
Object-focused Environments Revisited

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Fernando Olivero

under the supervision of

Prof. Dr. Michele Lanza

April 2013

Dissertation Committee

Prof. Dr. Theo D’Hondt Vrije Universiteit Brussel, Belgium
Prof. Dr. Stéphane Ducasse INRIA Nord, France
Prof. Dr. Marc Langheinrich University Of Lugano, Switzerland
Prof. Dr. Oscar Nierstrasz University of Bern, Switzerland
Prof. Dr. Cesare Pautasso University Of Lugano, Switzerland

Dissertation accepted on April 2013

Research Advisor PhD Program Director

Prof. Dr. Michele Lanza Prof. Dr. Antonio Carzaniga

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been sub-
mitted previously, in whole or in part, to qualify for any other academic award;
and the content of the thesis is the result of work which has been carried out
since the official commencement date of the approved research program.

Fernando Olivero
Lugano, April 2013

ii

Abstract

In the object oriented programming (OOP) paradigm, programs are composed
solely of objects. The computational model is based on a world of collaborating
objects, where they send each other messages to carry out tasks. The programs
are crafted with the aid of tools, which enable to describe their components
and behavior in a human readable form. With the advent of the graphical
user interface came the pinnacle tool for software development, the integrated
development environment (IDE).

IDEs include numerous tools to effectively construct, debug, and test the
programs. The tools work on a static textual representation of the program –
the source code– which conceptually conflicts with the dynamic nature of the
computational model of OOP. The use of a tool-based interface also produces
technical problems, which relate to navigating the system, preserving the task
context, and manipulating finer grained entities than the coarse grained per-
spective offered by the tools.

In this thesis we investigate an alternative interface for OOP environments,
which is based solely on direct manipulation of objects. It alleviates the con-
ceptual and technical problems of tool-based IDEs, by giving prominence to
the objects themselves within the interface.

We propose an Object-focused environment, composed of a 2D surface
hosting behaviorally complete graphical representations of the objects. We pro-
vide prototype implementations named Gaucho and Ronda, which illustrate the
application of our approach to a broad range of tasks, such as modeling, pro-
gramming, program comprehension, and collaborative software engineering.

To validate our thesis, we conducted a summative evaluation, instrumented
as a controlled experiment where we compared Gaucho with a traditional IDE,
finding that it is indeed a viable alternative to the current state of the art.

iii

iv

Acknowledgements

It was four years ago when I crossed the ocean and landed in Switzerland, and
since then i’ve met many people who have greatly helped me along the way
into completing my Ph.D studies. I extend my gratitude towards all of them,
starting from my advisor Michele Lanza, to former and current REVEALER’s:
the Doc Romain, Ricky, Mr D, Mircea, Lille, Alberto, Roberto, Remo, Luca,
and Tommaso. It was great sharing an office, playing calcio, climbing in Vezia,
traveling to conferences, and collecting anecdotes from Il Fornaio.

Michele, thanks for enlightening me with the ways of the word, and for all
the support, patience and coolness you emanated during my time in Lugano.

I would also thank the members of my committee, for asking both interesting
and tough questions, which greatly improved the contents of this dissertation.

To my former employers, Leandro and Valeria, thank you for teaching me
so much in so little time; and to my former professors, Hernan and Carlos, who
greatly inspired me to pursue a dissertation on such a interesting topic.

Needless to say, I greatly appreciate the effort and sacrifices that all my
family endured during my extended european stay, GRACIAS TOTALES to all of
you in the end of the world!

Wioleta, you made everything better, with your love and support. Thank
you for an amazing time in Lugano, Kocham Cię.

Fernando Olivero
April 2013

v

vi

Contents

Contents vii

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Symbolic Programming . 2
1.2 On the writing of programs . 3
1.3 Programming is more than just writing 4

1.3.1 Integrated Development Environments 4
1.4 Object-Oriented Programming . 6
1.5 The Problem . 7

1.5.1 The Conceptual Problem: Tools vs Objects 7
1.5.2 Technical Problems . 8
1.5.3 Summary . 13

1.6 Thesis . 14
1.7 Contributions . 15
1.8 Structure of the Document . 16

2 State of the Art 17
2.1 Smalltalk . 18

2.1.1 Browsers and Inspectors . 18
2.2 Code-Centric Environments . 20

2.2.1 Relo . 21
2.2.2 Code Canvas . 22
2.2.3 Code Bubbles . 23
2.2.4 Summary . 23

2.3 Modeling Environments . 24
2.4 Direct-Manipulation of Objects . 28

vii

viii Contents

2.4.1 The Tools and Desktop Metaphor 28
2.4.2 From Structured Text to Graphical Objects 29
2.4.3 Self . 32
2.4.4 Morphic . 33
2.4.5 Naked Objects . 33

2.5 Conclusions . 34

3 Object-Focused Environments 37
3.1 Motivation . 38

3.1.1 From reality to the program 38
3.1.2 Scenarios . 40
3.1.3 Summary . 43

3.2 Gaucho . 44
3.2.1 Gaucho in a Nutshell . 44
3.2.2 The Sessions and The System 45
3.2.3 The Pampas . 46
3.2.4 The Shapes . 46
3.2.5 Implementation . 47

3.3 Modeling with Gaucho . 48
3.3.1 The MDE Shapes . 48

3.4 Programming in Gaucho . 50
3.4.1 Classes . 51
3.4.2 Methods . 52
3.4.3 Test Cases . 53
3.4.4 Packages . 54
3.4.5 Producing Fine-Grained Changes 55
3.4.6 Navigating the System . 58
3.4.7 Task Context Support . 61

3.5 On the interface of Gaucho . 62
3.5.1 On the Textual Representation of Methods Statements . . 64

4 Evaluation 65
4.1 Instrumenting the Evaluation of Software Tools 66

4.1.1 The Crux of Human-centric Experiments 67
4.1.2 Biscuit: Tracking Human-Centric Controlled Experiments 69

4.2 Context . 72
4.3 Experimental Design . 73

4.3.1 Research Questions . 73
4.3.2 Variables . 74

ix Contents

4.3.3 Baseline . 74
4.3.4 Object system & Treatments 75
4.3.5 Tasks . 75

4.4 Experimental Operation and Results 77
4.4.1 Operation . 77
4.4.2 Pre-Experiment Questionnaire 77
4.4.3 Experiment Questionnaire 79
4.4.4 Debriefing Questionnaire 86
4.4.5 Data collection . 87
4.4.6 Results . 89

4.5 Reflections . 94
4.5.1 On the correctness of the performed tasks 94
4.5.2 On the completion time of the performed tasks 95
4.5.3 Threats To Validity . 95

4.6 Conclusions . 96
4.6.1 Biscuit to the Rescue . 97

5 Object-Focused Collaboration 99
5.1 On Object-Focused Collaborative Environments 100

5.1.1 Shared Development Sessions 100
5.1.2 Object-focused environments 101

5.2 Ronda . 102
5.2.1 Awareness of Fine-Grained Changes 102
5.2.2 Shared Development Sessions 104
5.2.3 Change Authoring and Trust Levels 104
5.2.4 Avoiding Conflicts . 104

5.3 Tea Time . 106
5.3.1 Customizing TeaTime for Ronda 106

5.4 Summary . 107

6 Conclusions 109
6.1 Contributions . 110
6.2 Future Work . 112

6.2.1 Semantics . 112
6.2.2 Relations . 112
6.2.3 Education . 112
6.2.4 Live Programming Tools . 113

6.3 Closing Words . 113

x Contents

A Experiment Design with Biscuit 115
A.1 Modeling and Running an Experiment 115
A.2 The User Interface of the Experiment Run 116
A.3 Designing the Experiment on Gaucho 117

Bibliography 121

Figures

1.1 University students translating their programs onto punch cards 3
1.2 An IDE with a graphical user interface for Smalltalk 5
1.3 Tool-based IDEs with different real-state management 9
1.4 The Tools of a Smalltalk Environment 12

2.1 Basic tools included in Smalltalk, from the original Smalltalk-80
to the modern Pharo IDE . 19

2.2 Code-centric mainstream IDEs . 20
2.3 Relo . 22
2.4 Code Canvas . 23
2.5 Code Bubbles . 24
2.6 Cell: a simple modeling tool . 25
2.7 Argo UML: a complete UML environment 26
2.8 Modeling tools . 27
2.9 The evolution of the Smalltalk programming tools 30
2.10 The inspector: a generic tool for manipulating objects 31
2.11 Self: the seminal object-focused environment 32
2.12 The Morphic UI framework implemented in Squeak Smalltalk

and the Lively Kernel for Javascript 33
2.13 The Naked Objects Framework . 34

3.1 Our view on the programming process 38
3.2 An abstract scenario of our view on the programming process . 40
3.3 The workflows of the three practices under consideration 41
3.4 Gaucho: an object-focused environment 44
3.5 The overall design of Gaucho . 45
3.6 Distinct Gaucho shapes populating a pampas 46
3.7 First-class Model enhancements to Smalltalk 48
3.8 MDE shapes: TicTacToe example 49
3.9 Programming in Gaucho . 51

xi

xii Figures

3.10 The shape representing the class shape itself 52
3.11 A class with several of its methods surrounding the shape 53
3.12 Test Case shapes with different test results 54
3.13 The system view presents all the available packages 54
3.14 Presenting the Changes of a Session 55
3.15 Adding classes in Gaucho . 56
3.16 Changing a Class with the Pie Menu 57
3.17 Changing a Class with the Daisy Menu 58
3.18 Adding and modifying methods . 59
3.19 Navigating the system from a class shape 60
3.20 Navigating through interconnected shapes 61
3.21 Task context support within Gaucho 62
3.22 Gaucho Shapes present high level views of the objects 63

4.1 An experiment run instrumented with Biscuit 71
4.2 A System Browser of the Pharo IDE 74
4.3 The questions presented by Biscuit at the start 78
4.4 The Introduction presented by Biscuit for the treatment using Pharo 79
4.5 The outline of the tasks of the experiment 80
4.6 The tasks of the experiment . 81
4.6 The tasks of the experiment (cont) 82
4.6 The tasks of the experiment (cont) 83
4.6 The tasks of the experiment (cont) 84
4.6 The tasks of the experiment (cont.) 85
4.7 The post-experiment questionnaire presented by Biscuit 86
4.8 Biscuit running on top of the Pharo IDE 87
4.9 Biscuit output: reliable and precise data 88
4.10 The time and correctness of the subjects on the performed tasks 89
4.11 The Subject’s Perceived Difficulty of the Tasks 96

5.1 Self and Kansas: collaboration within an object-focused IDE . . 100
5.2 Syde: collaboration support within the Eclipse IDE 101
5.3 A Ronda session: the Pampas including several Shapes 103
5.4 Ronda: the initial display . 103
5.5 Two ronda sessions depicting generation and awareness of changes105
5.6 The infrastructure for collaboration in Ronda 107

A.1 The Classes that model an experiment in Biscuit 115
A.2 The Classes that model an experiment in Biscuit 116

Tables

4.1 Treatments presented to the subjects 75
4.2 The fourteen tasks of the experiment 76
4.3 Referenced questions from Silito’s framework 77
4.4 The declared expertise of the subjects 78
4.5 The Completion Times and Correctness (incorrect answers are

colored red) of the subjects on the performed tasks 90

xiii

xiv Tables

Chapter 1

Introduction

Computer programming is an art, because it applies accumulated
knowledge to the world, because it requires skill and ingenuity, and
especially because it produces objects of beauty.

—DONALD E. KNUTH

In his 1974 ACM Turing Award Lecture, Knuth defended his decision to
include the word art in his renowned series of books entitled: “The art of
computer programming” [1]. In the lecture, Knuth related programming to art,
because it requires skill and the application of knowledge to master complexity,
to ultimately produce beautiful programs [2].

In any form of art, humans playing the role of artists make use of several
tools to produce their pieces. For example to produce the Venus of Milo, an
ancient greek sculpture, the artist used a hammer and a chisel to carve out the
feminine figure from an shapeless piece of marble rock. In this dissertation, we
focus on the tools that computer programmers use to create programs; digital-
age artisans crafting their pieces of art.

Tools are the means to an end, which is the crafting of computer programs.
Computer programmers create and manipulate the elements that make up the
software system, by interacting with several tools. Therefore, the choice com-
puter programmers make on which tools to use is important, because tools
have a great influence on how they approach problems and describe solutions.
Dijkstra took this argument further by stating that tools enable computer pro-
grammers to think and express solutions to problems [3].

1

2 1.1 Symbolic Programming

1.1 Symbolic Programming

We established that programmers use tools to craft and manipulate programs,
without defining what constitutes a program. Since the dawn of general pur-
pose mechanical and electronic machines, humans have devised mechanisms
to instruct them to perform tasks. We define this series of instructions, in a
broad sense, as a program. The purpose of a program is to aid human labour
or augment human intellect by instructing a general purpose machine –the
computer– to perform a series of operations.

Programs are expressed following an interface mechanism between humans
and computers, namely the language. Programs represent solutions to problems
within the design space delimited by a language. Ingalls stated that the purpose
of a language is to provide a framework for communication, that serves as an
interface between the models in the human mind and the computer [4].

The framework of communication initially evolved from basic machine in-
structions to assembly language, easing the writing of programs by abstracting
the instructions and memory locations into a human readable form consisting
of a combination of symbols and letters. A program written in assembly lan-
guage consists of a series of operation codes mapping one to one to machine
instructions, together with labels referencing memory locations, instead of a
plain succession of ones and zeroes closer to the computer hardware.

The prose of humans and computers started to diverge with the appearance
of high-level languages, such as Fortran, Lisp, Simula and Smalltalk. Programs
evolved from simple tasks executing machine operations, to more complex
tasks involving concepts such as control flow statements, arrays, files, functions,
and objects. The latter are not directly available from the machine instruction
set, but rather enabled via multiple layers of abstraction.

Programming languages gradually came closer to a human readable form.
The framework of communication was based on a symbolic representation of
the program, where programmers make use of symbols and rules, to compose
and specify programs, and its relation with the other parts of the system.

In our work, we focus on the programming languages that represent pro-
grams in a textual form, that is programs that are defined by a piece of text –the
source code– that specifies the constituents and the behavior of the program,
whose content is governed by the syntactic and semantic rules of the language.

3 1.2 On the writing of programs

1.2 On the writing of programs

From early psychological theories of programming to the present, programming
is acknowledged as a form of writing [5], thus while fulfilling programming
tasks, the editing and reading of a textual representation of the program –the
source code– is paramount. The former applies to programming languages that
are based on symbolic programming, which are our focus.

Since the dawn of computing, programmers used pencil and paper to write
down the programs in a particular language, translating the solutions to prob-
lems in a form that computers can understand. At first, the instrumentation of
the human-computer interaction was based on encoding the symbolic program
onto punch cards (see Figure 1.1). The cards represented one statement of the
program encoded with the presence or absence of holes, then fed into a card
reader machine to ultimately become understandable by the computer.

Figure 1.1. University students translating their programs onto punch cards

The removal of the intermediate step of encoding the programs on punched
cards, came with the advent of one line editors such as teleprinter machines,
and their graphical counterpart included in timesharing systems with terminal
displays. Human-computer interaction became more interactive, given that pro-
grammers could now directly modify the programs one line at a time, instead
of using the batch processing mode of yore [2].

4 1.3 Programming is more than just writing

Once the terminal displays and personal computers with graphical user in-
terfaces became widespread, the appearance of software applications known
as word processors raised the level of interactivity and flexibility of the pro-
gramming tools. Word processors enabled the viewing and editing of multiple
lines of the program at once, as opposed to the single line editing of command
line editors. Word processors became an important programming tool, central
to the instrumentation of human-computer interaction.

Nowadays, programmers use customized source code editors, evolved from
general purpose text editors, for manipulating programs written in a particular
language. Modern source code editors provide advanced features to aid pro-
grammers when writing and reading programs, such as automatically checking
the syntactic rules to augment the view with relevant information, and the au-
tocompletion of typed prefixes according to the context of the selected text, i.e.
classes within a package or methods within a class hierarchy.

1.3 Programming is more than just writing

We established that programming involves the writing and reading of a textual
representation of the program, thus programmers make use of some form of
word processor to craft programs.

Nevertheless, the whole programming process involves a broad range of
other activities, such as the transformation of source code into an executable
artifact, the monitoring of running programs to detect and fix problems, and the
creation of assertions on the quality and correctness of the programs.

1.3.1 Integrated Development Environments

During the late 70’s and the mid 80’s, programming became widespread due
to the appearance of more interactive programming tools –word processors in
terminal displays and personal computers–, and of simpler programming lan-
guages such as BASIC. Programmers made use of several different tools to ac-
complish diverse programming tasks, for example they use debuggers, com-
pilers, linkers, and source-code editors. All the tools were running within the
same operating system, yet each one remaining a standalone application.

The lack of a common interface and of interoperability between the tools,
favored the appearance of the integrated development environment (IDE), a
single application that included all the necessary tools.

5 1.3 Programming is more than just writing

The use of an IDE eased the undertaking of programming tasks, by providing
a uniform interface to all the tools, which became accessible and were managed
within one single entry point: the IDE.

One of the first IDEs to be widely adopted was Turbo Pascal, an IDE for
the Pascal language that ran on the DOS-based personal computers of the 80’s.
Turbo Pascal enabled the running, compiling, debugging and editing of pro-
grams within a keyboard-based environment.

Nevertheless, the concept of the IDE was conceived a decade before the
irruption of the personal computer era in the 80’s, in the group working at
the XEROX Palo Alto Research lab that created Smalltalk, the first dynamic
object oriented programming (OOP) language. Figure 1.2 depicts a Smalltalk
environment running on one of the first personal computers designed at XEROX
Parc during the 70’s.

Figure 1.2. An IDE with a graphical user interface for Smalltalk

6 1.4 Object-Oriented Programming

Nowadays, programmers craft programs with the use of IDEs, and interact
with the source code and executables through graphical user interfaces inspired
from the early Smalltalk systems, which consisted of a dynamic OOP language
and an interactive development environment. Smalltalk was the first language
to enable OOP via a graphical user interface that grants access to the underly-
ing objects of the system, solely through graphical elements on the computer
display, and the use of pointing devices and keyboards [6].

In this dissertation we focus on IDEs for programing in dynamic OOP lan-
guages, and use Smalltalk as the target language for our thesis.

1.4 Object-Oriented Programming

When asked what that means he replies, "Smalltalk programs are just objects."
When asked what objects are made of he replies, "objects." When asked again he
says "look, it’s all objects all the way down. Until you reach turtles."

—ALAN KAY

From the first high-level programming languages such as Fortran and Al-
gol, programmers designed the programs around abstract data types and pro-
cedures, making a clear distinction between (inert) data and the functionality
to modify it. Around the late 60’s, a different programming language paradigm
emerged as a result of the work of Alan Kay, based on the metaphor of com-
municating objects. Kay designed a system built from the ground up entirely
on this metaphor, whose first implementation was the Smalltalk environment
developed at Xerox Parc during the 70’s [7].

Kay advocated the "disappearing of data" using only methods and objects.
Objects subsume the concept of data and procedures into an entity which has
state and behavior (methods), and the computation model is entirely based on
message passing: the system is a collection of well behaved objects that ask
each other to perform computation.

The key concepts of this new approach to computing came from biological
cell communications modeled as networked whole computers. Kay was in-
spired by his biology and mathematics background, his work on the ARPAnet,
which became the Internet, and the inheritance mechanism present in the Sim-
ula language [7]. Another source of inspiration was the Sketchpad, a computer
aided design tool developed by Sutherland as part of his doctoral dissertation
[8], which also introduced the concept of classes and instances.

7 1.5 The Problem

The OOP paradigm proved to simple, flexible, and powerful. Object ori-
ented programming radically changed the computing programming culture. In
the present, the OOP paradigm is widely recognized and adopted by academia
and industry, in its various flavors: dynamic (Smalltalk,Python), type-based
(Java,C++), and prototype-based (Self,Javascript).

1.5 The Problem

We concluded that programming is a form of writing, and that the need to
edit a textual representation of the program is satisfied by modern source code
editors, which go beyond general purpose text edition facilities, by providing
more specific features tailored to a programming language.

Nevertheless, programmers spend most of their time analyzing the program
[9], performing maintenance tasks that require an understanding of the system.
In doing so, programmers seek the aid of several tools because software systems
are hard to understand [10]. The tools provide a means to wander around the
system, learn about the composition of objects, and explore the relationships
between them.

Nowadays, programmers use IDEs that provide numerous tools to effectively
construct and maintain object-oriented programs. Besides source code edi-
tors, modern IDEs include compilers, debuggers, modeling, and testing tools,
amongst many other specific tools. The main tool for programming –the IDE–
emphasizes the manipulation of tools for writing and reading the programs [11].
The user interfaces of modern IDEs are built around a tools metaphor [12], be-
cause developers visualize and interact with tools for editing and manipulating
the objects of the system. We expand this discussion in Section 2.4.

The tool-based environments produce both conceptual and technical prob-
lems when programming in OOP languages, discussed next.

1.5.1 The Conceptual Problem: Tools vs Objects

In object-oriented languages, the most important concept is that of an object.
Moreover, in dynamic OOP languages –which is our focus–, the system is com-
posed solely of objects, suppressing the arbitrary distinction between run-time
and compile-time, to enhance the liveliness of the system.

The conceptual problem occurs because a tool-based environment treats
objects as lifeless entities, that can be only manipulated through a set of tools.
For example, to add or remove methods from a class, Smalltalk programmers

8 1.5 The Problem

use System Browsers that provide the means to do so. Nevertheless, method
addition or removal might also be achieved by sending messages to the class,
because in Smalltalk, classes are just another kind of live object in the system.

This dichotomy, between inert and live human-object interactions, results
from the former promoting a message-based interface, whereas the latter em-
powers a tool with the responsibility of modifying inert data. In non-dynamic
OOP languages, a tool-based IDE is instrumental because in such languages at
compile time programmers deal solely with an inert specification of the pro-
gram: the source code. Therefore, tools are the only possible means of manip-
ulating data. On the other hand, in dynamic OOP languages a tool-based IDE
is conceptually detrimental because it diverges from the philosophy behind the
language: a computational model based on a world of live objects [4].

Nonetheless, programmers have become efficient on creating and main-
taing programs using tool-based IDEs [13], thus we stress that the former is a
conceptual problem, which hinders the understanding of the importance of the
role of objects in dynamic OOP languages.

1.5.2 Technical Problems

In this section we discuss problems of the tool-based IDEs which are more prac-
tical in nature, and result from contrasting developers needs to the interfaces of
the tool-based development environments. We categorized the problems into
three categories: the first relates to a more fine-grained manipulation, the sec-
ond to the real estate management of finite computer displays, and the third to
the representation of the objects in the interface of the IDE.

Fine-grained Manipulation of Objects

The file-based view of mainstream OOP IDEs prevents the manipulation at a
finer-grained level than source code files. In a study on programmers habits
while using Eclipse 1, while performing maintenance tasks, Ko et al. elicited
the requirement that IDEs should provide a fine-grained manipulation of the
program entities [14]. Ko advocates for finer-grained representations of the sys-
tem, because programmers tend to form working sets of classes, methods and
packages, pertaining to the task at hand.

IDEs fail to meet this need, because they provide tools that enable a coarse
manipulation of the objects, in the form of whole file navigators and editors as
in IDEs for mainstream OOP languages such as JAVA.

1An IDE for the Java language, http://www.eclipse.org

http://www.eclipse.org

9 1.5 The Problem

Similarly, Smalltalk environments, include system browsers that grant access
to packages, classes, and methods within the same tool. Kersten et al. stated
that this problem is aggravated when the structure of the system is not aligned
with the structure of the task, and propose a degree of interest model that de-
fines a task context, to aid programmers into forming those working sets [15].

Real Estate Management

The user interface of modern IDEs are populated by diverse tools that enable
a whole range of programming tasks. In this section we analyze the different
mechanisms to arrange the tools within the interface, to detect shortcomings,
and find opportunities for improvement. Figure 1.3 depicts several tool-based
IDEs, that differ in how they handle the available real estate.

(a) Eclipse (b) Visual Studio

(c) Pharo (d) Visual Works

Figure 1.3. Tool-based IDEs with different real-state management

10 1.5 The Problem

One possible form of arranging several elements is through a tab-based in-
terface. Figure 1.3(a) depicts an Eclipse IDE with the central pane containing
two tabs, each one viewing a single file, which in non-dynamic OOP languages
represents and stores the classes of the program. Tabs are displayed within a
container pane or window, that in Eclipse assumes the main role for program-
ming. The use of tabs forces a single focus of attention: the contents of a single
tab can be manipulated at a time [16].

A single focus of attention conflicts with the programmer’s needs to create
side by side views of the constituents of the program [17]. Sillito et al. com-
piled a series of questions asked during programming tasks [10] that highlights
comparing programs elements to gain an understanding of the system.

On the other hand, an interface based on tiles allows the arrangement of
side by side views of the objects. Tiles are contiguous rectangular panes which
are confined within a parent container. Mainstream IDEs allow a tile-based
interface, besides a tab-based one. One example is the Visual Studio IDE for
the C# language 2, depicted in Figure 1.3(b).

Nevertheless, the use of tiles imposes constraints, because tiles are arranged
contiguously in the parent container, according to a fixed layout such as a grid
or flow layout [18]. The constrained layout hinders flexibility when creating
custom views of the program, while forming the working sets.

Smalltalk environments provide more freedom for laying out the objects of
the system. The interface consists of a 2D area spawning the whole display, that
includes multiple windows, which in turn each host one tool. The windows
may overlap, to make better use of the scarce real estate, confined within the
finite dimensions of the computer display.

A multiple overlapping windows scheme, can either be implemented within
a single operating system (OS) window, as in Pharo an open-source Smalltalk
environment 3, or match every smalltalk window to its own OS counterpart, as
in Visual Works, a commercial Smalltalk 4, see Figure 1.3(c) and Figure 1.3(d).
The overlapping windows share the scarce real estate, enabling programmers to
potentially handle more graphical elements than the tab or tile based interfaces.
Thus, the workspace often becomes crowded with many opened windows, due
to the number of objects and relationships a developer needs to examine.

The window plague can be mitigated by an automatic mechanism that finds
and removes unused (or unwanted) windows [19]. Nevertheless, problems re-
main, because of the generic purpose of the tools: the manipulated objects

2http://www.microsoft.com/visualstudio/
3http://www.pharo.org
4http://www.cincomsmalltalk.com/main/products/visualworks/

http://www.microsoft.com/visualstudio/
http://www.pharo.org
http://www.cincomsmalltalk.com/main/products/visualworks/

11 1.5 The Problem

depend on the current selection of the tools. The selection can be modified,
thus the mapping of windows to the objects is not persistent, which complicates
the reasoning behind the automatic scheme.

The problem of the explosion of graphical elements within the interface,
occurs also when using tabs or tiles. Moreover, all the mentioned schemes can
be used in conjunction: tabs and tiles may coexist within the interface, and
smalltalk windows can include tabs.

To summarize, tool-based interfaces work on a coarse-grained level, which
conflicts with programmers need to form working sets of objects, which may
spawn across all the modules of the system. Another missing opportunity oc-
curs because the mentioned schemes confine the graphical elements to a fi-
nite 2D area, which prevents programmers from using a spatial memory and
reasoning for the whole system [20], given that the clutter in the interface is
proportional to the number of objects relevant to the task at hand.

Representation of the Objects in the Interface

Software is intangible [21; 22], thus the visual appearance of objects is an extrin-
sic characteristic. Nevertheless, the objects must be represented in a graphical
form throughout the IDEs, because programmers interact with the system using
computer displays. Despite the intangible nature of software, objects have a
structure and composition that serves as a guideline for designing their visual
appearance. For instance, the containment relationship between a class and its
methods, or between a package and its classes, serves as a guideline for the
representation of the program, either in a textual or a graphical form.

The visual appearance of objects is an important concern when performing
programming and program comprehension tasks. For example, the use of soft-
ware visualization enable programmers to gain an understanding of the system
by exploiting metrics or intrinsic properties of the target of study: packages,
classes, methods, or the system itself [23]. In this dissertation we focus on tools
for programming in OOP languages, thus our concern is the visual representa-
tion of objects within the interface.

The IDEs of mainstream non-dynamic OOP languages are file-based, mak-
ing it explicit that source code is stored in operating system files. File-based
IDEs represent the program in a textual form, namely the source code, split into
files containing one or more elements of the program. Figure 1.3(a) depicts
Eclipse, a mainstream IDE with a standard arrangement of panes in the inter-
face, which includes several sub-panes surrounding a main tabbed pane that
presents the source code, following a bento-box model [24].

12 1.5 The Problem

The source code is the complete specification of the program, it defines all
the objects, their behavior and composition. When the programmer writes or
reads the code, he has to deal with the complexity of the syntactic rules of the
language, and process information to effectively modify the program. There-
fore, IDEs make use of graphical elements which abstract over the raw code,
such as code elision or class overview widgets. Code elision is the folding
of meaningful portions of code on demand, to hide irrelevant sections of the
objects, to aid programmers when reading complex source code files [25]. Sim-
ilarly, IDEs provide another means of viewing and navigating the composition
of classes and packages, in the form of overview widgets, which enable a tree
view interaction with the objects, depicted in Figure 1.3(a).

IDEs that provide the latter favor chunking. The method of presenting in-
formation known as chunking consists in splitting concepts into smaller pieces,
which are easier to manage and understand [26]. In this manner, file-based
IDEs enhance the usability of the interface at the expense of providing more
than one representation of the objects.

On the other hand, Smalltalk environments use a single representation of
the objects: a tool-based representation. In Smalltalk the source code is pre-
sented in small chunks within the panes of the tools named browsers, that
allow navigating the system, and editing packages, classes and methods. The
tool-based interface of Smalltalk inherently favors chunking. Figure 1.4 depicts
the two main tools included in Smalltalk systems: the browser for manipulating
the objects that make up the program –classes, methods and packages—, and
the inspector for manipulating instances.

(a) System Browser (b) Inspector

Figure 1.4. The Tools of a Smalltalk Environment

13 1.5 The Problem

The downside of a tool-based interface is a single object may be presented
by more than one tool, thus the identity property of OOP languages is not con-
veyed in the interface [11]. Another related problem is that tool-based interfaces
present the many different objects of the system using the same set of widgets.
Classes, methods, and packages appear as a list item in the browsers columns,
or in a textual description when the selection of the browser points to a specific
object. Figure 1.4 depicts a system browser with a selection on the class String,
and the code pane presenting a textual representation of the class description.
There are missing opportunities in this scheme, because the semantics of the
objects may be only conveyed by icons in the list item denoting the name of the
objects, as opposed to designing a visual appearance for each kind of object,
tailored to reflect its type, structure, behavior, and state.

1.5.3 Summary

We started by discussing the conceptual problem of using a tool-based interface
for programming in dynamic OOP language.The problem is that objects remain
hidden behind the tools, which a have prominent role in the interface. Thus,
objects are perceived as inert data that can only be manipulated by the use of a
tool. This conflicts with the essence of OOP, which is based on a computational
model of a world of live objects.

Secondly, we discussed the real estate management of current IDEs, for both
dynamic and non-dynamic languages, to find out that current interfaces present
the objects in tab- or tile-based interfaces, or a multiple overlapping windows
scheme, confined within the finite boundaries of the computer display. We
detailed how the traditional interfaces hinder the use of spatial memory and
reasoning, effectively used for software visualization approaches, such as class
blueprints [27] and software cartography [28].

Lastly, we analyzed how IDEs represent the objects that make up the pro-
gram in the interface, to find missing opportunities of the tool-based interfaces
for conveying the semantics of the many different kinds of objects. IDEs present
the objects either in a textual form –the source code–, or within one or more
generic tools, making it difficult to denote changes to the objects due to a loss of
identity, and presenting a uniform appearance regardless of the kind of object
being displayed. For instance, a Class is different than a Method, and a Num-
ber is different than a Color, nevertheless these objects have the same visual
appearance within tool-based interfaces.

14 1.6 Thesis

1.6 Thesis

Computer programmers craft programs with the aid of tools, which evolved
from simple pen and paper to those using a graphical user interface based
on windows, icons, menus and a pointing device. Nowadays, programs are
created, maintained and executed with Integrated Development Environments
(IDEs), which are built on a tool-based interface.

In this dissertation we focus on programs which are described entirely by
objects, following a computational model of a world of objects that collaborate
by sending each other messages, i.e., we focus on the development environ-
ments of Object-Oriented Programming languages.

The dynamic nature of a world of living objects is lessened in the interface
of modern IDEs, which revolves around a textual representation of the program,
namely the source code. In this sense, programming with traditional IDEs re-
sembles the composing of musical tunes: both activities specify a dynamic
artifact with a static one, method statements and class definitions in the former,
and pentagrams with notes in the latter.

The tool-based interface of IDEs prevents programmers to directly engage
into conversations with the underlying objects of the system. On the other
hand, the interfaces built on the desktop metaphor make explicit the presence
of the manipulable entities, and provide the means to interact with them.

We investigate the application of the desktop metaphor to an object oriented
development environment with an interface solely based on direct manipula-
tion of objects, which we name an Object-focused environment.

We formulate our thesis as:

An Object-focused environment supports an extensible set of soft-
ware engineering tasks, eliminates the need for extrinsic tools that
work on the source-code, and conveys the dynamic nature of a
world of living objects.

To validate our thesis, we designed and implemented an object-focused
environment, and applied the novel interface to several software engineering
tasks, ranging from modeling to program comprehension tasks.

15 1.7 Contributions

1.7 Contributions

In the light of our described thesis, the contributions of this dissertation are:

The definition of an object-focused interface for software development [29].
We describe in Chapter 3 the building blocks of our design of a develop-
ment environment based on a desktop metaphor, a plausible alternative
to the tool-based interfaces of traditional IDEs.

The application of the object-focused interface to modeling and OOP [30].
In Chapter 3 we also describe the shapes of the environment, which are
the behaviorally complete graphical counterparts of the objects that form
the models (see Section 3.3), and the programs (see Section 3.4).

The implementation of an object-focused environment [31]. We implemented
Gaucho, an object-focused programming environment for the crafting of
models composed of objects, described in class-based object oriented
languages. Gaucho is publicly available and has been used in academic
research. We present our tool in Section 3.2.

The empirical validation of our approach through a controlled experiment
[32]. We performed a controlled experiment to compare traditional IDEs
and Gaucho with respect to a set of program comprehension tasks ex-
tracted from the literature, such as creating, navigating, refactoring, and
understanding an object-oriented system. We present the experiment,
and reflect on the findings in Chapter 4.

The design and implementation of a tool to support human-centric con-
trolled experiments [33]. We present Biscuit in Section 4.1. Biscuit is an
automated experiment runner toolset to support conducting experiments
for evaluating software tools with human subjects.

The application of the object-focused interface to collaboration [34]. To
demonstrate the extensibility of our approach, we augmented the single
developer environment Gaucho into a collaborative development envi-
ronment. In Chapter 5 we investigate the use of an object-focused envi-
ronment to support collaboration and real-time awareness of fine-grained
changes to the system.

The implementation of a tool to support collaboration [34] In Section 5.2 we
describe Ronda, an object-focused environment that provides first-class
support for collaborative development sessions.

16 1.8 Structure of the Document

1.8 Structure of the Document

We structured the remainder of this dissertation as follows:

Chapter 2. We start with a historical perspective on our work, by describing the
evolution of the tools used by programmers to craft programs. We discuss
the tool-based nature of IDEs, describe their problems, and present several
alternative user interfaces that alleviate them.

Chapter 3. We continue by describing our approach: the Object-focused en-
vironment. An extensible re-design of object oriented development envi-
ronments, with applications to different areas of software engineering.

We present Gaucho, the object-focused environment that enables model-
ing, programming and program comprehension tasks, by interacting with
shapes representing the objects.

Chapter 4. Next, we present a controlled experiment we performed to vali-
date our approach. We also describe Biscuit, an automated experiment
runner toolset we implemented to support researchers when performing
controlled experiments with human subjects to evaluate software tools.

Chapter 5. After describing the evaluation and its instrumentation, we present
Ronda, an enhancement to the single developer environment Gaucho
which adds support for the collaborative nature of programming.

We implemented Ronda to demonstrate the extensibility our approach,
and investigate the application of object-focused interfaces to collabora-
tive development environments.

Chapter 6. We conclude this dissertation by discussing our approach and sum-
marizing the contributions of this work, and detailing future research di-
rections.

Chapter 2

State of the Art

It has to do with the influence of the tool we are trying to use upon our own
thinking habits. I observe a cultural tradition, which in all probability has its
roots in the Renaissance, to ignore this influence, to regard the human mind as
the supreme and autonomous master of its artefacts.

—EDSGER W. DIJKSTRA

From the beginning of the computer age, computer scientists have underes-
timated the influence that tools have upon our working habits and the quality of
the artifacts we produce [3]. For example, Weinberg recalls the skepticism sur-
rounding the development of Fortran amongst fellow programmers, who chal-
lenged the adoption of high level languages on the grounds that programmers
would always produce more efficient code [5]. On the other hand, several re-
searchers pondered on the impact of tools. Dijkstra advocated for better tools
to struggle against their inadequacies, enabling programmers to focus on solv-
ing the problems [3]. Knuth envisioned the use of tools that are a pleasure
to use, encouraging programmers to write better programs, by providing more
interactivity than the batch processing of early punch card based systems [2].

In this chapter we describe the tool-based development environments for
programming in object oriented languages. We start by describing the inter-
faces that give a prominent role to the tools, which are separate from the ob-
jects of the system, whose generic nature enables the manipulation of many
elements of the program. We gradually move towards environments that favor
fine-grained manipulation of software artifacts –objects, code–, where the tools
permeate throughout all the environment, to solve the manipulation, layout and
visualization problems discussed in Section 1.5.

17

18 2.1 Smalltalk

Structure of the chapter. We present Smalltalk, from the original versions
that introduced the IDE, to more modern implementations in Section 2.1. In
Section 2.2 we describe several environments with alternative interfaces for
programming in code-centric languages. We detail modeling environments for
languages that abstract away from the source code to models, in Section 2.3.
We conclude this chapter in Section 2.4 by describing the environments which
are closer to our approach, the ones which favor direct manipulation of objects.

2.1 Smalltalk

The Smalltalk language was the precursor of both object oriented programming,
and the integrated development environment. The original environments de-
veloped at Xerox PARC during the 70’s introduced many of the tools that are
still in use today, such as object inspectors, debuggers, and code editors and
navigators. Differently than other programming languages that make a clear dis-
tinction between the source code and the running programs, in Smalltalk the
environment and the language are strongly coupled. This coupling results from
the computational model of Smalltalk: a world of live objects, that collaborate
by sending messages to each other. The graphical user interface to interact with
the objects was developed together with the language [7].

2.1.1 Browsers and Inspectors

From the beginning, Smalltalk systems were built around a tools metaphor [12],
providing numerous tools for editing and manipulating the objects of the sys-
tem. The basic tools included in a Smalltalk environment are: Inspectors for
manipulating instances –objects–, Browsers to manipulate the classes, meth-
ods, and packages of the system, Workspaces for sending messages by eval-
uating expressions, and the Transcript as a global console for the system [35].
Modern Smalltalk systems evolved to include Test Runner tools for running tests
and refactoring browsers [36].

Figure 2.1 depicts two Smalltalk systems, which resemble one another, de-
spite having been implemented in different decades, including the basic tools
of the environment: a browser selected on the True class displaying the method
named and:, an inspector on the Array object, a workspace with valuable ex-
pressions, a transcript and a test runner.

19 2.1 Smalltalk

(a) Smalltalk-80, 1980

(b) Pharo, 2012

Figure 2.1. Basic tools included in Smalltalk, from the original Smalltalk-80 to
the modern Pharo IDE

20 2.2 Code-Centric Environments

2.2 Code-Centric Environments

We stated previously that nowadays developers write programs, aided by inte-
grated development environments (IDEs); and that IDEs feature numerous tools
that provide the means to construct programs.

In this section we describe the mainstream IDEs, that are built around a
textual representation of the program, namely the source code. We refer to
these IDEs as code-centric, because performing textual editions of the source
code is the main mechanism for programming.

Moreover, the files which host the code take a primary role within the in-
terface, an often adopted fashion is to arrange the various tools in a bento box
model, around the source code. Mainstream IDEs are file-based, because they
make explicit that source code is stored in operating system files.

We depict Eclipse, a code-centric IDE for JAVA in Figure 2.2.

(a) Eclipse

Figure 2.2. Code-centric mainstream IDEs

21 2.2 Code-Centric Environments

The design and usage of Code-centric IDEs produces some problems we
discussed in Section 1.5.2, enumerated next:

• The fine-grained manipulation of the software artifacts.

• The real estate management that enables or impedes to layout the artifacts
in an meaningful manner.

• The level of refinement of the visualization of the programs elements
within the interface.

Next we describe several alternative code-centric environments, designed
for manipulating source-code in a non-traditional interface, to alleviate or avoid
the enumerated problems at all. The mentioned approaches are either tools that
complement the IDE or full-blown development environments.

2.2.1 Relo

Relo is a program comprehension tool, that augments the Eclipse IDE with an
interactive diagram that includes a graphical representation of the code.

Relo aids programmers to comprehend complex systems with large code-
bases, by making explicit the context while exploring the code. Figure 2.3
depicts the tool within the Eclipse IDE.

The tool is designed on the premise that when exploring large codebases
programmers follow a bottom-up approach, starting from a relevant artifact, and
adding the related ones by exploring their relationships. Therefore, RELO starts
with a clean diagram, and provides the means to add elements from the system,
and to easily navigate to other elements by interacting with the diagram. The
tool provides a fine-grained manipulation of the classes, methods and packages
of the program, thus addressing the first problem.

The nodes of the diagram are graphical elements representing the classes,
methods and packages of the system. The source code is abstracted into a vi-
sual language resembling the unified modeling language (UML), to ease the
comprehension of the objects. The nodes are automatically arranged following
topological constraints, for example the inheritance edges between two classes
are drawn vertically, while method calls are drawn horizontally. Even though
RELO includes some form of real estate management, the tool lacks an over-
all system layout management, because the diagrams are focused into small
portions of the system, providing a graphical context for exploring parts [37].

22 2.2 Code-Centric Environments

Figure 2.3. Relo

2.2.2 Code Canvas

Code Canvas is a zoomable user interface for software development. The
project documents are laid out in a 2D surface, to leverage spatial memory
and keep developers oriented.

The canvas houses editable thumbnails of the code, which represent a
shrunk down version of the source files, with a customizable level of detail
through a semantic zooming mechanism (see Figure 2.4). Methods are con-
tained within the classes, which in turn are contained within packages. The
inner details of an element is only displayed when zoomed in. For example,
the statements of a method are only visible when the containing class has a
high level of detail, and is focused on that method.

Code Canvas uses a spatial representation of editable development docu-
ments to allow developers to use spatial memory to find them [24], to ease the
preservation and communication of task contexts across multiple sessions.

23 2.2 Code-Centric Environments

Figure 2.4. Code Canvas

2.2.3 Code Bubbles

Code Bubbles is a programming environment that represents code as editable
fragments called bubbles, forming concurrently visible working sets that avoid
the continuous back and forth navigation typical of traditional IDEs [17]. The
code bubbles exist and are placed on a non-overlapping 2-D surface [38]. The
bubbles are interactive views of source code fragments such as a method or a
collection of member variables (see Figure 2.5).

2.2.4 Summary

To ease the comprehension, and to favor chunking, RELO and Code Canvas
represent the programs elements in a visual manner, either using a language
similar to UML that minimizes the details of the code, or by adopting semantic
zooming for controlling the level of detail.

The tools enable a fine-grained manipulation of those graphical elements,
thus satisfying developer needs to create side by side views of individual pro-
gram elements for comparison, and the forming of working sets that may span
the system.

24 2.3 Modeling Environments

Code Canvas and Code Bubbles both address the real estate management
on the large scale, the use of spatial memory and reasoning of a layout of
the whole program, persisted across multiple development sessions. On the
other hand, RELO limits the size of the diagrams to enable exploration of small
portions of the system, minimizing the presented information.

Figure 2.5. Code Bubbles

2.3 Modeling Environments

In this section we analyze the tools that support both formal and informal mod-
eling practices. The design of modeling tools relates to our discussion on the
interfaces of development environments, because they address similar concerns
such as the visual representation and placement of the elements that make up
the models, which are generally mapped to classes, methods, and packages.

Modeling is the use of something in place of something else for some cogni-
tive purpose. A model is an abstraction, in the sense that it cannot represent all
aspects of the real world [39]. We discuss further the differences and similarities
of modeling and programming practices in Chapter 3.

25 2.3 Modeling Environments

Informal Modeling

Modeling its simplest form is accomplished with the whiteboard, or other kind
of free-form sketching mechanism, to draft the concepts and overall architecture
of a software system. The use of digital tools designed to leverage the flexibility
of such approaches, result in tool-based informal modeling practices, which en-
able persisting and sharing the created models, that are described using simple
visual notations. One exemplar is CEL1, a multitouch tablet application that
provides the essential means to model software systems, based on a minimalis-
tic set of elements that represent: concepts, generic relations, and containment
[40]. CEL uses a matrix-based visual metaphor, and semantic zooming to ad-
dress the problems of the small screen size of tablet computers (see Figure 2.6).

U
IW

indow

768 x 1024

Save and go to projects index Entities

Selected Entities Undo / RedoRelationships

Figure 2.6. Cell: a simple modeling tool

1http://cel.inf.usi.ch

http://cel.inf.usi.ch

26 2.3 Modeling Environments

Formal Modeling

In formal modeling practices, the models are described using a more complex
and rigorous language, generally expressed through the use of diagrams and
visual notations. The unified modeling language (UML) is the de-facto stan-
dard for describing models [41]. Many tools support the creation and edition
of UML diagrams. Figure 2.7 depicts ArgoUML, an open source UML model-
ing tool 2. ArgoUML is an interactive, graphical software design environment
that supports the design, development and documentation of object-oriented
software applications.

Figure 2.7. Argo UML: a complete UML environment

2http://argouml.tigris.org

http://argouml.tigris.org

27 2.3 Modeling Environments

Summary

Similarly to the alternative code-centric environments, modeling tools make
use of fine-grained manipulation of the concepts, arranged within diagrams to
leverage the use of spatial memory, and presented as editable graphical ele-
ments which abstract from an otherwise cumbersome textual representation.

The limitations of the UML-based tools are associated to the laying out of
the elements in the diagrams, because choosing an arrangement is a non-trivial
task when depicting large scale diagrams [42]. The visual presentation can be
as disorganized and confusing as the original source code. There are some
UML tools that automatically transform diagrams into source code, by generat-
ing templates of code from the diagrams. The tools can also infer the diagrams
from the source code, thus they are deemed round-trip engineering tools. For
instance, UML Lab 3 is a modeling IDE where design and implementation of
software remain consistent at all times, see Figure 2.8. Even though external
modeling tools are better suited for program comprehension than IDEs, there
are several reasons for which developers are reluctant to use anything but the
IDE for their activities: One of them is that they are not willing to invest time
and effort in learning new tools if they do not perceive a tangible benefit [43].
Moreover, the developer has to be aware of two artifacts which stem from dif-
ferent stages of the development process, increasing the cognitive overhead.

Figure 2.8. Modeling tools

3http://www.uml-lab.com/en/uml-lab/features/roundtrip/

h

28 2.4 Direct-Manipulation of Objects

2.4 Direct-Manipulation of Objects

In this section we describe an alternative metaphor for building development
environments, based on direct manipulation of objects.

Hutchins et al. state that direct manipulation systems continuously present
the objects of interest, replace the use of complex syntax by the use of labeled
buttons (amongst other widgets), and provide reversible operations specified in
a higher level language interface, whose impact is shown immediately. The
effect of direct manipulation in the interfaces reduces the distance between the
user’s intentions and the facilities provided by the system, therefore reducing
the effort of the user to accomplish goals [44].

The alternative code-centric environments and modeling tools we reviewed
in the previous section, use some form of direct manipulation of either of por-
tions of source-code defining classes, methods and packages, or the compo-
nents of a model. We discuss next the two contrasting metaphors for building
interfaces, and describe the environments that were designed to minimize the
presence of tools, in favor of direct manipulation of objects.

2.4.1 The Tools and Desktop Metaphor

The mission of the XEROX Palo Alto Research Center (PARC) was to leverage
the potential of computers in the late 60’s. The team led by Alan Kay sought
to accomplish that goal by making computers accessible to everyone, not just
technical people. Kay and his fellow scientists conceived the nowadays om-
nipresent concept of a personal computer, with a graphical user interface (GUI)
based on overlapping windows, menus, and icons [7]. Kay was building on the
previous work of researchers such as Douglas Engelbart, head of the Stanford
Augmentation Research Center Lab, who designed the mouse and the first GUI.

The Smalltalk-72 system, implemented in 1972, was the first environment
to include a GUI, which included tools contained within the windows, that
presented the content of the system: the objects. The objects were modified
by performing textual edits with the keyboard, and pointing to actions in the
contextual menus with the mouse. Nowadays, many environments use a similar
interface to the Smalltalk systems, giving prominence to the tools.

On one hand, we have the Tools metaphor, and on the other hand we
have the Desktop metaphor. The interfaces of both metaphors consisted on a
graphical user interface including windows, menus, icons and a mouse. They
differ in the target of the actions, and the primary role within the interface.

29 2.4 Direct-Manipulation of Objects

In tool-based interfaces, the users first open the tool, and then select the
content to work upon, i.e., which may be data file or an object. Whereas, in
interfaces using a desktop-metaphor the users do not invoke the tools, but rather
interact with the objects themselves. The desktop is a working environment,
which resembles the top of an office desk were various pictures of familiar
objects reside: documents, folders, file drawers, etc.. The pictures are named
icons, and are the visible concrete embodiments of the corresponding physical
objects. Icons represent the objects in the form of a picture that react to the
actions of the user. Editing the objects involves invoking the associated tool by
pointing and clicking the icon with the mouse, or on a menu [12].

The desktop metaphor pushes users toward their data rather than toward
the tools, employing analogies with the physical world, at the expense of cou-
pling the objects to assigned tool. In this dissertation, we explore a system that
merges the icon with the associated tool into a single graphical representation
of the objects populating an infinite desktop, an Object-Focused Environment.

The ubiquitous association between an object and a single tool, strengthens
the notion that the manipulable “icon” is the object, which provides all the nec-
essary features to change the object. For example, the tool representing a class
of the system must provide features for renaming, adding or removing methods
and variables, navigating to related classes and to the containing package. We
describe the genesis of object-focused environments in the following sections.

2.4.2 From Structured Text to Graphical Objects

The first Smalltalk systems presented the objects as structured text contained in
the windows of the system. Figure 2.9(a) depicts a Smalltalk 76 system, the cen-
tral window is presenting the class named DocWindow, subclass of Window,
displaying several methods of the Event Responses and Image protocols.

In Smalltalk 76, the tool support for modifying the classes and methods of
the system was based on editing a textual representation of the objects [45].
Modern IDEs for mainstream OOP languages still rely on this interface, a code-
centric interface with augmented text editors for changing the system. We de-
scribed the mainstream IDEs in Chapter 2.2.

The following versions of Smalltalk replaced the structured text representa-
tion and manipulation for a tool-based interface, that abstracted away from the
source-code. Figure 2.9(b) depicts a Smalltalk 80 system with several opened
windows containing the tools, the most important being a system browser, de-
signed by Larry Tesler: a multi-paned class “browser” which allowed one to
quickly and easily traverse all the classes and methods in the system [7].

30 2.4 Direct-Manipulation of Objects

Each�of�the�windows�shown�in�the�figure�belongs�to�some�subclass�of�Window;�the�subclass�handles�the�
specific�content.�In�figure�2,�for�example,�the�user�has�awakened�a�window�for�editing�the�text�of�a�class.�
Specific�to�this�content�is�the�ability�to�select�text�with�the�stylus,�scroll�the�text�up�and�down�by�entering�
the�scroll�bar�at�the�window's�left,�and�send�specific�editing�messages�by�entering�the�menu�at�its�right.�
The�class�has�thus�provided�a�simulation�of�itself�as�structured�text�(which�is�needed�for�printing�
anyway).�This�text�in�turn�furnishes�a�text�editor�to�display�the�text�and�allow�it�to�be�manipulated.�
Finally,�the�window�provides�a�spatial�channel�for�the�flow�of�information�in�both�directions�between�the�
user�and�the�subject�of�investigation.�As�shown�in�figure�2,�the�user�has�just�drawn�the�stylus�through�the�
text�of�the�message�show,�and�the�editor�has�responded�by�highlighting�the�text�and�noting�the�selection�
internally.�

In�figure�3,�the�currently�active�window�supports�freehand�drawing.�It�provides�a�large�menu�from�which�
to�choose�brush�shape�and�paint�tone�to�be�applied�when�the�stylus�is�depressed.�Another�window�
interfaces�to�one�of�the�character�fonts,�allowing�the�user�to�design�new�fonts�at�will.�Yet�another�
displays�the�time�of�day.�Each�of�the�windows�brings�its�own�semantics�to�the�uniform�"syntax"�of�stylus�
motion�and�keyboard�action�available�to�the�investigator.�In�this�way,�the�underlying�metaphor�of�

used�with�Smalltalk,�and�they�are�not�the�subject�of�this�
paper.

Figure�2.�Editing�text�

Page�4�of�16Smalltalk-76�Programming�System

30/11/2001http://users.ipa.net/~dwighth/smalltalk/St76/Smalltalk76ProgrammingSystem.html

(a) Smalltalk 76: Structured Text

(b) Smalltalk-80: The Browser

Figure 2.9. The evolution of the Smalltalk programming tools

31 2.4 Direct-Manipulation of Objects

Smalltalk systems include the Inspector tool, for visualizing the state of any
object, enabling change by sending messages in an embedded code pane, to
satisfy a fundamental design principle of Smalltalk which states that: “every
object should be able to present itself in a meaningful way for observation and
manipulation” [4]. Figure 2.10 depicts a standard Smalltalk object inspector
tool, and a modern version part of the Glamour framework, inspired from the
Mac Finder where every object can have multiple presentations through which
it can be interacted with 4.

The inspector presents any object, including the ones used to create pro-
grams: classes, methods, and packages. A Smalltalk programmer can modify
the programs by inspecting classes and sending messages in the code pane.

On one hand, many different types of objects make up the program in a
class-based OOP language. On the other hand, prototype-based OOP lan-
guages omit the class and instance dichotomy, in favor of a uniform object
model with parent delegation. The environments of the latter do not distinguish
between browsers and inspectors, the uniformity of the language enabling the
use of a single tool for manipulating all the objects.

Next, we discuss Self, the seminal OOP language based on prototypes,
adopting an object-focused environment based on the desktop metaphor.

(a) The Inspector (b) The Glamourous Inspector

Figure 2.10. The inspector: a generic tool for manipulating objects

4http://www.moosetechnology.org/tools/glamoroustoolkit

http://www.moosetechnology.org/tools/glamoroustoolkit

32 2.4 Direct-Manipulation of Objects

2.4.3 Self

Self is a seminal object-focused environment [46]. Self is both a language and
an interface for direct manipulation of uniform graphical objects that populate
a malleable world. Figure 2.11 depicts the Self environment.

The term object-focused environment was coined by Ungar et al. [11],
because Self fosters the notion that developers are in direct contact with the
objects themselves, by coupling operations and representations into the same
graphical element, removing the need for tools in the interface.

In Self, the programming tasks take place through direct manipulation of
graphical elements that represent the objects, see Figure 2.11. Self is based on
prototypes instead of classes and instances: the language includes a single kind
of object. The uniformity permeates throughout the whole interface, where any
Self object has a single outliner tool that reveals the inner structure and provides
the means to manipulate itself [46].

Figure 2.11. Self: the seminal object-focused environment

33 2.4 Direct-Manipulation of Objects

2.4.4 Morphic

Morphic is a user interface framework designed to support direct-manipulation
of graphical objects named Morphs. Morphic first appeared in the SELF envi-
ronment [47], then in the Squeak Smalltalk environment [48], and lastly in the
Lively Kernel environment for web development [49] (see Figure 2.12).

Directness and liveness are the two design principles behind Morphic, con-
sisting in a simple architecture based on composable morphs, which define a
visual appearance, a set of children in the form of sub-morphs, and an event
handler for the mouse and keyboard events [49].

While Morphic allows one to easily navigate between live objects to its
source-code, using the standard tools of the environment, the framework itself
was not designed for the manipulation of the objects that make up the program,
i.e. classes, methods and packages. Nevertheless, the framework provides the
means to construct higher-level composite morphs from a set of basic ones, that
can better accommodate for custom operations related to performing system
changes.

(a) Squeak (b) Lively Kernel

Figure 2.12. The Morphic UI framework implemented in Squeak Smalltalk and
the Lively Kernel for Javascript

2.4.5 Naked Objects

The Naked Objects framework was designed to support the Ph.D. thesis of
Pawson [50], aimed at solving the problem of separation of procedure and data
in OOP, resulting from the implementation of user interfaces.

34 2.5 Conclusions

Pawson remarks that the objects representing the business entities, Cus-
tomer, Product or Order, are often behaviorally weak, and that the missing
functionality resides in procedures external to the object, which hinders behav-
ioral completeness in object designs.

Thus, in naked objects all the domain objects are exposed explicitly, such
that all user actions consist of viewing objects, and invoking behaviors on them
by using contextual menus [50].

As opposed to traditional user interface frameworks, the presentation layer is
provided automatically. Naked objects involves auto-generating a user interface
from the business model definitions. Figure 2.13(a) depicts a user interface
for a booking application, which includes objects such as customers, cities,
bookings, and locations.

The objects that make up the program are manipulated with a custom IDE,
in the spirit of traditional code-centric IDEs. A naked objects environment en-
ables direct-manipulation of instances of a running program, whereas packages,
classes, methods and unit tests are edited in a separate manner. Figure 2.13(b)
depicts the developer’s view of the project, the IDE of the framework.

(a) The User Interface (b) The Developer’s View

Figure 2.13. The Naked Objects Framework

2.5 Conclusions

We described the genesis of our approach, starting from the early Smalltalk
systems with tool-based interfaces, to direct manipulation environments of uni-

35 2.5 Conclusions

form objects in the case of Self, and of instances of the running programs as in
the Naked Objects framework.

In this dissertation we investigate a development environment for class-
based OOP languages, that embraces the simplicity and directness of the in-
terfaces of Self, of Naked Objects, modeling environments, and the alternative
code-centric IDEs. The directness results from designing the interface on the
desktop metaphor, as opposed to the tools metaphor. The reviewed interfaces
alleviate many of the problems discussed in Section 1.5 related the real state
management, the visualization and the need for a fine-grained manipulation.

The IDE of a Naked Objects implementation enables modifying the pro-
grams –the packages, classes, methods and unit tests– by turning to the devel-
oper’s view of the project, which uses the standard interface of code-centric
IDEs. We advocate for an environment that applies the same directness to the
programming interface. On the other hand, the alternative code-centric IDEs
provide direct manipulation of the program, but do not provide for the manip-
ulation of the instances.

In the Self programming language and environment both the instances and
the objects of the program co-exist in the interface, similarly to the Smalltalk
systems, and the uniform object model based on prototypes enables the use of
a single tool for manipulating them, minimizing the presence of tools into an
object-focused environment.

Self is a prototype-based language that deliberately omits the concept of
classes and instances. In our work we focus on class-based OOP languages,
thus we investigate how to augment an object-focused environment to include
many different kinds of graphical elements: ideally one per each kind of object
in the system. The object-focused environment we envision includes graphical
elements tailored for manipulating diverse objects such as classes, meta-classes,
methods, packages, tests, and code-critic rules.

36 2.5 Conclusions

Chapter 3

Object-Focused Environments

In the previous chapter of this dissertation we focused on the tools that enable
programming, from the early punch card machines to the graphical interfaces of
personal computers, including the main tool used for the crafting of computer
systems: the integrated development environment.

Drawing inspiration from several modeling tools, alternative code-centric
environments, Self, and the Naked Objects framework, we advocate for devel-
opment environments that make use of direct manipulation of objects. The
directness of the interface, and an unconstrained layout of fine grained graphi-
cal elements helps to alleviate the conceptual and technical problems of IDEs
designed around a tool-based interface, described in Section 1.5.

In this chapter we motivate the need for an object-focused environment
that minimizes the presence of tools in favor of the manipulation of objects,
and present our implementation of such an environment, named Gaucho. The
interface of Gaucho is built on a desktop metaphor that can accommodate an
extensible set of software engineering tasks.

Structure of the chapter. We start by relating object oriented programming
to modeling in Section 3.1, by discussing several scenarios depicting how dif-
ferent software engineering practices solve a programming task. In Section 3.2
we present an overview of the main concepts in Gaucho. We present our vision
for an integral modeling environment in Section 3.3. We describe the support
in Gaucho for OOP in Section 3.4, and conclude this chapter by reflecting on
the advantages of an object-focused environment in Section 3.5.

37

38 3.1 Motivation

3.1 Motivation

OOP was conceived as a vehicle to craft models of reality, by focusing on the
essence of the design. However, mainstream OOP languages obfuscate the
modeling step with their static textual focus, leading to a loss in flexibility and
added accidental complexity. On the other hand, model driven development
focuses on the high level views of the system, based on rigid notations that
hinder exploratory programming. We advocate an integral object modeling
environment, which enables the building of software systems represented by
models, where everything is described in terms of a uniform metaphor: objects
and message passing; the programs, the models and the meta-models coexist
transparently, favoring interoperability and awareness of each other.

3.1.1 From reality to the program

Software engineering promotes modeling as a means to understand and map a
portion of reality to solve a particular problem by engineering a software sys-
tem. This process can be termed programming, and the outcome is a machine-
executable computer model [39].

Executable
ProgramModel Source

Code

Human Machine

Reality

Figure 3.1. Our view on the programming process

Programming is a highly complex activity involving several steps. To sim-
plify our discussion, we distinguish four steps that span from reality to a con-
crete executable computer model, see Figure 3.1. A specific artifact pertains to
each step: In the first step the relevant artifact is reality itself, in the second a
model of reality, in the third the source code implementing the model of reality,
and in the last step the executable program. Each artifact results from applying
transformations to the artifact of the previous step. For instance, a model is
abstracted from reality, and a program is compiled from its source code.

None of the three leaps depicted in Figure 3.1 are performed without effort,
and this is where the complexity of crafting software comes from. If we could
measure the effort in distance, the first leap would be the longest of all. As

39 3.1 Motivation

Dijkstra put it, “Humans are, undoubtedly, the main artists in the art of pro-
gramming” [3]. They are in charge of the initial leap over the chasm of reality
to the model, from a fuzzy real world to a more or less formal model.

The more we move away from reality towards the executable computer
model, the more a machine becomes responsible. In traditional programming,
source code is compiled to an executable program by machine compilers. In
Model Driven Engineering (MDE), the human created explicit models can be
made executable by machine automatic code generation or model interpreta-
tion. The separation of concerns is the main reason behind the division of the
programming process into steps. Favre mentioned the existence of diverse tech-
nological spaces (TS), which provide different sets of associated concepts, tools
and possibilities [51]. Each artifact concerns a different aspect of the system
under study, therefore each step potentially involves a different TS.

Herein lies the problem: The use of heterogenous artifacts hinders the inter-
operability between the steps depicted in Figure 3.1. For instance, mainstream
OOP languages enforce a distinction between compile-time and run-time. This
distinction prohibits changes in the source code to immediately affect the exe-
cutable program, because the transformation between the third and fourth step
(of Figure 3.1) is unidirectional. Thus, changes in one artifact deem obsolete
the corresponding artifact of the next step. Practically, this means terminating
the executable program, modifying the source code, recompiling and running
the program again.

Alan Kay, paraphrasing William of Occam, claimed that entities should not
be multiplied unnecessarily. Kay proposed to describe computer models based
on recursion: Designing the parts to have the same power as the whole—to
reduce complexity—as in one of the most effective applications of this tech-
nique, i.e. object-oriented design [52]. A supporting evidence of the practical
applications of (pure) OOP languages, such as Smalltalk [4], is that the previ-
ous dichotomy between compile-time and run-time does not occur in Smalltalk
environments.

The notion that everything is a model appears to subsume the prevailing
notion that everything is an object. MDE emphasizes this distinction: Bézivin
argues [39] that the idea of software systems being composed of interconnected
objects—the OOP view—is not in opposition with the idea of software being
viewed as a chain of model transformations—the MDE view.

Our vision is to step away from the model as a high level view of the system,
that can be translated into platform specific implementations by automatic code
generation, closing the gap between the model and the executable programs.
Our ultimate goal is to support the programming process with an environment

40 3.1 Motivation

that embraces both the unification power of models, as stated by Bézivin [39],
and the uniform metaphor rule stated by Ingalls [4], by posing that everything
is an object, and the software system under construction can be described in
terms of models composed of many views or perspectives.

3.1.2 Scenarios

We investigate the differences and similarities between various software engi-
neering practices currently in use, differentiated in the manner they approach
the programming process. We start by describing an abstract scenario to pro-
vide a framework of reference from which the differences in each practice can
be derived. We provide an overview of how each practice approaches the sce-
nario. Lastly, we reflect on the advantages and drawbacks of our envisioned
practice, compared to the traditional ones.

ProgramSource Code

1 3

Model

2

Reality

40

Observe Formulate
an hypothesis

Provide a detailed
description

Construct and run
an experiment

Alter the
hypothesis

Figure 3.2. An abstract scenario of our view on the programming process

Abstract Scenario

Adele works as a senior developer at a software company focused on medical
applications. The project manager has requested her to produce a simulation
program, to simulate the growth of a generic multicellular organism from the
early stages of conception to its demise. Figure 3.2 depicts our view on the
programming process, in the context of this scenario.

To complete her task, Adele performs a sequence of actions. In particular
she

1. starts by observing the reality, to understand the laws that govern the
growth and composition of multicellular organisms;

41 3.1 Motivation

2. distinguishes three entities: a simulation, a cell, and a multicellular or-
ganism. She describes a model, capturing her current knowledge of the
domain;

3. provides a more detailed specification of the behavior and composition
of the model;

4. creates an executable computer model from the specification, and runs
the simulation;

5. notices that she missed to distinguish an environment entity, thus needing
to alter the initial model.

ProgramSource Code
1 3

Model

2

4

Reality

(a) Code centric workflow

ProgramSource Code
1 3

Model
2

4

Reality

(b) MDE workflow

Program
1 3

ModelReality

4

Source
Code

(c) Object focused workflow

Figure 3.3. The workflows of the three practices under consideration

42 3.1 Motivation

We describe how this happens for three software engineering practices, the
code centric approach (e.g. by using a mainstream OOP like Java), the MDE
approach, and the object-focused modeling approach, which is our vision. In
Figure 3.3 we detail the workflow of each practice.

Code Centric Workflow

Mainstream OOP practices revolve around the notion of source code. Models
are only implicitly part of the programming process, therefore Adele omits de-
scribing it, and goes directly to writing the source code. She refines the specifi-
cation by typing precise class and method definitions. Afterwards she compiles
and runs an executable program. When Adele notices that she missed to distin-
guish the environment entity, she is forced to discard the executable, then add
a new class definition to the source code, and perform the necessary textual
editions to integrate it into the existing model. Given that the source code and
the executable are in different technological spaces, the program is deemed
obsolete because the source code and the executable program cannot directly
interoperate with each other. The latter is the main reason why code-centric
practices hinder flexible modeling activities.

MDE Workflow

Adele describes the model using a modeling language, such as UML. Then
she uses MDE tools to automatically generate the source code, to ultimately
compile the source code into a platform dependent computer executable pro-
gram. Model transformation (MT) is an essential part of MDE, thus several
tools—termed roundtrip engineering tools—support UML transformations and
synchronization between the diagrams and the source code. The advantage is
that they automatically bridge the gap between the diagrams and the code, en-
abling the use of high level views for comprehending the model without losing
the features offered by the tools for writing the programs.

Roundtrip engineering tools have not been widely adopted because the di-
agrams are inert models, while the source code remains the complete specifi-
cation of the system under construction [53]. The latter tools are mainly used
as palliatives for resolving navigation and comprehension issues when dealing
with source code [37]. The value of MDE models increases when they serve
other purposes than just contemplative models used only for documentation
or visualization purposes [39]. This occurs when MDE models are made exe-
cutable by introducing a set of possible actions together with a complete code

43 3.1 Motivation

generation or model interpretation engine. The drawbacks are that MDE tools
are simpler than a full blown object-oriented programming language, generally
based on a state machine, although recent work is improving the capabilities of
such tools. Moreover, to validate the simulation model, Adele has to open an-
other environment to run the validation, thus hindering interoperability which
prevents, for instance that the model is automatically made aware of the latest
validation and transformation results.

Object focused Workflow

In our vision, Adele describes the model using a visual high level language,
which depicts the object model view on the simulation system under construc-
tion. Instead of source code, the program’s full specification is the model itself,
and the notion of code is used for specifying behavior at the method level.
Adele writes methods such as simulate and terminate, and associates them to
the simulation model. The program consists of a world of collaborating objects,
such as the simulation model and meta-model, the simulation object and the
multicellular organism object. For instance, when Adele introduces the con-
cept of environment in the model, she simply resends the message simulate to
the simulation and the program continues running, now collaborating with an
environment object. In the object-focused workflow, the running program, the
model and its multiple views, the model transformations and model validators,
all coexist in the same environment, and are manipulated using the same tools.
Objects and message passing are the means to describe the meta-models, mod-
els, and the programs. This enables full interoperability between all artifacts.

3.1.3 Summary

We described the programming process, and the different steps involved in
crafting computer systems with a purpose, i.e. to solve a problem from real-
ity. We presented the differences between software engineering practices that
guide the process of crafting software systems, and revealed them by means of
a scenario. We discussed the drawbacks of traditional code centric practices,
and current model based practices: the diversity of technological spaces that
the produced artifacts live in hinders interoperability between them, and more
importantly they push the program too far away from the models. We proposed
a vision where all the steps involved in the programming process transparently
interoperate, by strictly adhering to the unifying principle which states that ev-
erything is an object. Next, we describe the embodiment of that vision.

44 3.2 Gaucho

3.2 Gaucho

In this section, we present Gaucho, an object-focused environment which min-
imizes the presence of tools in favor of the manipulation of objects. The in-
terface of Gaucho is built on a desktop metaphor, that can accommodate for
modeling activities, for programming in OOP languages, and to support a group
of collaborating programmers while performing programming sessions.

3.2.1 Gaucho in a Nutshell

Test case shape

Class shape

Method shape

Changes shape

Pampas

Figure 3.4. Gaucho: an object-focused environment

Gaucho [29] is an object-focused environment for the crafting of models
composed of objects, described in Object-Oriented languages, depicted in Fig-
ure 3.5. The two pivotal concepts in Gaucho are:

1. Pampas: a pannable and zoomable 2D surface, hosting shapes.

2. Shapes: graphical elements which are high-level representations of the
objects that make up the software system (e.g. instances, classes, meth-
ods, packages, test cases, models).

45 3.2 Gaucho

Gaucho is a term used to describe the “cowboys” of the pampas, the vast
South American grasslands. We use the gauchos analogy to denote the freedom
that developers have with Gaucho: they can place elements arbitrarily and can
directly manipulate them through an uniform set of actions, regardless of the
type of visual elements in focus and the presented level of detail.

Gaucho is available at gaucho.inf.usi.ch.

3.2.2 The Sessions and The System

The infrastructure behind the interface of Gaucho includes multiple sessions
during which programmers make changes to the objects of the underlying sys-
tem. In Gaucho, all programming activities take part in the context of a session.
The session tracks any fine-grained change to the system, which result from
manipulating the shapes that represent the modified objects.

Figure 3.5 depicts the overall design of Gaucho. Programmers may open
many different sessions, to work on different systems. The systems consist in
programs, models, or other meaningful abstraction described by an object ori-
ented programming language.

Gaucho

Session
Pampas

. .. Pampas

. .. Session

System

Figure 3.5. The overall design of Gaucho

gaucho.inf.usi.ch

46 3.2 Gaucho

3.2.3 The Pampas

The Pampas is a two-dimensional surface, which hosts the visual objects that
represent entities that make up a software system (e.g., packages, classes, meth-
ods, sessions, recent changes, etc.) in the form of shapes.

The pampas is where all programming tasks are performed. During a gau-
cho session, programmers perform changes to the system, interacting with the
shapes that are laid out in the pampas. The shapes are freely placed on the
pampas, and gently push each other away to avoid overlapping, to ease the task
of arranging them into disjoint groups.

Gaucho is a zoomable user interface [54], i.e., the pampas can be panned
and zoomed, enabling developers to fully customize different perspectives on
the system under construction. A session can include one or more pampas, to
provide multiple perspectives on the same system. A pampas forms a working
set of objects for a particular task. In the pampas the objects may be opened
(and closed) on demand by simply typing their names in the pampas, enabling
programers to filter those which are relevant to the task at hand.

3.2.4 The Shapes

Class Test Case
Method

Package Group

Package

Figure 3.6. Distinct Gaucho shapes populating a pampas

The presence of directly manipulable representations of objects is a cen-
tral requirement of an object-focused environment. The system is viewed and
modified, solely by interacting with the graphical depictions of the objects, thus
minimizing the use of tools, and supporting the illusion that the graphical ele-
ments in the interface are the objects of the underlying system. In other words,
an object and its single associated tool are one.

47 3.2 Gaucho

In gaucho the graphical elements are called Shapes. In our object-focused
environment, every distinct object has its own graphical counterpart, a directly
manipulable element that uniquely identifies the object within the interface.
For example, a class shape depicts the structure of the represented class, and
a method shape presents the method signature and the statements that make
up the body. Figure 3.6 depicts several Gaucho shapes that represent classes,
methods, test-cases and packages of the system under construction. The ses-
sions track fine-grained changes to the system, made by uniform set of interac-
tions with the shapes, which are based on a custom keyboard shortcuts, and
the use of contextual menus.

When Ingalls introduced the interface for Smalltalk 76 [45], he stated: “The
reader may find himself evaluating the user interface presented in the figures.
This misses the point, which is the aptness of communicating objects in de-
scribing the situation”. We quoted Ingalls, to clarify that the visual appearance
of the shapes is important, yet many plausible designs exist to convey the struc-
ture, composition, and semantics of the objects. The choices we made while
designing the Shapes, are based on the effectiveness on which they convey the
above features, regardless of the aesthetic quality of the the representations.

3.2.5 Implementation

Gaucho is written in Smalltalk [35], and implemented on top of Pharo, an open
source Smalltalk system. Smalltalk is a highly dynamic and fully reflective lan-
guage, were everything is an object: the classes, meta-classes, packages, and
methods are first class objects. The uniformity of the language enables to one
perform all the fine-grained changes to the system, by sending messages to the
objects via their graphical counterparts, i.e. the shapes. Gaucho is drawn with
Cairo 1, a vectorial rendering library written in C. The non-overlapping scheme
of the pampas is based on the corner stitched layout, which provides an efficient
structure and algorithms for the handling of a 2D region, divided into tiles [55].
We implemented all the infrastructure for handling the mouse and keyboard
events, the drawing of the display, the zooming and panning in the interface, a
non-overlapping scheme for laying out the shapes, and a complete set of cus-
tom widgets. Although building the complete infrastructure from the ground up
was a huge undertaking, it empowered us with full control for exploring ideas
in the interface, which is not possible when using a standard toolkit or a general
purpose user interface framework.

1http://cairographics.org/

http://cairographics.org/

48 3.3 Modeling with Gaucho

3.3 Modeling with Gaucho

OOP languages encourage viewing programs as a world of collaborating ob-
jects, which were instanced from a design composed of classes—the model—
that conforms to a fixed meta-model, the meta-classes [51].

In our work, we focus on the “pure” OOP languages, such as Smalltalk
[4] and Self [46]. Due to the language’s faithful adherence to the notion that
everything is an object, running programs can gracefully coexist with the rest
of the system, in a fully object oriented environment, enabling changes to the
meta-model, the model and the program in the same technological space [56].

Model
status
validate
transform
run
runningPrograms

Object

Model Validator
validate: aModel

Model Transform
transform: aModel

SmalltalkGaucho

TestCase

ClassProgram
model
view
status

Figure 3.7. First-class Model enhancements to Smalltalk

We introduced a first-class presence of a Model to our base language. As
mentioned before, Smalltalk lacks the explicit presence of a model, thus we
added several classes that add support for MDE within the system. Figure 3.7
depicts the most relevant classes and their behavior.

For instance, a model i.e. an instance of the class Model understands the
following messages: run, validate, transform, and status. These instances coex-
ist with the classes, test cases, views, transformations and validations. All these
objects are part of the same environment, thus they are aware of each other and
are manipulated using the same tools.

3.3.1 The MDE Shapes

Gaucho includes custom shapes for the added classes to Smalltalk, those which
reify the concept of a Model, Model Validations and running Programs.

49 3.3 Modeling with Gaucho

Figure 3.8 portrays a Gaucho session populated by all the relevant artifacts
related to modeling a TicTacToe game 2.

Model shape
Program shape

TicTacToe default view

Class shapes
(UI) Class shapes

Minimap

number of programs

running

validation status

Message shape

default view

classes

Model Validation shape

Figure 3.8. MDE shapes: TicTacToe example

The main entity is the TicTacToe model itself, which includes references to
the classes that compose the model, and the running programs. Similarly to a
Test Case Shape, a Model Shape depicts a visual cue denoting the status of the
last validation run, in the form of a top right dot, colored to reflect the status:
invalid is red and valid is green.

To instantiate programs, or validate a model, developers send messages to
its shape, first selecting the shape and second typing the name of the action
to perform. For instance, Figure 3.8 depicts the message named run being
sent to the TicTacToe model shape, which will respond by instantiating another
TicTacToe program in the current Gaucho session.

Programs may be started, stopped and paused, by manipulating the Pro-
gramShape. The first-class presence of Programs in Gaucho, enables a more

2wikipedia.org/wiki/Tic-tac-toe

wikipedia.org/wiki/Tic-tac-toe

50 3.4 Programming in Gaucho

precise interaction than the traditional ad-hoc nature of programs in Smalltalk.
Programs have views, that in our example consists of the TicTacToeShape de-
picting a running game, the board, the chips and the players.

In this example, the model validation is composed by a CodeCriticValidator,
the default validator in Gaucho. Figure 3.8 portrays a model validator shape,
displaying all the passed and violated rules of the TicTacToe model. We en-
vision adding shapes pertaining to model validation and model consistency
checking, for describing and running validations of the models against their
meta-models, similarly to the test case and test run shapes for assessing the
validity of classes and methods.

Our goal is to devise an integral modeling environment which enables
the building of software systems, making use of a single metaphor, applied
uniformly throughout the whole environment. We named our vision Object-
focused Environments and describe it as a software engineering practice which
remains faithful to the principle that everything is an object, and provides a
flexible visual diagrammatic language for describing and manipulating all the
artifacts that make up the system in an uniform manner.

3.4 Programming in Gaucho

Developers write Object-Oriented programs using numerous tools that come
as part of integrated development environments (IDEs). We focus on the tool
based interfaces of a dynamic class-based language named Smalltalk. The tools
work on a textual representation of a program: the source code, which makes
it more difficult to comprehend and manipulate the system under construc-
tion. In reaction to that, researchers have proposed building IDEs around other
metaphors.

We investigate the desktop metaphor applied to Object-Oriented languages
in the form of an object-focused environment, and provide a detailed descrip-
tion of our working prototype, named Gaucho. Our goal is to depart from IDEs
with tool based interfaces and fancy text editors, towards an environment that
eases the interaction and the crafting of objects by providing more concrete
means of manipulation within the interface.

The logical view of the system is the one describing the object model of the
system [57]. Gaucho includes several different shapes to represent the classes,
methods, packages, and test cases of the system. In the following, we describe
them in more detail, and discuss the interactions that make possible changing
the system using Gaucho.

51 3.4 Programming in Gaucho

Test case shape

Class shape

Method shape

Changes shape

Pampas

Figure 3.9. Programming in Gaucho

Figure 3.9 includes several shapes depicting Gaucho itself: The class shape
GSceneShape presents its attributes and methods, and provides means to per-
form modifications to the class; the test case shape GShapeTest enumerates all
the test methods and their status, enabling the creation, deletion, modification
and running of the tests. The methods, spawned next to the class they belong,
present their signature and statements for code editions.

3.4.1 Classes

A Class Shape is the representation of a class in our object-focused environ-
ment, thus the shape must present for manipulation all the elements that make
up the underlying class. Class shapes are composed of an editable label widget
that displays the class name, and a scrollable list widget that enumerates all the
variables and the methods of the class. Figure 3.10 depicts a class shape on
the class named GClassShape. The shape is presented in three different modes:
focused, unfocused, and filtered.

We designed the appearance of a class shape to concisely present a high
level view of a class. We strive to present a condensed visualization of class,

52 3.4 Programming in Gaucho

UnfocusedFocused Filtered

variable

method

name

hidden items
count

package color

Figure 3.10. The shape representing the class shape itself

to ease the comprehension of its composition, therefore the shape only reveals
extra information on selection or when it is the focus of attention. The focused
and filtered shapes depicted in Figure 3.10 include several examples of overlays
that convey extra information. The colored left toolbar denotes the type of each
list item (i.e. magenta for instance variables, grey for class variables, and dark
blue for methods). The arc to the top left indicates the unique color of the
containing package, and provides a one click access to the package shape.

A class may contain a large number of methods and variables, thus the class
shape can be filtered to reveal only those items that match a regular expression,
narrowing down the displayed items to ease the location of the class compo-
nents . For example, in Figure 3.10 the filtered class shape shows only the
methods and variables that match the pattern me*.

3.4.2 Methods

In class-based Object-Oriented languages, a class defines the behavior of its
instances by means of methods. Methods specify how instances of a class
answer a request, in the form of a message, made by an object, i.e. the sender of
the message. Methods are composed of a selector that describes the signature
of the method, a collection of temporal variables which have a local scope
within the method, and a collection of valid expressions of the language, which
together form the body of the method.

This composition is recurrent in most Object-Oriented languages, therefore
is the definition of a method used in Gaucho. Figure 3.11 depicts three method
shapes, surrounding the collapsed shape of the class they belong to.

A Method Shape includes a custom selector shape, which presents the se-

53 3.4 Programming in Gaucho

Class

Method

statements

selector with
arguments

temporal variables

Figure 3.11. A class with several of its methods surrounding the shape

lector and the arguments of the method, a row with all the temporal variables,
and an editable text for editing the body of the method. Methods are spawned
from a class shape by creating a selection in the list widget, and pressing a
keyboard command. The containment relationship is conveyed by attaching
the methods to the class whenever the class shape is dismissed or moved to
another location.

3.4.3 Test Cases

The SUnit framework introduced testing into the software development process
of Object-Oriented languages [58]. Since then it has become common practice
to devise unitary tests that assert the correct implementation of a given feature.

Class-based Object-Oriented languages generally include a special kind of
class, named TestCase, which includes test cases in the form of methods whose
names start with the word test.

Gaucho supports creating and running test cases, by means of manipulating
a special kind of shape, a Test Case Shape, a specialized class shape augmented
with extra visual cues to denote the status of test cases. Figure 3.12 depicts three
Test Case shapes with different test results: untested, failing, passing. Typing a
custom keyboard command on a focused test case shape runs the test case, and
the shape reflects the last run status.

54 3.4 Programming in Gaucho

Untested Failing Passedfailing test passing test

Figure 3.12. Test Case shapes with different test results

3.4.4 Packages

Package with subpackages Package

Collapsed
Package

Figure 3.13. The system view presents all the available packages

In Gaucho, a system view grants access to all the packages of the system,
for performing manipulations such as renaming, adding or removing packages,
and the repackaging of classes. The system view lays out all the package group
shapes of the system using a rectangle packing algorithm to optimize the use of
real estate, by packing a subset of the rectangles into a bigger rectangle to maxi-
mize the total profit of rectangles packed [59]. After the initial arrangement, the
developer may move, collapse or expand any package, customizing the overall

55 3.4 Programming in Gaucho

view of the system. The packages of the system are uniquely identified by a
color used throughout the interface, such as the colored top right visual arc that
denotes the package of a class shape (cf. Figure 3.10).

3.4.5 Producing Fine-Grained Changes

In Gaucho, the programmers change the system by interacting with the shapes.
The changes occur in the context of a development session, which tracks them,
and presents them for manipulation. Figure 3.14 depicts the Changes shape,
which presents all the modifications to the system made so far.

The fine-grained changes result from invoking custom widgets that reify
modifications to the objects; for instance, renaming a package or adding a
method to a class. Every change has a unique icon, chosen to maximize the
affordance of each changing operation. The shape depicted in Figure 3.14, in-
cludes many different changes, such as: adding the class GThreeFingerPinch,
removing the class GTwoFingerSwiper, renaming the class GTabletDevice to
GDynabook, adding the method named #showkeyboard to the class GTablet-
Device, and changing the superclass of GMultitouchTests to TestCase.

Test case shape
Developers shape

Changes shape

Notes shape

Change Shape

Class Shape

Pampas

Method Shape

Number Of
Changes

Figure 3.14. Presenting the Changes of a Session

56 3.4 Programming in Gaucho

Class Creation

Figure 3.15 depicts a typical scenario of class creation in Gaucho, where the
developer engages in collaborations with the Pampas and the class shape itself
to fully manipulate the newly created class.

Class cannot be added
because the name
already exists

Auto-completion

Usable name

1

2

3

Class added4

Figure 3.15. Adding classes in Gaucho

Figure 3.15 illustrates the steps to add a new class. The developer focuses
on the Pampas, then presses a keyboard command to:

1. open the add class widget

2. the widget helps the developer in typing the new class name, by auto-
completing on demand (pressing another keyboard command), and up-
dating the widget with visual cues that denote whether the currently typed
class could be added.

3. once the developer types in a valid new class name, by pressing enter an
empty class is created

4. the shape is opened, replacing the widget.

5. the change is instantly reflected on the changes shape of the ongoing
session.

57 3.4 Programming in Gaucho

Changing a Class

In Gaucho, developers interact with a class shape to rename classes, modify
the superclass and adding variables and methods, by opening a custom set of
widgets which are easily accessed by keyboard commands or menus.

The programmer invokes the changing widgets by opening a contextual
menu on the shape. Gaucho provides a more focused interaction than with
general purpose tools, thus the user quickly gets used to the mouse and key-
board actions for manipulating the shapes. The programmer can either use a
pie or a “daisy” menu, according the the settings of the environment.

Change superclass Add method

Add instance variableExplore related objects

Figure 3.16. Changing a Class with the Pie Menu

Figure 3.16 depicts the pie menu that enables modifying a class shape. We
chose to use pie menus instead of traditional list-based menus, because when
the set of operations is small, they ease pointing and selecting the options [60].

On the other hand, the programmer can use a daisy menu (see Figure 3.17).
In the daisy menu, the options surround the shape, providing feedback on the
status and outcome of the modification in a more permanent manner than a
transient pie menu, to ease the adoption of the interface for beginners.

58 3.4 Programming in Gaucho

Figure 3.17. Changing a Class with the Daisy Menu

Changing a Method

To add a new method to a class, the developer opens the add method widget
by pressing a keyboard command or invoking the menu item. The widget au-
tomatically rearranges itself according to the signature of the inputted method,
by formatting the code and adding or removing lines. Methods are removed
by selecting them in the list of the class shape they belong to, and pressing a
keyboard command (i.e. cmd-delete). To add/remove/modify a temporal vari-
able, an argument or the method body, the developer gives focus to the desired
method part by moving the cursor, and then presses enter to enter the edit
widget. Figure 3.18 depicts two method shapes with the cursor placed on the
selector. The uppermost method shape to the right, is focused on the method
named changedOnVariable:, and clicking would open the rename method wid-
get. The method shape to the bottom, is focused on an temporal variable of the
method named changedOnRunningTest, to open a rename widget on the se-
lected temporal variable.

3.4.6 Navigating the System

An object-focused environment must provide the means to explore the system
by interacting with the shapes, to avoid the use of external tools which are not
part to the shape itself. A study by Sillito et al. on developers habits [10], sug-
gests that developers start programming sessions by finding initial focus points,
and then continue expanding those points by exploring relationships between
the software artifacts, i.e., the objects. Other researchers stated that a direct
tool support for interactive exploration helps when performing program com-
prehension tasks [37].

59 3.4 Programming in Gaucho

unary
method

keyword
method

Figure 3.18. Adding and modifying methods

The shapes in Gaucho include a customized set of navigation actions, in-
voked by menu items or keyboard shortcuts that provide quick access to explor-
ing the connected artifacts. For instance, a class shape spawns both the group
of class references and the class hierarchy, which are group shapes that enable
further exploration within the system.

Figure 3.19(a) and 3.19(b) depict the result of spawning the hierarchy and
the references of a class shape. The leftmost figure presents a class shape with
a navigation menu with two options: spawn the group of references and open
the hierarchy shape.

IDEs include query mechanisms for exploring the system, which however
often open views that clutter the interface and induce context loss. Gaucho
favors the preservation of the context because it provides a more focused system
exploration: the shapes represent concrete objects as opposed to selection-
dependent tools or tabs.

The spawned shapes in Gaucho are attached to the original shape, meaning
that a subsequent move or a dismiss of the latter will be applied to the former,
and since the represented object is always the same, the sense of connection
between groups in the interface is stronger than with the use of general purpose
tools or tabs. In other cases, an object-focused environment eliminates the need
to spawn a distinct visual element to display the result of a query. For instance,
a class shape can be asked to reveal all the methods that assign or use a variable.

System Navigation Example

The shapes enable the exploration of the interconnected entities across the sys-
tem; the options are tailored to the type of each shape.

60 3.4 Programming in Gaucho

spawn
references

spawn
hierarchy

navigation menu

Hierarchy of
GNamedShape

Attachment

(a) Hierarchy

Attachment

References of GSceneShape

(b) References

variable

methods
referencing
the variableuses

assigns

(c) Variables

Figure 3.19. Navigating the system from a class shape

For instance, class shapes present icons to open the group of class refer-
ences, the class hierarchy, the group of subclasses and the package of the class.
Figure 3.20 shows a typical sequence of actions in Gaucho, when a developer
interacts with the shapes to navigate the system. The figure depicts a previous
version of Gaucho (1.2), where the icons were directly presented on the shape,
whereas in the latest version (2.0) the options are only shown on demand, for
a more concise appearance of the shapes. The actions are the following:

1. uses the search widget in the toolbar to locate the GMPampas class.

2. scrolls down the methods list and selects the method addShapeOn:, and presses
the open button to open the method shape.

3. presses the senders button of the method shape to open the senders group.

4. selects the example method (of class GMPampas), pressing cmd-o to open a
method shape on the selected method.

61 3.4 Programming in Gaucho

1

2

3

4

Figure 3.20. Navigating through interconnected shapes

3.4.7 Task Context Support

Developers start development sessions by finding initial focus points, and then
continue expanding those points forming interconnected graphs [10]. We argue
that navigating the system using traditional tool-based interfaces is hampered by
the text-, list-, and tab-based nature of mainstream IDEs. For instance, relying
on tab-based views depicting files of the system is inadequate since most tasks
are not aligned with the structure of the IDE, and require navigating different
parts of the system, producing back and forth navigation within the tools [17].

Gaucho programmers create their custom view of the system, by opening
the shapes relevant to the task at hand. The environment does not automatically
collect the relevant entities, as in Mylin’s degree-of-interest model [13], but
enables a developer to incrementally populate an infinite surface, which hosts
a subset of the complete system. A view in Gaucho represents an arrangement
of shapes which form a scene. Scenes are viewed from a particular viewpoint,
named the scene window, which dictates the amount of panning and zooming.

Figure 3.21 depicts Gaucho on startup when developers choose to continue
working on past development sessions or commence a new one. The bottom
figure depicts the widget that enables managing the views within a session.

62 3.5 On the interface of Gaucho

(a) Login by opening a saved session

(b) Manage the views within a session

Figure 3.21. Task context support within Gaucho

3.5 On the interface of Gaucho

In Gaucho the burden of the UI is lessened because a developer interacts with
a class, a test case, a method and a package in a consistent manner. The shapes
react uniformly to additions, removals, or modifications, produced by a set of
keyboard commands, and mouse interactions. The use of direct manipulation
of graphical elements that represent the objects enables Gaucho to attain a
higher-level of interaction, as opposed to the tool-based interfaces of traditional
IDEs where to change the superclass of a class, or add methods, one must locate
the proper source code fragment, and then edit the textual representation of the
class definition, instead of performing changes with meaningful semantics.

63 3.5 On the interface of Gaucho

Gaucho presents software artifacts as high-level views—instead of raw text
that the developer must decode into meaningful chunks of information —thus
easing the comprehension of the structure and relationships between the sys-
tem’s objects. In traditional IDEs, most of the information is presented by
spawning more tools, distancing the information from the current focus of at-
tention. An object-focused environment enables a more focused query and
display of information related to shapes representing concrete objects of the
system. For instance, in Gaucho the classes are represented by a condensed
graphical object that reveals more information on demand, when the shape is
either focused or selected.

The concise view of the shapes eases understanding the structure of classes,
to gain insights on the name and number of variables, on the amount of meth-
ods and their signature, and whether the class or a method are abstract. Fig-
ure 3.22 depicts several Gaucho shapes that illustrate the facilities for program
comprehension tasks.

Figure 3.22. Gaucho Shapes present high level views of the objects

The leftmost shape represents an abstract class: both the labels for the name
and a method in the list are displayed in italic to convey that the class and the
method are abstract. The second shape depicts a class shape focused on reveal-
ing the use of the instance variable named slots. Developers can understand
which methods assign or reference a particular variable, by simply instructing
the class shape to reveal that information. The third depicts a test case shape,
which enables a developer to understand the status of the test case (passed,
failed or error) and of all its included test methods.

64 3.5 On the interface of Gaucho

3.5.1 On the Textual Representation of Methods Statements

Gaucho is a visual programming environment (VPE) which makes use of spatial
relationships, data abstractions, and a high level language of interaction for
performing programming tasks, such as renaming a class, or adding a method
to a class. Gaucho is in the middle ground between visual programming (VPLs)
and pure textual languages [61].

In this dissertation we focused on investigating an alternate interface for the
construction of OOP environments, nevertheless we decided to retain the use
of text to specify behavior because of the complexities of devising a VPL for
fully replacing textual descriptions of code [62; 63]. Nonetheless, we believe
that Gaucho could easily be modified to incorporate other means of specify-
ing behavior, including a shape that manipulates methods via a VPL instead
of editing textual descriptions of statements. For instance, the VPL could use
an iconographic language to denote operations, and specify the method body
using a data-flow language such as Coherence [64], which relies on the abstrac-
tion of a virtual tree, similar to the abstract syntax tree of a parsed method.

Chapter 4

Evaluation

In the previous chapter of the thesis, we introduced Gaucho, which is our ap-
proach to the design of a development environment for OOP, and described its
application to several modeling and programming activities.

Gaucho is an object-focused environment that allows developers to write
programs by creating and manipulating lightweight and intuitive depictions of
object-oriented constructs.

On the other hand, traditional integrated development environments (IDEs)
include many tools that provide the means to construct programs. Coinciden-
tally, the very same IDEs are a primary vehicle for program comprehension.
We claim that IDEs may be an impediment for program comprehension be-
cause they treat software elements as text, which may be counterproductive in
the context of program understanding—where abstracting from the source text
to the level of structural entities and relationships is the key.

The research question we investigate here is how does an object focused en-
vironment such as Gaucho compare with traditional IDEs when it comes to per-
forming program comprehension tasks.To answer our question, we conducted
a preliminary controlled experiment with eight subjects, comparing Gaucho
against a traditional IDE.

We acknowledge that software is created by humans, for humans, thus soft-
ware engineering is—above all—a human activity. However, the intrinsically
non-deterministic nature of humans introduces a number of threats to the va-
lidity of controlled experiments, performed by researchers to evaluate software
tools. One of them concerns how to record information without influencing the
behavior of the subjects involved. Another one relates to providing means to
assure the correctness of the gathered data, for further analyses and replication.

65

66 4.1 Instrumenting the Evaluation of Software Tools

Furthermore, instrumenting an evaluation of a software development envi-
ronment, such as Gaucho, places a heavy burden on the experimenters, due to
the short duration of the actions programmers perform to fulfill the tasks com-
posing the experiment. The brevity of the tasks makes it hard to track the time
and effort of the subject under observation, which hampers with the correctness
of the ulterior observations regarding the experiment.

To alleviate this burden, we focused on improving the tool support that en-
ables researchers to perform controlled experiments with human subjects to
evaluate the performance and usability of novel approaches and software engi-
neering tools. We devised Biscuit, a toolset to specify tasks to be undertaken
by the subjects of the experiment, and precisely time the subjects and record
their complete behavior as they perform the tasks.

Structure of the chapter. In Section 4.1 we discuss often overlooked issues
that come up during controlled experiments with human subjects, and we
present Buiscuit, our toolset to alleviate some of the issues. In Section 4.2
we discuss the context of the evaluation. We describe the experimental design
in Section 4.3, and the operation and results in Section 4.4. We conclude the
chapter by reflecting on the outcome of the evaluation in Section 4.5, and dis-
cussing the advantages of instrumenting controlled experiments with tools such
as Biscuit in Section 4.6.

4.1 Instrumenting the Evaluation of Software Tools

If software engineering is above all a human activity, then taking the human
aspect out of the loop would be definitely wrong, when it comes to evaluating
software engineering approaches.

Consequently, these past years have seen a steady increase of evaluations
based on controlled experiments performed with human subjects. For exam-
ple, Cornelissen et al. evaluated a tool for visualizing execution traces [65],
Stasko et al. contrasted two visualization tools for depicting hierarchies using
different space-filing layouts [66], Marcus et al. analyzed the support for pro-
gram comprehension tasks of their sv3D tool [67], and Wettel et al. assessed
the validity of the city metaphor for visualizing software systems [68].

Controlled experiments are prone to a large number of pitfalls, due to the
one and only uncontrollable element of any controlled experiment involving
human subjects: humans. Humans have individual talents, skills, behaviors,

67 4.1 Instrumenting the Evaluation of Software Tools

and quirks. In any experiment humans behave in a non-deterministic way,
which introduces various threats to the validity of any experiment of this kind.

The pitfalls in question regard an issue that might be seen as a corollary to
Heisenberg’s uncertainty principle: How is the information that one wants to
record actually being recorded, and does the fact that one records information
in an intrusive way influence or modify the behavior of subjects?. If so, how
can this be minimized?.

4.1.1 The Crux of Human-centric Experiments

There are diverse possibilities to record information in a controlled experiment,
where a usual scenario is that a set of subjects is divided into two groups, the
control group and the experimental group. Subjects in the former group are
given some baseline setting, while the subjects of the latter group are given the
tool to be evaluated. The goal is then to assess whether the experimental group
can perform a set of tasks better, faster, etc. as opposed to the control group.

A literature survey [65; 69; 67; 66] reveals commonly adopted practices to
tackle the issues which must be confronted when performing controlled exper-
iments to evaluate software tools:

1. Give the subjects tasks to perform and/or questions to answer, and the
possibility to provide answers/findings in some form. The subjects know
what is expected from them; this can either come as a set of questions or
a set of tasks. After performing the tasks the subjects then provide some
form of feedback about what they have done, i.e., they need to answer
questions. The experimenter’s role in this situation is then, to obtain data
about the correctness (i.e., was a task fulfilled or not/only partially) and
the time taken by the subjects to perform a task.

In the large majority of cases, experimenters opt for questionnaires, (often
in the form of multiple choice questions or free-form text questions) to
the subjects who fill them out during the experiment. Questionnaires can
either be on paper or also in electronic form (such as survey websites).

2. Keep track of the time taken by each subject on each task. How can
one reliably record the time it took for a subject to perform a task? One
possibility is to have the subject write down the time (as part of the ques-
tionnaire); this introduces the risk of subjects writing down wrong infor-
mation.

68 4.1 Instrumenting the Evaluation of Software Tools

Another possibility is for the experimenter to record the timing, which
makes it hard, if not impossible, to perform an experiment with multi-
ple subjects at the same time or a remote experiment—without removing
measurement issues due to human fallibility.

3. Record what the subjects do while they perform tasks to try to find an-
swers. To record what subjects do, the often adopted solutions are "think-
aloud" protocols, and/or filming and screencasts and/or audio-recording.
Think-aloud protocols involve experiment participants thinking aloud as
they are performing a set of specified tasks. Users are asked to say what-
ever they are looking at, thinking, doing, and feeling, as they go about
their task.

This enables observers to see first-hand the process of task completion
(rather than only its final product). Observers at such a test are asked to
objectively take notes of everything that users say, without attempting to
interpret their actions and words. Test sessions are often audio and video
taped so that developers can go back and refer to what participants did,
and how they reacted.

The purpose of this method is to make explicit what is implicitly present
in subjects who are able to perform a specific task. A screencast is a
digital recording of computer screen output, also known as a video screen
capture, often containing audio narration. Experimenters can use them to
record the full interaction of the subjects with the tools they used.

4. Process the previously recorded data to extract additional information,
and allow the experimenters to gather the data easily. An additional
problem is that the data recorded using such approaches needs to be
post-processed since it comes as a digital movie/audio recording.

The post-processing, e.g., transcribing what happened, can be lengthy
and imprecise—especially when the number of subjects is high—due to
the lack of formalism in natural language and human behavior. Raising
the level of abstraction of the data would allow for easier and more auto-
mated processing.

Related to this issue, gathering the data in itself can be a challenge—either
because of manual processing of hand-written questionnaires, or because
it comes from multiple sources (e.g. questionnaires, timing data, and
other recorded data).

69 4.1 Instrumenting the Evaluation of Software Tools

We do not address other important issues pertinent to controlled experiment
involving humans, e.g., the choice of participants, controlled variables, tasks,
etc. These and others are all important questions which go beyond the scope
of the present discussion. We focus on a seemingly smaller set of issues, which
however can and does contribute to a loss of precision or even a falsification of
the recorded data.

Summing up. Due to issues related to timing, data processing, and mostly
inaccurate tracking of what happens during the experiment, the risk is that the
data that is being collected during an experiment is distorted or even wrong. To
mitigate such risks we devised Biscuit, an tool infrastructure for non-intrusive
and precise tracking of data related to experiments with human subjects.

4.1.2 Biscuit: Tracking Human-Centric Controlled Experiments

Biscuit supports performing controlled experiments, by recording relevant pieces
of information regarding an experiment performed with human subjects. At the
moment, it is geared towards experiments evaluating development tools.

Next, we detail how experimenters using Biscuit address the issues related to
conducting evaluations with human subjects, we stated in the previous section:

1. Give the subjects tasks to perform and/or questions to answer, and the
possibility to provide answers/findings in some form. To address the first
issue, Biscuit can set up an experiment made up of tasks which in turn,
consist in a description and goals that need to be accomplished by the
subjects.

The format of answers to the goals range from multiple choice questions
and free form text entries, to modifying the underlying system entities—
such as adding/removing classes/methods until automated tests pass.

Using Biscuit, the experimenter can automatically generate a user inter-
face for any experiment; it presents the experiment to the subjects and
guides them through the tasks until completion.

2. Keep track of the time taken by each subject on each task. An automati-
cally generated user interface for each experiment run, tracks the answers
and durations of each task while the user is performing them. This ad-
dresses the first two issues; namely giving the subjects tasks to perform or
questions to answer; and registering the answers and completion times.

70 4.1 Instrumenting the Evaluation of Software Tools

3. Record what the subjects do while they perform tasks to try to find an-
swers. To address the third issue prior to running each task, Biscuit in-
stalls a spy that records every user interaction: from simple mouse move
events, to more complex interactions such as performing changes to the
code base, or providing answers to the experiment goals.

The spy is built on top of a system monitoring tool called Spyware [70],
enhanced with a complete instrumentation of the Event-Command pat-
tern. The recording enables one to keep track of every user interaction
in the form of recorded events that trigger commands, thus eliminating
a great level of uncertainty from the correctness of the subjects answers,
due to the faithful replicability of each experiment run.

The events recorded by Biscuit correspond to actual user actions (source
code navigation and modifications), in contrast to video recordings that
require significant further interpretation, thus addressing this fourth issue:
the event trace is open to automated analyses and can be replicated.

4. Process the previously recorded data to extract additional information,
and allow the experimenters to gather the data easily. To address the
fourth and final issue, upon completing an experiment the subject is asked
to send (via email) an automatically created zipped file containing all the
recorded data to the experimenters. This file contains every user inter-
action recorded by the spy during the experiment run, together with the
answers and solutions to each task, and additional meta-data such as the
participant name or identifier, and the total completion time. The process
is straightforward both from the subject’s and the experimenter’s point of
view.

Figure 4.1 depicts the experiment description that is shown once the subject
has completed the pre-test questionnaire and entered basic data, and an actual
experimental run. The screenshot illustrates how the Biscuit task runner records
and informs users of the passage of time, presents the tasks, and collects the
answers from the subjects. On the bottom corner, we see the task widget with
the answer form; the rest of the screen is occupied by the tool being evaluated,
in this case Gaucho.

71 4.1 Instrumenting the Evaluation of Software Tools

Figure 4.1. An experiment run instrumented with Biscuit

72 4.2 Context

Related Work

To our knowledge, the only other toolset dedicated to recording fine-grained
activity in controlled experiments is Emperior [71], an IDE for the Java and
Groovy programming languages that records programmer navigation at the file
level (Biscuit records it at the method level), records compilations of the pro-
grams, unit test runs, and periodically takes snapshots of the source code (Bis-
cuit tracks the changes themselves); the snapshots generate an extremely large
amount of redundant data. A new instance of Emperior needs to be launched
for each task.

There are other tools that record usage data, such as HackyStat [72]. It
collects navigation data, metrics data, and test runs. HackyStat has not been
used to record controlled experiments. Similarly, Mylyn [73] records navigation
and edit information as part of its activity; this data was used to evaluate Mylyn
in a field study, not an experiment. Compared to these tools, Biscuit records
more kinds of data (such as actual changes, not edit activity), and allows the
definition of actual experimental tasks.

4.2 Context

Nowadays object-oriented developers perform programming tasks aided by in-
tegrated development environments (IDEs), which feature numerous tools that
provide the means to construct programs. Nevertheless, IDEs present difficul-
ties, for example they introduce accidental complexity due to their file-based
dependence, since extra navigation is required to search back and forth for
scattered code fragments. While there is certainly room for improvement in the
context of forward engineering, the usage of IDEs as program comprehension
aids has not been questioned.

According to Chikofsky and Cross program comprehension is focused on
“identifying the system’s components and their interrelationships, as well as
creating representations of the system in another form or at a higher level of
abstraction” [74].

We argue that IDEs hinder program comprehension because they work on
a textual representation of a system, the source code, and therefore lack the
proper level of abstraction required for understanding the programs. We claim
that an environment based on a different user interface can intrinsically improve
the support for program comprehension, and minimize the need to recur to
external tools for understanding the programs.

73 4.3 Experimental Design

The two contrasting interfaces here are the view-focused and the object-
focused environments. Mainstream IDEs, such as Eclipse, are view-focused:
Objects are secondary to the tools which are the concrete visual elements avail-
able for interaction. On the contrary, object-focused environments, such as Self
[46], foster the notion that developers are in direct contact with the objects
themselves, instead of abstract entities subordinated to the tools.

We argue that an object focused environment such as Gaucho eases the
comprehension of a system, through the following features:

• Abstractions. The cognitive burden is lessened in Gaucho, because de-
velopers interact with graphical elements depicting software artifact as
high-level views, as opposed to raw text that the developer must decode
into meaningful chunks of information.

• Relationships. The graphical elements depicting the objects provide quick
access to related entities, favoring incremental exploration of the system,
and easing the navigation of the relationships between objects.

• Unconstrained Layout. The graphical elements can be freely placed on
the interface, making it straightforward to create side by side views of the
objects for understanding and comparing them.

4.3 Experimental Design

We claim that the use of Gaucho eases the comprehension of the structure and
relationships between the entities making up a software system, compared to
the use of traditional IDEs. To assess the validity of this claim, we performed
a preliminary controlled experiment. This experiment served also to detect
usability issues and to collect impressions from developers using Gaucho.

4.3.1 Research Questions

The research questions underlying our experiment are:

RQ1. Does the use of Gaucho reduce the time necessary to perform program
comprehension tasks, compared to a traditional IDE?

RQ2. Does the use of Gaucho increase the correctness of the answers to the
program comprehension tasks, compared to a traditional IDE?

74 4.3 Experimental Design

4.3.2 Variables

The purpose of the experiment is to assess the metaphor in use by Gaucho.
Thus, the use of the metaphor is the single independent variable of the ex-
periment. This variable has two levels: the object-focused metaphor and the
view-focused metaphor, respectively represented by Gaucho and a baseline.
The dependent variables of our experiment are correctness of the task solutions
and their completion time.

4.3.3 Baseline

We searched for a baseline within the modern object-oriented IDEs that treat
objects as text and settled on the Pharo Smalltalk IDE, a traditional image-based
(not depending on files) IDE built around a WIMP (windows, icons, menus,
pointing device) metaphor [43]. Since Pharo—as many mainstream IDEs—
includes the standard development tools for navigating, inspecting and testing
the objects in the system, we found it to be an ideal candidate to compare
Gaucho to, see Figure 4.2.

Figure 4.2. A System Browser of the Pharo IDE

75 4.3 Experimental Design

4.3.4 Object system & Treatments

We chose Lumière [75] as our object system. Lumière is a framework for cre-
ating and rendering 3-D scenes in OpenGL, consisting of 10 packages, 139
classes, 1,741 methods, for a total of 9,493 lines of code. The system is large
enough that subjects unfamiliar with it have to perform program exploration
and program comprehension to complete the tasks they were asked to perform.
Subjects were randomly assigned one of the two treatments in Table 4.1.

Table 4.1. Treatments presented to the subjects

Group Tool Description

Experimental Gaucho Gaucho application with a loaded model of
Lumiere

Control Pharo Pharo IDE with default development tools
and a loaded model of Lumiere

4.3.5 Tasks

We designed 3 programming and 11 program comprehension tasks based on
the set of questions composed by Sillito et al. [10]. Sillito et al. organized the
questions into 4 categories: (1) finding focus points, (2) expanding focus points,
(3) understanding a subgraph, and (4) questions over groups of subgraphs. We
devised the tasks of the experiment based on the first two categories.

We omitted questions from the 3rd and 4th category because both Gaucho
and Pharo lack support for maintaining context while answering multiple ques-
tions. The rationale supporting the tasks is that each of them relates to one or
more questions of Sillito et al., i.e. real questions developers ask during their
development activities.

We selected a set of questions pertaining to program comprehension, de-
signed tasks related to them that can be solved using both treatments, and or-
dered them according to similarity and prerequisites of the necessary data. In
Table 4.2 we list the tasks, and in Table 4.3 the subset of the questions compiled
by Sillito et al. we used to design the tasks of the experiment.

76 4.3 Experimental Design

Table 4.2. The fourteen tasks of the experiment

Id Goal Questions

T1 Locate the class that represents a rotation of a scene
graph in the Lumiere framework

Q1

T2 Indicate the correct names of all the instance vari-
ables of the class LLight

Q6,
Q16,
Q17

T3.1 Locate the root class of the hierarchy of nodes of a
scene graph in Lumiere

Q1, Q8

T3.2 Indicate the correct names of all the (direct) sub-
classes of LLumiereShape

Q9

T3.3 Indicate all the subclasses (direct or not) of LMid-
dleNode that override the method #accept:

Q11

T4.1 How many packages make up Lumiere? Q6
T4.2 Indicate the two packages in Lumiere with the largest

number of classes
Q7

T5.1 Create a new layout class named LStackLayout, lo-
cated in the same package and with the same super-
class as LPolarLayout

Q7, Q8,
Q17

T5.2 Add an instance variable named ”translations” to
LStackLayout, and create the accessors

Q17

T6.1 The base Layout implements the method #runLay-
out. Indicate all the layout classes that implement
the same method

Q5,
Q11

T6.2 Indicate the name of the instance variable that is
assigned (set) by most implementors of the method
#runLayout

Q10,
Q15

T6.3 Define the method LStackLa yout >> runLa yout
(cut and paste the code)

Q6

T7.1 How many test case methods reference the class
LVerticalGridLayout ?

Q15

T7.2 Indicate the test case class where most of the layout
behavior is tested

Q6,
Q12

77 4.4 Experimental Operation and Results

Table 4.3. Referenced questions from Silito’s framework

Id Description

Q1 Which type represents this domain concept/UI element/action?
Q5 Is there an entity named xxx in that project/package/class?
Q6 What are the parts of this type?
Q7 Which types is this type a part of?
Q8 Where does this type fit in the type hierarchy?
Q9 Does this type have any siblings in the type hierarchy?
Q10 Where is this field declared in the type hierarchy?
Q11 Who implements this interface or these abstract methods?
Q12 Where is this method called or type referenced?
Q15 Where is this variable or data structure being accessed?
Q16 What data can we access from this object?
Q17 What does the declaration or definition of this look like?

4.4 Experimental Operation and Results

4.4.1 Operation

The experiment was performed at the University Of Chile (with 3 professors, 1
PhD student, 1 software engineer, and 2 Msc students) and at the University Of
Lugano (with one MSc student). We presented a video demonstration of Gau-
cho to each subject of the experimental group. An experimental run consisted
in a session of up to one hour, during which the subjects solved the tasks with
the assigned treatment, using the automated experiment runner toolset, called
Biscuit, described in Section 4.1.2.

4.4.2 Pre-Experiment Questionnaire

Using Biscuit, we designed and presented a questionnaire that served to allow
capturing the personal information that we used for analyzing the results of the
experiment run (See Figure 4.3).

78 4.4 Experimental Operation and Results

Figure 4.3. The questions presented by Biscuit at the start

Subject and expertise analysis

During the experimental session, in the context of a Biscuit task, the subjects
answered questions related to their expertise. The results evidence that the sub-
jects of the control group have little or no experience using the Pharo IDE. The
same level of expertise can be assumed for the subjects of the experimental
group, given that their first encounter with Gaucho occurred during this exper-
iment. The subjects also evidence a balanced distribution of their expertise
among treatments, regarding OOP and Smalltalk, see table 4.4.

Table 4.4. The declared expertise of the subjects

Control Group Experimental Group

Expertise Pharo OOP Smalltalk OOP Smalltalk

None 1 0 0 0 1
Beginner 3 1 3 1 1
Knowledgeable 0 1 1 1 1
Advanced 0 2 0 0 1
Expert 0 0 0 2 1

79 4.4 Experimental Operation and Results

4.4.3 Experiment Questionnaire

In this section we present the the content of the questionnaires forming the
experiment, separated into tasks.

Introduction

The aim of this experiment is to conduct a preliminary study, to assess the
validity of the direct manipulation metaphor in use by the novel Gaucho devel-
opment environment.

We also want to analyze how developers interact with the tools of the envi-
ronment, and detect usability issues within the current IDE. For this purpose the
experiment runner will automatically track and record any modification made
to the system. You will use the <toolset>1, and the numerous tools available,
for performing various programming and program comprehension tasks.
Thank you for participating in this experiment.
Fernando Olivero, Michele Lanza, Marco D’ambros, and Romain Robbes

Figure 4.4. The Introduction presented by Biscuit for the treatment using Pharo

1The Pharo IDE for treatment 1, and Gaucho for treatment 2

80 4.4 Experimental Operation and Results

Tasks

In this section we illustrate both the initial design of each task, and its final
instrumentation in Biscuit. Figure 4.5 depicts the overall design of the tasks,
and Figure 4.6 illustrates each task in more detail.

List of tasksList of tasksList of tasks

ID Name Duration
(min)

T1 Mapping concepts to classes 3

T2 Understanding the class structure 4

T3 Traversing the class hierarchy 13

T4 Package containment 4

T5 Creating new concepts 6

T6 Adding new behavior 15

T7 Testing and fixing 13

(a) The design

(b) The instrumentation in Biscuit

Figure 4.5. The outline of the tasks of the experiment

81 4.4 Experimental Operation and Results

T1 Mapping concepts to classes

Goal

Rationale

Questions

Solution

Implementation

Duration

Pre-reqs

Constraints

Locate the class that represents a rotation of a scene graph.

Programming tasks usually begin with some form of concept
location, which relates to the first category of questions which is
“finding initial focus points”.
In this task we want to demonstrate that Gaucho provides a useful
global search widget, somehow similar to the one found in Pharo.

Q1: Which type represents this domain concept or this UI element
or action ?

 LRotationNode

•Paper: Use the lexical or static analysis based search.
•Gaucho: Use the global search widget.
•Pharo:Use the find class tool opened from the contextual menu
of the system category pane, or use the mercury toolbar widget

3 min

A clean pampas.

Use the tools, don't look for the answer by sending messages to
the class.
Why?: To leverage the subject programming skills.

(a) T1: Mapping concepts to classes

T2 Understanding the class structure

Goal

Rationale

Questions

Solution

Implementation

Duration

Pre-reqs

Constraints

Indicate the correct names of all the instance variables of the class
LLight.
1.ambient color location on specular
2.diffuse location on specular
3.ambient diffuse location on specular
4.material direction specular on

Developers often have the need to understand the structure of
classes: With this group of tasks (T2) we want to analyze if this
structure is better understood visualized by abstractions than a
class definition string, and the methods list of the browsers.

Class Definition strings are just strings, instance variable names
don't necessarily have an order (they can be typed by the user in
any order). Therefore the subject might choose incorrectly,
because in the original definition the names aren’t ordered.
With abstractions this problem is not encountered, because the
shape always displays the names in order.
This evidences that class definition are just treated as strings.

Q6: What are the parts of this type ?

2.ambient diffuse location on specular

•Tools: Structural overviews tools
•Gaucho: Look at the attributes group of the shape.
•Pharo: Read the class definition string , and detect the instance
variable names.

4 min

Visual Element depicting the class LLight

Use the tools, don't look for the answer by sending messages to
the class.
Why?: To leverage the subject programming skills.

(b) T2: Understanding the class structure

T3.1 Traversing the class hierarchy

Goal

Rationale

Questions

Solution

Implementation

Duration

Pre-reqs

Constraints

Locate the root class of the hierarchy of nodes of a scene graph.

Locating the root of a class hierarchy is usually needed when the
task requires extending the hierarchy with another concept, to
understand how this new concept can be plugged in.
With this task we want to asses if Gaucho allows navigating a
class hierarchy.

Q8 Were does this type fit in the type hierarchy ?

LNode

•Tools: Structural analysis techniques.
•Gaucho: Use the superclass navigation icon located in the
toolbar of the LRotationNode shape, to open the superclass
group.
•Pharo: Open a hierarchy browser on the class LRotationNode.

3 min

Visual Element depicting the class LRotationNode

Use the tools, don't look for the answer by sending messages to
the class.
Why?: To leverage the subject programming skills.

(c) T3.1: Traversing the class hierarchy

Figure 4.6. The tasks of the experiment

82 4.4 Experimental Operation and Results

T3.2 Traversing the subclass hierarchy

Goal

Rationale

Questions

Solution

Implementation

Duration

Pre-reqs

Constraints

Indicate the correct names of all the (direct) subclasses of
LLumiereShape?
1.LChainedCompositeShape LCompositeShape LShape
LumiereLayout
2.LChainedCompositeShape LCompositeShape LFrustumShape
3.LCompositeShape LShape LumiereLayout
4.LCompositeShape LShape

Understand the composition of a class hierarchy

Q9 Does this type have any siblings in the type hierarchy ?

1.LChainedCompositeShape LCompositeShape LShape
LumiereLayout

•Tools: Structural analysis techniques
•Gaucho:The subclasses navigation icon located in the toolbar of
the LNode shape, indicates the number of direct siblings and
opens the subclasses group.
•Pharo: Open a hierarchy browser on the class LGeometry , and
analyze the subclasses.

4 min

Visual Element depicting the class LLumiereShape

Use the tools, don't look for the answer by sending messages to
the class.
Why?: To leverage the subject programming skills.

Marco D'Ambros Nov 9, '10,
9:40 AM

This can probably be expanded a
little bit. Why is it important to
understand the composition of a
class hierarchy in a programming
task?
Fernando : Ok , will expand most
of the rationales with references
to the literature.

(d) T3.2: Traversing the subclass hierarchy

T3.3 Understanding the specialized behavior

Goal

Rationale

Questions

Solution

Implementation

Duration

Pre-reqs

Constraints

Indicate all the subclasses in the hierarchy of middle nodes that
override #accept:
1.LAffineTransformationNode, LRotationNode,LScaleNode,
LTranslationNode, LDrawableWithChildNode.
2.LAffineTransformationNode, LScaleNode, LTranslationNode.
3.LAffineTransformationNode, LRotationNode,LScaleNode,
LTranslationNode, LDrawableWithChildNode, LMatrixLoadNode.

•Force the subject to look at multiple classes, methods and
relationships at once, to evidence the supposed benefit of the
Gaucho interface against the more rigid tool based interfaces.
•Asses if reifying the subclasses group is useful in this kind of
programming tasks.

Q9 Does this type have any siblings in the type hierarchy ?

1.LAffineTransformationNode, LRotationNode,LScaleNode,
LTranslationNode, LDrawableWithChildNode.

•Tools: Structural analysis techniques, Structural overviews tools
•Gaucho:Use the subclasses navigation icon located in the toolbar
of the LNode shape, to open the subclasses group. Spawn the
group, and analyze the subclasses methods.
•Pharo: Open a hierarchy browser on the class LNode or
LMiddleNode. Navigate through the methods list, remember those
that satisfy the condition, or open several browsers

6 min

Visual Element depicting the class LNode

(e) T3.3: Understanding the specialized behavior

T4.1 Packaging

Goal

Rationale

Questions

Solution

Implementation

Duration

Pre-reqs

Constraints

How many packages make up Lumiere?
A.8
B.10
C.16

Asses the usability of the Gaucho system shape, and the package
shape icons .

Q7 Which types is type a part of ?

B.10

3min

Visual element depicting the System

(f) T4.1: Packaging

Figure 4.6. The tasks of the experiment (cont)

83 4.4 Experimental Operation and Results

T4.2 Package sizes

Goal

Rationale

Questions

Solution

Implementation

Duration

Pre-reqs

Constraints

Indicate the packages with the biggest amount of classes.
1.'Lumiere-Morphic' 'Lumiere-SceneGraph’
2.'Lumiere-Morphic' 'Lumiere-Modeling'
3.'Lumiere-ViewingVolumes' ‘Lumiere-SceneGraph’

Asses the usability of the Gaucho system shape, and the package
shape icons .

Q7 Which types is type a part of ?

1.Lumiere-Morphic' 'Lumiere-SceneGraph’

4min

Visual element depicting the System

(g) T4.2: Package sizes

T5.1 Creating new concepts

Goal

Rationale

Questions

Solution

Implementation

Duration

Pre-reqs

Constraints

Create a new layout class named LStackLayout in the same
package and hierarchy as LPolarLayout.

Asses the effectiveness of the Gaucho navigation toolbar to
access the package from a class, and create a class within that
package.

Q7 Which types is type a part of ?
Q8 Were does this type fit in the type hierarchy ?

LStackLayout class creation, subclass of LumiereLayout, and
packaged in Lumiere-Modeling.

•Tools: Structural overviews tools
•Gaucho:Use the containment navigation icon located in the
toolbar of the LPolarLayout shape, to open the package. In the
package shape create a new class named LStackLayout, using
the add class entry field.
•Pharo: In the browser select the package Lumiere-Modeling, and
reuse an LumiereLayout subclass definition string, by replacing the
name of the subclass string with LStackLayout.

4 min

Visual element depicting the class LPolarLayout.

Romain Robbes Nov 2, '10,
2:27 PM
The risk here is that if people
don’t know exactly how to do
that, they won’t be able to do it
as fast as they are used to with
Pharo. So the tutorial has to be
thorough. Would it be possible to
do an “automated tutorial”, before
the “semi-automated”
experiment?

The Gaucho description misses
the subclass bit.

(h) T5.1: Creating new concepts

T5.2 Adding instance variables

Goal

Rationale

Questions

Solution

Implementation

Duration

Pre-reqs

Constraints

Add an instance variable named ‘translations’ to LStackLayout,
and create the accessors.

•Asses the ease of use of the add instance variable entry field
•Compare the ease of use of large contextual menus against the
icons of the class shapes.

LStackLayout.translations
LStackLayout>>translations:
LStackLayout>>translations

•Gaucho: Use the add instance variable entry field, and press the
create accessors icon.
•Pharo: Edit the class definition string to add the instance variable,
and use the class contextual menu and click on the create
accessors item.

3 min

Visual element depicting the class LStackLayout.

(i) T5.2: Adding instance variables

Figure 4.6. The tasks of the experiment (cont)

84 4.4 Experimental Operation and Results

T6.1 Adding behavior

Goal

Rationale

Questions

Solution

Implementation

Duration

Pre-reqs

Constraints

The base class of all layouts implements the method #runLayout.
Indicate the remaining classes that implement the same method.

1.LCenteredFlowLayout, LFlowLayout, LPolarLayout.
2.LPolarLayout, LCenteredFlowLayout, LFlowLayout,
LInDepthGridLayout, LVerticalGridLayout.
3.LPolarLayout, LFlowLayout, LInDepthGridLayout, LShape,
LVerticalGridLayout.

•Search for abstract methods in the base class, and locate existing
implementors of these methods. Usually when adding new
behavior that is an abstract method in the base class, developers
start by looking at relevant implementors of the same method.
•Asses the comprehension of the navigation icons of methods
items in the class shape, to provide quick access to an
implementors group.

Q6 What are the parts of this type ?
Q11 Who implements this interface or these abstract methods ?

2.LPolarLayout, LCenteredFlowLayout, LFlowLayout,
LInDepthGridLayout, LVerticalGridLayout.

•Tools: Structural overviews tools, Static structural analysis
techniques.
•Gaucho: Scroll the methods list of the LumiereLayout shape to
find the abstract method #runLayout, and spawn the implementors
group.
•Pharo: Similar, but scrolling the browser and spawning an
implementors list.

4 min

Visual element depicting the class LumiereLayout.

(j) T6.1: Adding behavior

T6.2 Analyzing implementors

Goal

Rationale

Questions

Solution

Implementation

Duration

Pre-reqs

Constraints

Indicate the name of the instance variable that is assigned (set) by
most implementors of the method #runLayout.
1.shapes
2.gap
3.scale
4.dimensions

Force the subject to compare multiple classes and methods at
once.

Q15 Where is this variable or data structure being accessed ?

4.dimensions

•Tools: Structural overviews tools, Static structural analysis
techniques
•Gaucho:Spawn the implementors group, and compare the
methods to find the instance variable.
•Pharo: Scroll up and down the list of implementors, reading and
comparing the code. Open and manually rearrange several
browsers to ease the comparison task.

8 min

•Visual element depicting the implementors #runLayout.
•Visual element depicting the base class, LumiereLayout.

(k) T6.2: Analyzing implementors

Figure 4.6. The tasks of the experiment (cont)

85 4.4 Experimental Operation and Results

T6.3 Defining new methods

Goal

Rationale

Questions

Solution

Implementation

Duration

Pre-reqs

Constraints

Define the method LStackLayout>>runLayout

Cut and paste the following code:
! | previousDepth |
! self resetResult.
! shapes isEmpty ifTrue:[^ #()].
! translations at: 1 put: {0.0. 0.0. 0.0}.
! previousDepth := shapes first depth.
! shapes allButFirst withIndexDo: [:each :i |
! ! |translation |
! ! translation := {0.0. 0.0. previousDepth + gap }.
! ! translations at: i + 1 put: translation.
! ! previousDepth := each depth.].
! dimensions := LDualVolume
! ! origin: {0.0. 0.0. 0.0}
! ! extent: {self width. self height. self depth}
!

Asses the usability of method creation using Gaucho .The code is
given because it is not our goal to improve method edition.

LStackLayout>>runLayout
! | previousDepth |
! self resetResult.
! shapes isEmpty ifTrue:[^ #()].
! translations at: 1 put: {0.0. 0.0. 0.0}.
! previousDepth := shapes first depth.
! shapes allButFirst withIndexDo: [:each :i |
! ! |translation |
! ! translation := {0.0. 0.0. previousDepth + gap }.
! ! translations at: i + 1 put: translation.
! ! previousDepth := each depth.].
! dimensions := LDualVolume
! ! origin: {0.0. 0.0. 0.0}
! ! extent: {self width. self height. self depth}.

•Gaucho: Click on the add method entry field, and type the
#runLayout. In the automatically created method shape, cut and
paste the code and accept
•Pharo: Click on the methods pane of the browser and cut and
past the code and accept.

3 min

Visual element depicting the class LStackLayout.

(l) T6.3: Defining new methods

T7.1 Testing

Goal

Rationale

Questions

Solution

Implementation

Duration

Pre-reqs

Constraints

How many tests refer to an instance of the class
LVerticalGridLayout ?
A.10
B.2
C.4

•Whenever a new behavior is going to be tested, usually we start
by understanding examples of usage of similar classes, therefore
we look for references to classes that implement the same
behavior.
•Asses the comprehension of the metric toolbar icons of the class
shape. The subject can use the tests references icon, instead of
opening the references group, which presents the number.

Q15 Where is this method called or type referenced ?

B.2

•Tools:
•Gaucho: The tests references icon, shows the number of tests
references.
•Pharo: Open an class references browser, and manually count
the appearances of LVerticalGridLayout in the code pane of each
item that is a test.

3 min

Visual element depicting the class LVerticalGridLayout.

(m) T7.1: Finding test case methods references

T7.2 Finding test references

Goal

Rationale

Questions

Solution

Implementation

Duration

Pre-reqs

Constraints

Indicate the test case class where most of the layout behavior is
located.
1.LShapeTests
2.LSceneGraphTests
3.LLayoutTests

Locating the correct test case that will contain the test method to
implement, is a pre-requisite before actually implementing it.

Q6 What are the parts of this type ?
Q12 Where is this method called or type referenced ?

1.LShapeTests

4 min

Visual element depicting the subclasses group of LumiereLayout

(n) T7.2: Locating relevant test case classes

Figure 4.6. The tasks of the experiment (cont.)

86 4.4 Experimental Operation and Results

4.4.4 Debriefing Questionnaire

(a) Perceived difficulty of each task

(b) Skipped Tasks

Figure 4.7. The post-experiment questionnaire presented by Biscuit

87 4.4 Experimental Operation and Results

4.4.5 Data collection

Using Biscuit, we automatically generated a user interface for each experimen-
tal session, via an application running either on top of Gaucho or Pharo. Fig-
ure 4.8 shows Biscuit running on top of Pharo.

Figure 4.8. Biscuit running on top of the Pharo IDE

We collected the data produced by each subject in the form of a Biscuit
output file. The output file contains the answers and solutions to each task, and
some meta-data such as the participant’s name, the total completion time, the
correctness of the answers, and the post-experimental task evaluations.

Figure 4.9 depicts the contents of the files that constitute the output of an
experiment run. Biscuit records all the data pertinent to the subjects activity,
ranging from meta-data such as the level of expertise of the subjects, to low level
user interface actions, such as mouse clicks and keystrokes. We used Biscuit
to analyze the results of the experiment by extracting the subjects’ activity from
these output files.

88 4.4 Experimental Operation and Results

Description;GauchoExperiment;Luis;Pharo
Duration;16 December 2010 5:35:11 pm;0:00:53:00
Participant;Luis
Age;25
Nationality;Bolivia
Gender;male
Affiliation;DCC
Job Position;Grand Student
ObjectOriented;level;begginer;experience;2
Smalltalk;level;begginer;experience;1
Pharo;level;begginer;experience;1
Performed tasks;15

CompletedTask;T1Mapping concepts to classes;16 December 2010 5:35:21 pm;
0:00:02:48;TaskSingleInputGoalRun;TaskInput;
class name;LRotationNode;Result;Shape

CompletedTask;T2Understanding the class structure;16 December 2010 5:38:22 pm;
0:00:02:48;MultipleChoice;description;
Indicate the correct names of all the instance variables of the class
LLight.;EnDDescriptioN;ExpectedResult;2;4
Choice;label;1;description;ambient, color, location, on, specular;EnDDescriptionN;false
Choice;label;2;description;diffuse, location, on, specular;EnDDescriptionN;true
Choice;label;3;description;ambient, diffuse, location, on, specular;EnDDescriptionN;false
Choice;label;4;description;material, direction, specular, on;EnDDescriptionN;false

CompletedTask;T3.1Traversing the class hierarchy;16 December 2010 5:41:16 pm;
0:00:01:13;TaskSingleInputGoalRun;TaskInput;class name;LNode;Result;Object

Name;T1Mapping concepts to classes Session
Developer;OscarEACallau
Duration;17 December 2010 10:12:37 am;
0:00:01:40
Events;112
MRMouseClickEvent; runIcon; click; 282849;
521@215

MRGainedMouseFocusEvent; SystemGlobals;
mouseEnter; 283282; 436@215

MRMouseLostFocusEvent; SystemGlobals;
mouseLeave; 284783; 447@282

MRGainedMouseFocusEvent; PampasWindow-
searchIcon; mouseEnter; 287908; 74@98

#('2010-12-16T15:23:57+00:00' 'EricTanter'
#(#cref #LStackLayout 'false') #classModified:
#(#definition: 'LumiereLayout subclass:
#LStackLayout

instanceVariableNames: ''translations''
classVariableNames: ''''
poolDictionaries: ''''
category: ''Lumiere-Modeling''' #category:

'''Lumiere-Modeling''' #superclass:
#LumiereLayout #instvars: #('translations')
#classvars: #()) 'LumiereLayout subclass:
#LStackLayout

instanceVariableNames: ''translations''
classVariableNames: ''''
poolDictionaries: ''''
category: ''Lumiere-Modeling''')

EXPERIMENT DATA

UI ACTIONS SYSTEM - SPYWARE ACTIONS

Figure 4.9. Biscuit output: reliable and precise data

89 4.4 Experimental Operation and Results

4.4.6 Results

The 14 tasks were automatically graded, yielding a maximum score of 14
points, and the time taken to solve each task was measured by means of the
output analyzer features of Biscuit. From that analysis we concluded that the
subjects of the experimental group outperformed the subjects of the control
group regarding the correctness of the tasks (cf. Figure 4.10(a)).

The subjects using Gaucho scored, on average, 10.4 points, while the sub-
jects using the Pharo treatment scored, on average, 8.5 points. While regarding
the completion time, the subjects of the control group outperformed the exper-
imental group (cf. Figure 4.10(b)). The total completion time, on average, of
the subjects using the Gaucho treatment was 38:08 minutes, while the subjects
using the Pharo treatment spent, on average, 28:48 minutes for all the tasks.

Therefore, although the limited number of subjects does not allow us to
draw any statistically relevant conclusions, our data gives us strong indications
that we can answer the first research question (time) negatively, and the second
one (correctness) positively.

0

0.25

0.5

0.75

1

T1 T2 T3.1 T3.2 T3.3 T4.1 T4.2 T5.1 T5.2 T6.1 T6.2 T6.3 T7.1 T7.2

Pharo Gaucho

(a) Task correctness

0

75

150

225

T1 T2 T3.1 T3.2 T3.3 T4.1 T4.2 T5.1 T5.2 T6.1 T6.2 T6.3 T7.1 T7.2

Pharo Gaucho

(b) Completion time (seconds)

Figure 4.10. The time and correctness of the subjects on the performed tasks

90 4.4 Experimental Operation and Results

(a) Control Group using Pharo

Subject T1 T2 T3.1 T3.2 T3.3 T4.1 T4.2

P1 02:48 02:48 01:13 02:14 05:59 01:20 03:42
P2 00:29 00:40 01:50 01:42 02:54 00:37 01:10
P3 01:22 00:30 00:41 00:58 02:47 00:19 01:20
P4 02:13 00:39 01:53 01:29 02:09 01:03 02:39
Avg 01:43 01:09 01:24 01:36 03:27 00:50 02:08

T5.1 T5.2 T6.1 T6.2 T6.3 T7.1 T7.2

P1 03:32 02:20 03:44 03:38 01:40 03:03 00:45
P2 01:25 01:31 01:13 00:04 01:01 00:48 00:26
P3 01:40 01:18 00:54 00:41 00:31 03:07 01:01
P4 01:15 01:15 01:52 02:29 01:04 02:54 03:47
Avg 01:58 01:36 01:56 01:43 01:04 02:28 01:30

(b) Experimental Group using Gaucho

Subject T1 T2 T3.1 T3.2 T3.3 T4.1 T4.2

G1 01:40 02:08 04:06 00:51 04:22 01:12 03:43
G2 06:31 01:58 01:22 01:42 06:14 00:28 01:50
G3 03:51 00:51 00:58 01:59 05:07 00:46 02:51
G4 03:00 02:24 03:41 01:31 04:27 00:28 01:42
Avg 03:46 01:50 02:32 01:31 05:03 00:44 02:32

T5.1 T5.2 T6.1 T6.2 T6.3 T7.1 T7.2

G1 05:48 00:27 05:50 02:25 04:10 02:16 03:47
G2 01:27 01:47 02:36 00:55 00:45 00:39 02:40
G3 03:32 00:43 03:23 02:04 01:23 00:57 02:07
G4 02:20 00:29 05:16 03:04 03:01 02:06 00:56
Avg 03:17 00:52 04:16 02:07 02:20 01:30 02:23

Table 4.5. The Completion Times and Correctness (incorrect answers are col-
ored red) of the subjects on the performed tasks

91 4.4 Experimental Operation and Results

We now proceed with a qualitative evaluation of the results of each task.
To better analyze the obtained results we grouped the tasks according to the
similarities between their goals. In the following discussion, for each group of
tasks, we present the IDs, a summary of the goals to be accomplished by the
subjects, and comment the obtained results.

Concept Location: T1

The goal is to find the class named LRotationNode, by searching the class that
most resembles a rotation node of a Lumière scene graph. We wanted to assess
if the global search widget of Gaucho was accessible and provided the means to
effectively perform concept location; it is similar to the lexical or static analysis
based search tools of IDEs.

The results of the subjects of the experimental group were similar to the
control group in terms of correctness. However, they spent—on average—more
time than the subjects in the control group, mostly because of usability issues
with the global search widget of Gaucho: it currently lacks support for perform-
ing concept location via pattern matching.

Structural comprehension of classes and packages: T2, T4.1, T4.2

The goal is to choose the correct answer from a multiple choice scheme of the
set of instance variables of the class LLight (task T2), the number of packages
that make up Lumière (task T4.1), and the two packages in Lumière with the
largest number of classes (task T4.2). With these tasks we investigate whether
the structure of an object is correctly understood when depicted using a high-
level view—the class or package shape—as opposed to the textual representa-
tion of the class definition.

The results for task T2 show that the subjects of the control group outper-
formed the subjects using Gaucho. This negative score was a result of a misun-
derstood scrollable widget of the class shape, which only reveals four instance
variables at a time; most subjects were not aware that this list could be scrolled
down to reveal the fifth instance variable, thus answering incorrectly.

The results for T4.1 and T4.2 show that the experimental group outper-
formed the control group, but the subjects using Gaucho took more time on
T4.2 and less on T4.1 than the subjects using Pharo. In T4.1, a single pack-
age shape is involved (representing Lumière), whereas T4.2 requires interacting
with a larger number of package shapes, as they must be placed side by side to
compare their sizes.

92 4.4 Experimental Operation and Results

System Navigation: T3.1, T3.2, T6.2, T7.1

With these tasks we wanted to assess the usability and validity of the direct
manipulation features available in the shapes, which allow navigating between
the relationships of the represented object with the rest of system.

The goal is to locate the root class of the hierarchy of nodes of a scene graph
in Lumière (T3.1), to choose the correct names of all the (direct) subclasses of
LLumiereShape amongst 4 choices (T3.2), to indicate all the layout classes that
implement the method #runLayout (T6.2), and to specify how many test case
methods reference the class LVerticalGridLayout (T7.1).

Tasks T3.1 and T3.2 both involved navigating the class hierarchy from a
class shape, the first on super classes and the second on subclasses. Task T6.2
revolved around navigating references to the uses of methods, while Task T7.1
revolved around navigating the references (uses) of a class, and narrowing the
results into those who are test case methods.

The subjects of the experimental group outperformed the subjects in the
control group in the task T3.1, regarding correctness of the answers; but again
they did so by taking more time than the subjects using the Pharo treatment,
because of the mentioned layout problems when displaying multiple shapes on
the pampas.

The subjects using the Gaucho treatment were faster and more correct on
the task T7.1. The navigation facilities on the shapes allowed quick access to
the references of the LVerticalGridLayout class, as opposed to the traditional
use of a contextual menu—on a selected list item in the browser—for navigat-
ing the references of the class. In task T6.2 both groups performed similarly
regarding the correctness, but the subjects using the Gaucho treatments were
faster because placing side by side shapes depicting the relevant methods eased
performing the comparison.

Unfortunately, the subjects in both groups failed task T3.2 because of a
misunderstanding in the goals description; the subjects also included indirect
subclasses in the answer. Nevertheless, since the subjects answered all the
indirect subclasses correctly and given the similarities between the completion
time, we can conclude that a class hierarchy can be well understood in both
treatments because they share a similar graphical depiction of a class and its
subclasses.

93 4.4 Experimental Operation and Results

Unconstrained System Layout: T3.3, T6.1

We wanted to observe how well Gaucho behaves on tasks that force the subject
to look at multiple classes, methods and relationships at once, to assess the
supposed benefit of the unconstrained layout of the Pampas and the simple
graphical representations of objects.

The goal is to indicate all the subclasses of LMiddleNode that override the
method #accept (T3.3), and indicate the name of the instance variable that is
assigned (set) by most implementors of the method #runLayout (T6.1).

The subjects of the experimental group outperformed the subjects of the
control group regarding the correctness, but again spent more time solving the
task. The difference was more marked in T6.1, possibly because by then the
subjects had already gained experience and made better use of the Pampas and
the shapes.

Class References: T7.2

The goal is to indicate the test case class where most of the layout behavior is
tested. We devised this task because before implementing a test, the developers
must locate the proper test case class where the test method should be added;
this forces developers to search across the test cases of the system to find the
one that references the most the Lumière layout classes.

On this task the subjects using Pharo performed better than those using
Gaucho. We observed that grouping all the tests into a single tool, called the
test runner, allowed the Pharo users to quickly locate the desired test.

In Gaucho the subjects could access one test at a time by opening a class
shape of a Lumière layout class, and navigate the test case references to find the
most suitable one, which is less efficient.

Programming: T5.1, T5.2, T6.3

The goal of these tasks is to create a class, an instance variable, and sev-
eral methods. To evaluate the completeness of Gaucho, we wanted to assess
whether novel users of the object-focused environment could create and ma-
nipulate new classes and methods, by interacting with the shapes, without in-
termediaries (the tools).

The subjects of the experimental group made use of the direct manipulation
facilities of the shapes to correctly create and modify the requested objects;
for example by creating the class using the add button of the package shape,
instead of editing the class definition in the browser tool of the IDE.

94 4.5 Reflections

The difference between the correctness and completion time in T5.2, is
due to some Pharo users failing to create the accessors, while Gaucho creates
them automatically; subjects of both groups performed equally well in terms of
correctness for the other two tasks—Pharo retains the edge in completion time.

4.5 Reflections

The results indicate that Gaucho outperforms the IDE regarding the correctness
of the tasks, while it is slower with respect to the completion time. Despite the
preliminary nature of the results, mostly due to the low number of subjects, we
believe that we can indeed question the usage of traditional IDEs as program
comprehension aids.

4.5.1 On the correctness of the performed tasks

The positive answer to the second research question, RQ2, regarding the cor-
rectness of the tasks, might indicate that an object-focused development envi-
ronment such as Gaucho provides better support for performing program com-
prehension tasks. We derived this result derives from the following differences
between Gaucho and the baseline:

The high-level views of the graphical elements in Gaucho (the shapes) helped
developers to better understand the composition of the objects involved in tasks
T3.1, T3.3, T4.1, and T6.1; as opposed to manually decoding the relevant infor-
mation from textual class definition, and searching lists of classes and methods
names from the tools of the IDE.

The direct manipulation of the shapes eased operations such as addition,
in task T5.2, or navigation through the relationships between objects in tasks
T3.2, T6.1, and T7.1; as opposed to textual edition of the class definitions, and
the use of contextual menus acting upon a selected item in the IDE.

The unconstrained layout of the pampas allowed developers to create side
by side views of shapes, hence creating their own views of the system, to cor-
rectly solve tasks T3.3 and T6.1. Using Pharo, the developer can also create
side by side views of one or more tools, using windows; nevertheless in Gau-
cho the shapes are simpler, smaller, and more intuitive depictions of the objects
than the tools of the IDE, making it easier for the developer to take advantage
of the available real estate, and hence compare two graphical elements.

95 4.5 Reflections

4.5.2 On the completion time of the performed tasks

The negative answer to the first research question, RQ1, regarding the comple-
tion time of the tasks, is an indication of the lack of maturity and exposure of
the interface of Gaucho compared to a traditional IDE.

Gaucho is a novel environment, and the subjects were not only exposed to
the tool for the first time, but also had to adapt to the usage of an object-focused
metaphor. On the other hand, the traditional tools of the IDE are widely known
to developers; and even though most subjects of the control group claimed to
have little or no experience with Pharo, they asserted to be at least knowledge-
able in object-oriented programming and Smalltalk.

We interpret this in a positive light: the Gaucho UI has potential to be
matured and made more user-friendly, while the rigid structure of traditional
IDEs seems to have slowly exhausted the means to advance. A sign of this
stalling is the vast number of Eclipse plugins which have to fight over a limited
amount of screen space [14].

The subjects using Gaucho spent more time on most of the tasks because
of some usability issues found in Gaucho 1.2, which resulted from the lack of
an automatic layout or non-overlapping scheme. The latter forced developers
to spend time and effort re-arranging and closing the shapes in the screen; for
example the subjects using Gaucho took more time to solve the tasks T6.1 and
T3.3, which involve creating side by side views of shapes.

We believe this result does not reveal an inherent problem of the object-
focused metaphor but it is accidental complexity introduced by the current
implementation of Gaucho. We solved this issue by implementing a better
layout policy scheme in the latest version of Gaucho.

4.5.3 Threats To Validity

The design of the tasks may have been biased towards Gaucho. To alleviate
this threat we based each of the tasks on a subset of the real questions asked
by developers during development sessions. This increased the chances that
we devised real tasks that developers frequently solve using traditional IDES. A
supporting fact are the average perceived difficulties of the tasks, we gathered
from the subjects during the post-experiment questionnaire (See Figure 4.11).

We based the tasks on questions pertaining to the first and second category
presented in Silito’s work, described as low level questions that can be quickly
answered, yet realistic. We were able to compare such short tasks accurately
due to the tracking facilities of Biscuit.

96 4.6 Conclusions

Participant Description
Subject Job Position OOP Smalltalk Pharo

P1
P2
P3
P4

G1
G2
G3
G4

Grand Student begginer(2) begginer(1) begginer(1)
DW Consultant advanced(3) begginer(0.2) begginer(0.2)
Assistant Professor advanced(12) knowledgeable(2) none(unspecified)
Student knowledgeable(6) begginer(1) begginer(1)

Phd student knowledgeable(7) knowledgeable(2) knowledgeable(2)
Assistant Professor expert(12) expert(10) expert(3)
Prof expert(15) advanced(12) knowledgeable(1.5)
student begginer(1) begginer(0.5) begginer(0.5)

Tasks Description
Subject T1 T2 T3.1 T3.2 T3.3 T4.1 T4.2 T5.1 T5.2 T6.1 T6.2 T6.3 T7.1 T7.2 T7.3

P1
P2
P3

G1
G2
G3
G4

C C C C C C C C C C C C C C C
C C C C C C C C C S S C S S S
C C C C C C C C C C C C C C C

C C C C C C C C C C C C C C S
C C C C C C C C C C C C C C C
C C C C C C C C C C C C C C C
C C C C C C C C C C C C C C C

Begginer Knowledgeable Advanced Expert

Gaucho
Pharo

4 0 0 0
4 0 0 0

OOP Smalltalk Pharo

none

beginner

knowledgeable

advanced

expert

PHARO

0 0 1

1 3 3

1 1 0

2 0 0

0 0 0

OOP Smalltalk Pharo

none

beginner

knowledgeable

advanced

expert

Gaucho

0 0 0

1 1 1

1 1 2

0 1 0

2 1 1

OOP Smalltalk Pharo

11

2

0

1

0

2

11 111

000

Gaucho

OOP Smalltalk Pharo

000 00

2

0

11

33

1 1

00

 Pharo

none beginner knowledgeable advanced expert

precevied difficulties
Subject T1 T2 T3.1 T3.2 T3.3 T4.1 T4.2 T5.1 T5.2 T6.1 T6.2 T6.3 T7.1 T7.2

P1
P2
P3
P4
AVG

G1
G2
G3
G4
Gaucho

4 4 4 4 4 4 4 4 4 4 4 4 4 4
3 2 3 3 4 2 4 3 2 5 4 3 3 5
1 1 2 3 4 1 2 2 2 3 2 2 4 4
2 1 2 3 3 3 3 2 3 3 3 4 3 4

2.5 2 2.75 3.25 3.75 2.5 3.25 2.75 2.75 3.75 3.25 3.25 3.5 4.25

4 4 4 4 4 4 4 4 4 4 4 4 4 4
5 4 4 4 4 4 4 4 4 4 4 4 4 4
3 2 3 3 4 2 4 3 2 5 4 3 3 5
2 1 1 5 1 1 1 1 1 1 3 1 1 2

3.5 2.75 3 4 3.25 2.75 3.25 3 2.75 3.5 3.75 3 3 3.75

P4;2;1;2;3;3;3;3;2;3;3;3;4;3;4;4

Simple

Intermediate

Difficult

T1 T2 T3.1 T3.2 T3.3 T4.1 T4.2 T5.1 T5.2 T6.1 T6.2 T6.3 T7.1 T7.2

Pharo

Trivial

Simple

Intermediate

Difficult

T1 T2 T3.1 T3.2 T3.3 T4.1 T4.2 T5.1 T5.2 T6.1 T6.2 T6.3 T7.1 T7.2

Pharo Gaucho

Figure 4.11. The Subject’s Perceived Difficulty of the Tasks

Biscuit keeps track of the elapsed time for each task by recording a times-
tamp whenever the users commences a new task and when he provides the
answer (using the Biscuit widgets overlaid on top of the tool). Since the timing
is done automatically, we are confident the resolution of the time measurement
is precise enough.

To answer both of our research questions, we evaluated the results of the
experiments regarding the correctness and the completion time of each task.
A possible threat is that we omitted the effort of completing a task from our
analysis, i.e. the history of every user interaction would enable us to analyze
how the subjects fulfilled each task, by measuring the effort using the GOMS
model (Goals, Operators, Methods, and Selection rules) [16]. Another threat
is the small number of subjects who performed the experiment (8). Moreover,
a better distribution of the expertise of the subjects would provide the means
to analyze beginners and advanced IDE developers, and the experiment would
benefit from a more balanced number of subjects from academia and industry.

4.6 Conclusions

We evaluated Gaucho in the context of program comprehension by means of a
preliminary controlled experiment with 8 subjects, based on a set of common
comprehension tasks. The conclusions are two-fold, the first relating to the out-
come of the experiment itself, whilst the second pertains to the instrumentation
of the experiment using Biscuit. Regarding the experiment, we found that users
of Gaucho were on average more correct, but slower, than users of a more con-
ventional IDE; usability issues were identified as a primary factor for slowness.
Although based on a preliminary experiment, our findings point out a subopti-

97 4.6 Conclusions

mal and stalling situation regarding traditional IDEs. While we investigated the
context of program comprehension, the discussion is pertinent at all levels.

4.6.1 Biscuit to the Rescue

Performing controlled experiments with human subjects is a difficult task, sub-
ject to many threats. Biscuit is an experimental toolkit aimed at reducing some
of the threats related to recording and gathering experimental data.

Biscuit supports the recording of answers and timing information necessary
for quantitative experiments; it also collects finer-grained data—user interactions—
that, on the one hand, is useful for a qualitative analysis of the data and, on the
other hand, makes the experiments fully replicable.

We raise the question of whether tools such as Biscuit can improve the qual-
ity of the process by which we currently perform controlled experiments; and
more importantly, if the availability of more precise and reliable data can elim-
inate some of the numerous threats present in controlled experiments, which
are manually conducted by fallible humans. Contrasting Gaucho’s controlled
experiment [32] (conducted using Biscuit) and our previous experiment [68]
(conducted in the traditional manner) we noticed that:

• by relieving ourselves from book-keeping tasks, we removed ourselves as
threats to validity;

• we were able to better observe the subjects during the experimental run,
gathering in the process much more qualitative data about Gaucho’s us-
ability;

• data post-processing was greatly simplified;

• since the Gaucho experiment featured several very short tasks (some with
a duration under a minute), we doubt that conducting the same experi-
ment would have been possible in a “traditional” (i.e., manual) way.

Conducting controlled experiments with human subjects to evaluate soft-
ware engineering tools and approaches has become a necessity. Such experi-
ments come with many threats to validity because of the humans involved; we
believe Biscuit helps to remove some of the threats that regard the operation of
controlled experiments.

98 4.6 Conclusions

Chapter 5

Object-Focused Collaboration

In this dissertation we discuss an extensible design for the interface of object
oriented development environments. To demonstrate the extensibility of our
approach, in this chapter we investigate its application to collaboration.

The art of crafting programs to solve problems is rarely accomplished by a
single human working in solitude. Early psychological theories of programming
[5] acknowledged that the software development process is a social human
task, and practitioners have observed that therein lies the main cause of project
failures [76]. Nonetheless, the main vehicle for programming—the integrated
development environment (IDE)—remains as it was conceived in the 1970s,
focused on a single point of view of the system.

IDEs were designed without collaboration in mind, hence team members
are aware of system changes only after the code is committed to the versioning
system, which delays discussions that would otherwise prevent conflicts. There
have been attempts to provide better collaboration support in existing IDEs,
such as Palantir [77] and Syde [78]. However, in these cases collaboration
support is an afterthought stapled on top of existing environments that struggle
to overcome their single-developer nature.

In this chapter we present Ronda, an extension to Gaucho, which offers first-
class support for collaborative development sessions, and promotes awareness
of fine-grained changes to the system under development.

Structure of the chapter. In Section 5.1 we motivate the need for novel
development environments designed to support a team of programmers. In
Section 5.2 we describe Ronda, a collaborative object-focused environment. In
Section 5.3 we conclude the chapter, detailing the infrastructure we built to
support team collaboration within the scope of sessions in Ronda.

99

100 5.1 On Object-Focused Collaborative Environments

5.1 On Object-Focused Collaborative Environments

In this section we motivate the need for Ronda, a novel IDE devised from the
ground up to support collaborative sessions within an object-focused develop-
ment environment.

5.1.1 Shared Development Sessions

The interaction amongst people assembled in groups can be categorized into
focused and unfocused gatherings. In the former, several participants get to-
gether for a clearly stated purpose, while in the latter each of them might have
different goals during the rendezvous [79].

Most of the collaborative development environments developed to date,
provide some form of unfocused gathering by means of a shared editable view
of the system, or by visualizing the modifications made by other developers.
For example, in the 1990s researchers at Sun Microsystems devised Kansas, a
2D space for real-time collaboration, including a shared large flat space which
hosted directly-manipulable representations of the objects [80] (see Figure 5.1).
In Kansas, any change to the system is immediately displayed to every devel-
oper, but the system lacks the concept of a session to guide developers into
which modifications must be performed.

KansasSelf

Figure 5.1. Self and Kansas: collaboration within an object-focused IDE

More recent examples are Syde and Jazz. Syde is a set of plugins that aug-
ment the Eclipse IDE with awareness of fine-grained changes to the system [78]
(see Figure 5.2). Jazz1, is a collaboration platform that can integrate with the
IDE to enable task tracking capabilities and source control.

1https://jazz.net/

https://jazz.net/

101 5.1 On Object-Focused Collaborative Environments

We argue that such environments are missing a fundamental piece of the
puzzle: A first-class presence of shared development sessions, with clearly de-
fined boundaries, objectives, and outcome. In Ronda, development sessions
are first class objects, which provide the overall context when accomplishing
tasks using the IDE.

Eclipse & Syde

Figure 5.2. Syde: collaboration support within the Eclipse IDE

5.1.2 Object-focused environments

We designed Ronda around an alternative user interface to traditional IDEs, to
avoid the many problems that they struggle to overcome, mostly related to the
allocation of real estate resources [24]. Our goal is to escape from the bento box
model that confines the IDE within a single window with sub-panes [24]. The
bento-box model forces Syde’s plugins to compete for a portion of real estate
with the traditional tools of Eclipse (see Figure 5.2). A 2D open-space IDE in
the vein of Self, on the other hand, easily accommodates collaborative aspects
due to its libertarian usage of screen space, and a more concrete representation
of the objects in the interface.

102 5.2 Ronda

The use of direct manipulation enables a more focused display of visual
cues to denote changes to the system, given the continuous representation of
the objects of interest characteristic of such interfaces [44]. For instance, in
Syde, which is built on top of a traditional IDE, the notification of changes is
detached from the actual portion of the source code describing the changed
entities, resulting in a so called “ping pong” interface [81].

We want to provide a framework that enables the creation, announcement,
development, and tracking of sessions, enabling team members to engage in
focused gatherings within an object-focused environment. This is the main
principle of Ronda, presented next.

5.2 Ronda

Ronda is an object-oriented development environment that enables a group
of developers to remotely collaborate to accomplish tasks within the scope of
sessions. Ronda is built on top of Gaucho.

5.2.1 Awareness of Fine-Grained Changes

Ronda is a change-centric development environment that includes several shapes
providing the means to fully manipulate the represented objects. For exam-
ple, developers can create, rename, remove, and add methods and variables
to classes by solely interacting with a Class Shape. We track fine-grained
changes within the IDE, to provide real-time awareness support, hence every
(minor) change to the system is immediately broadcasted to the other partic-
ipants to attain a level of awareness, which is simply not possible in single-
person mainstream IDEs, where—as previous research pointed out [82]—often
developers engage in a blind race to commit first and avoid the merge of con-
flicting changes. However, we believe the use of the object-focused metaphor,
as opposed to traditional bento-box interfaces, provides better support for vi-
sualizing those changes and revealing conflicts, mostly because of the stronger
presence of objects within the interface (i.e. high-level views of objects vs en-
riched source code editors). For instance, Figure 5.3 depicts a class shape that
was renamed by another participant. The shape presents visual cues for quickly
understanding the nature of the change and who produced it.

103 5.2 Ronda

Test case shape

Developers shape

Changes shape

Notes shape

Change Shape

Class Shape

Pampas

Method Shape

Number Of
Changes

Figure 5.3. A Ronda session: the Pampas including several Shapes

Locked: only for
trusted developers

Offline
Online

Figure 5.4. Ronda: the initial display

104 5.2 Ronda

5.2.2 Shared Development Sessions

Figure 5.4 depicts two different initial displays presented when Ronda develop-
ers open the environment, and are presented with the available sessions they
can join. The sessions have a named task that describes the purpose of the gath-
ering, an owner who is responsible for closing and committing its outcome, a
list of developers who can participate, and a list of those who are logged in.
When a developer joins a session, Ronda synchronizes to an updated state
of the ongoing session, by downloading and installing a snapshot containing
the system under development and all the changes performed so far, and then
opens the session in the interface. Figure 5.4 depicts Ronda at startup.

5.2.3 Change Authoring and Trust Levels

In Ronda, we distinguish between trusted and untrusted developers. The for-
mer produce trusted changes, whereas modifications of the latter result in un-
trusted changes, which are visualized differently, and might be discarded by
more knowledgeable trusted developers. The trust levels are granted by the
owner when creating the session, by enumerating the trusted developers and
specifying whether untrusted developers can join.

Figure 5.5 portrays the Ronda interface of an ongoing session of two differ-
ent developers. To the right, the pampas of Ted, and to the left the pampas of
Alan. The session has several past changes and ongoing editions, revealed in
the depicted shapes. For instance:

¬ The class GThreeFingerPinch was modified twice, the last one performed
by Kent, an untrusted change that added a variable. The edition in progress
consisting in the renaming of the class GPeripheralDevice by Alan. ® Another
edit in the form of a method addition to the class GMouse by Ted.

5.2.4 Avoiding Conflicts

Even though developers in the same team seldom work on the same objects at
the same time, conflicts may occur because they are working to solve the same
task. In Ronda, we avoid conflicts by broadcasting any shape edit which might
lead to a system change, thus developers have a consistent view of the shapes—
the objects—currently under manipulation: A session tracks both changes and
edits, which are any manipulation which might result in a system change. For
instance, opening a class rename shape or a method add shape, and receiving
input from the developer.

105 5.2 Ronda

AlanTed

2

2

1

3

3

(a) The ronda session of Ted

AlanTed

2

2

1

3

3

(b) The ronda session of Alan

Figure 5.5. Two ronda sessions depicting generation and awareness of changes

106 5.3 Tea Time

5.3 Tea Time

Ronda implements a simplified version of TeaTime [83], a decentralized dis-
tributed framework that relies on replication of computation instead of data.
TeaTime revolves around the concept of an Island, which is a secure container
of objects. An Island is an abstract concept with no inherent location.

The Islands are projected onto numerous concrete replicas, located in hosts
of the network. Consistency amongst replicas is maintained by broadcasting
any message that alters the state of the Island, via controllers connected to
the same router, following a two-phase commit protocol. TeaTime messages
originate in a host, then travel from the controller to the router, and finally get
dispatched to all the connected controllers, including the original one.

The state-changing messages are generated in response to events performed
by the developer, when manipulating the objects of the Island via their graph-
ical counterpart within the user interface. The messages sent by the router
are ordered by a sequence number and a timestamp, to preserve the order of
execution of all received messages in each replica. Thus, the replicas determin-
istically evolve over time, because each replica is an exact copy of the Island
i.e. they hold the same objects, and send the same ordered stream of messages.

5.3.1 Customizing TeaTime for Ronda

In Ronda, a TeaTime Island includes the shared development sessions, repli-
cated in the IDE of all collaborating developers. A development session in-
cludes the system under construction, a list of trusted developers, and all the
past changes.

Figure 5.6 depicts the core architecture in Ronda, consisting of one or more
developers running a Ronda IDE (Alan, Ted, Dan, and Adele), composed of a
controller connected to the Island’s router via a TCP Socket, a replica of the
ongoing Session, and an augmented Gaucho IDE.

When developers manipulate Gaucho shapes:
À a Tea Time message in the form of a UI command is generated Á, that

either represents a fine grained system change or a UI element editing, like
a class rename. The command is sent to the controller and forwarded to the
island’s router Â. The router broadcasts the command to all the connected
controllers Ã. Afterwards, upon reception, the command is executed producing
the same result in every replica Ä, which results in a change Å that alters the
ongoing session, and is presented in the user interface of the IDE Æ.

107 5.4 Summary

RondaIDE

Controller

GauchoIDE

Session

Router

2

3

5
6

7

4

Command (Message)

Change

Session (Island)

Host

Alan

Ted

Dan

Step

GauchoIDE

Controller

Socket

Adele

1

Figure 5.6. The infrastructure for collaboration in Ronda

A UI command communicates the intention of changing an object of the
session, broadcasted and executed on each island replica to produce the same
changes. In the non-collaborative Gaucho environment, the session simply per-
forms and records the change to the isolated local copy of the system. On the
other hand, in ronda the session broadcasts the system change to all its repli-
cas, which finally perform the command when they receive the broadcasted
message from the router, i.e. note that this occurs on each replica.

5.4 Summary

We have presented Ronda, a novel IDE designed to support collaboration by
means of shared development sessions. Ronda is a change-centric environment
that tracks and visualizes fine-grained changes to the system under construc-
tion. We also described the infrastructure based on Tea-Time, a distributed
framework that relies on replication of computation instead of data.

108 5.4 Summary

Chapter 6

Conclusions

Computer programming requires humans with the necessary skill to create the
programs, translating the solutions to problems from the human brain, into a
computer readable form. Since the beginning of computing, programmers re-
cur to the aid of tools. From the punch cards of yore, to the word processors
of teleprinters or terminal displays of mainframe computers. With the advent of
the personal computer era, programming tools irrevocably turned to an interac-
tive nature, making use of graphical user interfaces.

Nowadays, programmers use IDEs, which include numerous tools to effec-
tively construct programs, and perform all the tasks related to software engineer-
ing. From the original Smalltalk systems, which introduced the IDE, Object-
Oriented Programming is achieved using a tool-based interface: the tools rele-
gate the objects within the interface. An IDE using a tool-based interface has
been found to produce both conceptual and technical problems, the former oc-
curs because of the objects remain hidden behind the tools. The latter relates
to a need for a finer-grained manipulation, for better real state management of a
scarce resource–the display–, and the use of software visualization techniques.

In this dissertation we introduced an approach that promotes direct manip-
ulation of objects as the sole means of programming in OOP languages. Our
thesis is that an object-focused environment supports an broad and extensible
range of software engineering tasks, and alleviates the conceptual and technical
problems of traditional IDEs. To this aim, we designed several interfaces based
on our approach, and we implemented them in several tools. To validate our
thesis, we created and evaluated, on top of our approach, an object-focused
environment for modeling, programming, and collaborating. We presented all
the interfaces, showing that they support various software engineering tasks,
and provide a plausible alternative to the traditional tool-based IDEs.

109

110 6.1 Contributions

6.1 Contributions

During the course of this dissertation, we made a series of contributions to
the state of the art in software development environments for object oriented
programming languages.

We summarize the major ones in the following.

The definition of an object-focused interface for software development [29].
We defined an interface for object-oriented development based on two
pivotal concepts: the Shapes and the Pampas. Shapes are directly manip-
ulable representations of objects, that enable a fine-grained manipulation
of all the software artifacts.

We designed the shapes to concisely visualize the structure and compo-
sition of the objects, and customized to each kind of object in the system
to provide a complete set of interactions. The behavioral completeness of
the Shapes disregards the need for extrinsic tools, to enhance the illusion
that the graphical element on display is the object.

The Pampas is a 2D surface, where the shapes are freely placed to favor
the use of spatial reasoning and memory, the comparison of objects by
creating side by side views, and the customization of own views of the
program, persisted across multiple sessions to support task context.

The application of the object-focused interface to programming [30]. We
designed a set of shapes for the crafting of models composed of objects,
described in class-based object oriented languages.

The shapes represent classes, methods, test-cases and packages of the
system under construction: a class shape depicts the structure of the rep-
resented class, and a method shape presents the method signature and
the statements that make up the body.

We described the interactions between the programmers and the shapes
to craft the programs, and undertake program comprehension tasks.

The implementation of a tool which supports our object-focused interface
[31]. We developed Gaucho, an object-focused programming environ-
ment for the crafting of models composed of objects, described in class-
based object oriented languages. Gaucho is publicly available and has
been used in academic research.

111 6.1 Contributions

The empirical validation of our approach through a controlled experiment
[32]. We performed a controlled experiment to compare a traditional
IDE and Gaucho with respect to a set of program comprehension tasks
extracted from the literature, such as creating, navigating, refactoring, and
understanding an object-oriented system.

We found that users of Gaucho were on average more correct, but slower,
than users of a more conventional IDE; usability issues were identified as
a primary factor for slowness. The experiment was fully instrumented
using Biscuit. We include the entire experimental data set and everything
that is required to make the experiment repeatable, in Chapter 4.

The implementation of a tool to support human-centric controlled experi-
ments [33]. We designed and implemented Biscuit: to support researchers
when performing controlled experiments. Biscuit records relevant pieces
of information regarding an experiment performed with human subjects.

Conducting experiments to evaluate software engineering tools and ap-
proaches has become a necessity. Such experiments come with many
threats to validity because of the humans involved, Biscuit helps to re-
move some of the threats that regard the operation of experiments. We
illustrate the main concepts of Biscuit, and the design of our experiment
in Appendix A.

The application of the object-focused interface to collaboration [34]. We
investigated the use of object-focused environments to support collabora-
tion by means of shared development sessions.

We designed a change-centric environment which tracks and visualizes
fine-grained changes to the system under construction, to provide real-
time awareness support amongst the team members.

We shown how an object-focused interface provides better support for
visualizing those changes and revealing conflicts, because of the stronger
presence of objects within the interface: the shape presents visual cues
for quickly understanding the nature of the change and who produced it.

The implementation of a tool to support collaboration [34] We presented
Ronda, an extension to Gaucho, which provides first-class support for col-
laborative development sessions. Ronda is a change-centric environment:
It promotes awareness of fine-grained changes to the system.

112 6.2 Future Work

6.2 Future Work

Our design of an object-focused environment could be enhanced in the follow-
ing directions:

6.2.1 Semantics

In Gaucho, the various types of objects are represented differently, the interface
uses a set of customized shapes for the models, classes, methods, packages, and
test cases. Nevertheless, there are still missing opportunities for conveying the
semantics, the state and behavior of the particular objects within each category.
For example, Code City is a tool that uses software visualization techniques, to
detect design flaws in the programs, by presenting distinct visual cues to denote
several Object-Oriented Metrics [84; 85].

We could could use a similar approach in Gaucho, given the inherent visual
nature of an object-focused environment, which enables to customize the ap-
pearance of each individual shape. Another possibility is to empower program-
mers to come up with their own visual language for expressing the meaning of
their programs, as in the Silhouette environment [86].

6.2.2 Relations

Programmers spend most of their time performing maintenance tasks, navigat-
ing the system, and building an understanding of the relevant objects and the
relationships between them. The Gaucho Shapes assume a passive role, instead
of actively helping programmers into forming working sets of relevant objects.
We envision a recommendation system built into the shapes, that automatically
suggests hints for further exploration of the system to the programmer, visu-
alizing dependencies between related objects to reduce the navigation [14].
Another direction of research involves the implementation of an organic layout
of the system, where the objects place themselves dynamically, according to
one or more relations with their collaborators, such as inheritance and package
containment [87].

6.2.3 Education

Using graphical environments for teaching object oriented programming to stu-
dents is beneficial [88]. Many different object oriented learning environments

113 6.3 Closing Words

exist, for example BlueJ for Java [89; 90], and LOOP for Smalltalk [91]. An ob-
ject focused environment such as Gaucho, could be enhanced to accommodate
pedagogical tasks. In Gaucho, the Shapes abstract away from source code, thus
easing the understanding of the components of the program, and the directness
of the interface enables beginners to quickly produce models, to learn the main
concepts of the object oriented paradigm.

6.2.4 Live Programming Tools

In the recent year, the concept of live programming has been included in many
teaching environments 1 2. A live programming interface augments the textual
representation of the statements, i.e. the lines of code, with several visual
cues to better understand their meaning -syntax- and results -semantics. In
this dissertation we investigated alternative interfaces for developing in class-
based OOP languages, where manipulating objects that form the programs is
paramount. The interface proposed in this thesis, could be extended to include
such features by augmenting the method shapes, which present the statements
of the methods.

6.3 Closing Words

Object oriented programming is based on the computational model of a world
of collaborating objects. An inherently dynamic world, where live objects are
ready to carry out each others requests in the form of messages.

The user interface of a traditional IDE forces a misconception of the concept
of a program in the object oriented programming paradigm, which is that the
program and the executable are separate entities, therefore the objects come to
life when the program is up and running, and cease to exist when the program
terminates or aborts its execution.

Acknowledging that the tools influence our own thinking habits, and we
humans –in particular programmers– tend to disregard the impact of this influ-
ence, we advocate for a different design of the interfaces of our development
environments, one that avoids the misconception and “brings objects closer to
the programmers”.

In our work we designed an integral development environment, were pro-
grammers converse with the objects that make up the system, by interacting

1http://worrydream.com/#!/LearnableProgramming
2http://toplap.org

http://worrydream.com/#!/LearnableProgramming
http://toplap.org

114 6.3 Closing Words

with reactive visual shapes, from the models to the running programs. Enabling
a dynamic “conversational interface”, because an object-focused environment
permeates through all the environment, differently than the traditional tool-
based IDEs, were the tools are separated from the software artifacts.

Given that the technology for the instrumenting of user interfaces is evolving
fast, its time for adapting our programming habits as well, and adopt a more
immersive environment for manipulating objects all the way.

Appendix A

Experiment Design with Biscuit

In this chapter, we describe the infrastructure of Biscuit. We start with the
classes that model an experiment, then continue with the classes that repre-
sent a running experiment, and finish by presenting the support in Biscuit for
automatically generating a user interface for the experiment run. We present
the classes and their relations with several UML class diagrams. We conclude
this chapter by illustrating the actual classes and methods that compose our
experiment on Gaucho, we presented in Chapter 4.

A.1 Modeling and Running an Experiment

description
tasks
title
authors
email
evaluations

Experiment goal
id
title
duration

Task

description
TaskGoal

choices
expectedChoic
e

TaskMultiple
ChoiceGoal

input

TaskSingle
InputGoal

hint

TaskWith
HintGoal

expectedResult
label

TaskInput

inputs
label
description

TaskGoal
Choice

name
Participant Anonymous

Participant

age
nationality
gender
description

Abstract
Participant

Participant
Description

affiliation
experience
jobPosition

Software
Developer
Participant

Figure A.1. The Classes that model an experiment in Biscuit

115

116 A.2 The User Interface of the Experiment Run

experiment
participant
performedTasks
timePeriod
evaluations

Performed
Experiment

task
timePeriod

Performed
Task

goalRun

Completed
Task

Unfinished
Task

reason

Aborted
Task

Uncompleted
Task

choices
question

Task
Evaluation

choice
task
evaluation

TaskEvaluation
Run

participant
performedTasks
startTime
taskRunner tasks
evaluations

Experiment
Run

startTime
task
events
goalRun

Task
Run

goal

TaskGoal
Run

Figure A.2. The Classes that model an experiment in Biscuit

A.2 The User Interface of the Experiment Run

Biscuit is implemented in Smalltalk, the same language we use for showcasing
the actual classes and methods that make up our experiment. If the reader is
not familiar with the language we advise him to read the summary presented
by Nierstrasz and Gîrba [56].

The main responsible for generating and running an experiment in Biscuit
is the following:

Object subclass: #ExperimentRunnerGUI
instanceVariableNames: ’experimentRunner currentMorph fullscreenMorph

performedExperiments dialog performedExperiment displaySize experiment’
classVariableNames: ’’
poolDictionaries: ’’
category: ’ExperimentRunnerGUI−Morphic’

117 A.3 Designing the Experiment on Gaucho

To start running an experiment by automatically generating a user interface
to the subjects, the following message must be evaluated:

ExperimentRunnerGUI>>startRunning: anExperiment
self adjustForDisplaySize.
Display fullScreen: true .
Author fullName: ’ExperimentRunner’.
experiment := anExperiment.
self openCreateParticipant.

The running experiment takes up the whole screen, and starts by presenting
the pre-questionaire to the subject. When the experiment is completed, Biscuit
terminates itself by sending the following message:

ExperimentRunnerGUI>>endExperimentRun
Display fullScreen: false.
performedExperiment := experimentRunner asPerformedExperiment.
performedExperiments add: performedExperiment.
self saveLastPerformedExperiment.
self openSendUsTheResults

Biscuit is built on top of Pharo, and uses its base graphic framework named
Morphic. We extended the framework with our own set of basic widgets, and
several more specialized ones representing the running experiment in the user
interface. Amongst the many Morphs that compose the interface of a running
experiment are the ExperimentWelcomeMorph, ExperimentMorph, Experimen-
tRunnerMorph, TaskMorph, TaskGoalMorph, TaskChoiceMorph, TaskRunMorph,
and ParticipantMorph.

A.3 Designing the Experiment on Gaucho

The entry point to our experiment is the class Experiment, which answers the
message #gaucho2010 with the actual object representing the experiment on
Gaucho.

Experiment>>gaucho2010
^ GauchoExperiment2010Builder current build.

In Biscuit the experiments are created using the Builder pattern. The follow-
ing class models an experiment builder.

118 A.3 Designing the Experiment on Gaucho

Object subclass: #ExperimentBuilder
instanceVariableNames: ’experiment’
classVariableNames: ’’
poolDictionaries: ’’
category: ’ExperimentRunner’

The class ExperimentBuilder has the responsibility of returning a complete
instance of an particular experiment, by answering the message #build.

ExperimentBuilder>>build
experiment := Experiment

entitled: self title
describedBy: self description
withTasks: self tasks
withEvaluations: self evaluations
authoredBy: self authors
sendingResultsTo: self email
from: self participantEmail.

^ experiment

The ExperimentBuilder class is abstract, and must be specialized for each
concrete experiment that a researcher wants to design. In our example, we il-
lustrate the GauchoExperiment2010Builder class, which has a boolean instance
variable to indicate which treatment –either Pharo or Gaucho– the experiment
should be customized to.

ExperimentBuilder subclass: #GauchoExperiment2010Builder
instanceVariableNames: ’usingPharo’
classVariableNames: ’’
poolDictionaries: ’’
category: ’ExperimentRunner’

Other example is the CodeCityExampleBuilder, which reproduces in Bis-
cuit the complete experiment performed by Wettel for assessing the validity of
visualizing software systems as cities [68].

ExperimentBuilder subclass: #CodeCityExampleBuilder
instanceVariableNames: ’’
classVariableNames: ’’
poolDictionaries: ’’
category: ’ExperimentRunner’

The GauchoExperiment2010Builder class overrides the method #tasks with
the actual tasks that form our experiment. The tasks are first class objects, and
are created by the builder. All the objects that compose a Task are modeled in
Biscuit. The following illustrates the creation of tasks of our experiment.

119 A.3 Designing the Experiment on Gaucho

GauchoExperiment2010Builder>>tasks
| tasks |
tasks := OrderedCollection new.
tasks

add: self taskT1 ;
add: self taskT2 ;
add: self taskT31 ;
add: self taskT32 ;
add: self taskT33 ;
add: self taskT41 ;
add: self taskT42 ;
add: self taskT51 ;
add: self taskT52 ;
add: self taskT61 ;
add: self taskT62 ;
add: self taskT63 ;
add: self taskT71 ;
add: self taskT72 ;
add: self taskT73 .

^ tasks.

GauchoExperiment2010Builder>>taskT42
^ Task

entitled: ’Package sizes’
withGoal: self taskGoalT42
taking: (Duration minutes: 4)
identifiedBy: (TaskID labeled: $T numbered: 4 withLevels: {2})
orderedAt: 7.

GauchoExperiment2010Builder>>taskGoalChoicesT42
| first second third |
first := TaskGoalChoice

labeled: ’1’
describedBy: ’Lumiere−Morphic, Lumiere−SceneGraph’
requiringInputsLabeled: #().

second := TaskGoalChoice
labeled: ’2’
describedBy: ’Lumiere−Morphic, Lumiere−Modeling’
requiringInputsLabeled: #().

third := TaskGoalChoice
labeled: ’3’
describedBy: ’Lumiere−ViewingVolumes, Lumiere−SceneGraph’
requiringInputsLabeled: #().

^ { first. second. third }.

120 A.3 Designing the Experiment on Gaucho

Bibliography

[1] D. E. Knuth, Art of Computer Programming, Volume 1: Fundamental Al-
gorithms (3rd Edition). Addison-Wesley Professional, 1997.

[2] D. E. Knuth, “Computer programming as an art,” Commun. ACM, vol. 17,
Dec. 1974.

[3] E. W. Dijkstra, “The humble programmer,” Commun. ACM, vol. 15,
pp. 859–866, 1972.

[4] D. H. Ingalls, “Design principles behind smalltalk,” BYTE Magazine, no. 8,
1981.

[5] G. Weinberg, The Psychology of Computer Programming. Dorset House,
silver anniversary ed., 1998.

[6] M. Hiltzik, Dealers of Lightning: Xerox Parc and the Dawn of the Com-
puter Age. HarperCollins Publishers, Apr. 1999.

[7] A. C. Kay, “The early history of smalltalk,” in The second ACM SIGPLAN
conference on History of programming languages, pp. 69–95, ACM,
1993.

[8] I. E. Sutherland, “Sketch pad a man-machine graphical communication
system,” in Proceedings of the SHARE design automation workshop, DAC
’64, pp. 6.329–6.346, ACM, 1964.

[9] T. A. Corbi, “Program understanding: challenge for the 1990’s,” IBM Syst.
J., vol. 28, pp. 294–306, June 1989.

[10] J. Sillito, G. C. Murphy, and K. D. Volder, “Questions programmers ask
during software evolution tasks,” in Proceedings of FSE-14 (14th Interna-
tional Symposium on Foundations of Software Engineering), pp. 23–34,
ACM Press, 2006.

121

122 Bibliography

[11] B.-W. Chang, D. Ungar, and R. B. Smith, Getting Close to Objects: Object-
Focused Programming Environments. Prentice-Hall, 1995.

[12] J. Johnson, T. L. Roberts, W. Verplank, D. C. Smith, C. H. Irby, M. Beard,
and K. Mackey, “The xerox star: A retrospective,” Computer, vol. 22,
pp. 11–26, 28–29, Sept. 1989.

[13] G. C. Murphy, M. Kersten, and L. Findlater, “How are java software devel-
opers using the eclipse ide?,” IEEE Softw., vol. 23, pp. 76–83, July 2006.

[14] A. J. Ko, H. Aung, and B. A. Myers, “Eliciting design requirements for
maintenance-oriented IDEs: a detailed study of corrective and perfective
maintenance tasks,” in Proceedings of ICSE 2005 (27th ACM/IEEE Interna-
tional Conference on Software engineering), pp. 126–135, ACM, 2005.

[15] M. Kersten and G. C. Murphy, “Mylar: a degree-of-interest model for ides,”
in Proceedings of the 4th international conference on Aspect-oriented soft-
ware development, AOSD ’05, pp. 159–168, ACM, 2005.

[16] J. Raskin, The Humane Interface - New Directions for Designing Interac-
tive Systems. Addison-Wesley, 2000.

[17] A. Bragdon, S. Reiss, R. Zeleznik, S. Karumuri, W. Cheung, J. Kaplan,
C. Coleman, F. Adeputra, and J. J. LaViola, Jr., “Code Bubbles: Rethinking
the user interface paradigm of integrated development environments,” in
Proceedings of ICSE 2010, pp. 455–464, ACM, 2010.

[18] J. K. Ousterhout, “Corner stitching: a data structuring technique for vlsi
layout tools,” Tech. Rep. UCB/CSD-83-114, EECS Department, University
of California, Berkeley, Dec 1982.

[19] D. Roethlisberger, O. Nierstrasz, and S. Ducasse, “Autumn leaves: Curing
the window plague in ides,” in Reverse Engineering, 332009. WCRE ’09.
16th Working Conference on, pp. 237 –246, 2009.

[20] R. DeLine, M. Czerwinski, B. Meyers, G. Venolia, S. Drucker, and
G. Robertson, “Code thumbnails: Using spatial memory to navigate
source code,” in Proceedings of the Visual Languages and Human-Centric
Computing, VLHCC ’06, pp. 11–18, IEEE Computer Society, 2006.

[21] F. Brooks, The Mythical Man-Month. Addison-Wesley, 2nd ed., 1995.

123 Bibliography

[22] T. Ball and S. Eick, “Software visualization in the large,” Computer, vol. 29,
no. 4, pp. 33–43, 1996.

[23] M. Lanza, Object-Oriented Reverse Engineering — Coarse-grained, Fine-
grained, and Evolutionary Software Visualization. PhD thesis, University
of Berne, May 2003.

[24] R. DeLine and K. Rowan, “Code canvas: zooming towards better develop-
ment environments,” in Proceedings of ICSE 2010 (32nd ACM/IEEE Inter-
national Conference on Software Engineering) - Volume 2, pp. 207–210,
ACM, 2010.

[25] A. Cockburn and M. Smith, “Hidden messages: Evaluating the effi-
ciency of code elision in program navigation,” Interacting with Comput-
ers: The Interdisciplinary Journal of Human-Computer Interaction, vol. 15,
pp. 387–407, 2003.

[26] W. Lidwell, K. Holden, and J. Butler, Universal Principles of Design. Rock-
port, 2003.

[27] S. Ducasse and M. Lanza, “The class blueprint: Visually supporting the
understanding of classes,” Transactions on Software Engineering (TSE),
vol. 31, pp. 75–90, Jan. 2005.

[28] A. Kuhn, P. Loretan, and O. Nierstrasz, “Consistent layout for thematic
software maps,” in Proceedings of the 2008 15th Working Conference on
Reverse Engineering, WCRE ’08, pp. 209–218, IEEE Computer Society,
2008.

[29] F. Olivero, M. Lanza, and M. Lungu, “Gaucho: From integrated devel-
opment environments to direct manipulation environments,” in Proceed-
ings of FlexiTools 2010 (1st International Workshop on Flexible Modeling
Tools), 2010.

[30] F. Olivero, “Object focused environments as vehicles for object-oriented
modeling,” in Proceedings of ECOOP ’11 (25th European Conference on
Object-Oriented Programming), Doctoral Symposium, p. to be published,
2011.

[31] F. Olivero, M. Lanza, M. D’Ambros, and R. Robbes, “Gaucho: Program-
ming←→modeling,” in Proceedings of ECOOP ’11 (25th European Con-
ference on Object-Oriented Programming), Demonstration, 2011.

124 Bibliography

[32] F. Olivero, M. Lanza, M. D’Ambros, and R. Robbes, “Enabling program
comprehension through a visual object-focused development environ-
ment,” in Proceedings of VL/HCC ’11 (IEEE Symposium on Visual Lan-
guages and Human-Centric Computing), pp. 127–134, 2011.

[33] F. Olivero, M. Lanza, M. D’Ambros, and R. Robbes, “Tracking human-
centric controlled experiments with biscuit,” in Proceedings of PLATEAU
2012 (4th International Workshop on Evaluation and Usability of Program-
ming Languages and Tools), p. to be published, 2012.

[34] F. Olivero, M. Lanza, and M. D’Ambros, “Ronda: A fine grained collab-
orative development environment,” in Proceedings of CDVE 2012 (9th
International Conference on Cooperative Design, Visualization and Engi-
neering), pp. 155–162, 2012.

[35] A. Goldberg and D. Robson, Smalltalk-80: The Language and its Imple-
mentation. Addison-Wesley Longman Publishing Co., Inc., May 1983.

[36] D. Roberts, J. Brant, and R. Johnson, “A refactoring tool for smalltalk,”
Theor. Pract. Object Syst., vol. 3, pp. 253–263, Oct. 1997.

[37] V. Sinha, D. Karger, and R. Miller, “Relo: Helping users manage context
during interactive exploratory visualization of large codebases,” in Pro-
ceedings of ETX 2005, pp. 21–25, ACM, 2005.

[38] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung, J. Kaplan,
C. Coleman, F. Adeputra, and J. J. LaViola, Jr., “Code bubbles: a working
set-based interface for code understanding and maintenance,” in Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’10, pp. 2503–2512, ACM, 2010.

[39] J. Bézivin, “On the unification power of models,” Software and Systems
Modeling, vol. 4, pp. 171–188, 2005.

[40] R. Lemma, “Software modeling in essence,” Master’s thesis, University of
Lugano, 2012.

[41] M. Fowler, UML Distilled: A Brief Guide to the Standard Object Modeling
Language. Addison-Wesley, 3. ed., 2003.

[42] B. Sharif and J. I. Maletic, “An empirical study on the comprehension of
stereotyped uml class diagram layouts,” in in Proceedings of 17th IEEE Intl.
Conf. on Program Comprehension (ICPC), pp. 268–272, 2009.

125 Bibliography

[43] A. Cooper and R. Reimann, About Face 2.0 - The Essentials of Interaction
Design. Wiley, 2003.

[44] E. Hutchins, J. Hollan, and D. Norman, “Direct manipulation interfaces,”
Human-Computer Interaction, vol. 1, pp. 311–338, 1985.

[45] D. H. H. Ingalls, “The smalltalk-76 programming system design and im-
plementation,” in Proceedings of the 5th ACM SIGACT-SIGPLAN sympo-
sium on Principles of programming languages, POPL ’78, pp. 9–16, ACM,
1978.

[46] R. B. Smith, J. Maloney, and D. Ungar., “The self-4.0 user interface,” in
OOPSLA ’95, pp. 47–60, October 1995.

[47] J. H. Maloney and R. B. Smith, “Directness and liveness in the morphic
user interface construction environment,” in Proceedings of UIST 1995
(8th ACM symposium on User interface and software technology), pp. 21–
28, ACM, 1995.

[48] J. Maloney, “An introduction to morphic: The squeak user interface frame-
work,” tech. rep., Walt Disney Imagineering, 2000.

[49] D. Ingalls, K. Palacz, S. Uhler, A. Taivalsaari, and T. Mikkonen, “The lively
kernel a self-supporting system on a web page,” in Self-Sustaining Systems,
vol. 5146 of Lecture Notes in Computer Science, pp. 31–50, Springer
Berlin Heidelberg, 2008.

[50] R. Pawson, “Naked objects,” PhD thesis, 2004.

[51] J.-M. Favre, “Foundations of model (driven) (reverse) engineering: Mod-
els – episode i: Stories of the fidus papyrus and of the solarus,” in
POST-PROCEEDINGS OF DAGSTHUL SEMINAR ON MODEL DRIVEN
REVERSE ENGINEERING, 2004.

[52] A. Kay, “Computer software,” Scientific American, 9 1984.

[53] G. Booch, “Why don’t developers draw diagrams?,” in SOFTVIS, pp. 3–4,
2010.

[54] B. B. Bederson, “The promise of zoomable user interfaces,” in Proceed-
ings of the 3rd International Symposium on Visual Information Communi-
cation, VINCE ’10, ACM, 2010.

126 Bibliography

[55] M. Shand, “Algorithms for corner stitched data-structures,” Algorithmica,
vol. 2, pp. 61–80, 1987.

[56] O. Nierstrasz and T. Gîrba, “Lessons in software evolution learned by lis-
tening to smalltalk,” in Proceedings of the 36th Conference on Current
Trends in Theory and Practice of Computer Science, SOFSEM ’10, pp. 77–
95, Springer-Verlag, 2010.

[57] P. Kruchten, “Architectural Blueprints—The "4+1” View Model of Soft-
ware Architecture,” IEEE Software, vol. 12, pp. 42–50, Nov. 1995.

[58] K. Beck and C. Andres, Extreme Programming Explained. Addison-Wesley,
2nd ed., 2005.

[59] K. Jansen and G. Zhang, “On rectangle packing: maximizing benefits,”
in Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete
algorithms, SODA ’04, pp. 204–213, Society for Industrial and Applied
Mathematics, 2004.

[60] G. P. Kurtenbach, A. J. Sellen, and W. A. S. Buxton, “An empirical evalua-
tion of some articulatory and cognitive aspects of marking menus,” Hum.-
Comput. Interact., vol. 8, pp. 1–23, Mar. 1993.

[61] M. M. Burnett, Visual Programming. John Wiley & Sons, 1999.

[62] M. Petre, “Why looking isn’t always seeing: Readership skills and graph-
ical programming,” Communications of the ACM, vol. 38, pp. 33–44,
1995.

[63] A. F. Blackwell, “Metacognitive theories of visual programming: What do
we think we are doing?,” in Proceedings of the 1996 IEEE Symposium on
Visual Languages, IEEE Computer Society, 1996.

[64] J. Edwards, “Coherent reaction,” in Proceedings of the 24th ACM SIG-
PLAN conference companion on Object oriented programming systems
languages and applications, OOPSLA ’09, pp. 925–932, ACM, 2009.

[65] B. Cornelissen, A. Zaidman, and A. van Deursen, “A controlled experi-
ment for program comprehension through trace visualization,” IEEE Trans-
actions on Software Engineering, vol. 99, 2010.

127 Bibliography

[66] J. Stasko, “An evaluation of space-filling information visualizations for
depicting hierarchical structures,” Int. J. Hum.-Comput. Stud., vol. 53,
pp. 663–694, Nov. 2000.

[67] A. Marcus, D. Comorski, and A. Sergeyev, “Supporting the evolution of a
software visualization tool through usability studies,” in in Proceedings In-
ternational Workshop on Program Comprehension, pp. 307–316, Prentice
Hall, 1997.

[68] R. Wettel, M. Lanza, and R. Robbes, “Software systems as cities: A con-
trolled experiment,” in Proceedings of ICSE 2011 (33rd International Con-
ference on Software Engineeering), pp. 551 – 560, ACM Press, 2011.

[69] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated soft-
ware development teams,” in Proceedings of ICSE 2007 (29th ACM/IEEE
International Conference on Software Engineering), pp. 344–353, IEEE
Computer Society, 2007.

[70] R. Robbes and M. Lanza, “Spyware: A change-aware development
toolset,” in Proceedings of ICSE 2008 (30th ACM/IEEE International Con-
ference in Software Engineering), pp. 847–850, ACM Press, 2008.

[71] M. Steinberg, “What is the impact of static type systems on maintenance
tasks? an empirical study of differences in debugging time using statically
and dynamically typed languages,” master Thesis, University of Duisburg-
Essen, 2011.

[72] P. M. Johnson, H. Kou, J. Agustin, C. Chan, C. A. Moore, J. Miglani,
S. Zhen, and W. E. J. Doane, “Beyond the personal software process: Met-
rics collection and analysis for the differently disciplined,” in Proceedings
of ICSE 2003, pp. 641–646, 2003.

[73] M. Kersten and G. Murphy, “Using task context to improve programmer
productivity,” in Proceedings of FSE 2006 (16th SIGSOFT Symposium on
the Foundations of Software Engineering), pp. 1–11, ACM Press, 2006.

[74] E. Chikofsky and J. Cross, “Reverse engineering and design recovery: A
taxonomy,” IEEE Software, vol. 7, pp. 13–17, Jan. 1990.

[75] F. Olivero, M. Lanza, and R. Robbes, “Lumiére: A novel framework for
rendering 3d graphics in smalltalk,” in Proceedings of IWST 2009 (1st In-
ternational Workshop on Smalltalk Technologies), pp. 20–28, ACM Press,
2009.

128 Bibliography

[76] T. D. Marco, Peopleware - Productive Projects and Teams. Dorset House,
1999.

[77] A. Sarma, Palantir: enhancing configuration management systems with
workspace awareness to detect and resolve emerging conflicts. PhD thesis,
CalState University, 2008.

[78] L. Hattori and M. Lanza, “Syde: A tool for collaborative software develop-
ment,” in Proceedings of ICSE 2010 (32nd ACM/IEEE International Con-
ference on Software Engineering), pp. 235–238, 2010.

[79] E. Goffman and A. J. Wootton, Exploring the interaction order. Polity Press,
1988.

[80] R. B. Smith, M. Wolczko, and D. Ungar, “From kansas to oz: collaborative
debugging when a shared world breaks,” Commun. ACM, vol. 40, 1997.

[81] H. Lieberman and C. Fry, “Bridging the gulf between code and behavior
in programming,” in CHI, pp. 480–486, ACM/Addison-Wesley, 1995.

[82] C. R. B. de Souza, D. Redmiles, and P. Dourish, “Breaking the code, mov-
ing between private and public work in collaborative software develop-
ment,” in Proceedings of GROUP 2003 (International ACM SIGGROUP
Conference on Supporting Group Work), pp. 105–114, ACM Press, 2003.

[83] D. A. Smith, A. Kay, A. Raab, and D. P. Reed, “Croquet - a collaboration
system architecture,” IEEE Computer Society, 2003.

[84] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice. Springer-
Verlag, 2006.

[85] R. Wettel and M. Lanza, “Visually localizing design problems with dishar-
mony maps,” in Proceedings of Softvis 2008 (4th ACM International Sym-
posium on Software Visualization), pp. 155–164, ACM Press, 2008.

[86] C. G. Myers and E. L. A. Baniassad, “Silhouette: visual language for mean-
ingful shape,” in Companion to the 24th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages, and Ap-
plications, OOPSLA 2009, October 25-29, 2009, Orlando, Florida, USA
(S. Arora and G. T. Leavens, eds.), pp. 917–924, ACM, 2009.

129 Bibliography

[87] A. Noack and C. Lewerentz, “A space of layout styles for hierarchical graph
models of software systems,” in Proceedings of the 2005 ACM symposium
on Software visualization, SoftVis ’05, pp. 155–164, ACM, 2005.

[88] S. Cooper, W. Dann, and R. Pausch, “Teaching objects-first in introductory
computer science,” in Proceedings of the 34th SIGCSE technical sympo-
sium on Computer science education, SIGCSE ’03, pp. 191–195, ACM,
2003.

[89] M. Kölling, B. Quig, A. Patterson, and J. Rosenberg, “The BlueJ system
and its pedagogy,” Journal of Computer Science Education, vol. 13, Dec.
2003.

[90] M. Kolling, “Teaching object orientation with the Blue environment,”
Journal of Object-Oriented Programming, vol. 12, pp. 14–23, December
1999.

[91] C. Griggio, G. Leiva, G. Polito, N. Passerini, and G. Decuzzi, “A program-
ming environment supporting a prototype-based introduction to oop,”
pp. 45–50, ACM Press, 2011.

	Contents
	List of Figures
	List of Tables
	Introduction
	Symbolic Programming
	On the writing of programs
	Programming is more than just writing
	Integrated Development Environments

	Object-Oriented Programming
	The Problem
	The Conceptual Problem: Tools vs Objects
	Technical Problems
	Summary

	Thesis
	Contributions
	Structure of the Document

	State of the Art
	Smalltalk
	Browsers and Inspectors

	Code-Centric Environments
	Relo
	Code Canvas
	Code Bubbles
	Summary

	Modeling Environments
	Direct-Manipulation of Objects
	The Tools and Desktop Metaphor
	From Structured Text to Graphical Objects
	Self
	Morphic
	Naked Objects

	Conclusions

	Object-Focused Environments
	Motivation
	From reality to the program
	Scenarios
	Summary

	Gaucho
	Gaucho in a Nutshell
	The Sessions and The System
	The Pampas
	The Shapes
	Implementation

	Modeling with Gaucho
	The MDE Shapes

	Programming in Gaucho
	Classes
	Methods
	Test Cases
	Packages
	Producing Fine-Grained Changes
	Navigating the System
	Task Context Support

	On the interface of Gaucho
	On the Textual Representation of Methods Statements

	Evaluation
	Instrumenting the Evaluation of Software Tools
	The Crux of Human-centric Experiments
	Biscuit: Tracking Human-Centric Controlled Experiments

	Context
	Experimental Design
	Research Questions
	Variables
	Baseline
	 Object system & Treatments
	Tasks

	Experimental Operation and Results
	Operation
	Pre-Experiment Questionnaire
	Experiment Questionnaire
	Debriefing Questionnaire
	Data collection
	Results

	Reflections
	On the correctness of the performed tasks
	On the completion time of the performed tasks
	Threats To Validity

	Conclusions
	Biscuit to the Rescue

	Object-Focused Collaboration
	On Object-Focused Collaborative Environments
	Shared Development Sessions
	Object-focused environments

	Ronda
	Awareness of Fine-Grained Changes
	Shared Development Sessions
	Change Authoring and Trust Levels
	Avoiding Conflicts

	Tea Time
	 Customizing TeaTime for Ronda

	Summary

	Conclusions
	Contributions
	Future Work
	Semantics
	Relations
	Education
	Live Programming Tools

	Closing Words

	Experiment Design with Biscuit
	Modeling and Running an Experiment
	The User Interface of the Experiment Run
	Designing the Experiment on Gaucho

	Bibliography

