |

Session 2

Date: March 28, evening

Goal: Data definitions: Professions and Weapons

Key classes: Mage, Warrior, Weapons
This session sees the definition of the core of the character functionality: Classes Hero and
Spells are changed, and classes Items, Mage, Race and Warrior are introduced, in this order.
Since Spells are defined, the students define the Mage class, and after that the Warrior class as
another subclass of Hero. This gives the player a choice of profession. The definitions are still
very shallow at this stage, and the design is unstable: Items and Race will never be changed
again after this session.

Session 3

Date: March 28, night

Goal: Alternative character definitions

Key classes: Hero3
This session supports the idea that the design is unstable, as it can be resumed as a failed
experiment: A hierarchy of races has been introduced, and several classes have been cloned and
modified (Mage2, Hero3 etc.). Most of these classes were quickly removed, or kept as dead code.

Session 4

Date: March 29, afternoon

Goal: Character functionality transfer

Key classes: Mage, Warrior, Hero3
This session is also experimental in nature. Several classes are modified or introduced, but were
never touched again: Hero3, CEC (where several methods are added just to be deleted, indicating
renames), RPGCharacter (except two modifications later on, outside real coding sessions). Mage
and Warrior are changed too, indicating that some of the knowledge gained in that experiment
starts to go back to the main branch.

Session 5

Date: March 29, evening and night

Goal: Character functionality transfer

Key classes: Hero, Warrior, Mage
This session achieves the knowledge transfer started in session 4. Hero is heavily modified in
a short period of time, including massive renames. In the following sessions, Hero will regain
some stability. In the meanwhile, Mage and Warrior are consolidated. Already with sessions 2,
4, and 5, we can see that Mage and Warrior are co-changing classes.

Session 6

Date: March 30, late afternoon

Goal: Weapon and spell diversification

Key classes: Weapons, Spells, Lightning, Fire, Ice
This session sees a resurgence of interest for the offensive capabilities of the characters. A real
Spell hierarchy is defined (Lightning, Fire, Ice are subclasses of Spells), while the Weapons
class is modified as well. Prior to that, Hero is slightly modified, confirming its god class status,
as each change to the system seems to involve it.

52 4.3 Evolution of Project |

Hero

HeroTest
Spells

Items
Mage

Race

Warrior

Weapons

o e e]

EIf2
Hero2
Warrior2
Warrior3

age;
Hero3

RPGCharacter

“

CEC

Fire
Lightning
Ice

Menu
RPG

27/03/06 I 28/03/06 I 29/03/06 I 30/03/06 I 31/03/06

Figure 4.4: Change matrix of project I, 27/03 to 31/03

Session 7

Date: March 31, noon

Goal: Game class definition

Key classes: RPG, Hero, Mage, Warrior
The first full prototype of the game. The main class, RPG (standing for Role Playing Game) is
defined, as well as a utility class called Menu, proposing menu-based choices to the player. Mage,
Warrior and their superclass Hero are modified as well, strengthening the patterns we already
established.

Session 8

Date: March 31, evening

Goal: Testing and spells

Key classes: Spells, Lightning, Ice
This session features some work on spells, considerably changing the root class Spells, and
its subclasses Lightning, Fire and Ice. In parallel, several simple test classes, MageTest,
WarriorTest and MenuTest, are created.

4.3 Evolution of Project |

53

< e 5 < g :
|~ -~
B E A g = = i< [e] [o[e]e]
1 N S 2 =3 ™ -
.y we o 2 ,.-...-umm,_.} AR mnm.mm g 2 s 585 3 ¥ 5 £ s
g s P g5 5 EInE JRT - g522 § ¢ s %oz £ 3 235 &8
x " =3 z = WI33ET £ O io uu_nn llllll :3zc _=_ 5 6 _ __ _ . A o= _ O_ ________.: 2 & fa__. =
m . 1 =y
w 2 8 m b v r l
k] k] m = - (3]
[+) m —
308 = [T S Oy O e MV i M mwer T
o
< @2
5
H
£
HALHLp A L e WL gl
mm | | A i
jmmmmmmmmes ' o |
| h " |
nlelebtelebtetete i 3 |
| g
| 5 “
1 b ~ |
| 8
. g jinyigmeee =1}
LI Wga Y 18 SIESLRY SRS SESONE _ BN E NN) RRUIMRERNN 0 SN SN R ANS_ _ _ _ _ _[MQSRUSSIEE N NN M SRR _ _ _ _ I
] |
| - o !
! |
5 I 11 - ! i !
' -tk S T ; I 1
| y [} |
| : ' !
| - ™~ . g A2 "
! . -
U I I Y SN LU A SRR TR L] o QUL e LA o R IR Ly A I
E-JEEERA_ L8
=2 .
=" |
"| M " " 1°1°"° 01w """ N m mmimn mn
3! I
m=11-s=tF--FF- = i I
e - - 1
(e S e _ RNl TR LYSE NN gl iy SN SR -||||u.w. Lh
| 7 'wl sl v " wimlm o v he T uh In' s = n mminmnin Sl RERT 1
| v ~ |
s g __ [y L JENAN p U NS U NiRipUSRSI N N T DT

1
e g DrGON

03/04/06

02/04/06
Figure 4.5: Change matrix of project I, 31/03 to 03/04

01/04/06

31/03/06

54 4.3 Evolution of Project |

Session 9

Date: March 31, night

Goal: Weapon diversification

Key classes: Weapons, Ranged, Melee
There was no real separation between this session and the previous one time-wise. However the
entities in focus clearly change rapidly, hence we separated session 8 and 9 for clarity. This is an
example of a fluid transition from one functionality to the next which might not be reflected in
the SCM system data if the code is not committed before the transition.

This session focuses on weapon diversification with classes Melee and Ranged, both sub-
classes of Weapons; these classes have a very close evolution (co-change) for the rest of their life,
as their patterns are really similar, in the same way Lightning and Ice co-evolve constantly .

Session 10

Date: March 31, night

Goal: Enemy data definition

Key classes: Enemies
This session also features a fluid transition with the previous one. The student’s rhythm of work
is intensifying, and several features are being worked on at the same time.

A real hierarchy of hostile creatures appears: Enemies, Lacché, and Soldier. The system is
a bit unstable at that time, since Enemies has a lot of methods added then removed immediately,
suggesting renames.

. Brain method

Figure 4.6: Change matrix zoomed on the class Combat

Session 11

Date: April 1st, noon to night

Goal: Combat algorithm definition

Key classes: Weapons, Combat, Hero
As the deadline for the student project approaches, sessions become longer. Work intensifies
further, and transitions between activities are not as smooth as previously. We can however
distinguish two phases in this session: Before, and after the definition of class Combat.

This intensive session sees the first iteration of the combat engine. The weapons, spells and
characters (heroes as well as the Enemies hierarchy) are first refined. In each case, the co-change
relationships are strengthened, as the parallel evolution of Lightning and Ice, on the one hand,
and Ranged and Melee, on the other hand, is easy to see in the session. Mage, Warrior and Hero
are also subject to co-change. Then a new enemy, Master, is defined.

55 4.3 Evolution of Project |

The implementation of the Combat class shows a lot of modifications of the Weapons, Spells
and Hero classes, indicating some crosscutting. An Attack class soon appears. Judging from its
(non-)evolution, it seems to be a data class with no logic, comforting the idea that Combat is a
god class using it. After theses definitions, the implementation of the real algorithm begins. We
see on Figure [4.6|-the detailed view of Combat— that one method is heavily modified continuing
in the next session. It seems to be the heart of the combat algorithm.

Session 12

Date: April 2nd, noon to night

Goal: Combat algorithm continued

Key classes: Combat
Development is still heavily focused on the Combat algorithm. Compared to the previous session,
we observe that the modifications are much more localized. This session also modifies the main
combat algorithm, and at the same time, two methods in the Hero class, showing some coupling
between the two god classes. In parallel, Enemies is also changed, furthering the integration of
both kinds of characters in the combat.

It is interesting to note that the subclasses to Enemies and Hero do not change in this session.
This indicates that either the hierarchies are not fragile, or that Combat handles everything, using
the other classes as data classes. Considering the evolution of Combat, we are inclined to think
the latter, but only a closer code inspection involving actual program comprehension could tell.

A second method featuring a lot of logic is implemented, as shown in Figure |4.6f several
methods are often modified. This method, along with the one introduced in the previous session,
seem to be the brain methods handling the combat algorithm. In parallel, classes Potion and
Healing are also defined, allowing the heroes to play the game for a longer time.

Session 13

Date: April 3rd, afternoon to night

Goal: Main game loop and dungeon definition

Key classes: RPG, Combat, Room
This last session has a wider focus than the previous one, as it ties “loose ends” in a time-limited
project.

The students finish the implementation of Combat, changing the Enemies hierarchy in the
process. This change seems like a change to a polymorphic method since the change is spread
out on each hierarchy class but performed quickly. A significant amount of methods are changed
in the Combat class, but only in the methods defined last. Either functionality has moved to these
methods, and the older methods are no longer used, or the algorithm is compartmentalized, the
latter methods being concerned with enemies rather than characters of the Hero hierarchy. A
finer code inspection is needed to determine which hypothesis is accurate.

After finishing Combat, this session also resumes the work on the entry point of the game,
the RPG class. Only now is a Room class introduced, providing locations in the game, an aspect
overlooked until then. These classes are tied to Combat to conclude the main game logic. To
finish, several types of potions —simple data classes— are defined, and a final monster, a Dragon,
is added at the very last minute.

56 4.4 Impact of Data Degradation

4.3.3 Recapitulation

From a high-level analysis of the evolutionary data we recorded of small-scale project, we were
able to observe the following:

* The average complexity of the system increased at first, but was kept in control after a
third of the project’s evolution, even if the system size increased significantly.

* We deduced the role of classes from a cursory observation of the patterns we detected
in their evolution. In particular, we identified which classes were god classes (Hero,
Combat, RPG), data classes (Potion class hierarchy, Attack), dead code (Hero2, Mage2,
Hero3, CEC), and the reason of its presence (experimental character definitions), and
which classes had co-change relationships (Ranged with Melee, Lightning with Ice, Mage
with Warrior, classes in the Enemies Hierarchy).

* We reconstructed how the project evolved based on its change history and the patterns we
discovered. We described when and where in the system each functionality was defined,
and identified the most fragile functionality (combat between parties, which spans several
large classes), and have a clear picture of the high-level relationships between functional-
ities.

* We formulated a handful of hypotheses that could serve as program comprehension start-
ing points, concerning the hierarchy of Hero and Enemy, and their relation to the Combat
class.

In short, we gathered a reasonable idea of the system’s design, functionality and evolution
based on the analysis of its change history. We are aware of its shortcoming and of the probable
locations one need to change in order to alter a high-level functionality. We thus think our initial
reverse engineering effort of this system was successful.

4.4 Impact of Data Degradation

We have shown on one example how a review of fine-grained changes allows us to infer high-
level facts about the design and evolution of a software system. But how much is this due to the
fine-grained data our approach provides?

In order to evaluate how much our approach depends on fine-grained data, we simulated the
application of the same visualization on data degraded to match the granularity of data found
in SCM systems. We then evaluated how well the patterns we previously located were preserved
when analyzing degraded data. We proceeded in two steps: We first simulated the usage of
SCM commits instead of change recording, and then evaluated the effect of data sampling, i.e.,
intentionally reducing the number of versions analyzed in order to deepen the analysis on each
one.

We simulated SCM commits by using the assumption that each development session would
have ended with a commit to the versioning system. Since the Change Matrix displays changes
according to their time, location and type, displaying commits in the change matrix amounts
to altering the time stamp of each change belonging to the same session so that they share the
same time stamp, considered to be the commit time (in our case, the last change’s time stamp).
Figure |4.7| shows a side-by-side comparison of a subset of the Change Matrix of Project I, with
and without data degradation. We see clearly that some of the patterns, in particular those
involving repeated modifications to the same entity, are much harder to locate. In particular,

57 4.5 Discussion

co-changing methods in the same session are no longer visible, as changes to other methods
seem to appear at the same time. Also, crosscutting changes (for examples, the last changes on
Ranged and Melee, or some of the last changes in Combat) are no longer distinguishable from
sequences of individual changes, and repeatedly changed brain methods are no different from
methods changed once per session.

This comparison is still advantageous to commit-based evolution analyses, since a precise
modeling of systems (such as ours, which is at the AST level) is usually performed on a subset of
the available versions. We simulated version sampling by grouping sessions in sets of four, and
altering the dates of the changes in each session so that all changes share the same time stamp.
This approximates a sampling in which 25% of the versions are kept. For reference, Ratiu et al.
[RDGMO4] kept around 10% of the commits, while Xing and Stroulia [XSO05]] kept one version
per month. In that case, patterns are even harder to locate: Only the most obvious activity
patterns (mainly at the class level), remain detectable, as the mass of changes happening at the
same time hides all the other patterns. Figure [4.7| shows the Change Matrix (on top) and the
sampled Change Matrix (at the bottom). The co-change-relationship between Melee and Ranged
which is obvious on top looks now no different than their relationship with the unrelated Lacché
class. If anything, Lacché and Ranged share a single change in the last session, making them
slightly more related than Melee and Ranged. Finally, the observations one can make on the
Combat class are now very limited: One can only infer that it is a large, fast-evolving class.

4.5 Discussion

Comparison with Related Work

Most evolutionary visualizations display each versions individually. Few visualizations display
several versions of a system simultaneously, in order to review the overall evolution of a system
or part of it. All these approaches share the limitation that the data they considered was ex-
tracted from text-level, version-based SCM. They are limited to changes to files across versions,
while the data used by the Change Matrix is finer-grained. As such, all of these approaches suffer
from the problems we outlined in the previous section.

Lanza’s Evolution Matrix [[Lan01]] displays the evolution of classes by laying out their succes-
sive versions in a row. Classes are ordered by order of apparition. In essence, the Change Matrix
is a finer-grained version of the Evolution Matrix as it can display the evolution of methods and
can display changes between versions.

Revision Towers by Taylor and Munro [TMO2] showed several versions of the same file in
the same figure, as levels of a tower which allowed to see the evolution of a given file across its
lifetime at a glance.

Wu’s et al. Evolution Spectrographs [WHHO4] can be set up to display —as the Change Matrix
does— the changes rather than the successive versions of the entities they consider. However
Evolution Spectrographs has been only applied to versioning systems so far.

A finer-grained evolutionary visualization is a polymetric view defined by Girba et al., the
Hierarchy Evolution Complexity View. It displays the structure of the system in terms of class
hierarchies, but overlays the evolutionary information such as the age of classes or inheritance
relationships on top of the structure [[GLDOS[]. The changes themselves are not displayed: Only
the latest version of the hierarchy is, with deleted classes and inheritance relationships displayed
in cyan.

58 4.5 Discussion

Ranged
Melee
Lacché

Enemies

Combat

Ranged
Melee
Lacché

Enemies

Combat

Ranged
Melee
Lacché

Enemies

Combat

Figure 4.7: Impact of data loss: Original (Top), Commits (Middle), Version Sampling (Bottom)

Generalizability

Since we report only on case studies, we can not generalize our results to every system. One
might argue that the results depend on the style of the developer. We kept our description of
the patterns intentionally generic, so they can apply in other contexts. The patterns appeared in
the other case studies we applied our approach to (the other student projects, SpyWare), so we
believe they would appear on any system.

Scaling Up and Down

The example we reported on was one of the largest student project we examined (totaling 41
classes), but is still small by any standard. The visualization we presented has however the
potential to scale. If higher-level insights are needed because of the large number of entities, the
same visualization can be applied to packages and classes, reducing the space the visualization

59 4.6 Summary

takes on the Y axis. If the time period is long, the intervals used to display changes can be made
longer, reducing the space taken on the X axis.

Once system-level questions are answered, the same visualization can be used on shorter
periods and reduced number of entities. If the Change Matrix is used on a given period, it will
automatically omit the entities which do not change during the period. If the Change Matrix is
used on a given entity, the period in which it does not change can be omitted or condensed with
time warping. These factors allow the Change Matrix to be brought to the level we used it even
for larger projects. Other approaches might not support increasing the level of detail up to a
point: Ours ensures we can focus on the smallest level of detail if needed.

Unincorporated Data

The Change Matrix does not use all the data our model records. Two additional data sources
could be incorporated.

Refactorings are changes which do not alter the behavior of the system, yet span several en-
tities. These could be mistaken for other crosscutting changes. In our case study, no refactorings
were performed, so this did not apply. For other change histories we might want to distinguish
refactorings from other changes.

The usage of entities is not incorporated. One could imagine displaying it on the life-line
of the entity, making it darker as the entity is used more widely. Since this might clutter the
visualization, this could be an interactive feature. Having this information should help distin-
guishing between stable (increasing usage) and dead code (decreasing usage), and identify the
central points of the system (a very complex class might actually be on the fringe of the system).
Displaying which entities are using the entity in focus would help determining if an entity is
public (i.e., used system-wide) or private (i.e., only used in its package).

4.6 Summary

During the initial assessment of a system for reverse engineering, visualizing the evolution of the
system allows one to characterize parts of the system according to how it changed in the past. To
assist this task, we defined a comprehensive evolutionary visualization using our change data,
the Change Matrix. The Change Matrix focuses on the changes performed in the system rather
than successive versions as they would be extracted from a versioning system. Visualizing such
fine-grained changes allowed us to easily characterize parts of the system according to several
dimensions:

* Complexity. Classes can be labeled as stable, data or dead classes when they change
rarely, or as god or complex classes if they change often.

* Activity. It is trivial to identify which parts of the system have been active at any point in
time.

* Crosscutting concerns. Crosscutting or moved functionality is visually easy to assess, as
well as co-changing entities.

* Evolution. The order of appearance of functionality is easily accessible, and the system’s
evolution can be reconstructed.

We identified several patterns based on the occurrence or absence of fine-grained changes
at a given point in time. Localizing these patterns on a change-centric visualization allows one

60 4.6 Summary

to reconstruct with a modest effort an evolution narrative of the system, based on the change
matrix and the names of classes and methods changed.

We showed that the fine-grained change data produced by Change-based Software Evolution
answers high-level reverse engineering questions about software systems by characterizing the
evolution of systems with patterns and providing access to a detailed change history. Even for
high-level questions, the quality of the data is primordial: We compared our results with what
can be obtained by using data equivalent to the one found in an SCM system and showed that the
results were much less accurate. This problem is further compounded by the common practice
of sampling the data in order to make the analysis of individual versions more precise, which
increases the amount of changes between each versions. In that case, most of the patterns we
identified are no longer detectable.

In short, the data Change-based Software Evolution provides eases the reverse engineering of
systems by providing access to a comprehensive and accurate history of the changes encountered
by domain-level entities in the system. The accuracy of these changes improves the insights one
can get on systems even on a high level, as trends and patterns of relationships between entities
can be detected with a much greater accuracy when the history of these entities is closely tracked.
Since the data provided by CBSE is fine-grained, the level of data considered can be scaled up
or down.

Chapter 5

Characterizing and Understanding
Development Sessions

What happens during a development session? Mining a versioning system’s archives
does not tell us the whole story as only the outcome of a session is stored. In con-
trast, change-based repositories contains the exact changes that were performed
during any development session. Accessing the changes in the sequence they hap-
pened helps the fine-grained comprehension of the activity carried out during a
development session.

We first provide a high-level context for session understanding by defining a char-
acterization of sessions. This session characterization is based on metrics measuring
particular aspects of the changes that occurred during the session, and distinguishes
between various types of development sessions.

Further, we support program comprehension through a top-down session ex-
ploration process. This process is based on the previous characterization and uses
several interactive visualizations. It allows a developer to choose and explore the ses-
sions —and the changes contained within them— in order to better understand how a
given system functionality is implemented by understanding it incrementally. The
developer is free to navigate between high-level views of the system (where the unit
of change is the session), and lower level views of the system (where the unit of
change is the individual change to methods and classes of the system).

61

62 5.1 Introduction

5.1 Introduction

When a change to a system is needed, the first thing to do is to localize where in the system the
change should be made. We have shown in Chapter [4/ how Change-based Software Evolution
helps to locate functionality to support such a task.

The next task is then to understand the few entities that collaborate to achieve the function-
ality that one needs to change. Understanding the whole program is unnecessary, but under-
standing selected source fragments is critical [ES98]]. However, even understanding a relatively
small subset of the code of a system is difficult if one does not start at the right place or does not
follow the right path through it.

A possible path to take is the one the developer himself took while implementing the func-
tionality. Such a path might contain mistakes and indirections, but developers always follow a
certain logic when writing code and proceed incrementally. Change-based Software Evolution
allows access to the implementation process as it records entire programming sessions. Following
the programmers’ footsteps as an aid to program comprehension becomes possible by reviewing
each change in the system in order.

This information can not be recovered at all from a traditional versioning system since only
the outcome of the session will be committed to the SCM system. On the other hand, IDE mon-
itoring approaches only keep a shallow model of what the developer has actually done (usually
navigation information and shallow change information), which is not enough to reconstruct
the actual changes the developer did. Only recording changes provides enough information.

In this chapter, we describe how program comprehension can be assisted by reviewing devel-
opment sessions. Our session-based program understanding approach is based on two steps. We
first enrich the context of the session by providing a high level characterization of the activity
in the session, based on change metrics. This characterization provides high-level additional in-
sights on what actually happens during the session. Second, in order to support actual program
understanding, we define a session understanding process supporting top-down exploration,
from several sessions at the same time down to individual changes to program entities.

Contributions. The contributions of this chapter are:

* A characterization of development sessions across several dimensions, enriching the con-
text a programmer has for understanding a session.

* The definition of several change-based metrics, unique to our approach, which constitute
the basis for our session characterization.

* The definition of a session exploration process supported by tools and interactive visualiza-
tions which allows one to review a set of sessions and the individual changes in a session
in order to understand the functionality implemented during these sessions.

* A validation of these techniques on selected sessions across two case studies, featuring
several hundreds development sessions.

Structure of the chapter. Sectionmotivates the usefulness of session-based program under-
standing and characterization. Section presents our characterization and the change-based
metrics we used to define them. We then describe the process —and the tools that support it—
in order to select and understand relevant sessions in Section Section [5.5] validates our ap-
proach on two case studies comprising hundreds of development sessions. We describe in detail
selected development sessions, and how our approach assist their understanding. Section
discusses our approach and related work, while Section [5.7] concludes the chapter.

63 5.2 Motivations for Session-based Program Understanding

5.2 Motivations for Session-based Program Understanding

We have already seen in Chapter 4 the usefulness of analyzing fine-grained changes sequentially
on several occasions. We were able to:

* Highlight co-change relationships. Entities closely related to each other are usually
changed together. For program understanding, it makes sense to review changes to related
entities at the same time. Some of these relationships, for example those relying on side
effects, might not be obvious as there may not be a direct reference from entity to the other.
The original programmer will be aware of the relationship and change both, making the
relationships more obvious.

 Differentiate functionalities. In the previous chapter’s case study, one session was graph-
ically divided in three distinct sub-sessions (Sessions 8, 9 and 10). The graphical differ-
entiation was obvious as three distinct areas of the system were changed in sequence,
but modifications were local to each area. However, a single commit might have been
performed merging these three tasks. Understanding these changes without accurate his-
torical information might lead one to believe that they are closely related. In reality, they
were not. Starting with a wrong hypothesis makes understanding harder, as the maintainer
will try to relate these distinct pieces.

* Contextualize changes. The changes surrounding an individual change give insights
about its aim. In the previous chapter we were able to visually identify method renames
(methods being deleted while other methods in the same class appear simultaneously), or
potential moves of functionality (changes and deletions in a class while methods are added
to another class shortly after). In this chapter, we inspect these changes more closely and
additionally incorporate actual refactorings which our approach records. Knowing that a
change was performed automatically by a refactoring tool is helpful, since the change is
guaranteed to be behavior-preserving: A closer inspection is not needed.

* Incremental implementations. The previous chapter’s case study showed this particu-
larly towards the end, in the implementation of the Combat algorithm. The main concepts
of a feature are defined first. Later, secondary concepts are defined and primary concepts
are refined. If a feature implementation is reviewed according to its timeline, a basic ver-
sion of it can be reviewed initially. Only after the general feature is defined, improvements
such as optimizations, peculiar cases and generalizations are implemented. Following the
steps of the developer leads to a more natural and progressive understanding of the code.

We see that there are several reasons to understand programs sequentially as they are built.
Some of these apply also to characterizing sessions:

* Increasing context. Characterizing sessions gives an overall context to a session or parts
of it. Context allows us to better understand changes, be it because we know which entities
are related to the one being changed, or because certain changes belong to refactorings. In
the same fashion, an overall session characterization adds context to the session. Knowing
that a session is refactoring-dominant makes it different from a bug-fixing, feature addition
or feature enhancement session.

* Characterize entities. We have not investigated this, but we believe program entities can
be characterized by the development sessions they are involved in. An entity often involved
in maintenance related sessions is either a very central piece of the system (potentially

64 5.3 A Characterization of Development Sessions

a god class), or may have a significant amount of defects. Both cases invite a closer
inspection of the entity.

* Focusing the Reviewing and Testing Effort. Code reviewing is an established practice to
prevent defects, but resources might be limited. Generalizing the previous point, one can
allocate more resources to code originating from sessions with a higher risk of containing
bugs. Several change metrics could indicate this, such as the propensity during a session
to move to seemingly unrelated entities (potential side effect), or seeing entities being
changed repeatedly.

5.3 A Characterization of Development Sessions

To provide more context when understanding sessions, we characterize them according to met-
rics we defined. We first explain the dimensions we chose for the characterization, then present
the change-based metrics we used as a basis for the characterization. We then perform a quan-
titative analysis of the session characteristics on our case studies.

5.3.1 Primary Session Characterization

We characterize each session according to several dimensions. The primary characteristics are
the session Architectural Type and its Duration. Since the characterization is based on change-
level metrics, it is applicable to any sequence of changes. As such, it is also useful to characterize
smaller (phases in a development session) or larger (the set of sessions related to an entity)
groups of changes. This allows a session to be separated in several phases if it helps its under-
standing.

Architectural Type. The primary dimension is the type of activity carried during a session. To
create a concise but effective vocabulary when we talk about the different types of sessions, we
use a metaphor taken from Brant’s “How Buildings Learn” [Bra94]], where he describes buildings
as multilayered structures where inner layers change faster. Brant’s book is about architecture
and therefore his layers are (from inner to outer) stuff, space plan, services, skin, structure, and
site. The idea is that for instance “stuff” (the furniture) is changed more often than the space
plan of a house, which is also changed more often than its skin, etc.

We reuse that metaphor for software development since the frequency of various develop-
ment activities vary in the same fashion, and the types of activity can be mapped to architectural
terms. The possible types of session across the architectural dimension are:

* Decoration is the smallest and most common kind of activity. In our case, it corresponds
to light maintenance activity, such as corrective maintenance. It is characterized by slight
alterations to the code base, such as changing method bodies. Pure decoration sessions do
not add any new methods.

* Painting is the next most common activity. It corresponds to feature refinement, i.e.,
extension or alteration of an existing feature. Painting is characterized by the addition and
the modification of methods on already existing classes.

* Masonry is active construction of the system and refers to addition of new functionality in
the system. Since in an object-oriented system the class is the unit of behavior, we define
this as adding —or changing— both classes and methods to the systems.

65 5.3 A Characterization of Development Sessions

* Architecture is groundwork for further construction and corresponds to addition of ma-
jor features. An architectural session adds a large number of new classes and may adds
packages to the system.

* Restoration refers to preventive maintenance of the system, and is linked with refactoring
actions, such as actual refactorings or movements of functionality.

Duration. We qualify each session according to its length, in five categories: Blitz sessions
have a very focused activity, and last less than 15 minutes; Short sessions last between 15 and
45 minutes; Average sessions last between 45 and 90 minutes; Long sessions last between 90
minutes and 4 hours —an entire morning or afternoon of development work; Marathon last more
than half a day of work and regroup all sessions lasting more than 4 hours.

Conceivably, long and especially marathon sessions could be more error-prone since fatigue
has time to set in. On the contrary, blitz and short sessions indicate a focused activity that was
planed and delimited in advance.

5.3.2 Session Metrics

We first describe the change-based metrics we defined, before explaining how we use them to
characterize sessions. Our metrics are explained in table Table Metrics in bold are only
obtainable through change recording, and not through recovering changes from SCM archives.
Not all metrics are used to compute the primary session characteristics. Others are used by
themselves when the session is inspected, as secondary session characteristics.

Our primary characterization of metrics is based on detection strategies [LMO5]]. Detection
strategies are combinations of metrics and thresholds detecting higher-level characteristics of
software system. Their primary use is detecting design flaws [[Mar04].

Choosing the thresholds is an important part of designing a detection strategies. Thresholds
can be absolute, or relative to the project they are used on. Since we do not yet have a large
enough amount of data to determine thresholds empirically, we also use metrics on their own as
a secondary characterization. In that case, their value is accompanied with a percentile telling
their relative standing in the project. This also accounts for the variation in styles of developers.
Table[5.2]shows the combinations of metrics and thresholds used in our primary characterization.

5.3.3 Quantitative Analysis of the Characterization

We looked at two of our case studies which have a large number of sessions. These are SpyWare
(around 500 sessions at the time the analysis was done), and Project X (around 120 sessions).

Table presents high-level primary characteristics of the sessions for both projects. Each
session is characterized by its architectural type and duration. The session types are not mutually
exclusive, i.e., a session can be of more than one type, such as Masonry and Painting.

The table reveals that some session types tend to have a characteristic length: Architecture
and Restauration are longer sessions, while the highest proportion of Masonry sessions is found
at average lengths. Painting and Decoration sessions are rather homogeneous in SpyWare, but
occur more in shorter sessions in Project X. As expected, Architectural sessions are the longest
and the rarest. Note that there is some overlap: It is possible for a session to be characterized
as both Masonry and either Painting or Decoration, for example. Restauration also overlaps
with other characteristics. Inspecting these sessions further may reveal that they have phases in
which one of the activity is prevalent. Next session describes the process we defined to support
this activity.

66 5.4 Incremental Session Understanding

Metric | Metric Description | Indicator of

SLM Session Length — expressed in minutes. Primary duration characteristic.

TNC Total Number of Changes, i.e., developer-level actions per- | Amount of work actually performed in
formed during a session. a session.

TSC Total Size of Changes, i.e., number of atomic changes performed | Amount of work actually performed in
during a session. a session.

NR Number of (recorded) Refactorings, and related actions. Preventive maintainance

SA Session Activity, i.e., changes per minute (SA= % . Speed at which the task was per-

formed.
NAM Number of methods added during a session. Amount of new behavior
NCM Number of methods changed during a session. Behavior refinement

UNCM Unique number of methods changed (UNCM < NCM). Same | Behavior refinement
as NCM, except every method is only counted once.

NTM Number of touched methods, i.e., methods that were modified | Change amount.
or added.
ACM Average changes per method (ACM = zjVNCc]‘;\I/I)' Incrementality
MCM Most changed method, the highest number of changes applied | Presence of outliers.
to a single method during the session.
NAC Number of classes added during a session. Behavior extension.
NCC Number of classes whose definition changed during a session, | Behavior extension.

i.e., with addition/removals of attributes
UNCC Unique number of classes changed (UNCC < NCC). Same as | Behavior extension.
NCC, but each class is counted only once.

NTC Number of touched classes, i.e., classes that were modified or | change magnitude.
added.

NIC Number of involved classes, i.e., classes that were added, | Extent of the changes in the system,
changed, or who had a method added, or changed. crosscutting.

ACC Average changes per class (ACC = ?VI\I]CC) Crosscutting

MCC Most changed class, the highest number of changes applied to a | Presence/absence of outliers.
class.

Table 5.1: Session Metrics.

In general, we see that Project X has more Masonry and less Decoration session than Spy-
Ware. A possible explaination for this is that Project X makes heavy use of a web framework, in
which defining new classes of web components is commonplace. Project X also features more
Restoration sessions, which can be possibly explained by the prototype, deadline-driven status
of SpyWare. This also explains the presence of Marathon sessions in SpyWare.

5.4 Incremental Session Understanding

In this section, we outline the session exploration process we defined, before describing the tools
and visualizations we have built to support it.

5.4.1 A Process for Incremental Session Understanding

We defined our session exploration process to allow the efficient navigation both between high-
level changes (development sessions) and low-level changes (developer-level actions constitut-
ing a session).

Development sessions need to be summarized efficiently in a way which allows easy recogni-
tion of individual sessions. Upon closer inspection, key features and phases must be identifiable
without involving too much cognitive effort.

67 5.4 Incremental Session Understanding

Characteristic | Description | Rationale

Decoration % >0.66 Two-thirds or more of the changes are method modifica-
tions.

Painting % >0.33 One-third or more of the changes in the session introduce a
new method.

Masonry NAC+NCC >0 At least one class is added or modified. Masonry is su-
perceded by Architecture.

Architecture NAC + I\% > 5 or NAP >0 At least one package, or more than 5 classes are added.
Modifying a class counts as half as much.

Restauration NCR+NMR>6 A large amount of refactorings is performed during the ses-
sion.

Blitz SLM <15 A very short session.

Short SLM > 15 and SLM <45 A short session.

Average SLM > 45 and SLM <90 An average session, in which a normal task should be com-
pleted.

Long SLM > 90 and SLM < 240 A longer than usual session.

Marathon SLM > 240 A session longer than a single morning or afternoon, denot-

ing intense work.

Table 5.2: Definition of our characterization.

Length | Blitz Short Average Long Marathon | Total
Spyware

Architecture 0 1 5 15 11 32
Restoration 2 1 6 18 8 35
Masonry 26 43 41 76 5 191
Painting 51 39 31 40 6 167
Decoration 66 55 36 57 4 218
Project X

Architecture 0 3 3 13 0 19
Restoration 0 9 14 21 0 44
Masonry 13 26 18 10 0 67
Painting 15 11 9 10 0 45
Decoration 9 4 3 1 0 17

Table 5.3: Session Types, for Project X and SpyWare

Developer-level actions need to be inspected closely, for actual program comprehension to
take place. Navigating through related changes must be easy, and the extent of the changes must
be assessed as quickly as possible.

To address these requirements, we defined a four step top-down session exploration pro-
cess, starting with several development sessions, and ending with the inspection of individual
changes. The process is shown in Figure Initially, it takes as input a set of sessions of interest
(for example, all the sessions in which a given class that one needs to understand was changed).
Sessions are inspected as a whole, before individual sessions are selected for close review of

their changes. The four steps of the process are:

1. Browse Sessions. In this step, one assesses a set of sessions all at once. The challenge is
to summarize a large amount of changes (several sessions lasting several hours each) in a
space compact enough that they can be encompassed at once, while retaining the ability
to recognize individual sessions and gather superficial insight about their contents. We
summarize an individual session in a session sparkline, which takes a very limited amount
of screen space, allowing dozens of sessions to fit in a single screen.

68 5.4 Incremental Session Understanding

2. Inspect Session. In this step, candidate sessions are inspected on their own. The session
sparkline’s interactive features are used, and phases in the session are recognized. The
session inspector provides the values of metrics and the characteristics of each session in
order to decide if a session should be inspected even further.

3. Explore Session. In this step, the actual understanding of the changes is supported by
a detailed visualization of the changes in the session via the session explorer. The session
explorer display changes emphasizing the entity they affect, their type (addition, modifi-
cation, removal, refactoring action), and their change amount.

4. Review Changes. Finally, each individual change can be reviewed. This step includes
actual code reading, which is eased via a change reviewer. The change reviewer highlights
the actual change performed using a before/after view of the entity changed, and eases
navigation to other changes of interest.

« - Spyware session browser

Set of
mtrics: sessions

composed
e

sscT 135

BEFIDG 1.0

) 0.519

Forusn
DucTve Lass

gem e Browse Sessions

PaB 0.3
ResTon 0.0
L Fouws 2,35

Candidate
session

®

. - = - man s

B Confirmed
. e R S - Candidate

4 >
T Explore Session
« ~ - g TS O

buildFromClassAddedEvent buildFromClassAddedEvent
| package | Individual
entity := ClassID new object. entity := ClassID new object. Changes

entity concreteEntity: event item. entity concreteEntity: event item.
+ package := self packageFor: entity. v

4 entit
/ Crarmrme (O

Figure 5.1: Session exploration and understanding process

5.4.2 Browsing Sessions with the Session Sparkline

The first step of our process requires us to view several sessions at a glance. We do so with
the help of an interactive visualization called the session sparkline. The session sparkline is

69 5.4 Incremental Session Understanding

l | } Method changes
Bonaml wie kbl d D win wiin Lol e v A

]]] (T] } Class changes

P Time

Figure 5.2: A session sparkline

influenced by Tufte’s concept of the same name [[Tuf06]]. A sparkline is a word-sized graphic
containing a high density of information. Figure is an example of a session represented as
a sparkline. The gray line in the middle of the figure is a time line. The default resolution of
the figure is one pixel per minute (the example is magnified for clarity). Above and below the
time line are bars representing the amount of changes occurring during a given interval (in our
case a minute). Above the line are method-related changes: The height of these bars varies with
the amount of change performed during the interval. Below the timeline are class-level changes.
The class bars’ height is constant as it is rare that two classes are changed in less than one
minute. The color of each bar reflects the kind of change happening during the interval. A bar
is orange if only modifications happened during that interval. It is red if at least one change is
an entity addition, blue if one is a removal (superseding red), and green in case of a refactoring
(superseding blue).

The session sparkline sums up the activity pattern of a session at a glance, allowing one
to immediately determine if a session has a lot of activity or not, and which kind of change
dominates it. Activity patterns can be used to determine phases of the session. Assessing the
length of a session is also immediate. Thus this representation ensures that each session has a
distinct shape, making it easily recognizable across other sessions.

5.4.3 Inspecting and Characterizing Sessions with The Session Inspector

The session inspector’s goal is to assist the interpretation of session sparklines in order to better
characterize sessions. When summoned on a session, the inspector displays the various metrics
we defined and their relative standing compared to the other sessions in the project. The inspec-
tor highlights the architectural, length, and activity characteristics that the session fulfills. It also
lists the key entities of the session, i.e., classes and methods that have been changed the most.

The interactive features of the session sparkline can be used during that interpretation phase:
Hovering over any time interval will display a summary of the changes that were performed
during that interval. The various phases of the session (separated by small periods of inactivity)
can be inspected more closely to determine if they affect different parts of the system.

5.4.4 Viewing Changes in Context with The Session Explorer

The session explorer (Figure support careful exploration of a session. It displays the exact
nature of changes performed at a given point in time in a session. It acts as a portal between
sessions and individual changes, as it is tightly integrated with the change reviewer, which assists
program understanding.

Changes of the same type and on the same entity types are displayed on the same line, as
squares. Change types are: modification, addition, removal and refactorings, while the entities
considered are classes, packages and methods. The same colors than the sparkline are used,

70 5.4 Incremental Session Understanding

but get darker as the size of the change increases, to reflect the change amount. Each of these
change figures has an identifier, so that changes applying to the same entities can be quickly
related. They can also display a tooltip summing up the change as text. If clicked, a change
reviewer is displayed for the given change.

Change type Change Entity type
26 July 2008
uy amount P
Ref P (unique) Packages
- 1
Refactorings Ref C o1) Classes
Ref M Methods
Add P Packages
- 1
Additions Add C I
w1) Classes
b1 2
Add M Wat @ Methods
Chg P Packages
Modifications Chg C U Classes
O+ (1)
Chg M S
9 b1 at b1 o b1 @) Methods
Rem P Packages
Removals Rem C Classes
Rem M Methods
11:12:05 0Oh17 11:39:43

Figure 5.3: Overview of the session explorer

5.4.5 Understanding Individual Changes with The Change Reviewer

The change reviewer eases the understanding of developer-level actions and the navigation be-
tween changes. The change reviewer displays a single developer-level action at once, using two
panels (see Figure[5.1] panel 4).

Understanding incremental changes is eased by emphasizing them in before/after views of
the entity. The view on the left shows the source code of the entity before the application of
the change. It emphasizes removals of statements (in a red and struck-out font). The right
view shows the source code of the entity after the change application. It emphasizes additions
(in a green font) and renames (orange font) of entities. Further, since Change-based Software
Evolution provides changes at the AST level, the changes are displayed at the level of AST
entities, not lines. If a variable is renamed, only the variable will be highlighted, not the entire
line, easing the localization of the change.

To ease navigation, the change reviewer offers shortcuts to related changes: The next/previ-
ous change to the same entity, the next/previous change in the session, and the next/previous
session in the history.

In the remainder of this chapter, we report on our results without referring directly to the
change reviewer in order to keep the discussion at a reasonably high level. Usage of the change
reviewer is implied.

71 5.5 Validation

5.5 Validation

We now discuss selected example sessions in details. For each session we show the session
sparkline, the primary characteristics, relevant metrics (with their value and their percentile in
the project), key entities, and a snapshot of the session browser.

5.5.1 Decoration Session (Project X)

Sparkline:

Characteristics:

Decoration, Blitz

Metrics:

SA - 1.63 (90%) — Session Activity

ACC - 7 (74%) — Average Changes per Class

ACM - 2 (90%) — Average Change per Method

MCM - 4 (67%) — Most Changed Method

Key entities:

Methods a (periodicalCallback:) and b (renderPeriodicalOn:)

15 October 2006

Ref P
Ref C 1

ot (n
Ref M 1

Add P
Add C

Add M 2

Chg P
ChgC

Chg M 10

. .
T (4)

Rem P

Rem C

Rem M

19:15:08 Oh08 19:23:44

Figure 5.4: Decoration Session

72 5.5 Validation

Analysis This short session (8 minutes) consists mainly of decoration, i.e., method modifica-
tions. It features towards the end a small amount of masonry and minor restoration (Figure[5.4).
Its interesting characteristics are its high activity (1.6 changes per minute) and the first part of
it where methods a and b are modified together several times (four times for a, three times for
b, raising the ACM metric to 2), evoking high logical coupling. A look at the source code reveals
that they are two HTML generation methods belonging to the same class. Methods ¢ and d,
and the methods e and f (created in the same minute, and bearing the same name, but on two
different classes), are also related to HTML generation.

Conclusions We see that the link between methods a and b is emphasized by the sequential
changes they were involved in. In the same fashion, the link between methods e and f is very
strong, as they were created in the same minute. On the other hand, the refactoring changes
were marked as such and could be reviewed faster. This is an example of session-based program
understanding highlighting and prioritizing relationships between entities.

73 5.5 Validation

5.5.2 Painting Session (Project X)

l-l il

Sparkline:

Characteristics:

Painting, Short

Metrics:

SA - 0.86 (63%) — Session Activity

ACC - 1.75 (11%) — Average Changes per Class
NIC - 12 (80%) — Number of Involved Classes
ACM -1 (17%) — Average Changes per Method
NAM - 18 (63%) — Number of Added Methods
Key entities:

Several implementors of filename

8 December 2006

Ref P
Ref C 3
o n: Q)
Ref M
Add P
Add C
Add M 18
I SRR P —p—— - " B (18)
Chg P
ChgC
Chg M 2
b c* (2)
Rem P
Rem C
Rem M 2
= @
09:11:01 0Ohz4 09:35:16

Figure 5.5: Painting Session

74 5.5 Validation

Analysis Figure shows a peculiar session since its beginning shows the quick addition of
methods to several classes. It is again quite short (25 minutes). The speed of the initial changes
suggests that the task is repetitive. A closer inspection shows that the methods a, to m (excluding
b and c¢) have the same name and are added to a hierarchy. They each return a constant, which
explains why they are developed in succession. This explains the high values of NIC, NAM and
the low values of ACC and ACM. These are characteristic of a crosscutting session. In that case
it is justified by the protocol extension.

Once this is done, the rhythm slows down, and some actual logic is added to the system. This
trend is started by method n, which specifies a test that needs to be fulfilled for the implemen-
tation to be correct. Later in the session, a strategy for file downloading is implemented relying
on two possibilities. It is closely related to the first part of the session since methods a, d to m
were referencing file names, used in methods b and ¢ to build URLs.

Conclusions Reviewing this session with our approach emphasizes crosscutting changes. In-
stead of being spread out on several entities, the sequencing information allowed us to review
the addition of methods to a class hierarchy (thus extending its protocol), in a sequential order.
The ease of navigation between previous and successive changes made the connection more
obvious. This is yet another example of session-based understanding highlighting relationships
between entities.

From then on, understanding the remaining subset of changes —those having actual logic—
was made simpler. The usage of the previously added protocol on the hierarchy was also obvious
to relate to the later changes. This is an example of session-based understanding naturally
dividing an implemented task into smaller, easily understandable subparts.

75 5.5 Validation
5.5.3 Masonry & Restoration Session (Project X)
Al vl
Sparkline: T
Characteristics:
Masonry, Restoration, Short
Metrics:
NR - 14 (79%) — Number of Refactorings
SA - 1.53 (89%) — Session Activity
TNC - 58 (76%) — Total Number of Changes
ACC - 7.25 (77%) — Average Changes per Class
NCC - 6 (97%) — Number of Class Changes
NAM - 19 (80%) — Number of Added Methods
Key entities:
The entire PRCommand class hierarchy
18 Movember 2006
Ref P
Ref C 11
=7
Ol O 02 [m:3 @5 o2 0Oz @7 (] (] (6)
Ref M 1
05 (n
Add P
Add C 1
°H] (1
#dd M iz s Z5
I &}) | 5] [¥ (25)
Wl WG l143. = W3S Egl =27 w5 Ev? B EETEA? EER WES
Chg P
ChgC g
02 03 o5 o5 H o ms ()
Chg M - 12
;\% .gg S v r7 Ed vi gg (8)
Rem P
Rem C
Rem M WS 4
m Bos 4
Z22:124:54 Ch37 23:02:40

Figure 5.6: Masonry & Painting Session

76 5.5 Validation

Analysis Figure shows an intense 37 minutes long masonry and painting session featuring
a lot of class-based development. This is reflected in the metrics, featuring a high value for both
ACC and NCC -which is unusual. One class is added —it is the focus of the session— while 8
class modifications happen during the first half of the session. Looking at the class modified and
referenced in the session, we found that it is included in a hierarchy of classes following the
Command design pattern [GHIV95]]. The developer is fast at implementing the new command,
which is actually a Composite Command, another design pattern. The methods added to this
class show the minimal protocol expected from a member of the command hierarchy: execute,
validate and initialize.

Afterwards, an extended protocol is added to other classes of the hierarchy with the methods
doAnswer and commitToCommands. This session is a good example to follow, should the system
need to be extended with a new kind of command by a less experienced developer. The charac-
teristics “Masonry, Short, Active” seem to be good indicators of potential examples implemented
by an experienced developer.

Conclusions Some characteristics of development sessions can be signs of a developer using
domain knowledge to implement design patterns. Using our approach, these can be found and
subsequently documented. A less knowledgeable programmer (new to the project or taking
over a part of the system he does not know well) can use that example as an indication of
what needs to be done when implementing a new instance of this domain-specific pattern. This
domain-specific knowledge is important: Gamma et al. mention that design patterns are gen-
eral solutions to problems, bound to be adapted to the specific requirements of every system
[GHJV95].

77 5.5 Validation

5.5.4 Architecture & Restoration Session (SpyWare)

Sparkline: i T T
Characteristics:

Architecture, Restoration, Long

Metrics:

NR - 8 (94%) — Number of Refactorings

TNC - 80 (88%) — Total Number of Changes

NAC - 5 (95%) — Number of Added Classes

NIC - 16 (95%) — Number of Involved Classes

NAM - 30 (93%) — Number of Added Methods

NTM - 35 (89%) — Number of Touched Methods

Key entities:

SWSession, SWQueryWrapper, SWChangeExplorer,
changeDescription, sessions, printAuthoredChange:

Analysis We finish with a longer session (see Figure from our own prototype, featuring
architectural changes and restoration activities. This long session lasts for 2 hours and 25 min-
utes. During its implementation, the model of SpyWare was extended to include session-level
changes, and a simple tool was implemented. This is reflected in the metrics, which show a
very high amount of new behavior (NAC, NAM), across a large number of classes (NIC). From
the sparkline we can divide the activity in 3 parts: F1 shows nearly no sign of activity, F2 is
constituted of two activity spikes stopping at around half of the session, then F3 finishes with
a more stable output. We see that refactorings are applied consistently during the session, and
that F2 has a higher ratio of additions in its first spike. We now describe each part of the session
in detail:

F1: F1 lays the ground work for the session by defining the ChangeExplorer class and
changing its sister class, ChangeExplorerTest. A period of perceived inactivity ensues, which
can be interpreted as either a design phase or a documentation phase. Since SpyWare was not
able at that time to record navigation information, knowing more about the exact activity is not
possible.

F2: The first spike adds a new element to the system: An interface centralizing queries to
the model and its sister test class. The last methods in the first spike is a stub method called
sessions, indicating the intention of using the session concept in the ChangeExplorer tool.
A short period of inactivity follows, quickly replaced by the second spike of F2. In it, two
classes are defined, the ChangeGroup and the Session class representing a session of changes.
Several class modifications are made as ChangeGroup becomes a superclass of several classes
in a large refactoring. Indeed, F2 has most of the refactoring activities in the session, with
some movements of functionality. Some methods are pushed up (restoration) and ChangeGroup
becomes an abstract class, with Session and Refactoring inheriting from it. Alongside this,
the sessions method is modified to exploit these new classes, as well as its test method.

F3: Once F2 finishes, the architectural phase of the session slows down. The implementation
of the actual tool is done in F3 mainly using Painting. In class SWSession, the method n5, called
changeDescription, is modified repeatedly. A closer analysis shows it returns a textual repre-
sentation of a change, used in the Explorer tool. The end of the session adds a new class (11),
called ChangePrinter and is then exclusively focused on it. ChangePrinter is in fact used in
method D, modified just before the introduction of ChangePrinter. Looking at the code we no-

78 5.5 Validation

tice that the class of method D is called AuthoredChange, and the method changeDescription.
Looking at the code of the last methods, we deduce that ChangePrinter is a printing class intro-
duced to handle the changes defined in AuthoredChange, using a double-dispatch mechanism
close to the visitor pattern.

To sum up this session, we can discern and describe 5 phases: (1) a design/information
gathering phase where development was slow, (2) the definition of the query interface and
the definition of sessions, (3) the architectural changes to the model to add sessions, (4) the
implementation of the ChangeExplorer, and (5) the implementation of a dedicated change
printing subclass. Such an incremental vision of the session’s history gives a clearer insight
on the process than just considering the final outcome: 6 classes were added, 4 others were
modified, 27 methods were added and 13 more were modified.

Conclusions This is another example of session-based program comprehension breaking down
the understanding of a complex change to a sequence of smaller tasks. The long session was
split in three parts, two of these being subsequently split again —showing the recursivity of the
process. Restricting the change amount to consider at any given point makes individual changes
easier to understand.

Attempting to understand a change of the same size without sequence information would be
much more difficult. One could think changes of this size are quite rare, but they are not. In
Table (page [18), 25% of the commits spawned several files, and 2% spanned five files or
more. This kind of activity happens frequently during active development of subsystems. It can
also be due to developers committing seldomly, or submitting only patches when they have not
access rights to a repository. In all these cases, incremental session understanding would be of
help to understand the changes performed.

5.5 Validation

79

Ref P
Ref C

Ref M

Add P
Add C

Add M

Chg P
Chg C

Chg M

Rem P
Rem C
Rem M

20:53:20

16 October 2006

I spike1 | | spike 2
|t m m3 @3 o? os
W5
Bh10
| 4 [& - 5 mé
W | %)
L 1) I e el 4 W4 m5 | %)
o5 08
ot o3 07 06 O?
c3 m5
ed m» c315
a* | 1Y 4 M3 15 | %] in5
F1 5 F
* F2
2h25
10
5 mt m WE11 (8)
2
(2)
7
[1] mt 7)
27
B vz " (27
g 5 t1 | 5] W2 Wy =9 WA B IC E11 WG11 mH11
9
o5 o2 ()
33
ns s x* Gi1 ANOU
| 1Y in3 n3 x* x* I* t1 u2 w2 B D WE11 F* Gi1 WH11
2
| F3 |l
3:18:44

Figure 5.7: Session F: Architecture and Restoration

80 5.6 Discussion

5.6 Discussion

Related Work

Related work in session-based program comprehension is non-existent, because no other ap-
proach records the data needed —or is able to recover it— with enough accuracy.

SCM system store only snapshot of the system, at intervals whose frequency is dictated by
the developer. They thus contain only the outcome of a given task: All the incremental and
sequence information is lost, which has the effect of blurring the relationships between entities,
and forcing the programmer to understand the entire change at once.

On the other hand, approaches based on IDE monitoring keep the sequence information, but
have a too shallow change representation to allow actual program representation. Their change
representation is —at best- limited to knowing when an entity changed, but not how. Examples
are Mylyn, by Kersten et al. [KMO6], and work by Zou et al. [ZGHO7]]. Other IDE monitoring
approaches store only navigation information, and totally bypass change information, such as
NavTracks by Singer et al. [SES05]], and work by Parnin et al. [PGO6]].

Parnin advocated merging both SCM and IDE monitoring [[PGO6]], but combining the ap-
proaches would still lose the incrementality of the changes. To our knowledge, such an approach
has not been implemented yet.

Smalltalk Change Lists

The closest data source to ours is the one found in Smalltalk change files, based on the same
IDE notification mechanism our approach uses. Modification to classes and methods are stored
in a text file for the primary usage of change recovery when the environment crashes. As a
consequence, the tool support is limited to a simple chronological list of changes. Only versions
are stored, and the changes themselves are not recovered: Displaying the differences between
two versions is done on a line-by-line basis, which is harder to read than a syntax-aware differ-
encing. Changes are also condensed in a single view, rather than two before and after views. To
our knowledge, nobody used this data to perform program comprehension.

Dealing With Errors

One argument against incremental session understanding is that the recorded changes may con-
tain errors that would have been corrected later on in the session, and would hence not appear
in the SCM repository.

A possible way to deal with this issue is to mark certain entities as transient. A transient
entity is a program element which is created and deleted in the same session. This is easy to
determine with Change-based Software Evolution, since the change history of the entity will be
entirely contained in one session.

Another area of future work is to locate actual bug fixes in the change history. Girba uses the
assumption that a method which is only changed between two version of the system has had a
bug fixed [|Gir05]]. We hope Change-based Software Evolution will allow us to characterize bug
fixes with other activity patterns, the primary one being Blitz Decoration sessions.

Phases of Sessions

Some of the sessions we reviewed had several phases that we identified visually. An automated
approach to split a session in phases, or on the other hand, to link related sessions, would greatly
assist incremental understanding.

81 5.7 Summary

Additional Information

Some additional information would help in understanding session. Recent versions of SpyWare
record more than only changes: They also record navigation information (which method is
viewed when), execution of code (and when an error occurs), and usage of the versioning
system. Navigation information would give more context for understanding the changes, while
code execution and errors would tell us whether a session is dealing with bug fixes or not. Finally,
usage of the versioning system would tell us if our assumption that one session is equivalent to
a commit is accurate.

Generalizability

We analyzed the development sessions across two projects, totaling more than 600 sessions. We
can not however account for each type of project. In particular, the style of each developer vary
greatly. This is why, for instance, we used relative thresholds for most of our metrics, so that
sessions would be compared only with other sessions originating from the same project. Further
studies are needed to set the thresholds to more empirical values.

For incremental understanding, we demonstrated its feasibility on several cases. More studies
are of course needed, but the principles of incrementality were verified: In each case, reviewing
the changes in sequence proved to assist program comprehension.

5.7 Summary

Program comprehension is a difficult task as it is unclear which path one needs to follow in order
to understand a static piece of code. By recording the exact sequence of changes that took place
when a given feature was implemented, Change-based Software Evolution conserves the logical
path which the programmer took when building it. Following these so-called “programmer’s
footsteps” while understanding a given piece of code is easier because of the following reasons:

* Related entities are changed together, even if no obvious link in the code exists. Examples
of this are polymorphic methods (the method which ends up being called depends on the
run-time type of the object, but the programmer knows which object is the most relevant
to the task at hand), as in the last session we surveyed, or method communicating by
means of side effects. The maintainer spends less effort querying the system to find the
next entity to understand: He or she can focus on the actual understanding of the code.

* Changes are contextualized: It is easy to recognize that a change was performed in a refac-
toring, as evidenced in all the sessions we surveyed. Knowing this information allowed us
to skim over these particular changes in order to focus on the changes which were not
part of refactorings. A further context that eases understanding is obtained by the session
characterization we introduced, which classifies sessions by their type, length and a variety
of other metrics measuring various aspects of the session, such as the change amount and
how crosscutting it was.

* Incremental understanding is supported. Instead of being confronted only the finished
piece of code, the user can first review its initial versions, in which the general intent
might not be hidden behind special cases that are bound to appear as time goes by. When
the time comes to understand these changes, the newer changes defining a particular
special case can be reviewed in priority. Our syntax-aware change viewer ensures that
these changes are properly emphasized.

82 5.7 Summary

* Some repetitive patterns can be looked for and reused as examples. The third session
we reviewed contained such a pattern as the developer reused his previous knowledge to
efficiently implement a new feature according to the Command design pattern, adapted to
its particular domain.

The characterization and the process we defined ease session-based program understanding
as they support the navigation in and between sessions, augment the context by highlighting
traits or characteristics relevant to the session, and ease the understanding of individual changes
as we provide change-aware syntax highlighting of source code.

The information needed for incremental program understanding is only available through
Change-based Software Evolution. Versioning system archives do not store the incremental
process one took to build a given piece of code, only its final outcome. On the other hand,
lightweight IDE monitoring tools store a change representation which is too shallow to recon-
struct the actual incremental steps, if they store one at all.

We validated the effectiveness of session-based program characterization and understanding
on four distinct examples, and from this conclude that program comprehension is significantly
helped by Change-based Software Evolution. Change-based Software Evolution allows one to
comprehend changes in an incremental fashion. The process and characterization we defined
enables it at several levels, from high-level sessions to low-level individual changes, and to
transition between levels fluidly.

Chapter 6

Measuring Evolution: The Case of
Logical Coupling

Metrics are ubiquitous in software engineering, and especially in software evolution
as a way to summarize large amounts of data. It is thus natural to evaluate how
our Change-based Software Evolution can assist the definition, accuracy and usage
of metrics.

How much are entities related to each other? Several metrics exist to answer
this question. Logical coupling measures how often entities change together, and
is a good measure to extract non-obvious relationships between entities: Entities
might change together even if they do not reference each other or do so by indirect
means.

Logical coupling has been traditionally computed based on transactions in a
versioning systems, giving equal weight to all the entities modified in the same
development session. With a more detailed change history, where the actual de-
velopment sessions are recorded, we can recover relationships with more precision
since a different weight can be given to entities changed in the same session.

83

84 6.1 Introduction

6.1 Introduction

A significant portion of the reverse engineering field is dedicated to metrics and measurements.
In Chapter[3] we have seen how Change-based Software Evolution can define system and change
metrics. In Chapter [4] we used a fine-grained metric, the average size of methods in statements.
Change-based Software Evolution eases these measurements since its system representation is
very fine-grained. An approach based on an SCM system would first need to parse the entire
system before providing this kind of metric. In Chapter|[5] we used change metrics, most of them
specific to our approach, to help us characterize sessions.

In this chapter, we continue this evaluation of Change-based Software Evolution for measure-
ments. We evaluate how much the accurate system and evolutionary representation provided by
Change-based Software Evolution improves the definition and the accuracy of metrics. We use
the example of one of the most useful evolutionary software measurement, logical coupling.

Coupling was first used —alongside cohesion— as an indicator of good design by Parnas
[Par72]. Parnas advocates that components in a software system should have a high cohesion
and a low coupling to other components. If two components are highly coupled, chances are
that changing one requires changing the other. Briand et al., among others, correlated coupling
between components with ripple effects [BWL99].

Coupling transitioned from being an indicator to an actual measurement, for which several
metrics exist. Briand et al. gathered and formalized the variations between metrics in a com-
prehensive framework [BDW99]. A drawback of these metrics is that they require an accurate
system representation, usually including calls between components and accesses to variables.
Over the years, several alternative measures of coupling have been proposed, such as logical
coupling [GHJ98]], dynamic coupling [JABF04], or conceptual coupling [PMO6].

Logical coupling is an evolutionary metric based on the change history of entities. The ratio-
nale behind logical coupling is that “entities which have changed together in the past are bound
to change together in the future”. Logical coupling is computed from the versions of the system
archived in a SCM such as CVS or Subversion [[GJKO3]] (From now on, we refer to this measure
of logical coupling as SCM logical coupling).

However, SCM logical coupling suffers from the inaccuracies of SCM systems. In this chapter,
we investigate how much logical coupling can be improved by taking into account finer-grained
change information. We compare SCM logical coupling against alternative logical coupling mea-
surements in a prediction benchmark on two case studies with a large history.

Contributions. The contributions of this chapter are:

* Several novel measures of logical coupling using fine-grained change data. These mea-
sures take into account the amount of changes and the precise date when the changes
were performed.

* A comparative evaluation of the new measures with SCM logical coupling, using the
change history of two case studies, and assessing how well these measures can estimate
logical coupling with less data.

Structure of the chapter. Section explains the shortcomings of SCM logical coupling, de-
scribes its usages and the approaches that address its shortcomings. Section details our
evaluation procedure to measure the accuracy of the logical coupling measures. Section
describes the various alternatives to logical coupling we defined and report on their accuracy.
Finally, Section [6.5]discusses the approach, while Section [6.6] concludes.

85 6.2 Logical Coupling

6.2 Logical Coupling

In this section, we first recall how logical coupling has been used for various activities, then
explain the shortcoming of the current measure of logical coupling, before describing alternative
measures in the literature.

6.2.1 Usages of Logical Coupling

Logical coupling is primarily used in reverse engineering as a means to detect dependencies
between components. There are two reasons for this: (1) SCM logical coupling is cheaper to
compute than a traditional coupling measurement such as the calls between components —as
logical coupling does not involve parsing the entire system, but only the transaction logs— and
(2) logical coupling can uncover implicit dependencies. Examples of implicit dependencies are
indirect calls between classes, use of the reflective facilities in some languages, or code that
communicates through side-effects. In all of these cases, a change to one of the classes requires
the other class to be changed as well; this change is recorded in the versioning system, while it
is not easily captured by program analysis.

Gall et al. first introduced the concept of logical coupling [GHJ98] to analyse the dependen-
cies in 20 releases of a telecommunications switching system. The concept was soon adopted by
other researchers in the context of reverse engineering and program comprehension. Biem et al.
defined visualizations to recognize change proneness, and defined an aggregated measure of all
the change coupling relationships of a class [BAY03]]. Pinzger used logical coupling as part of
his Archview methodology [[Pin05]] for architecture reconstruction. D’Ambros visualized logical
coupling with an interactive visualization called the Evolution Radar [DL06a].

Logical coupling has also been used for change prediction. Zimmermann et al. [ZWDZ04]
presented an approach based on data mining in which co-change patterns between entities are
used to suggest relevant changes in the IDE, when one entity in the relationship is changed
by the programmer. Ying et al., and Sayyad-Shirabad et al. employed a similar approaches
[YMNCCO04; [SLMO03]], although at a coarser granularity level. These approaches suggests files,
while Zimmermann’s employs lightweight parsing to recommend finer-grained entities.

6.2.2 Shortcomings of SCM Logical Coupling

Computing logical coupling based on an SCM system is restricted by the two shortcomings of
SCM we identified in Chapter [2] information loss and coarseness. Figure shows a hypotheti-
cal development sessions explaining these shortcomings.

G ' G
A [%%%—%—8%— — — ——— | |
=] =
B {2 %333 =
(&)
(O K * * * g -----
< &)
O t
D - *— |- >

Figure 6.1: A development session involving four entities

86 6.3 SCM Logical Coupling Prediction

SCM Logical coupling suffers from information loss. In the figure, entities A, B, C and D, are
modified during a single development session. The figure shows a timeline for each entity, with
a mark every time the entity was changed during the session. It is obvious that entities A and B
have a very strong relationship, while entities C and D have a moderate relationship. In addition,
the relationships AC, BC, AD or BD, are weak at best. However, based only on the information
recovered from the version repository, an SCM-based logical coupling algorithm will give equal
values to each relationship. This means that a large amount of data is needed before the measure
can be accurate. The threshold commonly used to establish a strong logical coupling between
entities is 5 co-change occurrences [[GJKO3]]. Zimmermann et al. found that change prediction
works much better for projects with a large history, in “maintenance mode”, such as Gcc, rather
than in active development [ZWDZ04].

In addition, SCM systems are file-based. Without additional preprocessing like the one em-
ployed by Zimmermann et al., the relationships will be computed only at the file level. Knowing
the relationships at a finer level, such as methods, is useful in a reverse engineering context.
There is a difference between a coupling involving most of the methods in two classes, and one
involving only a handful of them: The second one is much more tractable.

6.2.3 Alternatives to SCM Logical Coupling

Given the shortcomings of Logical Coupling, two alternative measurements have been proposed
to improve its accuracy.

Zou, Godfrey and Hassan introduced Interaction Coupling [[ZGHO7] to address information
loss. Interaction coupling is based on IDE monitoring, like our approach, and records two types
of events during development sessions: Navigation events and edition events. These events are
counted at the file level, and the number of context switches between two files is the measure of
interaction coupling. The measures are also classified in three categories: co-change (the two
files changed at least once together), change-view (one of the files changed, while the other was
consulted) and co-view (the two files were viewed together). Only the sequence of events is
taken into account, not their date or their contents.

Fluri et al. developed an approach to identify and classify changes between versions, beyond
file-level changes [[FGO6]]. Each type of change has a significance ranging from low to crucial.
Taking into account the significance of changes when computing change coupling gives a differ-
ent measure of it. The comparison with logical coupling was performed on a case-by-case basis.
Moreover, Fluri’s approach still relies on standard versioning systems.

Change-based Software Evolution shares some of the advantages of Fluri’s approach. In par-
ticular, our AST-based changes automatically filter out layout changes, or changes to comments.
We can also filter out changes performed by refactoring tools (which are behavior preserving),
as we monitor the tools themselves.

6.3 SCM Logical Coupling Prediction

Since we define alternative measurements to logical coupling, we need a way to evaluate them.
The criteria we chose is the approximation by alternative metrics of future SCM Logical Coupling
with a shorter history. This section explains our evaluation strategy.

87 6.3 SCM Logical Coupling Prediction

6.3.1 Motivation

The amount of data needed by logical coupling is one of the reasons logical coupling is used
more for retrospective analysis, rather than forward engineering. In plain words, if there is not
enough data, the measure is useless. For instance, Zou et al. mention in their study that SCM
logical coupling was unable to find any coupling relationship from a one-month period of data
[ZGHO7]]. On the other hand, the coupling they defined did work on shorter periods than the
classic logical coupling. Their comparative evaluation of the two metrics was however anecdotal.
Since we have recorded a larger amount of data, we can compare more formally the accuracy of
the coupling measures, by employing a predictive approach.

6.3.2 Procedure

We first need to gather the predictions of the approaches, and the actual events they predict.

To gather the set of actual strong relationships in the system, we measure the SCM logical
coupling in the entire system. We then select the relationships which have a logical coupling
beyond the threshold value used by Gall et al. [GHJ98]], which is 5. This constitutes the expected
set of strongly coupled entities E.

For each logical coupling measure m we measure the coupling of each relationships for each
session. This coupling is between 0 and 1. If a relationship’s coupling is above a certain threshold
tr, we put the relationship in a candidate set Cm,,. The relationships where an entity has
changed less than 5 times overall are filtered out, since we can not verify the prediction for
these. To be extensive, we tried threshold values between 0.01 and 0.99, with a 0.01 increment.

To evaluate the impact of adding data, we repeat this procedure for two or three sessions,
i.e.,, the threshold for a relationship has to be crossed in two (respectively three) sessions in the
history to add an entity in the candidate set.

6.3.3 Evaluation

We evaluate the accuracy of the measures by comparing the candidate sets with the expected
set in terms of precision and recall. We define the precision P and recall R for a candidate set C,
with respect to the expected set E, as:

__|EnC] R_lEmC|
ol I

Precision and recall come from information retrieval and give an idea of the accuracy of a pre-
diction [VR79]. The recall expresses the number of false negatives given by the measure: It
is the proportion of expected entities that were predicted. If all the expected entities are pre-
dicted, the recall is 1. The precision evaluates the number of false positives in the prediction: It
is the proportion of predicted entities that were wrong. If only entities in the expected set are
predicted, the precision is 1.

Intuitively, using two or three sessions instead of one should decrease recall and increase
precision. Increasing the threshold also increases the precision and decreases the recall. The
relationship is however not linear.

88 6.4 Logical Coupling Measurements and Results

To more formally elect the best thresholds and the best coupling measures, we combine
precision and recall into the F-measure, defined as their weighted harmonic mean:

v _(1+p*)-P-R
P= B PR

Common variations from 8 = 1 give a stronger weight to precision (f = 0.5), or to recall

B=2).

6.3.4 Result Format

For each measurement, we present its accuracy in our prediction benchmark with two preci-
sion/recall scatterplots, one for each case study. Each point represents a threshold value (be-
tween 0.01 and 0.99), its x-coordinate being the recall of the measurement for the threshold,
and its y-coordinate being the precision. Both vary between 0 and 1.

We also provide a table with the best possible f-measures for each case study, taking into
account each parameter: The number of sessions, and the weight to give to F.

6.3.5 Data Corpus

We compared the coupling measures over the change histories of our two projects with the most
coupled relationships according to our previous definition.

The first of those is SpyWare. For this study we selected the first three years of development
of SpyWare, representing 500 sessions of development for a total of 500 class relationships
marked as highly coupled.

The second project is Software Animator, a system written in Java over 134 sessions and a
period of three months, obtained via the Eclipse version of our plugin. It features around 250
class relationships considered as highly coupled.

6.4 Logical Coupling Measurements and Results

In this section, we present the coupling measurements we defined or reproduced. For each
measure, we note which aspect of the evolution the measure emphasizes, explain its intuitive
meaning, give the actual formula we use to compute it, and the accuracy results we found.

For any program entity a and session s, we note 6, for any change concerning a or the
children of a (changes to a method also concern its class) and s, = {6, € s}. We compute the
coupling a «~» b between two entities by aggregating a per-session coupling measure over a set

. S
of sessions. The various coupling measures each define their own «.

89 6.4 Logical Coupling Measurements and Results

6.4.1 SCM Logical Coupling

Emphasizes Occurrence of co-change of two entities during the same sessions.

Intuition This logical coupling measurement is the one introduced by Gall et al. Two entities
are related if they change during the same session. A threshold of five co-change occurrences is
often used to qualify entity as logically coupled.

Definition

aesb

tc , df |1 ifaand b changed during s;
~ |0 otherwise.

Results Table [6.1] presents the F-measures of SCM Logical Coupling. This measurement serves
as the baseline for our further measurements. Since this is the measure we try to predict, it
will make every recommendation that will eventually reach 5 co-change occurrences. Hence,
its recall is always 1. However, its precision is very low, yielding very low values of F for one
and two sessions. Of course, the more sessions are taken into account, the more accurate the
measure becomes.

SpyWare Sw Animator
1 Session 2 Sessions 3 Sessions | 1 Session 2 Sessions 3 Sessions
Fos 3.9 6.1 14.1 3.4 5.4 12.5
F 13.5 20.0 384 14.7 21.6 40.8
F, 28.1 38.5 61.0 28.6 39.1 61.6

Table 6.1: Best F-measures for SCM Logical Coupling

90 6.4 Logical Coupling Measurements and Results

6.4.2 Change-based Coupling

Emphasizes How much an entity changed during a development session.

Intuition Entities that change many times during a session are more coupled than those which
only change occasionally. This is similar to the LC measure except the number of changes for
each entity is factored into the measure.

Definition

1/lsq%sp|
d
assb E (]_[|sa|-|sb|)

SaXSp

Results Figure is the precision-recall graph on the two case studies. F-measures are shown
in Table[6.2] This measure is a significant improvement over the baseline, especially when only
one or two sessions of information are taken into account. This measure performs best with
medium (for higher precision, or with less sessions) to low (for better recall, or with more
sessions) thresholds.

N -
: *
A .
% . L
1 . "
'\ : \..,_
| * i
. T,
L} i
1 : .
., ' ’
\ : by)
t. t .
- &
‘ll l
g ’
[‘
(a) SpyWare (b) Software Animator

Figure 6.2: Graphs of Precision (X axis) and Recall (Y axis) of Change Coupling:
1 session (red), 2 sessions (green), 3 sessions (blue)

SpyWare Sw Animator
1 Session 2 Sessions 3 Sessions | 1 Session 2 Sessions 3 Sessions
Fos 22.5 28.1 39.7 36.2 41.4 49.6
F 44.0 47.0 61.0 61.5 57.7 68.0
Fy 56.6 59.2 72.2 69.6 68.3 76.3

Table 6.2: Best F-measures for Change Coupling

91 6.4 Logical Coupling Measurements and Results

6.4.3

Emphasizes

Interaction Coupling

Interleaving of sequential changes.

Intuition This measure is related to the one introduced by Zou et al., although we consider only
the code changes and ignore the navigation events. Each time an entity changes, it becomes the
entity in focus. The coupling between A and B is equal to the number of times the focus switched
from A to B or from B to A. The original version of the measure is then rounded between zero
and one, based on whether the number of context switches is below or above the historical
average. To keep the accuracy of the measure, we do not round it.

Definition
IC def . .
ae»b = |s; xsp| with 6, and §, successive

Results Figure is the precision-recall graph on the two case studies. F-measures are shown
in Table If all measures improved the accuracy of Logical Coupling by comparable amounts,
this measure is the best performing. When this measure is not rounded, it has better results,
albeit by a low margin. As for the Change Coupling, medium to low thresholds work best.

-, "es 0 - LR
L]
- LY
[. .
- N
. t
% 11 []
: . . “w
i t .
L8 ..l *
H -
2
- 7
' ‘e -.'..
¢ .
(a) SpyWare (b) Software Animator
Figure 6.3: Graphs of Precision (X axis) and Recall (Y axis) of Interaction Coupling:

1 session (red), 2 sessions (green), 3 sessions (blue)

SpyWare Sw Animator
1 Session 2 Sessions 3 Sessions | 1 Session 2 Sessions 3 Sessions
Fys 22.0 28.8 42.2 36.0 40.9 54.4
F 43.3 49.0 60.1 56.5 55.0 67.7
F, 58.1 63.9 77.4 72.1 68.8 79.1

Table 6.3: Best F-measures for Interaction Coupling

92 6.4 Logical Coupling Measurements and Results

6.4.4 Time-based Coupling
Emphasizes Proximity in time of changes in a session.
Intuition If two entities changed simultaneously, their relationship is stronger than if one

changed at the beginning of the session and the other at the end. The coupling linearly de-

creases with the average delay between changes, from 1 if all changes happened simultaneously
to O if it is one hour or more.

Definition

c, d 1
aeTw»b) max | 0, 1—
|Saxsb|

> |At<6a,6b>|)

Sq XSp

Results Figure is the precision-recall graph on the two case studies. F-measures are shown
in Table Unlike the previous two measurements, Time Coupling works best with high to
medium thresholds. It performs slightly worse than other measures for low number of sessions,
but performs closer for a higher number of sessions.

\ N - \
. \\ '
: % '
: \ : L
E ., i i
['__ \ |'
~ H B
. : P
. -,
e . ':
H
" M
Yom. o

(a) SpyWare (b) Software Animator

Figure 6.4: Graphs of Precision (X axis) and Recall (Y axis) of Time Coupling:
1 session (red), 2 sessions (green), 3 sessions (blue)

SpyWare Sw Animator
1 Session 2 Sessions 3 Sessions | 1 Session 2 Sessions 3 Sessions
Fys 22.8 27.8 38.8 18.7 20.4 30.0
F 48.8 47.5 61.0 37.7 45.4 61.1
F, 66.4 61.0 74.8 57.0 61.9 70.8

Table 6.4: Best F-measures for Time Coupling

93 6.4 Logical Coupling Measurements and Results

6.4.5 Close Time-based Coupling

Emphasizes Close proximity in time of changes in a session.

Intuition If two entities are usually changed close together, but one experiences changes much
later in the session, their relationship will decrease. To counter this, this coupling averages only
the five lowest time intervals.

Definition The definition is identical to the Time Coupling, however only the five lowest time
intervals are kept.

Results Figure is the precision-recall graph on the two case studies. F-measures are shown
in Table [6.5] This measurement performs better than the regular Time Coupling, but needs
very high thresholds. This is to be expected, since it averages the smallest time intervals, hence
providing higher values on average.

3 E ‘\“-.
[. {
\N
~I
(a) SpyWare (b) Software Animator

Figure 6.5: Graphs of Precision (X axis) and Recall (Y axis) of Close Time Coupling:
1 session (red), 2 sessions (green), 3 sessions (blue)

SpyWare Sw Animator
1 Session 2 Sessions 3 Sessions | 1 Session 2 Sessions 3 Sessions
Fys 21.6 28.1 41.3 22.0 29.0 42.4
F 41.5 46.8 62.2 51.4 54.6 67.6
F, 59.3 61.3 74.6 58.9 62.6 74.5

Table 6.5: Best F-measures for Close Time Coupling

94 6.4 Logical Coupling Measurements and Results

6.4.6 Combined Coupling

Emphasizes All the previous characteristics.

Intuition All the coupling definitions we described yielded an improvement over the default
definition. By combining the three measurements, we may have an even better measure.

Definition Average of the normalized values of the Change Coupling, the Time Coupling, and
the Interaction Coupling. Time Coupling was selected over Close Time Coupling since the opti-
mal thresholds are closer to the ones of the two other measures.

Results Figure is the precision-recall graph on the two case studies. F-measures are shown
in Table If there was no clear winner in the previous measurements —save the Interaction
Coupling by a small margin— combining the measures yields a significant improvement. This
improvement is best in the most important case, for one or two sessions. The F-measure for one
session is actually comparable with the one of the other approaches, but for two sessions. The
same is valid for two versus three sessions. For three sessions, its accuracy is in range with the
other measurements.

q\ -------...hh.h -‘.“_‘-\.:.- ..
.:‘l 3 -
'
“» '-
N :
H ':
5 P
E .
A N
LI)
r
LY . L F]
“ - Yy
- l
(a) SpyWare (b) Software Animator
Figure 6.6: Graphs of Precision (X axis) and Recall (Y axis) of Combined Coupling:

1 session (red), 2 sessions (green), 3 sessions (blue)

SpyWare Sw Animator
1 Session 2 Sessions 3 Sessions | 1 Session 2 Sessions 3 Sessions
Fys 41.5 39.9 55.1 50.7 53.9 68.9
F 49.9 55.3 69.0 63.8 64.0 72.7
F, 62.7 64.1 77.9 70.3 70.2 78.2

Table 6.6: Best F-measures for Combined Coupling

95 6.5 Discussion

6.4.7 Discussion of the Results

The measures perform comparably on both case studies, except for the general tendency to per-
form slightly better on our second case study. We are not sure of the cause of this behavior.
Possible reasons could be differences in style of programming, designs of the system, or pro-
gramming language used (one was built in Smalltalk, the other in Java). Increasing the data
used in the benchmark would help us see the overall trend better.

However, all measures performed more or less comparably across the two case studies, and
most of all, performed significantly better than SCM Logical Coupling with a lesser, but more
detailed, history. This gives us confidence that our alternative measures of logical coupling can
be used faster than the previous one.

Finally, combining the metrics works surprisingly well, especially in the cases where the
history is the most limited, with only one or two sessions in which a co-change event happened.
We think that there is still room for improvement, since our definition of the Combined Coupling
is a simple average. One possible way to improve this would be to give different weights to the
metrics, or change the way the average is computed to give more weight to high metric values.

6.5 Discussion

Recording

In the absence of explicit commits, SpyWare automatically starts a new session whenever there
is a gap of one hour or more between changes. We make the assumption that the session
boundaries is where commits would occur.

Precision

When more accurate information is taken into account, the logical coupling is more stable,
and can thus be used earlier on to make predictions. SCM logical coupling is often used for
retrospective analyses when the history is considerable. We provided initial evidence that more
detailed measures provide useful results earlier.

Generalizability

Our experiment was carried on a small sample (500 and 250 strong coupling relationships).
We can not generalize it to other systems. However, the measures performed comparably on
both case studies. Further, all of them performed, in both cases, with a significant improvement
over the default measure of logical coupling. Once we gather more case studies, we intend to
replicate the experiment. In the meantime, the size of the improvement makes us confident that
our results will be verified.

Replication of Fluri’s Approach

We did not attempt to replicate the coupling measured by Fluri et al. [[FG06] for the following
reasons: (1) Some of the changes in Fluri’s taxonomy are Java specific, and could not be trans-
lated to Smalltalk, and (2) the measure of change coupling integrating significance was specified
informally.

96 6.6 Summary

Replication of Zou’s Approach

On the other hand, we partially replicated the interaction coupling of Zou et al.. One limitation
is that we consider only the change events, not the navigation events, since our prototype did
not record them over the whole period. One improvement over the original approach is that
we do not round the measure at the end of each session. The original metric return a binary
metric for each development session, depending on whether the number of context switches was
greater than the average. Instead, we return a more precise value between 0 and 1. We then use
this value in combination with a threshold to evaluate its accuracy.

Method-level Coupling

We also performed a preliminary classification of the coupling relationships between classes
based on how the methods in the classes were related. We can detect if a coupling is caused by
a large number of methods (which is less manageable), and whether these methods call each
other directly or not (which makes the coupling harder to detect). However these results are not
mature enough to be discussed further.

6.6 Summary

In this chapter, we evaluated how Change-based Software Evolution can improve the accuracy
and the level of detail taken into account in software measurements. CBSE maintains at all time
an accurate, AST based representation of evolving systems, down to individual statements and
the entities (classes, methods, variables) they represent. This ensures that measures computed
on top of data provided by Change-based Software Evolution are accurate since the finest level
of detail can be used if necessary.

In addition, CBSE closely monitors the evolution of systems by recording, instead of recov-
ering changes. This considerably increases the accuracy of evolutionary metrics, as well as the
accuracy with which we can follow the evolution of more static metrics.

We demonstrated the improvements provided by these two aspects on logical coupling. While
a coarse measurement of logical coupling yields boolean values at the file level, measurements
defined on Change-based Software Evolution data yields values in a range (from zero to one),
on finer-grained entities such as classes and methods.

The consequence of these improvements is that less evolutionary data is needed for the mea-
surements to be reliable. Where logical coupling was used primarily for retrospective analyses
—as a long system history was needed—, our measurements can be used sooner and hence support
active development. We verified this by defining a prediction benchmark and concluded that 1 or
2 occurrences of co-change could quite accurately predict whether future co-change occurrences
would take place. Several metrics were shown to have good predictive powers, around 50% in
both precision and recall with only two sessions of data instead of 5. In addition, combining
metrics increased the accuracy further.

This shows that the fine-grained data provided by Change-based Software Evolution is still
useful when summarized at a very high-level by measurements, as these are more accurate than
measurements based on coarser data.

Part Il

How First-Class Changes Support
Software Evolution

97

Executive Summary

This part of the dissertation shows how, beyond understanding systems, Change-
based Software Evolution can assist programmers to actually perform new changes.
We show that:

CBSE helps to automatize repetitive changes. In Chapter (7] we show how we
extended CBSE with program transformations behaving as change generators. This
has two advantages. The first is that the transformations are fully integrated in the
system’s evolution, and can be further used for program comprehension, or to ease
the transformation’s evolution. The second is that concrete recorded changes can be
refined into generic transformations, providing a concrete bases for transformation
definition.

CBSE improves recommender systems. In Chapter |8, we show how CBSE
can be used to define a benchmark for code completion. In Chapter [9) we show
how CBSE improves on the existing, SCM-based benchmarks for change prediction.
In both cases, CBSE-based benchmarks allow to reliably and repeatedly evaluate
several variations of recommender algorithms. In both cases, the best performing
algorithms use fine-grained change data to make their predictions.

This shows that recording fine-grained history has a lot of diverse usages beyond
the obvious uses in reverse engineering. We expect more of these usages to be defined
in the future.

Chapter 7

Program Transformation and
Evolution

When a system needs repetitive changes, programmers are faced with a choice: Ei-
ther perform the change manually, running the risk of introducing errors in the
process, or use a program transformation language to automate the task. We
tackle three problems related to program transformations, and their integration
in Change-based Software Evolution.

* We first extend our change metamodel to support parametrized program trans-
formations in a natural fashion.

* Second, we propose an example-based program transformation approach: In-
stead of using a transformation language, recent changes to the system are
used as concrete examples which are generalized to define program transfor-
mations.

* Finally, we show how program transformations can be integrated in the over-
all evolution of a system, and the possibilities this enables.

101

102 7.1 Introduction

7.1 Introduction

Program transformations automatize repetitive changes that would be error-prone if performed
manually. Program transformations are ubiquitous: They span a broad spectrum from compilers
transforming high-level programs to machine code, up to refactorings, available in every IDE. It
seems natural to investigate how well Change-based Software Evolution can support and interact
with program transformations. We decompose the interplay between Change-based Software
Evolution and program transformations in three problems:

Transformation support: How can Change-based Software Evolution be extended to define
generic program transformations, and to which degree extending our model to support
program transformations is natural.

Transformation definition: How can recorded manual changes be used to ease the definition
of program transformations, by making more explicit the process through which transfor-
mations are created from concrete examples.

Transformation integration and evolution: How can program transformations be integrated
in our vision of an accurate description of a program’s evolution, and what are the conse-
quences of this integration.

Each of these problems is related to a different aspect of Change-based Software Evolution.

The first problem is spawned by the fact that the changes we defined are already program
transformations, albeit basic ones. In Chapter [3] we specified that each change is executable and
affects an AST. Changes are in essence constant transformations. We want to see how far our
model can be extended to support parameterized program transformations without degrading
it.

The second problem stems from our previous observations that recording changes gives us
considerably more information than is available in an SCM system. We want to investigate
to which extent the structure and the order of recorded changes is useful to express program
transformations. We call this approach example-based program transformation.

Finally, the last problem is related to our desire to model evolution with accuracy. We already
model and record a subset of program transformations, namely refactorings. We used these for
reverse engineering and program comprehension purposes in Chapter |5} In the same fashion,
we investigate how we can document when and where a program transformation was applied to
the system. In addition, we explain how documenting transformation applications could assist
in transformation maintenance, automation and evolution.

Contributions. The contributions of this chapter are:

* An extension to our change metamodel to define parametrized program transformations,
which views program transformations as change generators.

* An example-based program transformation approach to assist the definition of program
transformations. It is based on (1) the recording of a sequence of changes to provide the
initial transformation structure to be worked on, (2) a direct interaction with this structure
to refine and generalize it, and (3) the interaction with example entities to set the scope
of the newly defined transformation.

* A proof-of-concept of Example-based Program Transformation through three distinct ex-
amples that demonstrate its versatility: (1) Flexible refactoring definition, such as the

103 7.2 Change-based Program Transformations

“extract method with holes” refactoring, (2) Program-specific code transformations, exem-
plified by replicating changes to code clones in a code base, and (3) Definition of “informal
aspects”, exemplified via the definition of a simple logging aspect.

* How to fully integrate program transformations in a system’s evolution, and a description
of the consequences of transformation integration for their comprehension and evolution.

Structure of the chapter. We first describe how we extend our change metamodel to include
program transformations in Section In Section we motivate and outline our approach
to define transformations from examples found in the history. We describe its steps in detail in
Section [7.4] illustrated on a running example. We describe additional examples in Section
In Section we describe transformation integration and evolution. Finally, we discuss our
approach in Section[7.7] and conclude in Section[7.8]

7.2 Change-based Program Transformations

The definition of a program transformation is simple. It is a function which takes as input a pro-
gram and a set of parameters, and returns a modified program. Our changes fit that definition,
except that they do not accept parameters: Each change encodes a constant transformation. In
this section we extend our model with generic changes, which support parameters. We first
describe variables and their roles, then generic atomic changes, transformation application, and
finally change-based control structures.

7.2.1 Variables And Their Roles

In our model, program transformations are sequences of generic composite changes or generic
atomic changes. Each of these changes reference several variables. When the transformation
is applied to a system, each variable will be eventually bound to the ID of a given program
element. Depending on the natures of the references to it in the atomic changes of a program
transformation, a variable can have three roles:

Constant: The variable is involved in a creation change. Its ID is guaranteed to be generated at
instantiation time. No further treatment is necessary.

Parameter: The variable is not created in the change. Its ID will be given to the transformation
as an argument as it is instantiated.

Unlocated: The variable is not created in the change. Rather than being given as a parameter, it
is computed from other parameters and the state of the system the program transformation
is applied to.

From this, we observe that only the variables which have the role of parameters need to be
assigned an ID when the transformation is instantiated. Other variables will be automatically
bound to the ID they need.

Heuristics are used to differentiate between parameters and unlocated variables. Variables
in parent or entity slots of changes are preferably parameters. Variables in location slots are
preferably unlocated. The roles are not fixed and can be changed afterwards.

104 7.2 Change-based Program Transformations

7.2.2 Generic Changes

Generic atomic changes fields contain variables, instead of IDs of concrete entities. Whenever
a variable is assigned an ID, all references to it in all the changes in the transformation are
updated. When a transformation is applied to a system, each generic change in it is instantiated:
It generates a concrete change by assigning IDs present in the system to variables. Executing the
changes on the system modifies it according to the transformation.

All types of atomic changes have a generic counterpart, their behavior during instantiation
is as follows:

Creation: Generates a new ID for its entity each time it is instantiated.

Addition/Removal: The parent or the entity must have an ID assigned, or the change fails. As
an alternative, the parent or the entity can be computed via functions.

Insertion/Deletion: Works the same as an addition for parent and entity. The location inside
the parent is determined by variables as well. Their ID must be known, or computed from
the parent. In the latter case, the location has to be computed according to the state of the
parent (i.e., the contents of its AST) at instantiation time.

Property Change: The property value can be computed via a function.

7.2.3 Instantiation and Application of Transformations

Applying a transformation on a set of parameters works as follows:

Bind parameters to their actual values (IDs).

Instantiate each change. IDs of constants are generated. IDs in unlocated variables are com-
puted as well. Should such a computation not succeed for any reason, the change fails.

Execute the changes. After each atomic change is instantiated, apply it directly to the code base.
Changes later on in the transformation may depend on previous changes being applied.

Tag each concrete change generated by the transformation as being issued by the transforma-
tion. This is described in Section [7.6

During instantiation, a list of all the already applied concrete changes for each generic com-
posed change is kept. If a change fails, all the concrete changes generated by the generic com-
posed change that have been executed so far are undone. The generic composed change then
also fails, triggering a sequence of undo at the next level, until the entire transformation is
undone.

7.2.4 Control Structures

To define more complex transformations, changes need to be applied differently depending on
the parameter that is given. Consider for instance the case of a change that should be applied to
all methods in a class, or only to methods whose name start with “test”. For this we need control
structure such as for loops and conditionals. Since our model supports composition, control
structures are represented as special kinds of changes, that wrap one or more generic composite
changes.

105 7.3 Transforming programs by examples

Iteration We allow a generic composite change (or more) to be applied to a set of entities via
a generic iteration change. The collection of parameters to which the contained changes will
be applied is computed by a function of other parameters and is called the iteration set. For
instance, an iteration can take as parameter the ID of a class, and compute its iteration set as
being all methods of the class. The wrapped change is then instantiated multiple times, once for
each method.

Another kind of iteration consists in attempting a change an unspecified number of times,
until it fails to apply. The iteration change intercepts the failure so that only the last application
of the wrapped change is undone. A use case for this would be to replace all references in the
system from one variable name to another.

Conditional Conditional changes wrap several generic composed changes. Each one is an
alternative. When the conditional is instantiated, it instantiates each wrapped change until one
does not fail. Previous failing changes are undone. If all changes inside it fail, the conditional
itself fails. Optional changes are similar. They attempt to apply the changes inside them, but
they do not fail if every wrapped change fails.

Calling Transformations Transformations can call one another. The calling transformation
specifies the values of the parameters to give to the callee. This allows reuse of commonly used
transformations as building blocks of bigger ones.

7.2.5 Wrap-up

Our change model is easily extended to implement transformations. By simply considering them
as change generators, we added a layer above our previous layer which does not interfere with
the layer below.

In addition, composition of changes is naturally extended to implement higher-level control
structures such as iterations and conditionals, which control how the changes they encapsulate
are instantiated. Even if the control structures we defined in such a way are simple, they have
been sufficient so far. Our model can support the definition of more complex transformations in
this way.

The remainder of this chapter deals with how recorded changes ease the definition of trans-
formation as a sequence of changes, and the definition of the computations that take place in
them.

7.3 Transforming programs by examples

If program transformations are useful, defining them is not always easy. It is often the realms
of specialists: Compiler writers, Refactoring implementors, or users of program transformation
languages. If a program transformation is outside that realm, such as a domain-specific transfor-
mation not large enough to warrant the use of a full-blown program transformation language, it
will often end up being done manually, which is error-prone.

As an alternative to manual editing we present an example-based program transformation ap-
proach: To specify how a repetitive task should be automated, a programmer records a sequence
of changes as an example of it.

The rationale behind our approach is that highly abstract activities such as defining a pro-
gram transformation have less overhead when one is working on concrete instances of the prob-
lem. In one experience report of the DMS program transformation system [ABM'05]], the au-

106 7.3 Transforming programs by examples

thors mention that before defining a large-scale transformation to be applied on several modules
of a system, they first converted one module of the application by hand.

Since programmers need to work on concrete instances of a problem before defining transfor-
mation, our approach maximizes the usage of these concrete example. Starting from a recorded
example working in its particular context, the developer generalizes it to make it applicable in
other contexts. During this process, we allow the developer to directly interact with the structure
of the transformation and the entities affected by the transformation. Finally, the programmer
can explicitly name and store the newly defined program transformation, and reuse it as needed.

We first compare existing approaches to draw requirements for a transformation approach
filling the gap that exists in the program transformation spectrum. We then give a bird’s eye
view of how we define a program transformation based on example changes, and show how our
approach fulfills the requirements.

7.3.1 The Program Transformation Spectrum

Program transformation has been tackled in 4 areas

1. Refactorings [[Fow02] are by now well integrated in many IDEs and —generally being
one right-click away- easy to apply. They are also safe due to their behavior-preserving
nature. They are part of many a developer’s toolbox. They are however limited in scope:
Only the handful of most common refactorings are available in IDEs. Implementing a new
refactoring involves a significant coding efforﬂ

2. Linked Editing refers to the ability of some code editors [TBGO4; [DER07] to change a
code fragment and have the editor broadcast the changes to similar regions of code, called
clones. The clones can be either documented or detected by the tool. Since they usually
work at the text level, not the syntactic level, their applicability is usually limited to code
fragments with a high degree of similarity. Parameterizing an edit is not supported.

3. Aspect-Oriented Programming (AOP) allows crosscutting concerns to be abstracted and
separated from the code base into aspects [KLM'97[]. As part of the compilation pro-
cess, the program is transformed to include the aspects which were extracted. Using AOP
involves learning a new language, with all the hurdles that implies.

4. Program Transformation Languages are the most flexible and powerful approach, but
the most difficult to successfully use. Transformations tend to deal directly with the AST of
the program, whereas AOP uses special purpose (and more limited) constructs such as ad-
vices and pointcuts. Such languages are seldom integrated in a development process, but
defined externally and applied to the entire program as a separate step of the build pro-
cess. All these factors make the use of program transformation languages worthwhile only
for large-scale, system-wide, transformations such as migrating code from one distribution
framework to another [ABM™05; RB0O4].

In Table [7.1| we compare the approaches on flexibility, scale of usage, ease of use and IDE
integration. From this, we extract the following requirements to ease transformation definition:

IDE integration tremendously lowers the barrier to entry as the functionality is directly avail-
able.

LCompilers are out of scope in this work.
2An example on the Eclipse website (www.eclipse.org/articles/Article-Unleashing-the-Power-of-Refactoring/) is im-
plemented in several Java source code files and is more than a thousand lines of code long.

107 7.3 Transforming programs by examples

Linked Transf.
Refactoring | Editing | AOP | Languages
Flexibility - - + ++
Transformation size - - + AFrF
Ease of use ++ + - -
IDE integration Sy + = =

Table 7.1: Advantages and drawbacks of approaches in automated program transformation

Flexibility. Low flexibility rules out many smaller transformation tasks. To fill the spectrum be-
tween easy, but limited usage (refactoring, linked editing), and complex, large-scale usage (AOB
transformation languages), we need a sufficiently expressive and flexible approach, integrated
in the IDE.

Low Abstraction Level. The flexibility offered by program transformation tools requires a high
abstraction capacity, reducing the efficiency of most programmers. Even transformation experts
need concrete examples [ABM'05]]. A key requirement is to lower the abstraction level of the
task, by giving it concrete foundations. The steep learning curve of program transformation
languages (and to a lesser extent AOP) is due to the highly abstract nature of the tasks they
involve: The programmer has to build a mental representation of the program as a data structure
and manipulate it, without having an easy way to check the results.

We now describe Example-based Program Transformation in general terms before discussing
how it fulfill these requirements.

7.3.2 Example-based Program Transformation in a Nutshell

Example-based program transformations use recorded changes as examples, refined into general-
purpose program transformations. Defining and using example-based program transformations
is divided in 6 steps. We describe these steps alongside a running example (in italics): The defi-
nition of an informal logging aspect. A full-fledged aspect would probably not be implemented
as such in a project not already using AOP. Instead, developers might implement it manually
by inserting the same instructions over and over in the source code, leading to maintainability
problems in the long run.

Step 1: Record changes. Record a concrete example of a transformation, by performing it
manually on example entities. The example change for a logging aspect is to introduce a logging
statement at the beginning of a method.

Step 2: Generalize changes in a transformation. This process is performed automatically
given a concrete sequence of changes. Each reference to an entity ID in the change is con-
verted to a variable. Based on how each entity is created, modified or removed in the change
sequence, the system deduces a role for it. Some will be parameters to the transformation (i.e.,
specified before running it), while others will need to be computed from these parameters. From
the example change, the generalization process deduces that the change applies to a parameter, X,
which is a method. It also deduces that the location where the statement is inserted is variable, and
must be specified by the user.

108 7.3 Transforming programs by examples

Step 3: Edit variables part of the transformation. Based on the roles of the variables deduced
from the previous step, the developer edits the transformation and specifies how variables are
computed. The developer specifies the location inside X where to insert the statement, and also that
the string printed in the logging statement should contain the name of X.

Step 4: Compose changes. The developer can introduce higher-level constructs such as iter-
ations or conditionals to build larger changes from elementary building blocks. The developer
specifies that to apply the logging transformation to a class, the previous change must be applied to
all the methods of the class. He can also define variants of the change, depending on the number of
arguments in the calling method.

Step 5: Test the transformation on examples. At any time during steps 3 and 4, the developer
can test the effects of the modified transformation by running it repeatedly on the example
entities, to assess if he is on the right track or not. The developer can compare the results of the
initial change and the specified transformation on the same targets.

Step 6: Apply the transformation to the system. Once the transformation is defined, it is saved
and can be immediately used from the code browser of the IDE. This allows the transformation
to be applied to one entity at a time. The logging transformation is stored, ready to be applied at
any moment to any program. The transformation can also be undone.

7.3.3 Does our approach fulfill the requirements?

Our approach fulfills the previous requirements in the following way:

IDE Integration. An IDE plugin monitors programmer activity, and records it as change opera-
tions. This is done silently, without interrupting the workflow of the developer. The subsequent
refinement of the transformation is done using a user interface which still belongs to the IDE.
Then, the transformation can be quickly accessed and tested on program elements since the tool
has access to the program representation through the IDE.

Low abstraction. We kick-start the transformation process by extracting the initial transforma-
tion structure from the recorded example. The tool infers which parts of the transformation need
to be further edited or not, giving the developer a concrete list of tasks to perform. The reified
program transformation also allows direct interaction with the structure of the transformation.
Parts of it can be easily edited, swapped, removed or cloned. The process to follow is given by
the recorded changes in the transformation itself.

Flexibility. A transformation is not limited to a single entity, since an arbitrary number of
changes can be recorded. It can also be edited to include higher-level control structures, such as
iterations of a change on multiple entities, or trying alternative changes depending on the type
of the entity a transformation is applied to. Unlike refactorings, we do not focus exclusively on
behavior-preserving program transformations.

109 7.3 Transforming programs by examples

7.3.4 Running example

We present a more complex example, that we use in the following sections. It is an extension
to the “Extract Method” refactoring. According to Fowler, “Extract Method” is the Refactoring
Rubicon, i.e., a refactoring tool featuring “Extract Method” is probably complex enough to im-
plement most refactoringsﬂ Refactoring tools featuring “Extract Method” are able to infer which
local variables need to be passed as arguments to the extracted block of code (those that are
referenced both in the code block that is being extracted, and outside of it).

A frequent situation however is that a constant expression in the block of code would need
to be passed as a parameter to the new method that is being created. Since this expression
is referenced only inside the code block that is extracted, it is not converted to a parameter
(See Figure top). Another related situation is when a method call is used on an extracted
variable. Usually, the call becomes part of the extracted code, while sometimes it should stay
in the calling method (Figure bottom). In both cases, additional modifications are needed:
There are two possible alternatives, shown in Table

initial code and selection

"Extract Method" behavior

desired behavior

exampleMethod: argument
argument + 42.
A argument

exampleMethod: argument
self addTo: argument.
A argument

addTo: argument
argument + 42.

exampleMethod: argument
self add: 42 to: argument.
A argument

add: value to: argument
argument + value.

exampleMethod: arg1 and: arg2
arg1 + arg2 squared.
Aargl

exampleMethod: arg1 and: arg2
self add: arg1 to: arg2.
A argument

add: arg1 to: arg2
arg1 + arg2 squared

exampleMethod: arg1 and: arg2
self add: arg1 to: arg2 squared.
A argument

add: arg1 to: arg2
argl1 + arg2.

Figure 7.1: Actual vs expected behavior of extract method

A. Extract Temporaries

B. Add Parameters

1. Extract the constant expression to a temporary vari-
able.
2. Move temporary variable declaration out of code

1. Extract the code of the method.

2. Apply the “Add Parameter” refactoring to the newly

block
3. Extract code block to new method

created method.

3. Replace constant expression with the parameter in
the body of the newly created method.

4. Edit call site; add constant expression in place of new
parameter.

4. Inline the temporary again.

Table 7.2: Refactoring alternatives

Both approaches require several steps and disrupt the flow of the programmer. In the follow-
ing we show how, using our approach, we create the “Extract Method with Holes” refactoring,
i.e., additionally to extracting a method, portions of constant code can be also extracted as pa-
rameters of the newly created method.

3See www.martinfowler.com/articles/refactoringRubicon.html

110 7.4 The Six-step Program to Transformation Definition

7.4 The Six-step Program to Transformation Definition

7.4.1

Change recording has been discussed at length previously and is no different than the process
described in Chapter[3] This step is fully automatic.

Recording the example

Example. For the “Extract Method with Holes” refactoring, six composite changes are recorded,
as shown in Figure

A: select and extract
temporary

B: select and delete
code block

exampleMethod: argument

exampleMethod: argument

exampleMethod: argument

C: create new

| value |

| value | method
argument +42. value := 42. value :=42. signature
A argument argument + value. A argument

A argument

add: value to: argument

exampleMethod: argument exampleMethod: argument

I value | D: insert
value := 42, self add: 42 to: argument. add: value to: argument code
self add: value to: argument. A argument block
A argument argument + value.

M: inline temporary

Figure 7.2: Recorded changes

E: insert method call

7.4.2 Generalizing the example

To generalize an example, the developer looks into the change history, where the recent changes
are stored, and selects the changes of interest, using the Change Chooser tool (Figure[7.3)). This
tool allows a developer to look for changes farther in history, or to unselect parts of the changes
if other activities were performed in parallel that do not belong to the envisioned transformation.

Deducing the role of each variable. Given the structure of a generic change, a role (parameter,
unlocated or constant) is automatically deduced for each variable, affecting how the programmer
has to process it. Since changes can be composed, a given variable can play different roles in
several parts of the change, e.g., it might be a parameter in some of the composite changes and
a constant in another. At the transformation level, it will be a constant.

Example. Looking at the structure of the sequence of changes shown in Figure the changes
are generalized in the following way (roles are in italics):

Change A: The variable representing the number 42 is a parameter, which the user will set
up via selection (see Section [7.4.3). The inserted statements (variable declaration and
variable assignment), are unlocated.

Change B: The deleted block of code will also be a parameter of the transformation. Nodes
under it are constants.

111 7.4 The Six-step Program to Transformation Definition

. =| SpyWare Change Chooser

2 model bootstrap A
28 Added exampleMethod: to ExtractClass

16 Modified exampleMethod: in ExtractClass

1 Modified exampleMethod: in ExtractClass

12 Modified exampleMethod: in ExtractClass

19 Added add:to: to ExtractClass

6 Modified exampleMethod: in ExtractClass

192 Modified findChangesNecessary in SWModelPartitioner

15 Modified findChangesNecessary in SWModelPartitioner

129 Modified generalizeln:bindings: in SWGenericAuthoredChang
15 Modified subModelForChange: in SWhodel

10 Modified subModelForChange: in SWhodel

6 Modified generalizeln:bindings: in SWGenericAuthoredChange
141 Modified mergeChange:forEntity:inChangeList: in SWModelP:
45 Modified mergeChangesWith: in SWCompositeChange

1 Modified mergeChange:forEntity:inChangeList: in SWModelPar-
1 Reorganized ¢lass SWCompositeChange

73 Added changesNotlnto: to SWCompositeChange

23 Modified mergeChangesWith: in SWCompositeChange

1 Modified mergeChangesWith: in SWCompositeChange

198 Modified asSelectionChangeNamed: in SWGenericAuthoredChs
18 Modified class SWSelectionChange

93 Modified createEntity:ofKind: in SWModelView

132 Modified asLatestVersionDo: in SWhodelView

10 Added concretel to SWSelectionChange

16 Added concrete: to SWSelectionChange

1 Removed concretel from SWSelectionChance

’ Generalize ‘

Figure 7.3: The Change Chooser shows the recent changes to the system.

Change C: There are no parameters or variables needing a location, as every entity is created
on the spot. They are constants.

Change D: The block of code is unlocated and needs a location (the very beginning of a method).
The constant method in change C is a parameter in change D.

Change E: The unlocated method call needs a location (the previous position of the selected
code block).

Change F: The deleted statements (variable declaration, assignment and reference) are unlo-
cated, while the value in the assignment (also unlocated) needs to be relocated where the
variable reference was.

In the overall transformation, the only parameter is the method to which the refactoring is
applied.

7.4.3 Editing the Example

Editing the example is the first step requiring manual work. Figure[7.4shows the Change Factory,
the prototype tool in charge of editing and testing program transformations. Using this tool, one
can:

* Change properties of variables such as their name.
* Specify the location of unlocated variables via user selection or pattern matching.
* Specify conditions which may prevent or modify the action of the change.

* Modify the structure of the change by adding, removing or reordering changes (Sec-
tion|7.4.4).

112 7.4 The Six-step Program to Transformation Definition

.« =| Change Factory: Extract/Holes

- extract temporary This is a deletion change, Here you can define the pattern in

?:LZ(:‘ S;}:;f:gg fgﬂe the body of the method/class to correctly delete the entity.

greate mzthg;l p;otowpe Change specific panel:
B 1 :
}gff;e fgmiofgiy Edit properties of the selected change

Deleted temp from exampleMethod: under exampleMethod: afte; X
Deleted := from exampleMethod: under exampleMethod: after af $method: $arzument(*)
Deleted temp from exampleMethod: under addito: after arg | «temp» |

Created 42 as a literal temp = 42. self addito: arg addito: temp + ¢
Change name of 42 from nil to 42 self add: arg to: temp. \Allow any name
Inserted 42 from exampleMethod: under add:to: after arg + self Allow name ...

Any kind of elements
Allow kinds .

Optional Insertion/deletion
Unlimited changes have an
Forbidden AST pattern
No recurse edition menu

[:context | true] Anything
Back to normal

< Change tree panel: >
select changes and edit the change structure [
9 9 To Constaml‘l‘o Variablelthange variables [Clone|Remove[Help‘

exampleMethod: arg exampleMethod: arg
| tamp |
R self add: arg to: 427,
self add: arg to: temp, +self

+self
State of the entity before the State of the entity after the
selected change selected change

Figure 7.4: The Change Factory’s main interface, shown editing a deletion change

¢ Add control structures such as iterations and conditionals (Section|[7.4.4).

Table sums up which properties are editable for each atomic change.

Changing properties. By default, a generic property change keeps the property of the original
concrete change, but the Change Factory allows it to be either a computation or a demand for
user input (for example the user might want to pick a name or a superclass for a given class).
To compute properties, the change factory provides the user with a context object that can be
queried for information during the change’s application. Using the context, one can access the
values of the parameters and variables during the change execution, as well as the entire state
of the program. One can assume all the changes before the current change in the transformation
are instantiated and executed. The context has a convenient API to access the most useful
queries, such as: current class or method, current method name etc. Identifiers can be bound to
values in the context and those values can be retrieved later on, to transmit information between
changes.

Specifying conditions. The context can be used to define conditions altering the behavior of
the change depending on where it is applied (e.g., if the current method does not override
another). Conditions can be either preconditions (tested before the change takes place) or post-
conditions (tested on the modified entities after the change takes place). If these are not met
during instantiation, the change fails.

Locating entities with AST patterns. Unlocated entities must be found in the ASTs of the meth-
ods to which the transformation will be applied. However, dealing with the intricacies of ASTs

113

7.4 The Six-step Program to Transformation Definition

Atomic Change Aim Possible actions
Creation Create a new entity of a given type. Change the kind of entity created. Remove
to convert a constant or a variable to a pa-
rameter. Create one to do the opposite.
Addition/Removal Add/Remove a method, variable, class, | Define a condition for the successful addi-
package from the class, package, system. tion of the current class, package, method
or variable.
Property Change Change a property (name, superclass, etc.) | Change the kind of property set. Change
of an entity. the value of the property set (constant or
function). Add a success condition.
Insertion/Deletion Inserts/Remove a statement-level entity in | Define the insertion/deletion AST pattern
a method body. for an unlocated variable. Add a success
condition. Specify if a selection should be
used.

Table 7.3: The properties that can be edited for each atomic change.

is one of the overly abstract activities a programmer faces when transforming programs. In
addition, building a mental representation is hard since example run-time ASTs are not easily
accessible. It is not clear which nodes to look for in the AST, and where they should be located.
We address these problems by using the ASTs of the concrete entities on which the recorded
changes were applied as an initial AST pattern to be incrementally refined by the programmer.
An AST pattern is an AST enriched with information to relax or constrain its comparison to other
ASTs. Furthermore, we minimize the need for the programmer to consider the AST pattern
structure by providing a direct manipulation interface.

These two features work in concert in the following way: For each insertion or deletion of
an unlocated entity, the programmer is presented with the state of the example just before (for
a deletion) or after (for an insertion) the change was applied (Figure top right panel). The
variable inserted or deleted is highlighted to ease focusing. Behind the printed text, the pro-
grammer is in fact interacting with a serialized AST pattern of the state of the original example
method. When the transformation is applied to another method, the AST of the method will be
retrieved and matched against the AST pattern in an attempt to find either a correct place in the
AST for an inserted entity, or the ID of an entity in the AST to delete. If the ASTs do not match,
the change fails.

If no modification is made to the AST pattern, it will only match the initial method in its
initial state. We allow the programmer to relax the constraints in the AST pattern by simply
selecting a node or a range of nodes in the text. The tool maintains a mapping from text position
to AST nodes, sparing the programmer to manually locate every node. A context menu gives
the available constraints for the selected nodes. Upon selection, the constraints are applied to
the nodes, and the text in the panel is re-rendered to update the applied constraints. Several
constraints can be put on the same node (name, kind, multiplicity, optionality, recursion). The
constraints are listed in Table[7.4 Some common sets of constraints are provided as shorthands,
such as “allow any method signature” (a method having any name, an unlimited number of
arguments and an unlimited number of temporaries), or “any position in the body” (inserts
nodes in the pattern matching any other nodes in the relevant position).

Locating variables via selection. Some unlocated variables rely on the user selecting them.
The change factory allows to specify this as well. When the change is instantiated, a window
with the source code of the method to which the variable insertion or deletion is applied opens,
asking the user to select the relevant piece of code. One can also ask for the former position of

114 7.4 The Six-step Program to Transformation Definition
Constraint Effect Representation
None (default) Same name and kind (entity type) foo
Same kind Same kind as original, any name is possible. $temporary
Name matches ... Same kind as original, name matches condition (e.g., the name must | $temporary([n])

start with “set”).
Kinds ... Matches any set of kinds (e.g., any body statement). $k1|k2 or $*
Optional May be present. foo(?)
Forbidden May not be present. (e.g., specify a counter example). foo(!)
Unlimited May be present several times. foo(+) or foo(*)
No recursion Ignore any children of the entity (e.g., the presence of an if is impor- | foo(...)

tant, not its contents).
Anything Any nodes .
Manual ... Specified by the programmer with Smalltalk code foo([])

Table 7.4: Available constraints in AST patterns

a deleted selection (e.g., to substitute two pieces of code).

Example: property edits. Being selection-intensive, “Extract Method with Holes” does not need
many property edits. The created variables in “Extract Temporary” (change A) need to be named,
based on user input. In change C, the newly created method must be named —also via user input—
based on the names of the arguments it takes. “Extract Method” must infer the arguments of
the arguments: It queries the context to get the set of arguments and temporaries which are
referenced both inside and outside of the extracted block of code.

Change A: temporary

Change A:

Change F: temporary location

Change F: assignment location

Change F: reference location

exampleMethod: argument
| <<value>> |
value :=42.
A argument

exampleMethod: argument
I value |
value <<i=>>42.
A argument

exampleMethod: argument
| <<value>> |
value :=42.
self add: value to: argument.
A argument

exampleMethod: argument
I value |
value <<:=>> 42.
self add: value to: argument.
A argument

exampleMethod: argument
I value |
value := 42.
self add: <<value>> to:
argument.
A argument

any method signature
temporary in last position

Constraints| Original pattern

any signature
first body statement

temporary named as parameter
in any position

any signature
assignment anywhere in body
match name in left hand side
the right hand side will be stored|

any signature
position anywhere in the body
name matches parameter
replace with old right hand side

$method: $argument(*)
| $temporary(*) <<value>> |

Refined

$method: $argument”
| $temp* |
(o) <<=>>(..)

$method: $argument*
| <<$temporary([n])>> |

$method: $argument*
| $temporary* |

$reference[n] <<i=>>

$method: $argument*
| $temp* |

<<$reference[n]>>

Figure 7.5: Initial patterns and resulting constraints

Example: variable Locations. The constant expressions and the extracted code block are user-
selected. AST patterns need to be defined for the changes dealing with temporaries (A and F).
Figure[7.5|shows these patterns.

7.4.4 Composing Changes

The change factory can edit the change structure itself in order to alter its behavior by adding,
moving or removing changes and control structures.

115

7.4 The Six-step Program to Transformation Definition

Generic Change Aim Possible actions

Iteration Repeat the contained changes on several tar- | Sets the variable that contains the list of tar-
gets. gets. Optionally enter an initialization query

for this variable.

Conditional Perform the first contained change that suc- | Optionally add a query to choose the change to
ceeds to apply. apply instead of trying them in order.

Optional Attempts to apply the sub-changes, but does | None.
not fails if they do.

Table 7.5: The supported composite generic changes.

Editing the structure. The recorded changes and their generalized counterparts have a tree-like
structure. The Change Factory can alter this structure by adding, removing, or reordering the
changes. Composite changes can also be merged (two composite changes become one change
containing the atomic changes of both), or split (one composite becomes two distinct changes).

These alterations can affect the behavior of the change: Removing a creation changes the
role of the unlocated variable or constant which was created to a parameter. Splitting a change
allows to decompose a composite change in smaller steps. Some of those might be wrapped in
conditional structures afterwards.

Adding Control Structures. We described the control structures in Section[7.2} The tool allows
one to select which changes need to be wrapped in a control structure in the tree view of the
first panel, and to edit the properties of the change in the second panel (see Table|7.5).

Example. Structure alteration. When we recorded the changes to define “Extract Method with
Holes”, our first selection of the changes contained an extra change, the creation of exampleMethod:
itself. This change had to be removed to allow exampleMethod: to become a parameter to the
transformation. Also during recording, changes C and D were performed as one single change,
which had to be split in two.

Iterations. To specify that an unlimited number of holes can be defined, extracted into tempo-
raries and subsequently inlined, we used several iteration constructs: A set of temporary names
T is initialized in change A using as many selections and input names as the user wants. At the
end of the transformation, T is reused in change F to inline all the “temporary” temporaries.
Change A initializes the set of temporaries by asking the user for selections until he or she stops.
Also, in changes C and E, the set of arguments to the method —computed from the context- is
used to build the signature of the extracted method and the call to it in the original method.

Calling transformations. In the interest of reuse, the extracted and inlined temporary trans-
formations could be defined separately. “Extract Temporary” takes as parameter a method, and
asks the user to select an expression inside it, while “Inline Temporary” takes as parameter a
method and a temporary before inlining all references to the variable. Changes C and E are
small enough buildings blocks that they could also be abstracted and reused.

Conditionals. One alternative to using iterations is to define a fixed number of holes, by
calling several times the “Extract Temporary” change. At the end of the transformation, the calls
to “Inline Temporary” can be wrapped in optional changes, failing it the variable they reference
is undefined. It is improbable that many holes will be needed in extracted code, making this
“brute force” solution viable.

116 7.5 Additional Examples

7.4.5 Testing the Transformation

Due to the exploratory nature of our tool, the boundary between testing and applying a change
is fuzzy: An applied change is one which has not been undone. Testing a transformation applies
it to the original example, then saves the resulting state, undoes the transformation, applies the
initial concrete change, and finally shows the state of the concrete change and the transformation
side-by-side. This allows the developer to quickly evaluate his/her change by pressing a button.

7.4.6 Applying the Transformation

Once defined, transformations can be applied on a case-by-case basis or in a system-wide fashion.
The transformation is named and stored in a repository, and made accessible within the IDE
through menus for case-by-case usage. When browsing the system, the user can decide to apply
it to the entities he is currently viewing. This is the preferred way to use a transformation such
as “Extract Method with Holes”.

Larger transformations can be applied system-wide, on larger set of entities, using a Change
Applicator tool with which one can select a larger set of entities in the system and display the
result.

7.5 Additional Examples

Example-based program transformations are useful in a variety of contexts, such as the previ-
ously illustrated “Extract Method With Holes” refactoring example. We describe two additional
examples.

7.5.1 Defining informal aspects

If an application is designed from the ground up to incorporate aspects, the design allows it
clearly. However, when introducing an aspect in an existing system, it is not always clear where
to introduce the aspect. The developers have to localize code related to the concern they want to
separate, isolate it in an aspect, and determine general rules to define a pointcut before weaving
the aspect back in the system.

In contrast, our approach allows one to define an aspect informally, and to initially collect
its join points manually. The transformation definition represents the advice of such an informal
aspect, while the entities to which the transformation is applied are its join points. Applying the
transformation corresponds to weaving the aspect, and undoing it removes the concern from
the system. Since the transformation is reified and its effects upon instantiation are reified and
documented, unweaving an aspect is easy.

If an aspect is worth keeping, the extensive listing of the join points could be used as a basis
for a more formal definition of a pointcut. Our tool does not support this pointcut definition
process yet, but this is certainly an interesting path to pursue. Techniques employed in aspect
mining could be used to assist such a process [[BvDT05} BCH05]].

Defining aspects with the Change Factory bears resemblance to Fluid AOB a recent variant of
AOP where aspects are not implemented by an aspect oriented programming language, but by
tools integrated with the IDE [[HKO6].

Informal aspects exemplified. An example is the running example of Section the simple
logging aspect. To define such an aspect involves the following steps:

117 7.5 Additional Examples

1. Record the insertion of a logging statement at the start of a method, calling the logging
facility with a literal specifying the name of the method.

2. The system deduces that the only parameter of the example is the method to which the
transformation should be applied.

3. The programmer edits the position of the logging statement to match the start of any
method. The “name” property of the string that is printed is computed by a context query
which includes the name of the method to which the transformation is applied.

4. The programmer might actually record several examples, depending on the number of ar-
guments. If the method has arguments, the values of these could be logged. These changes
could then be wrapped in a conditional change to choose the correct transformation to ap-
ply to a system.

5. The change can then be applied with the Change Applicator to all the needed join points
in the system.

7.5.2 Clone Management

Several researchers have claimed that code clones are sometimes best “left alone” [KSNMO5}
KGO6]. They point that in certain conditions, refactoring a set of clones to remove the duplica-
tion is either not possible due to language limitations or too expensive. It can even be harmful
if it leads to over-abstraction, or if the clones are destined to grow apart eventually. To assist the
programmer when dealing with duplicated, unrefactorable code, linked editing [TBGO04]] and
clone tracking tools [DERO7]] have been proposed. These tools maintain a list of clones, and
when one of these is edited, propose to the user to change the other clones in the same way.

When propagating changes from one clone to the others, clone tracking tools usually work
at the text level. Since we record changes at the AST level, we can propagate changes to clones
at a syntactic level rather than a textual one. Moreover, our AST pattern definitions are more
tolerant with differences between clones (inserted/deleted statements, renamings, etc.), since
these can be relaxed when interacting with the AST patterns. As such, we believe our tool could
manage situations better than current linked editing tools.

One advantage that linked editing tools have over our current implementation is a larger
degree of automation. Currently, our system lacks the ability to detect clones, so the developer
has to propagates changes manually. However integrating a clone-detection tool is possible. The
specification of AST pattern constraints is more work than other tools, but is more flexible when
broadcasting the changes. We still have to investigate whether and to which extent having sev-
eral examples (i.e., all the clones in a clone group), allows one to automatically relax constraints
in the AST patterns to fit as many members of the group as possible.

Linked Editing Exemplified. Our own tools are not exempt from cloning. For instance, a design
decision forced us to duplicate some code during the implementation of the Change Factory.
Our change metamodel features concrete and generic changes. Since Smalltalk does not provide
multiple inheritance, the implementation of generic atomic changes leads to problems.

The two possible solutions both involve code duplication. They are shown in Figure [7.6
We chose extension A. During implementation, we had to change how concrete changes were
instantiated. Previously, a concrete change was simply returned by the generic atomic change.
We found best to directly execute the concrete change during instantiation, before returning it.

118 7.5 Additional Examples

> AtomicChange <l

Creation Addition Removal Insertion Deletion Fc’rr?g:gg
,__?__ ,__%_-. ,_—f—— .-—%—-. ,-—%__,__?,__
| Generic | | Generic | | Generic | | Generic | | Generic | | Generic
| Creation | | Addition | | Removal | | Insertion | | Deletion | Iz:rr?peﬂy |
e e e e e e e 4 L _hanee

AtomicChange
poeen- ?. ceeen
Generic :
' AtomicChange
'
Fecccece- [t . Fecccdec=- [A S A]
\ Generic , , Generic , . Generic , , Generic | | Generic , | F(’ar?)nzrrltc '
* Creation ' ! Additon ' * Removal ' ! Insertion * * Deletion ' * perty .,
' I ') I ') '+ Change *
teecceccces . leeccsoccscsas . teecceccces . leeccsoccscsas . teecceccces . teecooeses .
= = - L .
Original | Extension | ; Extension |
Design | A [B :
. .

Figure 7.6: Two possible generic change designs

This spared the composite changes to do it themselves but forced us to update all 6 versions of
the instantiateIn: method[]

As seen in Figure each method creates a new change, sets it up, and returns it. Setting
it up differs for each change. In addition, the change has a different name in each method
for clarity, and due to inconsistencies, the name of the argument differs in some of the methods.
When recording an instance of the change, the system will deduce that the contents of the return
statement was deleted, and another statement was inserted. It will also identify that there is one
parameter to the change, the method to which it is applied. To define an AST pattern matching
the needed editions, the user has to specify the following constraints:

* The argument’s name varies, and must be stored (as X).
* The temporary’s name varies, and must be stored (as Y).
* Any number of body statements can follow.

* When a return statement with the temporary is encountered, the temporary must be
deleted.

4If we had a common superclass for all the changes (extension B), we could have put this behavior in it.

119 7.6 Towards Transformation Integration and Evolution

class: GenericCreation class: GenericAddition
instantiateln: aSWModelView instantiatein: aSWhtodelView
| creation | addition := SWAddition new.
self entity id: ID gen. addition entity: self entity id.
creation := SWCreation new. addition parent: self parent id.
creation entity: self entity id. A aSWModelView execute: addition
creation kind: self kind. 2 addition
A aSWModelView execute: creation
Aereation
class: Genericlnsertion class: GenericPropertyChange
instantiateln: aView instantiateln: aSWModelView
| insertion state | | propertyChange |
insertion := SWinsertion new. propertyChange := SWPropertyChange new.
insertion entity: self entity id. propertyChange entity: self entity id.
insertion root: self root id. propertyChange property: self property.
self useSelection propertyChange value:
ifTrue: [self initializeFromSelection: insertion in: aView] (self valueln: aSWModelView).
ifFalse: [(entity isConstantin: self composite) ifFalse: [A aSWModelView execute: propertyChange
state := aView stateOf: root id. ApropertyChange
self updatePatternin: aView.
pattern matches: state.]].
insertion under: self under id.
insertion after: self after id.
A aView execute: insertion

Figure 7.7: Sample clones in the Change Factory

* When an empty return statement is encountered, a message send must be inserted, with
receiver X and argument Y.

7.6 Towards Transformation Integration and Evolution

In this section, we describe how transformations are integrated in our model, and what conse-
quences this has for the system in terms of comprehension and evolution.

7.6.1 Transformation Integration

Transformation integration is enabled by a very simple addition to the model. Since a trans-
formation is a change generator, it has control on how it generates them, and is free to add
metadata to the change for this specific instantiation.

Whenever a transformation is defined, it is stored in a transformation repository for future
usage. Each change generated by the transformation is also tagged with an identifier linking it
to the transformation that generated it. These changes are stored in the change repository like
any other change, where they are explicitly linked to the transformation that produced it, and
the values of the parameters that were given to the transformation.

This is enough to fully integrate the transformations in the evolution, as the changes they
generate can be treated either as normal changes when replaying them, or generated changes
when a deeper processing is needed.

7.6.2 Transformation Comprehension

Each transformation application is stored and explicitly documented in the change repository.
This allows transformations to be treated in the same way as refactorings for program compre-
hension purposes. We used refactorings for program comprehension in Chapter [5| They gave

120 7.7 Discussion

context to surrounding changes, and were reviewed more quickly since they were automated
and marked as such.

The same treatment is possible for program transformations. In particular, the concrete
changes in the transformation can be easily traced back to their abstracted purpose, the trans-
formation application. Understanding a systematic change to each method of a given class is
immediate when it can be traced back to the application of the “Informal Logging” aspect. All
the changes related to the aspect are clearly delimited.

Transformation application can be treated differently than other changes to compute met-
rics. Change-based metrics can be defined to better understand sessions, listing transformations
separately. Logical coupling measurements may want to weight the changes caused by transfor-
mations differently.

7.6.3 Transformation Evolution

In the face of changing requirements, some transformations might no longer be needed, need
to be changed, or applied to new parts of the system. Dig and Johnson reported that 80% of
changes breaking the APIs of framework are due to applications of automated transformations,
namely refactorings [[DJO5]]. This shows that even behavior-preserving transformations such as
refactorings cause problems in the evolution of systems.

Documenting the application of transformations is a first step towards a better support of
their evolution. The first immediate usage is that if a transformation needs to be changed, the
places that are affected in the system are immediately known, as the changes it generated can
be searched in the history. Each of these can then be reviewed to determine how and if it needs
to change in the face of the new requirements. A newer transformation can subsequently be
defined and applied to these new locations.

A transformation can be undone in all the places where it was applied. If some of those were
changed afterwards, undoing the transformation might not be possible without undoing these
changes. The list of conflicting places can be brought up, and manual inspection can determine
how to deal with them. How much of that process can be automated is a question for which we
do not have an answer yet.

Finally, documenting where the transformation was applied means that one also knows
where it was not applied. This makes it easier to apply it to parts of the system which need
the transformation due to updated requirements. A use case for this is the case of refactor-
ings in frameworks: A refactoring may have renamed all the references to an entity inside the
framework, but client code needs to be updated as well.

7.7 Discussion

7.7.1 Change-based Program Transformation
Impact of Composition

We allow sequences of changes to be recorded and specified. This eases the definition of trans-
formations affecting several entities. Several transformation tools, such as iXj [BGHO7]] or the
Rewrite Tool [RB04]|, are based on pattern-matching to provide a concrete syntax to ease trans-
formation definition. They however operate on a single pattern at once, which limits the extent
of the transformations they can define.

121 7.7 Discussion

Applicability

Our prototype is implemented in Smalltalk, a language with a simple and consistent syntax.
Applying it to a more complex language like Java, which is typed and includes generic types,
might pose some issues. We think it is feasible, since many transformation tools exist for Java:
The existence of such tools might help us porting our approach. However, whether the approach
is as usable in such a context is yet to be determined. In our approach, the type of an entity is
modeled as a property, which may need additional constraints to enforce the type system.

Expressivity

We did not directly evaluate the expressivity of our approach, i.e., if every kind of transforma-
tion can be expressed with it. The change-based program transformation and their applications
could span an entire thesis topic in itself. In this chapter, we focused on the definition of trans-
formation and their integration in the overall Change-based Software Evolution approach. We
undertook a feasibility study in which we applied it to three examples. We consider the expres-
sivity more of a pure program transformation problem, whereas our primary objective was to
extend Change-based Software Evolution with program transformation support in a natural and
integrated fashion.

We are however confident that our approach is expressive enough. One of the examples we
selected was a more complex variant of the “Extract Method” refactoring, which Fowler describes
as the Refactoring Rubicon, i.e., a refactoring that has the necessary complexity to indicate that
the approach supports other kinds of refactorings.

Moreover, our approach shares a lot with other transformation tools. It merely describes the
transformations in a more concrete way. Other problems like expressing conditions can be done
in the same way other tools do if needed. The fact that other tools are expressive enough to
handle more kinds of transformation is an indication our approach is expressive as well.

Behavior preservation

Unlike refactorings, behavior preservation is not guaranteed. Our tool will require programmer
supervision to ensure the results are correct. Some transformations could be recognized as
behavior-preserving once the needed analyses are defined.

7.7.2 Example-based Program Transformation
Example-based

Our approach uses two kinds of entities: Domain entities comprising the AST of the system,
and changes applied to them. Using our change representation on top of the AST allows us to
infer from a single example which entities are parameters to the change, and which ones are
unlocated. Furthermore, we display ASTs to allow the programmer to work directly with the
concrete syntax of the system, instead of having to learn a dedicated syntax to match entities.
Since those ASTs are also extracted from examples, one does not start over, but abstracts away
from the concrete example at hand.

Quality of the examples

When coding, programmers often make errors and backtrack. These digressions are recorded
in our changes and are unnecessary when generalizing the change. To address this one can use

122 7.7 Discussion

our change-editing facilities to remove undesired changes from the sequence. Alternatively, the
example can be “replayed”, i.e., re-recorded to avoid the quirks introduced the first time around.

Related Transformation Approaches

Several approaches have used concrete syntax to ease the definition of transformations. Strate-
g0/XT is a program transformation tool, which has seen applications in defining language exten-
sions. Visser argues that manipulating ASTs of programs is too complex for many applications,
and proposes a scheme to instead use the concrete syntax of the programming language [Vis02]].
The result is a transformation language with both Stratego and the concrete syntax.

In the same vein, De Roover et al. [RDB"07] introduced a concrete layer on top of a logic
programming language, similar to Java source code, with variables to be matched prefixed by
question marks. The rationale is to simplify matching structures by hiding the AST where possi-
ble.

Due to its extensive IDE integration, the language-based approach closest to ours is iXj by
Boshernitsan et al. [BGHO7]], an interactive IDE extension to transform Java programs supported
by a visual programming language. ASTs are represented graphically. The transformation still
has to be written with only the starting state specified (via selection).

Roberts and Brant describe the Rewrite Tool [RBO4] which uses pattern matching to imple-
ment arbitrary transformations. However the patterns defined in the transformations can only
refer to one entity at a time and must be written from scratch in a dedicated language.

Program Transformation in Model-Driven Engineering

Transformation is a prominent concept in model-driven engineering. Several model transforma-
tion languages have been defined, such as MTL, Xion and Kermeta [MFV*05]], or ATL [JKOS5].
However, they have a different target than our approach, since they transform abstract models
of programs, and not the programs themselves.

Another tendency found in model transformation is to use example for the definition of
transformations. This approach was pioneered by Varré [Var06]]. His approach requires an
example of a source model and a target model and infers the changes in them. This approach
has also been adopted by Wimmer et al. [WSKKO7]], and Kessentini et al. [[KSBOS].

7.7.3 Integrating Transformations in The Evolution
Approaches Integrating Refactorings in the Evolution

Several approaches address the problem of refactoring frameworks. When a framework is refac-
tored, its users may experience API-breaking changes [[DJO5[]. Several approaches either record
the refactoring application and apply it on client code (work by Henkel and Diwan [[HDO5]], Ek-
man and Asklund [J[EA04]], Dig et al. [DMJNO7])), or recover the refactorings from SCM archives
(work by Weildgerber and Diehl [WDO06], Dig et al. [DCMJO06]]). Other generate code adaptors
at the source or binary level, such as the Comeback approach by Savga et al. [SRGO8] and the
ReBa approach by Dig et al. [DNMJOS]].

A limitation of these approaches is that they only consider refactorings, whereas our ap-
proach has the potential to be applied to every kind of program transformation, whether they
are behavior-preserving or not. In addition, our approach allows full integration of the transfor-
mations in the evolution of the system. The only other approach that promotes integration in
the history are SCM system reifying refactorings [EA04]], [DMJINO7]. They are however limited

123

7.8 Summary

to only refactorings, and do not describe other changes to the system, storing merely versions.
Their integration is hence far from complete.

7.8 Summary

By automating repetitive changes, program transformation is one of the most useful tool to
support software engineering. In this chapter, we investigated if Change-based Software Evo-
lution could be extended with program transformations. We divided this problems in three
sub-problems, and found that:

* Change-based Software Evolution naturally supports automated program transformations.

Each atomic change is in essence a constant program transformation. We successfully
extended our model to include high-level, parametrized program transformations. When
applied to a set of parameters on a system, these generate a set of concrete transformations
corresponding to the actual change to perform. We simply added a layer on top of our
model which does not affect the bottom layer.

Change-based Software Evolution eases the definition of program transformations. One
of the key factors when dealing with abstract concepts such as program transformations is
the need of concrete examples. We found that recording a concrete change as an example
of a transformation and subsequently generalizing it was a natural process. The structure
of the recorded change acts as a checklist of what needs to be generalized. Each individual
change can be subsequently customized. The concrete examples can also be generalized
to define where the transformation should be applied.

Transformations can be integrated in the evolution. In the same way our approach recog-
nizes refactorings and uses them to assist program comprehension, applications of trans-
formations —being generated changes— can be traced and used for program understanding
later on. In addition, tagging changes as parts of transformations enables transformation
evolution: If a transformation needs to be updated, instances of its application can be
recalled and reviewed.

An aspect which we explored only partially is automation: Our transformation definition
approach is at the moment semi-automated. We need to investigate how much further it can be
automated, through the use of more than one example. Possible enhancements are to use mul-
tiple examples to automate the definition of the AST patterns and conditions, automating code
clone management, and automating the evolution of transformations by changing the locations
were they were previously applied.

124 7.8 Summary

Chapter 8

Evaluating Recommendations for
Code Completion

Recommender systems assist programmers but must be evaluated with care: An
inaccurate recommender system will be harmful to a programmer’s productivity.
An example is code completion. Code completion is a productivity tool used by
every programmer. Code completion is seldom improved because it has reached a
local maximum with the information available in current IDES. Furthermore, the
accuracy of a completion engine is hard to assess, besides manual testing.

We use data provided by Change-based Software Evolution to both define a
benchmark to comprehensively evaluate the quality of a code completion engine
and to improve completion engines. By using program history as an additional in-
formation source, we significantly increase the accuracy of a completion engine. The
probability that the match a programmer is looking for shows up in the completion
tool in a top spot can reach 80%, even with very short completion prefixes.

125

126 8.1 Introduction

8.1 Introduction

This chapter is the first (along with Chapter[9) where we assess the usefulness of Change-based
Software Evolution to implement and evaluate recommender systems. Recommender systems
aim to improve the productivity of programmers when building and maintaining systems, by
assisting them while they change them. Such assistance can take several forms: Recommending
which entities to change next (the focus of Chapter[9), filtering out potentially useless entities,
or pointing out shortcomings in the system’s design, such as duplication or code smells. In all
cases, recommender systems have to be accurate: Incorrect predictions will actually slow down
the programmer, forcing him to invest significant time and cognition into false leads.

Recommender systems must hence be evaluated with care. Such an evaluation is however
not simple. The most natural evaluation strategy is the human subject study, where test subjects
are monitored with or without using the tool while performing a given task. While giving a
relatively high confidence in the results, these evaluations are very long and expensive to set up.

An alternative evaluation strategy is the benchmark. Eliott-Sim et al. have shown that bench-
marks have the potential to dynamize a research community by making evaluations easier to
perform, compare and replicate [SEHO3].

A benchmark is hence desirable at least as a pre evaluation technique before a human sub-
ject study begins. However, constituting the data corpus the benchmark uses may be difficult,
depending on the data needed by the tools.

A recommender system lacking such a benchmark is code completion. In 2006, Murphy et
al. published an empirical study on how 41 Java developers used the Eclipse IDE [[MKFO6].
One of their findings was that each developer in the study used the code completion feature.
Among the top commands executed across all 41 developers, code completion came sixth with
6.7% of the number of executed commands, sharing the top spots with basic editing commands
such as copy, paste, save and delete. It is hardly surprising that this was not discussed much:
Code completion is one of those features that once used becomes second nature. Nowadays,
every major IDE features a language-specific code completion system, while any text editor has
to offer at least some kind of word completion to be deemed usable for programming.

Despite the wide usage of code completion by developers, research in improving code com-
pletion has been rare, due to the difficulty of evaluating it with respect to the expected improve-
ment.

In this chapter, we test the use of Change-based Software Evolution to define benchmarks
for recommender systems where data was not previously available, through the example of code
completion. In essence, our benchmark replays the entire development history of the program
and calls the completion engine at every step, comparing the suggestions of the completion
engine with the changes that were actually performed on the program. We also investigate if
and how Change-based Software Evolution can be used to improve the recommender system
themselves. Initial evidence leads us to believe so: We saw in Chapter [4| and Chapter [5] that
Change-based Software Evolution highlights the relationships between program entities, and in
Chapter [f] that this translates in measurable improvements. Using the accurate data Change-
based Software Evolution provides may also demonstrably improve recommender systems. With
our benchmark as a basis for comparison, we define alternative completion algorithms which
use change-based historical information to different extents, and compare them to the default
algorithm which sorts matches in alphabetical order.

127 8.2 The Cost of Human Subject Studies

Contributions. The contributions of this chapter are:

* The definition of a benchmark for code completion engines, based on replaying fine-
grained program change histories and testing the completion engine at every opportunity.

* The definition of several code completion algorithms, and their evaluation with the bench-
mark we defined.

Structure of the chapter. Section compares human subject studies with benchmarks with
respect to ease of creating and sharing experiments. Section [8.3]details existing code completion
algorithms and their relative lack of evaluations. Next, Section presents the benchmarking
framework we defined to measure the accuracy of completion engines. In Section [8.5 we eval-
uate several code completion algorithms, including algorithms using recent change information
to fine-tune their recommendations. Finally, after a discussion in Section we conclude in

Section

8.2 The Cost of Human Subject Studies

Human subject studies have a long tradition as an evaluation method in software engineering for
methodologies and tools. They usually involve two groups of people assigned to perform a given
task, one using the methodology under study, and a control group not using it. The performance
of the groups are then measured according to the protocol defined in the study, and compared
with each other. Hopefully, the methodology under study provides an improvement in the task
at hand. To have confidence in the measure, a larger sample of individual is needed to confirm a
smaller increase. If they provide usually high confidence in their results, human subject studies
have drawbacks:

* They are very time-consuming and potentially expensive to set up. Dry runs must be
performed first, so that the experiment’s protocol is carefully defined. Volunteers have
to be be found, which may also require a monetary compensation. The most extreme
case in recent history is the pair programming study of Arisholm et al., which tested —and
compensated— 295 professional programmers [AGDS07].

* Since they are expensive and time-consuming to set-up, they are as difficult to reproduce.
The original authors need to document their experimental set-up very carefully in order
for the experiment to be reproduced. Lung et al. documented [LAEWOS] the difficulties
they encountered while reproducing a human subject study [[DBO6]].

* The same time-consuming issues make them unsuited for incremental refinement of an
approach, as they are too expensive to be run repeatedly. In addition, a modest increment
on an existing approach is harder to measure and must be validated on a higher sample
size, making the study even more expensive.

* Comparing two approaches is difficult, as it involves running a new experiment pitting the
two approaches side by side. The alternative is to use a common baseline, but variations
in the set-up of the experiment may skew the results.

* In the case of tools, they include a wide range of issues possibly unrelated to the approach
the tool implements. Simple UI and usability issues may overshadow the improvements
the new approach brings.

128 8.3 Current Approaches to Code Completion

Another evaluation methodology is the benchmark. A benchmark is a procedure designed
to (most of the time) automatically evaluate the performance of an approach on a dataset.
A benchmark hence carefully delimit the problem to be solved in order to reliably measure
performance against a well-known baseline. The outcome of a benchmark is typically an array
of measurement summing up the overall efficiency of the approach. An example is the CppETS
benchmark, for C++ fact extractors in the context of reverse engineering [[SHEO2[. Its data
corpus is made of several C++ programs exercising the various capabilities of fact extractors. A
fact extractor can be run on the data set, and will return the list of facts it extracted, which can
be compared with known results. The fact extractor is then reliably evaluated. A benchmark has
the following advantages over a human subject study:

* Automated benchmarks can be run at the press of a button. This allows each experiment to
be ran easily, and reran if needed. This considerably eases the replication of other people’s
experiments.

* Benchmarks usually score the approaches they evaluate, making it trivial to compare an
approach to another.

* The simplicity of running an experiment and the ease of comparison makes it easy to
measure incremental improvements.

* Benchmarks test a restricted functionality, and if automated are impervious to usability
issues.

* Making them more extensive is as simple as adding data to their current data corpus.

In a nutshell, the strength of the benchmark are the weaknesses of the human subject study.
As Sim et al. explained, these advantages dynamize the activity of a research community that
uses a benchmark [[SEHO3].

However, creating the benchmark itself and the data corpus it uses represents a considerable
amount of work. For the C++ fact extractor benchmark, it presumably involved a manual review
of the C++ programs in the dataset to list the expected facts to be extracted. In the case of other
systems, the tasks may be too large to be worthwhile.

8.3 Current Approaches to Code Completion

In the following, we focus on the completion engine, i.e., the part of the code completion tool
which takes as input a token to be completed and a context used to access all the information
necessary in the system, and outputs an ordered sequence of possible completions. We describe
code completion in three IDEs: Eclipse (for Java), Squeak, and VisualWorks (for Smalltalk).

8.3.1 Code Completion in Eclipse

Code completion in Eclipse for Java is structure-sensitive, i.e., it can detect when it completes a
variable or a method name. It is also type-sensitive: If a variable is an instance of class String,
the matches returned when completing a method name will be looked for in the classes String
and Object, i.e., the class itself and all of its superclasses.

Figure [8.1] shows Eclipse’s code completion in action: The programmer typed “remove” and
attempts to complete it. The system determines that the object to which the message is sent is
an instance of javax.swing.JButton. This class features a large API of more than 400 methods,
of which 22 start with “remove”. These 22 potential matches are all returned and displayed in

129 8.3 Current Approaches to Code Completion

® O O Java - testCompletion/src/CompletionTest.java - Eclipse Platform - /Users/romain/Projects/completi... €

It He s 0-r 8w 6 |®a | 4s 5 @
|81+ Gl -
Ulv Gl o
;) *CompletionTestjava £3 £° project | =8 :
import javax.swing.JButton; L] |
ﬁ o
e
® public class CompletionTest { =
public static void main(String[] args) { =
(<) args[0].contentEquals("cs"); 5]
(<) Integer i - new Integer(®);
x)
JButton b = new JButton(D;
o b.remove
} © remove(Component comp) void - Container
1 @ remove(intindex) void - Container
@ remove(MenuComponent popup) void - Componen|
© removeActionListener(ActionListener |) void - Abstr]
© removeAll() void - Container
© removeAncestorListener(AncestorListener listener)
© removeChangeListener(ChangeListener I) void - Ab:
@ removeComponentListener(ComponentListener I) v
@ removeContainerListener(ContainerListener I} void
@ removeFocusListener(FocusListener) void - Compc 4
© removeHierar: tener(Hierarcl iv
777777777 <
Press '~ " to show Template Proposals|
0 Writable s | [|eBek B3

Figure 8.1: Code completion in Eclipse

a popup window showing around 10 of them, the rest needing scrolling to be accessed. The
matches are sorted in alphabetical order, with the shorter ones given priority (the first 3 matches
would barely save typing as they would only insert parentheses).

This example shows that sometimes the completion system, even in a typed programming
language, can break down and be more a hindrance than an actual help. As APIs grow larger,
completion becomes less useful, especially since some prefixes tend to be shared by more meth-
ods than other: For instance, more than a hundred methods in JButton’s interface start with the
prefix “get”.

8.3.2 Code Completion in VisualWorks

VisualWorks is a Smalltalk IDE sold by Cincom. Since Smalltalk is a dynamically typed language,
VisualWorks faces more challenges than Eclipse to propose accurate matches. The IDE can not
make any assumption on the type of an object since it is determined at runtime only, and thus
returns potential candidates from all the classes defined in the system. Since Smalltalk contains
large libraries and is implemented in itself, the IDE contains more than 2600 classes already
defined and accessible initially. These 2600 classes total more than 50,000 methods, defining
around 27,000 unique method names, i.e., 27,000 potential matches for each completion. The
potential matches are presented in a menu, which is routinely more than 50 entries long (see
Figure[8.2). As in Eclipse, the matches are sorted alphabetically, but the sheer number of possible
matches renders the system very hard to use.

8.3.3 Code Completion in Squeak

Squeak’s completion system has two modes. The normal mode of operation is similar to Visual-
Works: Since the type of the receiver is not known, the set of candidates is searched for in the

130 8.3 Current Approaches to Code Completion

00 Workspace
Page Edit Smalltalk Options Help

bl OB # AA®
f Page 1 ‘ Variables

lal
a = OrderedCollection new.

Bl ™ ceiacriciveprocossrromveas |

detachedimageMessage

detachFromThread

detailHolder

detailHolders

detailNotebook

details

details:

detailsEditSpec

detailSlice

detailsSlice

detailsSpec

detailsSpecNoPackage

detailTabSelected

detect:

detectAndAnySatisfy

Texto detectAndPasteDirectory I

detectifNone
detectifNoneAnySatisfy
determineAmbiguities
determineAmbiguousEntryValue
determineAssignmentNode
determineBaseClass
determineColors
determineMacPlatformFrom:
determineOriginallylnimage
determinePlatformType
determineUnixPlatformFrom:
determineVariableDefinition
determineWinTelPlatformFrom:

Figure 8.2: Code completion in VisualWorks

entire system. However, Squeak features an integration of the completion engine with a type
inference system, Roel Wuyts’ RoelTyper [Wuy07]]. When the type inference engine finds a pos-
sible type for the receiver, the completion is equivalent to the one found in Eclipse. Otherwise
matches are searched in the entire system (3000 classes, 57,000 methods totaling 33,000 unique
method names). In both cases matches are alphabetized.

8.3.4 Code Completion in Eclipse with Mylyn

An alternative completion engine for Eclipse is shipped with the Mylyn tool. It leverages Mylyn’s
degree-of-interest model to prioritize entities with a high degree-of-interest value in Eclipse’s
completion menu. However, it was only mentioned in passing as an add-on to the Mylyn tool,
and never fully evaluated [KMO6]. Its effect in the overall productivity enhancements provided
by Mylyn’s DOI could not be measured.

8.3.5 Optimistic and Pessimistic Code Completion

All these algorithms, except Mylyn, have the same shortcoming: the match actually looked for
may be buried under a large number of irrelevant suggestions because the matches are sorted
alphabetically. The only way to narrow it down is to type a longer completion prefix which
diminishes the value of code completion. To qualify completion algorithms, we reuse the “pes-

131 8.4 A Benchmark For Code Completion

simistic/optimistic” analogy first employed in Software Configuration Management. Versioning
systems have two major ways to resolve conflicts for concurrent development [[CW98]]. Pes-
simistic version control prevents any conflict by forcing developers to lock a resource before us-
ing it. In optimistic version control, conflicts are possible but several developers can freely work
on the same resource. The optimistic view states that conflicts do not happen often enough
to be counter-productive. Today, every major versioning system uses an optimistic strategy
[ELvdH705]).

We characterize current completion algorithms as “pessimistic”: They expect to return a
large number of matches, and order them alphabetically. The alphabetical order is the fastest
way to look up an individual entry among a large set. This makes the entry lookup a non-trivial
operation: As anyone who has ever used a dictionary knows, search is still involved and the
cognitive load associated with it might incur a context switch from the coding task at hand.

In contrast, an “optimistic” completion algorithm would be free of the obligation to sort
matches alphabetically, under the following assumptions:

1. The number of matches returned with each completion attempt are limited. The list of
matches must be very quick to be checked. Our implementation limits the number of
matches returned to 3.

2. The match the programmer is looking for has a high probability of being among the
matches returned by the completion engine. Even if checking a short list of matches is
fast, it is pointless if the match looked for is not in it.

3. The completion prefix needed to have the correct match with a high probability should be
short to minimize typing. With a 10 character prefix, it is an easy task to return only 3
matches and have the right one among them.

To sum up, an optimistic code completion strategy seeks to maximize the probability that
the desired entry is among the ones proposed, while minimizing the number of entries returned,
so that checking the list is fast enough. It attempts to do so even for short completion prefixes
to minimize the typing involved by the programmer. The question then is to find out whether
optimism is a sound completion strategy: How can we be sure that a given algorithm has a high
enough probability of giving the right answer?

8.4 A Benchmark For Code Completion

To describe our benchmark for code completion, we reuse the format we used in our prediction
benchmark for logical coupling measurements in Chapter [6] We first motivate the need for the
benchmark, then describe how it is run, the way the results are evaluated and presented, before
presenting the corpus that constitutes the dataset used by the benchmark.

8.4.1 Motivation

In our review of current approaches to code completion, we noticed that all the approaches, save
one, were very similar. Further, improvements to completion are rare: The only one we could
find was mentioned as a side remark in a more general article, and was not evaluated by itself.
This does not mean that code completion cannot be improved, far from it: The set of possible
candidates (referred from now on as suggestions or matches) returned by a code completion en-
gine is often inconveniently large. The match a developer is actually looking can be buried under
several irrelevant suggestions. If spotting it takes too long, the context switch risks breaking the

132 8.4 A Benchmark For Code Completion

flow the developer is in. Given the limitations of current code completion, we argue that there
are a number of reasons for the lack of work being done to improve it:

1. Local Maximum. There is no obvious way to improve language-dependent code comple-
tion: Code completion algorithms already take into account the structure of the program,
and if possible the APIs the program uses. To improve the state of the art, additional
sources of information are needed.

2. Hard to Measure. Beyond obvious improvements such as using the program structure,
there is no way to assert that a completion mechanism is “better” than another. A standard
measure of how a completion algorithm performs compared to another on some empir-
ical data is missing, since the data itself is not there. The only possible assessment of a
completion engine is to manually test selected test cases.

3. Ifitain’t broke, don’t fix it. Users are accustomed to the way code completion works and are
resistant to change. This healthy skepticism implies that only a significant improvement
over the default code completion system can change the status quo.

Ultimately, these reasons are tied to a single one: Code completion is “as good as it gets”
with the information provided by current IDEs. To improve it, we need additional sources of
information, and provide evidence that the improvement is worthwhile. A human subject study
of a code completion tool seems disproportionate.

However, code completion is a prime candidate for a benchmark-based evaluation, since the
problem can be easily reduced to the ranking of matches returned by the completion engine.
What is missing is realistic data of completion usage.

Change-based Software Evolution provides it. The idea behind our benchmark is to replay
the change history of programs while calling the completion engine as often as possible. Since
the information we record in our repository is accurate, we can simulate a programmer typing
the text of the program while maintaining its structure as an AST. While replaying the evolution
of the program, we can potentially call the completion engine at every keystroke, and gather
the results it would have returned, as if it had been called at that point in time. Since we
represent the program as an evolving AST, we are able to reconstruct the context necessary for
the completion engine to work correctly, including the structure of the source code. For instance,
the completion engine is able to locate in which class it is called, and therefore works as if under
normal conditions.

8.4.2 Procedure

The rationale behind the benchmarking framework is to reproduce as closely as possible the
conditions encountered by the completion engine during its actual use. To recreate the context
needed by the completion engine at each step, we execute each change in the change history to
recreate the AST of the program. In addition, the completion engine can use the actual change
data to improve its future predictions. To measure the completion engine’s accuracy, we use
algorithm

While replaying the history of the system, we call the completion engine whenever we en-
counter the insertion of a statement including a method call. To test its accuracy with variable
prefix length, we call the engine with every prefix of the method name between 2 and 8 letters
—a prefix longer than this would not be worthwhile. For each prefix, we collect the list of sug-
gestions, look up the index of the method that was actually inserted in the list, and store it in
the benchmark results. One can picture our benchmark as emulating the behavior of a program-
mer compulsively pressing the completion key. The benchmark does not ask for predictions for

133 8.4 A Benchmark For Code Completion

Input: Change history, completion engine to test
Output: Benchmark results

results = newCollection();
foreach Change ch in Change history do

if methodCalllnsertion(ch) then
name = changeName(ch);
foreach prefix of name between 2 and 8 do
entries = queryEngine(engine, prefix);
index = indexOf(entries, name);
add(results, length(prefix), index);
end
end
processChange(engine,ch);
end

Algorithm 3: The benchmark’s main algorithm

changes done as part of refactorings or other code transformations, as these were not initially
performed by a developer.

Using a concrete example, if the programmer inserted a method call to a method named
hasEnoughRooms (), we would query the completion engine first with “ha”, then “has”, then
“hask”, ..., up to “hasEnoughR”. For each completion attempt we measure the index of
hasEnoughRooms () in the list of results. In our example, hasEnoughRooms() could be 23rd
for “ha”, 15th for “has” and 8th for “hasE”.

It is possible that the correct match is not present in the list of entries returned by the engine.
This can happen in the following cases:

1. The method called does not exist yet. There is no way to predict an entity which is not
known to the system.

2. The match is below the cut-off rate we set. If a match is at an index greater than 10, we
consider that the completion has failed as it is unlikely a human will scroll down the list of
matches. In the example above, we would store a result only when the size of the prefix is
4 (8th position).

In the latter case we record that the algorithm failed to produce a useful result. When all the
history is processed, the results are stored, before being evaluated.

8.4.3 Evaluation

To compare algorithm with another, we need a numerical estimation of its accuracy. Precision
and recall are often used to evaluate prediction algorithms. For completion algorithms however,
the ranking of the matches plays a very important role. For this reason we devised a grading
scheme giving more weight to both shorter prefixes and higher ranks in the returned list of
matches. For each prefix length we compute a grade G;, where i is the prefix length, in the
following way:

210 results(i,j)
=17

attempts(i) @1

i =

134 8.5 Code Completion Algorithms

Where results(i, j) represents the number of correct matches at index j for prefix length i, and
attempts(i) the number of time the benchmark was run for prefix length i. Hence the grade
improves when the indices of the correct match improves. A hypothetical algorithm having an
accuracy of 100% for a given prefix length would have a grade of 1 for that prefix length.

Based on this grade we compute the total score of the completion algorithm, using the fol-
lowing formula which gives greater weight to shorter prefixes:

x 100 (8.2)

The numerator is the sum of the actual grades for prefixes 2 to 8, with weights, while the de-
nominator in the formula corresponds to a perfect score (1) for each prefix. Thus a hypothetical
algorithm always placing the correct match in the first position, for any prefix length, would get
a score of 1. The score is then multiplied by 100 to ease reading.

8.4.4 Result Format

First, we mention the overall accuracy score of the algorithm (out of 100). We also display the
data in a more detailed format to facilitate analysis. We provide a table showing the algorithm’s
results for prefixes from 2 to 8 characters. Each column represents a prefix size. The results
are expressed in percentages of accurate predictions for each index. The first row gives the
percentage of correct prediction in the first place, ditto for the second and third. The fourth
row aggregates the results for indices between 4 and 10. Anything more than 10 is considered a
failure since it would require scrolling to be selected. Failures are indicated in the bottom row.

8.4.5 Data Corpus

We used the history of SpyWare, to test our benchmark, since it is the largest project we have,
with the longest history. In this history, more than 200,000 method calls were inserted, resulting
in roughly 200,000 tests for our algorithm, and more than a million individual calls to the
completion engine.

We also tested the accuracy of typed completion algorithms by running the benchmark using
the type inference engine of Squeak. Only the matches where the type of the object for which
completion was attempted were used. This gives us an initial idea of the usefulness of optimist
completion in a typed setting.

We also used the data from the 6 student projects, much smaller in nature and lasting a
week, to evaluate how the algorithms perform on several code bases, and also how much they
can learn in a shorter amount of time. Table shows the number of tests for each case study.

8.5 Code Completion Algorithms

For each algorithm we present, we first give an intuition of why it should improve the perfor-
mance of code completion, then describe its principles. We then detail its overall performance
on our larger case study, SpyWare. After a brief analysis, we finally provide the global accu-
racy score for the algorithm, computed from the results. We discuss all the algorithms and their
performances on the six other projects in the last section.

135 8.5 Code Completion Algorithms

Project Number of Tests
SpyWare 131,000
SpyWare (with types) 49,000
Project A 5,500
Project B 8,500
Project C 10,700
Project D 5,600
Project E 5,700
Project F 9,600

Table 8.1: Number of completion attempts

8.5.1 Default Untyped Strategy

Intuition: The match we are looking for can be anywhere in the system.

Algorithm: The algorithm searches through all methods defined in the system matching the
prefix on which the completion is attempted. It sorts the list alphabetically.

Prefix 2 3 4 5 6 7 8
% 1st 0.0 0.33 2.39 3.09 0.0 0.03 0.13
% 2nd 2.89 | 10.79 | 14.35 | 19.37 | 16.39 | 23.99 | 19.77
% 3nd 0.7 5.01 8.46 | 14.39 | 14.73 | 23.53 | 26.88
% 4-10 6.74 | 17.63 | 24.52 23.9 | 39.18 | 36.51 | 41.66
% fail 89.63 66.2 | 50.24 | 39.22 | 29.67 15.9 | 11.53

Table 8.2: Results for the default algorithm

Results: The algorithm’s score is 12.1. The algorithm barely, if ever, places the correct match in
the top position. However it performs better for the second and third places, which rise steadily:
They contain the right match nearly half of the time with a prefix length of 7 or 8, however a
prefix length of eight is already long.

136 8.5 Code Completion Algorithms

8.5.2 Default Typed Strategy

Intuition: The match is one of the methods defined in the hierarchy of the class of the receiver.

Algorithm: The algorithm searches through all the methods defined in the class hierarchy of
the receiver, as inferred by the completion engine.

Prefix 2 3 4 5 6 7 8
% 1st 31.07 | 36.96 | 39.14 | 41.67 | 50.26 | 51.46 | 52.84
% 2nd 10.11 | 11.41 | 13.84 | 16.78 | 13.13 | 13.51 | 12.15
% 3nd 5.19 5.94 491 5.15 3.2 1.94 2.0
% 4-10 | 16.29 | 12.54 | 12.24 8.12 6.29 4.14 2.79
% fail 37.3 | 33.11 | 29.83 | 28.24 | 27.08 | 28.91 | 30.18

Table 8.3: Results for the default typed completion

Results: The score is 47.95. Only the results where the type inference engine found a type were
considered. This test was only run on the SpyWare case study as technical reasons prevented
us to make the type inference engine work properly for the other case studies. The algorithm
consistently achieves more than 30% of matches in the first position, which is much better than
the untyped case. On short prefixes, it still has less than 50% of chances to get the right match
in the top 3 positions.

8.5.3 Optimist Structure

Intuition: Local methods are called more often than distant ones (i.e., in other packages).

Algorithm: The algorithm searches first in the methods of the current class, then in its package,
and finally in the entire system.

Prefix 2 3 4 5 6 7 8
% 1st 12.7 | 22.45 | 24.93 | 27.32 | 33.46 39.5 | 40.18
% 2nd 594 | 13.21 | 18.09 | 21.24 | 20.52 | 18.15 22.4
% 3nd 3.26 5.27 6.24 7.22 | 10.69 | 14.72 | 10.77
% 4-10 | 14.86 | 16.78 | 18.02 | 17.93 | 17.23 | 20.51 | 20.75
% fail 63.2 | 42.26 | 32.69 | 26.26 | 18.07 7.08 5.87

Table 8.4: Results for optimist structure

Results: The algorithm scored 34.16. This algorithm does not use the history of the system,
only its structure, but is still an optimist algorithm since it orders the matches non-alphabetically.
This algorithm represents how much one can achieve without using an additional source of
information. As we can see, its results are a definite improvement over the default algorithm,
since even with only two letters it gets more than 10% of correct matches. There is still room
for improvement.

137 8.5 Code Completion Algorithms

8.5.4 Recently Modified Method Names

Intuition: Programmers are likely to use methods they have just defined or modified.

Algorithm: Instead of ordering all the matches alphabetically, they are ordered by date, with
the most recent date being given priority. Upon initialization, the algorithm creates a new dated
entry for every method in the system, dated as January 1, 1970. Whenever a method is added
or modified, its entry is changed to the current date, making it much more likely to be selected.

Prefix 2 3 4 5 6 7 8
% 1st 16.73 | 23.81 | 25.87 | 28.34 | 33.38 | 41.07 | 41.15
% 2nd 6.53 | 12.99 | 17.41 19.3 | 18.23 | 16.37 | 21.31
% 3nd 4.56 6.27 6.83 7.7 | 11.53 | 15.58 | 10.76
% 4-10 | 15.53 17.0 | 20.16 | 20.73 | 20.34 | 20.65 | 21.55
% fail 56.63 | 39.89 29.7 23.9 | 16.47 6.3 5.18

Table 8.5: Results for recent method names

Results: The score is 36.57, so using a little amount of historical information is slightly better
than using the structure. The results increase steadily with the length of the prefix, achieving
a very good accuracy (nearly 75% in the top three) with longer prefixes. However the results
for short prefixes are not as good. In all cases, results for the first position rise steadily from 16
to 40%. This puts this first “optimist” algorithm slightly less than on par with the default typed
algorithm, albeit without using type information.

8.5.5 Recently Modified Method Bodies

Intuition: Programmers work with a vocabulary which is larger than the names of the methods
they are currently modifying. We need to also consider the methods which are called in the
bodies of the methods they have recently visited. This vocabulary evolves, so only the most
recent methods are to be considered.

Algorithm: A set of 1000 entries is kept which is considered to be the “working vocabulary” of
the programmer. Whenever a method is modified, its name and all the methods which are called
in it are added to the working set. All the entries are sorted by date, favoring the most recent
entries. The names of recently modified method are further prioritized.

Prefix 2 3 4 5 6 7 8
% 1st 47.04 | 60.36 | 65.91 | 67.03 | 69.51 | 72.56 | 72.82
% 2nd | 16.88 | 15.63 | 14.24 | 14.91 | 14.51 | 14.04 | 14.12
% 3nd 8.02 5.42 4.39 4.29 3.83 4.09 4.58
% 4-10 | 11.25 7.06 6.49 6.64 6.51 5.95 5.64
% fail 16.79 | 11.49 8.93 7.09 5.6 3.33 2.81

Table 8.6: Results for recently modified bodies

138 8.5 Code Completion Algorithms

Results: The score is 70.13. Considering the vocabulary the programmer is currently using
yields much better results. With a two-letter prefix, the correct match is in the top 3 in two
thirds of the cases. With a six-letter prefix, in two-third of the cases it is the first one, and it is in
the top three in 85% of the cases. This level of performance is worthy of an “optimist” algorithm.

8.5.6 Recently Inserted Code

Intuition: The vocabulary taken with the entire methods bodies is too large, as some of the
statements included in these bodies are not relevant anymore. Only the most recent inserted
statements should be considered.

Algorithm: The algorithm is similar to the previous one. However when a method is modified,
we only refresh the vocabulary entries which have been newly inserted in the modified method
as well as the name, instead of taking into account every method call. This algorithm makes a
more extensive use of the change information we provide.

Prefix 2 3 4 5 6 7 8
% 1st 33.99 | 52.02 | 59.66 | 60.71 | 63.44 | 67.13 68.1
% 2nd | 15.05 16.4 | 15.44 | 16.46 | 16.38 | 17.09 | 16.52
% 3nd 9.29 7.46 5.98 5.64 5.36 4.74 5.45
% 4-10 | 22.84 | 11.05 8.53 8.65 8.45 7.23 6.71
% fail 18.79 | 13.03 | 10.35 8.5 6.33 3.77 3.17

Table 8.7: Results for recently inserted code

Results: In that case our hypothesis was wrong, since this algorithm is less precise (the score
is 62.66) than the previous one, especially for short prefixes. In all cases, this algorithm still
performs better than the typed completion strategy.

8.5.7 Per-Session Vocabulary

Intuition: Programmers have an evolving vocabulary representing their working set. However
it changes quickly when they change tasks. In that case they reuse and modify an older vo-
cabulary. It is possible to find that vocabulary when considering the class which is currently
changed.

Algorithm: This algorithm fully uses the change information we provide. In this algorithm, a
vocabulary (i.e., a set of dated entries) is maintained for each development session in the history.
A session is a sequence of dated changes separated by at most an hour. If a new change occurs
with a delay superior to an hour, a new session is started. In addition to a vocabulary, each
session contains a list of classes which were changed (or had methods changed) during it.

When looking for a completion, the class of the current method is looked up. The vocabulary
most relevant to that class is the sum of the vocabularies of all the sessions in which the class
was modified. These sessions are prioritized over the other.

139 8.5 Code Completion Algorithms

Prefix 2 3 4 5 6 7 8
% 1st 46.9 | 61.98 | 67.82 | 69.15 | 72.59 | 75.61 | 76.43
% 2nd | 16.88 | 15.96 | 14.41 | 15.01 | 14.24 | 14.44 13.8
% 3nd 7.97 5.73 4.64 4.3 3.45 3.0 3.4
% 4-10 | 14.66 8.18 6.5 6.19 5.44 4.53 4.16
% fail 13.56 8.12 6.58 5.32 4.25 2.39 2.17

Table 8.8: Results for per-session vocabulary

Results: This algorithm is the best we found so far —~with a score of 71.67— even if only by
1.5 points. It does so as it reacts more quickly to the developer changing tasks, or moving
around in the system. Since this does not happen that often, the results are only marginally
better. However when switching tasks the additional accuracy helps. It seems that filtering the
history based on the entity in focus (at the class level) is a good fit for an “optimistic” completion
algorithm.

8.5.8 Typed Optimist Completion

Intuition: Merging optimist completion and type information should give us the best of both
worlds.

Algorithm: This algorithm merges two previously seen algorithms. It uses the data from the
session-based algorithm (our best optimist algorithm so far), and merges it with the one from the
default typed algorithm. The list of matches for the two algorithms are retrieved (Mj,,;,, and
M;ypeq)- The matches present in both lists are further prioritized in M;,;,,, Which is returned.

Prefix 2 3 4 5 6 7 8
% 1st 59.65 | 64.82 | 70.09 | 73.49 | 76.39 | 79.73 | 82.09
% 2nd | 14.43 | 14.96 14.1 | 13.87 | 13.17 | 13.09 | 12.08
% 3nd 4.86 4.64 3.89 3.27 2.92 2.23 1.85
% 4-10 8.71 7.04 5.86 4.58 4.09 3.37 2.5
% fail 12.31 8.51 6.03 4.75 3.4 1.54 1.44

Table 8.9: Results for typed optimist completion

Results: The result is a significant improvement, by 5 points at 76.79 (we ran it on SpyWare
only for the same reasons as the default typed algorithm). This algorithm merely reuses the
already accurate session information, but makes sure that the matches corresponding to the
right type are prioritized. In particular, with a two letter prefix, it gets the first match correctly
60 percents of the times, compared to 30 and 45 for the two individual algorithms.

140 8.6 Discussion

8.5.9 Discussion of the results

Most of our hypotheses on what helps code completion where correct, except “Recently inserted
code”. We expected it to perform better than using the entire method bodies, but were proven
wrong. We need to investigate if merging the two strategies (the vocabulary is the entire body,
but recently inserted entries are prioritized further), yields any benefits over using only “Recent
modified bodies”. On the other hand, using sessions to order the history of the program is still
the best algorithm we found, even if by a narrow margin. This algorithm considers only inserted
calls during each session, perhaps using the method bodies there could be helpful as well.

When considering the other case studies (Table [8.10)), we see that the trends are the same
for all the studies, with some variations. Globally, if one algorithm performs better than another
for a case study, it tends to do so for all of them. The only exception is the session-aware
algorithm, which sometimes perform better, sometimes worse, than using the code of all the
methods recently modified, a close second. One reason for this may be that the other case
studies have a much shorter history, diminishing the roles of sessions. The algorithm has hence
less time to adapt.

Project SwW S1 S2 S3 S4 S5 S6
Baseline | 12.15 | 11.17 | 10.72 | 15.26 | 14.35 | 14.69 | 14.86
Structure | 34.15 | 23.31 | 26.92 | 37.37 | 31.79 | 36.46 | 37.72
Names 36.57 | 30.11 | 34.69 | 41.32 | 29.84 | 39.80 | 39.68
Inserted | 62.66 | 75.46 | 75.87 | 71.25 | 69.03 | 68.79 | 59.95
Bodies 70.14 | 82.37 | 80.94 | 77.93 | 79.03 | 77.76 | 67.46
Sessions | 71.67 | 79.23 | 78.95 | 70.92 | 77.19 | 79.56 | 66.79

Table 8.10: Scores for the untyped algorithms of all projects

Considering type information, we saw that it gives a significant improvement on the de-
fault strategy. However, the score obtained by our optimist algorithms —without using any type
information- is still better. Further, our optimist algorithms work even in cases where the type
inference engine does not infer a type, and hence is more useful globally. Merging the two
strategies, e.g., filtering the list of returned matches by an optimist algorithm based on type
information, gives even better results.

8.6 Discussion

Systematic Evaluation

Our approach is the only one to our knowledge allowing a systematic, automatic and repeatable
evaluation of code completion engines. In addition, the ability to define a benchmark has proven
very valuable to the incremental development of the completion algorithms we tested. It is easy
to see if a change results in an improvement when this amounts to comparing two numbers.

Completion of Methods Versus Other Entities

The benchmark we defined only takes into account the completion of method calls, and not
other program entities. This is because the number of methods is usually the highest. Other
entities, such as packages, classes, variables or keywords are less numerous. Hence the number

141 8.6 Discussion

of methods usually dwarfs the number of other entities in the system, and is where efforts should
be first focused to get the most improvements.

Typed Versus Untyped Completions

As we have seen in Section[8.3] there are mainly two kinds of completion: Type-sensitive comple-
tion, and type-insensitive completion, the latter being the one which needs to be improved most.
We used the Squeak IDE to implement our benchmark. As Smalltalk is dynamically typed, this
allows us to improve type-insensitive completion. Since Squeak features an inference engine, we
were able to test whether our completion algorithms also improves type-sensitive completion,
but only with inferred types.

Applicability to Other Programs

We have tested several programs, but can not account for the general validity of our results.
However, our results are consistent among the different program we tested. If an algorithm
performs better in one, it tends to perform better on the others. To generalize our results, one
simply needs to add new development histories to the benchmark’s corpus and run it again.

Applicability to Other Languages

Our results are currently valid for Smalltalk only. However, the tests showed that our optimist
algorithms perform better than the default algorithm using type inference, even without any
type information. Merging the two approaches shows another improvement. An intuitive reason
for this is that even if only 5 matches are returned due to the help of typing, the position they
occupy is still important. Thus we think our results have some potential for typed object-oriented
languages such as Java. In addition, we are confident they could greatly benefit any dynamically
typed language, such as Python, Ruby, Erlang, etc.

As for the previous discussion point, adding development histories for these languages would
confirm or infirm this hypothesis. Depending on the features of the language, this may require
modifying the algorithms as well. However, our algorithms make few assumptions about the
structure of the system (the only one being the structure-aware algorithm, and to a limited
extent the session-aware algorithm), so the modifications should be minimal.

Replication of Mylyn’s Completion

Mylyn’s task contexts feature a form of code completion prioritizing elements belonging to the
task at hand [[KMO6]], which is similar to our approach. We could however not reproduce their
algorithm since our recorded information focuses on changes, while theirs focuses on interac-
tions (they also record which entities were changed, but not the change extent). The data we
recorded includes interactions only on a smaller period and could thus not be compared with
the rest of the data.

Resource Usage

Our benchmark in its current form is resource-intensive. Testing the completion engine several
hundred thousands time in a row takes a few hours for each benchmark. We are looking at ways
to make this faster.

142 8.7 Summary

8.7 Summary

In this chapter, we tackled the problem of improving and evaluating recommender systems
through the example of code completion. Recommender systems monitor a programmer’s activ-
ity and make recommendations that need to be accurate in order not to slow the programmer
down. Even if code completion is a tool used by every developer, improvements have been few
and far-between as additional data was needed to both improve it and measure the improve-
ment.

Change-based Software Evolution proved to be a valuable asset to evaluate code completion
engines, as it records enough information to simulate the usage of a completion engine at any
point in the history of the system. This recorded information was used in the definition of a
benchmark allowing systematic testing of code completion engines with realistic data.

This shows that recording development histories is a good way to evaluate recommender
systems needing expensive human studies, provided that enough information is available to
recreate the context needed by the recommender. Recording a system’s evolution in a manner
that makes it possible to recreate the system’s AST as Change-based Software Evolution does is
a significant source of information to gather. Other data sources such as navigation information
in the IDE are simpler to record and could be added to the data recorded by Change-based
Software Evolution. The availability of this data allows the definition of benchmarks which
measure recommender systems in a cheap, accurate and repeatable fashion.

In addition, the data provided by Change-based Software Evolution was also useful to im-
prove the accuracy of the recommendations a completion engine offers. Incorporating change
information in the code completion algorithm improved the score from 12 out of 100 to more
than 70. This translated to slightly less than a 75% chance of having the match one was look-
ing for with a two-letter prefix. This is due because recent changes are a good approximation
of the entities that constitute the working set a programmer is using at any time. Of course,
whether this applies to other types of recommender systems in the same proportions remain to
be determined.

Chapter 9

Improving Recommendations for
Change Prediction

Change prediction consists in recommending artifacts that have a high probability
of changing when a given artifact changes. Change prediction is useful both to
recommend artifacts whose modification is not obvious, or as a productivity tool
to facilitate navigation to entities that the programmer has to modify. If the first
can be reliably tested up to a certain extent with SCM archives, there is no way to
repeatedly test the second.

The fine-grained granularity of the data we record allows us to replay exact
development sessions. With this fine-grained recorded history, we defined a bench-
mark for change prediction algorithms in order to reliably measure the accuracy of
change recommender systems on the entire development history of several projects.
With this benchmark, we evaluated several change recommender systems either
found in the literature or that we introduced.

143

144 9.1 Introduction

9.1 Introduction

In the previous chapter, we investigated the usefulness of Change-based Software Evolution in
the case of recommender systems. We showed that using Change-based Software Evolution’s
data, one can build a comprehensive benchmark to evaluate a specific type of recommender
system, code completion. The benchmark being fully automatized allows us to repeat the exper-
iment cheaply, enabling the reproduction of other approaches, their comparison and measuring
incremental improvements to recommendation algorithms. We have also shown that the evolu-
tionary data provided by Change-based Software Evolution significantly improved the accuracy
of the recommendations of the completion engine.

In this chapter, we bring further support to these conclusions by defining and using a bench-
mark for change prediction. The difference with the previous chapter is that benchmarks for
change prediction tools already exist using SCM archives. The intent of this chapter is hence to
show that benchmarks based on Change-based Software Evolution improve on SCM-based ones
in the following ways:

* Benchmarks defined by Change-based Software Evolution approximate the behavior of a
developer better, as they record and replay actual developer interactions, thus providing a
more realistic setting.

* Qur benchmarks provide more data, of a more precise nature than SCM-based bench-
marks. This in turn makes recommender systems for Change-based Software Evolution
outperform those relying on SCM data.

* Benchmarks defined by Change-based Software Evolution can be used to evaluate another
class of recommender systems (based on IDE monitoring) in the same unified framework.

The recommender system under study in this chapter is change prediction. Change predic-
tors assist developers and maintainers by recommending entities that may need to be modified
alongside the entities currently being changed. Depending on the development phase, change
prediction has different usages.

For software maintenance, change predictors recommend changes to entities that may not
be obvious [[ZWDZ04; [YMNCCO04]. In a software system, there often exist implicit or indirect
relationships between entities [GHJ98]). If one of the entities in the relationship is changed, but
not the other, subtle bugs may appear that are hard to track down.

For forward engineering, change predictors serve as productivity enhancing tools that ease the
navigation to the entities that are going to be changed next. In this scenario, a change predictor
maintains and proposes a set of entities of interest to help developers focus the programming
tasks.

So far, maintenance-mode change prediction has been validated using the history archives
of software systems as an oracle. This is an existing benchmark, which is however ad-hoc. It
is in particular unadapted to active development, when the transactions are too large to allow
an accurate evaluation. As a consequence, no satisfactory approach has been proposed for tools
adapted to the forward engineering use case. Those are assessed through comparative studies
involving developers [[KMO6; [SESO5]], a labor-intensive, error-prone and imprecise process (see
Section [8.2] for the costs of human subject studies). An accurate benchmark handling both cases
is needed.

We present a unifying benchmark for both kinds of change prediction, based on several fine-
grained development histories, recorded with Change-based Software Evolution. Our detailed
histories are unaffected by the inaccuracies of large transactions, making it usable for both kind

145 9.2 Change Prediction Approaches

of change predictors. It provides (close to) real life benchmark data without needing to perform
comparative studies. Based on the benchmark, we perform a comparative evaluation of several
change prediction approaches.

Contributions. The contributions of this chapter are:

* A benchmark for change predictor based on the fine-grained data recorded by Change-
based Software Evolution. It is more accurate and more generic than previous SCM-based
benchmarks.

* The evaluation of several change prediction approaches, some replicated from the litera-
ture, some novel. These approaches are representative of the various branches of change
prediction.

Structure of the chapter. Section describes various change prediction approaches existing
in the literature in the two change prediction styles. Section justifies and presents our
benchmark for change prediction approaches. Section details the approaches we evaluated
with our benchmark and presents the benchmark results, which we discuss in Section[9.5] before
concluding in Section

9.2 Change Prediction Approaches

Several change prediction approaches have been proposed, along three major trends. Historical
approaches and approaches based on Impact Analysis have been evaluated on SCM-based data.
IDE-based approaches, have on the other hand mostly been evaluated with human subjects.

9.2.1 Historical Approaches

Historical approaches use an SCM system’s repository to predict changes, primarily in a mainte-
nance setting.

Zimmerman et al. [[ZWDZ04] mined the CVS history of several open-source systems to pre-
dict software changes using the heuristic that entities that changed together in the past are going
to change together in the future. They reported that on some systems, there is a 64% probability
that among the three suggestions given by the tool when an entity is changed, one is a location
that indeed needs to be changed. Their approach works best with stable systems, where few new
features are added. It is indeed impossible to predict new features from the history. Changes
were predicted at the class level, but also at the function (or method) level, with better results
at the class level.

Ying et al. employed a similar approach and mined the history of several open source projects
[YMNCCO04]. They classified their recommendations by interestingness: A recommendation is
obvious if two entities referencing each other are recommended, or surprising if there was no re-
lationships between the changed entity and the recommended one. The analysis was performed
at the class level. Sayyad-Shirabad et al. also mined the change history of a software system in
the same fashion [[SLMO03]], but stayed at the file level.

Girba also detected co-change patterns [|GirO5]] at the level of classes instead of file, using
his metamodel Hismo. He also qualified co-change patterns, with qualifiers such as Shotgun
Surgery, Parallel Inheritance or Parallel Semantics. He also proposed the Yesterday’s Weather
measure [[GDLO4]. Yesterday’s Weather postulates that future changes will take place where the
system just changed and measures how much a given system conforms to this postulate.

146 9.2 Change Prediction Approaches

9.2.2 Impact Analysis Approaches

Impact analysis has been performed using a variety of techniques; we only comment on a few.
Briand et al. [BWL99] evaluated the effectiveness of coupling measurements to predict ripple
effect changes on a system with 90 classes. The results were verified by using the change data
in the SCM system over 3 years. One limitation is that the coupling measures were computed
only on the first version of the system, as the authors took the assumption that it would not
change enough to warrant recomputing the coupling measures for each version. The system was
in maintenance mode.

Wilkie and Kitchenham [WKOO] performed a similar study on another system, validating
change predictions over 130 SCM transactions concerning a system of 114 classes. Forty-four
transactions featured ripple changes. Both analyses considered coupling among classes.

Tsantalis et al. proposed an alternative change prediction approach, based on a model of
design quality. It was validated on two systems. One had 58 classes and 13 versions, while the
other had 169 classes and 9 versions [[TCS05]].

Hassan and Holt proposed a generic evaluation approach based on replaying the develop-
ment history of projects based on their versioning system archives[[HHO6]]. They compared
several change prediction approaches over the history of several large open-source projects,
and found that historical approaches have a higher precision and recall than other approaches.
Similar to Zimmermann et al., they observed that the GCC project has different results and
hypothesized this is due to the project being in maintenance mode.

Kagdi proposed a hybrid approach merging impact analysis techniques with historical tech-
niques [Kag07]]. They argued that such an approach provides better results than the two other
approaches on their own, but no results have been published.

9.2.3 IDE-based approaches

The goal of short-term, IDE-based prediction approaches is to ease the navigation to entities
which are thought to be used next by the programmer. These approaches are based on IDE mon-
itoring and predict changes from development session information rather than from transactions
in an SCM system. They can thus better predict changes while new features are being built, as
they monitor the creation of the new entities and can thus incorporate them in their predictions.

Mylyn [KMO6] maintains a task context consisting of entities recently modified or viewed
for each task the programmer defined. It limits the number of entities the IDE displays to the
most relevant, easing the navigation and modification of these entities. Mylyn uses a Degree Of
Interest (DOI) model, and has been validated by assessing the impact of its usage on the edit
ratio of developers, i.e., the proportion of edit events with respect to navigation events in the
IDE. It was shown that using Mylyn, developers spent more time editing code, and less time
looking for places to edit.

NavTracks [[SESO5] and Teamtracks [[DCRO5]] both record navigation events to ease naviga-
tion of future users, and are geared towards maintenance activities. Teamtracks also features a
DOI model. NavTrack’s recommendations are at the file level. Teamtracks was validated with
user studies, while NavTracks was validated both with a user study and also by recording the
navigation of users and evaluating how often NavTracks would correctly predict their navigation
paths (around 35% of the recommendations were correct).

147 9.3 A Benchmark for Change Prediction

9.3 A Benchmark for Change Prediction

As with our previous benchmark descriptions, we first motivate the need for a change prediction
benchmark, then describe its procedure, how approaches are evaluated and how the results are
presented. Finally, we present the change histories our benchmark uses.

9.3.1 Motivation

In Section [9.2] we have listed a number of change prediction approaches that have been evalu-
ated with data obtained either by mining the repositories of SCM systems or with human subject
studies. In Section we already showed why a human subject study may not be the most
adequate validation method. SCM-based benchmarks also suffer from drawbacks.

An SCM-based benchmark proceeds as follows: For each transaction, the set of entities that
have changed are extracted. This set is split in two parts, A and B. The predictor is given the
set of entities A, and its task is to guess the entities that are in B. The predictor’s accuracy can
then be measured in terms of precision and recall. This approach however suffers from several
limitations.

The first is that the data obtained by mining an SCM repository is potentially inaccurate:
Some SCM transactions represent patch applications rather than developments and cannot be
used for change prediction. Other transactions are simply too large to extract useful information.
SCM transactions in the case of active development are larger, and inherently more noisy as the
relationship between two related entities is obscured by other entities in the transaction which
are less related. This is one of the reasons why change prediction does not work as well in the
case of active development.

Another reason is the arbitrary way in which a transaction is split in two sets of entities. In an
SCM transaction, the order of the changes is lost, hence there is no indication of which entities
were modified first in the session. These entities would more naturally fit in the set of entities
given as context to the predictor. This problem is compounded with the above problem of large
transactions.

If these drawbacks are merely a nuisance for history and coupling-based approaches on main-
tenance systems, they render the SCM-based benchmark approach useless for IDE-based recom-
mender system, and more generally in the context of active development. Active development is
characterized by a greater amount of changes, causing larger commits and more noise overall.
IDE-based approaches require a finer context, which is simply not possible to reconstruct only
from the outcome of the session.

Zeller’s vision is that future IDEs are bound to offer more and more assistance to developers
in the IDE itself [[Zel07]]. Evaluating this kind of IDE-based recommender systems needs to be
done in a close to real-world setting. SCM-based benchmarks are simply not accurate enough
for that.

9.3.2 Procedure

Our benchmark functions similarly to a SCM-based benchmark, but at a much finer level. During
each run, we test the accuracy of a change prediction algorithm over a program’s history, by
processing each change in turn. We first ask the algorithm for its guess of what will change next.
The algorithm returns a list of entities expected to change. We evaluate that guess compared
to the next changes, and then provide that change to the algorithm, so that it can update its
representation of the program’s state and its evolution.

148 9.3 A Benchmark for Change Prediction

Some changes are directly submitted to the prediction engine without asking it to guess the
changes first. They are still processed, since the engine must have an accurate representation of
the program. These are (1) changes that create new entities, since one cannot predict anything
for them, (2) repeated changes, i.e., if a change affects the same entity than the previous one, it
is skipped, and (3) refactorings or other automated code transformations.

Input: History: Change history used
Predictor: Change predictor to test
Output: Results: benchmark results

Results = makeResultSet();

foreach Session S in ChangeHistory do

storeSessionInfo(S, result);

testableChanges = filterTestableChanges(S); foreach Change chin S do

if includes(testableChanges,ch) then
predictions = predict(Predictor);
nbPred = size(predictions);
oracle = nextElements(testableChanges, nbPred);
storeResult(results, predictions, oracle);
end
processChange(Predictor, ch);
end

return Results
end

Algorithm 4: Benchmark result collection

The pseudo-code of our algorithm is shown in Algorithm [4} It runs on two levels at once,
asking the predictor to predict the next changing class and the next changing method. When a
method changes, the predictor is first asked to guess the class the method belongs to. Then it is
asked to guess the actual method. When a class definition changes, the predictor is only tested
at the class level. This algorithm does not evaluate the results, but merely stores them along
with the actual next changing entities.

9.3.3 Evaluation

With these results stored, we can evaluate them in a variety of ways. All of them share the
same performance measurement, but applied to a different set of predictions. Given a set of
predictions, we use Algorithm [5]to return an accuracy score.

Given a list of n predictions, the algorithm compares them to the next n entities that changed,
and sets the accuracy of the algorithm as the fraction of correct predictions over the number of
predictions. In the case where less than n entities changed afterwards (m), only the m first
predictions are taken into account.

Accuracy vs. Prediction and Recall. Change prediction approaches that use SCM data are often
evaluated using precision and recall. We found however that our data does not fit naturally with
such measurements, because while recorded changes are sequential, some development actions
can be performed in any order: If a developer has to change three methods A, B, and C, he can
do so in any order he wants. To account for this parallelism, we do not just test for the prediction
of the next change, but for the immediate sequence changes with length n. Defining precision
and recall for the prediction set and the set of the actual changes would make both measures
have the same value. This does not fit the normal precision and recall measures which vary

149 9.3 A Benchmark for Change Prediction

Input: Results: Benchmark results
Depth: Number of predictions to evaluate
Output: Score: Accuracy Score

accuracy = 0;
attempts = size(results);
foreach Attempt att in attemps do
predictions = getPredictions(att, Depth);
oracles = getOracles(oracles, Depth);
predicted = predictions N oracles;
accuracy = accuracy + (size(predicted) / size(predictions));
end
Score = accuracy / attempts;
return Score

Algorithm 5: Benchmark result evaluation

in inverse proportion to each other. Intuitively, approaches with a high recall tend to make a
greater number of predictions, while approaches with a higher precision make less predictions,
which are more accurate. Since we fix the number of predictions to a certain size n, we use one
single accuracy measure.

We measure the following types of accuracy:

* Coarse-grained accuracy (C) measures the ability to predict the classes where changes will
occur.

* Fine-grained accuracy (M) measures the ability to predict the methods where changes will
occur.

* Initial accuracy (I) measures how well a predictor adapts itself to a changing context both
for classes and methods. To evaluate how fast a change predictor reacts to a changing
context, we measure its accuracy on the first changes of each session. These feature the
highest probability that a new feature is started or continued. We measure the accuracy
for the first 20 changes of each session.

9.3.4 Result Format

In the next section we measure the accuracy of a number of approaches using the previously
presented benchmark. We present the results in tables following the format of the sample Ta-
ble

For each of the projects (occupying the rows) we compute the coarse-grained (C5, C7, C9),
the fine-grained (M5, M7, M9) and the initial accuracy for classes (CI7) and for methods (MI7).
The digits (5,7,9) indicate the length of the prediction and validation set, e.g., M7 means that
we measure the accuracy of change prediction for a sequence of method changes of length 7.

How are the numbers to be understood? For example, in the C5 column we measure the
coarse-grained accuracy of one of the approaches. The ’13’ in the SpyWare (SW) row means
that when it comes to predicting the next 5 classes that will be changed, the fictive predictor
evaluated in Table is guessing correctly in 13% of the cases. In the case of the small student
projects (row A-F) the values indicate how the predictors perform on very small sets of data. We

150 9.3 A Benchmark for Change Prediction

Project C5 Cc7 CO | M5 M7 M9 | CI7 MI7

SW 13.0 155 175 |27 29 31172 41
A-F 273 320 371 |33 3.7 40| 347 55
SA 16.1 193 219 |45 54 6.2 21.7 64
X 6.0 74 84|21 22 22 7.9 3.7

AVG 144 172 196 | 3.1 35 39| 185 46

Table 9.1: Sample results for an algorithm

aggregated the results of all the students projects in a single row to ease reading. The Software
Animator (SA) row indicates how the predictors perform on Java systems, while the second last
row (X) indicates how the predictors perform on a system built around a large web framework.
The bottom row contains the weighted average value accuracy for each type of prediction. The
average is weighted with the number of changes of each of the benchmark systems. This means
that the longest history, the one of SpyWare, plays a major role, and that one should not expect
arithmetic averages in the last row.

9.3.5 Data Corpus

We selected the following development histories as benchmark data:

* SpyWare, our prototype, monitored over a period of three years, constitutes the largest
data set. The system has currently around 25,000 lines of code in 700 classes. We recorded
close to 25,000 changes so far.

* A Java project developed over 3 months, the Software Animator. In this case, we used
our Java implementation of SpyWare, an Eclipse plugin called EclipseEye[|Sha07], which
however does not support the recording of usage histories.

* Six one-week small student projects with sizes ranging from 15 to 40 classes, with which
we tested the accuracy of approaches on limited data. These development histories test
whether an approach can adapt quickly at the beginning of a fast-evolving project.

* A professional Smalltalk project tracked for 3 months, built on top of a web application
development framework.

Project Days Sessions Changes | Classes Predictions Early | Methods Predictions Early
SpyWare 1,095 496 23,227 697 6,966 4,937 7,243 12,937 6,246
Animator 62 133 15,723 605 3,229 1,784 1,682 8,867 2,249
Project X 98 125 5,513 498 2,100 1,424 2,280 3,981 1,743
Project A 7 17 903 17 259 126 228 670 236
Project B 7 19 1,595 35 524 210 340 1,174 298
Project C 8 19 757 20 215 151 260 538 251
Project D 8 17 511 15 137 122 142 296 156
Project E 7 22 597 10 175 148 159 376 238
Project F 7 22 1,326 50 425 258 454 946 369
Total 1,299 870 50,152 1,947 14,030 9,160 12,788 29,785 11,786

Table 9.2: Development histories in the benchmark.

151 9.4 Results

The characteristics of each project are detailed in Table [9.2] namely the duration and size
of each project (in term of classes, methods, number of changes and sessions), as well as the
number of times the predictor was tested for each project, in four categories: overall class pre-
diction, overall method prediction, and class and method prediction at the start of sessions only
(this last point is explained in Section[9.3.3).

9.4 Results

In this section we detail the evaluation of a number of change prediction approaches using our
benchmark. We reproduced approaches presented in the literature and evaluated novel ones.
In the case of reproduced approaches, we mention the possible limitations of our reproduction
and the assumptions we make. This is followed by the results of each approach and a brief
discussion.

We start with a few general remarks. First, the larger the number of matches considered,
the higher the accuracy. This is not surprising. One must however limit the number of entities
proposed, since proposing too many entities is useless. One can always have 100% accuracy by
proposing all the entities in the project. This is why we limited ourselves to 742 entities, thus
keeping a shortlist of entities, these having still a reasonable probability of being the next ones.
This number is estimated to be the number of items that humans can keep in short-term memory
[Pin99].

Second, all the algorithms follow roughly the same trends across projects. The smaller
projects (A-F) have a higher accuracy, which is to be expected since there are less entities to
choose from, hence a higher probability to pick the correct ones. The software animator (SA)
project has a higher accuracy than SpyWare (SW), since it is also smaller. The project with the
least accuracy overall is project X. Its development is constituted of a variety of smaller tasks
and features frequent switching between these tasks. These parts are loosely related, hence the
history of the project is only partially useful at any given point in time. Further, project X was
already started when we starting monitoring it, so we do not have the full history. Predictions
relying on the further past (such as Association Rules Mining) are at a disadvantage.

152 9.4 Results

9.4.1 Association Rules Mining

Description. This is the approach employed by Zimmermann et al. [ZWDZ04]. Like Zim-
mermann’s approach, our version supports incremental updating of the dataset to better fit
incremental development. The alternative would be to analyze all the history at once, using
two-thirds of the data as a training set to predict the other third. This does however not fit
a real-life setting. As the approach uses SCM transactions, we make the assumption that one
session corresponds to one commit in the versioning system.

When processing each change in the session, it is added to the transaction that is being built.
When looking for association rules, we use the context of the 5 preceding changes. We mine for
rules with 1 to 5 antecedent entities, and return the ones with the highest support in the previous
transactions in the history. Like in Zimmermann’s approach, we only look for single-consequent
rules.

Project C5 Cc7 cO | M5 M7 M9 | CI7 MI7

SW 13.0 155 175 | 2.7 29 31| 172 41
A-F 273 320 371 |33 3.7 40| 347 5.5
SA 16.1 193 219 |45 54 62| 217 64
X 6.0 74 84|21 22 22 7.9 3.7

AVG 144 172 196 | 3.1 35 39| 185 46

Table 9.3: Results for Association Rules Mining

Results. Association rule mining serves as our baseline. As Table shows, the results are
relatively accurate for class-level predictions, but much lower for method-level predictions. The
results are in the range of those reported by Zimmermann et al. [[ZWDZ04]. They cite that for
case studies under active development, the precision of their method was only around 4%. Our
results for method-level accuracy are in the low single-digit range as well.

153 9.4 Results

9.4.2 Enhanced Association Rule Mining

Description. The main drawback of association rule mining is that it does not take into ac-
count changes in the current session. If entities are created during it, as is the case during active
development, prediction based on previous transactions is impossible. To address this, we incre-
mentally build a transaction containing the changes in the current session and mine it as well as
the previous transactions.

Project G5 c7 c9 M5 M7 M9 | CI7 MI7
SwW 30.0 36.1 408 | 13.7 16.2 184 | 40.0 23.1
A-F 39.7 456 522 | 124 149 16.6 | 50.6 23.4
SA 28.0 34.1 39.5| 142 17.7 209 | 39.4 24.0
X 244 29.6 33.7| 143 173 20.2 | 315 31.1
AVG 299 358 408 | 13.7 16.6 19.0 | 39.7 24.5

Table 9.4: Results for Enhanced Association Rules Mining

Results. The results of this simple addition are shown in Table The prediction accuracy at
the class-level is higher, but the method-level accuracy is much higher. Incrementally building
the current session, and mining it allows us to quickly incorporate new entities which have been
created in the current session, something that the original approach of Zimmermann does not
support, because the data is not available. Of note, the algorithm is more precise at the beginning
of the session than at the end, because the current session has less entities to propose at the
beginning of the session. Towards the end of the session, there are more possible proposals,
hence the approach loses some of its accuracy. In the following, we compare other approaches
with enhanced association rule mining, as it is a fairer comparison since it takes into account
entities created during the session.

154 9.4 Results

9.4.3 Degree of Interest

Description. Mylyn maintains a degree-of-interest model [[KMOS5]| for entities which have been
recently changed and edited. We implemented the same algorithm, with the following limita-
tions:

* The original algorithm takes into account navigation data in addition to change data. Since
we have recorded navigation data only on a fraction of the history, we do not consider
it. We make the assumption that navigation data is not essential in predicting future
change. Of course, one will probably navigate to the entity he wants to change before
changing it, but recommending to change what one is currently looking at is hardly a
useful recommendation.

* Another limitation is that more recent versions of the algorithm [KMO6]] maintain several
degrees of interests based on manually delimited tasks. The tasks are then recalled by
the developer. We do not consider separate tasks. The closest approximation of that for
us would be to assume that a task corresponds to a session, maintain a degree-of-interest
model for each session, and reuse the one most related to the entity at hand.

Project C5 Cc7 c9| M5 M7 M9 | CI7 MI7

SW 16.1 21.0 25.7 | 10.2 12.8 14.8 | 20.1 12.5
A-F 52.0 60.2 67.0 | 16.6 20.7 23.3 | 57.8 20.2
SA 224 298 355 | 21.2 269 31.0 | 29.7 252
X 155 195 22.0 6.1 74 82| 17.1 6.5

AVG 21.9 276 325|132 16.6 19.1 | 25.7 149

Table 9.5: Results for Degree of Interest

Results. We expected the degree of interest to perform quite well and found the results to be
below our expectations. At the class level, it is less precise than association-rule mining. At
the method level, it has roughly the same accuracy. The accuracy drops sharply with project
X, whose development involved continuous task switching. Since the degree-of-interest needs
time to adapt to changing conditions, such sharp changes lowers its performance. Indeed, the
best accuracy is attained when the algorithm has more time to adapt. One indicator of this is
that the algorithm’s accuracy at the beginning of the session is lower than the average accuracy.
The algorithm also performs well to predict classes in projects A-E since their size is limited. It
nevertheless shows limitations on the same projects to predict methods given the very short-term
nature of the projects (only a week).

155 9.4 Results

9.4.4 Coupling-based

Description. Briand et al. found that several coupling measures were good predictors of
changes [BWL99]. We chose to run our measure with the PIM coupling metric, one of the
best predictors found by Briand et al. PIM is a count of the number of methods invocations of an
entity A to an entity B. In the case of classes, this measure is aggregated between all the methods
in the corresponding two classes.

To work well, the coupling-based approach needs to have access to all the code base of the
system and the call relationships in it. With respect to this requirement, our benchmark suffers
from a number of limitations:

* We could not run this test on project SA, since our Java parser is currently not fine-grained
enough to parse method calls.

* We also do not include the results of Project X. Unfortunately, project X was already under
development when we started recording its evolution, and relies on an external frame-
work. Since we could not access that data, including the results would make for an unfair
comparison.

* One last limitation is that the Smalltalk systems do not have any type information, due
to the dynamically typed nature of Smalltalk. This makes our PIM measure slightly less
accurate.

Project C5 C7 C9 M5 M7 M9 | CI7 MI7

SW 21.0 26.2 30.6 9.7 118 133 | 253 11.2
A-F 21.3 28.0 340 | 108 141 16.6 | 299 15.7
SA - - - - - - - -
X

AVG 21.0 26.6 31.3 9.9 123 14.0 | 26.1 121

Table 9.6: Results for Coupling with PIM

Results. As we see in Table comparing with the other approaches is difficult since part of
the data is missing. On the available data, we see that the coupling approach performs worse at
the method level than Association Rules Mining and Degree of Interest. At the class level, results
are less clear: The approach performs worse than association rules, while the degree of interest
performs significantly better on projects A-E but is outperformed at the class level.

Overall, we share the conclusions of Hassan and Holt [HHO6]]: Coupling approaches have a
lower accuracy than history-based ones such as association rule mining. The comparison with
degree of interest somewhat confirms this, although it was outperformed in one instance.

156 9.4 Results

9.4.5 Association Rules with Time Coupling

Description. In previous work [RPLO8|] we observed that a fine-grained measure of logical
coupling was able to predict logical coupling with less data. We therefore used one of these
fine-grained measurements instead of the classical one to see if it was able to better predict
changes with association-rule mining. When mining for rules, instead of simply counting the
occurrences of each rule in the history, we factor a measure of time coupling. Time coupling
measures how closely in a session two entities changed. Entities changing very closely together
will have a higher time coupling value than two entities changing at the beginning and at the
end of a development session.

Project G5 c7 c9 M5 M7 M9 | CI7 MI7

Sw 30.1 36.0 40.6 | 132 16.0 18.3 | 38.0 214
A-F 37.0 43.6 50.8 | 14.6 173 19.3 | 45.7 23.3
SA 25.6 31.0 35.7|17.2 20.7 23.7 | 33.0 23.1
X 23.8 29.0 33.2| 10.8 146 17.6 | 29.9 259

AVG 29.0 347 39.7 | 140 172 19.7 | 36.6 226

Table 9.7: Results for Association Rules with Time Coupling

Results. As we see in Table our results are mixed. The prediction accuracy is slightly
lower that Enhanced Association Rules Mining for class-level predictions, and slightly better for
method-level predictions, each time by around one percentage point. It is encouraging that the
method prediction is increased, since it is arguably the most useful measure: Precise indications
are better than coarser ones. A possible improvement would be to use the combined coupling
metric we defined, which was more accurate than the time coupling alone.

157 9.4 Results

9.4.6 HITS

Description. Web search engines treat the web as a graph and feature very impressive results.
Examples of search algorithms on the web are the HITS algorithm [[KIe99]] and Google’s PageR-
ank [PBMWO8]]. HITS gives a hub and a sink (or authority) value to all nodes in a directed
graph. Good hub nodes (or web pages) point to many good sink nodes, and good sinks are
referred to by many good hubs. The algorithm starts with an initial value for each node which
is adjusted at each iteration of the algorithms, depending on the hub and sink values of its
neighbors.

While the original HITS works on hyperlinked web pages, we build a graph from classes
and methods, linking them according to containment and message sends. The predictor has two
variants, respectively recommending the best hubs or the best sinks. Hubs are classes or methods
pointing to a large number of other classes or methods, while sinks are classes or methods
pointed at by a large number of other entities. To account for recent changes, we maintain this
graph for the entities and the methods defined or changed in the 50 latest changes.

Project G5 c7 c9 M5 M7 M9 | CI7 MI7

SW 40.8 488 558|159 171 179 | 483 172
A-F 44.7 55.7 65.1 | 209 23.5 252 | 57.6 22.6
SA 554 715 857|313 356 389|736 330
X 30.4 33.7 36.7 7.7 84 88| 324 86

AVG 43.1 526 61.0| 19.2 214 228 | 51.8 19.6

Table 9.8: Results for Hits, best hubs

Project C5 C7 C9 M5 M7 M9 | CI7 MI7
SW 50.0 559 61.1|16.7 179 18.6 | 558 17.7

A-F 57.6 66.0 74.6 | 22.3 249 26.7 | 65.8 24.0
SA 60.6 74.6 87.5| 321 362 39.0 | 76.2 335
X 34.0 38.1 408 8.0 8.6 9.0 | 37.3 8.5

AVG 51.0 588 65.8|20.1 221 234 |58.0 20.1

Table 9.9: Results for Hits, best sinks

Results. The HITS algorithm proved to be the highest performer overall since it has a signifi-
cantly higher method-level accuracy overall. We tested two variants, the first one returning the
best hubs in the HITS graph, and the second returning the best sinks. Of the two, recommend-
ing sinks seems to consistently achieve a higher accuracy than recommending hubs. As with
the degree-of-interest, HITS tends to be more precise towards the end of a session. We need to
investigate ways to make the algorithm adapt faster to new contexts.

158 9.4 Results

9.4.7 Merging Approaches

Description. Kagdi et al. advocated merging history based approaches and impact analysis
based approaches [Kag07]], arguing that combining the strong points of several approaches can
yield even more benefits. This strategy was successfully used by Poshyvanyk et al. in a related
problem, feature location [PGM'07]]. We tried the following merging strategies:

Top: Returning the top picks of the combined approaches. This approaches assumes that the
first choices of an approach are the most probable ones. Given two predictors A and B, it
returns A's first pick, then B’s first pick, then A's second pick, etc..

Common: Returning entities nominated by several approaches, followed by the remaining picks
from the first approach. This approach assumes that the first predictor is the most accurate,
and that the other predictors are supporting it. The approach returns all the predictions
in common between at least two predictors, followed by the remaining predictions of the
first predictor.

Rank addition: This approach favors low ranks in the result lists and entities nominated by
several predictors. An interest value is computed for each prediction. Each time the
prediction is encountered, its interest is increased by a value proportional to its rank in
the prediction list it is in. If it is encountered several times, its interest value will thus be
higher. The predictions are then sorted by their interest value.

Predictor 1 Predictor 2 Strategy | Score Increase
Hits-Sinks Coupling Common | 40.6 +0.1
Hits-Hubs Interest Common | 37.8 +0.8
Hits-Hubs Coupling Common | 37.3 +0.3
Rule Mining Interest Common | 27.4 +1.2
Rule Mining Time Coupling Top 27.3 +1.1
Rule Mining Coupling Rank 26.3 +0.1
Time Coupling Coupling Rank 26.1 +0.2
Interest Coupling Rank 22.6 +0.5

Table 9.10: Results when merging two prediction approaches

Results. We tried these merging approaches on each possible combination of two and three
predictors. In the following table we report on the successful ones, where the accuracy of the
merging was greater than the best of the merged approaches. If several merging strategies
were successful with the same pair of predictors, we only report the best performing one. We
only report one accuracy figure, which is the average of C7 and M7. The results are shown in
Table

We see that merging is successful in some cases, although the effect is limited. The predic-
tions based on the HITS algorithm see some improvement only with the “Common” strategy,
which favors the first predictor. This is to be expected, since these algorithms are significantly
more accurate than the other ones. Systematically merging their top candidates with the ones
of a less accurate approach automatically decreases their efficiency.

With other predictors, merging strategies becomes more viable. The “Top” strategy is the
less successful, as it appears only once. This strategy is the only one not rewarding the pres-
ence of common recommendations in the two predictors. In the case where “Top” yielded an

159 9.4 Results

improvement of 1.1%, using “Rank” instead gave a slightly smaller increase of 0.9%. Overall,
merging strategies favoring common predictions work best, since “Rank” appears three times,
and “Common” four.

Perhaps the most important fact is that Coupling appears in five of the eight successful merg-
ings. This supports the idea that coupling based on the structure of the system proposes different
predictions than history-based ones. Our result provide initial support to Kagdi’s proposition of
merging impact-analysis approaches (some of them using coupling measurements) with history-
based approaches.

Surprisingly, merging three predictors instead of two yielded few benefits. Only in one in-
stance was it better than merging two. Merging Association Rule Mining, Degree of Interest and
Coupling had a score of 27.9, a 0.5% increase over merging only Association Rule Mining and
Degree of Interest. Of note, only Rank and Common were successful in merging three predictors.
The higher the number of predictors, the more important it is to favor common predictions.

9.4.8 Discussion of the results

The results of all the predictors are summed up in Table and graphically in Figure
Note that the coupling results were not run on all the projects, and should as such be taken with
a grain of salt. The last two columns represent an overview value for each predictor: O7 is the
average of C7 and M7, while MO7 is another average of C7 and M7, favoring method accuracy
(C7 counts for a third and M7 for the two remaining thirds).

Predictor C5 Cc7 C9 M5 M7 M9 Cl7 MI7 07 MO7
Association Rules Mining 144 172 19.6 3.1 3.5 3.9 | 18.5 4.6 10.35 8.06
Enhanced Rules Mining 299 358 408 | 13.7 16.6 19.0 | 39.7 245 26.20 23.00
Degree of Interest 219 27.6 325 | 132 16.6 19.1 | 25.7 149 22.10 20.26
Coupling-based* 21.0 26.6 313 9.9 123 140 | 26.1 12.1 19.45 17.06
Rules Mining & Time Coupling | 29.0 34.7 39.7 | 140 17.2 19.7 | 36.6 22.6 2595 23.03
Hits, best Hubs 43.1 526 61.0 | 19.2 214 228 | 51.8 19.6 37.00 31.80
Hits, best Sinks 51.0 588 658 | 201 221 234 | 580 20.1 40.45 34.33

Table 9.11: Comprehensive results for each predictor

(Enhanced) Association Rules Mining

Taking into account recent changes to predict the very next changes in the system is important,
as shown by the difference between association rules mining and enhanced association rules
mining. The only addition to enhanced association rules mining is to also mine for rules in the
current session. However the results are drastic, since its accuracy more than doubles.

We tried to alter the importance of the rule based on the changes in the sessions. We found
that taking into account the timing of the changes when they occurred in a session decreased
the accuracy at the class level, but increased it at the method level. This may be because classes
are interacted with on longer portions of a development session, while method interactions are
much more localized in time, and usually worked at only for brief periods of time. Hence the
measure is much more useful for predicting method changes.

Degree of Interest

Considering only recent changes is sometimes not enough. We expected the degree of interest to
perform better than association rules mining. Although their accuracy is comparable, association

160 9.4 Results

rules mining is a more accurate prediction approach. This is due both to the adaptation factor of
the degree of interest when switching tasks (its initial accuracy is lower), and the fact that the
association rules look in the entire past and can thus find old patterns that are still relevant. The
Mylyn tool, which uses a degree of interest, has a built-in notion of tasks [KMO06], that alleviate
these two problems: A degree of interest is maintained for each task, and is manually recalled by
the developer. Task switching recalls another degree of interest model, which may also contain
information from the further past. Therefore, we need to evaluate the accuracy of combining
several degrees of interest and selecting the one best adapted to the task at hand.

Coupling

Coupling based on the system structure is overall less accurate than other approaches. This is to
be expected this is does not take into account recent or past changes at all. However, it proved
to be an efficient alternative when prediction approaches were combined. Using it as a second
opinion significantly raised the accuracy of some approaches.

a0

Association Enhanced Degree of Coupling- Association Hits, best Hits, best
Rules Mining Association Interest based* Rules Mining Hubs Sinks
Rules Mining and Time
Coupling

Figure 9.1: Prediction Results

HITS

Overall, as Figure [0.1]illustrates, the best performing approach we found is the HITS algorithm,
using a graph describing the structure of the system among the recent changes (in our case the
last 50 changes). The HITS algorithm can be applied to any graph, so alternative definitions of
the graph based on the same data may yield even better results. Our graph definition considers

161 9.5 Discussion

both recent changes and some structural information about the system. It is a trade-off between
a pure change-based and a pure structure-based approach, which is a reason why it performs
well. A possible improvement would be to incorporate change data from the further past. Since
HITS is —as the Degree of Interest— sensible to task switching, in the future we need to evaluate
the accuracy of several HITS graphs combined.

9.5 Discussion

Replication of Approaches in The Literature

We did not reproduce the NavTracks approach as it relies only on navigation data, which we
do not have. Ying and Shirabad’s approaches are very close to Zimmermann’s association rule
mining. DeLine et al.’s Teamtrack is based on a DOI and is as such close to the Mylyn DOIL.
Kagdi’s approach was not fully described at this time of writing. Finally, we chose only one
coupling measure to reproduce, while many exist. The one we chose was the one best adapted
to our systems as PIM takes polymorphism into account. In Briand et al.’s study, PIM was one
of the metrics with the best correlation with actual changes, hence we deem it to be a good
representative.

Size of The Dataset

Our dataset is fairly small compared to the ones available with versioning system data. An
advantage of the benchmark approach is that it is easy to solve this problem by adding other
development histories. On the other hand, our benchmark is already larger than the systems
used in previous studies by Briand, Wilkie or Tsantalis. Their evaluations were done on one or
two systems, on a small number of transactions.

Generalizability

We do not claim that our results are generalizable. However, some of the results we found were
in line with results found by other researchers. Hassan and Holt found that coupling-based ap-
proaches are less precise than history based approaches, and so do we. Similarly, Zimmermann
et al. find a precision of 4% for method change prediction during active development. Reproduc-
ing the approach with our data yields comparable results. We also found evidence supporting
Kagdi’s proposal of merging association rule mining and coupling-based impact analysis. A sim-
ple merging strategy performed better than the individual strategies. A more developed merging
strategy may produce improved results.

Absent Data

Our data does not include navigation data, which is used in approaches such as NavTracks.
Mylyn’s Degree of Interest also includes navigation data. We started recording navigation data
after recording changes. As such, we only have navigation data for a portion of SpyWare’s
history. The lack of navigation data needs to be investigated, in order to see if it impacts the
accuracy of our implementation of Degree of Interest.

Evolving The Benchmark

Our benchmark still needs to evolve. As said earlier, the dataset should be larger for the results
to be more generalizable. Another possible enhancement to the benchmark would be to evaluate

162 9.6 Conclusion

if a tool is able to predict a change’s content and not only its location. Some possibilities would
be to evaluate the size of the change, i.e., whether a small or a large change is expected, or
the actual content. The latter could be possible and useful to evaluate automatized code clone
management approaches.

9.6 Conclusion

In this chapter, we evaluated the usefulness of Change-based Software Evolution for benchmark-
ing change prediction. Change prediction was previously evaluated by benchmarks, but these
relied on data originating from SCM archives. These have limitations: They depend on the size
of the transactions to be accurate, while these may be too large and noisy. SCM transaction also
lose the order in which changes were performed, an additional source of noise. Thus SCM-based
benchmarks are not adapted to usage in active development or in an IDE setting. This prevents
change predictors based on IDE monitoring to be evaluated with a benchmarking approach.
These relied on human subject studies for their evaluations, which are more expensive to set up
and harder to reproduce.

We showed that benchmarks built on top of Change-based Software Evolution have a finer
granularity of results thanks to the sequential nature of the changes. This translates in a more
realistic setting to test the recommenders. As a result, we could include in the comparison
algorithms that relied on IDE monitoring and evaluate them with the same settings as other
approaches, allowing a more direct comparison. In total we evaluated and compared seven
different approaches to change prediction.

The change information was also useful to improve the accuracy of the recommenders. The
most striking example was that including information about the session that is currently being
built in the association mining algorithm drastically improved it results, more than doubling its
accuracy. This shows that recent usage is a very good indicator of the context a developer is
building. Our best performing predictor incorporates recent change information with structural
information, using this data to build a graph which it queries using the HITS algorithm.

Finally, our benchmark allowed us to systematically experiment in combining prediction
strategies. We came up with conclusions as to what kind of merging strategy is best (strate-
gies emphasizing common results among several predictors), and which change predictor is best
combined with other predictors (predictors using very different selection criteria).

Part IV

First-class Changes: So What?

163

Chapter 10

Perspectives

As software evolution takes up a larger and larger part of the life cycle of software
systems, it becomes more and more important to streamline its process. In this
dissertation, we argued that representing change as a first-class entity allows us
to assist several aspects of a system’s evolution, in the context of both reverse and
forward engineering. To validate our thesis, we designed and implemented such a
change-based model of software evolution. We validated it by applying it to repre-
sentative tasks in software evolution.

165

166 10.1 Contributions

10.1 Contributions

During the course of this dissertation, we made the following major contributions:

10.1.1 Defining Change-based Software Evolution

We argued that current models of software evolution are incomplete, and that the limitations
they have can be addressed with a change-based model of software evolution.

Gathering requirements. In Chapter we gathered requirements for a better support of soft-
ware evolution through an analysis of state of the art software evolution models and approaches.
The key shortcomings we identified were that a model of software information should be accu-
rate enough to support fine-grained analyses, be abstractable to support coarse-grained ones,
and should not depend on versioning systems, prone to information loss.

Change model design. In Chapter 3| we designed a change-based model of software evolu-
tion fulfilling the requirements we identified. It models the evolution of fine-grained programs
(ASTs), through first-class changes which are recorded from an IDE rather than being recovered
from SCM archives. The changes our model support are executable, undoable, and composable.

10.1.2 Evaluating Change-based Software Evolution for Reverse Engineering

Before performing actual changes, developers spend more than half of their time reading and un-
derstanding the systems they maintain. We investigated how Change-based Software Evolution
supports the understanding of systems at several levels of granularity:

High-level reverse engineering. In Chapter[4]we showed that fine-grained changes can be ab-
stracted to uncover high-level relationships between entities in a software system. Through a
comprehensive visualization of a system’s evolution, we identified several visual patterns charac-
terizing the relationships between entities. From this, we demonstrated how one can reconstruct
an evolution scenario of the system. We showed that without the fine-grained data provided by
Change-based Software Evolution, the quality of the analysis is significantly degraded.

Low-level program comprehension. In Chapter [5|we showed how understanding a piece of
code was eased by following the footsteps of the one who implemented it. Reviewing changes in
a development session highlights relationships between entities, orders the changes in a logical
way, and contextualizes the changes. To give additional context, we also defined a character-
ization of sessions based on several change-based metrics qualifying several aspects of a given
session. Both session characterization and incremental program understanding are unique to
our approach.

Accurate metric definition. Metrics are widely used to summarize a large amount of data.
Change-based Software Evolution supports a wide array of metrics, since it supports metrics
relying on a fine-grained system representation, and metrics based on a fine-grained change
representation. These qualities allowed for the definition of more accurate evolutionary metrics:
Our alternative measurements of logical coupling, defined in Chapter [6] were able to predict
logically coupled entities with less history than the standard definition of logical coupling.

167 10.1 Contributions

10.1.3 Evaluating Change-based Software Evolution for Forward Engineering

Beyond understanding systems, maintainers need assistance performing the actual changes to
the system. We investigated how Change-based Software Evolution supports automated program
transformations and recommender systems:

Program transformation. Program transformations automatize changes that would otherwise
be manual and error-prone. In Chapter |7, we extended Change-based Software Evolution with
program transformations in a natural and unobtrusive way: Program transformations are sim-
ply change generators. We also showed how recorded changes can be used as examples to
ease the definition of program transformations. The structure of the recorded change itself acts
as a checklist of what need to be done to generalize the change in a transformation. Finally,
we showed that our definition of program transformations is fully integrated in the evolution:
Changes generated to transformations can be traced back to them, easing their comprehension
and the evolution of the transformation itself if necessary.

Evaluating and improving recommender systems. Recommender systems assist programmers
while they perform changes by indicating where they should focus their attention. They must
however be evaluated with care since inaccurate recommenders are harmful to the productivity.
Such an evaluation is difficult to do without expensive human subject studies, since recom-
menders rely on real-world IDE usage. Through two examples, code completion (in Chapter [8)
and change prediction (in Chapter [9), we showed that recording development histories with
Change-based Software Evolution led to the definition of robust benchmarks to evaluate recom-
mender systems. When a benchmark based on SCM data previously existed, we showed that
the benchmark based on Change-based Software Evolution was more precise and corresponded
more to real-world IDE usage. Based on these benchmarks, we evaluated several variants of
completion engines and change predictors, and found that those using fine-grained change data
performed best.

10.1.4 Additional Contributions

Implementing Change-based Software Evolution. As a technical contribution, we provide an
implementation of Change-based Software Evolution in the form of SpyWare for Smalltalk,
which we used to perform our evaluations. A proof-of-concept implementation for Java and
Eclipse was implemented by a student.

Populating a change-based software repository. We constituted an initial repository of change-
based development histories, composed so far of nine case studies: Our prototype itself, mon-
itored over a period of three years, a web-based project monitored over three months, several
week-long student projects, and one project monitored with the Java version of Change-based
Software Evolution, implemented over three months. All of the case studies were used at one
point or another in the validation of Change-based Software Evolution.

168 10.2 Limitations

10.2 Limitations

Each validation step and its limitations have been discussed to a certain extent in the corre-
sponding chapter. In this section we discuss more general threats to the validity of the work as
a whole, or common to several of the validations. After that, we discuss some possible technical
threats to general adoption of the work and ideas to deal with them.

10.2.1 Threats to Validity

One major characteristic of using software repositories for evolution analysis is that the data one
uses is recorded and analyzed in a postmortem fashion. A further characteristic of Change-based
Software Evolution is that the changes are recorded as they happen in the IDE instead of at the
end of a task. We discuss threats to validity according to the type of threat with a focus on these
two particular aspects.

Internal Validity Internal validity refers to the validity of inferences in an experimental setting.
Several of the threats in this category (such as testing, maturation, experimental mortality) are
alleviated by the fact that the developer interactions are recorded, sidestepping these threats
related to the adaptation of subjects to the experiments.

The largest threat to internal validity we observed is related to instrumentation, i.e., the
fact that we record interactions may modify the behavior of a developer. Since even changes
inducing errors are recorded, developers may be reluctant to perform changes as naturally as
they would without the monitoring of the changes, adopting a more careful approach. We made
our recording as unobtrusive as possible but some developers may still be wary of it. Hence we
cannot guarantee that recording does not affect a developer’s behavior.

A possible threat is the usage of our own tool for evolution analysis, as being its implementor
would potentially give us an unfair advantage. We do not consider it as a threat for two reasons.
First, this would apply only to the case studies related to understanding a system (Chapters
4 and 5). The automated validations are too systematic and undiscriminating for it to make
a difference. We only used SpyWare as a case study in Chapter 5, along with another case
study, project X. We reported on 3 sessions from project X, and one from SpyWare. Hence a
large majority of the case studies did not involve understanding our own system. Second, a
developer trying to understand his own past changes is actually a use case of our tool in the case
of continuous reverse engineering activities. In such a case, there would be an advantage, but it
can hardly be considered unfair.

External Validity Threats to external validity are related to how generalizable the results are
beyond the projects they were applied to. Empirical studies of systems are difficult to generalize
to other systems and our studies are no exception. Development styles, practices and conditions
vary between projects, so a large number of variables can have a potential impact. In this work
we intentionally restricted our focus to changes in order to better isolate their effects. Indeed,
changes to a developing system may be the least common denominator across a large variety of
systems.

Potential threats to the generalizability of our results are that we used a limited number of
projects (12) for our analyses. These projects were of small to medium sizes and primarily in
active development, making the generalization to large systems and/or in maintenance mode,
non trivial.

Further, the projects we considered were single user, and for the most part in a single pro-
gramming language, Smalltalk. However, one of the projects we monitored was a Java project,

169 10.2 Limitations

indicating that some of our results are at least partly applicable to Java. In addition, we mon-
itored developer with various programming experience (from 6 months to several years) and
styles. We found consistent improvements overall, especially in the validations employing bench-
marking approaches, for which the results are easier to compare: If an algorithm performed
better on one project, it did too on the others.

The best way to address this issue is to replicate our validation experiments on other systems,
of different size, programming styles and maintenance life-cycle phases. The original informa-
tion gathering effort will be rather costly, but once the history of one or more systems of this
kind is recorded, the other validations can be replicated at will on their change histories.

Construction Validity Construct validity tests whether the collected data is adequate for the
tasks we intend to experiment with.

Since software evolution is primarily about changing existing systems, collecting change in-
formation about systems is natural. In addition, the change data we collect is more fine-grained
and accurate than existing approaches, giving a more accurate view on the evolution of systems.
Since we record the changes through an automated process, data collection is undiscriminating.

One could argue that the level of detail we record is too detailed. Erroneous changes such
as unsuccessful attempts by developers are recorded, which would not appear in a versioning
system. These changes could be misleading. However, entities that are introduced to be removed
during the same development session could be easily filtered out. The effect of such a filtering
has to be evaluated as part of our future work.

In parts of our work, we use the assumption that a development session is equivalent to a
versioning system commit. This assumption may not be correct. In particular, it is easy to imag-
ine scenarios in which several sessions lead to a commit, or a single session leading to several
commits. The more general problem is the recovery of actual tasks. Indeed, SCM commits do
not always correspond to development tasks either. Finding how to recover development tasks
from the change history is an interesting future work area.

On the other hand, one could also argue that we do not use enough information. Additional
information sources such as navigation in the source code, bug archives, mailing lists, etc. com-
plement the usage of change information by providing additional points of views on the system’s
evolution. In this work, we intentionally focused on changes to the system, purposely ignoring
other information sources. Since we focused on changes, we wanted to restrict the number
of variables to take into account (the development process is complex enough as it is). These
additional information sources could be used as part of future work. In fact, SpyWare already
records navigation information, but does not use it yet.

Reliability Reliability refers to the ability to consistently measure the effect of the approach.
One strength of Change-based Software Evolution is that being based on recorded interactions,
it eases the reproducibility of the results.

The changes are systematically recorded and can be reused easily to repeat an experiment.
We exploited this to the maximum in Chapters 6, 8 and 9, when we used automated benchmarks
to evaluate metrics and recommendation systems. These approaches are very easily repeated.
Approaches in Chapter 4, 5 and 7 are more expensive to reproduce and subject to more vari-
ability since they involve human interaction. This is especially the case with our example-based
approach in Chapter 7 which was evaluated on few individual examples. We consider this ex-
ploratory validation the first step in our evaluation of example-based transformation and plan a
further evaluation increasing the amount of automation if possible.

Another aspect is replication on other case studies. The first step to this is to gather additional
information in the form of new recorded change histories. This step is the hardest since it

170 10.2 Limitations

involves the most user interaction. Once a new history is available, it can conceivably be used
for each of the techniques we introduced, increasing the level of confidence for every one of
them.

10.2.2 Adoption Issues

We identified several issues that may hamper the widespread usage of Change-based Software
Evolution. We describe these problems and propose possible solutions to them.

Technical Issues For now, our system supports only single user development and has been used
for small to medium scale projects. To adapt to the realities of industrial development, a multi-
user version has to be developed. Tests have to be performed to identify potential bottlenecks
related to larger-scale systems.

Beyond this, an important aspect is to reduce the barrier to entry by providing a seamless
and unintrusive experience to users, as they will be reluctant to change their habits. We kept
this aspect in mind when implementing our prototype and to this aim kept the recording of the
changes as unobtrusive as possible. Recording changes while coding causes no interruptions for
the developer.

A second way to reduce the barrier to entry is to complement, rather than replace, standard
SCM systems. Versioning systems are very slow to be replaced, due to migration issues, process
habits, and the general unwillingness to learn a new tool. Versioning systems generally also
store more than the system’s source code, making a language-specific versioning system a hard
sell. Hence we view our system as a layer on top of a standard versioning system rather than a
versioning system replacement. Our current change format being very simple, it is easy to store
as text files or in a database.

A final concern is performance and space requirements. Currently, the change history of
3 years of SpyWare’s development is measured in the low tens of megabytes, making it very
reasonable considering that a standard machine’s hard drive contains hundreds of gigabytes.
Space in memory (when the actual system representation is built) is higher at the moment, but
we have done very few optimizations. This is part of the work needed to adapt SpyWare to
larger-scale systems. An optimization already done is that it is not necessary to have the entire
system’s AST in memory all the time. Parts of it can be built from subsets of the change history
on request. This considerably reduces runtime memory requirements. Based on this, accessing
the state of any entity at any point in time is a matter of seconds.

Ethical Issues There are ethical issues related to monitoring the activity of developers as they
work. Developers may be unwilling to be monitored in such a way, and the information could
be used to make unethical decisions.

However, the problem exists in a latent form with SCM systems. An SCM system also moni-
tors a developer’s changes and activity in the system. The information in an SCM system could
be used for the same purposes, and this has not been a major problem for SCM. If anything,
the information we record is a more accurate summary of one’s activity. As such, it is less error-
prone than recovering information from a versioning system and would be more fair to any user
of the system. Steps towards ensuring the anonymity of the recorded changes could be imag-
ined. In such a case, one would have to evaluate the trade-off between increased anonymity and
decreased usefulness of the information. Recommender evaluation and program comprehension
would still be possible, but contacting the responsible of a given change would be harder.

171 10.3 Lessons Learned

10.2.3 Conclusions

In this work, we focused on a specific kind of evolutionary information, the changes performed
on an evolving system in the single-user case. To ensure that this work is valid on larger domains,
the studies we performed need to be replicated on several other systems in order to verify if
our findings hold in other contexts. Additional sources of information and analyses need to
be integrated. To ensure that Change-based Software Evolution has an impact on everyday
programmers, it needs to be extended to handle multiple users, ensuring that the technical and
ethical issues we described are addressed correctly.

10.3 Lessons Learned

During the four years in which we completed this work, we learned a tremendous amount. Some
of the most valuable lessons we learned follow.

On taking a clean slate approach. This decision was the riskiest we took, and in the end the
most gratifying. A significant part of our work is based on mining software repositories, where
the quality of the data is paramount. Hence our initial decision to discard all the available data
seemed at times a choice no sane person would make. This had an impact on the generalization
of our results. At the end of these four years, we have a bigger amount of data, but still no large
project which could be deemed representative of software evolution in general. Then again, we
are not sure any project is.

On the other hand, the clean slate approach allowed us to freely choose the data we needed
and as a result gave us higher quality data. We in essence traded quantity for quality. It is now
time to consolidate by gathering more data.

On model simplicity and flexibility. The accuracy of our model is directly tied to how domain-
specific it is and inversely tied to how adaptable it is to other domains. To minimize portability
issues, we kept the core data definitions as generic as possible and defined domain-specific
problems as extensions/

We think we succeeded in this aspect since we managed to implement an initial version of
our model for Java, with which we recorded the evolution of a project over several months.
This does not mean that porting the approach to a new platform is easy. There will always be a
minimal cost to achieve this.

On multiple validations. We validated our thesis piecewise, by validating each application on
its own. We used several validation techniques during this work. We first used visualization as it
is a good way to familiarize oneself with the data. We then worked on program transformations
and undertook a feasibility study to assess if our model was expressive enough to support these.
Finally, we took a more empirical approach by defining benchmarks to measure and improve
specific tasks.

We think that this strategy allowed us to gain a better understanding of the data, by first
considering it at a high level before diving into details, in order to finally be able to isolate
variables in a measurable manner.

172 10.4 Future Work

10.4 Future Work

We have only scratched the surface of what can be done with accurate evolutionary data of
systems. We plan to follow the following lines of work:

Gathering more data. Our data set is still restricted. To have more confidence in our results we
need to replicate them on a wider sample of projects. We will record the development histories
of more programmers in both the Smalltalk and Java versions of our systems. It would be ideal
to have a public-access repository supporting automated application of benchmarks to new case
studies.

Expanding the model with navigation and defect data. We have recorded additional IDE usage
data such as navigation and execution data for an extended period of time, but have not used it
yet. We envision enriching our model with this data and determine if this supports evolutionary
tasks better.

Change documentation and task reconstruction. So far we have made the assumption that
one development session is a development task. This is of course only an approximation: Some
tasks span multiple sessions, while some sessions are made of several tasks. Tasks are also
hierarchical and composed of subtasks. We plan to investigate how to automatically or semi-
automatically split a development history in several distinct tasks.

Related to this, we plan to allow a developer to annotate changes for documentation pur-
poses. During this process a developer could also specify the tasks in the development history
he is documenting.

Clone detection and evolution. We want to use our data for the problem of clone detection and
test whether it allows to detect clones more efficiently. Once this is done, we want to automatize
the co-evolution of clones based on the program transformations that are at the moment done
manually by the developer. Ideally we would define a benchmark for this task.

Example-based aspects. Continuing our work on program transformations, we want to deepen
the idea of informal aspects we shown in Chapter |7} in particular to ease their transitions
into more formal aspects, and to analyze their relationship with Hon and Kiczales’s Fluid AOP
[HKO6] .

Continuous reverse engineering. During the last two ICSE “Future Of Software Engineering”
tracks, invited papers on the future of reverse engineering both mentioned continuous reverse
engineering, i.e., merging forward and reverse engineering in one smooth process. Our change-
recording approach provides the immediacy (changes are gathered as they happen) and the
interactivity (all tools are integrated in an IDE) necessary to fulfill such a vision. One first
step towards this would be to devise an “Evolution Dashboard”, allowing easy access to quick
evolutionary facts about an entity as it is browsed.

Instant awareness. Several awareness systems exist, most working at the level of SCM trans-
actions. With our approach, one can broadcast changes to all the developers of a system as soon
as they are performed. Each development site could then check that the changes performed by
other user do not break the code base. This could be done when merging changes, looking for

173 10.5 Closing Words

conflicts while taking into account the semantics of the language, or at a higher level, check-
ing if changes done by another developer break the tests of the code. If a conflict is found, a
notification would be sent to conflicting parties so that they work together to fix the problem.
In some cases, if the problem is repeatable, a transformation could be devised and stored to
semi-automatically fix the following occurrences of the conflicts.

Repository-level conflict monitoring. Taking the previous idea to the next level, we envision a
source code repository performing the same conflict checks, either at coding time or at checkin
time if commits also include a change list. Conflicts would be checked automatically when
libraries used by a project are changed. The author of a change would be informed of how many
users have their code broken by it, while users of a library could easily see what they need to fix
when upgrading to the next version of the library.

10.5 Closing Words

On impact. This work started with a radical idea which put us somewhat at odds with the
software evolution community. It was hence recomforting to see that several approaches arrived
to the same conclusions as ours, and even more so to see some of those were directly influenced
by our approach.

In the field of model-driven engineering, Blanc et al. have shown that a change-based rep-
resentation of models (without taking their history into account) allows for efficient checking
of model validity [BMMMOS]]. Sriplakich et al. [[SBGO8]] implemented a concept of update com-
mands for collaborative model editing. Finally, Kogel described a change-based SCM system for
models [KO8].

Fluri recognizes the need for a more detailed view of software evolution, and does so at by
recovering fine-grained changes from SCM archives [FWPGO7].

Several approaches are now recording changes in the IDE. Chan et al. [CCB07] record source
code changes in Eclipse in a language-independent manner. Zumkher [ZumO7]] and Ebraert et
al. [EVC*07] record first-class changes in Smalltalk IDEs to provide dynamic software evolution,
a scenario we have not tackled. Ebraert uses our model of first-class changes as a base for their
change model. Lastly, Omori and Maruyama record Java-specific changes in Eclipse [[OMO8]],
and acknowledge our work as a direct inspiration.

Is it all worth it? The objective of this dissertation was to show that recording first-class
changes is worthwhile. We think that the advantages (recording an accurate evolution with
a model versatile enough to support several evolutionary tasks), outweighs the drawbacks (an
approach requiring a lot of tool support and discarding data already available). Our results are
significant improvements in several distinct areas that justify a further implementation of our
approach.

Several researchers are working on the same or related problems. This makes us confident
that the problem we address and its solution are on the right track.

Several factors have to be considered to make the approach practical:

* During this work we made sure the recording was as non-intrusive as possible. Tools
soliciting the attention of developers when they want to focus on something else are prob-
lematic. This tradition needs to be continued.

174 10.5 Closing Words

* To further lower the barrier to entry, we need to fully integrate our approach with a stan-
dard versioning system. The changes we record can be exported in a simple text format,
which could be simply put under version control.

* So far, we steered clear of optimizations. Experiments must be made to evaluate the
requirements for large systems, and what are the costlier operations.

We are strongly convinced that Change-based Software Evolution provides a model of soft-
ware integrating development and evolution tasks in a harmonious process. In the process we
envision, reverse engineering and program comprehension tools are available in the IDE, merely
a click away. The entire history is accessible, shared between developers, and contains all kinds
of changes, from straightforward development and bug fixes to aspects and program transfor-
mations. Individual and shared recommenders continuously analyze the incoming stream of
changes to extract valuable information and connect people.

Part V

Appendix

175

Appendix A

Inside the Change-based Repository

During the four yours we took to conclude this work, we recorded the history of 12 case studies,
with large variations in size and style. We list them for reference, with some of their high-level
characteristics, in Table

Project Name Days | Classes Methods Lines of Code | Sessions Developer Actions Atomic Changes
SpyWare 1,095 697 7,243 37,347 496 23,227 548,384
Project X 98 498 2,280 14,109 121 5,513 141,580
Software Animator 62 605 1,682 8,418 133 15,723 108,940
Project A 7 17 228 687 17 903 23,512
Project B 7 35 340 1,450 19 1,595 38,168
Project C 7 41 357 1,537 22 1,326 38,818
Project D 8 20 260 1,931 19 757 26,789
Project E 7 16 117 760 10 311 8,672
Project F 8 15 142 1,191 17 511 19,522
Project G 6 23 197 580 10 842 12,851
Project H 7 10 159 1,347 22 597 18,237
Project I 7 50 454 1,952 22 1,326 25,965
Total 1,319 2,027 13,459 71,309 908 52,631 1,011,168

Table A.1: The case studies in our change repository

SpyWare is the research prototype we built to implement our vision of Change-based Software
Evolution. SpyWare has been self-monitoring for more than three years. Included in the
count are all the tools that we built to validate all approaches we presented, and the core
of the platform itself. In this thesis, we used SpyWare’s history in chapters 5, 6, 7, 8 and 9.

Project X contains the change history of a smalltalk developer working on a web application for
a duration of three months. Of interest, the application was built using a preexisting web
framework, implying a different usage pattern from other applications. We used project
X’s history in chapters 5 and 9.

Software Animator is a summer student project, developed over a duration of two months. It
visualizes the change-based history of software systems in the form of a 3D animation,
which can be played in real-time, or faster. It was implemented in Java, and monitored by
EclipseEye, the Java version of our change recording framework. Software Animator was
used in chapters 6 and 9.

177

178

Projects A to I are several student projects built in the course of a week. The students had
the choice between three subjects, a virtual store (smaller projects), a geometry program
(intermediate size) and a text-based role-playing game (larger projects). All projects were
used in chapter 4, but only project I was reported on in detail. We also used the six largest
of the nine projects (projects A, B, D, E H and I) in our benchmarks in chapters 8 and 9,
renumbering them A to F for clarity.

Bibliography

[ABF04]

[ABM'05]

[AGDS07]

[AKO7]

[BAYO03]

[BCH'05]

[BDW99]

[BEJWKGO5]

[BGD'06]

Erik Arisholm, Lionel C. Briand, and Audun Fgyen. Dynamic coupling measure-
ment for object-oriented software. IEEE Transactions on Software Engineering,
30(8):491-506, 2004.

Robert L. Akers, Ira D. Baxter, Michael Mehlich, Brian J. Ellis, and Kenn R. Luecke.
Reengineering c++ component models via automatic program transformation.
In WCRE "05: Proceedings of the 12th Working Conference on Reverse Engineering,
pages 13-22, Washington, DC, USA, 2005. IEEE Computer Society.

Erik Arisholm, Hans Gallis, Tore Dybd, and Dag L. K. Sjgberg. Evaluating pair
programming with respect to system complexity and programmer expertise. IEEE
Transactions on Software Engineering, 33(2):65-86, 2007.

Eytan Adar and Miryung Kim. Softguess: Visualization and exploration of code
clones in context. In ICSE ’07: Proceedings of the 29th international conference
on Software Engineering, pages 762-766, Washington, DC, USA, 2007. IEEE Com-
puter Society.

James M. Bieman, Anneliese A. Andrews, and Helen J. Yang. Understanding
change-proneness in oo software through visualization. In IWPC 03: Proceed-
ings of the 11th IEEE International Workshop on Program Comprehension, page 44,
Washington, DC, USA, 2003. IEEE Computer Society.

Dave Binkley, Mariano Ceccato, Mark Harman, Filippo Ricca, and Paolo Tonella.
Automated refactoring of object oriented code into aspects. In ICSM ’05: Pro-
ceedings of the 21st IEEE International Conference on Software Maintenance, pages
27-36, Washington, DC, USA, 2005. IEEE Computer Society.

Lionel C. Briand, John W. Daly, and Jiirgen K. Wiist. A unified framework for
coupling measurement in object-oriented systems. IEEE Transactions on Software
Engineering, 25(1):91-121, 1999.

Jennifer Bevan, Jr. E. James Whitehead, Sunghun Kim, and Michael Godfrey. Fa-
cilitating software evolution research with kenyon. SIGSOFT Software Engineering
Notes, 30(5):177-186, 2005.

Christian Bird, Alex Gourley, Prem Devanbu, Michael Gertz, and Anand Swami-
nathan. Mining email social networks. In MSR ’06: Proceedings of the 2006 inter-
national workshop on Mining software repositories, pages 137-143, New York, NY,
USA, 2006. ACM.

179

180

Bibliography

[BGHO7]

[BMMMO8]

[Bra94]

[BvDTO5]

[BWL99]

[CCBO7]

[CCPO7]

[CMRO04]

[Cor89]

[CPO7]

[CSY104]

[CW98]

[DBO06]

Marat Boshernitsan, Susan L. Graham, and Marti A. Hearst. Aligning develop-
ment tools with the way programmers think about code changes. In CHI '07: Pro-
ceedings of the SIGCHI conference on Human factors in computing systems, pages
567-576, New York, NY, USA, 2007. ACM.

Xavier Blanc, Isabelle Mounier, Alix Mougenot, and Tom Mens. Detecting model
inconsistency through operation-based model construction. In ICSE ’08: Proceed-
ings of the 30th international conference on Software engineering, pages 511-520,
New York, NY, USA, 2008. ACM.

Stewart Brand. How Buildings Learn - What Happens After They’re Built. Penguin
Books, 1994.

Magiel Bruntink, Arie van Deursen, and Tom Tourwe. Isolating idiomatic crosscut-
ting concerns. In ICSM ’05: Proceedings of the 21st IEEE International Conference
on Software Maintenance, pages 37-46, Washington, DC, USA, 2005. IEEE Com-
puter Society.

Lionel C. Briand, Juergen Wuest, and Hakim Lounis. Using coupling measurement
for impact analysis in object-oriented systems. In ICSM ’99: Proceedings of the
IEEE International Conference on Software Maintenance, page 475, Washington,
DC, USA, 1999. IEEE Computer Society.

Jacky Chan, Alan Chu, and Elisa Baniassad. Supporting empirical studies by non-
intrusive collection and visualization of fine-grained revision history. In eclipse
'07: Proceedings of the 2007 OOPSLA workshop on eclipse technology eXchange,
pages 60-64, New York, NY, USA, 2007. ACM.

Gerardo Canfora, Luigi Cerulo, and Massimiliano Di Penta. Identifying changed
source code lines from version repositories. In MSR ’07: Proceedings of the Fourth
International Workshop on Mining Software Repositories, page 14, Washington, DC,
USA, 2007. IEEE Computer Society.

Andrea Capiluppi, Maurizio Morisio, and Juan E Ramil. The evolution of source
folder structure in actively evolved open source systems. In METRICS '04: Pro-
ceedings of the Software Metrics, 10th International Symposium, pages 2-13, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

Thomas A. Corbi. Program understanding: challenge for the 1990’s. IBM Systems
Journal, 28(2):294-306, 1989.

Gerardo Canfora and Massimiliano Di Penta. New frontiers of reverse engineer-
ing. In FOSE 07: Proceedings of the 2nd Conference on the Future of Software
Engineering, pages 326-341, Washington, DC, USA, 2007. IEEE Computer Soci-

ety.

Kai Chen, Stephen R. Schach, Liguo Yu, Jeff Offutt, and Gillian Z. Heller. Open-
source change logs. Empirical Software Engineering, 9(3):197-210, 2004.

Reidar Conradi and Bernhard Westfechtel. Version models for software configu-
ration management. ACM Computing Surveys, 30(2):232-282, 1998.

Saeed Dehnadi and Richard Bornat. The camel has two humps (working title).
2006.

181

Bibliography

[DCMJ06]

[DCRO5]

[DDNOO]

[DDT99]

[DERO7]

[DGL*07]

[DJO5]

[DLO6a]

[DLO6b]

[DLGO5]

[DMJNO7]

Danny Dig, Can Comertoglu, Darko Marinov, and Ralph Johnson. Automated
detection of refactorings in evolving components. In Springer, editor, ECOOP
’06:ECOQP ’06: Proceedings of the 20th European Conference on Object Oriented
Programming, Lecture Notes in Computer Science, pages 404-428, 2006.

Robert DeLine, Mary Czerwinski, and George Robertson. Easing program compre-
hension by sharing navigation data. In VLHCC ’05: Proceedings of the 2005 IEEE
Symposium on Visual Languages and Human-Centric Computing, pages 241-248,
Washington, DC, USA, 2005. IEEE Computer Society.

Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Finding refactorings via
change metrics. In OOPSLA "00: Proceedings of the 15th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications, pages 166—
177, New York, NY, USA, 2000. ACM.

Serge Demeyer, Stéphane Ducasse, and Sander Tichelaar. Why unified is not uni-
versal. uml shortcomings for coping with round-trip engineering. In UML ’99:
Proceedings of The Second International Conference on The Unified Modeling Lan-
guage, Lecture Notes in Computer Science, pages 630-645. Springer, 1999.

Ekwa Duala-Ekoko and Martin P Robillard. Tracking code clones in evolving soft-
ware. In ICSE ’07: Proceedings of the 29th international conference on Software
Engineering, pages 158-167, Washington, DC, USA, 2007. IEEE Computer Soci-

ety.

Marcus Denker, Tudor Girba, Adrian Lienhard, Oscar Nierstrasz, Lukas Renggli,
and Pascal Zumkehr. Encapsulating and exploiting change with changeboxes. In
ICDL ’07: Proceedings of the 2007 international conference on Dynamic languages,
pages 25-49, New York, NY, USA, 2007. ACM.

Danny Dig and Ralph Johnson. The role of refactorings in api evolution. In ICSM
’05: Proceedings of the 21st IEEE International Conference on Software Maintenance,
pages 389-398, Washington, DC, USA, 2005. IEEE Computer Society.

Marco D’Ambros and Michele Lanza. Reverse engineering with logical coupling.
In WCRE "06: Proceedings of the 13th Working Conference on Reverse Engineering,
pages 189-198, Washington, DC, USA, 2006. IEEE Computer Society.

Marco D’Ambros and Michele Lanza. Software bugs and evolution: A visual ap-
proach to uncover their relationship. In CSMR ’06: Proceedings of the Conference on
Software Maintenance and Reengineering, pages 229-238, Washington, DC, USA,
2006. IEEE Computer Society.

Marco D’Ambros, Michele Lanza, and Harald Gall. Fractal figures: Visualizing
development effort for cvs entities. In VISSOFT ’05: Proceedings of the 3rd IEEE
International Workshop on Visualizing Software for Understanding and Analysis,
page 16, Washington, DC, USA, 2005. IEEE Computer Society.

Danny Dig, Kashif Manzoor, Ralph Johnson, and Tien N. Nguyen. Refactoring-
aware configuration management for object-oriented programs. In ICSE ‘07: Pro-
ceedings of the 29th international conference on Software Engineering, pages 427—
436, Washington, DC, USA, 2007. IEEE Computer Society.

182

Bibliography

[DNMJO08]

[DRO8]

[EA04]

[EGO5]

[EG06]

[EGK'01]

[ELvdH'05]

[Erl00]

[ES98]

[Est95]

[EVCt07]

[EZST08]

[FGO6]

Danny Dig, Stas Negara, Vibhu Mohindra, and Ralph Johnson. Reba: refactoring-
aware binary adaptation of evolving libraries. In ICSE ’08: Proceedings of the 30th
international conference on Software engineering, pages 441-450, New York, NY,
USA, 2008. ACM.

Barthélémy Dagenais and Martin P Robillard. Recommending adaptive changes
for framework evolution. In ICSE ’08: Proceedings of the 30th international confer-
ence on Software engineering, pages 481-490, New York, NY, USA, 2008. ACM.

Torbjorn Ekman and Ulf Asklund. Refactoring-aware versioning in eclipse. Elec-
tronic Notes in Theoritical Computer Science, 107:57-69, 2004.

Jacky Estublier and Sergio Garcia. Process model and awareness in scm. In
SCM ’05: Proceedings of the 12th international workshop on Software configuration
management, pages 59-74, New York, NY, USA, 2005. ACM.

Jacky Estublier and Sergio Garcia. Concurrent engineering support in software
engineering. In ASE ’06: Proceedings of the 21st IEEE/ACM International Confer-
ence on Automated Software Engineering, pages 209-220, Washington, DC, USA,
2006. IEEE Computer Society.

Stephen G. Eick, Todd L. Graves, Alan E Karr, J. S. Marron, and Audris Mockus.
Does code decay? assessing the evidence from change management data. IEEE
Transactions on Software Engineering, 27(1):1-12, 2001.

Jacky Estublier, David Leblang, André van der Hoek, Reidar Conradi, Geoffrey
Clemm, Walter Tichy, and Darcy Wiborg-Weber. Impact of software engineering
research on the practice of software configuration management. ACM Transactions
on Software Engineering and Methodology, 14(4):383-430, 2005.

Len Erlikh. Leveraging legacy system dollars for e-business. IT Professional,
2(3):17-23, 2000.

Katalin Erdos and Harry M. Sneed. Partial comprehension of complex programs
(enough to perform maintenance). In IWPC ’98: Proceedings of the 6th Inter-
national Workshop on Program Comprehension, page 98, Washington, DC, USA,
1998. IEEE Computer Society.

Jacky Estublier. The Adele configuration manager, pages 99-133. John Wiley &
Sons, Inc., New York, NY, USA, 1995.

Peter Ebraert, Jorge Vallejos, Pascal Costanza, Ellen Van Paesschen, and Theo
D’Hondt. Change-oriented software engineering. In ICDL '07: Proceedings of the
2007 international conference on Dynamic languages, pages 3-24, New York, NY,
USA, 2007. ACM.

Marc Eaddy, Thomas Zimmermann, Kaitlin D. Sherwood, Vibhav Garg, Gail C.
Murphy, Nachiappan Nagappan, and Alfred V.. Aho. Do crosscutting concerns
cause defects? IEEE Transactions on Software Engineering, 34(4):497-515, 2008.

Beat Fluri and Harald C. Gall. Classifying change types for qualifying change
couplings. In ICPC ’06: Proceedings of the 14th IEEE International Conference on
Program Comprehension, pages 35-45, Washington, DC, USA, 2006. IEEE Com-
puter Society.

183

Bibliography

[Fow02]

[FPGO3]

[Fre07]

[FWPGO7]

[GB8O]

[GDL04]

[GHJ98]

[GHIV95]

[Gir05]

[GJKO3]

[GJKT97]

[GKSDO5]

[GKY91]

Martin Fowler. Refactoring: Improving the Design of Existing Code. Springer-Verlag,
London, UK, 2002.

Michael Fischer, Martin Pinzger, and Harald Gall. Populating a release history
database from version control and bug tracking systems. In ICSM ’03: Proceedings
of the International Conference on Software Maintenance, page 23, Washington,
DC, USA, 2003. IEEE Computer Society.

Tammo Freese. Operation-based merging of development histories. In WRT "07:
Proceedings of the 1st ECOOP Workshop on Refactoring Tools, 2007.

Beat Fluri, Michael Wuersch, Martin PInzger, and Harald Gall. Change distilling:
Tree differencing for fine-grained source code change extraction. IEEE Transac-
tions on Software Engineering, 33(11):725-743, 2007.

Ira P Goldstein and Daniel G. Bobrow. A layered approach to software design.
Technical Report CSL-80-5, Xerox PARC, December 1980.

Tudor Girba, Stéphane Ducasse, and Michele Lanza. Yesterday’s weather: Guid-
ing early reverse engineering efforts by summarizing the evolution of changes.
In ICSM ’04: Proceedings of the 20th IEEE International Conference on Software
Maintenance, pages 40-49, Washington, DC, USA, 2004. IEEE Computer Society.

Harald Gall, Karin Hajek, and Mehdi Jazayeri. Detection of logical coupling based
on product release history. In ICSM ’98: Proceedings of the International Conference
on Software Maintenance, page 190, Washington, DC, USA, 1998. IEEE Computer
Society.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995.

Tudor Girba. Modeling History to Understand Software Evolution. PhD thesis,
University of Berne, Berne, November 2005.

Harald Gall, Mehdi Jazayeri, and Jacek Krajewski. Cvs release history data for
detecting logical couplings. In IWPSE ’03: Proceedings of the 6th International
Workshop on Principles of Software Evolution, page 13, Washington, DC, USA,
2003. IEEE Computer Society.

Harald Gall, Mehdi Jazayeri, René Klosch, and Georg Trausmuth. Software evo-
lution observations based on product release history. In ICSM ’97: Proceedings of
the International Conference on Software Maintenance, page 160, Washington, DC,
USA, 1997. IEEE Computer Society.

Tudor Girba, Adrian Kuhn, Mauricio Seeberger, and Stéphane Ducasse. How de-
velopers drive software evolution. In IWPSE ’05: Proceedings of the Eighth Interna-
tional Workshop on Principles of Software Evolution, pages 113-122, Washington,
DC, USA, 2005. IEEE Computer Society.

Bjgrn Gulla, Even-André Karlsson, and Dashing Yeh. Change-oriented version
descriptions in epos. Software Engineering Journal, 6(6):378-386, 1991.

184

Bibliography

[GLDO5]

[GTO0]

[GZ05]

[HDO5]

[HGBROS]

[HHO6]

[HKO06]

[HINS6]

[HP96]

[JKO5]

[KO8]

[Kag07]

[KGO6]

Tudor Girba, Michele Lanza, and Stéphane Ducasse. Characterizing the evolution
of class hierarchies. In CSMR ’05: Proceedings of the Ninth European Conference
on Software Maintenance and Reengineering, pages 2-11, Washington, DC, USA,
2005. IEEE Computer Society.

Michael W. Godfrey and Qiang Tu. Evolution in open source software: A case
study. In ICSM ’00: Proceedings of the International Conference on Software Mainte-
nance (ICSM’00), page 131, Washington, DC, USA, 2000. IEEE Computer Society.

Michael W. Godfrey and Lijie Zou. Using origin analysis to detect merging and
splitting of source code entities. IEEE Transactions on Software Engineering,
31(2):166-181, 2005.

Johannes Henkel and Amer Diwan. Catchup!: capturing and replaying refactor-
ings to support api evolution. In ICSE '05: Proceedings of the 27th international
conference on Software engineering, pages 274-283, New York, NY, USA, 2005.
ACM.

Israel Herraiz, Jesus M. Gonzalez-Barahona, and Gregorio Robles. Determinism
and evolution. In MSR ’08: Proceedings of the 2008 international working con-
ference on Mining software repositories, pages 1-10, New York, NY, USA, 2008.
ACM.

Ahmed E. Hassan and Richard C. Holt. Replaying development history to assess
the effectiveness of change propagation tools. Empirical Software Engineering,
11(3):335-367, 2006.

Terry Hon and Gregor Kiczales. Fluid aop join point models. In OOPSLA "06:
Companion to the 21st ACM SIGPLAN symposium on Object-oriented programming
systems, languages, and applications, pages 712-713, New York, NY, USA, 2006.
ACM.

A. Nico Habermann and David Notkin. Gandalf: software development environ-
ments. IEEE Transactions on Software Engineering, 12(12):1117-1127, 1986.

Richard C. Holt and J. Y. Pak. Gase: visualizing software evolution-in-the-large.
In WCRE 96: Proceedings of the 3rd Working Conference on Reverse Engineering
(WCRE 96), page 163, Washington, DC, USA, 1996. IEEE Computer Society.

Frédéric Jouault and Ivan Kurtev. Transforming models with atl. In MoDELS
Satellite Events, pages 128-138, 2005.

Maximilian Kégel. Towards software configuration management for unified mod-
els. In CVSM ’08: Proceedings of the 2008 international workshop on Comparison
and versioning of software models, pages 19-24, New York, NY, USA, 2008. ACM.

Huzefa Kagdi. Improving change prediction with fine-grained source code mining.
In ASE ’07: Proceedings of the twenty-second IEEE /ACM international conference on
Automated software engineering, pages 559-562, New York, NY, USA, 2007. ACM.

Cory Kapser and Michael W. Godfrey. "cloning considered harmful" considered
harmful. In WCRE ’06: Proceedings of the 13th Working Conference on Reverse
Engineering, pages 19-28, Washington, DC, USA, 2006. IEEE Computer Society.

185

Bibliography

[Kl1e99]

[KLM197]

[KMO5]

[KMO6]

[KNGO7]

[KPEJWO05]

[KSBO8]

[KSNMO5]

[LAEW08]

[Lan01]

[LB85]

[Lip92]

Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of
the ACM, 46(5):604-632, 1999.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In
ECOOP ’97: Proceedings of the 11th European Conference on Object-Oriented Pro-
gramming, volume 1241 of Lecture Notes in Computer Science, pages 220-242.
Springer, 1997.

Mik Kersten and Gail C. Murphy. Mylar: a degree-of-interest model for ides.
In AOSD '05: Proceedings of the 4th international conference on Aspect-oriented
software development, pages 159-168, New York, NY, USA, 2005. ACM.

Mik Kersten and Gail C. Murphy. Using task context to improve programmer
productivity. In SIGSOFT ’06 /FSE-14: Proceedings of the 14th ACM SIGSOFT in-
ternational symposium on Foundations of software engineering, pages 1-11, New
York, NY, USA, 2006. ACM.

Miryung Kim, David Notkin, and Dan Grossman. Automatic inference of structural
changes for matching across program versions. In ICSE '07: Proceedings of the 29th
international conference on Software Engineering, pages 333—-343, Washington, DC,
USA, 2007. IEEE Computer Society.

Sunghun Kim, Kai Pan, and Jr. E. James Whitehead. When functions change their
names: Automatic detection of origin relationships. In WCRE ’05: Proceedings of
the 12th Working Conference on Reverse Engineering, pages 143-152, Washington,
DC, USA, 2005. IEEE Computer Society.

Marouane Kessentini, Houari A. Sahraoui, and Mounir Boukadoum. Model trans-
formation as an optimization problem. In MoDELS ’08: Proceedings of the 11th
international conference on Model Driven Engineering Languages and Systems, Lec-
ture Notes in Computer Science, pages 159-173. Springer, 2008.

Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy. An empirical study
of code clone genealogies. SIGSOFT Software Engineering Notes, 30(5):187-196,
2005.

Jonathan Lung, Jorge Aranda, Steve M. Easterbrook, and Gregory V. Wilson. On
the difficulty of replicating human subjects studies in software engineering. In
ICSE ’08: Proceedings of the 30th international conference on Software engineering,
pages 191-200, New York, NY, USA, 2008. ACM.

Michele Lanza. The evolution matrix: recovering software evolution using soft-
ware visualization techniques. In IWPSE ’01: Proceedings of the 4th International
Workshop on Principles of Software Evolution, pages 37-42, New York, NY, USA,
2001. ACM.

Meir M. Lehman and Laszlo A. Belady, editors. Program evolution: processes of
software change. Academic Press Professional, Inc., San Diego, CA, USA, 1985.

Ernst Lippe. CAMERA - Support for distributed cooperative work. PhD thesis,
University of Utrecht, 1992.

186

Bibliography

[LLO7]

[LLGO6]

[LMO5]

[LRW97]

[LvO92]

[LWO07]

[Mae87]

[Mar04]

[MFV'05]

[MJST00]

[MKF06]

[NMBTO5]

Mircea Lungu and Michele Lanza. Exploring inter-module relationships in evolv-
ing software systems. In CSMR ’07: Proceedings of the 11th European Conference
on Software Maintenance and Reengineering, pages 91-102, Washington, DC, USA,
2007. IEEE Computer Society.

Mircea Lungu, Michele Lanza, and Tudor Girba. Package patterns for visual ar-
chitecture recovery. In CSMR ’06: Proceedings of the Conference on Software Main-
tenance and Reengineering, pages 185-196, Washington, DC, USA, 2006. IEEE
Computer Society.

Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Practice. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2005.

Meir M. Lehman, Juan E Ramil, Paul Wernick, Dewayne E. Perry, and Wladys-
law M. Turski. Metrics and laws of software evolution - the nineties view. In
METRICS "97: Proceedings of the 4th International Symposium on Software Metrics,
page 20, Washington, DC, USA, 1997. IEEE Computer Society.

Ernst Lippe and Norbert van Oosterom. Operation-based merging. In SDE 5:
Proceedings of the fifth ACM SIGSOFT symposium on Software development envi-
ronments, pages 78-87, New York, NY, USA, 1992. ACM Press.

Jacob Lehraum and Bill Weinberg. Ide evolution continues beyond
eclipse. http://www.eetimes.com/article/showArticle.jhtml?articleld=
21400991, 2007.

Pattie Maes. Concepts and experiments in computational reflection. SIGPLAN
Notices, 22(12):147-155, 1987.

Radu Marinescu. Detection strategies: Metrics-based rules for detecting design
flaws. In ICSM ’04: Proceedings of the 20th IEEE International Conference on Soft-
ware Maintenance, pages 350-359, Washington, DC, USA, 2004. IEEE Computer
Society.

Pierre-Alain Muller, Franck Fleurey, Didier Vojtisek, Zoé Drey, Damien Pollet,
Frédéric Fondement, Philippe Studer, and Jean-Marc Jézéquel. On executable
meta-languages applied to model transformations. Model Transformations In
Practice Workshop, 2005.

Hausi A. Miiller, Jens H. Jahnke, Dennis B. Smith, Margaret-Anne Storey, Scott R.
Tilley, and Kenny Wong. Reverse engineering: a roadmap. In FOSE ’00: Proceed-
ings of the 1st Conference on The future of Software engineering, pages 47-60. ACM
Press, 2000.

Gail C. Murphy, Mik Kersten, and Leah Findlater. How are java software develop-
ers using the eclipse ide? IEEE Software, 23(4):76-83, 2006.

Tien N. Nguyen, Ethan V. Munson, John T. Boyland, and Cheng Thao. An in-
frastructure for development of object-oriented, multi-level configuration man-
agement services. In ICSE ’05: Proceedings of the 27th international conference on
Software engineering, pages 215-224, New York, NY, USA, 2005. ACM.

http://www.eetimes.com/article/showArticle.jhtml?articleId=21400991
http://www.eetimes.com/article/showArticle.jhtml?articleId=21400991

187

Bibliography

[OMO08]

[Ost87]

[Par72]

[PBMW98]

[Per87]

[PGO6]

[PGM107]

[PGRO6]

[Pin99]

[Pin05]

[PMO6]

[PPO5]

[RAGBHO5]

Takayuki Omori and Katsuhisa Maruyama. A change-aware development envi-
ronment by recording editing operations of source code. In MSR ’08: Proceedings
of the 2008 international working conference on Mining software repositories, pages
31-34, New York, NY, USA, 2008. ACM.

Leon J. Osterweil. Software processes are software too. In ICSE ’87: Proceed-
ings of the 9th international conference on Software Engineering, pages 2-13, Los
Alamitos, CA, USA, 1987. IEEE Computer Society Press.

David L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053-1058, 1972.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank
citation ranking: Bringing order to the web. Technical report, Stanford Digital
Library Technologies Project, 1998.

Dewayne E. Perry. Version control in the inscape environment. In ICSE '87: Pro-
ceedings of the 9th international conference on Software Engineering, pages 142—
149, Los Alamitos, CA, USA, 1987. IEEE Computer Society Press.

Chris Parnin and Carsten Gorg. Building usage contexts during program compre-
hension. In ICPC ’06: Proceedings of the 14th IEEE International Conference on
Program Comprehension, pages 13-22, Washington, DC, USA, 2006. IEEE Com-
puter Society.

Denys Poshyvanyk, Yann-Gaél Guéhéneuc, Andrian Marcus, Giuliano Antoniol,
and Vaclav Rajlich. Feature location using probabilistic ranking of methods based
on execution scenarios and information retrieval. IEEE Transactions on Software
Engineering, 33(6):420-432, 2007.

Chris Parnin, Carsten Gorg, and Spencer Rugaber. Enriching revision history with
interactions. In MSR ’06: Proceedings of the 2006 international workshop on Mining
software repositories, pages 155-158, New York, NY, USA, 2006. ACM.

Steven Pinker. How the mind works. Penguin Books, Harmondsworth, Middlessex
(UK), 1999.

Martin Pinzger. ArchView — Analyzing Evolutionary Aspects of Complex Software
Systems. PhD thesis, Vienna University of Technology, 2005.

Denys Poshyvanyk and Andrian Marcus. The conceptual coupling metrics for
object-oriented systems. In ICSM 06: Proceedings of the 22nd IEEE International
Conference on Software Maintenance, pages 469-478, Washington, DC, USA, 2006.
IEEE Computer Society.

Ranjith Purushothaman and Dewayne E. Perry. Toward understanding the
rhetoric of small source code changes. IEEE Transactions on Software Engineer-
ing, 31(6):511-526, 2005.

Gregorio Robles, Juan Jose Amor, Jesus M. Gonzalez-Barahona, and Israel Her-
raiz. Evolution and growth in large libre software projects. In IWPSE '05: Pro-
ceedings of the Eighth International Workshop on Principles of Software Evolution,
pages 165-174, Washington, DC, USA, 2005. IEEE Computer Society.

188

Bibliography

[RBO4]

[RDBT07]

[RDGMO04]

[Rie96]

[RLO5]

[RLO6]

[RLO7a]

[RLO7b]

[RLO7c]

[RLOSa]

[RLOSD]

[RLOSC]

[RLLO7]

Don Roberts and John Brant. Tools for making impossible changes - experiences
with a tool for transforming large smalltalk programs. IEE Proceedings - Software,
152(2):49-56, April 2004.

Coen De Roover, Theo D’'Hondt, Johan Brichau, Carlos Noguera, and Laurence
Duchien. Behavioral similarity matching using concrete source code templates in
logic queries. In PEPM ’07: Proceedings of the 2007 ACM SIGPLAN symposium on
Partial evaluation and semantics-based program manipulation, pages 92-101, New
York, NY, USA, 2007. ACM.

Daniel Ratiu, Stéphane Ducasse, Tudor Girba, and Radu Marinescu. Using history
information to improve design flaws detection. In CSMR ’04: Proceedings of the
Eighth Euromicro Working Conference on Software Maintenance and Reengineering
(CSMR’04), page 223, Washington, DC, USA, 2004. IEEE Computer Society.

Arthur J. Riel. Object-Oriented Design Heuristics. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1996.

Romain Robbes and Michele Lanza. Versioning systems for evolution research. In
IWPSE ’05: Proceedings of the 8th International Workshop on Principles of Software
Evolution, pages 155-164. IEEE CS Press, 2005.

Romain Robbes and Michele Lanza. Change-based software evolution. In EVOL
’06: Proceedings of the 2nd International ERCIM Workshop on Challenges in Soft-
ware Evolution, pages 159-164, 2006.

Romain Robbes and Michele Lanza. A change-based approach to software evolu-
tion. Electronic Notes in Theoretical Computer Science, 166:93-109, January 2007.

Romain Robbes and Michele Lanza. Characterizing and understanding develop-
ment sessions. In ICPC ’07: Proceedings of the 15th IEEE International Conference
on Program Comprehension, pages 155-166, Washington, DC, USA, 2007. IEEE
Computer Society.

Romain Robbes and Michele Lanza. Towards change-aware development tools.
Technical Report 6, Faculty of Informatics, Universita della Svizzerra Italiana,
Lugano, Switzerland, may 2007.

Romain Robbes and Michele Lanza. Example-based program transformation. In
MOoDELS ’08: Proceedings of the 11th international conference on Model Driven En-
gineering Languages and Systems, Lecture Notes in Computer Science, pages 174—
188. Springer, 2008.

Romain Robbes and Michele Lanza. How program history can improve code com-
pletion. In ASE 08: Proceedings of the 23rd ACM/IEEE International Conference on
Automated Software Engineering, pages 317-326. ACM Press, 2008.

Romain Robbes and Michele Lanza. Spyware: A change-aware development
toolset. In ICSE ’08: Proceedings of the 30th International Conference in Software
Engineering, pages 847-850. ACM Press, 2008.

Romain Robbes, Michele Lanza, and Mircea Lungu. An approach to software evo-
lution based on semantic change. In FASE ’07: Proceedings of 10th International
Conference on the Fundamentals of Software Engineerings, Lecture Notes in Com-
puter Science, pages 27-41. Springer, 2007.

189

Bibliography

[RLPOS]

[Rob07]

[Roc75]

[RPLOS]

[SBGOS]

[SEHO3]

[SES05]

[SGPP04]

[SHO1]

[Sha07]

[SHE02]

[SLMO03]

Romain Robbes, Michele Lanza, and Damien Pollet. A benchmark for change
prediction. Technical Report 06, Faculty of Informatics, Universita della Svizzerra
Italiana, Lugano, Switzerland, October 2008.

Romain Robbes. Mining a change-based software repository. In MSR ’07: Proceed-
ings of the Fourth International Workshop on Mining Software Repositories, page 15,
Washington, DC, USA, 2007. IEEE Computer Society.

Marc J. Rochkind. The Source Code Control System. IEEE Transactions on Software
Engineering, 1(4):364-370, 1975.

Romain Robbes, Damien Pollet, and Michele Lanza. Logical coupling based on
fine-grained change information. In WCRE ’08: Proceedings of the 15th IEEE In-
ternational Working Conference on Reverse Engineering, pages 42—-46. IEEE Press,
2008.

Prawee Sriplakich, Xavier Blanc, and Marie-Pierre Gervals. Collaborative software
engineering on large-scale models: requirements and experience in modelbus. In
SAC ’08: Proceedings of the 2008 ACM symposium on Applied computing, pages
674-681, New York, NY, USA, 2008. ACM.

Susan Elliott Sim, Steve Easterbrook, and Richard C. Holt. Using benchmarking
to advance research: a challenge to software engineering. In ICSE ’03: Proceed-
ings of the 25th International Conference on Software Engineering, pages 74-83,
Washington, DC, USA, 2003. IEEE Computer Society.

Janice Singer, Robert Elves, and Margaret-Anne Storey. Navtracks: Supporting
navigation in software maintenance. In ICSM ’05: Proceedings of the 21st IEEE
International Conference on Software Maintenance, pages 325-334, Washington,
DC, USA, 2005. IEEE Computer Society.

Kevin A. Schneider, Carl Gutwin, Reagan Penner, and David Paquette. Mining
a software developer’s local interaction history. In MSR ’04: Proceedings of the
1st international workshop on Mining Software Repositories, pages 106-110, Los
Alamitos CA, 2004. IEEE Computer Society Press.

Till Schiimmer and J6rg M. Haake. Supporting distributed software development
by modes of collaboration. In ECSCW’01: Proceedings of the seventh conference
on European Conference on Computer Supported Cooperative Work, pages 79-98,
Norwell, MA, USA, 2001. Kluwer Academic Publishers.

Yuval Sharon. Eclipseye - spying on eclipse. Bachelor’s thesis, University of
Lugano, June 2007.

Susan Elliott Sim, Richard C. Holt, and Steve Easterbrook. On using a benchmark
to evaluate c++ extractors. In IWPC ’02: Proceedings of the 10th International
Workshop on Program Comprehension, page 114, Washington, DC, USA, 2002.
IEEE Computer Society.

Jelber Sayyad Shirabad, Timothy C. Lethbridge, and Stan Matwin. Mining the
maintenance history of a legacy software system. In ICSM '03: Proceedings of
the International Conference on Software Maintenance, page 95, Washington, DC,
USA, 2003. IEEE Computer Society.

190

Bibliography

[Smi84]

[SNvdHO03]

[SomO06]

[SRGO8]

[TBGO4]

[TCS05]

[TDDO0]

[TDX07]

[TGO2]

[Tic85]

[TMO02]

[Tuf06]
[Var06]

Brian Cantwell Smith. Reflection and semantics in lisp. In POPL ’84: Proceed-
ings of the 11th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 23-35, New York, NY, USA, 1984. ACM.

Anita Sarma, Zahra Noroozi, and André van der Hoek. Palantir: raising aware-
ness among configuration management workspaces. In ICSE ’03: Proceedings of
the 25th International Conference on Software Engineering, pages 444—454, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

Ian Sommerville. Software Engineering: (Update) (8th Edition) (International
Computer Science). Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2006.

Ilie Savga, Michael Rudolf, and Sebastian Goetz. Comeback!: a refactoring-based
tool for binary-compatible framework upgrade. In ICSE Companion '08: Compan-
ion of the 30th international conference on Software engineering, pages 941-942,
New York, NY, USA, 2008. ACM.

Michael Toomim, Andrew Begel, and Susan L. Graham. Managing duplicated
code with linked editing. In VLHCC ’04: Proceedings of the 2004 IEEE Symposium
on Visual Languages - Human Centric Computing, pages 173-180, Washington, DC,
USA, 2004. IEEE Computer Society.

Nikolaos Tsantalis, Alexander Chatzigeorgiou, and George Stephanides. Predict-
ing the probability of change in object-oriented systems. IEEE Transactions on
Software Engineering, 31(7):601-614, 2005.

Sander Tichelaar, Stéphane Ducasse, and Serge Demeyer. Famix and xmi. In
WCRE ’00: Proceedings of the Seventh Working Conference on Reverse Engineering
(WCRE’00), page 296, Washington, DC, USA, 2000. IEEE Computer Society.

Kunal Taneja, Danny Dig, and Tao Xie. Automated detection of api refactorings
in libraries. In ASE 07: Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, pages 377-380, New York, NY, USA,
2007. ACM.

Qiang Tu and Michael W. Godfrey. An integrated approach for studying architec-
tural evolution. In IWPC ’02: Proceedings of the 10th International Workshop on
Program Comprehension, page 127, Washington, DC, USA, 2002. IEEE Computer
Society.

Walter E Tichy. Rcs—a system for version control. Software Practice and Experi-
ence, 15(7):637-654, 1985.

Christopher M. B. Taylor and Malcolm Munro. Revision towers. In VISSOFT
'02: Proceedings of the 1st International Workshop on Visualizing Software for Un-
derstanding and Analysis, page 43, Washington, DC, USA, 2002. IEEE Computer
Society.

Edward R. Tufte. Beautiful Evidence. Graphis Pr, 2006.

Déniel Varré. Model transformation by example. In Models '06: Proceedings of the
9th international conference on Model Driven Engineering Languages and Systems,
Lecture Notes in Computer Science, pages 410-424. Springer, 2006.

191

Bibliography

[Vis02]

[VR79]

[WDO06]

[WHHO04]

[WKO0]

[WLO08]

[WSKKO7]

[Wuy07]

[XS05]

[YMNCC04]

[Zel07]

[ZGHO07]

[2S95]

Eelco Visser. Meta-programming with concrete object syntax. In GPCE '02: Pro-
ceedings of the 1st ACM SIGPLAN /SIGSOFT conference on Generative Programming
and Component Engineering, pages 299-315, London, UK, 2002. Springer-Verlag.

C. J. van Rijsbergen. Information Retrieval. Butterworth, 2nd edition edition,
1979.

Peter Weissgerber and Stephan Diehl. Identifying refactorings from source-code
changes. In ASE ’06: Proceedings of the 21st IEEE/ACM International Conference
on Automated Software Engineering, pages 231-240, Washington, DC, USA, 2006.
IEEE Computer Society.

Jingwei Wu, Richard C. Holt, and Ahmed E. Hassan. Exploring software evolution
using spectrographs. In WCRE ’04: Proceedings of the 11th Working Conference on
Reverse Engineering, pages 80-89, Washington, DC, USA, 2004. [EEE Computer
Society.

E George Wilkie and Barbara A. Kitchenham. Coupling measures and change rip-
ples in c++ application software. Journal of Systems and Software, 52(2-3):157-
164, 2000.

Richard Wettel and Michele Lanza. Visual exploration of large-scale system evolu-
tion. In WCRE "08: Proceedings of the 15th IEEE International Working Conference
on Reverse Engineering, pages 219-228. IEEE CS Press, 2008.

Manuel Wimmer, Michael Strommer, Horst Kargl, and Gerhard Kramler. Towards
model transformation generation by-example. In HICSS 07: Proceedings of the
40th Annual Hawaii International Conference on System Sciences, page 285b, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

Roel Wuyts. Roeltyper. |http://decomp.ulb.ac.be/roelwuyts/smalltalk/
roeltyper/, 2007.

Zhenchang Xing and Eleni Stroulia. Analyzing the evolutionary history of the log-
ical design of object-oriented software. IEEE Transactions on Software Engineering,
31(10):850-868, 2005.

Annie T. T. Ying, Gail C. Murphy, Raymond T. Ng, and Mark Chu-Carroll. Pre-
dicting source code changes by mining change history. IEEE Transactions Software
Engineering, 30(9):574-586, 2004.

Andreas Zeller. The future of programming environments: Integration, synergy,
and assistance. In FOSE 07: Proceedings of the 2nd Conference on The Future of
Software Engineering, pages 316-325, Washington, DC, USA, 2007. IEEE Com-
puter Society.

Lijie Zou, Michael W. Godfrey, and Ahmed E. Hassan. Detecting interaction cou-
pling from task interaction histories. In ICPC ’07: Proceedings of the 15th IEEE
International Conference on Program Comprehension, pages 135-144, Washington,
DC, USA, 2007. IEEE Computer Society.

Andreas Zeller and Gregor Snelting. Handling version sets through feature logic.
In Proceedings of the 5th European Software Engineering Conference, pages 191-
204, London, UK, 1995. Springer-Verlag.

http://decomp.ulb.ac.be/roelwuyts/smalltalk/roeltyper/
http://decomp.ulb.ac.be/roelwuyts/smalltalk/roeltyper/

192 Bibliography

[ZumO07] Pascal Zumkehr. Changeboxes — modeling change as a first-class entity. Master’s
thesis, University of Bern, February 2007.

[ZWDZ04] Thomas Zimmermann, Peter Weisgerber, Stephan Diehl, and Andreas Zeller. Min-
ing version histories to guide software changes. In ICSE ’04: Proceedings of the
26th International Conference on Software Engineering, pages 563-572, Washing-
ton, DC, USA, 2004. IEEE Computer Society.

	Contents
	List of Figures
	List of Tables
	Introduction
	The Challenges of Software Evolution
	Reification to The Rescue
	Change-based Software Evolution
	Roadmap

	I First-class Changes: The Why, The What and The How
	Software Evolution Support in Research and Practice
	Introduction
	Change Representation in SCM
	How SCM Handles Versioning
	Interaction Models in SCM
	The State of the Practice in SCM

	Impact of SCM Practice on the Research of MSR
	The shortcomings of SCM for MSR
	High-level evolution analysis
	Full model evolution analysis
	Evolution reconstruction approaches

	Alternative Approaches
	IDE monitoring as an Alternative to SCM Archives
	Change-based approaches

	Summary

	Change-Based Software Evolution
	Introduction
	Principles of Change-based Software Evolution
	Program Representation
	Abstract Syntax Tree Format
	Language Independence
	Limitations

	The Change Metamodel
	Atomic Changes
	Composite Changes
	Change histories
	Generating a View of the System

	Recording and Storing Changes
	Uses of Change-based Software Evolution
	Example: Measuring the Evolution of Systems
	Validation Strategies
	What Is Used Where?

	Summary

	II How First-class Changes Support System Understanding
	Assessing System Evolution
	Introduction
	Assessing Systems with The Change Matrix
	Principles
	Patterns

	Evolution of Project I
	High-level Facts
	Reconstructing Project I's Evolution
	Recapitulation

	Impact of Data Degradation
	Discussion
	Summary

	Characterizing and Understanding Development Sessions
	Introduction
	Motivations for Session-based Program Understanding
	A Characterization of Development Sessions
	Primary Session Characterization
	Session Metrics
	Quantitative Analysis of the Characterization

	Incremental Session Understanding
	A Process for Incremental Session Understanding
	Browsing Sessions with the Session Sparkline
	Inspecting and Characterizing Sessions with The Session Inspector
	Viewing Changes in Context with The Session Explorer
	Understanding Individual Changes with The Change Reviewer

	Validation
	Decoration Session (Project X)
	Painting Session (Project X)
	Masonry & Restoration Session (Project X)
	Architecture & Restoration Session (SpyWare)

	Discussion
	Summary

	Measuring Evolution: The Case of Logical Coupling
	Introduction
	Logical Coupling
	Usages of Logical Coupling
	Shortcomings of SCM Logical Coupling
	Alternatives to SCM Logical Coupling

	SCM Logical Coupling Prediction
	Motivation
	Procedure
	Evaluation
	Result Format
	Data Corpus

	Logical Coupling Measurements and Results
	SCM Logical Coupling
	Change-based Coupling
	Interaction Coupling
	Time-based Coupling
	Close Time-based Coupling
	Combined Coupling
	Discussion of the Results

	Discussion
	Summary

	III How First-Class Changes Support Software Evolution
	Program Transformation and Evolution
	Introduction
	Change-based Program Transformations
	Variables And Their Roles
	Generic Changes
	Instantiation and Application of Transformations
	Control Structures
	Wrap-up

	Transforming programs by examples
	The Program Transformation Spectrum
	Example-based Program Transformation in a Nutshell
	Does our approach fulfill the requirements?
	Running example

	The Six-step Program to Transformation Definition
	Recording the example
	Generalizing the example
	Editing the Example
	Composing Changes
	Testing the Transformation
	Applying the Transformation

	Additional Examples
	Defining informal aspects
	Clone Management

	Towards Transformation Integration and Evolution
	Transformation Integration
	Transformation Comprehension
	Transformation Evolution

	Discussion
	Change-based Program Transformation
	Example-based Program Transformation
	Integrating Transformations in The Evolution

	Summary

	Evaluating Recommendations for Code Completion
	Introduction
	The Cost of Human Subject Studies
	Current Approaches to Code Completion
	Code Completion in Eclipse
	Code Completion in VisualWorks
	Code Completion in Squeak
	Code Completion in Eclipse with Mylyn
	Optimistic and Pessimistic Code Completion

	A Benchmark For Code Completion
	Motivation
	Procedure
	Evaluation
	Result Format
	Data Corpus

	Code Completion Algorithms
	Default Untyped Strategy
	Default Typed Strategy
	Optimist Structure
	Recently Modified Method Names
	Recently Modified Method Bodies
	Recently Inserted Code
	Per-Session Vocabulary
	Typed Optimist Completion
	Discussion of the results

	Discussion
	Summary

	Improving Recommendations for Change Prediction
	Introduction
	Change Prediction Approaches
	Historical Approaches
	Impact Analysis Approaches
	IDE-based approaches

	A Benchmark for Change Prediction
	Motivation
	Procedure
	Evaluation
	Result Format
	Data Corpus

	Results
	Association Rules Mining
	Enhanced Association Rule Mining
	Degree of Interest
	Coupling-based
	Association Rules with Time Coupling
	HITS
	Merging Approaches
	Discussion of the results

	Discussion
	Conclusion

	IV First-class Changes: So What?
	Perspectives
	Contributions
	Defining Change-based Software Evolution
	Evaluating Change-based Software Evolution for Reverse Engineering
	Evaluating Change-based Software Evolution for Forward Engineering
	Additional Contributions

	Limitations
	Threats to Validity
	Adoption Issues
	Conclusions

	Lessons Learned
	Future Work
	Closing Words

	V Appendix
	Inside the Change-based Repository
	Bibliography

