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Abstract

Nowadays, software development is largely carried out using Integrated Development Environ-
ments, or IDEs. An IDE is a collection of tools and facilities to support the most diverse software
engineering activities, such as writing code, debugging, and program understanding. The fact
that they are integrated enables developers to find all the tools needed for the development in
the same place. Each activity is composed of many basic events, such as clicking on a menu item
in the IDE, opening a new user interface to browse the source code of a method, or adding a
new statement in the body of a method. While working, developers generate thousands of these
interactions, that we call fine-grained IDE interaction data. We believe this data is a valuable
source of information that can be leveraged to enable better analyses and to offer novel support
to developers. However, this data is largely neglected by modern IDEs.

In this dissertation we propose the concept of “Interaction-Aware Development Environ-
ments”: IDEs that collect, mine, and leverage the interactions of developers to support and
simplify their workflow. We formulate our thesis as follows: Interaction-Aware Development En-
vironments enable novel and in-depth analyses of the behavior of software developers and set the
ground to provide developers with effective and actionable support for their activities inside the
IDE. For example, by monitoring how developers navigate source code, the IDE could suggest
the program entities that are potentially relevant for a particular task.

Our research focuses on three main directions:

1. Modeling and Persisting Interaction Data. The first step to make IDEs aware of interaction
data is to overcome its ephemeral nature. To do so we have to model this new source of
data and to persist it, making it available for further use.

2. Interpreting Interaction Data. One of the biggest challenges of our research is making
sense of the millions of interactions generated by developers. We propose several models to
interpret this data, for example, by reconstructing high-level development activities from
interaction histories or measure the navigation efficiency of developers.

3. Supporting Developers with Interaction Data. Novel IDEs can use the potential of in-
teraction data to support software development. For example, they can identify the UI
components that are potentially unnecessary for the future and suggest developers to close
them, reducing the visual cluttering of the IDE.
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1
Introduction

Once upon a time people used punch cards to input data and sequences of instructions
in programmable machines. The first programmable machine, the “Jacquard loom”, was
invented in 1801 [McC99]. This revolutionary loom “reads” patterns from a punch card

and automatically weaves them into the silk. Physical motion was replaced with electrical signals
with the advent of the first electronic general-purpose computer: the ENIAC [HHG46]. Starting
from the 1950s several programming languages were created. Notable examples include assembly
that first appeared in 1949, FORTRAN (1957), LISP and ALGOL (1957), and COBOL (1959).
Early computer programs, similar to the instructions of the Jacquard loom, were stored on
punched cards. At this time programming was achieved by physical motion. When there was an
error, for example, programmers used physical patches to correct wrong holes in punched cards
by covering them. With the advent of modern programming languages, developers replaced
punch cards with source code files. Programming became more and more an activity related to
text files and compilers (or interpreters, depending on the language). After the Compiler Era,
the next big revolution happens with the development of Integrated Development Environments,
also known as IDEs.

An IDE is “a large collection of integrated tools, each accessed through a uniform user in-
terface” [Seb12]. The early IDEs are Dartmouth BASIC (1964) with its interactive command
line, Smalltalk -80 (1980) with the first graphical user interface (GUI), and Turbo Pascal (1983).
Since then, a plethora of different IDEs has been developed. Some IDEs are very specific for a
language, while others provide efficient multi-language support. The birth of the Java program-
ming language, for example, originated a fight between Eclipse1 and IntelliJ IDEA2 to determine
the dominant Java IDE [Gee05]. Eclipse, originally developed by IBM and handed over to the
Eclipse Foundation in 2001, turned out to be the most appreciated Java IDE [Gee05]. One of
the main reasons for success was its plug-in architecture that enables developers to develop tools
to extend the current IDE capabilities [Gee05]. However, developers have plenty of other IDEs
to choose from. According to the Top IDE Index [Car16], the most used IDEs are Visual Studio,
Eclipse, Android Studio, Vim, and NetBeans. The 5 most used languages in 2017 are Java, C,
C++, C#, and Python [TIO17].

Today, most developers use their favorite IDE to manipulate source code and to perform the
vast majority of their software development activities [GLD05, GGD07, Seb12]. Codeanywhere,
Inc.,3 for example, collected answers from two thousand developers and reported that the most

1See https://www.eclipse.org
2See https://www.jetbrains.com/idea
3See http://codeanywhere.com

3

https://www.eclipse.org
https://www.jetbrains.com/idea
http://codeanywhere.com
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popular tools used by developers are Notepad++, Sublime Text, Eclipse, NetBeans, IntelliJ IDEA,
and Vim [COD15]. Among them, there are IDEs and highly configurable stand-alone text editors.
Text editor aficionados, in fact, use tools such as Vim or Emacs, instead of IDEs. Our conjecture
is that these developers reached such a high level of efficiency in manipulating source code with
text editors that they do not need the tools and facilities offered by IDEs. Even though it would
be interesting to investigate why some developers prefer text editors to IDEs, we only focus on
developers using IDEs to support their development activities.

IDEs aim at easing the development and maintenance of software systems by providing dif-
ferent tools and facilities to support various kinds of activities [KMCA06, SMDV08]. Developers
use IDEs to read, understand, and write source code. For reading and writing, the most used tool
is the code editor (or code browser). To understand code—in addition to reading it—developers
also take advantage of tools such as the debugger, the package explorer, or the reference browser.
It has been showed that developers spend more time reading code than writing it [VMV95].
Reading code is the building block of program comprehension which has been estimated to oc-
cupy more than half of the working time of a developer, e.g., [ZSG79, FH83, Cor89, MML15b].
In addition to being time consuming, program comprehension is also one of the most challeng-
ing tasks performed by developers [LVD06]. To understand source code, developers need to
navigate the software space [KM05]. In this process, they construct a mental model of the sys-
tem [SLVA97, Wal03, RCM04, KMCA06], i.e., a link between the source code and their mental
representation [FGS11], which is essential to support source code comprehension.

Navigating, reading, understanding, and writing source code inside the IDE are high-level
activities which are composed of several low-level events, known as “IDE interaction data” [KM05,
MKF06]. Examples include opening a code editor on a method, inspecting an object while
debugging, moving the cursor of the mouse, or writing a new line of code in the body of a
method. IDE interactions capture the intentions of developers and manifest their mental models
[GSBS14]. For this reason, we believe that leveraging this information inside the IDE can provide
benefits to different phases of the development process. In addition, this data can be analyzed
retrospectively to better understand the behavior of developers inside the IDE. Existing research
already showed the importance of interaction data. Frey et al., for example, claimed that future
program investigation tools need to track the way developers navigate code to support software
engineering activities [FGS11]. According to Murphy et al., interaction data can be used to
evolve IDEs according to user needs [MKF06]. Following this intuition, IDEs need to be aware
of interaction data and intensively exploit it to support the development workflow.

However, creating an “Interaction-Aware IDE” is a very demanding goal. In the first place,
since IDEs neglect this information, the first step of our research consists in modeling and
persisting interaction data. For this purpose we developed DFlow: A framework to model,
profile, and persist IDE interactions [ML13a, Min14, MML15b]. Interaction data is a largely
unexplored source of information. In its raw form, it is a long stream of events and developers
daily generate thousands of such events. The second challenge of our research is therefore to
interpret these streams of events. To this aim we devised various models to reconstruct, for
example, high-level programming activities from interaction histories or measure how efficient
are developers in navigating the software space. The last, and probably the most challenging,
part of our research consists in supporting software development with interaction data. Examples
include visualizations to ease the navigation of previously interacted program entities and means
to adapt the user interface of the IDE.
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1.1 Our Thesis

We formulate our thesis as follows:

“Interaction-Aware Development Environments enable novel and in-depth analyses
of the behavior of software developers and set the ground to provide developers with
effective and actionable support for their activities inside the IDE.”

Roberto Minelli, 2017

To validate our thesis we implemented DFlow, a framework to model and record the inter-
action data events happening inside the IDE [ML13a, Min14, MML15b]. On top of DFlow we
devised various approaches to interpret and leverage this novel source of information.

1.2 Contributions

The contributions of our research can be grouped in two high-level categories: i) modeling &
analyzing interaction histories and ii) supporting tools.

1.2.1 Modeling & Analyzing Interaction Histories

• We devised models to reconstruct development activities from interaction data to under-
stand how developers spend their time inside the IDE [MMLK14, MML15b];

• We devised approaches to model source code navigation efficiency in the IDE and applied
them on a large dataset of development sessions [MML16a];

• We devised visual approaches to understand different aspects of developers interactions,
such as the workflow of developers and how they use the GUI of the IDE [ML13b, MMLB14,
MBML14];

• We devised an approach to visualize the evolution of the working set, i.e., the program
entities involved in a development session [MML16b];

• We studied how the entropy of the user interface of an IDE evolves and we proposed a
mechanism to tame it [MMRL16];

• We defined the concept of “Self-Adaptive IDEs” and envisioned how they can leverage inter-
actions with different information sources to support the workflow of developers [Min14];

• We devised an approach to visualize three data sources at once: interaction data, fine-
grained source code changes, and stack traces [SMML15];

• We envisioned how to use interaction data to introduce a gamification layer on top of the
IDE [MML15a].

1.2.2 Supporting Tools

• We developed DFlow, a non-intrusive profiler that records IDE interactions and makes
them available for further use [ML13a, Min14, MML15b];

• On top of DFlow, we developed The Plague Doctor [MML15c], a tool that leverages
interaction data to reduce the so called window plague [RND09].
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1.3 Outline

This section presents the outline of our dissertation, which is structured in 5 parts.

Part I: Prologue. The first part of our dissertation sets the ground for our research by introducing
interaction data and the related fields.

Chapter 2 (p. 9) introduces interaction data, the main source of information of our research,
and traces the history of programming, from punch cards to IDEs.

Chapter 3 (p. 17) details the Pharo IDE, the target IDE for our research. A reader familiar with
this IDE can safely avoid reading this chapter. The chapter details the object model of
Pharo, its UIs, and explains why we chose Pharo.

Chapter 4 (p. 27) presents an overview of the research fields interested by this dissertation. This
includes existing approaches to record and to analyze interaction data, fine-grained source
code changes, biometric data, and approaches to support developers inside the IDE. Finally,
the chapter addresses ethical issues arising from the collection of development data.

Part II: Modeling, Recording, and Interpreting Interaction Data (p. 45). This part describes how
to record and interpret interaction data, which is the key to make it available for further use.

Chapter 5 (p. 45) discusses the contributions of our research in recording interaction data in-
side the IDE. In particular the chapter presents DFlow, the IDE interaction profiler we
developed to support our research.

Chapter 6 (p. 53) describes how we can use interaction histories to estimate how developers
spend their time. In particular, the chapter focuses on the case of program comprehension,
one of the core activities of software development.

Chapter 7 (p. 69) refines the model introduced in Chapter 6 and explains how to use interaction
histories to reconstruct high-level development activities.

Chapter 8 (p. 83) focuses on the use of interaction data to model and measure how efficiently
developers navigate source code.

Part III: Visual Analytics of Development Sessions (p. 99). The third part of our dissertation
describes a number of visual approaches to gather further insights from interaction histories.

Chapter 9 (p. 99) illustrates a visual approach to better understand how developers use the user
interface of the Pharo IDE.

Chapter 10 (p. 111) presents a visual approach to understand the evolution of working sets during
development sessions.

Chapter 11 (p. 129) illustrates a catalog of visualizations to support visual storytelling of devel-
opment sessions.

Part IV: Supporting Developers with Interaction Data (p. 145). The fourth part of our dissertation
describes how to leverage interaction data to support software development inside the IDE.
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Chapter 12 (p. 145) presents the Plague Doctor: A tool built on top of DFlow that support
developers by mitigating the so-called window plague [RND09].

Chapter 13 (p. 151) explains how to use interaction data to characterize and quantify the “level
of chaos” in an IDE and proposes an approach to tame it.

Part V: Epilogue (p. 169). The fifth part concludes our dissertation by summarizing the work and
highlighting future directions for our research.

Chapter 14 (p. 169) outlines possible research directions for the future.

Chapter 15 (p. 177) summarizes and concludes our work.

Appendices (p. 201). At the end of this dissertation we include two side works we carried on
during our research.

Appendix A (p. 201) details a visual approach that depicts multiple concerns concurrently by
blending them together. Our approach considers interaction data, source code changes,
and stack traces.

Appendix B (p. 217) presents a vision that uses interaction data to introduce a gamification
layer on top of the IDE: the “Development Empire”.
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2
IDEs and Interaction Data

This chapter introduces the context of our research: Integrated Development Environ-
ments and interaction data, i.e., all the events that programmers carry out during devel-
opment. Nowadays most developers use an IDE as their main vehicle to develop software

systems. At the beginning of this chapter we take a step back and trace the history of program-
ming, explaining how we moved from punch cards to modern development environments.

During development, programmers interact with a number of facilities and tools: web browsers,
bug trackers, IDEs, mail clients, etc. In practice, all these activities generate thousands of events
that we can group under the name of interaction data. In this chapter we briefly describe why
and how we believe in the importance of this largely unexplored source of information to both
retrospectively analyze the behavior of developers and provide them with effective and actionable
support inside and outside the IDE. Our research focuses on the interactions happening inside
the IDE. For this reason, this chapter emphasizes and details this specific type of interactions.

Structure of the Chapter

Section 2.1 traces the history of programming, from programmable looms to IDEs. In Section 2.2
we introduce interaction data and refine the scope to the interactions happening inside the IDE,
the real core of our research. Finally, Section 2.3 summarizes and concludes the chapter.

9
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2.1 From Punch Cards to Modern Development Environments

Once upon a time people used punch cards (or perforated cards) to input data and se-
quences of instructions in programmable machines. In 1801, Joseph-Marie Jacquard
devised a programmable loom, known as “Jacquard loom”, to automatically weave silk

by reading patterns from a series of punch cards [McC99].

“We use the term ‘standing on the shoulders of
giants.’ They aren’t making components but they
use existing components. So, if anything, [IDEs]
made great programmers greater, but also made
good programmers better.”

— David “I” Intersimone
Delphi Evangelist

Inspired by the work of Joseph-Marie Jacquard, in 1837 Charles Babbage designed the “An-
alytical Engine” considered the first general-purpose programmable computing engine [Swa16].
According to its design, developers would use punch cards to input data in the machine, the
same mechanism of the Jacquard loom. Babbage never managed to complete the construction
of this machine at his time. A few years later, Ada Lovelace specified a method for calculat-
ing Bernoulli numbers with the Analytical Engine. This is often recognized as the world’s first
computer program [FF03].

The first form of programming, thus, was performed through physical motion: punched cards,
knobs, and switches. In 1942 physical motion was replaced by the electrical signals when the US
Government built the so-called ENIAC: the first electronic general-purpose computer [HHG46].
In the same period John von Neumann developed two concepts that shaped the development
of programming languages: shared-program technique and conditional control transfer [CCH17].
The former states that hardware should be simple and not tailored to every single program.
Instead, the complexity should be in the instructions to control the hardware. Conditional
branching, or conditional control transfer, states that instructions should not be necessarily
executed in sequential order, i.e., the execution of a program can be altered by logical branches
(e.g., If-then expressions). John von Neumann is also known for the stored-program digital
computer (or Von Neumann Architecture) [CCH17]. In this model, program instructions and
data are stored in the same memory location enabling instructions and data to be modified in
the same way. The first machine implementing this concept was the EDVAC (Electronic Discrete
Variable Automatic Computer), developed by John Mauchly and Presper Eckert, who previously
designed the ENIAC [vN93].

Programming with assembly languages was very tedious and error prone. For this reason, the
1950s see the birth of more practical alternatives to assemblers: the so-called high-level program-
ming languages. Short Code, developed by John Mauchly in 1949, was the first such language
[Seb12]. Unlike assembler, in which there is a strong correlation between the language and ma-
chine code instructions, in Short Code each statement represents a mathematical expression in
human-readable form. This language, however, has to be translated to machine code and, as a
result, was significantly slower than machine code. In the same period, Alick Glennie developed
Autocode, often considered as the first language to use a compiler1 to automatically convert the

1The answer to “Who wrote the first compiler? ” is very controversial: In 1952 Alick Glennie developed
Autocode with its compiler and Grace Hopper finished her compiler for the A-0 System.
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language into machine code [Ben12]. In 1957 it was the turn of FORTRAN, a high-level gen-
eral purpose imperative programming language designed and developed by John Backus at IBM
[Bac78]. Thanks to its performance for computationally intensive applications, FORTRAN is
still used today in cutting-edge research [Phi14]. Examples include atmospheric modeling and
weather prediction carried out by the National Center for Atmospheric Research (NCAR), clas-
sified nuclear weapons and laser fusion codes at Los Alamos & Lawrence Livermore National
Labs, and NASA models of global climate change [Phi14].

A few years later, a team led by Grace Hopper developed FLOW-MATIC, recognized as the
first programming language to use English-like statements to express operations [Sam69]. In
the same period John McCarthy (MIT) developed LISP and a consortium called CODASYL2

developed COBOL. As the expansion of the acronym suggests (i.e., “LISt Processor”), LISP was
invented to efficiently manipulate lists, COBOL, instead, was intended for business use. LISP
pioneered many of the concepts that are now considered the foundations of software engineer-
ing, such as tree data structures, automatic storage management, dynamic typing, higher-order
functions, and recursion [Dal17]. In the following years were defined most of the fundamental
programming paradigms that are still in use today. ML was the father of all the statically-
typed functional programming language, Prolog was the first logic programming language, and
Smalltalk sets the ground for object-oriented languages [Kay93]. Smalltalk ’s development started
in 1969 by Alan Kay, Dan Ingalls and Adele Goldberg at Xerox Palo Alto Research Center
(PARC). The first public version, Smalltalk -80, appeared only after ten years. A peculiarity of
Smalltalk is that it provides a live development environment featuring powerful debugging and
inspection tools.

“A programming environment is the collection of
tools used in the development of software. This
collection may consist of only a file system, a text
editor, a linker, and a compiler. Or it may include
a large collection of integrated tools, each accessed
through a uniform user interface.

In the latter case, the development and
maintenance of software is greatly enhanced.”

— Robert W. Sebesta [Seb12]

A “programming environment” is a set of tools to support software development. For example,
the UNIX environment released in the 1970s, includes tools to create, run, and maintain software.
Essential tools are a text editor and a compiler (or interpreter, depending on the language). The
“large collection of integrated tools, each accessed through a uniform user interface” is better
known as “Integrated Development Environment” or IDE. Together with Smalltalk , also other
languages started to provide similar environments. In a broader sense, the very first language
that implemented an IDE was Dartmouth BASIC back in 1964. It provided an interactive
command line interface (CLI) that integrates editing, compilation, debugging, execution, and file
management comparable to modern IDEs. The advent of the Graphical User Interface (GUI),
however, changed everything. The Alto personal computer, developed at Xerox PARC in 1973,
was the first computer to implement the desktop metaphor and to provide a GUI controlled with
a mouse. A few years after, Steve Jobs and Jef Raskin evolved these ideas to realize their Apple

2CODASYL stands for “Conference on Data Systems Languages”. It was an organization founded in 1957 by
the U.S. Department of Defense aimed at developing programming languages.
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Lisa, in 1983. In the same year, Borland Ltd. launched Turbo Pascal : An IDE for Pascal that
lets developers write, compile, and debug code. In 1985 Microsoft launched the first version of
its Windows operating system. However, we have to wait until the early 90s to have a stable
and usable version (Windows 3.0 and 3.1). In the same period, Microsoft released Visual Basic
(VB), sometimes wrongly credited as the first IDE.

2.1.1 From the 1980s to the Present Day

The 1980s and 1990s see the rise of IDEs. With its Graphical User Interface (GUI), powerful
debugger and inspection tools, Smalltalk-80 is often recognized as the first IDE. Other two
examples of early IDEs were Turbo Pascal developed in 1983 and Visual Basic in 1991.

“If Visual Basic hadn’t happened,
Delphi wouldn’t have happened,
and Visual Studio wouldn’t have happened,
and PC guys would be pounding out forms
textually.”

— Jeff Duntemann [Pat13]
Former Employee at Xerox Corporation

In 1995 Borland—that previously developed Turbo Pascal—released Delphi, an IDE aimed at
building applications rapidly by visually dragging and dropping components. In 1997 Microsoft
released its new IDE called Visual Studio. This IDE evolved until the present day and today is
one of the most used IDEs worldwide. Eclipse and JetBrains IntelliJ IDEA, both released in the
early 2000s, evolved until the present day, and are among today’s most used IDEs.

According to the Top IDE index [Car16], a ranking created by analyzing data coming from
Google Trends,3 today the five most popular IDEs worldwide are Microsoft Visual Studio,4

Eclipse, Android Studio,5 Vim,6 and NetBeans.7 Codeanywhere, Inc.,8 surveyed more than 10,000
developers to discover the most popular tools and IDEs in practice [COD15]. Notepad++,9

Sublime Text,10 Eclipse, NetBeans, and IntelliJ IDEA are the five most used tools employed
to develop source code. It is interesting to notice that in both studies emerge the fact that
some developers prefer to use a highly configurable text editor, such as Vim or Sublime Text,
instead of a full fledged IDE to develop source code. Even though this would be an interesting
phenomena to investigate, in our dissertation we only focus on developers using IDEs to support
their development activities.

2.1.2 Summing Up

In the last 200 years programmable looms and punch-cards evolved into full-fledged integrated
development environments. Nowadays developers have all the tools and facilities to develop

3See https://www.google.com/trends
4See https://www.visualstudio.com
5See https://developer.android.com/studio
6See http://www.vim.org
7See https://netbeans.org
8See http://codeanywhere.com
9See https://notepad-plus-plus.org

10See https://www.sublimetext.com

https://www.google.com/trends
https://www.visualstudio.com
https://developer.android.com/studio
http://www.vim.org
https://netbeans.org
http://codeanywhere.com
https://notepad-plus-plus.org
https://www.sublimetext.com
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software systems at their fingertips. While developing software system, developers perform dif-
ferent kinds of high-level activities in the IDE, such as navigating, reading, and understanding
code. These activities are composed of several low-level events, known as “IDE interaction data”
[KM05, MKF06], that are the essence of our research.

The following section provides more details on interaction data and explains why we believe
in the importance of this largely unexplored source of information.

2.2 What is Interaction Data? Why is it Important?

We call “interaction data” the information encapsulated in an interaction between two subjects.
In our context, one of the two subjects is represented by the developer sitting in front of her
workstation carrying on her development activities. The other subject, however, can be of
heterogeneous nature. In a workday, developers interact with various tools and facilities, such
as IDEs, web browsers, mail clients, bug trackers, etc. as depicted in Figure 2.1.

…

Mail Client

IDE

Bug Tracking
System

Web Browser

Interaction Interaction Data Events

Others

Figure 2.1. Interactions between the developer and different sources

Interacting with these sources generates thousands of events, that we call interaction data
events. If we consider the web browser, for example, users perform interactions such as open-
ing a new tab, typing a website in the address bar, adding a website to bookmarks, etc. In
essence, these events precisely capture the actual behavior of developers (or users). By leverag-
ing this source of information we can better understand the habits of developers and potentially
supporting them by finding, and isolating, the bottlenecks in their ordinary workflow.

Unfortunately, interaction data is hardly available and largely unexplored. For example, IDEs
do not record the interactions of developers while carrying out their development activities. To
overcome this limitation, researchers developed tools and plug-ins to partially keep track of
interaction data, such as Mylyn [KM05]. The interactions between users and tools are of
ephemeral nature, making it hard to directly exploit their potential. Thus, the first challenge for
our research is to persist these interactions, as discussed in Chapter 5.
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Considering the interactions with all the available sources of information makes interaction
data an extremely broad domain. To restrict the field, we concentrate our research only on the
interactions happening inside the IDE, or IDE interaction data,11 as detailed in the next section.

2.2.1 Interactions with the IDE

IDEs ease the development and maintenance of software systems by offering tools and facilities
to support different development activities [KMCA06, SMDV08]. Developers use the IDE to
navigate, read, understand, and ultimately write source code. To do so, they have to interact
with various user interfaces such as the code editor (or code browser), the debugger, and the
package browser. For example, when a developer modifies the source code of a method, she will
press a sequence of keystrokes to change the body of the method and she may also re-arrange
the user interfaces of the IDE to better support code editing activities. We distinguish different
types of events in a taxonomy, detailed in Chapter 5, that includes meta and low-level events.
Figure 2.2 depicts the flow of interactions between the developer and the IDE.

Developer IDE

Navigation
Edit

UI

Inspect User Input

Interaction Flow IDE Interactions IDE Feedback Events
Meta Events Low-Level Events

Figure 2.2. The flow of interactions between the developer and the IDE

A development session is made of a continuous feedback-loop between the developer and
the IDE: The developer “asks” something to the IDE and receives an “answer” from it. All
the requests that a developer forwards to the IDE are, in essence, interaction data. We call the
answers supplied by the IDE “feedback events”. For example consider a scenario where Alice wants
to edit the source code of a method. In the first place she has to reach the method of interest.
To do so, she can either jump directly to the method (i.e., by using the search capabilities of
the IDE) or perform a sequence of navigations, likely following structural relationships between
code entities (i.e., in Eclipse, for example, she can use the “Package Explorer”). In both cases,
these two high-level activities, are composed of several low-level events, that are known as “IDE
interaction data” [KM05, MKF06]. For example, to trigger the search interface, she can either
press a keyboard shortcut (e.g., +‘F’) or click on an entry in a contextual menu in the IDE
window (e.g., Edit . Find). In both cases, Alice will perform sequences of mouse movements,

11For the sake of readability, from now we may omit the term “IDE” and use the general expression “interaction
data” to indicate all the interactions happening inside the IDE.
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clicks, and keystrokes (or keyboard shortcuts). In turn, the IDE will provide her with answers,
for example, by popping out the search user interface when requested. Then she types in the
query, by means of a series of keystrokes, and the IDE answers by opening a user interface with
the results. To complete her tasks, Alice will continue to interact with the IDE generating, by
the end of the day, thousands of interaction events. These events are the core of our research.

2.3 Programmable looms, IDEs, and Interaction Data

This chapter summarized the history of programming, from the Jacquard loom to the first general-
purpose programmable computing engine, until the raise of modern IDEs.

Nowadays most developers use an IDE to develop software systems. While doing so they
generate millions of interaction events that precisely capture their behavior. In this chapter
we introduced this largely unexplored source of information and explained why we believe it is
important. The aim of our research is to study and leverage the flow of interactions between
developers and IDEs. However, as discussed in the chapter, developers have many different IDEs
to choose from. In our research, we decided to target the Pharo IDE, an open-source IDE that
supports a language inspired by Smalltalk . The next chapter details this IDE and explain how
it differs from mainstream IDEs.
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3
The Pharo IDE

This chapter details Pharo, the target environment for our research, which is both an
object-oriented programming language inspired by Smalltalk and an open-source IDE.
Throughout the chapter we discuss what is an “image”, explain the rules underlying the

Pharo object model, and introduce some terminology. Later we detail the various user interfaces
offered by this IDE to support development activities. Examples include the code browser, the
playground, and the debugger. We conclude the chapter by motivating why we carried out our
research in Pharo.

This chapter presents the Pharo IDE to ease the comprehension of the rest of this dissertation.
A reader familiar with this IDE can safely skip this chapter.

Structure of the Chapter

Section 3.1 introduces the Pharo IDE and its image-based architecture. Section 3.2 details its
object model and source code organization. In Section 3.3 we discuss the most used user interfaces
of the Pharo IDE while in Section 3.4 we explain why we decided to work in Pharo.

17
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3.1 What is Pharo?

Pharo is both a programming language and a development environment.1 The Pharo language is
inspired by Smalltalk—the father of all object-oriented programming languages [Kay93]. Its user
interface is a window-based environment focused on simplicity and immediate feedback. The
example depicted in Figure 3.1 shows the Pharo Main Window with 6 different user interfaces
(i.e., windows) opened. In a development session, on average, developers interact with 24 win-
dows [MMRL16]. At any given moment, only one of these windows is in focus and acts as target
for all user interactions (Window D in Figure 3.1).

A

B D

C

E

F

Figure 3.1. The Pharo Main Window and its UIs: (A) Playground, (B) Code Browser (or Code Editor), (C)
Inspector, (D) Spotter Search Interface, (E) Finder UI, and (F) Debugger

Pharo is Image-Based : It combines code and data in a single cross-platform file known as
“Image”. An Image is a snapshot of an entire running system at any given point in time. It
contains the state of all the objects of the system at that moment, including classes and methods,
since they are also objects. Every time a developer closes the Image, Pharo freezes the state of
all the objects. When the developer opens the Pharo image again, the system restores all the
objects with their state.

Besides the Image file, there is another file that composes the Pharo environment: the
Changes file. This file logs all the source code changes happening in the system.

1See http://pharo.org

http://pharo.org


3.2 The Object Model of Pharo 19

3.2 The Object Model of Pharo

Pharo is an object-oriented language and, as such, to combine state and behavior, developers
use high-level constructs called objects. The Pharo language is inspired by Smalltalk . Its object
model relies on 10 simple rules [DZHC17]. For example, Rules 1 and 2 say that “everything is
an object” and that “every object is an instance of a class”. This captures the “pure” essence
of object-oriented programming being lean, simple, elegant, and uniform [DZHC17]. Primitive
values such as integers, booleans, and characters are also instances of their corresponding classes,
i.e., objects. Classes are no exception: They are also objects, thus instances of other classes:
“Every class is an instance of a metaclass” (Rule 6). In Pharo, “the metaclass hierarchy parallels
the class hierarchy” (Rule 7).

Except for a few syntactic elements, “everything happens by sending messages” (Rule 4).
Messages are similar to methods in other object-oriented languages. A message is composed of
i) a selector and ii) some (optional) message arguments. A message is sent to a receiver. The
combination of a message and its receiver is called “message send ”. There are three types of
messages: unary, binary, and keyword. Unary messages do not take parameters, e.g., Object
new. Binary messages always involve two objects, e.g., 100 + 20.2 Keyword messages consist of
one or more keywords, each ending with a colon and taking an argument, e.g., aPoint x: 10 y:

32. Message sends can be chained: For example, to initialize a new Person called Roberto that
is 29 years old one can invoke the constructor (i.e., new) followed by the message name:age: as
follows: Person new name: ’Roberto’ age: 29.

3.2.1 Source Code Organization

Pharo organizes source code in packages, classes, metaclasses, methods, and protocols.

• A package is a group of related classes and methods.

• A class defines the structure (i.e., variables) and the behavior (i.e., methods) of its in-
stances. Classes are objects and thus instances of a class (Rules 1 and 6).

– In Pharo, each class is the unique instance of its metaclass. In the object model there
is a metaclass hierarchy parallel to the standard class hierarchy. The developer has full
access to the so called “class side”, thus she can and navigate and modify metaclasses
and their methods. A common use of a metaclass is to create custom constructors,
instead of using the ordinary new method to create a new instance of a class.

• A protocol (or category) is a group of methods sharing the same intent. It is mostly used for
documentation purposes. A common established protocol is called “accessing” and groups
all the accessors (i.e., getters and setters) of a class.

• Message, selector, or method are terms used interchangeably to indicate an operation that
can be performed by an object. A common notation to identify a message is P1.Foo»#bar
which denotes the message bar of class Foo, contained in package P1.

• Finally, Pharo provides local and shared variables. Local variables belong to an object while
shared variables can be shared globally, between a class, its subclasses, and its instances
(i.e., class variables), or between a group of classes (i.e., pool variables).

2The + is a message, not an operator.
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3.3 The Most Used UIs in the Pharo IDE

Pharo provides developers with different kinds of windows that support one or more development
activities. This section lists the principal UIs of Pharo and explains their main functionalities.

3.3.1 Code Browser

The Code Browser, depicted in Figure 3.2, lets the user perform the most essential development
activities: navigating, reading, and writing code [GGD07]. This user interface is composed of an
upper and a lower part, each aimed at different purposes.

A

B

Figure 3.2. The Code Browser of the Pharo IDE

The upper half of the code browser (see Fig. 3.2-A) features four columns that let the user
perform structural source code navigation. To navigate to the source code of a method a de-
veloper first selects the package that contains the class of interest in the first column. Then
she selects the class in the second column, and finally the method on the last column of the
browser. We detail the mechanics of navigation in Chapter 8, where we discuss how to measure
the navigation efficiency of developers. The example in Figure 3.2 depicts a code browser after
the navigation to the method #withAll: belonging to the Collection class, that is contained in
the Collections-Abstract package. The third column lists the so-called protocols (or method
categories). Its purpose is grouping related methods together. In the example, the method
#withAll: has been categorized as “instance creation” because this method is responsible to
instantiate a new Collection object. The selection of the protocol is optional.

Once the developer selects a method, the lower part of the code browser (see Fig. 3.2-B)
displays its source code. The developer can use this text area to read and modify source code.

3.3.2 Workspace and Playground

Figure 3.3b depicts a Workspace (see Fig. 3.3b-A) and a Playground (see Fig. 3.3b-B). This UIs
enable developers to run snippets of code. A common usage scenario for these UIs is to instantiate
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a new object on-the-fly. In the example of Figure 3.3b, the developer uses a Workspace (and a
Playground) to initialize a new OrderedCollection from the elements of an Array.3

A B
(a)

(b)

Figure 3.3. The Workspace (3.3a) and the Playground (3.3b) of the Pharo IDE

The Workspace has been almost completely replaced by the Playground in the Pharo IDE.
The Playground, in fact, has the same capabilities of the Workspace and provides also additional
features. For example, it remembers all the code snippets written by the developer and it enables
developers to navigate them. However, when we carried on our research and data collection,
developers had only the Workspace at their disposal. For this reason, the majority of our data
only considers interactions with the Workspace and not with the Playground.

3.3.3 Inspector

Another key UI in the Pharo IDE is the Inspector, depicted in Figure 3.4. As the name suggests,
this UI enables developers to inspect instances of objects. In the example below we are inspecting
the object resulting from evaluating the code in Figure 3.3b that initializes an OrderedCollection

with four Integers: 1, 2, 3, and 4.
In Pharo everything is live, thus there is no distinction between compile- and run-time. This

enables the developer to open an Inspector on every object and interacting with it (e.g., by
adding elements to an array on-the-fly). The top part of this UI (see Fig. 3.4-A) lets developers
browse the contents of the inspected object, similar to what other IDEs offer in their debug mode
(or perspective). In this example, the inspected OrderedCollection contains 4 items (internally
represented by an Array object and two variables: firstIndex and lastIndex).4

The lower part of the Inspector (see Fig. 3.4-B) can be used to query the inspected object.
To do so the developer can write any snippet of code that will be executed on the currently
inspected object, i.e., self is bound to it. Queries can serve two purposes: Developers can
either perform general inquiries to gather a better understanding of the object or execute code
that modifies the current object on the fly. In the example in Figure 3.4, the developer wants to
remove the element at index 5 from the currently inspected OrderedCollection.

3The Smalltalk expression #(1 2 3 4) initializes an Array containing four Integers 1, 2, 3, and 4.
4In Smalltalk the first element of a collection is at index 1 and not 0.
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Figure 3.4. The Inspector of the Pharo IDE

3.3.4 Debugger

Buffer overflows are among the most common errors encountered by programmers. In Figure 3.4
the developer attempted to remove the fifth element from a collection of size 4. This triggers a
SubscriptOutOfBounds error, displayed in a Debugger window, shown in Figure 3.5.

The upper part (see Fig. 3.5-A) lets the user browse the methods on the call stack, the middle
part (see Fig. 3.5-B) displays the code of the method selected in the call stack and enables the
user to modify it on-the-fly, and the lower part acts as a simplified inspector (see Fig. 3.5-C).

3.3.5 Search User Interfaces: Finder and Spotter

The Finder, depicted in Figure 3.6a, is one of the two UIs offered by developers to search for
code artifacts. This UI lets developers find code entities by performing a search among selectors
(i.e., methods), classes, pragmas (i.e., code annotations), or all the source code present in the
Pharo image. The user can also enter regular expressions to perform more advanced queries.
The Finder also enables developers to restrict the scope of the search to a subset of Packages.

Figure 3.6b shows Spotter, the other search UI of the Pharo IDE [SCG+15]. It is a unified
search interface that combines different search tools into one. Spotter was introduced in a recent
restyling of the Pharo IDE and aims at replacing the Finder UI. Spotter is a new tool and our
dataset does not contain data about its usage. Kubelka et al. conducted a study to understand
how developers use this tool [KBC+15].

3.3.6 Senders and Implementors Browsers

Figure 3.7 depicts the Senders (3.7a) and Implementors Browsers (3.7b) of the Pharo IDE for the
method withAll:. Developers use these two UIs to browse references of methods. The structure
of these two UIs is similar: The top part provides a list of all the senders (or implementors) of a
method, while the bottom part lets the user read and eventually modify the code of the method
selected from the list above. Pharo follows a message passing strategy. Thus, in Pharo jargon,
the senders of a method are all the methods in the system that invoke that method, or send that
message. Implementors, are all the methods in the system with the same name.
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Figure 3.5. The Debugger of the Pharo IDE

3.4 Why Pharo?

We decided to carry out research with the Pharo IDE for a number of reasons, the first being
the “human factor”. Pharo is an open-source project supported by an extremely enthusiastic
user community spread between academia and industry.5 This enabled us to stay in touch with
both the user base and the core development team, situated at INRIA Lille,6 a research center in
northern France. In the early stage of our research, in fact, we leveraged this factor by visiting the
Pharo team at INRIA to discuss our research plan and its implications on the community. This
proximity enabled us to directly get in touch with people and see the impact of our research in the
wild. Our datasets, in fact, “are not constructed and designed with research questions in mind,
as in conventional surveys, censuses, interviews, logs, observational studies, and experimental
studies” [ABSN13]. Ang et al. call this process “data in the wild ”.

The second reason to choose Pharo is the language itself, the most modern implementation of
Smalltalk . Despite the fact that Smalltalk is not among the most used languages, it anticipated
and inspired almost all the foundations of modern Software Engineering: from GUIs to IDEs,
from test-driven development (TDD) to design patterns, from reflection to the pure object-
oriented paradigm, etc. Programmers and language designers look at Smalltalk as a reference for
ideal software [Chl13]. Smalltalk was recently appointed as the second most loved programming
language7 according to a survey on Stack Overflow involving more than 64,000 developers [SO17].

Smalltalk failed to dominate the world [Eng16b], but there are many reasons in favor of using
5See http://pharo.org/Companies and http://pharo.org/success
6See https://www.inria.fr/en/centre/lille
7% of developers who use it and have expressed interest in continuing to do so.

http://pharo.org/Companies
http://pharo.org/success
https://www.inria.fr/en/centre/lille
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(a) (b)

Figure 3.6. Two search user interfaces of the Pharo IDE: Finder (3.6a) and Spotter (3.6b)

(a) (b)

Figure 3.7. The Senders (3.7a) and Implementors (3.7b) Browsers of the Pharo IDE

it (e.g., [Leo07], [Chl13], [Eng16a]). One for all is the fact that it is always live: There is no
need to start an application, it is always up and running, source code changes have immediate
effects, you can program inside the debugger, and so on. In addition, Smalltalk is simple: Its
syntax (except for primitives) fits on a postcard, as shown by the following famous code snippet
by Ralph Johnson, a member of the “Gang of Four” [GHJV95]:

exampleWithNumber: x

| y |

true & false not & (nil isNil) ifFalse: [self halt].

y := self size + super size.

#($a #a "a" 1 1.0)

do: [ :each |

Transcript show: (each class name);

show: ’ ’].
^x < y

Finally, Pharo is open-source and it is written in itself. This enables us to better understand
(or alter) its behavior by reading (or changing) its source code.
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3.4.1 Tab- vs. Window-based Environments

IDEs adopt one of two following UI metaphors: tab- or window-based. In a window-based IDE
like Pharo (Figure 3.8a) multiple, potentially overlapping, windows reside under a single parent
window. Other IDEs, like Eclipse (Figure 3.8b), instead employ a tab-based metaphor, where
multiple panes are contained in the same window and navigated using tabs.

“All interaction idioms have practical limits.”

— Alan Cooper et al. [CRC07]
About Face 3: The Essentials of Interaction Design.

In our research we target the Pharo IDE, thus our findings are directly applicable only to this
IDE. However, the two UI paradigms are essentially equivalent: A tab-based IDE is a window-
based IDE with tiled windows that can be navigated by means of graphical control elements
(i.e., tabs). Even though this is a rather simplistic point of view, we believe that most of our
approaches, and results, can be adapted to other IDEs and UI metaphors. To support this
argument, in addition to Smalltalk interaction histories, Chapters 6 and 13 consider developer
interactions with the Eclipse IDE, uncovering similar UI problems and findings in both IDEs.

B

Tabs

A

Windows

Panes

(a) B

Tabs
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(b)

Figure 3.8. The window-based UI of Pharo (3.8a) and the tab-based UI of Eclipse (3.8b)
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4
State of the Art

This chapter discusses the state of the art in different fields related to our research.
Since our work is not the first attempt to record and leverage interaction data inside
the IDE, we first discuss previous approaches in this field. The main use of interaction

data is to understand the behavior of developers inside the IDE. We describe works aimed at
analyzing both interaction data and other sources of information. Besides interaction data, in
fact, researchers also used other sources of information to analyze the behavior of developers
and to provide them with additional support inside the IDE. Biometric data is one of the most
recent trends. Researchers use data collected from biometric sensors (e.g., heart rate, respiratory
rate, electro-dermal activity) to better understand what developers perceive and how they behave
during their work. Researcher also used data coming from different sources to provide developers
with better support inside the IDE. In the literature the most used tools to support developers
are the so-called recommender (or recommendation) systems. Recommender systems support
users in their decision-making while interacting with large information spaces. Robillard et
al. tailored this concept to software engineering and introduced Recommendation Systems for
Software Engineering (RSSE), tools that provide information that is valuable for a software
engineering task in a given context [RWZ10]. In the last years, researchers started to build
recommender systems leveraging novel sources of information, such as interaction data [MFR14].
We conclude the chapter by discussing privacy and ethics issues in the context of the collection
of sensible data from developers.

Structure of the Chapter

Section 4.1 lists previous approaches aimed at recording interaction data inside the IDE. Sec-
tion 4.2 summarizes how researchers used different sources of information to better understand
and characterize software developers. Section 4.3 describes approaches that use interaction data
to support software development. Finally, Section 4.4 discusses privacy and ethics concerns
related to the collection of sensible data from human subjects and discusses our experience.

27
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4.1 Recording Software Development Data

The first development data were recorded in the late 90s through the Personal Software Process
(4.1.1). Later, Mylyn opened the Interaction Data Era (4.1.2).

4.1.1 The 1990s: Early Development Data

In the late 90s Humphrey introduced the Personal Software Process (PSP), a software process
aimed at planning, measuring, and managing the work of developers [Hum02]. As part of PSP,
to augment their productivity, developers have to manually keep track of the effort spent on
programming activities, i.e., time required to complete a task. Soon researchers realized that
collecting data by hand is both time consuming and error prone. For this reason they started to
develop approaches to automatically gather data during software development.

PROM (PRO Metrics), is a tool that automatically collects and analyzes software metrics
and PSP data [SJSV03]. It uses a plug-in architecture to collect data from development tools.
Hackystat is an open-source platform that uses a similar architecture to collect and analyze
software development process and product data [JKA+03, JKA+04]. At regular intervals it
captures activity data from the IDE and sends it to a web server. Ginger2 is a rather intrusive
environment for software engineering that collects and aggregates data from multiple sources
such as mouse clicks, keystrokes, eye-tracker, and skin resistance level1 [TMN+99]. GRUMPS,
instead, was developed to monitor how students use the computer for extended periods [TK03].
It records low-level actions such as mouse clicks, keystrokes, and window changes.

4.1.2 The 2000s: The Interaction Data Era

In the last two decades, researchers increasingly recognized the importance of interaction data
besides PSP data. Murphy et al. pointed how how it can be used to evolve the environments
according to user needs, to provide means to evaluate new tools and application programming
interfaces, and to prevent feature bloat (i.e., the tendency to add unnecessary features to a soft-
ware system) [MKF06]. Frey et al. believe that future program investigation tools need to track
the way developers navigate code to support software engineering activities [FGS11]. The most
prominent tool that monitors the programmer activities inside the IDE is the Mylyn project,2

formerly known as Mylar [KM05]. Mylyn is a plug-in for the Eclipse IDE that uses the inter-
actions to compute the degree-of-interest (DOI) of all program entities the developer interacts
with. The DOI model privileges the information that developers require for the current con-
text and helps to identify the program elements potentially relevant for the current development
tasks. The authors claim that by leveraging the DOI model developers could potentially navigate
the code base more efficiently. Mylyn is currently the task and application lifecycle manage-
ment (ALM) framework for Eclipse. Murphy et al. used the data collected by Mylar to study
how Java developers use the Eclipse IDE [MKF06]. Among their findings, they discovered that
developers use most of the Eclipse perspectives while developing, and that keyboard shortcuts
are a frequently used alternative to reach some IDE features. Researchers showed that Mylyn
data has limitations [VCN+11, YR11, SRG15]. The granularity of the data, for example, is very
coarse: Events are aggregated making it hard (or impossible) to know the exact sequence of inter-
action events as they happened in reality [YR11]. Driven by the limitations of existing recording

1This is also known as Electrodermal Activity (EDA) or Galvanic Skin Response (GSR).
2See http://www.eclipse.org/mylyn

http://www.eclipse.org/mylyn
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tools, Vakilian et al. developed CodingSpectator and CodingTracker [VCN+11]. These
tools are aimed at collecting rich data about high-level refactorings and low-level code edits.

Researchers also extended and customized Mylyn and its functionalities. Fritz et al., for
example, refined the DOI model of Mylyn introducing a Degree of Knowledge (DOK) model
[TFMH10]. This model measures who has more familiarity with a particular source code el-
ement by considering both authorship information and developer’s interactions with the code.
Kobayashi et al. developed Plog, an extension of Mylyn, that captures interaction histories
inside the Eclipse IDE [KKA12]. Plog records interactions at both file and method level. Plog
distinguishes actions that modify the source code and actions that only reference it. Differently
from Mylyn, the authors use interaction histories to generate a change guide graph to support
file- and-method level change prediction.

Coman and Sillitti tracked the sequence of methods developers interact with and used this
data to automatically split development sessions into task-related sub-sessions [CS08]. Yoon
and Myers proposed FLUORITE, an event logging plug-in for the Eclipse IDE that records
low-level events in the code editor [YM11]. The tool logs three types of events: commands
(e.g., copy-paste, typing text, moving the cursor), document changes (i.e., whenever the active
file is changed), and annotations. The purpose of the tool is to evaluate existing tools through
the analysis of the coding behavior of developers. Among their findings, the authors provided
empirical evidence that editing source code is different from editing textual documents. The
authors also studied the distribution of keystrokes reporting that backspace and arrows are the
most frequent keys pressed by developers.

Gu et al. developed IDE++, a plugin for the Eclipse IDE [GSBS14]. IDE++ is an ex-
tension of Mylyn that captures more fine-grained interactions with respect to Mylyn.3 As
a proof-of-concept, the authors built different applications on top of IDE++, e.g., test case
recommendations, summarization of a development session.

Most of the research on interaction data targets the Eclipse IDE and it is related to the
Mylyn project. Researchers, however, also developed approaches for other IDEs. Snipes et al.
developed Blaze, a tool that introduces game design elements to improve navigation practices
of developers inside the Visual Studio IDE [SNMH14]. During the experiment, the authors
used Blaze to record usage data from six developers. Damevski et al. also recorded and studied
interaction data inside the Visual Studio IDE [DCSP16, DSSP17]. The authors collected a
large-scale dataset of IDE interactions from more than 200 industrial developers working for
ABB.4 The authors made their dataset publicly available for researchers [ABB17]. Amann et al.
also developed a plugin to collect interaction data in the Visual Studio IDE [APNM16] and
used the recorded data to better understand how developers use this IDE.

4.2 Understanding the Behavior of Developers

Researchers studied different aspects of the behavior of software developers. For example, they
studied how developers navigate source code, how fragmented is their work, or how difficult is
to create and maintain the context in a development session. To do so, they leveraged different
information sources such as interaction data, fine-grained source code changes, versioning system
data and, in more recent times, also biometric data such as heart rate and electrodermal activity.

3Unfortunately, we did not succeed in installing the tool on three different versions of Eclipse.
4See http://abb.com

http://abb.com
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4.2.1 Understanding Source Code Navigation

An essential activity for developers is navigating the software at hand. According to Wexelblat
and Maes, the information path obtained from navigation in an information space reveals the
user’s mental model of the system [WM99]. In software engineering a mental model is “a link
between the representation in the mind of a developer and the source code” [FGS11]. Constructing
and maintaining mental models are essential activities to support the understanding of programs
[SLVA97, Wal03, RCM04, KMCA06].

Navigating source code is challenging because of the complex nature of code: The relevant
code fragments are often dispersed in several locations in the system. Kersten and Murphy argued
that “developers tend to spend more time navigating the code than working with it” [KM05], which
throws up the question whether IDEs appropriately support the navigation. Ko et al. conducted
an observational study to understand how developers gather information that are necessary to
make changes to a software system [KMCA06]. They found that, on average, developers edit
unfamiliar source code for a fifth of the time and reported that developers spend 35% of their
time navigating the source code in search for information. In addition, 27% of the navigation
operations are performed on already visited locations, indicating the necessity to periodically
revisit these locations to recall information no longer visible on screen. The authors reported that
often developers perform back-and-forth navigations between different files to compare different
pieces of code. This is an indication that the IDE might not sufficiently support the navigation,
i.e., only one tab is visible at a time.

Zou and Godfrey provide additional evidence on the importance of navigating software ar-
tifacts [ZG06]. The authors conducted an industrial case study to understand which program
artifacts are viewed during maintenance tasks. In more than 70% of the cases, the number of
viewed-only artifacts is larger than the number of modified artifacts [ZG06]. Also according the
analysis of development interaction logs conducted by Snipes et al. developers spend more than
half of their time browsing and reading source code inside the IDE [SNMH14].

Soh et al. conducted another study to discover how developers explore software systems dur-
ing maintenance tasks [SKG+13]. They characterized the type of exploration as either referenced
or unreferenced : Referenced exploration means that the developer often revisits one or more
entities with higher frequency with respect to the others, while unreferenced exploration implies
that developers visit all the program entities with almost the same frequency. Among their
findings, they discovered that during maintenance tasks developers mostly follow unreferenced
exploration, i.e., they visit all the entities with the same frequency.

Piorkowski et al. conducted different studies on source code navigation [PFS+11, PFK+13].
The literature offers a plethora of predictive models to support source code navigation. Pi-
orkowski et al. compared a substantial amount of models to assess their predictive accuracy
[PFS+11]. Consistent with prior work [PG06], they discovered that “recency” was the most accu-
rate model to predict click-based navigations. However, there is not a single model that is good
at predicting different kinds of navigation. For this reason they suggest that we should combin-
ing multiple single-factor models to predict programmer navigation more accurately. Singh et
al. partially replicated the study of Piorkowski et al. [PFS+11] and compared different models
of programmer navigation [SHFL16]. Click-based navigation is the model that better records
a developer’s navigation behaviors with respect to the view-based model. Consistent with the
results of Piorkowski et al., the predictive model based on “recency” outperforms all the mod-
els. In another study Piorkowski et al. observed what programmers need during debugging
tasks and how they forage to satisfy their needs [PFK+13]. Among their results they discovered
that participants spent 50% of their time foraging for information, highlighting the importance of
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source code navigation in software development. Interestingly, they also discovered that different
developers have different needs and foraging techniques to accomplish the same task.

Fritz et al. conducted an exploratory study to understand how developers create context
models needed to perform change tasks [FSK+14]. Among their results, consistent with the
results of Piorkowski et al. [PFK+13], they observed that navigation strategies differ substantially
between different developers. Moreover, they report that developers use a combination of search
and navigation to explore source code.

4.2.2 Understanding the Role of Program Comprehension

Inside the IDE, developers mainly read and write source code. It has been shown that developers
spend more time reading source code than writing it [VMV95]. Reading code is the foundation of
program understanding, which has been estimated to occupy half of the work time of developers
[FH83] and to be one of the most challenging tasks performed by developers [LVD06]. To read
code, developers have to explore and navigate the system at hand [KM05] to build their mental
models of the system [KMCA06, RCM04, SLVA97, Wal03], i.e.,“a link between the representation
in the mind of a developer and the source code” [FGS11].

In the last 40 years, program comprehension (or program understanding) has been the target
of many empirical and observational studies. The cost of software comprehension—that includes
the time required to understand it and time lost in misunderstanding—is rarely seen as a direct
cost, but is significant [CC90]. Zelkowitz et al., for example, estimated that program comprehen-
sion takes more than half the time spent on maintenance [ZSG79]. In turn, according to Erlikh,
maintenance accounts for 55% to 95% of the total costs of a software system [Erl00], thus the
weight of program comprehension globally ranges between 30% and 50%. This estimation is also
corroborated by Fjeldstad and Hamlen, who claim that comprehension occupies half the time of
developers [FH83].

LaToza et al. surveyed more than 150 developers from Microsoft Corporation to identify
the issues they encounter during source code comprehension [LVD06]. More than half of the
respondents agreed that the most serious problem is understanding the rationale behind a piece
of code. In particular, developers wonder why the code is implemented the way it is or what
it is trying to achieve. LaToza et al. reported that developers often are disoriented when they
have to deal with unfamiliar source code. According to Ko et al., developers have to deal with
unfamiliar code more than 20% of the time [KMCA06]. In addition, Ko et al. claim that code
understanding is also achieved by navigating source code fragments, and that navigation occupies
around 35% of the total development time [KMCA06].

Singer et al. studied how developers use their time, mainly by using questionnaires [SLVA97].
Although they did not use a precise measure for the time taken by developer activities, they
noticed that the time spent on writing source code is less than the time spent on other activities,
like debugging or searching.

4.2.3 Understanding Tasks and Work Fragmentation

During development, programmers construct and maintain the context of entities relevant for
the current task. Since this process is non-trivial, researchers proposed various approaches to
improve the construction and management of working sets. Work fragmentation, interruptions,
and context switches add another level of complexity to this process. For this reason, researchers
studied how interruptions impact the workflow of developers and devised approaches to recover
the context after interruptions.
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Sillito et al., for example, studied which questions programmers ask themselves when evolving
a code base [SMDV08]. They identified 44 kinds of questions grouped into 4 categories: Finding
initial focus points, building on those points, understanding a subgraph, and questions over
groups of subgraphs. To answer the majority of these questions, developers have to consider one
or more subgraphs of the system, significantly increasing the working set size.

In a single development session developers often work on multiple tasks. Researchers pro-
posed techniques such as concern inference [RM03] and concept identification [CG07] to assist
developers in recovering the contexts after a switch. However most approaches rely on developers
to manually indicate the beginning and the end of a task [CS08]. Coman and Sillitti used a single
interaction event, the change of the method in focus, to automatically identify different tasks in
a development session [CS08]. In their pilot study, they correctly identified more than 80% of
tasks.

Murphy et al. observed that most of the development task carried our by developers have a
structure that emerges from how a developer works with the code base [MKRČ05]. The authors
defined the task structure as “the parts of a software system and relationships between those parts
that were changed to complete the task” [MKRČ05]. Murphy et al. believe that the task structure
can be used to enhance the collaboration between developers inside the IDE [MKRČ05].

Ying and Robillard analyzed Mylyn interaction histories and Bugzilla5 bug reports to
characterize the editing behavior of developers [YR11]. They identified three main editing styles:
edit-first, edit-last, and edit-throughout. They observed that the editing behavior of developers
is correlated with the type of task performed, i.e., enhancement tasks, minor, and major bug
fixes. Among their results they discovered that in enhancement tasks, as opposed to bug fixing
tasks, developers tend not to follow an edit-first style. According to Ying and Robillard, IDEs
can track the editing behavior of developers to customize the UI of the IDE, i.e., in an edit-first
session the IDE can show more editing-related features than instead of navigation-related tools.

Researchers also studied the size of the context model (or working set) needed to perform
a development task. Fritz et al. conducted two observational studies of 12 developers, each
solving three tasks, to understand how big is the context model needed to complete a change
task [FSK+14]. Among their results, they discovered that on average the context model necessary
to solve a task contained 4 classes. However, different developers have different needs, thus the
size of context models can vary substantially between developers. Researchers also correlated
the size of the working sets with different efficiency measures such as code completion [HKR+14,
EHRS14, PHR14]. Hanenberg et al. investigated the influence of type systems on software
maintainability by measuring the number of files opened and file switches [HKR+14]. They
observed that developers using statically typed languages tend to open less files and switch less
often between them. In addition to static type systems, researchers also observed that textual
documentation helps developers to reduce the completion time of a task, i.e., smaller working
sets and less files switches [EHRS14, PHR14].

The creation and management of working sets is strictly influenced by the amount of frag-
mentation in the workflow of developers [MGH05, ZG06, KDV07, SRG15]. Zou and Godfrey
investigated which program artifacts are viewed during maintenance tasks [ZG06]. They col-
lected interaction histories from developers and observed that there are periods of time where
there is no activity. They discovered that, most of the times, this periods of inactivity are indeed
interruptions, i.e., phone calls.

Ko et al. analyzed the information needs of software developers [KDV07]. They discovered
that, on average, developers are interrupted every 5 minutes, consistent with the results of Mark

5See https://www.bugzilla.org

https://www.bugzilla.org
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et al. [MGH05]. Most of the interruptions were due to face-to-face communication, instant
messaging, or phone calls. Notifications, such as email and alerts, are another important reason
for fragmented work. Another factor contributing to context switches is the need for developers
to find knowledge outside the IDE (e.g., when learning to code with a new API).

Sanchez et al. studied Mylyn data to understand if work fragmentation has an impact on
the productivity of developers [SRG15]. They observed that the productivity decreases with the
increase of the number and the duration of interruptions in the developer workflow.

4.2.4 Leveraging Fine-Grained Source Code Changes and Biometric Data

Besides interaction data and observational studies, researchers also leveraged other sources of
information to capture the behavior of software developers. Fine-grained source code changes
and biometric data are the most leveraged sources of information.

Robbes and Lanza, for example, proposed SpyWare a change-aware development toolset
that records and leverages fine-grained source code changes [RL07, RL08]. Different from state-of-
the-art versioning systems, fine-grained source code changes capture all the effective modifications
that a developer performs on a software system [RL07]. The authors devised ad-hoc metrics such
as Total Number of Changes, Session Activity, and Session Focus, and used them to characterize
development sessions [RL07]. In particular, they used a visualization to identify four kinds of
development sessions: i) decoration, ii) masonry, iii) painting, and iv) architecture & restoration.
On top of SpyWare, Robbes and Lanza built approaches to improve code completion [RL10]
and to enhance existing change prediction approaches [RPL10].

Negara et al. mined fine-grained sequences of code changes to detect previously unknown code
change patterns [NCDJ14]. Among the different kinds of program transformations discovered by
the authors, participant reports the following three to be the most relevant: i) Changing a Field
Type, ii) Creating/Initializing a New Field, and iii) Adding Precondition Checks for a Parameter.

Fritz et al. used biometric data to assess the difficulty of code comprehension tasks [FBM+14].
They combined data coming from an eye-tracker, an electrodermal activity sensor, and an elec-
troencephalograph to predict task difficulty. The proposed approach can predict whether a
developer will perceive her tasks as difficult with 70% of precision. Fritz and Müller investigated
how to leverage biometric data to boost the productivity of developers [FM16]. In particular,
they used various biometric measurements to sense i) task difficulty, ii) progress and emotions,
and iii) interruptibility with good levels of precision and recall in both lab and field settings.

4.2.5 Visualizing Software Development

Software visualization is a specialization of information visualization that focuses on software
[Lan03]. Stasko et al. defined software visualization as “the use of the crafts of typography, graphic
design, animation, and cinematography with modern human-computer interaction and computer
graphics technology to facilitate both the human understanding and effective use of computer
software” [SDBE98]. Researchers categorized visualizations according to their intended scope
(descriptive, analytical, or exploratory [BAB+93]) and the type of data visualized (algorithm
animations, dynamic, and static visualizations [PBS93]).

Researchers used software visualization as means to support the understanding of different
aspects of software development. Gîrba et al. visualized code ownership with the Ownership Map
view [GKSD05]. The authors defined a measure of code ownership and then build a visualization
to understand when and how different developers interacted with a system. The Ownership Map
uncovered several behavioral patterns of developers during the evolution of software systems.
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For example, the authors identified monologue periods, in which a single developer makes most
of the changes, teamwork periods where two (or more) developers commit a quick sequence of
changes to multiple file, and silence periods with nearly no changes at all. Figure 4.1 shows an
example of the ownership map that exhibits different behavioral patterns such as a monologue
of the Green author and a familiarization period of the Blue author.

Takeover

by the Green author

Teamwork

between the Green and Red authors

Familiarization

of the Blue author

Edit

by the Green author

Bug-fix

by the Yellow author

Expansion

of the Blue author

Monologue

of the Green author

Figure 3. Example of the Ownership Map view. The view reveals different patterns: Monologue,
Familiarization, Edit, Takeover, Teamwork, Bug-fix.

3.2 Behavioral Patterns

The Overview Map reveals semantical information about
the work of the developer. Figure 3 shows a part of the Own-
ership Map of the Outsight case study (for more details see
Section 4.1). In this view we can identify several different
behavioral patterns of the developers:

• Monologue. Monologue denotes a period where all
changes and most files belong to the same author. It
shows on a Ownership Map as a unicolored rectangle
with change circles in the same color.

• Dialogue. As opposed to Monologue, Dialogue de-
notes a period with changes done by multiple authors
and mixed code ownership. On a Ownership Map it
is denoted by rectangles filled with circles and lines in
different colors.

• Teamwork. Teamwork is a special case of Dialogue,
where two or more developers commit a quick succes-
sion of changes to multiple files. On a Ownership Map
it shows as circles of alternating colors looking like a
bunch of bubbles. In our example, we see in the bottom
right part of the figure a collaboration between Red and
Green.

• Silence. Silence denotes an uneventful period with
nearly no changes at all. It is visible on a Ownership
Map as a rectangle with constant line colors and none
or just few change circles.

• Takeover. Takeover denotes a behavior where a de-
veloper takes over a large amount of code in a short
amount of time - i.e., the developer seizes ownership

of a subsystem in a few commits. It is visible on a
Ownership Map as a vertical stripe of single color cir-
cles together with an ensuing change of the lines to that
color. A Takeover is commonly followed by subse-
quent changes done by the same author. If a Takeover
marks a transition from activity to Silence we classify
it as an Epilogue.

• Familiarization. As opposed to Takeover, Familiariza-
tion characterizes an accommodation over a longer pe-
riod of time. The developer applies selective and small
changes to foreign code, resulting in a slow but steady
acquisition of the subsystem. In our example, Blue
started to work on code originally owned by Green,
until he finally took over ownership.

• Expansion. Not only changes to existing files are im-
portant, but also the expansion of the system by adding
new files. In our example, after Blue familiarized him-
self with the code, he began to extend the system with
new files.

• Cleaning. Cleaning is the opposite of expansion as it
denotes an author that removes a part of the system.
We do not see this behavior in the example.

• Bugfix. By bug fix we denote a small, localized change
that does not affect the ownership of the file. On a
Ownership Map it shows as a sole circle in a color dif-
fering from its surrounding.

• Edit. Not every change necessarily fulfills a functional
role. For example, cleaning the comments, changing
the names of identifiers to conform to a naming con-
vention, or reshaping the code are sanity actions that

4

Figure 4.1. An example of the Ownership Map exhibiting different behavioral patterns

Greevy et al. visualized code ownership in a structural fashion [GGD07]. They propose a
Package Owner view to depict ownership information for the entire system and a Team Collab-
oration view that shows how developers collaborate between themselves to develop features.

Telea and Auber developed Code Flows, a set of visualization techniques to analyze the
evolution of source-code structure [TA08]. Code Flows visualizes code correspondences using
textured splines connected to mirrored icicle plots. Figure 4.2 shows how Code Flows visualizes
code evolution: from source code, to trees of matching correspondences, to the visualization.
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correspondences between subtrees within the same equiva-
lence class, using a top-down, recursive approach that finds
the best matches between such subtrees. For details on the
exact implementation, we refer again to [ADDD07, CAT07],
which we fortunately can use as a black-box.

All in all, the matching process outputs a labeling αi(u) =
v for every node u ∈ Ti, which gives the node v ∈ Ti+1
that u was matched with, or NONE if no match was found.
Matching all tree pairs Ti,Ti+1 yields N such datasets αi.
The matched nodes and correspondences {αi : Ti → Ti+1,∀i}
form a directed acyclic flow graph G.

Figure 2: Visualizing code evolution: source code (top),
matched trees (middle), and visualization layout (bottom).

Figure 2 illustrates the matching. For two code fragments,
the matching finds two correspondences αi (shown as dot-
ted arrows) between their syntax trees Ti and Ti+1: the dec-
laration of class C and the for loop. Given the top-down
tree matching, correspondences are never nested. For exam-
ple, since the nodes C in Fig. 2 are matched, as indicated by
αi(C), we do not store correspondences between their chil-
dren F and G. Since we only match structure and types, we
can transparently handle variable renaming, e.g. the class
members x and y that become u and v, and code layout
changes. Code swaps are handled implicitly, e.g.moving the
class declaration before the for loop. Finally, the for loop
body changes, so we have a deleted code fragment (node E),
and a newly inserted one (node H), both unmatched.

5. Code flows visualization

5.1. Basic method

We now use the syntax trees Ti and flow graph G computed
in the matching step (Sec. 4) to visualize the code evolution.
We follow here [CAT07]: Every version i shows a layout of
its syntax tree Ti, using a vertical icicle plot [BN01], which
follows the order of code lines in the files (top to bottom).
Every correspondence i.e. αi(u) ̸= NONE of two matched
nodes u ∈ Ti and v ∈ Ti+1 is drawn by connecting the nodes
u,v by tubes. Thick tubes indicate large matched code frag-
ments, thin tubes indicate small fragments.

To the above model proposed by [CAT07], we add several
improvements. Figure 3 shows the original method and our
enhancements. For an explanation of the colors, see Sec. 5.2
later on.

First, we draw each syntax tree Ti as a horizontally mir-
rored icicle plot of Ti instead of a simple plot (see Fig. 2 bot-
tom). This lets us better see where each code fragment in ver-
sion iwent to the right in version i+1, and from where to the
left (in version i− 1) it came from, e.g. the code fragments
marked A′ and B′ in Fig. 3 bottom-right. Second, we draw
the correspondences as spline tubes, instead of straight cylin-
ders. This produces easier to follow images, suggesting the
actual ’code flow’ metaphor. Third, we use a fading opacity
texture having a Gaussian profile, opaque in the middle and
transparent at the edges. This creates translucent flow tubes
instead of opaque ones, compare e.g. Fig. 4 b with Fig. 4 a.
Translucent tubes are better, as they leave a small white gap
between neighbor tubes which enhances separation. Addi-
tionally, we draw a fully-opaque spline curve with a fixed
width of 3 pixels at the tubes’ centers. This has two benefits.
First, correspondences between tiny code fragments, which
can be crucial to see in e.g. debugging scenarios, are always
visible. The enhancement is visible in both the overview
(top) and detail (bottom) images in Fig. 3: The right images
show some small-scale correspondences which are invisible
in the left images (e.g. curve C). Second, the spline curve
connects the centers of the matched nodes, thereby making
more clear which code is exactly matched (e.g. Fig. 3 low-
right).

In Figure 3 lower-right, we already see some facts. Yhere
are not many insertions or deletions, i.e. icicle plot nodes to
the right and left unconnected by tubes. Two relatively large
code fragments stay unchanged (A′, B′), while several small
fragments drift, i.e. change place in the code.

5.2. Structure tracking

However, we still have a problem: How to follow the en-
tire evolution of a given code fragment? Imagine a function
which gets split in several code fragments as the software
evolves. We want to visually follow these splits downstream
the code flow, i.e. in future versions. A similar case holds
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Figure 4.2. Code Flow: From the source code to the visualization

This technique enables to keep track of unchanged code and to detect and highlighting im-
portant events such as code drift, splits, merges, insertions, and deletions.

Ogawa and Ma propose two views of source code and developers: code_swarm, a tool that
produces animated software histories from data coming from version control systems [OM09] and
a historical visualization to show the interactions between developers in the evolution of software
projects [OM10]. Figure 4.3 shows an example of the code_swarm visualization.

Besides trying to understand the behavior of software systems and software developers,
researchers also used software visualization to support software development inside the IDE.
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Figure 4.3. The code_swarm visualization: an experiment in organic software visualization

Desmond et al., for example, developed Fluid source code views, a novel source code document
presentation [DSE06]. Fluid allows programmers to work on a primary source code file and
later to fluidly shift focus to related material based on the development context. According to
the authors, this approach provides better support to comprehension tasks and reduces the time
spent in navigating between software artifacts.

Yoon et al. developed Azurite, an Eclipse plug-in that visualizes fine-grained code change
histories [YMK13]. The tool provides a “timeline” that lets developers navigate the history of
changes and quickly reach the needed information. Azurite also offers a “code history diff ” to
inspect the changes of particular code fragments.

4.3 Supporting Software Development Activities

Besides using software development data to better understand the behavior of software develop-
ers, researchers also used this data to provide better support to software development activities.

4.3.1 Supporting the (Re)construction of Working Sets

Developers are frequently interrupted during their daily work. Recovering from interruptions
can be difficult [LVD06]. Face-to-face chats, emails, or instant messages are only a few causes for
a very fragmented workflow. Researchers showed that, when interrupted at the wrong moment,
developers require more time to more time to complete the tasks, they commit twice the number
of errors across tasks, and experience more annoyance and anxiety [BK06]. For this reasons,
researchers developed approaches to support the recovery of the development context after an
interruption or to identify a suitable moment to interrupt a developer during her workflow.

Mylyn itself is a tool that improves the management of the working set by assigning a
degree-of-interest (DOI) to program entities [KM05]. The tool features an episodic-memory
inspired interface that filters our the entities with a low DOI that allows developers to only
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focus on the entities they require for the current task. This reduces the information overload and
potentially decreasing the effort needed by the developer to recover her previous context. Kersten
and Murphy empirically demonstrated that the task context (and DOI model) of Mylyn can
improve the productivity of developers [KM06].

Röthlisberger et al. proposed SmartGroups, a tool that keeps track of navigation and
edit activities and combines this data with evolutionary and runtime information to provide
developers with a more structured view of the entities potentially needed to complete the current
task [RND11]. The tool also provides a suggestion list of the artifacts that might be relevant
for the task at hand. The authors showed that with SmartGroups developers spend less time
navigating the software space.

In their work, Züger and Fritz used psycho-physiological sensors information to predict the
impact of interruptions during the workflow of developers [ZF15]. With their approach they
were able to automatically identify with high accuracy, both in the lab and in the field, the most
suitable moments to interrupt a knowledge worker, mitigating the side effects of interruptions.
On top of this study, Züger et al. developed FlowLight, an approach that uses a physical
traffic-light like LED to signal when it is more suitable to interrupt developers [ZCM+17].

Parnin and Görg used developers interactions with the IDE to define the development context
as the set of methods potentially relevant for a task at hand [PG06]. According to the authors,
recommendation systems can use this context to support the recovery of the mental state of a
developer and to facilitate the exploration of software systems [PG06].

Separation of concerns in software systems is not always optimal. To support developers in
modifying concerns that are not well modularized, Robillard and Murphy introduced concern
graphs [RM07]. Concern graphs are artifacts that explicitly document the implementation of a
concern, i.e., capture the parts of the system that are relevant for a given concern. Their tool,
FEAT supports developers in constructing concern graphs semiautomatically as part of their
normal program investigation activities. At a later time, developers can use the tool to focus on
the parts of the system that are relevant for the current concern (or task).

4.3.2 Supporting Source Code Exploration and Navigation

Source code navigation is one of the main activities performed by developers in the IDE [KMCA06,
MML15b]. Researchers developed various approaches to support this activity inside the IDE.

Storey et al., for example, developed SHriMP: A flexible and customizable environment
to visually explore software systems [SM95, SBM01]. SHriMP offers a catalog of graph-based
architectural visualizations that combine data from different sources to provide a more structural
exploration of code. The authors claim that by embedding code and documentation in the same
view, SHriMP provides developers with quick and easy support to construct their mental models.

Janzen and De Volder proposed JQuery, a tool that combines the advantages of structural
source code browsers and query based tools to reduce the confusion while navigating code [JD03].
Their approach provides an explicit representation of the exploration process by means of explo-
ration paths. The users of JQuery reported that exploration paths are helpful to keep the focus
during an exploration task.

Singer et al. devised a methodology backed up with a tool called Navtracks that monitors
the navigation histories of developers to support browsing through software [SES05]. When
a developer selects an entity, NavTracks shows a list of artifacts potentially related to it.
Navtracks models relationships between files and entities and leverage these relationships to
recommend potentially related files as a developer navigates the system. The tool also provides
a graph based visualization to depict how program entities are related between themselves.
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Team Tracks is also a tool that monitors the interactions of the developer with the IDE
to support navigation through software [DCR05]. The main difference with NavTracks, as the
name suggests, is the fact that Team Tracks also leverages the navigation histories of the other
members of the development team. The tool provides a view to browse the items related to a
particular entity and a Favorite Classes view showing a class hierarchy view with only the most
frequently visited elemets (i.e., classes, methods, and members). As a result of the evaluation of
Team Tracks, the authors claim that sharing navigation data within a development team can
ease program comprehension tasks.

Chronos is an Eclipse plug-in that lets developers visually query and explore historical
source code change events [SJ13]. The authors claim that by answering questions about source
code history, Chronos augments developers’ productivity.

Augustine et al. investigated how to comprehend and maintain source code more efficiently
by fostering structural code navigation [AFQ+15]. The authors developed Prodet, a tool that
provides a navigable call-graph visualization of the relevant parts of the call graph based on
the current context. In their study they show that the interactive visualization increases the
effectiveness of developers in navigating source code elements.

4.3.3 Towards the Next Generation of IDEs

Software development data, such as IDE interactions, can be used to understand and support
software developers. The next step—as envisioned by Murphy et al.—is to evolve development
environments according to user needs [MKF06]. Developers spend much of their time reading
and analyzing code and mainstream IDEs are essentially glorified text editors mostly treating
source code as text [Nie16]. Building on this statement, researchers proposed approaches to
improve the user interfaces (UIs) of current IDEs or invented new IDE paradigms.

Researcher showed that the UIs of current IDEs have significant limitations. They proposed
approaches and tools to mitigate such problems. Rötlisberger et al., for example, observed
that developers are typically confronted with a large number of windows (or tabs) inside the
IDE, most of which are irrelevant for the current development session [RND09]. They called
this phenomenon window plague and they propose AutumnLeaves to mitigate this problem
[RND09]. AutumnLeaves is a tool that keeps track of the importance of UI elements visible on
screen (i.e., windows or tabs) and gently removes the ones that are less likely to be used again
in the future. The tool automatically suggests which windows or tabs can be closed to reduce
the amount of noise present in the IDE.

Lee et al. claimed that current support provided by IDEs to refactor source code is inefficient
[LCJ13]. To provide better refactoring support, they introduced “Drag-and-Drop Refactoring”
in the Eclipse IDE [LCJ13]. In their evaluation they discovered that their approach is intuitive,
more efficient, and less error-prone compared to the refactoring capabilities of current IDEs.

Researchers claimed that IDEs should present the information following the mental models
of programmers [BRZ+10, DR10, OLDR11]. In one of our studies, we showed that developers
spend a non-trivial amount of time spent in fiddling with the UI of the IDE that calls for
research on novel UIs and interaction paradigms [MML15b]. In the last decade, researchers
have also investigated better program representations and UI paradigms than the file-and-tab-
based metaphor of most common IDEs. We can trace back this inspiration to the Lisp and
Smalltalk IDEs of the 80’s, whose most recent representative is Pharo. Two notable examples
of alternative IDEs are Code Bubbles [BZR+10, BRZ+10] and Code Canvas [DR10]. The
aim of these tools is to reduce the amount of time spent in navigating the system at hand by
maximizing the number of entities visible at the same time.
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Figure 4.4. A screenshot of Code Bubbles

Figure 4.4 displays a screenshot of Code Bubbles. The tool is a font-end to the Eclipse
IDE and enables developers to create and work with working sets instead of standard Java files.
A working-set is a group of methods, documentation, notes, and other pieces of information
that the developer considers relevant for the task at hand. Instead of working with Java files,
in Code Bubbles developers interact with compact function-based views of the code called
bubbles. In the evaluation of the tool the authors showed that at a similar screen resolution
Code Bubbles was able to show more methods at the same time than the classic Eclipse view
[BZR+10]. Furthermore, a controlled experiment showed that Code Bubbles users were both
more successful and faster in completing maintenance tasks than Eclipse users [BRZ+10]. Parts
of this performance increase is attributable to a reduction of repeated navigations, such as the
ones observed by Ko et al. [KMCA06], according to the videos recorded during the controlled
experiment (75.9% of all Eclipse navigation operations, compared to 37.6% for Code Bubbles),
as more entities were visible on screen. The benefits of Code Bubbles were studied in the
context of a controlled experiment, with strong internal, but limited external validity [SSA15].

DeLine and Rowan proposed Code Canvas, an interface similar to Code Bubbles, that
provides an infinite zoomable surface for software development [DR10]. Code Canvas is a
front-end to the Visual Studio IDE that tries to overcome the “bento box design” of today’s IDEs
that partitions information into separate areas. Code Canvas replaces the bento box structure
with a canvas: A single zoomable surface that accommodates all the elements useful for the task
at hand, e.g., source code, UI designs, images, debugger stack traces, and search results.

A collaboration from the teams behind Code Canvas and Code Bubbles originated a
tool for Visual Studio called Debugger Canvas [DBR+12]. This tool is an industrial imple-
mentation of the Code Bubbles paradigm specialized for debugging activities. Debugging is a
cognitively intense and navigation-heavy activity that can intensively take advantage from the
the bubbles design. From their experience, the authors report that the canvas paradigm is best
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embodied as a mode within the existing user experience rather than a replacement.
Another emerging idea for development environment is represented by web integrated devel-

opment environments6 such as Cloud97 and Codio.8 Web IDEs provide the same functionalities
of desktop IDEs (e.g., syntax highlighting, error checking, plugin and file management) but can
be accessed from anywhere. The majority of Web IDEs encourage collaboration between devel-
opers by allowing multiple developers to work in real-time on the same project. Currently they
employ the same UI of desktop IDEs, but their underlying architecture is very promising.

These are only the first steps towards the next generation of IDEs. We envision IDEs that
exploit the full potential of interaction data while the developer is programming to support
her workflow [Min14]. For example, we foresee user interfaces that adapt their shape to the
workflow of the developer by, for example, rearranging frequently used UI components such as
code browsers or menus, or recommender systems that efficiently support repetitive tasks in the
workflow of developers by harnessing past interaction histories.

4.4 Privacy and Ethics

Similar to many of the related works, our research relies on the collection of potentially sensible
data from human subjects. In this section we overview privacy and ethics concerns raised by the
collection of data from human beings and discuss our experience.

Privacy and ethics concerns in the context of human subject experiments have been widely
discussed in the literature, e.g., [LB12]. In his Ph.D. dissertation, Langheinrich discusses the
various facets of both privacy ad ethics [Lan05]. Among the different subareas of Ethics, Applied
Ethics address practical and concrete questions. This is relevant in the context of technological
advancements, such as computer science: Technology creates new possibilities for human action
but raises novel ethical issues [Joh99]. To support their members, professional associations such
as the Association for Computing Machinery (ACM),9 publish the so-called “Code of Ethics”.
These guidelines combine deontological (“be honest and trustworthy”) and teleological (“contribute
to society and human well-being”) principles [Lan05]. Recently, ACM updated “The Code” to
reflect the significant changes to the profession of computing happened in the last 25 years, the
date of its last update [Wol16].

“New technologies arise so quickly that they may be
in widespread use before practitioners can see the
social and ethical consequences.”

— Brinkman et al. [BGMW16]

4.4.1 The Case of Interaction Data

In the context of development data collected inside IDEs, Snipes et al. recently published a
practical guide to analyze IDE usage data that also discusses about specific privacy and ethics
concerns in the field [SMHF+15]. In this context, privacy concerns arise because the data collected
may expose developers or parts of proprietary source code [SMHF+15]. To mitigate this problem,

6Also known as Web IDE, WIDE, or Cloud IDE.
7See https://c9.io
8See https://codio.com
9See https://www.acm.org

https://c9.io
https://codio.com
https://www.acm.org
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often researchers encrypt sensitive information such as the name of the developer, the name of
the file she is working on, and the identifiers contained in the source code.

Obfuscating data is a double-edged sword: On the one side it reduces privacy concerns but on
the other side it limits what you can learn from the data. A good tradeoff is using a one-way hash
function, that allows to differentiate between distinct developers and identifiers, in an anonymous
fashion [SMHF+15], i.e., without knowing the name of developers and identifier names. Related
to that, anonymity of the data prevents researchers from drawing conclusions about the data.
Researchers might formulate hypotheses that require to be verified with the developers, the only
subject that knows exactly the rationale behind her interactions. Anonymous data makes this
step impossible. To mitigate this risk, at the beginning of the data collection process, researchers
should provide subjects with a statement explaining who will access to the data and what they
will do with it [SMHF+15]. To reduce privacy concerns, often researchers avoid to consider data
at individual level but rather draw conclusions on the entire dataset.

“No one spends money collecting these data to
actually learn anything about you. They want to
learn about people like you.”

— Lawrence Lessig [Les99]

In this context, another tradeoff lies between research risk and benefits. From an ethical
perspective, if the research has more potential benefits than risks it is permissible [Tay94, Chr08].

4.4.2 Our Experience with DFlow and the Pharo IDE

At the beginning we were the only users of DFlow, thus we were not concerned about privacy
and ethics. In a subsequent moment, when we extended the data collection to our research group.
Members of our group were developing open-source software to support their research. Thus,
also in this case, we were not much concerned with privacy issues.

The last step was extending our data collection to the Pharo community through open calls
in the Pharo-dev mailing list, a mailing lists that includes the most active members of the
Pharo open-source community. We invited them to voluntarily participate in our study (i.e.,
informed consent) and set up a small website10 to explain them how to participate in the data
collection process. The website features a disclaimer saying that “all the collected data will be
treated confidentially and used only for scientific research purposes.” Even after having agreed to
participate in our study, developers can disable DFlow at any moment with a dedicated switch.

In the context of an open-source community—like Pharo—one might expect that developers
are in favor of having tools that collect usage data with the aim of improving their development
environment. However, we learned that there are two kinds of developers: hippies and paranoids.
The former do not care about which kinds of data researchers collect and why and join the
experiment because to help researchers. The latter, instead, want to know exactly the types of
data collected and the exact purpose of the data collection. The full list of data collected is
easily accessible (see Table 5.1) and our disclaimer guarantees that we will use the data only “for
scientific research purposes”. However, the experimental nature of our research prevents us from
knowing the exact purpose of the data collection process. For this reason, we had to establish a
relation of trust between us and the subjects using DFlow.

10See http://dflow.inf.usi.ch/experiment.html

http://dflow.inf.usi.ch/experiment.html
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Privacy Settings: More Control on Usage Data Collection in the Pharo IDE

With the increase of approaches aimed at the collection of development data inside the IDE, in
2016 Pharo introduced the global “privacy settings”. Essentially, it is a switch that developers
can toggle to help the Pharo community to improve its products and services by automatically
sending diagnostic and usage data. Until now only a few tools rely on this, but we believe that
in the near future all tools aimed at data collection will conform to it. This represents a form of
informed consent, where individuals explicitly choose if and when to participate. For example,
developers can disable the data collection when working on proprietary software and enable it
when contributing to the open-source code base of the Pharo IDE itself. The unified switch is a
good starting point, but we believe that more can be done in this direction. A possibility is that
developers can choose the desired level of privacy in the settings, as follows:

• High-Privacy: All data are sent in anonymized form;

• Mid-Privacy: Only identifier names are sent in clear, i.e., no source code;

• Low-Privacy: All data are sent in clear, including source code.

This enables developers to have full control on which data is being collected by researchers.
For each task, developers can choose whether they do not intend to share source code (i.e., they
are working on a commercial product) or if they do not need obfuscation and privacy at all.

4.5 Reflections

We strongly believe that interaction data is a fundamental source of information to analyze and
support the behavior of software developers inside the IDE. In our long term vision IDEs should
be “Interaction-Aware”, meaning that they should collect, mine, and leverage the interactions of
developers with different information sources to support their workflow.

“If the last two decades could be labeled the era of
big data collection, the next two decades will surely
be labeled as the era of smarter big data analysis.”

— W. Snipes et al. [SMHF+15]

The first step, monitoring interaction data inside the IDE, is shared with most of the related
works discussed in Section 4.1. However, there are two main differences between previous work
and our research: i) The quality of the recorded data and ii) the purpose for recording this data.

Existing tools to record interaction data have several limitations [VCN+11, YR11, SRG15].
Mylyn data, for example, has a very coarse granularity making it hard (or impossible) to
reconstruct the sequence of interaction events as they happened [YR11]. Our profiler, DFlow,
records very fine-grained IDE interaction data, as they happen. Moreover, the data recorded by
DFlow comply to a model for interaction data that we designed to provide structure to this
novel source of information.

Most of the existing tools dealing with interaction data have a single, very specific, purpose.
Navtracks, for example, keeps track of particular IDE interactions (i.e., navigations) to sup-
port source code navigation [SES05]. Our DFlow, instead, is a general-purpose and extensible
observer of developer interactions with the IDE. To demonstrate the versatility of our profiler,
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we built a recorder that persists the recorded interaction data and sends it to our web server
and the Plague Doctor [MML15c], a tool similar to Autumn Leaves [RND09] that aims at
reducing the visual entropy inside the IDE. Moreover, developers can add their own extensions
on top of DFlow to study or support different aspects of the development process.

The next Part of this dissertation discusses our contribution in recording, modeling, and inter-
preting IDE interaction data. Chapter 5 sets the ground by presenting DFlow, our non-intrusive
interaction profiler for the Pharo IDE.



Part II
Modeling, Recording, and

Interpreting Interaction Data





5
DFlow: Our Interaction Profiler for the Pharo IDE

This chapter discusses our experience and the contributions of our research in recording
interaction data inside the IDE. All the interactions between developers and IDEs have an
ephemeral nature, thus the first step to enable our research is to persist them. To do so,

however, this raw data needs to be modeled. In this chapter we discuss a model for interaction
data that we devised to provide structure to this heterogeneous source of information. We
consider different kinds of events: From events that involve fine-grained interactions with the UI
of the IDE to interactions that capture the mechanics of source code navigation. To record them
we built DFlow, an interaction data profiler for the Pharo IDE. In this chapter we describe
DFlow and how it evolved during our research.

Structure of the Chapter

Section 5.1 introduces DFlow, the interaction profiler for the Pharo IDE we developed to
support our research. Section 5.2 describes the model that DFlow uses to structure interaction
data. Finally, Section 5.3 describes the evolution of DFlow.
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5.1 DFlow in a Nutshell

IDEs largely neglect interaction data, thus preventing further use of their potential [KM05]. To
this aim we developed DFlow [MML15b], a shorthand for “Development Flow”. DFlow is a
non-intrusive interaction profiler for the Pharo IDE.

Figure 5.1 schematizes the functioning of the most recent version of DFlow.

Interesting Irrelevant Propagated

DFlowPharo 
IDE

Recorder

Visualizer

…

Figure 5.1. DFlow: Observing, filtering, and propagating IDE interactions

DFlow is an extension to the Pharo IDE to capture all the interactions of developers,
structure them, and make them available for further use, e.g., visualizing them. DFlow acts as
a filter by ignoring interactions that we consider not relevant, e.g., events triggered internally by
the IDE to respond to the actual user interaction.

DFlow automatically collects data and periodically sends it to our server to support further
analyses. As proof of concept, we developed approaches to support the development process on
top of DFlow, discussed later in this dissertation (see Chapters 12 and 13).

The profiler collects more than 30 types of events (listed in Table 5.1), organized as per our
model, described Section 5.2. For each event, it also records a timestamp down to millisecond
precision. In the last years we distributed DFlow to different developers and collected millions
of events.

5.2 A Model for Interaction Data

To provide a unified structure to interaction events, we devised a model, depicted in Figure 5.2.
We identified three main categories of events according to their level of abstraction: meta events,
user input events, and user interface events. Table 5.1 lists all the interaction events recorded
by DFlow grouped by category.

5.2.1 Meta Events

Meta events (see Table 5.1.a) are all the interactions of the developer with program entities,
e.g., classes and methods. According to the impact of the interaction on the source code, we
distinguish three categories of events: navigation, inspect, and edit.

Navigation events correspond to the events the developer performs while exploring source code
entities, e.g., selecting a method or a class in the code browser, opening a new code browser
on a program entity, or performing a search with the dedicated UI.
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Figure 5.2. The model for interaction data of DFlow

Inspection events represent actions that a developer performs to understand the execution of a
program. e.g., debugging a piece of code or observing the value of a local variable or field
(i.e., watch expressions in Eclipse).

Edit events represent actual source code modifications, e.g., adding a new class or editing the
body of a method. In most of the cases, meta events have one or more program entities
associated to them, i.e., when the developer modifies the source code of the method Foo,
the corresponding DFlow meta event encodes this information for further analyses.

5.2.2 User Input Events

These are the events the developer performs using an input device, e.g., mouse and keyboard.
We distinguish two categories of events: mouse and keystroke events. All user input events
recorded by DFlow (see Table 5.1.b) encode the position of the cursor when the event happens
and other attributes. Keystroke events, for example, encode the current key combination that
might be a single keystroke (e.g., the key ‘a’) or a keyboard shortcut (e.g., +‘V’).

Mouse events have different types with their own ad-hoc attributes. For example, the event
that represents a mouse move encodes the initial and final position of the cursor before and
after the movement. Other types of mouse events are mouse button events (i.e., clicks) and
interactions with the mouse wheel.

5.2.3 User Interface Events

These events represent the interactions of the developer with the user interface of the IDE (see
Table 5.1.c). In the case of Pharo, the target IDE for our study, the user interface mostly consists
of windows. Thus, user interface events are window events, such as opening, closing, or resizing
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a window. Each event has its own attributes: A resize, for example, encodes the size of the
window before and after the event itself.

Table 5.1. List of interaction data events recorded by DFlow

a) Meta Events
N E1 Opening a Finder UI
N E2,3,4 Selecting a package, method, or class in the code browser
N E5,6 Opening a system browser on a method or a class
N E7 Selecting a method in the Finder UI
N E8 Starting a search in the Finder UI
I E1 Inspecting an object
I E2 Browsing a compiled method
I E3,4 Do-it/Print-it on a piece of code (e.g., workspace)
I E5,6,7 Stepping into/Stepping Over/Proceeding in a debugger
I E8 Run to selection in a debugger
I E9,10 Entering/exiting from an active debugger
I E11,12 Browsing full stack/stack trace in a debugger
I E13,14,15 Browsing hierarchy, implementors, or senders of a class
I E16 Browsing the version control system
I E17 Browse versions of a method
EE1,2 Creating/removing a class
EE3,4 Adding/removing instance variables from a class
EE5,6 Adding/removing a method from a class
EE7 Automatically creating accessors for a class

b) User Input Events
M E1,2 Mouse button up/down
M E3,4 Scroll wheel up/down
M E5 Mouse move
M E6,7 Mouse-out/in
KE1 Keystroke pressed

c) User Interface Events
W E1,2 Opening/closing a window
W E3 Activating a window, i.e., window in focus
W E4,5,6,7 Resizing/moving/minimize/maximize a window

5.3 Evolution of DFlow

DFlow is a software system and, as such, it evolved during our research. This section details
its evolution, from a manual tool to a fully automated approach.

5.3.1 A Manual Interface to Record Development Sessions

The first version of DFlow, offered a minimalistic UI, depicted in Figure 5.3, that developers
use to start, pause, resume, and stop the recording of a session.

With this version of DFlow, when a developer is ready to record a new development session,
she presses the “Start” button (Fig. 5.3-A) and the profiler starts to collect her IDE interactions.
If the development is interrupted, say by a Skype call, the developer could press the “Pause”
button (Fig. 5.3-B) to explicitly indicate this interruption. Then, at a later time, she could
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A B C

Figure 5.3. The UI of the manual version of DFlow

resume the session with the appropriate button (i.e., “Resume”, see Fig. 5.3-C). At any moment,
the developer can signal the end of the session with the “Stop” button (Fig. 5.3-A, B, and C).

At the end of the session, DFlow asks for additional information, such as a brief description
that explains the main purpose of the session and its type. The session type can be one of
the following: general purpose, refactoring, enhancement, or bug-fixing. After recording this
information, DFlow stores the development session to our server.

Pharo IDE

Server

DFlow

Recorder

UI

Lost interactions Manual intervention Recorded interactions

Figure 5.4. The functioning of the manual version of DFlow

Limitations. Figure 5.4 summarizes the functioning of this version of DFlow that strongly
relies on manual intervention of the developer. Often times developers forget to start a session
or ignore the fact that they could pause a session to explicitly indicate the interruptions in their
workflow. As a result, we miss some of their interaction data or we receive sessions without
explicitly marked interruptions. Since we learned that “we can not ask developers to push a
button” [Joh01], we decided to make DFlow less disruptive, as discussed in the next section.

5.3.2 Automatic Recording of Development Sessions

To reduce manual user intervention, we implemented a fully automatic recording mechanism of
interaction data, summarized in Figure 5.5.

Pharo IDE

Server

DFlow
Recorder

Recorded interactions

Figure 5.5. The functioning of the automatic version of DFlow

The new version of DFlow no longer features the UI described in the previous section. Once
a developer installs DFlow, the profiler starts immediately to collect data and periodically sends
it to our server. This is the version we used for the majority of our data collection process.
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5.3.3 DF2low: Automatically Observing, Filtering, and Propagating Interactions

The most recent re-engineering of DFlow, summarized in Figure 5.6, decouples the profiling
logic from the rest of the functionalities offered by DFlow, e.g., recorder and visualizer.

Pharo IDE

Server
Recorder

Other Tools
DF2low

Interactions Pub/Sub System

Figure 5.6. The functioning of DF2low, the most recent version of DFlow

In this version, also known as DF2low,1 the profiler observes IDE interactions, filters out
those that are not interesting, and makes the interesting development interactions available for
further use. We illustrated this process also in Figure 5.1, at the beginning of this section.

Under the hood, DF2low uses Announcements [PHA11]: A framework for event notification
originally designed by Vassili Bykov, former lead software engineer at Cincom.2 The framework
implements the Observer pattern [GHJV95] in a fully object-oriented fashion. Each event is
an object that can be customized with data specific to the application. In this architecture,
DF2low acts as a publisher (i.e., or Announcer) of events. All other tools that are interested
in using interaction data (e.g., the recorder) can subscribe and register an action in response the
events of the announcer. Our interaction data recorder, for example, forwards the events to the
server to store the data for retrospective analyses.

In addition to Announcements, DF2low also replaces the original mechanism to profile
meta events (see Section 5.2). In the previous versions of DFlow, we use a source code instru-
mentation framework called Spy [BBRR12] inspired by the original version of method wrapper
[BFJR98]. This mechanism enables to inject code snippets code before or after the execution of
a method. When we first started to implement DFlow, this seemed the best solution to achieve
our goal. Unfortunately, for our purposes, Spy has a number of limitations. In the first place,
since it is not part of the standard Pharo distribution, it takes time to be installed. In addition,
in Spy all the instrumented methods3 are replaced by template methods that invoke the injected
code. For example, a method with two arguments is replaced by the following template:

with2arg: v1 arg: v2

^#metaObject run: #selector with: {v1.v2} in: self

Even though the source code of the vast majority of methods instrumented by DFlow is
not interesting for most developers, the obfuscation performed by Spy may potentially hinder
program comprehension tasks. These reasons encouraged us to find a better alternative to Spy.

DF2low, in fact, replaces Spy with Reflectivity. Reflectivity is a novel framework that
realizes the concept of sub-method structural and behavioral reflection. Partial behavioral re-

1In the remainder of this document we will use the general term “DFlow” to indicate our interaction data
profiler, independently of its version and and the underlying technologies used.

2See https://www.cincom.com
3Each meta event recorded by DFlow (see Table 5.1) corresponds to a method in the source code of the Pharo

IDE, e.g., the event I E1 corresponds to the method “inspect” of the class Object.

https://www.cincom.com
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flection was first introduced by Tanter et al. [TNCC03] that realized it at instruction level (i.e.,
bytecode). Few years later, Denker revisited this concept and applied it on top of sub-method re-
flection [Den08, ch. 5]. Reflectivity is currently included in the Pharo distribution, thus reducing
significantly the installation time of DFlow. In a nutshell, Reflectivity enables to annotate any
node in the abstract syntax tree (AST) of Pharo, including method declaration nodes. These
annotations, called MetaLink in Reflectivity jargon, are objects associated with an AST node
that can alter the behavior of a running application.4 MetaLinks have access to the parameters of
the annotated node. For example, in a method declaration node, a link can access its arguments,
receiver, and signature. In addition, the user has control on when to activate the link: before,
after, or instead of the annotated AST node. Finally, a link can also have a dynamic activation
condition. This determines if it needs to be activated or not depending on the current context.
Figure 5.7 illustrates this concept: Behavioral reflection realized with sub-method reflection.

source code (AST)

activation condition

meta-object

meta-links

Figure 5.7. Partial behavioral reflection realized with sub-method reflection

To annotate an AST node, a developer creates a new MetaLink that describes the new
behavior and attaches it to the AST node. An annotation (or MetaLink) is a snippet of code
that will be executed whenever the annotated AST node is executed. For example, if we annotate
the AST node corresponding to the method Foo»#bar5 with a MetaLink that invokes the method
Halt»#now6 whenever the message Foo»#bar is executed, the annotation will be triggered and
the system will hang, due to the breakpoint introduced by the annotation.

The user can specify the desired control (i.e., execute the annotation before, after, or instead
of the annotated AST node) and an activation condition, i.e., activate annotations only if a
particular condition is satisfied. A link specifies a meta-object. This is the object to which the
annotation code will be executed. It can be any object, included the current AST node. In the
breakpoint scenario, the meta-object would be the Halt class that to which the MetaLink will
send the message now.

The following listing shows a concrete usage of Reflectivity to implement statement coverage
[PY07], a well known testing technique.

"Creates a new MetaLink"
link := MetaLink new

metaObject: #node;
selector: #tagExecuted.

4Conceptually, this mechanism is similar to Aspect Oriented Programming (AOP), a technique to augment
the behavior of a program in a non intrusive fashion [KLM+97].

5This Smalltalk notation refers to the method bar of the class Foo.
6In Smalltalk , this method triggers a breakpoint and stops the execution.
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"Attaches the link to all the AST nodes of the message exampleMethod in the ReflectivityExamples class"
(ReflectivityExamples>>#exampleMethod) ast

nodesDo: [:node | node link: link].

The example above creates a newMetaLink where themeta-object is the AST node itself (i.e.,
#node). The selector is the code to be executed, in this example is the method tagExecuted.
This link is then attached to all the AST nodes of the exampleMethod that belongs to the
ReflectivityExamples class. This example usage implements the statement coverage testing
technique: Every time a node is executed, it is tagged by sending it the tagExecuted message.

The key advantage of Reflectivity over Spy is altering the behavior of a program without
changing the actual source code. All the annotations of Reflectivity are invisible to the end user
and the source code of the annotated methods is left unchanged.

In the context of DFlow, we mainly use Reflectivity to profile meta events without changing
the source code of the Pharo IDE. For example, to observe when a developer inspects an object
we install the following MetaLink on the AST method declaration node of Object»#inspect:

link := MetaLink new

metaObject: DF2ReflectivityProfiler;

control: #before;
selector: #’eventForReceiver:andSelector:withArguments:’;
arguments: #(#receiver #selector #arguments).

When the user inspects an object the MetaLink is activated and sends the message eventFor-
Receiver:andSelector:withArguments: to the class DF2Reflectivity- Profiler. The control,
sets to #before, specifies that the MetaLink should be activated called before the actual anno-
tated node, i.e., right before performing the real inspection of the object. The notation

arguments: #(#receiver #selector #arguments).

means that the MetaLink passes as parameters to the invoked method on the MetaObject the
receiver, selector, and arguments of the actual method call. In the case of Object»#inspect,
the receiver is the actual inspected object, the selector is #inspect, and arguments is an empty
list, since Object»#inspect is a unary message, i.e., does not take arguments. The Reflectivity
Profiler is responsible of creating, and propagating, a new interaction event, i.e., a DFlow
Inspect Meta-Event, in this case.

5.4 Reflections

This chapter introduced our model that provides structure to the heterogeneous world of inter-
action data. Our model groups events in three categories: Meta, User Input, and User Interface
events. Meta events are further categorized according to the impact they have on source code
entities. To this aim, we distinguish between navigation, inspection, and editing events. Besides
the model, our second contribution is DFlow, a general-purpose IDE interaction profiler for the
Pharo IDE. In this chapter we explain DFlow, its high-level architecture and how it evolved
over time, a meta event.

Modeling and recording interaction data are the first steps to enable our research. The
following chapters describe approaches to interpret and make sense of the recorded interaction
data. We propose approaches to estimate the role of program comprehension (Chapter 6), to
reconstruct high-level development activities from fine-grained IDE interactions (Chapter 7), and
to measure the navigation efficiency of developers in the Pharo IDE (Chapter 8).



6
A Naïve Model to Interpret Interaction Data

The previous chapter introduced our meta-model for interaction data and DFlow, our
profiler for IDE interactions. Interaction data captures the behavior of software devel-
opers inside the IDE. However, in their raw form, interaction histories are only dense

streams of events that are hard to understand. In this chapter we present a naïve model to
interpret IDE interaction histories and estimate the time spent by developers in different activ-
ities. To gather insights from different contexts, we investigate two datasets, one recorded with
DFlow and the other recorded with Plog, an interaction profiler for the Eclipse IDE [KKA12].
Our model estimates how much time developers spend to navigate, write, and understand source
code. Among all software engineering activities, program understanding has been estimated to
be one of the most challenging tasks performed by developers [LVD06]. According to Corbi,
developers understand programs in different ways, for example by reading documentation, read-
ing source code, and executing the program itself [Cor89]. During maintenance and evolution
activities developers spend more time reading than writing source code [VMV95]. Another essen-
tial activity for program comprehension is navigating between code fragments [KM05, PFS+11].
Ko et al. estimated that developers spend 35% of their time navigating the system at hand
[KMCA06]. Some studies claim that understanding absorbs about half of the time of developers
[ZSG79, FH83, Cor89]. However, these facts have been taken for granted for quite some time,
and some research fields, such as program comprehension and reverse engineering, base their
reason to exist on such facts. This chapter investigates whether these facts can be confirmed.

Structure of the Chapter

In Section 6.1 we introduce the dataset of this study and the two recording tools that we em-
ployed. Section 6.2 introduces our naïve model to empirically measure the effort developers
spend on program comprehension. In Section 6.3 we present and analyze our findings. Finally,
in Section 6.4 discusses the limitation of our naïve approach which calls for a refinement of our
estimation models, later described in Chapter 7.
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6.1 Datasets and Recording Tools

This section gives a brief overview of the two recording tools we used (DFlow and Plog) and
discusses how the data differs depending on the development context.

6.1.1 Interaction Events and Sessions Meta-Information

In this study we consider a specific kind of interaction data that we called “meta events”.1 We
classify the events according to the impact they have on the involved program entities, as follows:

- Navigation events, used to browse (but not modify) source code entities, e.g., opening a
browser to list the methods of a class or a file to depict its contents;

- Inspect events (Smalltalk -only), that happen when developers examine the state of objects,
for example during debugging;

- Edit events, that modify code, e.g., adding a new class or modifying a method.

In addition to the type, each event has other properties associated to it: a creation time (the
timestamp when it occurred) and a set of program entities involved, such as classes and methods.
Sequences of interaction events compose what we call “development session”.

With DFlow we collected 175 development sessions totaling more than 110,000 interaction
events coming from 7 developers (both industrials and academics) “in the wild ” [ABSN13]. With
Plog, instead, we collected 15 sessions from 15 master students, totaling almost 4,000 events,
during a controlled experiment part of the evaluation of Plog itself [KKA12].

At the time of this study DFlow was at its early stages and required manual intervention
of the developer (see Section 5.3.1). Developers have to explicitly start the recording of the
development session. In this occasion, we request developers to specify i) a title to briefly
describe the aim of the session and ii) a type describing its intended purpose.2 Developers
can choose between 4 types: General purpose, refactoring, enhancement, and bug-fixing. Each
development session has a start and an end timestamp, and an identifier that represents the
author of the session. A session might last for hours or days, but the developer will probably not
program uninterruptedly. We introduce the concept of sub-sessions to indicate pauses during
development. In DFlow, when a developer stops programming for any reason (e.g., a conference
call) she can explicitly pause (and later resume) the recording. In addition, when we post-process
the interaction histories of DFlow and Plog, we automatically detect (and remove) what we call
“idle times” longer than 10 minutes and create implicit sub-sessions without these idle periods.

Since we use two different tools that track interactions in IDEs which support a different de-
velopment philosophy, the information above cannot be mapped to the interaction data collected
by the tools. To make an example: The Pharo IDE is a multi-window environment, and it is
normal for users to spawn several windows during development. Moreover, it is an IDE based
on program entities, and not files, which entails that a developer is looking always at methods
in isolation. As opposed to that, Eclipse is an IDE based on tabs and files, which requires that
developers open files which are presented in the editor and it is therefore normal that a developer
has several methods in front of his eyes in the same window. This in essence means that in the
Eclipse case it is not possible for us to unambiguously understand which entity is being looked
at. However, in this context we are not interested into what exactly the developer is doing, but

1As introduced in Section 5.2, meta events are all the interactions that involve program entities.
2This holds only for Smalltalk sessions recorded with DFlow.
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more when she is doing it. To get a feeling for the type of data we are considering, refer to
Figure 6.1, which shows a Smalltalk development session at a glance.

Navigation UnderstandingEditing
time

Inspecting

Figure 6.1. A development session at a glance

This session lasted 30 minutes and 43 seconds. During that time a developer triggered a
total of 455 interaction events out of which 403 navigations (i.e., white), 21 inspections (i.e.,
blue), and 31 edits (i.e., red). Navigations are very quick “trigger” events, such as opening a
browser, clicking on class or method names to see their contents, etc. Inspections happen when
the developer opened a special UI (called inspector, in Smalltalk dialect) to examine the state
of an object at run-time. Finally, edit events represent the actual “writing” of the source code
by editing new or existing code. The rest, depicted in yellow, is the time when the developer
was seemingly “doing nothing”, but in fact this is the time when the developer sits in front of
the source code and looks at it. It thus represents the actual program understanding part. In
the example of Figure 6.1, navigation events are mostly present at the beginning of the session,
when the developer is getting his bearings in the system. Moreover, editing events are nearly
always present after a longer understanding time interval.

6.1.2 DFlow and Smalltalk Interaction Histories

Table 6.1 and Table 6.2 summarize the DFlow dataset, grouped per type and per developer. It
counts 175 sessions by 7 developers, totaling more than 110,000 events.

Table 6.1. Dataset – Smalltalk sessions data per type

Sessions Events Windows
Avg. Navigation Inspect Edit

Type
# Avg.

#Subs.
Duration
[hh:mm:ss]

# Avg. # Avg. # Avg. # Avg.

BUG 27 2.11 44:38 7,154 264.96 1,205 44.63 1,537 56.93 1,739 64.41
ENH 86 2.26 57:08 40,973 476.43 3,631 42.22 3,992 46.42 7,331 85.24
GEN 55 4.18 1:33:38 42,831 778.75 1,767 32.13 4,196 76.29 6,372 115.85
REF 7 1.71 48:46 3,294 470.57 22 3.14 331 47.29 224 32.00

All 175 2.38 1:06:21 94,252 538.58 6,625 37.86 10,056 57.46 15,666 89.52
BUG: Big-Fixing – ENH: Enhancement – GEN: General Purpose – REF: Refactoring

Developers are all from the Pharo open-source community, with a background in both indus-
try and academia, located in 4 different sites (INRIA Lille, France; University of Bern, Switzer-
land; University of Santiago, Chile; University of Lugano, Switzerland). The vast majority of the
sessions are marked Enhancement and General, where General sessions are usually the longest,
with an average length of more than 1.5 hours. We also note that bug-fixing sessions are gen-
erally short, which can be explained by the fact that often they were dedicated and guided
sessions to fix particular known bugs in existing code. Across all session types, navigation events
are one order of magnitude more than the number of editing events. General purpose sessions
are, on average, those that contain more sub-sessions and have the higher number of navigation
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and edit events (778.75 and 76.29 on average). Bug-fixing sessions have the highest number of
inspect (44.63 on average). This is not surprising since inspects are often triggered while debug-
ging. It appears that, while fixing bugs, developers navigate less than in other sessions (264.96
navigations on average). Our hypothesis on this is that these sessions are highly focused since
the developer already knows the subset of program entities involved in a given bug-fixing task.
One third of times developers do not know what they are going to do, i.e., they select “general
purpose” as session type. Those sessions have a very high concentration of navigation and edit
events (respectively 778.75 and 76.29) and a higher number of windows with respect to other
types (115.85 where the average over all the sessions is 89.52). This justifies their general, broad
purpose: Developers do a little bit of everything.

Table 6.2. Dataset – Smalltalk sessions data per developer

Sessions Events Windows
Avg. Navigation Inspect Edit

Dev. #
Avg.
#Subs.

Duration
[hh:mm:ss]

# Avg. # Avg. # Avg. # Avg.

SD1 12 6.08 03:01:24 21,617 1,801.42 183 15.25 2,458 204.83 3,144 262.00
SD2 3 1.00 16:27 393 131.00 157 52.33 24 8.00 71 23.67
SD3 65 1.49 52:32 20,468 314.89 2,157 33.18 2,091 32.17 3,183 48.97
SD4 6 1.83 48:13 2,183 363.83 353 58.83 1,196 199.33 608 101.33
SD5 70 2.84 56:26 35,495 507.07 2,952 42.17 3,289 46.99 7,336 104.80
SD6 7 4.29 01:25:18 6,862 980.29 337 48.14 472 67.43 555 79.29
SD7 12 6.67 01:34:25 7,234 602.83 486 40.50 526 43.83 769 64.08
All 175 2.82 01:06:21 94,252 538.58 6,625 37.86 10,056 57.46 15,666 89.52

Table 6.2 gives insights on how different developers behave. All developers, but SD4, have a
number of navigation events that are one order of magnitude more than the number of editing.
It remains to be investigated the behavior of SD4 that on average performs one edit event every
two navigations. Developer SD1 has a very high number of windows per session (262.00). She is
developing a visualization engine for Smalltalk . Pharo is a window-based environment and her
tool generates visualization inside windows. This explains why her use of windows is significantly
higher than others. This developer, in general, is an outlier: She has significantly higher number
of navigations and edits with respect to other developer and further investigation on her behavior
is required. Developers SD3 and SD5 are the two subjects that used DFlow the most. The
former is pretty new to the Smalltalk programming language. She navigates and edits less than
the average of other developers. SD5, an experienced Smalltalk developer, instead is mostly in
line with average values. It remains to be investigated how the expertise of developers impact
on their behavior inside the IDE. Developers SD1 and SD6 are the two subjects that navigate
the most (1,801.42 and 980.29 events on average). Interestingly, while SD1 uses a very high
number of windows, SD6 despite navigating a lot more than other developers, uses few windows.
Developers SD1 and SD7 have the highest numbers of sub-sessions (6.08 and 6.67, where the
average is 2.82), symptoms of highly interrupted sessions.

6.1.3 Plog and Java Interaction Histories

In addition to Smalltalk interaction histories collected with DFlow, we also analyzed 15 Java
development sessions captured using the Plog tool developed by Kobayashi et al. [KKA12].

Plog captures interactions at two granularities: file and method level. For this study we
only used histories at file level which are comparable to the interaction histories recorded with
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DFlow (a class in Smalltalk is conceptually similar to a file in Java, which often contain one
class). Interaction histories captured by Plog have the following meta-information: i) an author
name; and ii) a list of events, with the following information: i) a timestamp when the event
was recorded and ii) a type. Plog records two types of events:

• NR: a pure navigation, i.e., without any editing;

• NW : a navigation with an editing event.

Navigation events happen when the developer moves between tabs and opens new tabs. NR
events are comparable to navigation events in DFlow, while NW events contain implicit editing
events. Inspection events are not captured in Plog, as Eclipse does not offer a live programming
environment, as opposed to Pharo.

Table 6.3 summarizes the data collected with Plog. There are 15 sessions by 15 different
developers. Naïvely, Plog has no concept of sub-session, but we pre-processed the data to
automatically identify sub-sessions according to periods of idle (minimum idle set to 10 minutes)
in the interaction histories. This generates 144 sub-sessions without idle periods.

Table 6.3. Dataset – Java sessions data per developer

EventsDeveloper # Subs.
Duration
[hh:mm:ss] Navigation Edit

JD1 5 1:15:39 48 17
JD2 7 2:02:51 121 13
JD3 11 3:49:00 208 56
JD4 5 1:28:38 139 48
JD5 14 4:42:31 248 82
JD6 8 2:48:00 204 57
JD7 18 12:38:03 803 295
JD8 5 1:28:24 111 11
JD9 6 2:18:31 121 11
JD10 19 3:36:59 231 61
JD11 7 1:48:24 109 20
JD12 11 2:01:47 121 21
JD13 1 1:28:37 70 28
JD14 16 5:16:42 454 27
JD15 11 2:35:52 132 29

All 144 49:19:58 3,120 776

Developers were given different tasks, namely to extend an existing system to fulfill a series
of change requests without any prior knowledge of the system (i.e., enhancement sessions). Each
developer has a personal way of approaching the task, as some of them took several hours (up
to 12) to implement the requested changes, while others took little bit more than one hour. We
can infer that about 20% of all navigation events led to an editing activity.

6.2 Naïve Estimation Model

Our goal is to use interaction data to estimate how much time developers spend to navigate,
write, and understand code. Figures 6.2 and 6.3 depict two development sessions captured with
our recording tools.
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Navigation UnderstandingEditing

time

Figure 6.2. Visualizing Java development activities

Figure 6.2 shows a Java session recorded with Plog. That session lasted 1 hours 48 minutes
and 24 seconds and counts 109 navigation activities (white), 20 edits (red), and a large amount
of understanding (yellow). The developer (JD11 in Table 6.3) spends 65.1% of her time under-
standing the system whilst performing perfective maintenance. The first half of the session is
essentially composed of understanding driven by the navigation of the system at hand. After
that, the developer acquired the necessary knowledge to perform the changes. The second part
of the session encloses all the 20 editing activities interleaved with navigation events and under-
standing time frames. Editing activities have different durations. The first one lasts for a quite
long time, probably due to the fact that the developer is not confident with her understanding
of the system. Afterwards, with the increased confidence in the system, she performs a series of
short editing activities.

Navigation UnderstandingEditing

time

Inspecting

Figure 6.3. Visualizing Smalltalk development activities

Figure 6.3 shows a Smalltalk session recorded with DFlow. It lasted for 1 hour 14 minutes
and 8 seconds and counts 491 navigations, 25 inspections, and 34 edits. The first difference with
Figure 6.2 is the presence of inspection activities (blue). In Smalltalk an inspection happens
when a developer observes some property of an instance of an object, i.e., the value of its
fields. Inspections are, most of the times, triggered while debugging when a developer wants
to investigate the reasons of a failure. Figure 6.3 depicts a bug-fixing session of the developer
SD5 (in Table 6.2). The developer spent 60.91% of her time in understanding tasks, 15.28% on
editing activities, and 10.93% navigating between code fragments. In the session, there are some
peculiarities. For example, inspections have often an edit preceding them. Our hypothesis is
that the developer first changes the code, then executes and debugs it. This is possible in the
Pharo Smalltalk IDE as it is a live programming environment, i.e., even when the system raises
an exception it is still “alive” and can be modified on the fly. Most important editing activities
(i.e., the ones with the longest durations) are often preceded by significant understanding time
frames. This is a symptom of the fact that developers want to gather a substantial understanding
of the system prior to changing it. As in the Java session, editing activities are concentrated in
the second part of the session while the first part is mainly comprehension.

6.2.1 Modeling DFlow Interaction Histories

Figure 6.4 depicts a fragment of a raw interaction history recorded with DFlow, that is, a
sequence of events with their timestamp. As a base to estimate the amount of program un-
derstanding during development, we need first to estimate the amount of time spent for other
development activities, starting from the recorded events.
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t1 t2 t3 t4 t5 t6

Figure 6.4. A raw interaction history recorded with DFlow

DFlow interactions contains three types of events: navigation, inspection, and editing, for
which we estimate the duration of the corresponding activities as follows.

Navigation Activities

Navigation events are clicks in the user interface of the IDE. To perform the “click” a user spends
a relatively small amount of time. In addition to the click, a navigation implies an additional
time required to move to the target area for the click. This is known as Fitts’s Law and computed
as a function of the distance and the size of the target [Fit54]. We approximate this time to a
fixed average duration (∆N). Figure 6.5 shows the updated interaction history after estimating
navigation activities.

N N E N I N

t1 t2 t3 t4 t5 t6

Figure 6.5. DFlow interaction history with Navigation Activities

Editing Activities

For an editing activity Ei, DFlow records an event when the user is done with the editing: We
denote this time as end(Ei). We assume that the duration of the edit (∆Ei) is a fraction (PE) of
the time interval between the end time of the previous activity end(prev(Ei)) and the end time
of Ei.

∆Ei = PE × (end(Ei)− end(prev(Ei))) (6.1)

Figure 6.6 shows the interaction history after assigning a duration to editing events.

N N E N I N

t1 t2 t3 t4 t5 t6

Figure 6.6. DFlow interaction history with Navigation and Editing Activities

Inspection Activities

For an inspection activity Ii, DFlow records an event when the user starts inspecting, i.e.,
star t(Ii). The duration of the inspection (∆Ii) is a fraction (PI) of the time interval between
star t(Ii) and the start time of the following event star t(nex t(Ii)).
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∆Ii = PI × (star t(nex t(Ii))− star t(Ii)) (6.2)

Figure 6.7 shows the situation after assigning a duration to inspection events.

N N E N I N

t1 t2 t3 t4 t5 t6

Figure 6.7. DFlow interaction history with Navigation, Editing, and Inspecting Activities

Understanding Activities

Understanding activities are all the gaps between the other types of activities. Everything that
is not navigation, inspection, and editing is program understanding. For this reason, we first
assigned duration to the other types of events, and we identify every remaining gap in the
interaction history as understanding activities.

Figure 6.8 shows the final interaction history, with all the activities.

N N E N I N

t1 t2 t3 t4 t5 t6
understanding

Figure 6.8. DFlow interaction history with all the Activities

Interaction between Inspection and Editing

Our estimation model uses time intervals between events to estimate the duration of the corre-
sponding activities. When an inspection is followed by an editing, our model is more complex.
The duration of the inspection activity depends on the duration of the editing activity, which in
turn depends on the duration of the inspection.

Figure 6.9 illustrates the situation.

EI

∆Ii ∆Ei∆Ui
Figure 6.9. The case of editing after inspection

According to our estimation model, the duration of the inspection activity ∆Ii and the
duration of the editing activity ∆Ei are as follows:

∆Ii = PI × (star t(nex t(Ii))− star t(Ii)) (6.3)

∆Ei = PE × (end(Ei)− end(prev(Ei))) (6.4)

To solve Equation (6.3) we should know the start time of nex t(Ii), that is Ei. We cannot
know this before solving Equation (6.4).



6.2 Naïve Estimation Model 61

In turn, to determine ∆Ei we need the end time of prev(Ei), that is Ii, and we cannot know
this a priori. We can rewrite Equations (6.3) and (6.4) as follows:

¨

∆Ii = PI × (∆−∆Ei)
∆Ei = PE × (∆−∆Ii)

(6.5)

where ∆ = ∆Ii +∆Ui +∆Ei. ∆Ii depends on ∆Ei, and vice-versa. We want to find two
percentages, P I E

I and P I E
E , such that ∆Ei and ∆Ii can be computed from the whole interval ∆:

¨

∆Ii = P I E
I ×∆

∆Ei = P I E
E ×∆

By definition, these two fractions are:
¨

P I E
I =

∆Ii
∆

P I E
E =

∆Ei
∆

By dividing Equations (6.5) by ∆ we obtain:
¨

P I E
I = PI × (1− P I E

E )
P I E

E = PE × (1− P I E
I )

(6.6)

Solving Equations (6.6) we obtain:
¨

P I E
I =

PI−PI×PE
1−PI×PE

P I E
E =

PE−PI×PE
1−PI×PE

To summarize, the three time intervals depicted in Figure 6.9, can be computed in function
of the whole interval ∆ as follows:











∆Ii = P I E
I ×∆

∆Ei = P I E
E ×∆

∆Ui =∆−∆Ii −∆Ei

Reflections

We do not have “perfect” interaction data. For example, during an editing activity we do not
know exactly what the developer is doing, only that she is editing. Our future work in this context
is to track interactions at finest level possible, i.e., the keystroke level for editing operations, and
mouse events (including scrolling, etc.) for navigation and inspection activities.

6.2.2 Modeling Plog Interaction Histories

Plog interaction histories are composed of two types of events: NR and NW . The former rep-
resents pure navigation events, while the latter represents a navigation event that follows an
editing activity. Figure 6.10 shows a Plog interaction history.

Since Plog interaction histories lack inspection events, and editing events are implicit, to
estimate the duration of developer activities we use a slightly different model with respect to the
case of DFlow histories.
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NR

t1 t2 t3 t4 t5 t6

NR NW NR NR NW

Figure 6.10. A raw interaction history recorded with Plog

Navigation Activities

Events of type NR denote pure navigation. As in the DFlow case, we approximate this time
to a fixed duration (∆N). Figure 6.11 shows the updated interaction history with explicit pure
navigation activities of fixed duration.

N

t1 t2 t3 t4 t5 t6

N NW N N NW

Figure 6.11. Plog interaction history with Navigation Activities

Editing Activities

In Plog editing activities are implicit: The tool records an event of type NW at time t(NW )
when the user performs a navigation after editing. The actual editing happened in an unknown
moment in the time interval between the end of the previous event, denoted as end(prev(NW ))
and t(NW ). To make the editing activity Ei explicit, we place it in the middle of the interval
with a duration (∆Ei) that is half the duration of that interval. The NW event is then converted
to a navigation activity with a fixed duration, ∆N .

∆Ei = PE × (t(NW )− end(prev(Ei))) (6.7)

Figure 6.12 shows the updated interaction history assigning a duration to both navigation
and editing activities.

N

t1 t2 t3 t4 t5 t6

N N N N NE E

Figure 6.12. Plog interaction history with Navigation and Editing Activities

Understanding Activities

We assign every remaining gap in the interaction history to understanding activities. Figure 6.13
shows the final shape of the Plog interaction history.

Reflections

The recorded interaction histories are not perfect. Since we do not have keystroke-level events,
we must approximate the editing activities. Is it possible that if a user open a new file and
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N
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understanding
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Figure 6.13. Plog interaction history with Navigation and Editing Activities

spends one minute in that file, 59 seconds could be spent on doing nothing. We believe our
approximation is however reasonable, as it does not assign the editing activity an exaggerated
weight. Future work in this context is the recording of keystroke-level events, as done for example
in EclipseEye [Sha07].

6.2.3 Discussion: The Degrees of Freedom of the Models

The estimation model we propose to quantify development activities has three degrees of freedom:
i) ∆N , that represents the conventional average duration of navigation events; ii) PE , that models
the average percentage of editing activities between an edit event and the preceding event; and
iii) PI , which similarly represents the percentage of inspection activities in Smalltalk interaction
histories. We intend navigation as the “mechanics of navigation”, i.e., the clicks in the user
interface. Thus, we conventionally assume that each navigation event lasts, on average, 0.5
seconds. We fix ∆N to 0.5s.

Quantifying the right amount of PE and PI is out of the scope of this work, since it would
require more fine-grained events to be collected (e.g., keystroke events). Instead, we discuss how
the results of our quantification model change by varying these parameters, obtaining possible
lower and upper bounds to the amount of time spent in program understanding. Table 6.4 shows
how the amount of program understanding changes by varying PE and PI in the case of Smalltalk
development sessions collected by DFlow.

Table 6.4. Results – Amount of Understanding in Smalltalk sessions varying PE and PI

PI

PE 0.10 0.25 0.50 0.75 0.90

0.10 88.44% 83.74% 75.87% 67.94% 63.16%
0.25 86.17% 81.63% 73.97% 66.20% 61.46%
0.50 82.34% 78.02% 70.71% 63.24% 58.62%
0.75 78.46% 74.28% 67.28% 60.16% 55.73%
0.90 76.10% 71.97% 65.09% 58.16% 53.93%

The most pessimistic estimate is shown in the bottom right cell of the table, and corresponds
to PE = PI = 90%. In this case understanding amounts to 54% of time, which is slightly above the
upper-bound of previous estimates [ZSG79, FH83, Cor89]. The most optimistic estimate is on the
top-left cell of the table, corresponding to PE = PI = 10%: In this case, understanding consumes
around 88% of the time of developers, which is significantly above previous estimates. Obviously,
more accurate estimates lay between these two quite unrealistic extremes, and they are shown
in the other cells of the table. It appears very likely that actual time spent by developers in
program understanding has been underestimated by previous research by at least 10-20%.
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Table 6.5 shows similar results in the case of Java development sessions recorded by Plog.
In this case, since the tool did not record inspection events, the only parameter to vary is
PE . Pessimistic and optimistic estimates for program understanding are similar to the case of
DFlow, suggesting similar considerations about the time spent in program understanding.

Table 6.5. Results – Amount of Understanding in Java sessions varying the estimate of PE

PE 0.10 0.25 0.50 0.75 0.90

94.33% 87.13% 75.12% 63.11% 55.91%

6.3 Results

Tables 6.6, 6.7, and 6.8 summarize the distribution of development activities for all the recorded
sessions in the case of DFlow and Plog. For each development activity, we calculate the
average of the percentage of time spent by developers in each activity.

As we pointed out in the previous section, program understanding is a dominant activity, as
it accounts, on average, from 54 to 94% of the total development time in each session. The values
are similar despite the profound difference in the way developers produce Java and Smalltalk
code. This suggests that the role of program understanding has been underestimated by previous
research. Decades ago researchers claimed that program understanding absorbs about 50% of
the time of developers [ZSG79, FH83, Cor89], while we find that the percentage is likely to be
higher.

Figure 6.14 depicts the distribution of the relative importance of the activities using box
plots. Please note that inspection (INS) only applies to Smalltalk sessions recorded with DFlow.
Although there can be substantial differences between individual sessions and developers, what
emerges is a clear pre-dominance of program understanding activities.
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Figure 6.14. Development activities for all sessions
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Role of Session Types

While in interaction histories collected by DFlow and Plog program understanding is dominant
in both cases, there is difference ranging from 2% to 6% depending on the estimates of parameters,
as shown in Table 6.6. On all the Smalltalk sessions, program understanding ranges from 54 to
88% while on Java sessions these bounds range from 56 to 94%. A possible interpretation of this
difference can be found in the fact that Plog sessions were all enhancement sessions, while the
sessions we collected with DFlow are of different type, e.g., bug-fixing and refactoring sessions.

Table 6.6 shows the different distribution of the duration of development activities per session
type in the case of Smalltalk sessions collected by DFlow.

Table 6.6. Results – Development activities per session type

N (%) E (%) I (%) U (%)
Type Min Med Max Min Med Max Min Med Max

DFlow: Smalltalk
ENH 7.8% 30.6% 17.4% 3.6% 13.4% 7.8% 1.7% 48.2% 67.0% 86.9%
REF 9.1% 30.4% 16.9% 3.4% 1.7% 0.9% 0.2% 58.9% 73.1% 87.3%
GEN 6.2% 21.3% 12.1% 2.5% 9.5% 5.5% 1.2% 63.0% 76.2% 90.1%
BUG 4.6% 25.5% 14.5% 3.0% 17.4% 10.0% 2.1% 52.6% 70.9% 90.3%
All 6.8% 26.9% 15.3% 3.2% 12.3% 7.2% 1.6% 54.0% 70.7% 88.4%

ENH: Enhancement – REF: Refactoring – GEN: General Purpose – BUG: Big-Fixing

Plog: Java
All 0.9% 43.2% 24.0% 4.8% – – – 55.9% 75.1% 94.3%

Table 6.7. Results – Smalltalk development activities per developer

N (%) E (%) I (%) U (%)
Dev. Min Med Max Min Med Max Min Med Max
SD1 5.1% 30.9% 17.6% 3.6% 13.7% 8.0% 1.7% 50.3% 69.4% 89.5%
SD2 8.9% 21.6% 12.1% 2.4% 20.3% 11.3% 2.3% 49.2% 67.7% 86.4%
SD3 8.0% 30.2% 17.0% 3.5% 5.6% 3.3% 0.7% 56.2% 71.8% 87.9%
SD4 8.5% 26.5% 15.1% 3.1% 12.8% 7.4% 1.6% 52.2% 69.0% 86.8%
SD5 4.6% 16.8% 9.7% 2.1% 9.3% 5.6% 1.3% 69.4% 80.1% 92.1%
SD6 8.4% 10.5% 6.0% 1.2% 10.5% 6.0% 1.2% 70.6% 79.6% 89.1%
SD7 5.7% 22.3% 12.6% 2.6% 10.5% 6.1% 1.3% 61.5% 75.6% 90.4%

The role of understanding is still dominant in all session types: However, there is some
significant difference in the distribution of editing and navigation activities. Refactoring sessions,
for example, have a high understanding component and make minimal use of inspection activities
(0.2-1.7%). While program understanding does not appear to be significantly different between
session types, there are some differences on the distribution of other activities. Enhancement
and Bug Fixing sessions spend significant time on inspection (around 10%), while Enhancement
and Refactoring sessions spend more time on editing.

Developer Diversity

Table 6.7 lists the relative importance of the activities for each Smalltalk developer. We can
deduce diverse “profiles”: SD3 has a tendency towards more navigation and editing, and less
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understanding. In essence he could be characterized as more “aggressive” towards the code
base. Similarly, SD2 spends almost the same amount of time on navigation, but distributes
almost equally the remaining time between editing and inspection, being thus more “cautious”
and she probably frequently verifies the implemented changes. SD5 and SD6 are even more
cautious, denoted by their high understanding values. In essence they reflect more on the code
before they change it. SD3 however is making very little use of inspecting, which is a preferred
activity of skilled developers. SD1 and SD3 have the highest editing and the among the lowest
understanding values. In essence, they seem to be at ease with the code base and confidently
change it without the need to rely on extensive navigation.

Table 6.8 lists the relative importance of the activities for each Java developer.

Table 6.8. Results – Java development activities per developer

E (%) U (%)
Dev. N (%) Min Med Max Min Med Max
JD1 0.5% 60.2% 33.4% 6.68% 39.3% 66.0% 92.78%
JD2 0.8% 20.3% 11.3% 2.25% 78.8% 87.9% 96.90%
JD3 0.8% 52.5% 29.1% 5.83% 46.8% 70.1% 93.41%
JD4 1.3% 32.0% 17.8% 3.56% 66.6% 80.9% 95.12%
JD5 0.7% 68.7% 38.2% 7.63% 30.6% 61.1% 91.64%
JD6 1.0% 40.7% 22.6% 4.52% 58.3% 76.4% 94.46%
JD7 0.9% 62.1% 34.5% 6.90% 37.0% 64.6% 92.22%
JD8 1.1% 24.9% 13.8% 2.76% 74.0% 85.1% 96.19%
JD9 0.7% 28.3% 15.7% 3.14% 71.0% 83.5% 96.13%
JD10 0.9% 34.1% 18.9% 3.79% 65.0% 80.2% 95.32%
JD11 0.9% 27.6% 15.4% 3.07% 71.5% 83.8% 96.05%
JD12 0.8% 49.1% 27.3% 5.46% 50.0% 71.9% 93.71%
JD13 0.7% 75.2% 41.8% 8.35% 24.2% 57.6% 90.98%
JD14 1.2% 22.4% 12.4% 2.48% 76.4% 86.4% 96.32%
JD15 0.7% 50.1% 27.9% 5.57% 49.1% 71.4% 93.72%

From this data we can infer developer “profiles”. For example JD8 took a short time to
implement the changes, but has high understanding and low editing (refer to Table 6.3 for
durations). JD2 and JD14 have a similar behavior but they took more time to implement the
task. We can say that JD8 is someone who thinks deeply about what to do, and then does it
quickly and firm. JD13 is at the opposite end of the spectrum: The high amount of editing time,
with relatively high navigation time, denotes a developer who heavily meanders in the code base
before she slowly implements the changes.

6.3.1 Threats to Validity

Construct Validity. We presented a model to estimate the duration of development activities
starting from recorded interaction histories. A threat to validity for our results is the accuracy
of this model, that may not precisely capture, for example, the moment when editing activities
start. To get a more accurate model to estimate activity durations, one should record more
fine-grained interaction data and corresponding events. However, in Section 6.2.3 we described
how even varying the degrees of freedoms the essence of this work remains true.

Moreover, our study only considered the part of software development carried on inside an
IDE. Since program comprehension can be carried out throughout the whole software develop-
ment lifecycle, our findings are a lower bound of the total time devoted to software understanding.
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Statistical Conclusion. We considered a total of 190 sessions with around 120,000 interactions,
which we consider to be substantial enough to deduce some conclusions. However, we did not
measure the statistical confidence of our results.

External Validity. The weight of different development activities may significantly vary with
different languages and IDEs. To mitigate this possible threat, we considered two significantly
different programming languages and IDEs, obtaining similar estimates that give us confidence
about the generalizability of our results.

A similar argument can be formulated about the developer diversity, which may influence the
amount of time required from program comprehension. In our study, we considered 15 different
Java developers in the case of interaction data recorded on the Eclipse IDE, and 7 different
developers with different background and experience in the case of Smalltalk and the Pharo
IDE. Further investigation is needed to understand how developers’ expertise influences the way
they interact with the UI of the IDE.

6.4 Reflections

Raw interaction histories are dense streams of events that require to be interpreted to draw
insightful conclusions. In this chapter we discussed a naïve model to estimate the time spent by
developers in various development activities. We collected interaction data from 22 developers, 15
working in Java with Eclipse and 7 working in Smalltalk with Pharo, totaling hundreds of hours
of recorded activities. Among the goals of our study we wanted to gather empirical evidence
about the role of program comprehension. Researchers claimed the program understanding is
one of the most time consuming activities of software development. This claim is taken as an ipse
dixit, a dogmatic statement to be accepted as it is. Our preliminary results show that in the last
40 years the role of program comprehension may have changed and that this topic needs further
investigation, also to motivate the importance of research areas such as program comprehension,
reverse engineering, and mining software repositories.

Our naïve models have some limitations, discussed in Section 6.3.1. To mitigate them,
we devised a more precise model to infer high-level development activities from low-level IDE
interaction histories, detailed in the next chapter.
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7
Inferring High-Level Development Activities from
Interaction Histories

The previous chapter introduced a naïve model that only uses meta event to estimate the
role of program understanding in development sessions. This chapter extends the previous
model by also considering other kinds of interaction data to provide precise estimates

of high-level development activities such as code editing and program understanding. While
being a fundamental part of software development, it is unclear how program comprehension is
supported by modern IDEs. They offer various tools and facilities to support the development
process, like i) Code Editors, ii) Code Browsers, and iii) Debuggers [GLD05, GGD07], but none
of these components is dedicated to program comprehension. Instead, comprehension emerges
from the complex interleaving of such activities. Moreover, researchers discovered that some UI
paradigms (e.g., windows- or tabs-based IDEs) may negatively influence development, hindering
comprehension and generally developer productivity [RND09]. While this claim is intuitively
convincing, there is no quantitative evidence on how much time is spent on fiddling with the UI
of an IDE.

In this chapter we propose an inference model of development activities to measure the time
spent in editing, navigating and searching for artifacts, interacting with the UI of the IDE, and
performing activities such as inspection and debugging. We applied our model on a dataset of
740 development sessions coming from 18 developers totaling about 200 hours of development
time and more than 5 million events. Our results show that program comprehension absorbs
more time than generally assumed, and that fiddling with the UI of IDEs can substantially hinder
the productivity of developers.

Structure of the Chapter

Section 7.1 summarizes the dataset and highlights the different types of interaction data con-
sidered by this study. Section 7.2 describes the inference model and Section 7.3 presents an
in-depth analysis of how developers spend their time. Finally, Section 7.4 concludes the chapter
by reflecting upon the implication of this study and playing the devil’s advocate.

69
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7.1 The Dataset

This sections summarizes the dataset for this study and details the interaction events used to
devise a more precise estimation model for development activities.

7.1.1 More Than Meta Events

Differently from the naïve model presented in Chapter 6, in addition to meta events, the new
model also considers other types of interaction data. In particular, as per the model for interac-
tion data presented in Section 5.2, DFlow also records User Input and User Interface that we
also call Low-level events. Low Level Events are events that deal with input devices (e.g., mouse,
keyboard), or the user interfaces of the IDE. In particular, DFlow records:

• Window events1 are all the events that deal with the different windows of the Pharo IDE,
like opening, closing, moving or resizing a window;

• Mouse events include movements, scrolls, and mouse clicks inside the UI of the IDE. Each
event captures the cursor position.; in particular, movement events are specialized when
the mouse moves outside the main Pharo window to other areas of the screen (mouse-out
event) or back inside (mouse-in event);

• Keyboard events represent the keystrokes happening in the session. Each event records the
keystroke (or combination of keystrokes with modifiers like command or shift) that has
been typed.

7.1.2 Facts and Figures

Our dataset, summarized in Tables 7.1 and 7.2, is composed of 738 development sessions totaling
197 hours of development and 5 million events. The first two columns report anonymized iden-
tifiers of the developer with their total number of sessions collected with DFlow. A “session”
is a sequence of IDE interactions without periods of inactivity that last more than 5 minutes.2

We call these periods “idle periods” (or “idle time”). DFlow detects when the developer is away
from the keyboard and splits the interactions into multiple sessions (discarding the idle period).
For each developer we collected: i) the recording time, ii) the number of low-level events, iii) the
number of meta events, and iv) the number of windows used during development sessions. Each
row in the table reports values for a single developer. The leftmost part of the table reports the
total values, while the rightmost part the average values (per session). In the last row (i.e., All)
total values accumulate the values for all developers while average values are computed using a
weighted arithmetic mean across all developers weighted on the number of sessions.

To recruit participants we sent a call on the Pharo-Dev mailing list3. Eighteen developers,
both professionals and academics, answered the call and helped us in the collection of their
interactions. Participants were not assigned specific tasks. Instead they have been working on
their own personal projects, a.k.a. “in the wild” [ABSN13].

They all share a common code base (i.e., the open source code of Pharo) but we have no
information on the size of their own private projects. The dataset features 2 Master students, 9
Ph.D. students, and 7 professionals. We distinguish 3 levels of expertise, i.e., how many years
they have been programming in Pharo. D9 is the only developer that can be considered a novice.

1Pharo is a window-based IDE, thus UI events are interactions with windows, i.e., window events.
2This value was chosen arbitrarily.
3See http://pharo.org/community

http://pharo.org/community
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Table 7.1. Dataset – Total values grouped by developer

Total Total Low Level Total Total
Dev. #S Rec. Time ME KE WE All #Meta #Win
D1 407 89h 21m 46s 1,436,332 104,622 16,402 1,557,356 80,030 3,966
D2 136 52h 09m 52s 1,945,028 143,852 33,801 2,122,681 58,468 5,677
D3 76 28h 50m 44s 596,928 66,717 9,376 673,021 35,168 2,080
D4 32 06h 17m 34s 129,492 6,441 1,426 137,359 6,653 539
D5 19 01h 31m 45s 21,575 1,709 344 23,628 1,087 90
D6 14 04h 20m 26s 62,857 8,628 449 71,934 4,037 132
D7 11 04h 13m 54s 82,294 9,670 1,573 93,537 3,201 453
D8 9 01h 14m 47s 19,550 328 103 19,981 441 34
D9 9 03h 19m 54s 26,970 3,194 732 30,896 2,120 231
D10 8 01h 03m 33s 14,797 1,232 252 16,281 1,471 67
D11 5 01h 12m 38s 33,775 2,521 283 36,579 3,510 80
D12 5 01h 07m 48s 31,186 2,554 321 34,061 1,381 89
D13 ? 2 00h 05m 56s 3,332 273 54 3,659 12 10
D14 1 01h 52m 38s 10,420 551 920 11,891 5,033 182
D15 ? 1 00h 01m 58s 714 21 11 746 32 5
D16 1 00h 15m 57s 4,741 565 60 5,366 305 20
D17 ? 1 00h 04m 55s 1,347 49 33 1,429 3,423 8
D18 ? 1 00h 07m 46s 5,197 38 82 5,317 292 28

All 738 197h 13m 54s 4,426,535 352,965 66,222 4,845,722 206,664 13,691

Table 7.2. Dataset – Average values grouped by developer

Avg. Avg. Low Level Avg. Avg.
Dev. #S Rec. Time ME KE WE All #Meta #Win
D1 407 00h 13m 10s 3,529.07 257.06 40.30 3,826.43 196.63 9.74
D2 136 00h 23m 01s 14,301.68 1,057.74 248.54 15,607.95 429.91 41.74
D3 76 00h 22m 46s 7,854.32 877.86 123.37 8,855.54 462.74 27.37
D4 32 00h 11m 48s 4,046.63 201.28 44.56 4,292.47 207.91 16.84
D5 19 00h 04m 50s 1,135.53 89.95 18.11 1,243.58 57.21 4.74
D6 14 00h 18m 36s 4,489.79 616.29 32.07 5,138.14 288.36 9.43
D7 11 00h 23m 05s 7,481.27 879.09 143.00 8,503.36 291.00 41.18
D8 9 00h 08m 19s 2,172.22 36.44 11.44 2,220.11 49.00 3.78
D9 9 00h 22m 13s 2,996.67 354.89 81.33 3,432.89 235.56 25.67
D10 8 00h 07m 57s 1,849.63 154.00 31.50 2,035.13 183.88 8.38
D11 5 00h 14m 32s 6,755.00 504.20 56.60 7,315.80 702.00 16.00
D12 5 00h 13m 34s 6,237.20 510.80 64.20 6,812.20 276.20 17.80
D13 ? 2 00h 02m 58s 1,666.00 136.50 27.00 1,829.50 6.00 5.00
D14 1 01h 52m 38s 10,420.00 551.00 920.00 11,891.00 5,033.00 182.00
D15 ? 1 00h 01m 58s 714.00 21.00 11.00 746.00 32.00 5.00
D16 1 00h 15m 57s 4,741.00 565.00 60.00 5,366.00 305.00 20.00
D17 ? 1 00h 04m 55s 1,347.00 49.00 33.00 1,429.00 3,423.00 8.00
D18 ? 1 00h 07m 46s 5,197.00 38.00 82.00 5,317.00 292.00 28.00

All 738 00h 16m 02s 5,998.01 478.27 89.73 6,566.02 280.03 18.55
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The others are quite familiar with the Pharo IDE, with an expertise between 1 and 5 years (6
developers) or longer than 5 years (11 developers). Table 7.3 shows demographics information.

Table 7.3. Dataset – Demographics of developers

Developer Role Expertise (Years)
D9 Master Student < 1
D14 Master Student 1–5
D1, 2, 10, 15, 16 PhD Student 1–5
D3, 12, 13, 18 PhD Student > 5
D4, 5, 6, 7, 8, 11, 17 Professional > 5

Our dataset features 738 sessions amounting to 197 hours of actual development time, i.e., in
the table, the total (and average) recording time column do not include the timespans in which
the developers were idle (i.e., DFlow recorded no interactions with the IDE for more than 5
minutes). The dataset includes more than 5 million of events (i.e., both meta and low-level).
Sessions, on average, last for 16 minutes and count ca. 7,000 events. DFlow recorded events
for more than 13,000 windows, an average of 18.55 per session.

The total number of low-level mouse and keyboard events (i.e., mouse and keyboard) is
significantly (and not surprisingly) larger with respect to meta events, which begs the question
whether these low-level events are related to meta-events. For example, sequences of mouse
events can be related to specific entity inspections or navigation, but also with simple UI fiddling
or adjustment.

There are substantial differences between different developers. The first 8 developers’ average
session time varies from 4 minutes and 50 seconds to almost 23 minutes and 5 seconds. This
pinpoints the differences in their programming flow: Since recording time is free of idle time,
this value is the “pure” time the developers spent in doing actual work. A developer with a short
session time is a developer whose development flow is highly fragmented. Among the first eight
developers, D2 and D7 are the developers with the less fragmented flow: Their sessions last, on
average, more than 23 minutes, a duration which is in line with, for example, time management
methods such as the “Pomodoro Technique” of extreme programming developed by Cirillo [Cir09].

On the other hand, developers like D5 and D8 have a fragmented flow: They work on average
for around 4m 50s and 8m 19s respectively before having an interruption of at least 5 minutes.
This corroborates the findings of LaToza et al. who established that developers are frequently
interrupted, and that recovering from the interruptions can be difficult [LVD06].

Observing the distribution of low-level and meta events per developer we can speculate on how
developers use the IDE. For example, on average D2 triggers more low-level events with respect to
other developers (on average 15,607.95, more than twice the overall average). An interpretation
for this is that she is constantly fiddling with the UI of the IDE to better accomodate her needs.
Researchers already pointed out possible problems in dealing with the UIs of IDEs. For example,
Rötlisberger et al. called window plague the problem developers might have while dealing with
multiple windows or tabs [RND09]. Developer D8, instead, seems to be at ease with the UI of
the IDE, since her number of low-level events is well below average and, in particular, she has
the lowest average number of window events per session.

The number of meta events can be a rough indicator of productivity: They represent actions
like creating/removing a class/method, or exploring code artifacts or inspecting objects. In terms
of meta events, D2, D3, and D7 seem to be the most productive developers, while D5 and D8
are the less productive ones. This correlates with the fact that the development flow of D5 and
D8 is more fragmented than the one of D2 and D3.
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7.2 Inferring High-Level Development Activities

This section details our inference model for development activity and illustrates how we decom-
pose software development into different categories.

7.2.1 Events, Sprees, and Activities

Interaction histories are streams of interaction. Each event has a timestamp, but it has virtually
no duration, e.g., DFlow records the moment in time when a keystroke happens, but it does not
have information about for how long the user pressed the key. However, this is not a problem,
as our goal is to group these interaction events into sequences of higher level events for which it
is easy to measure the precise duration.

Our model uses the concept of reaction time to aggregate events. While typing a piece of
code, for example, a developer performs a sequence of keystrokes. These keys are separated by
small pauses, in the range of milliseconds, due to the physical actions required involved, i.e.,
pressing keys on a keyboard. In this time, the developer is focused on the writing activity per se.
When the sequence of keystrokes terminates, the developers pause, reflecting on the just written
piece of code, and planning the next steps. The reaction time is the time that elapses between
the end of a physical action sequence (typing, moving the mouse, etc.) and the beginning of
concrete mental processes like reflecting, planning, etc. which represent the basic moments of
program understanding.

We denote the reaction time with RT and assign the duration of 1 second to it. This duration,
known also as “Psychological Refractory Period” [Pin99] varies among humans, also depending
on the task at hand, between 0.15 and 1.5 seconds. This might appear as a threat to validity,
but as iterating through all possible values in that range did not affect our findings, we settled
on the 1 second compromise, which is a conservative choice.

Our inference model uses the reaction time to group low-level events into higher-level ab-
stractions: mouse (or keyboard) sprees and development activities.

Mouse/Keyboard Sprees

A spree is a sequence of mouse/keyboard events where each subsequent pair of events satisfy the
following temporal and conceptual constraints:

• The time elapsed between them is smaller than the reaction time RT .

• They are performed on the same window of the IDE.

• Between them there is no trigger event, i.e., a meta event which conceptually breaks a
spree. Examples include adding or editing a method, navigating in the code browser, or
inspecting an object. Please refer to Figure 3.1 for the explanation of the UIs of Pharo.

• At most one of its events should conceptually initiate a new spree or terminate the current
one, e.g., the keyboard shortcut <Shift-cr> that triggers a search action in the Pharo IDE
initiates a new spree while the mouse moving outside the IDE terminates the current spree.

Development Activities

An activity is a sequence of mouse/keyboard sprees satisfying a number of constraints. We
identify three kinds of activities:
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• Search Activities are all the activities where the user performs a search inside the IDE
(e.g., on the Finder UI, Figure 3.1.5).

• Inspection Activities: examining an object by means of an inspector (see Figure 3.1.3).

• Browser Activities are all remaining activities after removing both search and inspection
activities. They happen on specialized windows of Pharo, like the code browser, such as
editing and navigation.

7.2.2 Inference Model in Practice

Figure 7.1 exemplifies our two-step process to construct development activities from raw interac-
tion histories. The timeline on top shows a sample recorded interaction history, i.e., a sequence
of low-level and meta events.
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Figure 7.1. Sprees and Activities from fine-grained interaction histories

Step 1: From Events to Sprees

The first step towards the construction of activities is aggregating the events into mouse and
keyboard sprees. At the beginning of the sample interaction history shown in Figure 7.1 there
is a sequence of mouse events. We construct a new mouse spree (MS1) by adding these events
until one of the interrupting conditions is met. In this case, the reaction time is not elapsed (the
difference between the last mouse event and the following event is smaller than RT), but there is
a window event that activates a new window. MS1 is complete. The next event in the sequence is
a keystroke. We start composing a new keyboard spree (KS1). After adding some keystrokes to
it, the reaction time elapses (the difference between the timestamp of the next event and the last
event in the current spree is greater than RT), thus we finalize KS1. The same situation happens
for both KS2 and KS3. In the case of KS3, however, there is also a meta event of type EE5 (see
Table 5.1), i.e., the action a developer performs to either add or edit the method of a class. We
call this a trigger event that we associate to the current spree, i.e., KS3. MS2, the next mouse
spree, is interrupted due to the expiration of the reaction time. KS4 is a keyboard spree that
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starts when the user invokes the action that triggers the search in the Pharo IDE. Its stopping
condition is the end of the search. The next mouse spree, MS3 is interrupted because the mouse
moves outside the Pharo IDE window. The time between the end of the spree is marked as DOI
(Duration Outside IDE). The next event, a mouse event in this case, originates the next mouse
spree, MS4, interrupted due to the change of the window in focus. The last mouse spree, instead,
is a dense sequence of mouse events with interleaving window events (not window activations, as
they would have triggered the end of the spree). The timeline in the middle shows the results of
this step: From dozens of low-level events we generated 5 mouse sprees and 4 keyboard sprees.

Step 2: From Sprees to Activities

The second step is to aggregate the sprees into high-level development activities. From the refined
interaction history with sprees (i.e., the middle timeline in Figure 7.1) our approach extracts,
in sequence, search, inspection, and browsing activities. A spree can be part of a single activity,
thus when we assign sprees to activities we mark them as already used. A search activity can be
either performed on a Finder UI or triggered by a keyboard shortcut to start/confirm/abort a
“spotlight-like” search (i.e., <Shift-cr> to start the search, <cr> to confirm it, or either a mouse
click or the <esc> keystroke to abort it). In this case, there is a search activity composed of
the single key spree KS4, triggered by the spree containing the shortcut <Shift-cr>. Inspect
activities are performed on an inspector or triggered by inspection meta events (see Table 5.1).
In the sample interaction history there are neither inspection meta events nor inspector windows,
thus there are no inspection activities. All the remaining sprees are aggregated into “browser
activities”. Starting from the beginning of the interaction history, MS1 is the first activity.
The activity is interrupted because the next spree is on a different window due to the window
activation at the end of MS1. The next three keyboard sprees happen on the same window, and
thus they get grouped into a single activity. The following activity is composed by the single
mouse spree MS2, because the next spree, KS4, is marked as part of another activity, A4. MS3,
the next mouse spree, creates an activity because there is an interruption, i.e., out of the IDE.
The second to last activity is only composed of the spree MS4, because then there is a window
focus change. Finally, the last remaining spree, MS5, concludes the interaction history and makes
up the last activity. The bottom timeline in Figure 7.1, shows the final result: From 9 sprees we
end up with 1 search activity and 6 browser activities.

Our dataset is thus reduced from 5 million of recorded events to 174,366 sprees and to 31,609
development activities.

7.2.3 Decomposing Software Development

We decompose development time into the following distinct and disjunct categories: understand-
ing, navigation, editing, and UI interactions.

Understanding (U)

Understanding (or program comprehension) time, aggregates three main components: (i) Basic
Understanding, (ii) Inspection, and (iii) Mouse Drifting.

1. The Basic Understanding (BU) is the sum of all the basic moments of program under-
standing. It is represented by all time intervals between sprees which are longer than the
reaction time. Basic understanding can be performed inside development activities (i.e.,
intra-activities) and across subsequent activities (i.e., inter-activities).
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• BUint ra is the Basic Intra-Activity Understanding Time that is the sum of all the time
intervals, longer than RT , between the sprees composing an activity.

• BUinter is the Basic Inter-Activity Understanding Time that is the sum of all the time
intervals, longer than RT , between subsequent activities.

2. Inspection (I) is the time a developer spends in inspection activities (mostly using inspector
windows), computed as the sum of the duration of all the sprees that have as trigger an
inspection meta event (see Table 5.1).

3. Mouse Drifting (MD) is the time the user “drifts” with the mouse without clicking. It is
computed as the sum of the duration of the mouse sprees that are only composed or mouse
movements, and no clicks. We also recorded the screen casts of several of the sessions
collected by DFlow and discovered that a large part of this time is absorbed by what
we call mouse-supported reading, i.e., when a developer uses the mouse as a “pointer” to
support the reading of source code (e.g., MS2 in Figure 7.1).

Navigation (N)

Navigation time is the time spent in browsing through software [SES05]. This time includes
both navigation using code browsers or package explorers and searching for particular program
entities or pieces of code.

1. Browsing (B) is the time the developer spend while navigating between program entities.
It is computed as the sum of the duration of the sprees that have as trigger a navigation
meta event (see Table 5.1).

2. Searching (S) is the time a user spends in searching particular program entities such as
methods or classes. This can be achieved using UIs such as the Finder UI (see Figure 3.1.5)
or dedicated keyboard shortcuts, e.g., <Shift-cr> in the Pharo IDE triggers a search
dialog, see Figure 3.1.6. This time is the sum of the duration of the sprees happening
inside user interfaces that support search activities. We remove from this time both the
user interactions, mouse drifting, and editing time that might happen inside search UIs.

Editing (E)

Editing time is the time that the developer spend editing source code. This is computed by
summing up the duration of all the sprees that have as trigger an editing meta event (see
Table 5.1). For browsing activities, this definition is refined depending on the window where
the activity is performed. In a code browser, for example, all the keystroke sprees that have no
trigger for navigation contribute to editing time. Examples are KS1, KS2, and KS3 in Figure 7.1.

User Interface Interaction (UI)

UI time is the time explicitly devoted in fiddling with the UI. This includes, for example, moving
or resizing windows to better organize the IDE. It is computed as the sum of the duration of
the mouse sprees that have interleaving window resize and move events in their timespan. An
example is MS5 in Figure 7.1.
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Time Spent Outside the IDE (OI)

Besides the three categories discussed before, we also track the time spent outside of the IDE, i.e.,
the time that the developer spend outside the Pharo IDE window. It is computed by summing
up all the timespans that elapse between all activities that terminate with the Pharo IDE losing
focus (e.g., mouse goes outside the main IDE window) and the beginning of the next activity in
the interaction history. It is denoted as DOI (i.e., Duration Outside the IDE) in Figure 7.1.

7.3 How Developers Spend Their Time

Figure 7.2 summarizes how developers spend their time, on average, on each of the five high-level
activities identified from fine-grained IDE interaction histories.
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Figure 7.2. How do developers spend their time?

Program understanding is as expected the dominant activity, but as we see our analysis
attributes to it even more importance than what the common knowledge suggests, reaching a
value of roughly 70%. This is a strong point in favor of the research done in the field of program
comprehension and reverse engineering. A rather worrisome finding is the time spent in UI
interactions: roughly 17% of the time is spent in fiddling with the user interface of the IDE. The
relatively small amount of time spent in editing and navigation (roughly 5% for both of them)
is not surprising. In the case of editing it corroborates previous research, which established that
when it comes to actual writing of source code the so-called “productivity” of developers is rather
low [KM05]. This is yet another argument against measuring productivity with metrics like lines
of code. In the case of navigation it emphasizes the fact that programming is not only writing,
but rather a complex mental activity where a software system is perceived and navigated like a
graph composed of nodes (i.e., program entities) and edges (i.e., relationships and dependencies
between them), and not like a flat collection of textual artifacts. Last, the time spent outside of
the IDE, during a session, corroborates the findings of LaToza et al. [LVD06]: Developers are
often exposed to micro-interruptions of voluntary nature (e.g., emails, instant messages, social
networks notifications). Our dataset establishes that roughly 10% of the development time is
spent on such interruptions. Table 7.4 presents the detailed results aggregated per developer.
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The remainder of this section details the components of program understanding and the impact
of work fragmentation on UI and understanding time.

Table 7.4. Results – Time components aggregated per developer

Understanding (%)
Basic Other Navigation (%) Edit UI OI

Dev. BUint ra BUinter I MD Tot. B S Tot. (%) (%) (%)
D1 35.07% 36.37% 0.25% 2.96% 74.64% 2.37% 0.38% 2.75% 3.07% 9.01% 10.53%
D2 37.41% 6.65% 3.23% 5.51% 52.79% 4.81% 1.19% 6.00% 9.76% 28.51% 2.94%
D3 47.68% 22.22% 0.87% 3.76% 74.54% 4.47% 0.26% 4.73% 5.44% 12.21% 3.08%
D4 38.06% 27.86% 0.53% 3.28% 69.74% 3.21% 0.14% 3.35% 3.75% 14.13% 9.03%
D5 22.90% 45.67% 0.07% 1.89% 70.53% 1.20% 0.00% 1.20% 2.74% 10.90% 14.63%
D6 52.85% 23.40% 0.11% 2.25% 78.61% 3.41% 0.05% 3.46% 9.18% 8.76% 0.00%
D7 56.77% 10.70% 0.07% 2.06% 69.59% 1.82% 0.00% 1.82% 10.67% 17.57% 0.35%
D8 45.66% 24.84% 0.00% 3.60% 74.09% 2.26% 0.00% 2.26% 1.29% 11.34% 11.03%
D9 58.68% 17.93% 0.73% 0.93% 78.26% 1.00% 0.09% 1.09% 6.08% 13.45% 1.12%
D10 36.94% 28.34% 0.57% 1.96% 67.81% 5.41% 0.00% 5.41% 4.10% 22.41% 0.28%
D11 39.11% 7.77% 0.00% 4.27% 51.14% 5.90% 0.00% 5.90% 6.66% 11.59% 24.70%
D12 28.58% 8.25% 0.00% 4.24% 41.07% 2.51% 0.00% 2.51% 10.49% 31.73% 14.20%
D13 ? 52.97% 15.36% 0.30% 4.67% 73.29% 1.47% 0.00% 1.47% 4.07% 21.16% 0.00%
D14 7.04% 86.76% 0.07% 0.21% 94.08% 0.56% 0.00% 0.56% 1.24% 4.13% 0.00%
D15 ? 54.14% 22.58% 0.00% 1.54% 78.26% 1.73% 0.00% 1.73% 2.66% 17.34% 0.00%
D16 64.80% 1.09% 2.93% 3.47% 72.28% 1.39% 0.16% 1.54% 10.01% 15.91% 0.26%
D17 ? 73.74% 3.48% 0.00% 0.85% 78.07% 4.46% 0.00% 4.46% 1.97% 15.50% 0.00%
D18 ? 29.15% 6.71% 0.00% 4.21% 40.06% 4.16% 0.00% 4.16% 1.32% 33.45% 21.01%
Avg. 37.82% 27.70% 0.87% 3.46% 69.85% 3.09% 0.47% 3.56% 4.90% 13.81% 7.88%

7.3.1 The Components of Program Understanding

The attentive reader has probably noted that Figure 7.2 does not include some of the components
described in the previous section, such as inspection and mouse drifting – even if their contribu-
tion is relatively low, it is not negligible. They have not been elided, instead, we grouped them
as components of program understanding.

Inspection is an activity, performed on objects at runtime, to check their status, and ulti-
mately to understand the dynamic aspects (i.e., the behavior) of the code. It is essential in
any process involving running code, like debugging. In live environments like Pharo, inspection
can be used to inspect any runtime object created by running any piece of code, i.e., it directly
supports the understanding of run-time behavior.

Mouse drifting is another component of program understanding that corresponds to mouse
movements without any apparent consequent action. One of the typical examples of mouse
drifting is to support the reading of a piece of code: Developers support the reading activity by
slowly moving the mouse pointer as a guide to read and understand the code.

There is large variability of program understanding among developers. In our dataset, it
ranges from 41% for D12 to 94% for D14; however, in both cases, we do not have many recorded
sessions, so they are probably simply outliers for specific tasks that require respectively a minimal
or a maximal amount of understanding. In case of D12, most of the remaining time is actually
spent on fiddling with the UI (around 32%) and being outside the IDE (ca. 14%), which suggests
she is not concentrated on the task at hand.
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Inspection also varies between developers: For example D2 spends around 3% of her time in
inspection activities, while the average inspection time is below 1%. Similar higher time spent
on inspection can be seen on D16. Higher variety is present on the usage of mouse drifting. D2
and D12 spend much of their time fiddling with the UI.

Our data provides insights on how understanding is distributed among activities. On average,
basic inter-activity understanding amounts to 10% more than intra-activities understanding. It is
evident that base understanding is prevalent inside activities, that is, inside conceptually related
sequences of keyboard or mouse sprees. In other words, the process of program understanding
is not really an activity per-se, but it is interleaved with other activities like editing. Again,
there is significant variability between developers. The process of base understanding for D1,
for example, is almost equally divided between intra- and inter-activity understanding. For D5
and D14, there is significantly more inter-activity understanding, which probably means that the
activities of these developers are contiguous, and less affected by interruptions.

7.3.2 Time Spent Outside the IDE

Switching the context between the IDE and other applications (i.e., reading e-mails) impacts
the focus, flow, and productivity of a developer [LVD06, SRG15]. A developer who spends time
outside the IDE, once back in the IDE, is likely to need time to “recover”: Her sessions are
likely to exhibit more time spent in program understanding. Another factor that may impact
the duration of understanding time is the number of such breaks: A session may end up in
a “fragmented” state where the flow is frequently interrupted by context switches that lead to
spending time outside the IDE, and it might have an impact on the time spent in program
understanding. The number of context switches might also have an impact on the time spent
in fiddling with the UI of the IDE. After a context switch, it is likely that a developer needs to
re-arrange her environment to “recover” the context inside the IDE. This is what we call UI time.

To investigate these conjectures, we analyze the correlation between work fragmentation,
time spent in fiddling with the UI of the IDE, and understanding time. Work fragmentation is
expressed by the time spent outside the IDE (i.e., DOI) and the number of times the developer
goes outside the IDE (i.e., OI Events). We use the Pearson Correlation Coefficient (PCC) to
determine the linear correlations using the R4 tool. Our analyses involve the 704 sessions that
have time spent outside the IDE.

Time Spent Outside the IDE vs. Understanding Time

The PCC is 0.46 and is thus a weak linear correlation; using the corresponding statistical
test [Tri06], we reject the hypothesis that values are not correlated at 95% confidence level
with the lowest possible p-value returned by R (2.20× 10−16).

Number of OI Events vs. Duration of Understanding

The PCC is 0.63, and the statistical test at confidence level of 95% is in favor of rejecting the null
hypothesis of non-correlation with a p-value similar to the previous test. Even if correlation is
not causation, these findings are consistent with the hypothesis that the number of time intervals
spent outside the IDE increases understanding time.

4See http://www.r-project.org

http://www.r-project.org
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Number of OI Events vs. Duration of UI Time

The PCC is 0.65, and the statistical test at confidence level of 95% is in favor of rejecting the
null hypothesis of non-correlation, with the same p-value. These results support the fact that
the more context switches happen in a session, the more a developer fiddles with the UI of the
IDE to recover her focus.

Table 7.5. Results – Correlation of Understanding time (UND) with the number of OI events (NOI) and the
Duration of the time spent Outside the IDE (DOI)

Developer Sess. NOI
Avg.
NOI

PCC NOI
vs. UND p-value

PCC DOI
vs. UND p-value

D1 407 2,101 5.16 0.72 2.20×10−16 0.66 2.20×10−16

D2 136 989 7.27 0.76 2.20×10−16 0.40 1.83× 10−6

D3 76 154 2.03 0.47 2.27× 10−5 0.00 9.53× 10−1

D4 32 91 2.84 0.91 7.07×10−13 0.80 2.89× 10−8

D5 19 36 1.89 0.82 2.09× 10−5 0.61 6.03× 10−3

D7 11 73 6.64 0.74 9.82× 10−3 0.64 3.55× 10−2

Table 7.5 shows the first two correlation analyses discussed above for each developer with
at least 10 sessions with at least one time interval spent outside the IDE in a session (i.e., D6
is not in the table because she has zero OI Events). At first sight, there is evidence of diverse
developer behavior in terms of the number of time intervals spent outside of the IDE per session,
which varies from a minimum of 2.37 to a maximum of 8.50 intervals per session. Results for
correlation are also diverse: All p-values are very low (i.e., below 4×10−2) and suggest rejection
of the hypothesis of non correlation. The exception is D3, for whom the duration of the time
spent outside the IDE is not correlated with the duration of program understanding. However,
there is a mild but significant correlation with the number of intervals spent outside the IDE.
This likely means that it does not matter how much time she spent outside the IDE in total, but
just the number of times her sessions are fragmented. D2 shows a similar behavior: she seems
more affected by the number of times she exits the IDE rather than time spent outside. D4 is also
interesting: Her sessions are not very fragmented; however, she is the developer mostly affected
by the time spent outside the IDE, with strong correlation with both duration and number of
intervals spent outside the IDE.

7.3.3 The Impact of the UI, Navigation, and Editing

Our data shows that on average around 14% of the time of developers is spent on rearranging the
UI of the IDE, that is, resizing or dragging windows. Different experience may explain variability
when aggregating data per developer. D14, for example, rearranges windows only for 4% of the
time, while D2 and D12 spend around 30% of their time for this task. This might indicate that
they often end up in chaotic environments [RND09] that need to be reordered or restructured.

Our data shows that pure source code navigation occupies around 3.6% of the time of devel-
opers, and that browsing occupies most of the time spent in navigation. Only 7 developers used
searching. Among the people who use search, the time spent on these activities low. Presence of
editing activities and editing time is also quite variable: it ranges from 1.24% for D14 to 10.67%
for D7. Moreover, D7 and D16 correlate their high time spent in editing with very short time
spent outside the IDE, which is probably a sign of highly focused development sessions.



7.4 Reflections 81

7.4 Reflections

In this chapter we proposed a model that aggregates raw IDE interaction events into sprees and
those into activities. From 5 million events recorded with DFlow, the model creates 31,609 high-
level development activities. We used the activities to measure the time spent by developers in
5 distinct and disjunct categories: understanding, navigation, editing, UI interactions, and time
spent outside of the IDE.

Our results reinforce common claims about the role of program understanding by suggesting
that previous research might have significantly underestimated the importance of program com-
prehension. In addition, developers spend 14% of their time in fiddling with the UI of the IDE,
which calls for novel and more efficient user interfaces. The time spent for editing and navigating
source code is respectively 5% and 4%. The large part of development is occupied by mental
processes (i.e., understanding) and, in the remaining time, a developer has to deal with inefficient
user interfaces to read, write, and browse source code. We believe that future IDEs should tackle
these problems to enable developers to focus on the tangible part of development: writing source
code. We also observed that the number of context-switches (i.e., times the IDE loses focus in
a development session) and their duration, is linearly correlated with both the understanding
time and the time spent in fiddling with the UI. This corroborates results obtained previously
by researchers like LaToza et al. [LVD06]. Finally, the time spent outside of the IDE (ca. 8%),
the frequency of such interruptions, and their subsequent negative impact on understanding,
points out that developers are exposed probably too often to distractions. To draw a simplistic
conclusion: Developers should not be interrupted during programming activities.

We believe that our work makes a number of contributions to the state of the art: First,
with respect to the field of program comprehension, it confirms what has long been an accepted,
but never validated, ground truth: program comprehension is the activity with which developers
spend the vast majority of their time. The motionless staring at the screen is thus legitimized.
Second, it points out that IDEs are far from perfect when it comes to the way their user interfaces
are built. We believe this calls for research in novel approaches and metaphors, which so far still
represent a niche research area. Third, it confirms that like many other modern workers, software
developers are exposed to frequent interruptions with negative consequences.

7.4.1 Advocatus Diaboli

Dataset. We believe that our datasets are large enough to draw statistical conclusions. However,
it has flaws related to the distribution of recorded sessions among the developers: More than
half of the sessions come from the same developer and some developers provided us with only
few minutes of interaction data. Since the last fact may influence conclusions about developer
diversity, we will not consider such individuals when we reason about single developers. We
included their values from completeness, but we marked them by adding a star (?) next to their
names in the Tables of this chapter. Another argument can be formulated about the missing
purpose (e.g., debugging, refactoring, ex novo implementation) of sessions. Further investigation
is needed to understand how the purpose of a session and the code base and project size influence
studies like the one we propose.

Inference Models. We inferred activities starting from low-level events like keyboard and mouse
sprees, and meta-events from the IDE like saving a method or inspecting a field of an object.
Recording low-level events minimizes the possibility that we discard relevant events and do not
capture exact duration of activities. However, since we may not monitor every possible meta event
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of the IDE (e.g., special ad-hoc plugins and widgets) we may potentially interpret some activity
in the wrong way. To cope with this threat, we made sure that all developers used the standard
widgets of Pharo for which our model correctly classifies events and sprees in the correct class
of activities. As future work, we plan to cross-validate our automated activity extraction with
concrete observations (e.g., think-aloud) to understand to what extent the extracted activities
match the actual activities.

The same applies with basic understanding. In principle, the fact that small periods of idle-
ness (inter- and intra-activities) are mapped to program understanding is an explicit assumption
that we made, but indeed they could be mini interruptions unrelated to development, like the
programmer checking his phone. However, the reverse critic could be done to some of the mo-
ments spent outside the IDE. They could be timespans spent in checking documentation or other
development artifacts supporting program understanding, that are completely absent from our
model. We still need cross-validation to ensure that our interpretation is correct, but we believe
that the issues above compensate themselves and do not invalidate our measurements involving
program understanding.

Results. The results of the correlation analyses summarized in Table 7.5 are consistent with the
fact that the time outside the IDE influences the total program understanding time. However,
the dynamics of development are complex, and other factors influence the duration of program
understanding. For example, developer experience on the task at hand may strongly decrease the
impact of session fragmentation on program understanding. Moreover, the extent and impact
of fragmentation depends on the specific activity performed outside the IDE – it is likely that a
chat on an unrelated matter or browsing a social network’s feed may impact more than reading
a related Stack Overflow discussion.

7.4.2 Wrapping Up

In the last two Chapters we discussed how to use IDE interactions to estimate how developers
spend their time. The next Chapter, instead, focuses a single development activity: source code
navigation. We present an approach to model and measure how efficiently developers navigate
source code in the Pharo IDE using interaction data.
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Developers spend more than 40% of their time navigating and reading source code
[SLVA97]. In the previous chapter we have seen that we can leverage interaction data to
provide an estimate to the time spent in program comprehension activities. According

to our results, these activities potentially absorb up to 70% of the time of developers [MML15b].
During software maintenance another key activity is source code navigation [RCM04, PFS+11].
Researcher observed that navigating code is essential to support the construction of mental mod-
els of the system [SFM99, LVD06], i.e., mappings between relevant parts of source code and the
purpose of the program [SFM99], which in turn is a prerequisite for software comprehension.

To navigate and read source code, developers leverage the user interfaces offered by an IDE.
Examples include code browsers, package explorers, senders (i.e., callers) browsers, or implemen-
tors (i.e., definitions) browsers. By construction, these UIs force developers to perform a certain
number of interactions with the IDE to navigate source code: The Eclipse’s Package Explorer,
for example, forces developers to follow structural relationships between code entities, introduc-
ing potentially unnecessary navigations. Moreover, a given programming task may require the
programmer to navigate more entities than needed.

While there is limited evidence that this navigation process is inefficient (e.g., [RCM04,
MKF06, KMCA06]), it is largely unclear how to actually define, and also measure, the navigation
efficiency. In particular, it is non-trivial to define an optimal navigation scenario for a given task
which consists of a set of navigated entities.

In this chapter we present a series of models that use IDE interactions to estimate the naviga-
tion efficiency of developers inside the Pharo IDE. We call navigation efficiency the ratio between
an ideal scenario and the actual behavior of the developer. Having both a precise definition of
navigation efficiency as well as knowing the optimal navigation scenario are prerequisites to ob-
tain an in-depth understanding of how IDEs can be made more efficient from a user interface
perspective, when it comes to supporting software development activities.

Structure of the Chapter

Section 8.1 explains the mechanics of navigation in the Pharo IDE and summarizes the dataset
of this study. Section 8.2 introduces the concepts we used to model navigation efficiency with
IDE interactions. Section 8.3 illustrates our preliminary model for navigation efficiency and our
preliminary results. Section 8.4 explains the refinements to the model and details the updated
results. Finally, in Section 8.5 we discuss the results and Section 8.6 concludes the chapter.

83
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8.1 Source Code Navigation in the Pharo IDE

Navigating source code inside an IDE is supported and influenced by the components and by
the UIs that it offers. This section describes the classical way developers navigate source code
in the Pharo IDE and summarizes the dataset of this study.

8.1.1 Structural Source Code Navigation in Pharo

Pharo is a window-based IDE (as opposed to tab-based IDEs, like Eclipse). As described in
Section 3.2, its object model is composed of methods, protocols, classes (instances of metaclasses),
and packages. Methods, classes, and packages are well known concepts shared with many other
object-oriented languages. Protocols are essentially labels to group methods according to their
intent as defined by the programmer or by conventions (e.g., the “accessing” protocol groups all
the accessors of a class).

cba d

e

Figure 8.1. The Code Browser: The main UI to Navigate and modify code in the Pharo IDE

To navigate and/or modify source code, the main UI offered by the Pharo IDE is the Code
Browser, depicted in Figure 8.1. The upper part of the browser depicts a tree view for the struc-
ture of the code featuring 4 columns, one for each element of the object model, i.e., (a) packages,
(b) classes, (c) protocols, and (d) methods. To select an entity of interest, developers follow the
structural organization of the source code. In the browser of Figure 8.1, for example, the devel-
oper selected the method at:ifAbsentPut: in the protocol “adding” of class OrderedCollection
which is contained in the package Collections-Sequenceable.
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Example Navigation Scenario

To navigate to a specific method, the developer has to perform the following steps:

1. Select a Package. The leftmost column of the browser (Fig. 8.1.a) lists all the packages.
The developer browses them and clicks on the one she wants to explore.

2. Select a Class. After selecting a package, Pharo populates the second column of the browser
with the list of all the classes contained in that package (Fig. 8.1.b). The developer can
now choose the one she is interested in.

3. Select a Protocol (optional). After selecting a class, Pharo populates the third column
(Fig. 8.1.c) with all the available protocols and the fourth column (Fig. 8.1.d) with all the
methods of the class (regardless of the protocol). The selection of the protocol is optional:
A developer can also directly browse the complete list of methods.

4. Select a Method. If a developer selected a protocol, the last column of the browser will
only list the methods belonging to that protocol (Fig. 8.1.d).

Finally, once the developer selects a method, the bottom half of the browser (Fig. 8.1.e)
displays the source code of the selected method, and lets the developer read it and modify it.

In a nutshell

The code browser forces developers to follow structural source code relationships. While the
developer often knows which place to reach, she is forced to perform a series of UI interactions
to do so. In tab-based IDEs like Eclipse, even if the mechanics are slightly different, often
developers are in the same situation, e.g., when using the Package Explorer.

8.1.2 Dataset

Table 8.1 summarizes the dataset for the current study. It counts 711 sessions coming from 6
developers. Development sessions do not include interruptions lasting more than 5 minutes (i.e.,
considered inactivity) [MML15b].

We consider a total of 20 days (i.e., 474h 6m 20s) of development time. On average, a session
lasts for about 40 minutes. However, if we observe the quartiles1, there is some variability: Half
of the sessions (Q2) are shorter than 30 minutes and one fourth of the sessions (Q3) are actually
longer than 53 minutes. The first quartile, instead, is around 19 minutes.

Table 8.1 also reports details on the number of meta events and program entities involved in
the sessions. On average, each session features about 280 meta events, of which around 217 are
navigations, 18 are edits, and 52 are inspects. If we look at the program entities involved, on
average developers deal with 35 entities per session. They only edit around 6 entities per session.
The remaining entities are only navigated (ca. 29) or subject to inspection (ca. 7).

8.2 Modeling Navigation Efficiency with Interaction Data

We call “navigation efficiency” the ratio between an ideal navigation scenario and the real nav-
igation effort spent by developers [MML16a]. The real effort corresponds with the number of

1In all the Tables, Qn indicates the nth quartile.
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Table 8.1. Dataset – Study on the Navigation Efficiency

General
Number of Sessions 711
Number of Developers 6
Total Duration 474h 06m 20s

Average Duration Q1 Q2 Q3 Avg.
Session Duration 18m 40s 30m 30s 53m 24s 40m 01s

Meta Events (Session) Q1 Q2 Q3 Avg.
Navigation 57 124 261 216.87
Edit 4 7 13 18.17
Inspect 2 14 45 51.78
All 88 179 362 279.41

Entities (Session) Q1 Q2 Q3 Avg.
Navigated 10 20 40 28.85
Edited 2 4 6 5.47
Inspected 1 5 11 7.29
Total 15 26 44 34.85

navigation events performed by a developer in a development session. This data is contained in
the IDE interaction histories recorded with DFlow.

The ideal effort, instead, expresses the theoretical minimum number of navigations that a
developer has to perform in a session to accomplish her tasks. It is an estimate that depends on
two main variables: the program entities involved and the cost of navigating such entities.

Involved Program Entities

During a development session, developers interact with different program entities. Some of them
are modified, others are only navigated, for example to build a mental model of the system, e.g.,
[SFM99]. In a completely, yet unrealistic, ideal case a developer visits once each of the entities
that she needs to change as part of her task. We call those entities edited entities. In the real
scenario, i.e., the recorded interaction history, a developer navigates more entities than the ones
just edited (e.g., [DCR05, YR11]): We call those entities touched entities. The touched entities
contain, in addition to the edited entities, all the entities that are essential for the construction
of the mental model, and also spurious entities, e.g., entities that were navigated by mistake by
the developer and do not contribute to program understanding.

Since it is almost impossible to identify spurious entities, our model for the ideal navigation
effort only considers the edited entities. However, even if we only consider the edited entities
to represent a programming task, one may take into account the fact that developers may visit
entities more than once and/or in a specific order.

Navigation Cost

The navigation cost is expressed in terms of the number of UI interactions (i.e., clicks) needed
to reach an entity of interest. Hence, the cost is strictly related to how the UI that the developer
uses to navigate, and modify, source code supports the navigation.
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Figure 8.2. Navigating source code in the Pharo Code Browser: (a) Selecting a Package, (b) a Class, (c) a
Protocol, and (d) a Method

For example, we can compute the cost of navigating to an entity with the Pharo Code
Browser, a tool similar to the Package Explorer in Eclipse. Figure 8.2 shows all the steps needed
to navigate to a method. With one IDE interaction the developer selects a package and obtains
the list of its classes (Figure 8.2.a). With another click she can select a class and obtain the
list of protocols contained in it (Figure 8.2.b). At the same time the browser populates the list
of all methods. With the next click she can select a protocol and obtain the list of methods,
or directly selecting one of the methods from the rightmost column (Figure 8.2.c). Finally, she
selects a method and obtains its source code in the browser (Figure 8.2.d).

We define the navigation cost (NC) for an entity x as:

NC(x) =



















1 if x is a package,

2 if x is a class,

3 if x is a protocol,

4 if x is a method.

However, the code browser is not the only way to navigate code. As all modern IDEs, the
Pharo IDE also features different UIs that support navigation (e.g., search facilities). This is
one of the core aspects described in the following section when we describe how we incrementally
build our models for navigation efficiency.

8.3 A Naïve Model for Navigation Efficiency

We developed a series of models for navigation efficiency, starting from a naïve model and refining
it to mimic more realistic scenarios. Our initial model considers two variants for the involved
entities and two navigation cost models [MML16a].

Involved Program Entities

In an ideal, yet unrealistic, scenario, a developer knows exactly what she needs to modify and
does not need to construct a mental model. Thus she does not visit entities that she do not need



88 Measuring Navigation Efficiency in the IDE

to modify. The navigation efficiency is thus computed only considering the set of entities that
have been edited during the development session. The model considers two possible alternatives:

Working Set. It represents the more ideal case: The developer knows exactly what she must
edit, thus she only visits each entity exactly once to perform the needed modifications,
never touching the same entity again.

Working Sequence. In a more realistic case, the model considers the sequence of edited
entities, as they appear in the recorded interaction history. This estimate gives importance
to the so called revisits, i.e., when a developer navigates, and also edits, more than one time
the same entity during a development session [SKG+13]. During re-factoring, for example,
a developer re-edits previously modified entities. In Test Driven Development (TDD),
multiple edits are interleaved with the writing of test cases to support the implementation
of a feature.

Navigation Cost

The navigation cost expresses the price of navigating to an entity. We define the cost in terms
of the number of navigation events (i.e., clicks) that the developer has to perform to reach an
entity [MML16a].

We identify two cost models:

Unitary. In the most ideal case the developer can directly jump to an entity, e.g., by using a
search interface.

Max. In the worst case, instead, the developer uses a new code browser each time she has to
perform a new navigation. In this case, the navigation cost is exactly the one imposed by
the code browser.

Results

Table 8.2 summarizes our results by applying this naiv̈e model. It reports four alternatives of
navigation efficiency by varying the two parameters of the model.

Table 8.2. Results – Preliminary estimates for Navigation Efficiency

Working Set Working Sequence
Cost Q1 Q2 Q3 Avg. Q1 Q2 Q3 Avg.

Unitary 0.018 0.032 0.060 0.051 0.036 0.060 0.112 0.096
Max 0.073 0.129 0.238 0.206 0.137 0.242 0.450 0.387

In the more realistic case (i.e., working sequence), developers perform on average 1.5x to 9x
more navigations than in the ideal settings2. Observing medians, unneeded navigations range
between 3x to 16x more than the ones ideally required. If we compare the real effort with the
most ideal scenario, the working set, the results are even worse, with 4x to 19x more navigations.
Medians show that in 50% of sessions developers perform more than 30x the needed navigations.

The next section details our more precise model called “Delta-cost” (or ∆-cost).

2Redundant navigations are computed as follows: 1
Efficiency − 1.
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8.3.1 A More Realistic Cost Model: The ∆-cost

The naiv̈e model considers the two extreme navigation costs: Unitary and Max. The former
assumes that developers jump to the entity of interest with one single action, while the latter
assumes that they always use a new code browser and perform the entire navigation chain.

Since we believe that the truth lies somewhere in between, we introduce the delta-cost (or
∆-cost) model that better matches the reality of navigation in the code browser. In more realistic
settings, a developer neither always directly jumps to the entities nor opens a new code browser
every time. What she does is “reuse” part of the code browser’s UI.

Navigating to a new entity thus depends on the currently selected entity. For example,
suppose we have a code browser with the method bar of class Foo selected. If the developer
wants to visit a new method of the same class. The theoretical cost (i.e., or max cost) would
be 4, but with the ∆-cost model, we can subtract the cost the developer has already payed (i.e.,
“navigation prefix”, the cost of navigating to the common part of the navigation chain, in this
case the cost of visiting the class Foo, that is 3). The resulting navigation cost is 4− 3= 1.

Clearly, with the∆-cost the navigation order is essential. Also with this model, when compute
the navigation effort we have two scenarios for the involved entities:

Working Sequence. The working sequence considers the entities as they appear in the
developer’s interaction history. Thus, it is enough to apply this new cost model without
any modification.

Sorted Working Set. Since the cost of navigating an entity depends on the currently selected
entity, and we aim at an ideal scenario, simply removing duplicates from the sequence is
suboptimal. Thus, we consider the set of edited entities in the order that minimizes the
total navigation cost. This model assumes a more ideal case than the working sequence: We
group navigations from methods belonging to the same class, and from classes belonging
to the same package. In practice, we take the sequence of all the edited entities, we remove
the duplicates, and we sort them as per Figure 8.3.

P1.Foo

P1.Foo>>#m1

P1.Baz

P1.Foo>>#m1

P1.Foo>>#m2

P1.Baz

P1.Baz>>#m3

P1.Baz>>#m4

Original Sequence

P1.Foo

P1.Foo>>#m1

P1.Baz

P1.Foo>>#m2

P1.Baz>>#m3

P1.Baz>>#m4

Set

P1.Foo

P1.Foo>>#m1

P1.Baz

P1.Foo>>#m2

P1.Baz>>#m3

P1.Baz>>#m4

Sorted Set

Figure 8.3. Sorting entities to minimize the ∆-cost

In Figure 8.3 the notation P1.Foo»#m2 represents the method m2 of class Foo, contained in
package P1. The first column of the figure shows the original sequence of edited entities, while
the central column shows the corresponding set, with duplicate entities removed: In the example
of Figure 8.3, we remove P1.Foo»#m1 and P1.Baz.
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Thus, in the second step we sort the entities according to their common “navigation prefix”.
In the original interaction history, the user initially edits the method P1.Foo»#m1, then the class
P1.Baz. Afterward she returns to a method of class P1.Foo and finally edits two methods of
class P1.Baz.

This sequence is not optimal in terms of ∆-cost because navigating multiple times from
P1.Foo to P1.Baz and viceversa leads to a higher navigation cost as opposed to perform this
navigation once. To minimize the navigation cost, we put as close as possible entities with the
longest common “navigation prefix”, i.e., in this case we move the navigation to P1.Foo»#m2 close
to the navigation to m1 of the same class. The result is a sequence of entities with a minimal
navigation cost (i.e., ∆-cost) across adjacent pairs of entities.

This choice of ordering the edited events and the use of the ∆-cost model, idealizes a process
in which the developer has a solid mental model for the current editing task, and she is able
to identify each method to be edited in each class (and each class to be modified in a specific
package), without visiting an entity more than once in a session.

Table 8.3 summarizes the navigation efficiency measured with the ∆-cost model.

Table 8.3. Results – Navigation Efficiency with ∆-cost

Efficiency (∆-cost)
Q1 Q2 Q3 Avg.

Sorted Working Set 0.028 0.062 0.116 0.094
Working Sequence 0.039 0.086 0.154 0.126

In the most ideal case (i.e., sorted working set) the efficiency of developers is on average
0.094, i.e., they perform 10 times more navigations than needed. The situation is better if we
consider the actual sequence of edited entities, i.e., developers perform 7 times more navigations
than needed.

8.3.2 Limitations

Developers’ Diversity and Demographics

Our dataset includes sessions coming from 6 developers. To present the data from a different
perspective, we observed how the navigation efficiency varies across different developers. One
hypothesis is that navigation efficiency might be connected to a developer’s expertise, or with
the developer’s knowledge of the system.

Figure 8.4 shows a box-plot of the navigation efficiency per developer using the ∆-cost and
the sequence of edited entities.

D2 and D3 are inexperienced with the Pharo IDE. In addition, D2 is also new to program-
ming, while D3 is a graduate student with 4 years experience with other IDEs. The remaining
developers, instead, are professional developers familiar with the Pharo IDE: They have been
developing in Pharo for more than 5 years. Inexperienced developers are not worse source code
navigators. As a matter of fact, D2 is outperforming the more experienced developers.

How can this be? Moreover, in some sessions the efficiency of D2 is greater than 1, meaning
that she is outperforming even the ideal model. How is this possible? The answer lies in a key
limitation of our model: Neglecting the fact that developers often do not edit the source code
with the code browser, but by using other UIs of the Pharo IDE such as its live debugger.
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Figure 8.4. Navigation Efficiency per developer [∆-cost + sequence]

More than a Debugger

Figure 8.5 shows the UI of the Pharo Debugger which is composed of: a stack trace (a), a source
code editor (b), and a variable inspector pane (c).

c

b

a

Figure 8.5. The Pharo Debugger UI

In Pharo developers can use the editor pane of the debugger (Fig. 8.5.b) to modify the code
of the selected method on the execution stack (Fig. 8.5.a). After saving modifications, the IDE
will re-compile the new method, and resume execution.

Moreover, the stack trace (Fig. 8.5.a) is navigable. Thus, developers can select an entry
from the stack trace to obtain its source code in the editor pane (Fig. 8.5.b). Afterwards, the
developer can modify it and save the changes, with no difference with respect to the code browser.
Thus, limiting the scope of navigations to the code browser is too simplistic, which calls for an
additional refinement of our model.
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8.4 A Refined Model for Navigation Efficiency

Building on top of the limitations of the naïve model described in the previous section, we refine
our model by including navigations that happen in UIs different than the code browser. In turn,
we refine both the scenarios for real and ideal navigation measures.

8.4.1 Navigation Beyond the Code Browser

Source code navigation happens in at least three other UIs, namely the Debugger, the Senders
UI and the Implementors UI (i.e., similar to the “Jump to declaration/definition” of Eclipse).

a b

Figure 8.6. The Senders UI (a) and the Implementors UI (b) for the method size

Senders UI. In Pharo developers can select a method and ask for all the methods in the sys-
tem that invoke that method. The IDE will open a senders UI, as the one depicted in
Figure 8.6.a. The name of this UI, “senders”, comes from the fact that Pharo follows a
messaging paradigm, thus invoking a method means sending a message to a given object.

Implementors UI. A complementary UI is the Implementors UI that, given a method name
shows all methods in the system with this name (belonging to different classes). Figure 8.6.b
shows an example of this UI.

Both UIs offer a list of methods on the topmost half and a code editor pane on the bottom.
The top part is navigable, thus lets developers directly navigate entities, i.e., with unitary cost.

8.4.2 Refining Real Navigation

Figure 8.7 shows the updated box-plot for navigation efficiency when considering the navigations
happening in other UIs, i.e., debugger and senders/implementors UIs.

Compared with the previous results depicted in Figure 8.4, now the efficiency of D2 is similar
to the one of the others developers. However, now the ideal navigation cost is wrong because it
considers all the navigations happening in the code browser.
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Figure 8.7. Navigation Efficiency considering Navigations outside the Code Browser

8.4.3 Refining Ideal Navigation: The UI-Aware Model

Navigations happening outside the code browser are more efficient than navigating with the code
browser, i.e., list vs. tree navigation. Thus, it is reasonable to assume a unitary cost, as in each
of the four selections needed in the code browser. This models the situation when the developer
looks at the list of methods, for example in a debugger, and clicks on a method.

This assumption can be applied to refine the model that considers the sequence of edited
methods. In the other case (i.e., the set of edited methods) if a method is edited in both a code
browser and a debugger, it would be rather arbitrary to choose one cost model with respect to
the the other to compute its ideal navigation cost.

The refined model computes what we called “UI-Aware Navigation Cost” as follows:

• It considers the sequence of edited entities as they appear in the recorded session;

• For each edit event, it checks in which UI component it has been performed:

– For events in the code browser, it uses the ∆-cost model;
– For events in other UIs,3 it considers a unitary cost.

Rationale

The UI-Aware model takes into account the fact that some tasks, like debugging, are performed
in different UIs that support different relations between code entities, e.g., runtime sequence of
method calls. It would be imprecise to assume that in these cases the developer should ideally
reconstruct the same context, i.e., the same relationship between code entities, by using the
∆-cost model, as she should be forced to use a code browser.

The UI-Aware cost model is always less or equal than the one computed using the ∆-cost
on the sequence of edited entities. In fact, being the sequence identical, it may only reduce the
total number of ideal navigations by assuming a unitary cost for a subset of the edited entities.

For instance, consider the developer inspecting the stack in the debugger. The developer’s
inefficiency, in this case, effectively models the spurious navigations that are needed to understand

3Such as the Debugger, Senders/Implementors UI, and Search UI.
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where the given edit must be performed with respect to the actual location where the execution
has been stopped. Another example is the user trying to search for a specific implementation
of a given method. The wasted navigations performed in a implementors browser represent the
ones required by the specific search of the desired implementation.

8.4.4 Results

Table 8.4 shows the navigation efficiency computed by applying the UI-Aware cost.

Table 8.4. Results – Navigation Efficiency with UI-Aware navigation cost

Efficiency (UI-Aware)
Q1 Q2 Q3 Avg.

Working Sequence 0.025 0.056 0.098 0.073

With this model, the navigation efficiency is, on average, 7.3%, with a median of 5.6%. At
first sight, it might look the refinements did not change much from our very first observation,
given that the results are in the same order of magnitude. However, the new model is now robust
with respect to the contradictions that were raised before.

8.5 Reflections

8.5.1 Developer diversity

Figure 8.8 shows the values of navigation efficiency using the UI-Aware cost model. All developers
seems to be equally efficient. We applied the Mann-Whitney-Wilcoxon Test for each pair of
developers to find any possible difference between developers. Since for each pair we obtain
p-values greater than 0.05, there is no evidence that the efficiency follows a different distribution
between developers.
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Figure 8.8. Results – UI-Aware Navigation Efficiency per developer
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8.5.2 Outliers

While on average efficiencies are very low, there are many outlier sessions with higher efficiency
(i.e., greater than 0.2). A conjecture is that, for tasks where developers have a consolidated
mental model, navigations are more focused. We leave the investigation of such sessions as a
future work.

8.5.3 Significance of Edited Entities

Our models of navigation effort (thus, efficiency), rely on the fact that a task can be characterized
by only the edited entities. However, programming requires the construction of mental models
that inevitably mandate visiting some entities that do not need changes.

We justified the adoption of edited entities as a reference because it is very hard to distinguish
the navigated entities that are required for the mental model construction from the ones that are
not. To depict the opposite upper bound, we recompute the results by considering all the entities
involved a session (i.e., regardless of the fact that they were edited or not). Such an upper-bound
considers every navigated entity as essential for the construction of the mental model.

The real navigation efficiency lies between the ideal model (see Table 8.4) and this upper-
bound (see Table 8.5).

Table 8.5. Results – An upper bound for Navigation Efficiency: UI-Aware Navigation Efficiency considering
all the entities involved in a development session

Efficiency (UI-Aware)
Q1 Q2 Q3 Avg.

All Touched Entities Sequence 1.073 1.22 1.43 1.26

8.5.4 Contradicting Findings?

Better developers are *not* the better navigators. Intuitively experienced developers should be
better navigators. However, in our study novice developers (i.e., D2 and D3) perform similar to
experienced developers. Our conjecture is that the navigation cost imposed by the UI of the IDE
cannot be avoided, and all developers have to use it in a similar way. The IDE might sustain less
experienced developers, but at the same time it does not fully support more experienced ones.

How can efficiency be higher than 1? Modern IDEs include facilities that allow for “super-human
efficiency”. A simple “rename refactoring”, for example, can potentially change hundreds of
entities with one simple click. Currently, our model does not take that into consideration, and
would model the ideal navigation costs as hundreds of (un)necessary navigations.

8.5.5 Threats to Validity

Construct Validity. Our definition of navigation efficiency assumes that the edited entities are
enough to characterize a development task. This assumes an ideal case where developers have a
perfect mental model of the software system and a clear task. This scenario is likely unattainable
in practice, due to factors such as the high complexity of source code and its comprehension.
However, this measure serves as a baseline to understand how the reality differs from this ideal
case. To mitigate this threat and understand how the efficiency changes when considering all
the entities, regardless of the fact they were edited or not, we computed the navigation efficiency
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using all the entities appearing in a development session (see Table 8.5). This represents the
opposite, equally unrealistic scenario, where the developer navigates a set of entities which is
significantly bigger than the ones ideally required to implement the task, including the entities
needed to construct the mental model. Thus, we believe that Tables 8.4 and 8.5 provide lower
and upper bounds for the navigation efficiency. A realistic measure of efficiency lies in this range
and depends on a number of factors such as which entities are necessary to perform a given
programming task, including the difficulty and the nature of the task itself.

Another threat consists in the fact that our navigation model only accounts for list selections,
while a developer might also have to scroll through a list prior to performing a selection. Even
though this is essentially true, when we compute the efficiency we compare the ideal cost of
selecting the entities with what we call “navigation events”. Indeed, in our interaction histories
these events only represent list selections, thus the comparison is adequate, and consistent with
our final goal: Understanding to what extent an ideal scenario differs from reality.

Internal Validity. Our results suggest that developers are inefficient at navigating source code.
In addition to the navigation cost imposed by the UI of the IDE, other factors may hinder the
navigation efficiency of developers. For example, the expertise of the developer and the difficulty
and the nature of the task at hand might have an impact. Even thought we did not focus on
the causes for such inefficiency, Figure 8.8 provides preliminary evidence for which the level of
expertise seems not to have an impact on the navigation efficiency. However, as part as our
future work, we will study, and measure, the impact of other factors on the navigation efficiency.

In our work we considered five UIs: Code Browser, Debugger, Search, Senders, and Imple-
mentors UIs. To the best of our knowledge, these are the main UIs developers use to navigate
source code in the Pharo IDE. However, a small part of the navigation might involve interactions
with other UIs.

External Validity. Our results refer to the Pharo IDE. In spite of the fact that our model can be
easily adapted to other IDEs and other UI metaphors (e.g., tab-based environments), specific data
modeling and evidence is needed to generalize our results to other programming environments.
However, despite of the fundamental differences between various IDEs, we believe that also
tab-based IDEs are poor vehicles to support the navigation of source code.

8.6 Summing Up

Leveraging IDE interaction enabled us to better understand the mechanics of the exploration
process in the Pharo IDE. The raw data, however, needs to be modeled and interpreted to pro-
vide meaningful insights. This chapter presented a series of models to estimate the navigation
efficiency of Pharo developers from raw IDE interaction histories. Our contribution includes a
definition of navigation efficiency and an incremental construction of optimal navigation sce-
narios. Our results provide preliminary evidence that Pharo developers are inefficient when
navigating source code. We believe that Pharo, together with all mainstream IDEs, are poor
vehicles to support modern software development being nothing more than glorified text edi-
tors [Nie16]. In this regard, there is a great potential in the investigation of new, different UI
paradigms for software development, some of which have already achieved noteworthy results,
e.g., Code Bubbles [BZR+10], Debugger Canvas [DBR+12], and web IDEs, such as Cloud9
and Codio.
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9
Understanding How Developers Use the User
Interface of the IDE

The user interface of an IDE offers a large number of facilities to manipulate source
code, such as inspectors, debuggers, recommenders, alternative source code viewers, etc.
The Eclipse IDE, for example, offers perspectives (i.e., visual containers for a set of views

and editor) customized for different tasks such as developing, debugging, or running test suites.
Murphy et al. studied how developers use these perspectives: They found that programmers
use most perspectives offered by the IDE to varying degrees and that they often use keyboard
shortcuts to perform activities [MKF06]. Besides this study, it is largely unclear how developers
use the UI of IDEs and whether they give appropriate support to developers.

In this chapter we present a visual approach to answer the question: “How do developers use
an IDE with respect to the user interface it offers?.” Our approach leverages IDE interaction
data recorded by DFlow to produce an interactive visualization with two different purposes.
On the one side it shows how developers interact with UIs, and how the work is essentially
organized in development tracks, with each track led by a main window. The view depicts how
developers alternate between such different tracks during activities, and how the environment
grows and shrinks from a UI point of view, giving a visual representation of the environment’s
“entropy”. On the other side, the view synthesizes how development activities relate to UI usage,
enabling the understanding of the UI structure at important development events like source code
edits and commits. This combined view helps to gather a better understanding of the data
being visualized. For example, it is interesting to see what happens to the source code when
the developer spawns multiple windows and how the number of active windows influences the
navigation between source code elements.

The visual analysis led to the development of a pattern language to characterize both devel-
opers and session types. For example, we identified “conservatives” developers that use to use a
limited number of windows and, on the other side, “frenetic” developers that continuously spawn
windows, most likely due to a complete immersion in the development, i.e., a state of mental
focus so intense that awareness of the real world is lost [LHB03], also known as “flow” [Csi90].

Structure of the Chapter

Section 9.1 illustrates our approach and presents the principles of our visualizations. Section 9.2
uses the visualization to tell development stories on our dataset. Section 9.3 presents a catego-
rization of developers and sessions using the findings from our visual analysis. Finally, Section 9.4
sums up and concludes the chapter.
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9.1 Visualizing UI Usage: Principles and Proportions

Figure 9.1 details our visualization to depict how developers use the UI of the Pharo IDE. The
view is composed of two parts: an UI View and an Activity Timeline.
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Figure 9.1. Principles and proportions of the visualization

UI View

The UI View (Figure 9.1.a) depicts the interactions of the developer with the UI of the IDE, that
is composed of multiple windows. This part of the visualization identifies and summarizes the
different tracks of windows that the developer follows while working. A track is a composition
of a main window with a set of associated short-lived windows.

Tracks of windows, essentially, represent where and how the developer used the UI elements of
the IDE. There are developers that concentrate their work on a single track and developers that
are more proficient when spreading their work on multiple parallel tracks. Each track of windows
is “dominated” by one window, i.e., the main window of the track (e.g., Figure 9.1.c for track
2). In turn the main window might have a number of short-lived windows associated to it, the
short-windows (e.g., Figure 9.1.d for track 2). These short-windows are windows with a lifespan
(i.e., the time that spans from their open to their close time) shorter than a given threshold
(default: 1 minute). To determine which is the main window originating a small-window, say
WS, we search, among main windows, which one was last active before the birth of WS and is still
open during its lifetime. Once we created all the associations between main and small-windows,
we apply the time-based horizontal layout: The horizontal coordinate of each container, or track,
represent the open time of the main window that dominates it. The width of the container is
proportional to the lifespan of the main window. The height of the container varies according to
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the number, and position, of short-windows. In the general case all short-windows of a track are
positioned at the same y-coordinate. However, in case of two overlapping small-windows (i.e.,
their lifespans overlaps), the layout pushes the second small-window down. The layout considers
the windows in order of appearance, i.e., sorted by open time. The y-coordinate of containers is
used only to avoid overlapping between them.

A window is represented by a line, the window backbone. The length of this line is proportional
to the lifespan of the window that represents. Window interactions, i.e., events, are positioned on
this line. Each event is a box with fixed height. Its length is proportional to the duration of the
event. The x-position of the event on the window backbone represents time, i.e., time difference
between the timestamp of the event and the open time of the window. The color identifies the
type of the event: open (blue), activate (green), resize/move (yellow), collapse/expand (orange),
and close (red). When the window backbone is visible, i.e., not covered by boxes representing
events, it means that the window is currently open but not in focus. In addition to window events,
on each window, the visualization shows a red dot when a source code edit event happens. This
visual clue helps to identify which windows were used to perform source code changes.

The visualization of Figure 9.1.a depicts 4 tracks of windows. The main window of tracks 1,
3, and 4 remain open after the session end, i.e., there is no close event and the window backbone
continues until the session end. On track 1 there are 2 small-windows, on the second track there
is only one. The remaining tracks only have main windows. Towards the end of track 1 we can
see that the main window gets minimized and remains collapsed for the rest of the session, i.e.,
light orange window backbone. On track 2, magnified in the figure, the main window is opened,
then active for some time and resized (or moved). Afterwards, it remains active for another time
interval and is then quickly resized or moved again. Then an edit event happens on this window,
i.e., red dot. After some time the window is resized again and then a small-window is opened
that remains open for a little time before giving control back to the main window. After this
time, the main window remains active until the focus is given to another window (i.e., the main
window of track 1). When the focus is back to this track another edit event happens and after
some time the window, and the track, terminate.

Activity Timeline

The Activity Timeline (Figure 9.1.b) portrays development activities such as navigation, inspec-
tion, edit, and understanding. Using this timeline one can have a clue of when and for how long
the developer performed different kinds of activities. Each activity is a box with fixed height.
Its length is proportional to the duration of the activity. Navigation activities are white ticks,
since the navigation per se lasts for a short amount of time, e.g., 1 second. Other types of events
instead have a duration that we estimated from the interaction histories. The color identifies the
type of activity: navigation (white), inspection (blue), editing (red), and understanding (yellow).

Vertical Lines: Pause Times and Commits

The last visual elements on the visualization are vertical lines that span both visualizations.
There are four types of such lines. Two gray lines without labels indicate the start and the end
time of the session. Blue lines without label indicate the timestamp of commits in the version
control system. Gray and red lines with label depict pause times. The label of these lines
represents the duration of the pause. Gray lines depict the “explicit” pause time, i.e., when the
developer paused DFlow. Red lines identifies “implicit” pause time, or “idle” time.
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a

b

Figure 9.2. Visualizing the same session (a) before and (b) after the removal of pauses

Summarizing the duration of the pauses with vertical lines is essential to have a more un-
derstandable visualization. Figure 9.2 depicts same development session visualized (a) including
idle time and (b) after idle time removal. As desirable, Figure 9.2.b is more insightful than
Figure 9.2.a while maintaining the same pieces of information.

9.2 Telling Development Stories with the UI View

The aim of our visualization is to understand how developers use the UI of the Pharo IDE while
performing their tasks. In this section we provide details on the dataset for this study and discuss
4 development stories about specific sessions in our corpus.

9.2.1 The Dataset

When we performed this study, DFlow featured the UI to explicitly pause and resume sessions
(please refer to Section 5.3 for additional information about the evolution of DFlow). The
dataset, summarized in Table 9.1, counts around 170 development sessions, totaling more than
110,000 development events and 80,000 interactions on windows. The Table includes average
pause time (i.e., the average interval between two explicit sub-sessions) and idle time per session.

Table 9.1. Dataset – Sessions statistics grouped by developer

Avg. Session Avg. Avg.
Sub-sessions Duration Pause Time Idle Time

Dev. # Sessions Total Avg. [hh:mm:ss] [hh:mm:ss] [hh:mm:ss]

D1 12 73 6.08 3:01:24 0:01:26 28:42:55
D2 3 3 1.00 0:16:27 0:00:00 00:00:00
D3 65 97 1.49 0:52:32 0:18:12 00:29:20
D4 6 11 1.83 0:48:13 0:18:26 00:58:43
D5 72 202 2.81 0:54:56 3:42:45 00:15:52
D6 7 30 4.29 1:25:18 2:11:36 01:05:37
D7 12 80 6.67 1:34:25 1:41:18 17:29:52
All 177 496 3.45 1:16:11 1:10:32 07:00:20

Table 9.2 outlines statistics about development events, and Table 9.3 outlines statistics about
window events. In particular, window events suggest that developers may exploit UI in differ-
ent ways: For example, D4, D6, and D7 use on average a reduced number of windows. Our
visualization aims to highlight further insights on how development sessions are structured.
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Table 9.2. Dataset – Development events grouped by developer

Dev. Navigation Inspect Edit Total
D1 21,617 183 2,458 24,258
D2 393 157 24 574
D3 20,468 2,157 2,091 24,716
D4 2,183 353 1,196 3,732
D5 35,801 2,962 3,316 42,079
D6 6,862 337 472 7,671
D7 7,234 486 526 8,246
All 94,558 6,635 10,083 111,276

Table 9.3. Dataset – Window information grouped by developer

Resize Collapse
Dev. Windows Open Activation & Move & Expand Close Total
D1 3,144 2,255 2,488 4,114 143 3,711 12,711
D2 71 63 59 275 0 51 448
D3 3,183 2,518 2,355 4,841 52 2,807 12,573
D4 608 609 134 978 5 710 2,436
D5 7,365 6,088 4,792 28,805 175 7,211 47,071
D6 555 525 549 468 0 580 2,122
D7 769 773 392 3,512 3 691 5,371
All 15,695 12,831 10,769 42,993 378 15,761 82,732

9.2.2 Development Stories

Our analysis uncovered a number of interesting stories about how developers work and how they
use the UI of the Pharo IDE. In this section we report 4 of them.1

• The Inspection Valley;

• Implement First, Verify Later;

• Home Sweet Home, and

• Curing the Window Plague.

1To increase the readability of this Section, we present each pattern on a new page.
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The Inspection Valley

Figure 9.3 shows part of a session recorded by developer D5. The session, excluding pauses,
lasted for 49 minutes and 18 seconds.

tr1

tr2

tr3

tr4

Inspect
valley

Figure 9.3. Development story for D5: “The Inspection Valley”

The Figure shows the first sub-session lasting 34 minutes. There are 4 subsequent main
tracks of windows, denoted as t r1-t r4 in the Figure. The session started with t r1 where the user
mainly performed navigation, understanding, and some edits (see the Activity Timeline). Then
she moved to a new track and performed additional edit operations while triggering a number of
small-windows for navigation purposes. The interesting part starts when she moved to t r4. At
the beginning waters are calm: The developer remained for about 8 minutes on the main window
of the track. Then she performed a short but convoluted sequence of activities on t r3 spawning
more than 5 small-windows and then she happened to get lost in the “Inspection Valley”. Starting
from minute 27, in fact, she abandoned all the main tracks to drill down in a series of inspection
and understanding activities that led to a series of edit events on different windows. Finally, 6
minutes later, she cleaned up the IDE (i.e., closing most of the windows) and terminates her
trip into the inspection valley. These drill downs in “valleys” are a recurrent pattern in a num-
ber of sessions. We believe that this practice is encouraged by the multi-window nature of the
Pharo IDE. It remains to be investigated if this pattern can lead to confusion and whether devel-
opers prefer alternative means to perform, for example, chains of inspections on object instances.
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Implement First, Verify Later

Developers are often in a rush so they first jump here and there to understand where and what to
modify and then start performing changes. Then they run their code, encounter some problems,
and spend considerable amounts of time with debugging activities.

Figure 9.4. Development story for D3: “Implement First, Verify Later”

Figure 9.4 shows a session of developer D3.2 This session lasts for more than one hour and
a half, removing pause times. The session counts three explicit sub-sessions, i.e., vertical gray
bars in the visualization, and involves 57 windows. The Activity Timeline reveals two distinct
development phases. In the first two sub-sessions the developer mainly acquires knowledge of the
system, through navigations (white) and understanding phases (yellow), and performs a number
of source code modifications (red). After this, the developer took a break of 8 minutes (i.e., the
idle time between the second and third sub-session) and then started to exercise her code. From
the Activity Timeline we can infer that she was not really satisfied with her changes. The third
sub-session, in fact, is full of inspections (blue) that are often related to debugging activities. In
Smalltalk, developers use inspections to observe instances of objects at runtime mostly to verify
the values of their fields. In this sub-session inspections are interleaved with a high number of
edit activities (red), symptom of the fact that the changes performed in the first two sub-sessions
were not really successful.

2Figure 9.4 is divided in two parts to better fit the page layout.
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Home Sweet Home

The story is about a session of developer D3, depicted in Figure 9.5. The session lasts for about
an hour and features 45 edit events. The visualization exposes a single main track of windows,
i.e., the first one. This track starts at the beginning of the session, lasts for almost its entire
duration and it is intensively occupied by the main window. When this main window is not
active (i.e., the window backbone is visible) the developer transfers the focus for a small amount
of time to other windows (i.e., maximum 1.5 minutes). She wiggles around, navigates code,
reads code, and finally she gets back to the main track. The interesting pattern is that she only
performs changes on the first track, more precisely, on its main window (i.e., all but one red dots
are in the main track). It is clear that this window is a “pillar” for this session since the flow of
development always returns to it.

The mechanics of commit

Figure 9.5. Development story for D3: “Home Sweet Home”

Another peculiarity of this session is that, almost after every edit event, the developer opens
a small-window, closes it and get back to the main track. It seems that the developer uses small
windows as verification means for her changes. An example of this fact is magnified on the left
part of Figure 9.5.

The last interesting thing, common to several sessions of different developers, is the visual
cluster appearing towards the end of the session, near the blue commit line. This last track
of windows, in fact, represents the “mechanics of commit”, i.e., the sequence of user interface
actions needed to commit source code to the versioning system. The main window of that track
is the browser for Monticello, i.e., the version control system used by the Pharo IDE. The
small-windows originated from it are: i) the change browser, that lets the user browse for the
changes before commit; ii) the commit message box, that lets the user enter a commit message
for the current version; and iii) the confirmation dialogs that acknowledge every commit.
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Curing the Window Plague

Figure 9.6 shows a distinctive feature of developer D5. Researchers called window plague the fact
that to reveal relationships between code entities developers are forced to open a high number
of windows on different artifacts [RND09].

Figure 9.6. Development story for D5: “Curing the Window Plague”

The window plague leads to a crowded workspace with many opened windows (or tabs in
case of tab-based IDEs). Naïvely the IDE does not come to the rescue of the developer in
case of a crowded workspace. Some developers ignore this issue but others like to cleanup their
environment from time to time. Developer D5, for example, is a developer that systematically
cleans up her environment. Figure 9.6 depicts one of her sessions lasting for more than 4 hours
(note that the view has been compressed to fit the page by eliding parts of the session from
the visualization). At regular intervals (about every hour and a half) she triggers “cleaning
stages” where she closes almost all windows to refresh her environment. The UI View shows that
the number of windows continuously grow until the entropy level of the environment becomes
unbearable for her and she decides to decrease it. There are two possible interpretations for this:
Either the developer has accomplished her task and starts a new fresh task, or the environment
has become so convoluted and disordered that she decides to start over even though the task is
not finished. It remains to be investigated how frequent this phenomenon is and if and how the
IDE can automatically come to the aid of developers in such cases.
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9.3 Categorizing Developers and Development Sessions

We use this visualization to derive a classification of the development sessions. The ground
element for our classification is the number and behavior of tracks of windows. We discarded
13 sessions that were either too short or lacked a significant number of events. We use two
dimensions for the classification: i) the presence of dominant tracks of windows, and ii) the flow
between the different tracks (i.e., track flow).

Dominant Tracks

We define a dominant track as a track with a privileged role in the development session. In other
words, dominant tracks are the tracks with a predominant focus time and concentration of edit
events. We devise three categories based on Dominant Tracks:

• Single-Track: There is a only a single track of windows that is predominant over all the
others, if any.

• Multi-Track: There are two or more tracks of windows that are predominant over all the
others, if any.

• Fragmented: There are no real dominant tracks of windows. The development flow and
the focus of development are strongly fragmented, i.e., the developer continuously shifts
her focus from one window to another and perform edits with no apparent strategy.

Track Flow

Track flow describes the way the developer alternates from different window tracks. We devise
two additional categories based on Track Flow :

• Sequential Flow (S): The development flow follows a sequential trend, i.e., from one track
the focus moves to the next and so on. On this type of sessions the focus rarely goes
back to a previous track. These are the sessions that might suffer from the window plague
[RND09], and in such cases often there are no dominant windows.

• Ping-Pong Flow (PP): The development flow and the focus of development continue to zig-
zag between two or more tracks. If the fragmentation is heavy, there can be no dominant
track and the visualized session appears frenetic and chaotic.

Consider the developer stories we described in Section 9.2.2. Figure 9.3 is mostly fragmented
since there are no dominant windows that characterize the whole development session. It also
has a dominant sequential flow, because the developer starts a development track, and when
another one is created the developer has either closed the previous one or leaves it out of focus.
There is also minimal ping-pong behavior.

The session in Figure 9.4 is single-track in the implementation phase, while in the verification
phase it becomes fragmented with a mixed sequential and ping-pong flow.

Consider instead Figure 9.5, corresponding to the “Home Sweet Home” developer story. The
session has a main track where most of the edits happen, and that the rest of development
activities happen in other window tracks. The session has a typical ping-pong flow. In fact,
the developer frequently alternates between the main track and other tracks, with a minimal
privilege towards the second track.
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Finally, the session in Figure 9.6 shows instead a fragmented session with sequential flow.
Edits and focus are spread to many tracks, and no track dominates in the whole session. A lot
of old tracks are simply out of focus and never closed, laying in the background (window plague
[RND09]). Tracks grow almost monotonically.

Table 9.4. Results – Track and Flow characterization of developer session

Single-Track Multi-Track Fragmented Not
S PP S PP S PP Classified

Dev. # % # % # % # % # % # % # % Total
D1 0 0% 1 8.3% 1 8.3% 0 0% 8 66.7% 0 0% 2 16.7% 12
D2 2 66.7% 0 0% 0 0% 0 0% 1 33.3% 0 0% 0 0% 3
D3 32 49.2% 13 20.0% 6 9.2% 4 6.2% 7 10.8% 1 1.5% 2 3.1% 65
D4 0 0% 0 0% 0 0% 0 0% 5 83.3% 1 16.7% 0 0% 6
D5 10 13.7% 3 4.1% 9 12.3% 1 1.4% 41 56.2% 0 0% 9 12.3% 71
D6 1 14.3% 1 14.3% 1 14.3% 1 14.3% 2 28.6% 1 14.3% 0 0% 7
D7 5 45.5% 1 9.1% 1 9.1% 1 9.1% 3 27.3% 0 0% 0 0% 11
All 50 28.2% 19 10.7% 18 10.2% 7 4.0% 67 37.9% 3 1.7% 13 7.3% 177

Table 9.4 illustrates the characterization of our corpus of development sessions, aggregated by
developer. In general, we observe that Multiple-Tracks are less common (14.2% of the total), and
that the remaining sessions are uniformly distributed among the other two categories: Single-
Track and Fragmented (around 40% of each type). We also observe that Sequential Flow (S) is
relatively more frequent than Ping-Pong (PP), 76.3% versus 16.4%. These numbers again support
the fact that developers may frequently experience the window plague. Another interesting
general observation is that Ping-Pong behavior is mostly correlated with Single-Track and Multi-
Track sessions: This means that Ping-Pong Flow happens between a single dominant track and
minor tracks, or between multiple dominant tracks.

The results of our classification also suggest differences between the development style of
different developers. Three out of seven developers (D2, D3 and D7) exhibit a strongly dominant
preference for Single-Track sessions: For them such sessions account for more than 50% of the
total. Developers D1 and D4, instead, tend to work in a more Fragmented fashion (66.7% and
83.3% respectively). All developers strongly prefer Sequential Flows; this result can be debated
for developer D6, for which we did not collect enough sessions to observe a significant difference.
Developer D6 is the subject that more frequently exhibits Ping-Pong Flow in her sessions (42.9%).
Developer D3 is the subject with the higher number of sessions with Ping-Pong Flow but, in
percentage, has a smaller number than D6 (27.7%).

Considering developer styles in isolation, we observe that sessions of developer D5 are almost
only Sequential (82.2% of the sessions) and frequently Fragmented (56.2%). Instead, sessions of
developer D3 are still mostly Sequential (69.2% of the times) but mostly exhibit a Single-Track
of development (69.2% of the sessions).

9.4 Reflections

This chapter presented a visual approach to understand how developers use the UI of an IDE
starting from raw interaction histories collected with DFlow. Together with the use of the UI
of the IDE, the view also provide insights about when and how developers perform different
development activities such as navigating, writing, and understanding source code, i.e., activity
timeline. Our visualization enables the identification of main development tracks in terms of
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usage of IDE UI components like windows, and relates such usages with development activities
like edit events, inspection events, and commits. To gather data we used DFlow, our tool that
silently records all fine-grained interactions with the IDE.

We discussed four developer stories from the visualized sessions, that identified both peculiar
developer behaviors emerging from the usage of the IDE and their activities, and well known
phenomena like the window plague [RND09]. We also proposed a simple classification of the visual
features of development sessions in terms of dominant window tracks (Single-Track, Multi-Track,
and Fragmented sessions) and Flow between tracks (Sequential or Ping-Pong). By using such
a classification, we found that different developers exhibit different behaviors and usages of the
UI of the IDE. For example, most developers either work with a Single or no dominant window
track, with a strong prevalence of Sequential Flows that may lead to cluttered environments.
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Visualizing the Evolution of Working Sets

While the interaction with the IDEs apparently has the sole, ultimate effect of cre-
ating and modifying source code, it also generates myriads of events that capture the
various mechanisms of actual development. This data reflects the modus operandi of

a developer, including the UIs and IDE components she uses more frequently [MMRL16] and
enumerates all the program entities she interacted with during a session.

According to Wexelblat and Maes, the information path obtained from navigating in an
information space exposes and reveals the mental model of the system as perceived by a user
[WM99]. In the case of software development, the set of entities navigated and interacted with,
compose the “working set” (also called context) that developers leverage to create and maintain
their mental model of the software system at hand supporting their current development task.

Maintaining the working set is an essential part of program comprehension that absorbs
a considerable portion of development time [Cor89]. However, this process is often inefficient
and not properly supported by IDEs. Many studies have shown evidence of issues related to
navigation and the maintenance of working sets. For example Fritz et al. discovered that, on
average, the context model necessary to solve a task is composed of 4 classes and a subset of
their methods [FBM+14]. Ko et al. found that 27% of the navigations concern visits to program
entities that have been already visited [KMCA06]. The study also observed interesting patterns of
back-and-forth navigation to compare related pieces of code. In Chapter 7 we discussed the issues
developers have while navigating source code in an IDE. We believe this is a manifestation of
the problem of maintaining working sets [MML15b]. In Chapter 8 we modeled and empirically
measured the actual navigation efficiency of developers compared to different ideal scenarios,
finding that there is significant room for improvement [MML16a].

In this chapter, we present a visualization to characterize how working sets evolve during a
development session. The visualization depicts the intensity of the developer activity on entities
of the working sets, and the navigation paths that occur between them. We visualized 914
development sessions coming from 14 developers and identified visual patterns on the evolution
of working sets during development.

Structure of the Chapter

Section 10.1 defines what is a working set and illustrates the principles of our visualization.
Section 10.2 presents a catalog of patterns emerged from a visual analyses of development sessions.
Finally, Section 10.3 concludes the chapter.
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10.1 Visualizing the Working Set

We propose a visual approach to understand how working sets evolve during development ses-
sions. Figure 10.1 shows our visualization in a nutshell.
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Figure 10.1. Visualizing working sets: visualization principles

10.1.1 What is a Working Set?

While exploring software systems, developers visit and modify different program entities such as
classes as methods. We call “working set” the group of program entities which a developer has
interacted with during a particular period of time. To identify the working set we observe the
meta-events recorded with DFlow: i) navigation events, e.g., opening a class definition; ii) edit
events, e.g., modifying a method’s source code; iii) inspection events, e.g., checking the state of
an object at runtime; we consider its class as the interacted entity. Our definition of working
set is similar to what Kersten and Murphy call “task context” [KM05]. Mylyn is one of the
seminal approaches aimed at improving the construction and management of working sets. The
tool leverages developers’ interaction with the IDE to build a degree-of-interest model (DOI),
filtering the views of the Eclipse IDE from entities with a low DOI value [KM05, KM06]. Other
tools, such as Navtracks [SES05] and Teamtracks [DCR05], monitor IDE interactions to help
developer to navigate the software space, thus supporting the construction and management of
working sets. Navtracks supports this task by visualizing related program entities with a
simple graph-based view.
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10.1.2 Visualization Principles: Nodes, Edges, and Layout

Figure 10.1 shows a development session depicted using our visualization. The view is made of
two parts, depicting the current (Fig 10.1.A) and the past (Fig 10.1.B) working set respectively.

Current Working Set. The group of entities visited by the developer in the last timeframe. We
define the last timeframe in terms of i) number of interactions (i.e., the last 30 interactions)
or ii) in a temporal fashion (i.e., the interactions happened in the last 10 minutes).

Past Working Set. The Past Working Set is composed of all the entities the developer interacted
with in the past, i.e., before the current working set.

Nodes: Program Entities

In the visualization, nodes represent program entities (i.e., methods and classes) the developer
interacted with during a development session. Methods are depicted using circles, while classes
are depicted using squares. Each node is colored using a gray-scale denoting the intensity of the
interaction on the program entity it represents. A light gray node is a node with one (or a few)
interactions. A node depicted in black is a node with 10 or more interactions, i.e., the color scale
saturates at 10 to make the visualization more simple to understand.

We distinguish two kinds of interactions: Interactions that do not modify the source code of
the entity (e.g., reading a class definition) and interactions that modify it (e.g., editing the body
of a method). The visualization adds a red border to the nodes that have been involved in at
least one edit operation.

The size of each node (i.e., diameter for circle and side for square) depicts the recency of the
interaction on the corresponding entity. By default, all nodes have a standard size of 20 pixels.
The last interacted node has double the standard size, and the nodes targeted by the last 10
interactions follow a linear scale from this double size to the standard size.

The view uses the labels Start and End to denote respectively the first and the last program
entity the developer interacted with in the visualized interaction histories.

Edges: Flow of Interactions

Edges express the flow of the interactions, and not structural source code properties. An edge be-
tween method Foo and class Baz means that, in the interaction history, two subsequent events
involved these two program entities (e.g., a navigation event from Foo to Baz). For simplic-
ity, edges are undirected: The edge between method Foo and class Baz summarizes all the
interactions between these two nodes.

Both the color and the stroke width of edges are mapped to the same metric, i.e., the number
of times the path represented by the current edge is followed by the developer in the interaction
history. Both features are bounded. An edge depicted in light grey represents a path that is
traversed one (or a few) times in the interaction history. A path depicted in black represent a
path that has been crossed 10 or more times by the developer. The stroke width is bounded
between 1 and 20 pixels (i.e., that corresponds to the standard size of nodes). It follows a
linear scale between the minimum number of occurrences of the path (i.e., 1) and the maximum
occurrences, computed using all the interactions of the entire session.
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Layout

To depict current and past working set the view uses two different layouts. For the current work-
ing set (Figure 10.1.A) we use a force-directed graph layout. Figure 10.2 depicts the underlying
mechanics of the force based layout.
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Figure 10.2. The principles of the force-based layout

Each node has a char ge that tends to repulse other nodes. At the same time, edges act as
springs, thus tend to assume their “ideal” length, i.e., neither too compressed nor too spread.
From an initial random configuration, depicted in Figure 10.2.A, the layout will progressively
move the nodes trying to minimize all the forces exercised on the graph: the repulsive forces
of nodes (i.e., char ge) and the attractive forces of edges. Figure 10.2.B shows a configuration
where forces are minimal. At the beginning all nodes have the same char ge and all edges have
the same st reng th and ideal leng th,1 however as further discussed in the next section, these
parameters evolve together with the evolution of the working set.

The outer part of the view (Figure 10.1.B) depicts the past working set using a radial (or
circular) layout where nodes are equidistant. The radius of the layout depends on the inner part
of the visualization, i.e., the bigger is the space occupied by the inner part, the larger will be the
radius of the circular layout for the past working set. Nodes are sorted according to the intensity
of the interactions. Starting from the top of the circle (i.e., 90◦), nodes representing edited entities
are placed clockwise, while the ones representing non-edited ones are placed counterclockwise.

Interaction & Customization

The user can interact with the view by panning and zooming. In addition, by hovering on a
node, the view shows a tooltip with additional information such as the name of the entity, the
number of interactions and, if applicable, the number of edits on the hovered entity. Clicking on
a node lets the developer conveniently jump to the respective class/method definition to read
(or modify) the code in the code browser of the Pharo IDE. The view can be customized by
changing the number of interactions considered recent (i.e., impacting the size of nodes) or the
criteria to distinguish between past and present working sets (i.e., impacting the overall look of
the view and its meaning).

1Node charge: -1,000; Edge strength: 1; Edge ideal length: 35.



10.1 Visualizing the Working Set 115

10.1.3 Co-Evolution of Working Set and Visualization

Our goal is to present an evolutionary view to depict how the past and current working sets
evolve during a session. To make this possible, the visualization co-evolves with the working set,
as explained in Algorithm 1.

Data: A sequence of events (i.e., InteractionHistory)

1 view←− initialize an empty view
2 lastEntity←− null

3 for event ∈ InteractionHistory do

4 currentEntity←− extract the entity from the event

// Adding or updating the node
5 if view contains currentEntity then
6 UpdateNode(currentEntity)
7 else
8 add currentEntity to the view
9 end

// Adding or updating the edge
10 edge←− edge from lastEntity to currentEntity
11 if view contains edge then
12 UpdateEdge(edge)
13 else
14 add edge to the view
15 end

16 ApplyLayout(view)

17 ApplyAging(view)

18 lastEntity←− currentEntity
19 end

Algorithm 1: Constructing the View

First, for every event in the interaction history, the algorithm checks whether the program
entity is already visualized and updates it, otherwise it adds it to the view.

Second, it applies the layout and the aging mechanism on all the nodes and edges of the
visualization, as described in Algorithm 2 and 3 respectively.

1 method UpdateNode (node) :
2 update color of node (using # interactions)
3 reset size of node (to max size, since last visited)
4 reset t ime− to− l ive (TTL) of node (to default value)
5 if node has been edited then
6 add a red stroke
7 end
8 charge←− 80% ∗ charge
9 end

Algorithm 2: Updating a Node in the View

Every time a node is re-visited, its color is updated with a linear grey-scale representing how
many interactions have involved that entity. Its size is restored to the maximum size, since it
is the last visited node. The algorithm also resets the time-to-live (TTL) of the node to the
default value, i.e., 30. The TTL is used to distinguish between current and past working set:
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When the TTL reaches 0, the node no longer belongs to the current working set. The last line
of Algorithm 2 updates the node charge, used by the force-directed graph layout to arrange
the current working set. At the beginning each node has the same initial negative charge; for
how the layout is implemented, negative charges tend nodes to repulse themselves. For each
interaction with an entity, we decrement its node charge by 20%, making the node less repulsive,
and obtaining a more compact view of the current working set.

Algorithm 3 explains how we update each edge.

1 method UpdateEdge (edge) :
2 update color of edge (using # interactions)
3 update width of edge (using # interactions)
4 strength←− 120% ∗ strength
5 end

Algorithm 3: Updating an Edge in the View

An edge color is mapped to a linear grey-scale that represents how many times the edge has
been walked by the developer. The same information is also encoded in its stroke width. The
last step is the update of the edge st reng th, used by the force-directed graph layout for the
current working set. The strength represents the force of attraction for the edges. A high value
results in having nodes together. At the beginning each edge has the same initial strength (i.e.,
1). Every time that an edge is exercised, we increment its strength by 20%, bringing the two
connected nodes closer.

Our approach considers the recency of the last interaction on a node as a key factor to
determine the current and the past working set, as explained in Algorithm 4.

1 method ApplyAging (view) :
2 for node ∈ view do
3 decrease the t ime− to− l ive (TTL) of node by 1

4 if size of node>minNodeSize then
5 decrease size of node
6 end

// Disconnect node if TTL elapsed
7 if TTL of node = 0 then
8 disconnect the node from the graph
9 end

10 end
11 end

Algorithm 4: Applying the Aging mechanism to the View

After each interaction event, we iterate over all nodes and we decrement their time-to-live
(TTL). Since the size of each node corresponds to the recency of the last interaction on the node
itself, as nodes become old, we reduce their size (if its size is not already below the minNodeSize,
i.e., 20 pixels). The last part of the method checks whether the TTL of a node is elapsed and
disconnects it from the graph. If the node has not been targeted by any interaction in the last
30 iterations of Algorithm 1, it leaves the current working set.

Finally, the algorithm applies the force-directed graph layout for the current working set and
radial layout for the past working set. Algorithm 5 illustrates this process.

After the aging process described in Algorithm 4, our approach can identify the current and
the past working set. The current working set is composed of all the nodes that are connected in
the visualization. To these nodes, we apply a force-directed graph layout, using the up-to-date
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1 method ApplyLayout (view) :
2 currentWS←− connected nodes in the view
3 pastWS←− disconnected nodes in the view
4 sortedPastWS←− sort pastWS according to number of interactions and edits;

5 apply force-based layout to currentWS
6 apply radial layout to sortedPastWS
7 end

Algorithm 5: Applying the two layouts to the View

char ges and st reng ths computed in Algorithms 2 and 3 respectively. Among the advantages of
this layout, the obtained visualization is aesthetically pleasing, simple, and intuitive.

The remaining, disconnected nodes represent the past working set. We layout the past work-
ing set with an equidistant radial (or circular) layout. We set its radius so that the representation
of the currentWS fits. The circular layout ensures that all the nodes are treated neutrally, since
they are at equal distances from each other and from the center of the visualization [INM+05]. In
addition, in our layout nodes are sorted according to the number of interactions and the editing
status, i.e., whether the represented program entity has beed edited in the past or not. This
does not affect the neutrality of nodes, but enables a quicker assessment of which entities from
the past working set have been interacted (or edited) the most.

10.2 Visual Analysis: Dataset and Patterns

We visualized the evolution of a large set of development sessions collected with DFlow. The
analysis revealed a number of patterns referring to a single snapshot (Section 10.2.2) and evolu-
tionary patterns (Section 10.2.3).

10.2.1 Dataset

We applied our visualization to 914 development sessions, collected with DFlow, coming from
14 developers (open-source developers and PhDs). As in all other studies, developers were not
given a task, but rather they were recorded while performing their daily activities. Table 10.1
summarizes the dataset used for this study.

Table 10.1. Dataset – Totals values and values aggregated per session

All Total
# Sessions 914
# Developers 14
# Snapshots 72,631

Per Session Avg. Q1 Q2 Q3

# Snapshots 79.21 18 35 87
Working Set (WS) 9.57 4.70 7.13 12.10
Past WS 2.98 0.00 0.33 3.23
Current WS 6.59 4.00 5.86 8.78
Connectedness (%) 21.59% 15.67% 20.94% 26.78%

Our visualization of working sets in development sessions is evolutionary and incremental.
Thus, for every session, we identify a number of snapshots to build a step of the visualization.
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We define a snapshot as a moment in time in which a program entity is either visited for the
first time, re-visited, or modified. In total we identified 72,631 snapshots in our entire dataset.

The lower part of Table 10.1 reports the snapshot data aggregated per session. On average,
each session has 79.21 snapshots (with a median of 35). The working set (WS), on average, is
composed of 9.57 entities (on average 2.98 entities form the past working set and 6.59 the current
working set). The last metric we report is the percentage of connectedness.
Given an undirected graph with n nodes, the maximum number of edges (edgesmax) is:

edgesmax =
n · (n− 1)

2

Considering this as an upper bound, we can measure the percentage of connectedness of a
graph with a given number of edges (|edges|) as:

connectedness (%) =
|edges|

edgesmax

We compute the connectedness of the current working set. The connectedness expresses the
average probability of two entities to belong to at least 1 subsequent pair of events in the recency
window defining the current working set. On average our current working sets graphs have a
percentage of connectedness of 21.59% (and a median of 20.94%). The most connected working
set, not shown in the table, has a percentage of connectedness of 50%.

Visual Patterns. The following two Sections (10.2.2 and 10.2.3) lists the visual patterns emerged
from the visual analysis of development sessions.2

Snapshot Patterns

• U Can’t Touch This

• Past: To Edit or Not To Edit

• The Guiding Star

• Stay Focused, Stay Foolish!

• Moving in Circles

Evolutionary Patterns

• The Past Awakens

• Multi-Part Session

• Thirst for Knowledge

• The Working Funnel

2To increase the readability of this Section, we present each pattern on a new page.
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10.2.2 Snapshot Patterns

As the name suggests, snapshot patterns emerge by visually inspecting single snapshots of a
development session, i.e., a particular state of the past and current working sets of sessions. The
remainder of this section discusses the 5 most interesting patterns that we found.

U Can’t Touch This

There are snapshots which are entirely exploratory, i.e., they lack edits both in the past and
current working sets. Figure 10.3 shows an example of this pattern.

Figure 10.3. Example of the “U Can’t Touch This” pattern

Across the entire history, this session has, on average, a working set composed of 39 entities
(22 in the past and 17 in the current). The figure depicts the 120th snapshot (out of 147) of the
session. Only in the last few snapshots the developer edits 3 program entities.

Potentially, sessions manifesting this pattern are sessions in which the developer is addressing
a complex task that requires a very deep understanding of the system, that is consistent, for
example, with a complex debugging activity. After a deep phase of exploration, the developer
acquired the knowledge to perform few localized changes.
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Past: To Edit or Not To Edit

In our analysis we identified a number of session snapshots in which the past working set has a
remarkable size but it contains no edit events (i.e., no node in the past working set has a red
stroke). Figure 10.4a depicts an example with 52 non-edited entities in the past working set.

(a) (b)

Figure 10.4. Two examples of the “Past: To Edit or Not To Edit” pattern

This means that all the events performed in the past were explorative, targeted at the nav-
igation of the system at hand. We conjecture that the developer needs to build her mental
model prior to start her task, consistent with a significant time spent on program comprehen-
sion [Cor89]. On the other hand, there are snapshots in which the past working set counts an
high number of edits, as in Figure 10.4b. In this snapshot more than 75% of the entities com-
posing the past working set have been edited. Essentially, this could mean that the developer
completed a given task and moved to a new one on separate entities.
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The Guiding Star

A development session potentially involves a large number of program entities. However, during
development there might be a few landmarks that the developer uses as guiding stars for her
exploration process. Figure 10.5 shows snapshot of a development session that clearly manifests
this pattern.

Figure 10.5. Example of the “The Guiding Star” pattern

On the left side of the current working set we can see a circle depicting a method colored in
black with 7 connected edges. This method likely plays a key role in the development session, or
better in the current working set, supporting the exploration of 8 other entities, i.e., 4 methods
and 4 classes.

Another observation is that the number of entities colored in black is relatively low. Since
the color represents the number of interactions, this is consistent with the fact that developers
need to periodically revisit some key entities (as observed by Ko et al. [KMCA06] and Soh et
al. [SKG+13]), but also with the fact that the context model necessary to solve the task is often
relatively small, i.e., 4 classes (as observed by Fritz et al. [FBM+14]). Moreover, the edges are
relatively long, even the ones connected to the guiding star. This means that the cognitive jumps
between the guiding star and a given connected entity are relatively few (since the edges are thin)
and equally distributed among the related entities. This could be consistent, for example, with
a small, limited refactoring.
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Stay Focused, Stay Foolish!

Some sessions have a pattern similar to the guiding star, but involving a greater number of
entities that are highly interacted with between themselves. In other words, the snapshot has
a sort of “guiding constellation”, where the current working set is highly focused on a set of
entities, instead of a single one like the case of the guiding star. We call a working set focused
if there is a subset of entities that are tightly connected between themselves and have a dark
color, symptoms of a high number of interactions. Figure 10.6 shows a snapshot of a session
manifesting this pattern.

Figure 10.6. Example of the “Stay Focused, Stay Foolish!” pattern

The top part of the current working set is very focused. Some nodes are very dark i.e., they
have been involved on a lot of interactions. Furthermore, they are tightly connected, meaning
that there have been a lot of cognitive jumps between all the involved entities. Finally, we
observe that the last interactions happen on a subset of the nodes in the focus (i.e., some nodes
are significantly bigger), meaning that this snapshot belongs to a task which is still revolving
around the focused entities.
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Moving in Circles

As the name suggests, in the sessions manifesting this pattern developers follow circular paths to
explore and eventually modify the software system at hand. Figure 10.7 depicts two snapshots
of two different development sessions manifesting this pattern.

(a) (b)

Figure 10.7. Two examples of the “Moving in Circles” pattern

In Figure 10.7a there are two large circular paths, one composed of 8 and the other of 14
entities. It is interesting to notice how all the entities composing the circular paths are only
observed by the developer and never modified. The only modified entity in the current working
set is the central dark grey entity that apparently acts as a small guiding star for the navigation.
We conjecture that circular paths represent side exploration of the system at hand aimed at
reinforcing the developer’s mental model before—or during—the execution of a task at hand.

A variation of this pattern sees edited entities inside circular paths, as exemplified in the
session depicted in Figure 10.7b. This can be consistent in a manual refactoring involving a
sequence of methods of the same class, for example, that does not need to revisit the edited
entities (e.g.,, in the case of a manual rename of a field).
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10.2.3 Evolutionary Patterns

Evolutionary patterns consider multiple subsequent snapshots during the evolution of a develop-
ment session. In this section we discuss 4 evolutionary patterns that we discovered in our visual
analysis of development sessions.

The Past Awakens

During a session, the working set evolves: After taking part in the current working set, entities
get old and move to the past working set. However we discovered that there are sessions in which
entities also go through the reverse path: From the past (working set) they jump again into the
current working set.

Figure 10.8 shows an example of “The Past Awakens”. In Part 1, all the entities are in the
current working set. Then, due to the aging process, in Part 2, the past working set grows to 11
entities, accommodating all the entities that the developer is likely not to need in a short time.
Part 3, instead, exhibits “The Past Awakens”: From the 11 entities the past working set shrinks
to 9 entities, symptoms that 2 entities have jumped back into the current working set.

Part 1
No past WS

Part 2
Past WS increases

Part 3
“The Past Awakens”

Figure 10.8. Example of the “The Past Awakens” pattern

The manifestation of this pattern adds evidence to the fact that developers need to revisit
entities. According to Ko et al., almost one third of the navigations target entities that have been
already visited in the past [KMCA06]. We compare our data with their findings by considering
each of our snapshots as a form of “navigation”. On average, 4.53% of the snapshots of each
session manifest this pattern. Even though these preliminary findings seem to contradict Ko et
al., the fact that an entity comes back from the past working set is more restrictive than a revisit.
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Multi-Part Session

A development session is a sequence of conceptually related events happening in a relatively
short timeframe. However, we can often identify clear subsets of events that correspond to
precise activities or phases. Examples include source code exploration, debugging, source code
modification, etc. We call “Multi-Part Session” a session exhibiting this pattern.

Part 1
First Task

Part 2
Exploration

Part 3
Second Task

Part 4
Final Exploration and Verification

Figure 10.9. Example of the “Multi-Part Session” pattern

Figure 10.9 shows an example of this pattern. In Part 1 the developer addresses a task: She
explores a set of entities and performs edit operations on 8 entities. In this first part, all nodes
(except for the Start node that alone composes the past working set, i.e., there are no edges
connected to it) are in the current working set. In Part 2, the developer explores a different part
of the system (i.e., the past working set starts populated with 12 entities). She jumps from one
entity to the other performing only 2 edit operations, possibly to augment or refine her mental
model prior to performing a new task. In Part 3 the developer edits two new entities and keeps
interacting with some of the entities she has navigated in the second explorative part. The last
part of the session (i.e., Part 4 in Figure 10.9), is mostly explorative: All the edited entities
go, or remain, in the past working set. Our conjecture is that in this last phase the developer
explores the entities related to the ones that she modified during the session to verify the side
effects of her modifications.

Our visualization supported us in visually identifying different development activities and
interesting snapshots that otherwise would have been non trivial to find.
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Thirst for Knowledge

Developer are often confronted with unfamiliar code or code that does not work and need to be
fixed. When this happens they need to spend time in performing program comprehension and
related activities. As depicted in Figure 10.10, this phenomenon is visible from our visualization
that (mostly) portrays entities without the red stroke.

Part 1 Part 2 Part 3

Figure 10.10. Example of the “Thirst for Knowledge” pattern
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The Working Funnel

We observed that often the number of program entities that a developer interacts with in the
initial phases of a development session is larger than the ones she interacts towards the end of
the session. This can be attributed to several different factors. One possible reason for that
is the fact that, prior to performing source code changes, developers need to gather a strong
knowledge of the system by exploring it. As a result, in the initial parts of a session there are
few edit operations but a lot of interactions, symptoms of an exploratory phase.

Figure 10.11 shows 4 snapshots of a development session that exhibits this behavior. In
Part 1 there are no edits, but a chain of explorative events. In Part 2 the developer starts
to modify a handful of entities, while continuing the exploration. In the remaining two parts
of the session (i.e., Parts 3 and 4 ), instead, the number of entities in the current working set
significantly shrinks. This is the symptom that the developer had stopped exploring. A possible
explaination is that she is checking whether her modifications have the desired effects on the
entities potentially affected by those changes.

Part 1 Part 2 Part 3 Part 4

Figure 10.11. Example of the “The Working Funnel” pattern

A developer with a clear mental model of the system or that is facing an easy task, instead,
could start by editing a large set of entities right away. Then, in a later part of the session, she
could restrict her current working set to a handful of entities to perform the last, non trivial and
more focused set of changes that finalizes her task.

Figure 10.12 depicts 5 snapshots of a development session that shows this scenario. In Parts
1 and 2 the developer explores and modifies 21 entities. Parts 3 is a steady phase in which
the developer explores some entities and performs a few modifications. In the remainder of the
session, Parts 4 and 5, the development flow calms down. In Parts 4 there is still a bit of broad
exploration (i.e., the nodes in the graph are far away, symptom of a pure exploration phase). In
Parts 5, instead, the working set is very narrow, nodes are mostly dark and very close between
themselves. This means that the cognitive jumps are all focused on the current working set.

In the sessions exhibiting the “The Working Funnel” pattern, the working set is large at
the beginning and progressively narrows down towards the end of the session, to guide the
development flow, like a funnel.3

3A funnel is a pipe that is wide at the top and narrow at the bottom, used for guiding liquid or powder into
a small opening.
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Part 1 Part 2 Part 3 Part 4 Part 5

Figure 10.12. Another example of the “The Working Funnel” pattern

10.3 Reflections

In this chapter we presented a visual approach to characterize how working sets evolve during
a development session. Our approach leverages navigation, edit, and inspection events, and
provides an incremental, evolutionary visualization of the current and past working set. The
view combines two different and dedicated layouts: A radial layout for the past working set, and
a force-directed layout for the current working set.

We believe that visualizing interaction histories is an essential means to provide a deeper
understanding of this novel and complex source of information. By inspecting our visualization,
we identified several static and evolutionary patterns. In particular, we illustrated how our
visualization can identify long, repeated navigations involving several entities, or the presence of
key entities in a development sessions (that we called “guiding stars”) that guide development
tasks. On the evolutionary side, we identified patterns where entities on the past working set
return to be subject of tasks later in the session (i.e., “The Past Awakens”), or cases where
sessions are really composed of several independent tasks (i.e., “Multi-Part Session”).

While reflecting on the characteristics of working sets is interesting to get insights about the
mechanics of software development, we believe that our visualization can be more beneficial if
integrated in the IDE and made actionable. As part of our future work, we envision developers
that use our visualization as an alternative—and potentially faster—way to navigate among
program entities.
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Other Visualizations and Storytelling

The main motivation for our research is the fact that we believe that interaction data
recorded by DFlow may reveal important insights about developer behavior inside the
IDE. In the long term, this insights can be used to support the workflow of developers.

However, after we developed the first prototype of DFlow and shared it with the first handful
of developers, we discovered that raw interaction data are very hard to interpret.

To get a preliminary understanding of this data we devised a catalog of software visualizations
that portrays interaction histories from different perspective. Our catalog includes visualization
showing structural information of the code developers interact with or cumulative views to un-
derstand the impact of different activities (e.g., navigation, inspection, editing) on a development
session. This chapter details the catalog and explains how these visualizations can support visual
storytelling of development sessions. In particular, we report two development stories that use
multiple visualizations to gather interesting insights from the recorded development sessions. We
applied the catalog visualizations on a dataset of more than 200 development sessions totaling
100,000 development activities (i.e., meta-events) and about 80,000 interactions with the UI of
the IDE (i.e., window events).

This chapter also overviews DFloWeb, an early experiment we made on visualizing the
workflow of developers in the web. The chapter details the web application, the visualization
principles employed, and lists two peculiarities of the data emerged by a visual analyses of 20
development sessions recorded with DFlow.

Structure of the Chapter

Section 11.1 describes our catalog of visualizations to depict the developer behavior. Section 11.2
leverages such visualizations as the medium for visual development storytelling. In Section 11.3
we describe DFloWeb, our very first prototype of visualization of the workflow of developers.
Finally, Section 11.4 concludes the chapter.

129
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11.1 A Catalog of Visualizations for Development Sessions

Our catalogue of visualizations for development sessions includes 5 views: i) the Activity For-
est, ii) the Activity Timeline, iii) the Cumulative Activity View, iv) the UI View, and v) the
Workspace View. Since Chapter 9 already discussed the UI View, in this section we focus on the
other views.

11.1.1 Activity Forest

The Activity Forest view depicts the program entities involved in a development session enriched
with structural source code information. Figure 11.1 shows an example.

baz

category Pill

Class Blue Class Red

foo barbaz

category X

Class Y

m1 m2 m3

Roots
Categories
(Packages)

Level 1
Classes

Level 2
Methods

Navigation Inspection Understanding Edit

tim
e

Size of the change
(edit-only)

Duration

Figure 11.1. An example of the “Activity Forest” view

The visualization is composed of a forest of trees (two in the example), where each tree
represents a sequence of development actions in a context, i.e., subsequent actions happening on
program entities contained in the same package. Thus, the root of each tree is a category (or
package). Each category has classes as children. Only the classes subject to development actions
are displayed (i.e., not necessarily all the classes in the category). In the same way, classes have
methods as children. Inside each node the view portrays development activities as colored boxes.
The magnification on the left part of Figure 11.1 shows the activities on the method baz.

Each color represent a type of activity (see the color legend). The height of each activity
box is proportional to the time spent, the width of boxes is fixed. The only exception are edit
activities: Their width is proportional to the size of the change, i.e., the difference between
the size of the method before and after the edit. Edit activities are colored with a greyscale
to represent the size of the method, i.e., white for smaller methods and black for the biggest
method edited in the session.
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11.1.2 Activity Timeline

The Activity Timeline view portrays the development activities of a development session as a
timeline. This view, depicted in Figure 11.2, emphasizes the sequential nature of the activities
and their duration.

Navigation Inspection Understanding Edit

0 10 20 30 40 50 55

duration

Figure 11.2. An example of the “Activity Timeline” view

In the example, each activity is represented by a colored box: white for navigation, blue for
inspection, yellow for understanding, and red for editing. While the height of the timeline (i.e.,
and of the activities) is fixed, the width of each activity is proportional to its duration. The
timeline is enriched by regular time ticks at 10 minutes intervals.

11.1.3 Cumulative Activity

The Cumulative Activity View places development activities in a cumulative bar chart. This
layout stresses the partitioning of different types of activities (e.g., navigation, editing, under-
standing). Figure 11.3 shows an example.

Navigation Inspection Understanding Edit

0

duration of understanding

300

600

1680

duration of editing
duration of inspection
duration of navigation

900

1200

360

Figure 11.3. An example of the “Cumulative Activity” view

This visualization presents the same information of the Activity Timeline of Figure 11.2 but
in a different form. The vertical axis of the graph represents time (in seconds). The first bar
represents the activities in the first 5 minutes of the session, the second bar portrays the first 10
minutes, and so on.

11.1.4 Workspace View

The Workspace View mirrors the Pharo IDE and depicts position and size of opened windows
over time. It highlights which areas of the IDE are the most crowded.
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Free area Few windows Chaos

Figure 11.4. An example of the “Workspace View”

Figure 11.4 shows an example. The outermost container is the Pharo IDE. Inside there
are translucent grey boxes representing the windows the developer interacted with during a
development session. The view shows the evolution of the entire session, step by step. Figure 11.5
shows three subsequent snapshots of a session through the Workspace View.

Figure 11.5. Subsequent moments visualized through the “Workspace View”

At the beginning of the session (see Figure 11.5) the developer concentrates her focus on the
leftmost part of the IDE. As the session continues the developer fills the IDE with windows.
The highest “concentration of windows” happens near the bottom right corner of the IDE (i.e.,
darkest area of the view).

Summing Up

Our visualizations serve to characterize the behavior of developers during development sessions.
The Activity Forest, Activity Timeline, and Cumulative Activity View depict development ac-
tivities such as navigating, inspecting, editing, and understanding source code. The Activity
Forest highlights the program entities involved in the development session and their source code
structure. The Activity Timeline and the Cumulative Activity View, instead emphasize how time
is spent while interacting with the IDE. The other two views, the UI View and the Workspace
View, focus on pure UI interactions.

In the next section we put the visualization in practice to support visual storytelling of
development sessions.
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11.2 Telling Visual Development Stories

In this section we present two development stories emerged from the visual analyses of develop-
ment sessions: i) “Killing Bugs and Windows”, and ii) “One Window Takes It All”.

Killing Bugs and Windows

The first story is about a session of a developer that we will call Alice. Upon starting a session
DFlow asks the user for a title and a session type. The developer categorized the session as
bug-fixing. The session lasts for about three hours, including 1 hour of pause. Figure 11.6 shows
how the developer managed her time in terms of development activities.

Figure 11.6. Cumulative Activity View for a bug-fixing session of Alice

In each of the 5 minutes slices the developer mainly performed understanding activities. At
the end of the session understanding accounts for 1 hour and 20 minutes, editing activities lasted
for less than 25 minutes, and duration of inspections and navigations are respectively 19 and
2 minutes. The large predominance of understanding could be intrinsically connected with the
nature of the session: Bug-fixing requires a deep knowledge of the code base.

Figure 11.7. Part of the Activity Forest for a bug-fixing session of Alice
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The half hour the developer spent in editing source code can be summarized with the part of
the Activity Forest (see Figure 11.7). All the edits are condensed in two contexts (i.e., packages)
and involve only a dozen methods. Most of the times edit events are interleaved with inspections
(depicted in pale yellow), which are the means to understand the effects of the changes.

Figure 11.8. Combined UI View and Activity Timeline for a bug-fixing session of Alice

Until now we only focused on development activities. DFlow also captures interactions with
the UI of the IDE. Figure 11.8 shows a combined visualization of the UI View (top) and the
Activity Timeline (bottom) for the same Bug-Fixing Session of Alice. In this session Alice used
228 windows and she focused for very little time on each of them (i.e., about 30 seconds per
window). The highly interrupted development’s flow of Alice in this session may be due to the
way the IDE supports debugging activities. In Smalltalk, while debugging, developers perform
inspections on instances of objects. Most of the times when the user inspects an object the Pharo
IDE triggers an Inspector, i.e., a small window that shows details about the inspected instance.
This assumption is supported by a high number of inspection events (222). This session features
60 edit events on a dozen of methods. The red dots in the UI view represent when and where edit
events happened. From Figure 11.8 we can observe that there are more than a dozen windows
with edit events. Alice tends to open multiple source code browsers on the same artifact, and
close browsers immediately after an edit, thus being forced to reopen it for the next edit.

Developers are often forced by IDEs to spawn a number of windows (or tabs) to reveal hidden
relationships among source code entities. Röthlisberger et al. called this phenomenon the window
plague [RND09]. From the highlights in Figure 11.8 we can observe how the environment of Alice
is affected by this plague. When her IDE reaches a certain “level of chaos” she simultaneously
closes a number of window to lower it. Figure 11.9 shows two snapshots of the session of Alice
using the Workspace Views. Alice has a tendency to use only the leftmost part of the IDE. This
could possibly motivate the need to cure the window plague so often.

Figure 11.9. Two Workspace Views of the bug-fixing session of Alice
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One Window Takes It All

This story is about an enhancement session of Bob. Enhancement means that the developer’s
intention is to add new or enhance existing functionality.

Figure 11.10. Cumulative Activity View of the enhancement session of Bob

The session lasts for about an hour and for its entire duration the developer spends the
majority of her time in understanding (see Figure 11.10). Editing increases constantly throughout
the session with two major jumps, highlighted in the view.

All the edits happen in a single category (or package) as shown by the part of Activity Forest
depicted in Figure 11.11. It highlights the activities on two methods, both part of the same
class, i.e., the most edited methods. From the visualization we see that the developer tends
to shorten these methods while editing them, i.e., their color goes from black to white. The
complete Activity Forest (not shown for lack of space) includes a number of small trees depicting
classes the developer browsed while building his knowledge to perform the changes.

Figure 11.12 shows how the IDE looks like at the beginning, towards the middle, and at the
end of the session. There is a big window (i.e., a code browser) that occupies almost the entire
IDE space. This window remains active for the entire duration of the session. The developer
tends to open (or move) all the windows towards the top let corner of the screen, hiding the
top half of the big window. Pharo code browsers display source code in the lower part of the
window. Bob moves all the windows so that he can always see the lower part of the big-window,
most likely because he wants to keep an eye on the source code displayed in it. The UI View,
depicted in Figure 11.13, shows this long-lived window, i.e., the first window track. All the edits
are performed using this window, i.e., this session revolves around this key window.
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Figure 11.11. Part of the Activity Forest of the enhancement session of Bob

Figure 11.12. Three Workspace Views of the enhancement session of Bob

Figure 11.13. The UI View of the enhancement session of Bob
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11.3 DFloWeb: Visualizing Interaction Data in the Web

DFloWeb, depicted in Figure 11.14, was one of our early attempts at visualizing interaction
data. This visualization platform is implemented as a web application.

4

2

3

1-a
1

1-b

1-c

4-a

Figure 11.14. DFloWeb composed of (1) a Navigation Bar, (2) a Session Log, (3) a Timeline, and (4) the
Visualization Canvas

The web application of DFloWeb is composed of:

1. Navigation Bar to configure the visualization and browse information.

(a) Select Session Menu to select the session she wants to analyze.

(b) Session Information Panel to provide additional information on the session.

(c) Replay Menu to step into the session (i.e., start & stop) and to configure the speed
of the animations.

2. Session Log to show a time-ordered textual description of each event that happened during
a session.

3. Timeline to represent the events happening in a session divided according to their category:
handling, navigating, inspecting, and editing.

4. Visualization Canvas for the interactive visualizations.

(a) Entity Information Panel to reveal additional information about the hovered entity.
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11.3.1 Visualizing Development Sessions with DFloWeb

DFloWeb uses a custom visualization to depict a development session. Figure 11.15 shows
the principles behind the view and the color mappings we use for the entities. We depict a
development session using a directed graph in which nodes are the entities involved in the current
session (classes, methods, attributes). The directed links (i.e., source destination) depict
“navigation-paths” and not structural relations.

Time
State

Behavior

Classes & Handling

Methods

Attributes

Events (nodes & timeline)

Handling

Navigation

Editing

Inspecting

Attributes

Links (recency)

1st Quartile

2nd Quartile

3rd Quartile

4th Quartile

Figure 11.15. Visualization principles of DFloWeb

Principles and proportions

Nodes are either classes, methods, attributes, or session handling events (e.g., start, pause, stop,
resume). The radius of a node is proportional to the number of events on that entity in the
sessions (i.e., how many times the user interacted, directly or indirectly, with this entity). We
divided events in three categories: navigating (i.e., green), inspecting (i.e., yellow), and editing
(i.e., red). Navigation events are the less intrusive events (they do not modify the entity) while
editing events represent the “real” editing activities (e.g., adding/modifying a method/class).
Inspection events do not modify the entity, but represent deeper forms of navigation (e.g., in-
specting the internals of an object). Class and method nodes are depicted as pie charts presenting
the event distribution of that entity at a glance. Handling events are depicted in grey. Links
depict “navigation paths” between entities, e.g., if the developers creates Class A and right after
browses the Method foo of Class B (i.e., B#»foo) DFloWeb draws a directed link from Class

A to B#»foo.
The width of the link is proportional to the number of occurrences of that navigation path

in the session. We use the color to present information about the age of the links. We divided
links in quartiles, according to their age. For the first three quartiles (i.e., old links) we used
three tones of gray with increasing saturation, while for the last quartile (i.e., the most recent
links) we use a gradient from blue to red.

Class nodes and session handling nodes are positioned on a horizontal line, whose x-coordinate
represents the temporal dimension of a session. Method nodes and attributes are not mapped to
that time scale, but they take the x-position of their owner node (i.e., a class node), unless the
owner node is not part of the view. This visual cue helps one to perceive to what extent a class
has been touched during a session.



11.3 DFloWeb: Visualizing Interaction Data in the Web 139

The bottom timeline presents an outline of the session, where each rectangle is an event. The
color of events follows the same color scale of the pie-charts. The y-coordinate of each rectangle
represents one of the four categories of events (i.e., handling, navigation, inspection, and editing).
The x-coordinate of each rectangle represents the timestamp of the event it depicts.

Interacting with DFloWeb

The user can interact with DFloWeb by panning (i.e., drag & drop) and zooming (i.e., mouse
wheel) the view inside the visualization canvas (Figure 11.14.4). The zoom performs an x-axis
rescale and restricts the time interval being displayed. This helps to better understand the
visualization at time steps where events have a high density. The user can also drag & drop
single nodes to better understand links between the nodes. The “Replay menu” (Figure 11.14.1-
c) offers additional means to interact with the view. DFlow records all the time steps of a
session, and DFloWeb is able to produce an animation of the session where the view evolves
together with the session. Figure 11.16 shows three time steps from the evolution of a session.

t1 t2 t3

Figure 11.16. Three time steps of the same session visualized with DFloWeb

11.3.2 Telling Development Stories with DFloWeb

We analyzed 20 sessions with DFloWeb. The analysis uncovered two main insights:1

• “High Navigation Stacks & Back-Links”, and

• “Different Type, Different Shape”.

1To increase the readability of this Section, we present each insight on a new page.



140 Other Visualizations and Storytelling

High Navigation Stacks and Back-Links

Figure 11.17 shows part of an “enhancement session” recorded during the development of
DFlow itself. There are 3 main stacks of events highlighted in the Figure. Stacks A and B refer
to user-defined classes, DFSessionAnalyzer and DFJSONTouched-EntityNode. Stack C is a chain
of navigation events involving the String class and its methods. High navigation stacks denote
that the developer is browsing the API of some class to find a specific piece of functionality.

A

B
C

Figure 11.17. A Fraction of an Enhancement Session Depicted with DFloWeb

Figure 11.18 shows a snapshot of the same session at a later time. In the figure we marked two
special links, A and B. These are “back-links”, where the developer, after repeatedly browsing
some other class, has gathered enough knowledge to “go back” to another entity and finally
perform an informed modification.

Back-link B

Back-link A

Figure 11.18. The Same Session of Figure 11.17 at a Later Time
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Different Type, Different Shape

Figure 11.19 shows a “bug-fixing session”. From both the bottom timeline, and the visu-
alization, we see that this session features a series of navigation events (i.e., green) and one
single editing (i.e., red). This denotes the fact that the user has been navigating code to gather
information about the system to fix one specific entity, marked as A.

Editing event

Entity A

Figure 11.19. DFloWeb Depicting a Bug-Fixing Session

11.4 Reflections

Often times it is unclear how developers exploit the diverse facilities offered by IDEs to perform
their activities. We believe that software visualizations are an intuitive mean to gather insights
from data that are otherwise hard to interpret. In this chapter we presented a catalogue of
visualizations to support basic analytics of developer interactions with the IDE. We tested our
visualizations to support visual storytelling of interesting developer behaviors. The two stories
illustrate that it is possible to infer insights about how developers use the IDE, pointing out
veritable development styles in terms of UI usage. The chapter also detailed DFloWeb, a web
application that we developed in the early stages of our research to visualize the workflow of
developers. DFloWeb enables retrospective analyses through interactive web-based views.

All the visualizations described in the last chapters share one limitation: They can only be
used retrospectively. We envision “ live and adaptive visualizations”, visualizations that are in-
sync with the workflow of developers (i.e., live) and that can be used by developers as a support
for the development process. In Chapter 14 we further discuss this long term vision.
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12
The Plague Doctor: Curing the Window Plague

Object oriented programming introduced a number of benefits in terms of how soft-
ware systems are developed, structured, and organized: Better separation of concerns,
modularity, and reusability are mere examples. However, this comes at a cost: Program

entities are organized in hierarchies, stored over complex repositories, and thus there can be
complex, hidden, and transitive relationships among them [WH92, DRW00]. This hampers pro-
gram comprehension that, among other objectives, aims to explore and understand such complex
relationships.

IDEs provide two main UI paradigms: window-based, like in the Pharo IDE, or tab-based,
like in the Eclipse IDE. Neither of the two paradigms effectively supports the navigation of the
complex software space [SES05]. In fact, both paradigms force developers to open one tab (or
window) per program entity, leading to what researchers called window plague [RND09]. The
window plague is the tendency of IDEs to quickly become overcrowded by unused windows (or
tabs). In addition, IDEs do not keep track of relationships among windows and provide little
or no support to automatically maintain a low level of entropy inside the IDE, e.g., by closing
unused windows.

It has been shown that it is possible to mitigate the window plague by monitoring how
developers interact with the UI of the IDE and exploiting such data [RND09]. Röthlisberger et
al. developed a preliminary cure for the window plague in Autumn Leaves. Autumn Leaves
is an extension for the Pharo IDE that detects windows that are unlikely needed for further
use and closes them. It also adds visual clues to the more important ones to provide cognitive
feedback to the IDE. The authors conducted a benchmark evaluation with promising results.
Unfortunately, Autumn Leaves remained a prototype, it was never integrated in the IDE and
no one could take advantage of its potential benefits. We believe that one of the reasons for this
was overly coarse grained data leveraged by Autumn Leaves, and it remains an open issue to
quantify how much the window plague hinders development.

The window plague is a relevant problem for the Pharo community, in this chapter we present
the Plague Doctor: an enhanced implementation of Autumn Leaves. In this chapter we
also discuss possible future directions to provide a more effective cure for the window plague.

Structure of the Chapter

Section 12.1 details the approach and its implementation. Section 12.2 outlines possible future
directions for research in this context and Section 12.3 concludes the chapter.
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12.1 The Plague Doctor

The top left part of Figure 12.1 shows the Pharo IDE manifesting the window plague after a few
minutes of development. The lower right part of Figure 12.1 depicts the same environment with
the Plague Doctor enabled. Without the Plague Doctor, the UI depicted in Figure 12.1
is overcrowded by a significant number of apparently similar, overlapping windows and makes
impossible for developers to identify which windows are most relevant for the current development
context. It is also likely that some of these windows are not needed, but the IDE does not provide
means to automatically identify them or reduce the level of entropy, i.e., by closing windows.

Importance

Pinned

Normal windows

Low High

Candidate for closure
Age

Young Old

2

1

4
3

Figure 12.1. A screenshot of Pharo IDE manifesting the Window Plague (top left) and the same environment
after enabling the Plague Doctor (bottom right)

The Plague Doctor uses interaction data to compute the importance of windows, and
thus the likelihood that they will be used again in the future. For example, a window becomes
more important when a user types on it, or when she uses its UI components to perform a task.
It decorates the windows to keep the developer aware of their computed importance. A heat-
scale from light blue (i.e., less important, see Figure 12.1.1) to bright red (i.e., more important,
see Figure 12.1.2) reduces the cognitive load of a developer that faces this IDE: It is likely that
she can concentrate her focus on the most warmer (important) windows and ignore the colder
windows. In addition to the color scale for the important windows, the Plague Doctor lets
the user identify the windows that are less likely to be used in the future. When less important
windows become candidates for closure, the Plague Doctor uses a gray scale from dark to
bright gray to indicate their age, i.e., in terms of how many interactions happened after the
window became a candidate (see Figure 12.1.3). By default, the Plague Doctor has a grace
period of 5 user actions before closing a window that has been marked as a candidate. When
this period expires, the doctor automatically closes the window, asking for user confirmation if
configured to do so.
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For some tasks, the developer may become aware that an unused window is still important
for a future task, and thus she might require to avoid its closure in an explicit manner. The
Plague Doctor provides the ability to pin a window, that is, exclude it from the potential
candidates for closure. Pinned windows are colored in light yellow (see Figure 12.1.4).

The Plague Doctor is just the tip of the iceberg. While the developer programs, DFlow
observes all the user interactions, from UI events such as moving a window, to meta events such
as the creation of a new class, down to the granularity of mouse and keyboard events. DFlow
then generates events that other tools, such as the Plague Doctor, can intercept, process,
and exploit, as discussed in Chapter 5.

12.1.1 Models and Strategies

The Plague Doctor defines the “importance” (or weight) of a window in the current devel-
opment context. To compute it, it maintains two weight models: the window interaction model
and the program entity model. The global weight of a window, is computed by combining its
weight from the window interaction model and the weight of the program entity displayed in the
window itself (if any). To update these models the doctor uses a weighting strategy. Closing
strategies, instead, determine which windows are candidates for closure. The user selects one
weighting strategy and one or more closing strategies, i.e., we call them active strategies. After
every interaction the active strategies are applied: Models are updated, windows are decorated
and closed, if needed.

Program Entity Model

The Program Entity Model associates a weight to each program entity (i.e., class or method)
observed during a development session. Every time the developer interacts with an entity (e.g.,
observe, modify) its weight gets updated, according to the defined weighting strategy. The
weight of a program entity is persisted even if all the windows that display that entity get closed.
This allows the doctor to keep track of the entities that are relevant in the current development
session.

Window Interaction Model

Similarly, the Window Interaction Model associates a weight to each open window during a
session. The weight gets updated at each interaction with the specific window (e.g., on window
focus, minimization, movement), and depends on the active weighting strategy. When a window
is closed, its weight is removed from the model.

Weighting Strategy

A Weighting Strategy determines how weights are updated. In the original Autumn Leaves
strategy, every user interaction brings a particular, fixed, weight update. The doctor implements
this strategy, and uses the original parameters and weight updates suggested by Röthlisberger
et al. [RND09]. However, we will investigate the effectiveness of the original parameters. The
original strategy prescribes that 50% of the weight updates of program entities is propagated
following structural source code relationships (i.e., method propagates to its defining class, class
to its direct superclasses and subclasses). Currently, only one weighting strategy at the time
could be active.
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Closing Strategy

A Closing Strategy is responsible to determine which windows are candidate for closure. For
example, a strategy that involves the weight models can define a threshold (i.e., sensitivity) on
the weight of windows. As in the case of Autumn Leaves, we implemented a strategy that
closes all the windows whose weight is below a customizable threshold. The default approach uses
a percentage of the average weight of all the windows. An innovation with respect to Autumn
Leaves is that the user can activate more than one closing strategy at the time. A strategy could
consider the weight models or ignore them, e.g., one might want to have a maximum number
of open windows per window type. In an IDE, often, there are different kinds of windows:
workspaces, code browsers, test runners, etc. We also implemented a strategy that closes the
windows with lowest weight of a given type, when the IDE reaches the maximum amount of open
windows for that type.

Figure 12.2. The Settings of the Plague Doctor

12.1.2 Advocatus Diaboli

We are aware that the Plague Doctor has some limitation. This section addresses some
criticisms that can be raised against our approach.

It only works for window-based IDEs. Even though our prototype has been implemented in
Pharo, a window-based IDE, the approach is not specific to such environments. The default
weighting and closing strategies can be applied directly to tab-based IDEs such as Eclipse.

The Plague Doctor does not differ from Autumn Leaves. Our tool is indeed inspired by Autumn
Leaves, and mimics all its functionalities, but it has a number of advantages:

. It exploits more and better interaction data. The doctor can leverage all the fine-grained
data recorded by DFlow. For example, using the code browser to navigate source code



12.2 The Future of the Plague Doctor 149

might increase the weight of a window and all the visited entities. Debugging events can be
leveraged to increase the weight of the entities being investigated.

. It is extensible. The Plague Doctor is designed to be extensible. For example, adding
a new weighting (or closing) strategy requires minimal effort, i.e., a new class copied from
a template and a method that implements the strategy per se. The new strategy will im-
mediately appear in the settings of the Plague Doctor (depicted in Figure 12.2) and can
replace the current one right away.

. It is customizable. The Plague Doctor has a number of settings, depicted in Figure 12.2,
that the developer can use to customize it. For example, all the colors are contained in a
theme class that can be duplicated and changed to have a novel and more appealing color
scheme.

. It is Available. Differently from Autumn Leaves, the Plague Doctor is currently avail-
able and can be installed in the Pharo IDE.

12.2 The Future of the Plague Doctor

The prototype of the Plague Doctor described in the previous section is only the first step
towards fully exploiting the data collected by DFlow while the developer is programming.
This section discusses our future plans to provide a more effective cure for the window plague
leveraging DFlow data.

Fine-tuning the existing strategies

Weighting and closing strategies are parametrizable. The value of the weight update after a
particular user interaction, for example, is a parameter of the weighting strategy. The usefulness
of the Plague Doctor strictly depends on how good the strategies are. Until now, we reused
the values proposed by the authors of Autumn Leaves [RND09]. The authors used a benchmark
evaluation to devise such values. We are in contact with the core developers of the Pharo
community, and we plan to conduct a detailed user evaluation with them to fine-tune these
parameters backing them up with evidence from interaction data.

Adding Novel Strategies

Our initial Plague Doctor prototype makes it easy to add new strategies to weight or close
windows in different ways. Our plan is to devise a number of different strategies and test them
in real settings scenarios, i.e., involving real developers. A qualitative study where we can get
feedback from developers about our approach could also trigger new ideas for novel strategies.
Since the Plague Doctor allows multiple closing strategies to be enabled, we should also
investigate which combinations of strategies perform better.

Self-Adaptation

Our long term vision focuses on the self-adaptability of IDEs [Min14]. We believe that tools
should also be subject to self-adaptation. In this context, for example, strategies could be self-
adaptable. Consider the closing strategy that uses a threshold to decide which windows to close.
Suppose that, when the developer realizes that the Plague Doctor wants to close a window,
she pins that window to force the doctor to leave it open. The doctor must lose confidence in
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itself and relax its sensitivity. In the opposite case, if the doctor closes windows without the user
playing against, it should slightly increase its confidence and increase its sensitivity.

Exploiting more interactions

The Plague Doctor currently exploits only a few more user interactions with respect to
Autumn Leaves. Potentially, it can leverage all the fine-grained interactions collected by
DFlow [MMLK14]. Mouse events, for example, can be factored in the weighting strategies. In
fact, developers might use the mouse as a reading device, i.e., by following the source code that
they are reading with the mouse cursor. Another source of information collected by DFlow are
debugging events. If a developer spends time in debugging a piece of code, it is likely that the
program entities contained in this code snippet are relevant for the current development session,
thus their weights should increase.

Evaluation Plan

To validate the Plague Doctor, we plan to do a benchmark evaluation and feed the recorded
sessions to the tool. The idea is to define the level of entropy of the IDE (i.e., how many unused
windows are left open) and measure if and how it varies with the support of the Plague Doctor.
We also aim to obtain further evidence of the importance of the window plague in practice. Our
expectation is that the tool is effective to reduce the level of entropy while being as precise as
possible. By precise we mean that the Plague Doctor should only close windows that the
developer would not reuse in the future. There is a trade-off between precision and effectiveness
that remains to be investigated and optimized. Another study could focus on the time spent
by developers in program understanding tasks. From a previous analysis of recorded interaction
data, we found that developers spent a considerable amount of time (ca. 15%) in fiddling with
the UI of the IDE (e.g., by rearranging windows that create confusion in the IDE). Since the
window plague is one possible reason behind this, we should investigate if approaches such as
Autumn Leaves or the Plague Doctor reduce the time wasted by developers in fiddling
with the UI of the IDE. Last but not least, we also plan to conduct a qualitative evaluation to
gather direct feedback from developers.

12.3 Summing Up

IDEs offer little support to navigate the complex and implicit relationships among program
entities and force developers to open one window (or tab) per entity, leading to what researchers
called window plague, an overly crowded workspaces with many open windows (or tabs) [RND09].

In this chapter we presented the Plague Doctor, a tool that leverages fine-grained interac-
tion data collected by DFlow to mitigate the window plague. Our tool computes the importance
of windows, decorates them to reduce the cognitive load of a developer facing the IDE, and closes
the windows that are less likely to be used again in the future. Plague Doctor is only a pro-
totype. In this chapter we discussed its limitations and our future plans towards a more effective
cure for the window plague.
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Taming the User Interface of the IDE

The window plague, discussed in the previous chapter, is one of the reasons that can
lead the IDE in a “chaotic”1 state [RND09]. In general, modern IDEs are not able to
effectively and efficiently tackle the complex relationships between source code entities to

support source code navigation. Researchers discovered that up to 35% of development time is
spent navigating code [KMCA06] and that developers often need to periodically revisit the same
entities [SKG+13]. Since there is limited evidence that a chaotic IDE state affects the developer’s
productivity ([BRZ+10]), the nature and amount of chaos experienced by developers is hard to
characterize and quantify. This makes developing mitigating countermeasures challenging.

In this chapter we look for evidence of chaos by analyzing two different datasets. The first
one comes from Pharo, a window-based IDE, and includes around 770 hours of development data
coming from 17 developers. We observe that these developers spend on average 30% of their time
in a chaotic environment. The key characteristic that makes our approach possible is the large
number of fine-grained interaction data that we were able to record over an extended period. To
get a more encompassing vision, we also analyzed the Mylyn dataset [KM05], which features
several thousands of individual tasks coming from 179 developers.

With the fine-grained dataset of DFlow, we were able to comprehensively investigate the
chaos phenomenon, characterizing it in terms of the window space required to support devel-
opment tasks, and the overlapping of these windows. The level of chaos impacts on both the
proportion of time that developers spend altering the UI of the IDE and the proportion of time
spent performing program comprehension tasks. This corroborates the findings of the studies of
Ko et al. [KMCA06] and Bragdon et al. [BRZ+10]. This chapter also discusses our first steps to
help developers coping with the chaos. We devised and evaluated simple strategies that leverage
IDE interactions to automatically reshape the UI of the IDE. Our findings reveal that simple
strategies may considerably reduce space occupancy and time spent in a chaotic environment,
making more time and space available for the real essence of software development.

Structure of the Chapter

Section 13.1 analyzes the literature and provides initial empirical evidence, through the analysis of
Mylyn data, of the presence of chaos in the IDE UI. Section 13.2 details our primary dataset and
explains how we modeled, characterized and measured the “chaos inside the IDE”. In Section 13.3
we present our strategies to reduce the chaos present in the IDE and discuss their impact. Finally,
Section 13.4 discusses the threats to validity of our work and concludes the chapter.

1Not to be confused with “deterministic chaos” [TS02].
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13.1 IDEs and Chaotic UIs

The complexity of building and maintaining working sets for typical development tasks can both
explain the chaotic configuration of an IDE, and be impacted by it.

The information path obtained from navigation in an information space reveals the user’s
mental model of the system [WM99]. In software engineering, developers spend a considerable
portion of their time building and maintaining the working set of code fragments relevant to a
task. This is challenging when the relevant code fragments are dispersed in several locations
in the system. An observational study by Ko et al. reported that developers spend 35% of
their time navigating the source code in search for information [KMCA06], and that 27% of
the navigation operations are performed on already visited locations, indicating the necessity to
periodically revisit these locations to recall information no longer visible on screen.

This study is not alone: The recent context model study by Fritz et al. [FBM+14], based on
detailed observations of 12 developers, each solving three tasks, found that the average context
model necessary to solve a task contained 4 classes. Further evidence is present in the study
by Sillito et al. [SMDV08]: Developers ask a variety of questions during maintenance tasks;
answering some of the questions involves inspecting several entities, increasing working set size.

13.1.1 Improving Management of Working Sets

Several approaches have been proposed to improve the management of working sets. Robillard
and Murphy proposed to represent scattered concerns in source code as concern graphs [RM07].
Mylyn itself is such a tool, which monitors interaction data to automatically build a degree-of-
interest model (DOI), altering the views of the Eclipse IDE by filtering out entities with a low
DOI value [KM05]. Its effectiveness has been empirically demonstrated [KM06]. The Degree-of-
Knowledge (DOK) model by Fritz et al. is an extension of the DOI, that also includes authorship
[FSK+14]. Other tools monitoring interactions to help software exploration have been proposed,
such as Navtracks [SES05], and TeamTracks [DCR05].

The Problem with Tab-Based UIs

A key issue not addressed by these works is the fact that most IDEs do not properly support the
work of maintaining one’s mental model by adopting a file-based representation of source code,
while most working sets span several files. Moreover, the particular UI paradigm typically used
to manipulate source code hinders the maintenance of complex working sets.

Eclipse is a good representative of widely used IDEs (such as Visual Studio, Netbeans, IntelliJ
Idea) that adopt the tab-based metaphor. Each file is shown as an editor in the IDE, with
navigation tools (Package explorers, search tools, etc.) shown as views around the central editor.
By default, the screen estate allows for at most one file to be visible at the same time, while other
open files are shown as “hidden” tabs. This is the case of the overwhelming majority of the Java
developers broadcasting their coding sessions on the “livecoding” website2: Out of several dozens
of videos linked on the site, only a handful of developers stray away from the IDE’s default
settings and use two code tabs at the same time, even if the vast majority of published coding
videos show IDEs with several tabs open at the same time.

The study by Ko et al. [KMCA06] pointed out a considerable number of re-navigation to
entities recently browsed (27%). It highlights patterns of back-and-forth navigation between two
files to compare similar pieces of code, which is necessary if only one tab is visible at a time.

2See https://www.livecoding.tv/videos/java/

https://www.livecoding.tv/videos/java/
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In a series of controlled experiments investigating the influence of type systems [HKR+14], and
of API documentation [EHRS14, PHR14], researchers observed that the treatments with higher
code completion times also had larger working sets, and a larger number of tab switches in a
tab-based IDE. All of these findings highlight the issues related to dealing with multiple tabs in
an IDE when several scattered fragments need to be accessed at the same time.

13.1.2 Evidence from Mylyn data

To explore in a more systematic way the phenomenon of how tab-based IDEs support the man-
agement of complex working sets, we measured the size of the task contexts3 contained in the
Mylyn dataset available in the Eclipse Bugzilla repository4. We downloaded 6,182 bug reports
that had a Mylyn task context as attachment. For each task context, we counted the number
of distinct Java files and methods that were interacted with. We applied filtering techniques to
bypass some of the deficiencies of the data [SRG15], namely removing massive selection events
that could lead to an overestimation of the number of entities interacted with (e.g., selecting an
entire group of classes from the navigation panel, without actually opening them). In essence,
we filter events that originate less than 100ms after the previous event.

We are left with the number of Java files and the number of methods that were interacted
with during a task (we exclude other types of files, such as .class or XML files). The median task
context has interactions with 3 Java files, that is, at least half of the tasks involve interactions
with at least three Java files. The upper quartile is 8, meaning that for at least 25% of the tasks,
the developer needed to consult 8 or more java source code files to finish the task. Clearly, a
large number of tasks demand non-trivial interactions with a large number of source code entities.
Outliers are even higher; if we focus on methods, the median number of methods interacted with
is 5, while the upper quartile is 21. This indicates that for at least 25% of the tasks, the developer
had to piece together information from a large number of methods.

This is a likely sign that the typical size of working sets, together with the way that source code
is represented by the tab-based UI paradigm, may generate chaos in the IDE, forcing developers
to spend considerable time in interacting with the UI components to manipulate their working
sets, for instance to revisit entities as documented by Ko [KMCA06].

Obtaining further evidence is hard, because of the Mylyn data itself, which presents several
limitations for this particular investigation: It does not contain information on the visibility of
elements on screen, so it is impossible to know how many tabs were open at distinct points during
a task, or if developers had several tabs visible at the same time. There is no information to
estimate the size of the screen, or the size of tabs. The data is aggregated, and it is not always
possible to know the exact sequence of events (a sequence of events concerning an entity may
be encoded as a time period where several events occured, reducing precision, as documented
by Ying and Robillard [YR11]). Finally, the Mylyn data is based on a files-and-tabs metaphor,
which is in itself limiting in terms of possible optimizations.

13.1.3 Beyond Tab-based IDEs

Recent efforts have investigated better program representations and UI paradigms than the file-
and-tab-based metaphor of most common IDEs. We can trace back this inspiration to the Lisp
and Smalltalk IDEs of the 80’s, whose most recent representative is Pharo. Efforts include Code
Canvas [DR10] and Code Bubbles [BZR+10]. Code Canvas has seen parts of its functionality

3A set of artifacts that Mylyn considers relevant for the task-at-hand.
4See https://bugs.eclipse.org

https://bugs.eclipse.org
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Figure 13.1. Main UIs to display code: (a) Browsers, (b) Debuggers, and (c) Message Lists

released in Visual Studio as Debugger Canvas, which also integrates parts of Code Bubbles’s
functionality [DBR+12]. These tools aim to reduce the amount of code navigation, by maximizing
the number of entities visible at the same time.

The evaluation of Code Bubbles is particularly instructive. The authors showed that at
a similar screen resolution, Code Bubbles was able to show more methods at the same time
than the classic Eclipse view [BZR+10]. Furthermore, a controlled experiment showed that
Code Bubbles users were both more successful and faster in completing maintenance tasks than
Eclipse users [BRZ+10]. Parts of this performance increase is attributable to a reduction of
repeated navigations, such as the ones observed by Ko, according to the videos recorded during
the controlled experiment (75.9% of all Eclipse navigation operations, compared to 37.6% for
Code Bubbles), as more entities were visible on screen.

13.1.4 Strengthening the existing evidence

Approaches such as Code Bubbles, and the insights that one can obtain from its evaluation,
motivate the need to evaluate the impact of IDE UIs in alternative metaphors to the classic tab-
based approach. Moreover, window-based IDEs also suffer from UI-related phenomena like the
window plague [RND09, MML15c], and our work lies in the same area of research. We leverage
our experience in recording and mining interaction data in the IDE [MML15b] to model and
characterize the impact of chaos in window-based IDEs, evaluate possible techniques that can
ameliorate the developer experience, and ultimately improve the support that UI components
give in constructing and maintaining the working set by managing in a more efficient way the
screen real estate. While the empirical evidence brought forth by Code Bubbles [BRZ+10]
shows that increasing the number of code fragment visible at the same time has a positive
impact on productivity, it is lacking in several aspects. Beyond the simple focus on the more
general setting of window-based IDEs like Pharo, our study complements it in several ways.

Variety of Tasks. Code Bubbles’s productivity benefits are shown in the context of a controlled
experiment, with strong internal, but limited external validity [SSA15]. In fact, the study was
conducted on two well-defined development tasks only, while both our datasets do not impose
any constraint on the tasks at hand. This increases the external validity of the findings, at the
price of a lower internal validity, i.e., lower control with respect to an experimental setting.

Duration of Recorded Data. The conclusions in the Code Bubbles experiment are drawn from
around 30 hours of development. On the other hand, our DFlow dataset contains more than
an order of magnitude of data (around 750 hours).
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Entities Displayed. Code Bubbles was also evaluated on the number of methods shown on
screen [BZR+10]. This was however done on a limited number of methods.

Impact of UI Components. We characterize the impact of chaos on the time spent on UI fiddling
(e.g., resizing windows) and the time spent on program understanding.

Recorded Interaction Data. Last but not least, our approach records enough interaction data to
let us simulate the impact of various strategies on the chaos in the IDE, without needing to
implement a prototype in the early stages.

These characteristics make our evaluation complementary to previous evaluations.

13.2 Charactering and Measuring the Chaos

Each development session is a self-contained and focused development period without long in-
terruptions. This removes the potential problem of considering major interruptions (e.g., Skype
calls, coffee breaks) as part as the development flow. A development session is a sequence of
IDE interactions captured with DFlow which satisfies the followind constraints: i) All events
happen in the same development environment/context (i.e., an image in the Smalltalk jargon);
ii) There are no adjacent pairs of events such that there are more than 5 minutes of inactivity
between them; iii) When the user closes the IDE, the session terminates.

13.2.1 DFlow Dataset

Table 13.1 summarizes our dataset. It counts 771 hours of development time coming from 17
open-source and academic developers working on or around the Pharo project.

Table 13.1. Dataset – DFlow dataset to characterize and measure chaos

Metric Value
Number of Sessions 1,631
Number of Developers 17
Development Time 771h 10m 21s
Avg. Session Duration 28m 22s
Metric Total Avg. per Session
Number of Windows 40,140 24.61
Number of Browsers 6,833 4.19
Number of Debuggers 2,844 1.74
Number of Message Lists 3,870 2.37
UI Time 102h 15m 30s 3m 55s
Understanding Time 594h 54m 57s 22m 49s

We collected interactions with more than 40,000 windows, that we further refined according
to their type. We only consider interactions with windows whose aim is to display and let the
user interact with source code:

• Code Browsers are the core windows to navigate, read, and write code (see Figure 13.1.a).
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• Debuggers are the windows dedicated to debugging activities. They let users navigate the
call stack, watch the state of variables, and read/edit in place the source code of a method
(see Figure 13.1.b).

• Message Lists are all the UIs that display a list of methods and, upon selection, the source
code of the method itself. Example includes UIs to browse implementors of a method or
methods that invoke another method (see Figure 13.1.c).5

Interaction with Windows

We collected a total of 6,833 code browsers, 2,844 debuggers, and 3,870 message lists. Each
session, on average, lasts for ca. half an hour and counts interactions with 24 generic windows.
Considering only windows containing source code, on average each session features 4 browsers,
2 message lists, and 2 debuggers. However, these aggregate metrics are highly variable, with a
considerable number of outliers. For example, considering sessions with windows containing code,
the number of outliers (containing more than 18 of such windows) is 175, roughly corresponding
to a tenth of the recorded sessions.

Activity Durations

In Chapter 7 we used interaction data to measure the time spent in several programming tasks,
like editing, navigating and searching for code artifacts, interacting with the UI of the IDE, and
performing corollary activities, such as object inspection at runtime [MML15b]. Two of these
components are useful for our current study, when it comes to understand how the “level of
chaos” correlates with the behavior of the user.

The first is the UI Time, devoted to fiddling with the UI of the IDE, i.e., moving and resizing
windows. Our dataset features more than 102 hours of UI Time (on average, ca. 3m 55s per
session, ca. 14% of the total time).

The second is an estimate of the time devoted to program understanding. In our model [MML15b],
we consider as understanding the sum of three components: i) basic understanding time; ii) time
spent inspecting objects at runtime; and iii) time spent doing mouse drifting, i.e., the time the
user “drifts” with the mouse without clicking, for example to support code reading. Essentially,
the basic understanding time is composed of all the time intervals without any recorded event
in the interaction data that are greater than a given reaction time6 (that in our model is equal
to 1 second).

The reaction time models the time that elapses between the end of a physical action sequence,
i.e., typing or moving the mouse, and the beginning of concrete mental processes like reflecting,
thinking, planning, etc. which represent the basic moments of program understanding. In total,
we estimate more than 594 hours of understanding time, on average more than 22 minutes per
session (i.e., around 80% of the session duration).

13.2.2 Modeling Chaos

To characterize and quantify the “level of chaos” of a programming session in the IDE, we
introduce a set of UI metrics related to the usage of the screen and we observe how they evolve
throughout the sessions.

5Opening the call hierarchy of a method, in the Eclipse IDE.
6An approximation of the Psychological Refractory Period that varies between 0.15 and 1.5 seconds depending

on the task [Pin99]. Please refer to Chapter 7 for our model of program understanding.
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Table 13.2. Space Occupancy Metrics

Occupied Space The sum of the areas of all the screen regions occupied by 1+ windows

Free Space The sum of the areas of all the screen regions not occupied by any
window

Focus Space The area of the screen region occupied by the active window

Needed Space The total sum of the areas of all the windows, i.e., the space needed to
display all windows

Overlapping Space The sum of the areas of all the screen regions occupied by 2+ windows
Overlapping Depth The number of overlapping windows in a given screen region

Weighted Overlapping Space The sum of the areas of all the screen regions weighted by their
overlapping depth

Quantifying Chaos

We use the metrics described in Table 13.2 to measure how developers exploit the screen space.

Measuring Chaos of a Single Layout. Consider a given moment during a development session,
with a fixed layout of windows in the screen. All the metrics listed in Table 13.2 rely on the
concept of screen region, a part of the screen obtained by creating a grid on the screen using all
the coordinates (i.e., position) of the visible IDE windows in the screen in a given snapshot of a
development session, see Figure 13.2 (right).

window a
b

window

window

window

windowwindow

window

c

d

Figure 13.2. Visualizing a snapshot of a session (left) and the corresponding screen regions used to mea-
sure the chaos (right)

Figure 13.2 shows a visualization of a snapshot of a session (left) and its decomposition in
screen regions (right). In the view, each window is depicted with a translucent gray rectangle
(i.e., with size and position proportional to the real window in the IDE). The white rectangle
containing all windows represents the main IDE window.

In Figure 13.2 the darker the screen region, the more the overlapping between windows. The
figure highlights different areas of the screen: (a) one with no windows (i.e., free space), (b) one
with a single window (i.e., no overlapping), (c) one with low overlapping (i.e., only 2 windows
overlap), and (d) one with high overlapping (i.e., 3+ windows overlap).

We quantify overlapping in three different ways: overlapping space, overlapping depth, and
weighted overlapping space. The first measures the linear overlapping space expressed as the sum
of the areas of all the screen regions occupied by more than two windows. The depth indicates,
for each screen region, how many windows overlap. The weighted overlapping is a combination
of the previous two measures that assigns more weight to regions with higher overlapping depth.
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Aggregating Layout Changes. To observe the evolution of the chaos, we divide each session into
snapshots. Figure 13.3 schematizes a development session, i.e., a timeline of events. Among
these events, there are events that induce a change of the layout of the IDE (depicted in red)
and events that do not change the layout of the IDE (depicted in gray). The former are, for
example, when the user resizes a window, opens a new window, or closes an existing window.

S#1

Other EventLayout-changing Event

S#2 S#3 S#4

Figure 13.3. Session snapshots explained

We call snapshot each sequence of events that begins with a layout-changing event and
continues until the last event before the next layout-changing event (with the exception of the
first and last snapshot that are delimited by the session start and session end respectively). In
short, a snapshot is a period in which the layout of the IDE is fixed, thus the values of all the
metrics listed in Table 13.2 are constant for the entire duration of the snapshot. In the example
depicted in Figure 13.3, there are four snapshots, from S#1 to S#4.

To aggregate and define the level of chaos of a session, we average the values of metrics for each
snapshot. Table 13.3 summarizes the distribution of space occupancy metrics across all sessions.
For each metric we report the average and quartile values across all the sessions. Values (except
for the overlapping depth) are expressed in percentage with respect to the available screen space
(i.e., resolution).

Table 13.3. Results – Distribution of Space Occupancy Metrics across all sessions

Quartiles
Name Avg. Q1 Q2 Q3

Occupied 48.22% 36.16% 43.78% 61.37%
Free 51.78% 38.63% 56.22% 63.84%
Focus 32.66% 20.06% 35.22% 40.12%
Needed 96.83% 39.35% 73.47% 119.53%
Overlapping 20.95% 0.00% 17.08% 35.97%
Weighted Overlapping 69.05% 0.00% 39.61% 95.59%
Overlapping Depth 2.76 1.00 2.00 3.40

On average, the needed space is around 100%, which seems to imply that developers do not
experience chaos. However, the average occupied space is around 50% of the screen, with 21%
overlapping, indicating at least a need for a better management of the screen real estate. In 25%
of the sessions (i.e., Q1) windows do not overlap at all, while in the last quartile the average
needed space is always above 120%.

To better analyze the impact of chaos in the recorded development sessions and shed light
into how chaos impacts development activities, we group the metric values into categories and
we take in consideration the time dimension.

Categories of Chaos

To characterize the level of chaos in a session we use the space occupancy metrics. The most
important indicators are the needed space and the overlapping space. However, these values are
continuous, and it is not clear at which thresholds of values the chaos is acceptable or not.
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Having a high needed space (e.g., ≥100% of the available space) means that there is no
way a developer can re-arrange the open windows to fit them all on screen. This forces her to
have overlapping windows, which is suboptimal for an efficient working environment. In fact, this
intuitive correlation holds across our entire dataset: Needed space and weighted overlapping have
a strong positive correlation with the Pearson Correlation Coefficient PCC=0.99 (statistically
significant at 95% confidence interval with p-value 2.2E-16). Thus, we define chaos levels using
only one indicator, the needed space, because it is a more intuitive metric than a weighted sum.

We identify two macro-levels of chaos: low- and high-chaos. The threshold that distinguishes
between the two levels is 100%, i.e., when the screen resolution is, ideally, enough to accomodate
all the open windows, we say that the chaos is low. We use the term “ideally” because the needed
space does not take into account overlapping, i.e., having less than 100% of needed space does
not imply that windows are uniformly distributed in the screen without overlapping. Conversely,
if the screen resolution is insufficient (needed space >100%) we say that the chaos is high. We
refined the two macro-levels into four levels: Comfy, Ok, Mess, and Hell, detailed in Table 13.4.

Table 13.4. Chaos-Levels: Comfy, Ok, Mess, and Hell

Comfy
≤75% of the screen is required to layout windows. The user can still manipulate and
rearrange windows in a comfortable manner, supporting the task at hand, which requires a
likely small/reduced working set.

Ok >75% and ≤100% of screen is required to layout all windows
Mess >100% and ≤200% of screen is required to layout all windows

Hell >200% of screen is required to layout all the windows, i.e., a developer would need more
than two screens (needed space >200%) to arrange all the currently opened windows.

Justifying the Thresholds. To define the levels of chaos we chose three thresholds for the value
of the needed space metric: 75%, 100%, and 200%. Defining these thresholds in a systematic
and objective way it is far from trivial, if not impossible. The perceived level of chaos is very
subjective and depends on several factors, e.g., resolution, screen size. As a test we computed
the values that better divide our data in four partitions (as the number of levels of chaos) using
a k-means clustering algorithm [Mac67]. The thresholds are respectively 60%, 110%, and 190%.
The threshold for Comfy is imprecise, however, our choice is more conservative.

Time spent in Chaos Configurations. Table 13.5 summarizes the average values (per session) of
the time spent in each of the four chaos-levels. For each level we report the percentage of the
time spent (with respect to the total duration of each session) and the absolute value. All values
are averages across all the sessions in our dataset.

Table 13.5. Results – Average time spent per chaos-level

% Duration
Comfy 51.04% 10m 50s 126ms
Ok 16.98% 5m 10s 633ms
Mess 21.11% 7m 15s 16ms
Hell 10.88% 5m 26s 922ms

The results above show that for around 32% of the time developers work in a high-chaos
setting, i.e., for a session of around 30 minutes of work, more than 12 minutes are spent working
with windows occupying more than 100% of the screen. Moreover, 5 out of 30 minutes are
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spent in a more critical setting, the hell configuration, where the needed space is over 200%
the resolution. The total time spent in high-chaos amounts to ca. 331 hours, i.e., 42.92% of
development time.

How Does Chaos Correlate with the UI Time and Program Understanding? For each session, we
correlate the percentage of time spent in each configuration with the time spend in fiddling with
the UI of the IDE and the understanding time, using the test for PCC. Table 13.6 shows the
results of these tests.

Table 13.6. Results – Chaos, UI, and Understanding Time

UI Understanding
PCC p-value PCC p-value

Comfy -0.34 2.20E-16 -0.27 2.20E-16
Ok -0.04 1.03E-01 0.05 3.36E-02
Mess 0.16 4.42E-10 0.11 1.940E-05
Hell 0.42 2.20E-16 0.26 2.20E-16

The moderate correlations are expected when considering that understanding time, for ex-
ample, is influenced by a multitude of factors, including not only the size of working sets but the
quality of code or the difficulty of the task at hand.

On high-chaos levels, developers likely spend more time fiddling with the UI and on program
understanding. This is consistent with a likely presence of more complex working sets, spread
on multiple windows, that require more attention and time to be managed. The correlation
between the time spent on the hell configuration and the UI time is particularly strong (0.42
PCC, p-value 2.20E-16).

On the comfy configuration, there is statistically significant evidence of moderate negative
correlation on both UI time and understanding time. This is consistent with the fact that smaller
working set support likely more “productive” sessions, where less time is spent on managing the
UI and where mental processes are more effective. There is no evidence of correlations in the ok
level of chaos. Probably, on the typical configurations of windows corresponding to the thresholds
of needed space of this category, other factors prevail.

13.2.3 Wrapping Up

We modeled chaos in window-based IDEs by considering the needed space to visualize all code
containing windows without overlapping. We defined four categories of chaos, and by leveraging
more than 770 hours of interaction data, we showed that developers spend more than 30% of
their time in a high-chaos configuration, corroborating previous research along the same lines.

We also discussed how our data is also consistent with potential impact to the time spent
by developers in program understanding and UI time. In the following section, we simulate and
discuss how even simple elision strategies and automatic window layouts can improve the level
of chaos experienced by developers.

13.3 Make Code, not Chaos

The previous section provided evidence that developers have to cope with chaotic environments
during a third of their programming time, with negative implications both in terms of time spent
fiddling with the UI, as well as additional time spent with program understanding. This section
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explains how we can tame the IDE, by adopting simple mechanisms to reduce the amount of
needed space on the screen.

13.3.1 Strategies to Tame the UI of the IDE

Figure 13.4 exemplifies our two strategies: Elision and Layout. The strategies are part of a two-
step process: We first reclaim space by eliding (hiding) the redundant parts of each non-active
window (in the figure, the in-focus or active window is depicted with a thick border). Then, we
apply a new layout to occupy the space more efficiently.

a) Original Situation b) After Elision Strategy c) After Elision and Layout Strategies

Figure 13.4. Elision and Layout Strategies in a nutshell

In the example depicted in Figure 13.4, there is not enough space to position all the windows of
the IDE; consequently, the overlapping between the windows is relatively high (see Figure 13.4.a).
After the application of the elision strategy (see Figure 13.4.b) the free space in the IDE increases,
but the overlapping is still present. Finally, with the new layout, all the (elided) windows are
now positioned in the IDE without overlapping (see Figure 13.4.c).

Elision Strategy

The elision strategy hides part of a window to reduce the visual cognitive load on the developer.
It stems from the observation that at each instant there is only one active window; all the others
are inactive, producing a considerable amount of visual noise. The underlying idea is to leave the
active window untouched, while reducing the visual noise present in the background windows.
The goal is to keep the code displayed in all windows visible while hiding the non-code elements
displayed in the window (lists, buttons, etc.). These UI elements are mostly used for navigation,
and are only usable while the window is active. When the focus changes, its elided elements
are restored. Since different types of windows display source code in different ways, the strategy
implementation depends on the window types.

Code Browsers and Message Lists display code in the bottom half of the window. The top half
contains source code navigation elements. Our strategy elides the top part while keeping the
code visible. Figures 13.5.a and 13.5.c illustrate how the strategy works on these cases, reducing
the needed space of non-active windows by 50%.

Debuggers display the code of a method on the stack and let the user modify it. The source
code pane is in the central part of the window (occupying roughly 1/3 of the window). Our
strategy elides the top and the bottom parts while keeping the central part (i.e., code) visible.
Figure 13.5.b shows how the strategy works, reducing the space occupied by each non-active
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Figure 13.5. Elision strategy for (a) Code Browsers, (b) Debuggers, and (c) Message Lists

debugger by ca. 66%. Figure 13.5 shows our elision strategy, applied on the same windows of
Figure 13.1, reducing the opacity of the elided parts, instead of hiding them.

Layout Strategy

The elision strategy efficiently reduces the amount of needed space occupied by non-active win-
dows. However, also the overlapping between windows contributes to chaos, i.e., by hiding parts
of the open windows that might be relevant for the developer. For the sake of simplicity our
definition of chaos (see Table 13.4) only considers the needed space, however as discussed in
Section 13.2.2 needed space and weighted overlapping have a very strong positive correlation.
Thus, reducing the overlapping might contribute to the reduction of the chaos level.

To reduce the overlapping, we adopt a layout algorithm inspired by the rectangle packing
layout. The idea is to stack all the windows in columns from the origin of the screen (i.e., top-
left) one below the other, as shown in Figure 13.4.c. If a window cannot be repositioned (i.e., it
does not fit in the screen if moved in the new position), it is left in the original place.

Wrapping Up

We discussed two strategies to tame the chaos in the IDE: Elision and Layout. Figure 13.4
summarizes, step-by-step, how these strategies work on a hypothetical development session.
Intuitively, elision and layout strategies help to tame the chaos inside the IDE by reducing both
the space needed to display all the windows and the overlapping between them. The elision
strategy aims to reduce the amount of visual noise in the IDE while the layout strategy takes
care of reducing the overlapping between windows. Next, we evaluate the impact of the strategies
under different perspectives.

13.3.2 Impact of Elision and Layout Strategies

To determine the potential impact of the strategies, we simulate their application on our dataset
of recorded sessions. For each snapshot, we applied both the elision strategy alone and together
with the layout strategy. Then, we discuss how the strategies impact the occupied space, then
how they impact the time spent in each chaos level.

On Space Occupancy. We compute the gain for the space occupancy metrics as percentages
with respect to the baseline, i.e., the metric value before applying the strategies, as follows:

Gain (%) =
Metricafter −Metricbefore

Metricbefore
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Suppose that for a session, the value of the free space before applying the strategies (i.e.,
the baseline) is 12.82%. If, after applying the strategy, the free space increases to 22.32%, the
relative gain would be 74.10%.

Table 13.7 reports the average of differences before and after applying each strategy (i.e.,
Metricafter −Metricbefore), together with the corresponding average gain.

Table 13.7. Results – Percentage gain of Space Occupancy Metrics

Elision Elision + Layout
Average Average of Average Average of

Metric Gain (%) Differences Gain (%) Differences
Occupied Space -13.44% -7.28% 6.99% 1.38%
Free Space 27.82% 7.28% 4.82% -1.38%
Needed Space -24.74% -32.09% -24.74% -32.09%
Overlapping Space -34.61% -9.61% -54.68% -13.53%
Weighted Overlapping -36.64% -34.30% -58.13% -47.60%
Overlapping Depth -2.59% -0.10 -26.43% -0.93

The simple elision strategy is—as expected—able to significantly increase the amount of free
space, by almost 28%. This is accompanied by a general improvement of all the occupancy
metrics, e.g., needed space drops by almost 25%. Moreover, overlapping space considerably
drops (ca. 35%), even if this strategy does not try to consciously reduce it.

The effect of windows re-layout produces configurations which make better use of the screen
real estate. After layout, the needed space does not obviously change (with the same relative
decrease of about 25% due to elision), but the overlapping space is reduced by more than 50%.
The more efficient layout better use of available space is visible on the free space metric, which
drops considerably compared to elision alone. In addition, the occupied space actually increases
compared to the default configuration. This is in line with the goal of distributed windows in a
more space efficient configuration.

To verify whether the effects of strategies are significant, we performed a paired t-test between
the values of each metric before and after applying the strategies. For all metrics but occupied
and free space, we observe that the metric values are reduced with statistical significance with
both strategies (confidence interval 95%, p-value < 2.2 · 10−16). The same happens for the
occupied space metric after applying the elision strategy, and for the free space metric after
elision and re-layout. Instead, for the free space metric value after applying just elision, and
for the occupied space metric after applying elision and re-layout, we find a significant increase
of the metric value (respectively p-value < 2.2 · 10−16 and 7.8 · 10−8, again at 95% confidence
interval).

On Chaos Time. Table 13.8 shows the impact of our strategies on the time spent in each of the
chaos categories defined in our model. Since the categories are defined only in term of needed
space, the results refer to either strategies.

The elision strategy has essentially the effect of redistributing the time spent on each category
towards less chaotic categories. The time spent in the most chaotic category (i.e., hell) is reduced
on average around 8% of the session time. The second high-chaos category, mess, is reduced again
by 8% on average for each session. These times are redistributed mostly towards the comfy
category, which gains around 18% of average time in each session, while the ok category changes
slightly. Developers spent 30% of their time in chaos previously; using the elision strategy could
reduce this amount down to 14%, less than half.
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Table 13.8. Results – Percentage gain and delta time

Avg. Gain
per Session (%) Absolute Difference

Comfy 17.73% 137h 50m 44s 882ms
Ok -1.35% 3h 25m 58s 502ms
Mess -8.08% -40h 29m 38s 554ms
Hell -8.30% -100h 47m 04s 812ms

Looking at the variation in the total amount of time spent per category, we find that pro-
grammers spent 142h in the hell category in original settings, while they spend 100h less in the
new settings, a reduction of 70%. Time spent in the mess state drops from 188h to 148h (21%).
The ok state is relatively stable, from 134h to 131h (-2%). The winner is the comfy category,
which increases from 282h to 419h, a 48% increase.

Overall, the total recorded time spent in high-chaos categories amounts to 42.92%, while
after elision this time would drop to 24.60%. In addition to get a better understanding of the
improvement of the layout strategy, we compute the average drop in overlapping space for each
of the four chaos levels.

Table 13.9. Results – Average Weighted Overlapping per chaos-level

Original Elision Elision + Layout
Comfy 17.39% 16.76% 1.67%
Ok 55.86% 53.19% 27.81%
Mess 114.71% 112.99% 88.04%
Hell 330.11% 259.22% 235.52%

Table 13.9 shows the reductions of average weighted overlapping before and after each strat-
egy. We find that after just elision, in almost all categories there is no large change in overlapping,
except in the hell category where we see a 27% drop. A dual effect happens after laying out,
where major effects happen in the comfy category (relative drop of 90%) and we see large drops
in the ok and mess categories. The effect in the hell category is less pronounced. In addition
to spending less time in high chaos levels, developers would additionally enjoy a better spatial
organization, particularly in the comfy and ok categories.

13.3.3 Threats to Validity

Internal Validity. Our definition of chaos is based on overlapping and needed space. Potentially
different developers might have additional indicators of chaos. To cope with this threat we plan
to cross-validate our measures of chaos with concrete observations (e.g., think-aloud) to better
grasp the sensitivity of developers to chaos. Another threat concerns our layout strategy that
messes up that spatial memory of developers. This naïve strategy is only a proof of concept that
simple means can already achieve a lot. We are aware of the importance of user placement of
windows [HC86, RvDR+00] and in our future work we will devise strategies that consider and
preserve the spatial memory of developers. Another threat is that we only simulated strategies
on our existing dataset: We only replay the past interactions of the developers in our dataset;
were the developers to use our elision and layout strategies, they might behave differently. We
expect that as a result of using the elision and layout strategies, developers would spend less
time UI fiddling and revisiting previous source code locations, as these would stay on screen.
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To mitigate this threat, we performed a correlation study between the time spent by developers
in fiddling with the UI of the IDE and the levels of chaos (see Table 13.6). We found evidence
that UI and program comprehension time are positively correlated with the high-chaos levels and
negatively correlated with low-chaos levels, supporting the fact that less chaotic environments
might let developers spend less time in taming the IDE. We are of course aware that correlation
is not causation – to obtain better results we should collect feedback and new measurements
from developers in the field, similar to the experiment on Code Bubbles [BRZ+10].

Statistical Conclusion. We considered more than 770 hours of development affecting more than
40k windows. Our dataset supported us in drawing statistically significant conclusions about
correlation between chaos in the IDE and both the time spent by developers altering the UI of
the IDE, and the time spent performing program comprehension tasks.

External Validity. We focused on the Pharo IDE and the fine-grained interaction data we col-
lected. Results may vary for different programming languages and IDEs. However, as part as
our motivation (see Section 13.1) we extensively discussed the situation in tab-based IDEs (e.g.,
Eclipse) and provided preliminary evidence, leveraging Mylyn data, that also this UI paradigm
may generate chaos in the IDE. Unfortunately, due to the coarse nature of Mylyn data, we could
not conduct analyses at the same granularity of DFlow. Bragdon’s study—which had Eclipse
as a baseline—gives confidence that our results would also be valid for other IDEs [BRZ+10].
Another threat is related to the distribution of recorded sessions among developers: Most of the
sessions come from only 5 developers. This might influence conclusions about developer diversity,
but this was not the focus of our work.

13.3.4 Wrapping up

With our strategies the time spent in high chaos can be considerably reduced, and indeed we
could better manage the screen real estate. We do not evaluate how the reduction of time spent
in high chaos level could impact the time spent in specific activities, but we have some confidence
that this could indeed happen given the correlations we found in Table 13.6.

13.4 Reflections

The UIs offered to developers to browse complex relationships between source code are often
inadequate. Thus, developers are repeatedly forced to use multiple UI components at the same
time, bringing the IDE into a chaotic state. It is unclear to what extent chaos impacts develop-
ment, and more importantly it is unclear how to tame it.

We analyzed a large dataset of fine-grained interaction data, counting more than 770 hours
of development. We found that developers in our dataset spend more than 30% of their time
in high levels of chaos. Furthermore, time spent in high levels of chaos is correlated with time
spent fiddling with the UI. We proposed two simple strategies to reduce the chaos in the IDE and
observed that they could save a considerable amount of space the IDE needs to layout windows.

One might argue that all these are mere user interface concerns, and not relevant for software
engineering. However, while considerable efforts are spent in making mainstream end-user tools
friendly, software developers are still using convoluted environments. We believe there is no good
reason for why developers should be treated differently from “normal ” users.
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14
Long-Term Vision

In this dissertation we extensively discussed the importance of interaction data and exam-
ined different approaches to analyze and support developers inside the IDE. We believe that
being aware of the interaction of developers is only the first step to kick off a new era for

IDEs. In this chapter we discuss five possible research directions to further leverage the potential
of interaction data inside the IDE.

Navtracks [SES05] and Teamtracks [DCR05] are tools that leverage a limited set of
developer interactions with the IDE to support browsing through software. Extending this idea,
we envision recommender systems that leverage a large set of fine-grained IDE interactions
to support a variety of activities, such as debugging or the acquisition of crowd knowledge. In
Part III we discussed a number of approaches to visually analyze interaction histories a posteriori.
We believe that visualizations should be “live” and “adaptive”. Views should display interaction
data inside the IDE as they happen and mutate their layout according to the context or the needs
of the developer. Similarly, in the last 20 years the UIs of IDEs are largely unchanged being
essentially “glorified text editors” that treat source code as text [Nie16]. We believe that these
user interfaces should change. For example, UIs could be aware of the interactions of developers
and adapt their shape by hiding part of their components, as we discussed in Chapter 13. The
Glamorous Toolkit1 developed by Chiş et al., shares this vision and changes the UI of the Pharo
IDE with “moldable tools”, tools that can be easily extended to support various domain-specific
abstraction and that are able to sense the domain model to use the correct extension [Chi16]. In
this thesis we focused on IDE interaction data. However, besides IDEs, developers also interact
with other tools. We envision the “mother ” of all interaction profilers as an extensible suite
of tools and plug-ins that monitors developer interactions with different tools. Finally, after
collecting interactions of different developers with different sources, we foresee the development
of the concept of crowdsourced holistic mental models, collaborative mental models that consider
more than pure source code information.

Structure of the Chapter

Section 14.1 unveils the mother of all interaction profilers while Section 14.2 explains how fine-
grained interaction data can support novel recommender systems. Section 14.3 discusses adaptive
and live visualizations. In Section 14.4 we discuss about the future of the UIs of IDEs. Finally,
Section 14.5 presents the idea of crowdsourced holistic mental models.

1See http://gtoolkit.org
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14.1 Eye: The “Mother” of All Interaction Profilers

DFlow silently observes the interactions of developers with the Pharo IDE. Chapter 7 explained
how we can use IDE interactions to better understand what developers do inside the IDE. Ac-
cording to our results, developers spend about 10% of their work time outside the IDE [MML15b].
Development is an interleaving of web foraging, learning, and code writing [BGL+09].

For these reasons, we believe that to have a complete overview of what modern software
development actually is, we should observe a larger set of tools and applications. To this aim we
envision the mother of all interaction profilers that we call “Eye”. More than a tool, this is an
infrastructure that monitors how developers use the entire operating system at different levels.
The core of Eye collects high-level information on how the developer uses the Operating System
(OS), for example how much time the user spends on each different application, i.e., IDE, Web
Browser, Mail Client. Eye also offers an interface to domain-specific interaction profilers that
gather detailed pieces of information on the usage of various tools. Figure 14.1 summarizes a
potential architecture of such an infrastructure.

Interactions with Tools Plug-in System

Operating System

Server

Eye Core

Recorder

OS Profiler

Browser

Mail Client

IDE

Domain-Specific ProfilerOS Interactions

Figure 14.1. Potential architecture for the infrastructure of Eye

The developer always interacts with the OS. Some of her interactions are pure interactions
with the OS while others pass-through the OS to reach specific tools. In the example of Fig-
ure 14.1, the developer interacts twice directly with the OS (i.e., dark gray arrows) while three
of her interactions (i.e., light gray arrows) reach specific tools: IDE, Web Browser, and Mail
Client. Basic meta-data about all these interactions are captured at OS-level by the basic OS
Profiler that is part of the core of Eye. The configuration in this example, however, also in-
cludes two domain-specific profilers, one for the IDE and one for the Mail Client. These profilers
gather more detailed data on the usage of these tools and report the collected data to the core
components of Eye so the it can be recorded and sent to the centralized data collection server.

In the configuration of Figure 14.1, there is no domain-specific profiler for the Web Browser.
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The core of Eye, however, gathers some basic pieces of information on its usage such as, for
example, the time spent in the browser and the number of tabs and windows opened.

14.1.1 A Suite of Domain-Specific Interaction Profilers

Developers can extend the Eye infrastructure by adding their own domain-specific interaction
profilers to gather more precise information about the use of specific tools during development.
Below a non exhaustive list of 7 possible alternatives.

IDE Profiler. An IDE profiler, such as DFlow, observes and records all the fine-grained IDE
interactions inside the IDE, making them available for further use;

Fine-grained Source Code Changes Profiler. We believe that there is a relationship between
interaction data and source code. In particular, it is likely that the more the code is
complicated, the more the developer struggles with the IDE, i.e., more navigations, more
understanding time, less code written. For this reason, we should enrich plain IDE interac-
tion data with fine-grained change data, such as the ones collected with SpyWare [RL08].
To understand if there is some relation, we could devise metrics based on interaction data
and correlate them with traditional source code metrics [HS95];

Operating System Interaction Profiler. DFlow observes interactions inside the IDE. However,
developers also use the operating system to perform actions somewhat connected to devel-
opment, e.g., moving or deleting source code files in the file system, interacting with its
UIs, or copying and pasting snippets of code;

CLI Profiler. Nowadays most of the development happens inside IDEs. However, there are
various activities that developers prefer to perform using a command-line interface (CLI)
such as the UNIX shell;

Text Editor Profiler. Developers might also use text editors to write small snippets of code. A
Text Editor Profiler observes when and how developers prefer this tool instead of the IDE;

Web Browser Profiler. Developers spend quite some time outside the IDE, for example foraging
information in the web [BGL+09]. A Web Browser Profiler observes and records how the
developers uses the Web Browser, e.g., which pages she visits, how long she stays on the
page, which hyperlinks she follows, etc.

Mail Client Profiler. It observes and records how the developer uses the Mail Client, i.e., which
e-mails she sends or reads, etc. E-mails can be parsed and linked to source code elements by
using, for example, island grammars and island parsing techniques [Moo01]. Afterwards,
we can augment the Mail Client with hyperlinks that enable the user to directly jump from
the Mail Client to the correct source code location in the IDE.

Multiple Instances of Domain-Specific Profilers

Eye enables the user to install multiple instances of each type of domain-specific profiler. For
example, one might be interested in having general time statistics of how the developer uses
the Web Browser and more detailed information about the use of particular websites, such as
StackOverflow (i.e., by using black- or white-lists of allowed or blocked websites). In this case
she can implement two different Web Browser Profilers and plug them in the Eye architecture.
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14.1.2 All that Glitters Ain’t Gold

Collecting potentially sensible data from human subjects poses a number of privacy and ethics
concerns that we already discussed in the prologue of our dissertation (see Section 4.4). Eye
pushes these issues to the limit. Despite the fact that Eye could provide developers with un-
precedented support for their complete workflow, developers willingness to use Eye have to pay
a very high price in terms of security and privacy.

The implementation of Eye should deeply consider privacy concerns and adopt severe mea-
sures to limit security threats and vulnerabilities of the infrastructure.

14.2 Recommender Systems Based on IDE Interactions

Software engineering is an activity that forces developers to deal with a huge information space:
Thousands of lines of codes, hidden relationships between artifacts, and concerns scattered across
the code base. Researchers invented tools, called recommender (or recommendation) systems,
that support users in their decision-making while interacting with large information spaces.2

These tools reduce the problem of information overload by exposing the user with the most
interesting pieces of information considered relevant for the task at hand. Robillard et al. tailored
this concept to the field of software engineering with Recommendation Systems for Software
Engineering (RSSEs), tools that provide information items that are estimated to be valuable for
a software engineering task in a given context [RWZ10]. One of the most challenging aspects of
RSSEs is indeed establishing the context to decide which items are potentially relevant [RWZ10].

As we discussed previously, IDE interactions model the behavior of developers inside the
IDE. It has been shown that this information can be used to identify the development context
for the task at hand [KM05, TFMH10, MML16b]. For this reason, we believe that this data
should be used in the context of RSSEs to better identify the relevant information about the
user, her environment, and the task at hand at the time of the recommendation. Navtracks
[SES05] and Teamtracks [DCR05] are two examples of tools that leverage a limited set of
IDE interactions aimed at supporting browsing through software. Bringing this idea forward, we
believe that future recommenders should leverage a bigger set of more fine-grained IDE inter-
actions, as the ones collected by DFlow. Moreover, besides navigation, tools should support a
broader set of activities, such as debugging. Debugging is among the most difficult activities per-
formed by developers that can occupy a significant amount of their time [Bro85]. By leveraging
previous fine-grained debugging histories, an RSSE could support developers to automate recur-
ring “debugging patterns”. In the context of Pharo, for example, debugging the announcements
framework is very complicated [CNG13]. In their work, Chiş et al. explained the difficulties
in debugging announcements and proposed a specific tool only for debugging this framework.
Chiş also told us that some of these difficulties can be mitigated by suggesting developers some
debugging steps that are very recurring in this particular context.

Moreover, on top of the vision discussed in Section 14.1, we could build RSSEs leveraging in-
formation coming from different sources such as IDEs, web-browsers, mail clients, etc. Recently,
Ponzanelli et al. developed Libra, the first holistic recommender system [PSB+17]. Libra
gathers information from both the IDE and the web browser to offer better support to informa-
tion navigation and retrieval during development. Combining their approach with fine-grained
interactions coming from different sources, we could build more complex holistic RSSEs.

2Definition introduced at RecSys 2009 (ACM International Conference on Recommender Systems).
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According to Robillard et al., RSSEs of the future should be proactive rather than passive:
Instead of waiting for developers to invoke them, the RSSE should automatically deliver the right
recommendation when needed [RWZ10]. Fine-grained IDE interaction data can also support
this proactiveness by identifying, for example, when the developer is struggling to find a piece of
information i.e., inactivity or moving in circles between the same program entities.

14.3 Live and Adaptive Visualizations

Part III discussed a number of approaches to visually analyze interaction histories. All the
proposed visualizations share a limitation: They only enable to visualize the data a posteriori. We
believe that visualizations should be “live” and “adaptive”. Live visualizations display interaction
data inside the IDE as they happen. Adaptive views are able to mutate their layout according
to the context or the needs of the developer.

Subsystem
Package
Class
Method

No interactions Linear scale on number of interactions

Figure 14.2. Treemap of IDE interactions

Live Visualizations. A live view co-evolves
with the software system and always depicts
its current state. An example is to depict user
interactions in a tree-map layout.3 Figure 14.2
shows the entire Pharo system and empha-
sizes (i.e., using colors and partial expansion
of nodes) the program entities involved in the
development session. Nodes are nested us-
ing structural properties of code (e.g., inher-
itance) and their size is proportional to soft-
ware metrics. In the current implementation,
developers can trigger the view a posteriori.
However, this view could become “live” and be
always open during development to emphasize
the most recent activities acting as a “visual
memory” for developers. While working a de-
veloper will, unconsciously, associate slices of
her session with parts of the view. Later, she
might better remember the part of the view
with respect to the part of the code and use
the view as a navigation means.

Adaptive Visualizations. In addition to be live, visualizations should be adaptive. An adaptive
visualization is able, depending on the context, the history, and the task at hand, to reshape
itself. We should prepare a catalogue of visualization to present interaction data from different
perspectives. The IDE should be trained to assess the most beneficial visualization for the task
at hand. At the beginning, for example, it can show a tree-map of interactions. As development
advances, the IDE assesses whether there is an alternative presentation of the data that can
potentially be more useful for the developer and adapt it accordingly, i.e., changing the layout,
the color scheme, or the zoom-level.

3We implemented the “Squarified Treemaps” algorithm of by Bruls et al. [BHvW99]. Our implementation is
included in Roassal, the visualization engine of the Pharo IDE [BCDL13].
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14.4 Adaptive User Interfaces

Developers spend much of their time reading and analyzing code, but mainstream IDEs are
essentially glorified text editors mostly treating source code as text [Nie16].

“Although developers are known to spend much of
their development time reading and analyzing code,
mainstream IDEs do not do a good job of
supporting program comprehension.

IDEs are basically glorified text editors.”

— Oscar Nierstrasz [Nie16]

As support of this thesis, Figure 14.3 shows user interface of the Smalltalk-80 IDE (1983)
compared with the Pharo IDE (2017) which are essentially unchanged in the last 30 years.
Similarly, Figure 14.4 shows user interface of Eclipse 1.0 (2001) compared with the one of its
last release, Eclipse Oxygen (2017).

Figure 14.3. The UI of the Smalltalk-80 IDE (1983) compared with the Pharo IDE (2017)

Figure 14.4. The UI of Eclipse 1.0 (2001) compared with Eclipse Oxygen (2017)
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Novel UI Paradigms. Besides Smalltalk-80 using grayscale and Pharo introducing a glimpse of
colors, these two interfaces are largely the same. Researchers proposed alternative UIs to drift
from traditional metaphors such as tab- and window-based interfaces. A notable example is
Code Bubbles [BZR+10, BRZ+10]. As the name suggests, Code Bubbles displays code in
bubbles instead of tabs or windows. Unfortunately, to the best of our knowledge, neither Code
Bubbles nor other alternative UIs for IDEs have never taken over traditional IDEs.

Moldable Tools. More recently, Chiş et al. [Chi16] and Nierstrasz [Nie16] introduced moldable
and context-aware tools as a solution to overcome the limitation of modern development envi-
ronments. These tools are able to sense the underlying model and adapt the UI accordingly. For
example, the moldable debugger is able to modify its behavior and changing its debugging oper-
ations according to the context [CNG13]. Chiş et al. provide examples on how their debugger
behaves differently while debugging a parsing and a messaging framework inside the Pharo IDE.

Arranging UI Components. The UI components of the IDE, such as menus and buttons, are not
always easily reachable. According to Lee et al., for example, the support for refactoring offered
by modern IDEs is inefficient [LCJ13]. Indeed, in the Pharo IDE the refactoring menu is not
immediately visible. Interaction data can be used to detect when the developer is involved in
refactoring activities or, in general, when she is struggling to find a particular menu item. An
interaction-aware IDE could help developers reaching the UI components they are looking for or
moving them to more convenient locations in the IDE.

Reducing the Entropy in the IDE. IDEs often force developers to open many windows (or tabs) to
navigate to the entities of interest [RND09]. This quickly leads to an environment that is crowded
with a high number of independent and apparently unrelated windows [DSE06]. Researcher
called this phenomenon the window plague [RND09]. As a proof-of-concept, we developed a
prototypical tool, called Plague Doctor, that uses the fine-grained interactions to mitigate
the window plague (see Chapter 12 for more information). In Chapter 13 we also discussed an
approach to tame the UI of the IDE when the level of visual entropy is too high. According to
our previous study, developers spend roughly 14% of their time moving around and resizing the
UI components [MML15b]. We strongly believe that interaction data can be used to monitor,
and control, the level of entropy in the IDE. The time spent in pure UI fiddling calls for novel
interaction paradigms and UIs that minimize this waste of time.

Better Code Editors. Code editors (or system browsers in Pharo jargon) are among the most used
UIs in the IDEs. Quoting Nierstrasz, however, they are “basically glorified text editors” [Nie16].
Our long term vision is to have code browsers that automatically reshape themselves to better
support different activities, such as source code navigation [SES05]. For example, in Chapter 13
we described strategies to hide the parts of the windows that are not likely to be useful at any
given moment to reduce the visual entropy of the IDE. Other basic improvements to existing code
browsers concern, for example, how code entities are displayed. In Pharo, for example, browsers
list entities in alphabetical order. We do not believe that this arrangement is optimal. With
interaction data, for example, we can identify the working set [KM05, MML16b] and reorder
these entities, according to the frequency of interactions (or changes).
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14.5 Crowdsourced Holistic Mental Models

With an infrastructure such as Eye, described in Section 14.1, we can collect interactions of
different developers with various information sources. With this information, we can develop
the concept of crowdsourced holistic mental models, collaborative mental models that consider
more than source code information. We can use this collaborative mental models, for example,
to support developers in understanding hidden relationships between source code entities by
augmenting the IDE with visualizations, color overlays, or recommendations.

Researchers proposed various approaches to enrich the UI of the IDE. AreaView4, for
example, is a tool that visualizes metrics and “areas of interest” on top of UML architectural
diagrams [BBT06, BT09]. Murphy-Hill and Black developed Stench Blossom [MHB10]. While
the programmer is coding, this tool gives a visual high-level overview of the presence of code smells
in the code base and provides means to understand their origin. We could take inspiration from
these visual approaches and extend them to visualize other kinds of information obtained by
leveraging crowdsourced holistic mental models.

14.6 Wrapping Up

Throughout our dissertation we stressed the fact that IDE interactions, largely neglected by mod-
ern IDEs, have a very high potential to both understand and support the workflow of developers.
Our long-term vision includes different directions to further leverage this potential.

We envision an infrastructure to record the interactions with all the tools used during de-
velopment, and not only IDE interactions. We discussed how interaction data can be used to
create novel, and more effective, recommender systems and visualizations. Finally, we intro-
duced the concept of crowdsourced holistic mental models and discussed how we can leverage
IDE interactions to reshape the UI of the IDE.

4See http://www.cs.rug.nl/~alext/SOFTWARE/ARCHIVIEW/

http://www.cs.rug.nl/~alext/SOFTWARE/ARCHIVIEW/
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Conclusions

We strongly believe that development environments should not neglect developer in-
teractions but rather record and leverage them. Throughout this dissertation, we
discussed the two main benefits that interaction-aware IDEs can bring to practitioners

and developers. On the one side fine-grained IDE interaction data enable novel and in-depth
analyses of the behavior of software developers. Likewise, interaction-aware IDEs can provide
developers with effective and actionable support for their activities.

We set the ground for this dissertation by summarizing the history of software development,
from punch cards to modern integrated development environments. Then we discussed the main
source of information targeted by our research: the interactions between the developer and the
Pharo IDE. We explained our reasons behind the choice of working in a not mainstream open-
source development environment supported by an active community, and detailed its object
model. We concluded the prologue of the dissertations by discussing privacy and ethics concerns
arising from the collection and analyses of potential sensible data about software development
and overviewing the state of the art in the fields connected to our research.

To validate our thesis, we developed DFlow, the main supporting tool of our research.
DFlow silently collects development interactions in the Pharo IDE and makes them available
for further use. On top of DFlow we developed approaches to support developers in dealing
with the known limitations of modern development environments and used the data recorded
with DFlow to study different aspects of the workflow of developers. Interaction data proved
to be useful to both gain novel insights on software development and setting the ground for the
next generation of tool support inside the IDE.

Structure of the Chapter

The chapter summarizes the contributions of this dissertation. It follows the same structure of the
dissertation by presenting the contributions of each chapter grouping them in parts. Section 15.1
summarizes our contributions in recording and modeling interaction data. Section 15.2 presents
the visual approaches we devised to better understand interaction data. In Section 15.3 we
review our first steps towards leveraging interaction data in the IDE to support the development
workflow. Finally, Section 15.4 recaps our vision for the future.

177
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15.1 Modeling, Recording, and Interpreting Interaction Data

In Part II we discussed the foundations of our research: Recording, modeling, and interpreting
interaction data inside the IDE. This is an essential step to make interaction data available for
further use to support the workflow of developers.

15.1.1 DFlow: Our Interaction Profiler for the Pharo IDE

Chapter 5 introduced the main supporting tool for our research: DFlow. DFlow is the inter-
action profiler for the Pharo IDE that we developed. The chapter also described how DFlow
and its architecture evolved over time. In its last version, DFlow automatically observes the
interactions of the developer with the IDE, filters out the ones that are not interesting, and
makes interesting development interactions available for further use. This architecture enables
external tools to exploit the potential of the data captured by DFlow. The chapter also pro-
posed a model to provide a unified structure to all interaction events recorded by DFlow. Our
model identifies three different types of events: i) Meta, ii) User Input, and iii) User Interface
Events. Meta events represent the interactions of developers with program entities, e.g., classes
and methods. User Input events are events performed using an input device, e.g., mouse and
keyboard. Finally, User Interface events are the interactions of the developer with the user in-
terface of the IDE. For each category of events, the chapter listed the actual interaction events
recorded by DFlow (see Table 5.1).

15.1.2 A Naïve Model to Interpret Interaction Data

In Chapter 6 we analyzed interaction data collected with two different IDE interaction profilers:
DFlow and Plog, an interaction profiler for the Eclipse IDE [KKA12]. The chapter detailed an
estimation model to assess how much time developers spend to navigate, write, and understand
source code. In particular, our focus was to understand whether advances on software engineering
practice changed the role of program comprehension with respect to what researchers claimed
more than 30 years ago [ZSG79, FH83, Cor89]. Our findings suggested that the role of program
comprehension has been significantly underestimated by previous research: On our dataset,
program comprehension accounts on average from 54 to 94% of the total development time.

15.1.3 Inferring High-Level Development Activities from Interaction Histories

Motivated by the results of our naïve model (see Chapter 6), in Chapter 7 we developed a
better estimation model to reconstruct high-level development activities from fine-grained IDE
interaction histories. Since interactions happen instantaneously (i.e., they have no duration),
the goal of this model was to aggregate events into sequences (i.e., sprees) to precisely measure
their duration. In practice, we devised rules to aggregate events into sprees, and later sprees into
high-level development activities. Then, we decomposed development time into the following five
categories: i) understanding, ii) navigation, iii) editing, iv) UI interactions, and v) time spent
outside of the IDE. Among our results, we observed that our analysis attributes to program
understanding more importance than what the common knowledge suggested, reaching a value
of roughly 70%. Another interesting insight is that developers spent 17% of their time in fiddling
with the user interface of the IDE, calling for novel IDE UI metaphors and support tools.
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15.1.4 Measuring Navigation Efficiency in the IDE

Since navigation is an essential development activity [KMCA06], Chapter 8 focused on the use of
interaction data to understand to what extent the Pharo IDE supports developers in navigating
source code. We defined navigation efficiency as the ratio between an ideal navigation scenario
and the actual behavior of the developer, encoded in the recorded interaction histories. The
chapter explained the mechanics of navigation in the Pharo IDE and the ingredients we used to
measure navigation efficiency: involved program entities and navigation cost. Then, we presented
a naïve model, preliminary results, and discussed the limitations that led us to a more realistic
model. Navigation efficiency depends on a variety of factors, and it is thus hard if not impossible
to provide an exact estimation. However, our results showed that Pharo developers are by a
large extent inefficient at navigating source code.

15.2 Visual Analytics of Development Sessions

Part III of our dissertation discussed various visual approaches to gather further insights from
interaction histories using software visualizations.

15.2.1 Understanding How Developers Use the User Interface of the IDE

In Chapter 9 we presented a visual approach to better understand how developers use the user
interface of the Pharo IDE. Our approach is based on a visualization composed of two parts:
UI View and an Activity Timeline. The former shows how developers interact with different
UIs, and how the work is essentially organized in development tracks. The Activity Timeline,
instead, depicts development activities and enabling to understand how they relate to UI usage.
We used the visualization to tell four development stories that highlighted both peculiar developer
behaviors on the usage of the IDE and their activities, and well known phenomena like the window
plague [RND09]. The chapter also proposed a visual classification of development sessions in
terms of dominant window tracks and flow between these tracks. We identified “conservative”
developers using a small number of windows and “frenetic” developers who continuously open
new windows for each task.

15.2.2 Visualizing the Evolution of Working Sets

Chapter 10 presented a visual approach to understand the evolution of the working set during
development sessions. We called working set a group of program entities which a developer
has interacted with during a particular period of time. Our visualization distinguished between
current and past working sets and used two different layouts to arrange the two disjoints groups
of entities. We applied our visualization to 914 development sessions coming from 14 developers
and discused a catalogue of visual patterns on the evolution of working sets during development.

15.2.3 Other Visualizations and Storytelling

After we developed the initial prototype of DFlow and collected interaction data from the first
handful of developers, we discovered that raw interaction data are very hard to interpret. To
get an initial understanding of the data, we devised a basic catalog of software visualizations to
depict interaction histories from different perspective, described in Chapter 11. The chapter also
detailed DFloWeb, an early experiment on visualizing the workflow of developers in the web.
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We used the visualizations to identify development stories and to gather interesting insights from
the recorded development sessions.

15.3 Supporting Developers with Interaction Data

In Part IV of the dissertation we described our first steps in leveraging interaction data to support
software development inside the IDE.

15.3.1 The Plague Doctor: Curing the Window Plague

Developers are often confronted with a large number of windows (or tabs) inside the IDE, most
of which are irrelevant for the current development session [RND09]. This phenomenon is known
as the window plague [RND09]. In Chapter 12 we presented the Plague Doctor, a tool that
aims to mitigate this plague by decorating the windows inside the IDE and providing developers
with suggestions on which windows are potentially irrelevant for the current development task.
Our tool is inspired by Autumn Leaves, developed by Röthlisberger et al. [RND09], but it
differs from it in several ways, e.g., the better quality of interaction data it leverages and the
customization possibility it offers (see Section 12.1.2, for more information).

15.3.2 Taming the User Interface of the IDE

Due to several factors, including the intrinsic complexity of software development, the user
interface of IDEs become very chaotic, potentially hindering the productivity of developers.
Chapter 13 provided evidence of chaos by analyzing data coming from two different IDEs: Pharo
and Eclipse. Pharo interaction histories were recorded with DFlow, while for Eclipse we used
the publicly available Mylyn dataset obtained from the Eclipse Bugzilla repository. In addition,
by using the more fine-grained interaction histories of DFlow, we were able to characterize
the level of chaos in terms of the window space required to support development tasks and
the amount of overlapping of these windows. Our results showed that, on average, developers
inherently spent 30% of their time in a chaotic environment. To this aim, the chapter also
proposed an approach to reduce the cluttering of the Pharo IDE potentially making it a more
pleasant working environment.

15.4 Our Vision for the Future

Chapter 14 concluded our dissertation by outlining possible research directions for IDEs and
tools of the future. In particular, we proposed a holistic profiler infrastructure that observes
and leverages the interactions of the developer with all the applications she uses (e.g., IDE,
web browser, mail client). Our long-term vision included more actionable visualizations inside
the IDE to support a variety of activities and novel solutions for the—currently outdated—user
interfaces of modern IDEs. We concluded the chapter by discussing the concept of “crowdsourced
holistic mental model ”. In this vision, the construction of mental models becomes a collaborative
activity involving different developers and various information sources besides the overused—and
old fashioned—source code change data.
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15.5 Closing Words

In this dissertation, we discussed how interaction-aware IDEs can be beneficial for both practi-
tioners and developers. Collecting IDE interactions enables novel and in-depth analyses of the
behavior of software developers. Moreover, IDEs that are aware of those interactions can provide
developers with effective and actionable support for their development activities.

Our contributions can be grouped into three areas: i) approaches to model, record, and
interpret interaction data; ii) visual analytics of interaction histories; and iii) techniques to
leverage IDE interactions to support the development workflow. According to Snipes et al., “the
next two decades will surely be labeled as the era of smarter big data analysis” [SMHF+15]. With
our work we set foot in this era. Now, we look forward to the next decades to see the rise of
novel approaches to exploit the full potential of interaction data.
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A
Blended, not Stirred: Multi-Concern Visualization of
Large Software Systems

Software development involves a variety of activities and tools, components and envi-
ronments, that relate to many different aspects of a system. Modern software development
is an integration process where the developer defines a behavior by orchestrating and

specializing library components and third-party entities. This has turned the engineering of
any software system into an information-heavy process, which is ultimately distilled into source
code. Besides source code, its structure, and architecture, development involves a large amount
of corollary information (i.e., discussions, design decisions, email communication between devel-
opers, bug reports, etc.) that is often neglected. Most of the existing visual approaches consider
only single concerns, such as the architecture, the structure, the evolution, the relationships, etc.,
but there is little in terms of visualizing multiple concerns at once.

In this chapter we present an approach, developed together with Tommaso Dal Sasso, to
visualize multiple concerns concurrently by blending them together. Our aim is to answer one
of the most often asked questions raised by developers and managers alike, namely “what hap-
pened to our system recently? ” [SMDV08]. The concerns we tackle are interaction data, failure
information, and evolution. Interaction data stems from how developers interact with the inte-
grated development environment (IDE) while developing and maintaining a system. In essence,
it provides evidence of where and how people have been active while developing [MML15b].
Failure information is generated each time the debugger is triggered because an exception has
been raised. Dal Sasso et al. shown that such data can be leveraged to understand where the
particularly tricky spots in a software system are located [DSML15]. Both interaction data and
failure data are more fine-grained than their respective counterparts, namely versioning informa-
tion and bug reports. We complement these two types of data with a third one, the evolution of
the system. Our view uses the city metaphor to represent software systems [WL07] and employs
linear color blending to portray the combination of events happening on each program entity.
We present four development stories obtained through our visualization that illustrate interesting
properties of an existing software project and its community.

Structure of the Chapter

Section A.1 describes the ingredients of our blended visualization, which is presented in Sec-
tion A.2. Section A.3 uses the visualization to tell interesting development stories. Finally,
Section A.4 summarizes and concludes our work.
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A.1 The Ingredients

Our visualization blends together different data sources and enabling visual analytics from het-
erogeneous and multidimensional perspectives. To get a tractable subset of data, we focus on
a timespan ranging from January 1st 2015 to May 1th 2015. This section describes the three
main ingredients and the supporting tools that enable the data collection process. The software
system under analyses is the Pharo IDE itself, whose code is open-source.

A.1.1 Source Code Changes

In evaluating the growth and evolution of a system researchers typically use the number of
changes that a system undergoes during its development. In the case of Pharo, the whole system
is self-contained and distributed as an image, a single file that works as a virtual environment
where new code is installed inside the default system. The Pharo system is released once a
year, and during this period it goes through an intense phase of improvement, debugging and
polishing. The test and release process is managed by a continuous integration server,1 that
stores the previous builds of the system. In our analyses we modeled and extracted all the source
code changes between subsequent releases of the Pharo system.

Retrieving the Different Versions. We focused on the release of Pharo 4, which just finished its
release cycle. We downloaded all the development versions from the file server,2 that we also
used to retrieve the exact release date of each version. The full cycle of development images
ranges from version 40,000 to the image 40,613, from May 26th 2014 to May, 5th 2015. The last
release in date May 1th 2015 was version 40,611.

Extracting a System Model. We extracted from each image a model representation of the system.
Such a model is composed of the names of all packages, classes, instance and class methods, and
instance and class attributes.

Generating an Incremental Change Model. We leveraged each system model to obtain an incre-
mental diff model that describes each change. We considered as change a variation in the names
of the collected entities. Since we had no way to precisely determine when an entity was renamed,
we considered every event in terms of creation and deletion. Table A.1 summarizes the available
source code changes data.

Table A.1. Dataset – Source code changes in the considered period

Metric Value
Number of Considered Versions 611
Number of Changes 4,928
Average Number of Changes per Version 8
Max Number of Changes per Version 527
Min Number of Changes per Version 0

1See https://ci.inria.fr/pharo/
2See http://files.pharo.org/image/40

https://ci.inria.fr/pharo/
http://files.pharo.org/image/40
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A.1.2 ShoreLine Reporter and Stack Traces

A consistent part of the time spent by developers consists in finding and solving defects. The
debugging activity involves tests to reproduce a problem or verify that a defect has been solved.
This process generates many stack traces, that contain valuable information about the failures
in a system. Such information is normally used by a developer to identify a faulty status in her
program. Moreover, if collected and stacked together, stack traces can also give a hint of what
parts of the system are the most active or which ones are causing more troubles. To exploit this
source of information, we developed ShoreLine Reporter [DSML15], a platform to collect and
store stack traces generated by the Pharo community. To keep track of the entities involved in
the failure, we collect the method signatures of the invoked methods. We do not collect method
parameters to avoid privacy concerns.

In enabling the reporter, each developer can decide to inspect each stack trace and choose
the ones to submit, or enable the automatic reporting feature and submit all the traces produced
by its activity. While this option produces many duplicates and non relevant data, it is still
interesting to see where the activity of the developers focuses in different periods of time. The
collected data can then be used to aid the debugging activity, for example detecting if a large
volume of new stack traces coming from different developers involve a specific class, or by looking
for existing bug reports in the bug tracker to provide a contextual help when a user encounters
an exception and ease the understanding of a piece of code. The presence of many different stack
traces for a specific component might also suggest that an API has a problematic design, and that
the users struggle in understanding its usage, thus highlighting the need for documentation or
refactoring. Table A.2 summarizes the stack traces data collected with ShoreLine Reporter.

Table A.2. Dataset – Stack traces data in the considered period

Metric Value
Number of Traces 14,884
Number of Submitters 43
Total Number of Stack Trace Lines 714,420
Average Stack Trace Size (in Lines) 48
Longest Stack Trace 1,086
Shortest Stack Trace 1

A.1.3 DFlow and IDE Interaction Data

DFlow, extensively discussed in Chapter 5, records 32 different types of events at different
levels of abstraction. For this work we only focused on a subset of meta events that involve code
entities. Some meta events have an associated program entity: A browse event, for example,
where the user opens a new code browser, can be performed on a method or on a class.

For this work we aggregated all meta events to the class-level: An event performed on method
foo of class Bar counts as an event involving directly the class Bar. In total we have ca. 239,000
interaction data events covering a timespan of 4 months (i.e., from January to April 2015).

The IDE interactions impact 2,988 different classes, of which 965 are part of the standard
Pharo distribution. The remaining 2,023 classes are user defined classes that are outside the
scope of our study. Out of the 32 types of meta events recorded with DFlow [MML15b], only
13 types of events appear in the dataset. This is because some of the recorded meta events do not
carry any information related to program entities. For example, the meta event that represents
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the opening of a Finder, a user interface used in Pharo to search for pieces of code, has no
associated program entity. Table A.3 summarizes the dataset and provides additional details.

Table A.3. Dataset – IDE interaction data in the considered period

Metric Value
Number of Interaction Events 238,741
Number of Developers 18
Number of Interested Classes (in Pharo distribution) 2,988 (965)
Number of Different Event Types (Total) 13 (32)

Summing Up. Our goal is to develop a visualization approach which can represent diverse data
sources, such as the ones we just presented. Although we focus on these types of information,
our approach can be extended to include any kind of information source related to software
development.

A.2 Visualization Principles

Until now the various “ingredients” of software development have bee processed and visualized in
isolation, leading to an incomplete view of the system. Our goal is to visualize all these ingredient
to enable a quick and comprehensive assessment of what happened to a software system in a
given time frame. To do so, we propose the “Blended City”, a visualization that uses the City
Metaphor [WL07] to depict all the ingredients of a software system. Figure A.1 shows the tool
we implemented to visualize the Blended City.

Source Code Change

Stack Trace

IDE Interaction

Primary Colors

C

D E

NOM

NOA NOA

Package

Class

Selected
Class

A B

Figure A.1. The Blended City – Visualization principles and proportions
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The tool is composed of four main parts: (A) A status bar to display additional information
on the selected entity, (B) a toolbar to customize the visualization, (C) the view canvas, and
(D) a timeline slider. With the timeline slider the user chooses the visualized data timespan.
The width (i.e., granularity) of this slider can be adapted using the dropdown menu on the right
part of the toolbar. In the example of Figure A.1 the user selected one month of data, starting
from March 1st. The toolbar (Figure A.1.B) also features a text-input and a set of sliders. The
former enables simple queries to highlight particular packages in the system while the latter let
the user choose the visual weight of each of the three ingredients of our visualization. These
weights affect the intensity of the color associated to each of the ingredients. In the example of
Figure A.1, all the sliders are at 100%, thus all the ingredients have the same importance.

Figure A.2, instead, shows the same data of Figure A.1 giving high importance to stack traces
(100%), little importance on interaction data (50%), and no importance to source code changes.

Figure A.2. The same view of Figure A.1 with different ingredients (0% - 100% - 50%)

In addition to changing the weights of the three components and the granularity of the
visualized timespan, the view also features standard interactions such as panning and rotation
in the 3D space. Moreover, the user can click on an entity and get additional information on the
status bar. In the example depicted in Figure A.1 the user selected the class DiffMorph and the
tool shows that this class has 15 attributes and 91 methods (see Figure A.1.A). Selected entities
are colored with a bright green.
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A.2.1 The City Metaphor: Layout and Metrics

In the city metaphor every district of the city is a package and the buildings, contained inside the
districts, represent the classes [WL07]. The view uses a rectangle-packing algorithm to create the
layout and it is polymetric, i.e., each dimension of the visual entity is proportional to a particular
metric of the program entity being represented [LD03]. Since the visualization is 3D, classes are
cuboids and have 3 dimensions that correspond to three metrics. Our visualization, similar to
the original CodeCity, uses the same metric for both width and depth and a different measure
for the height. In particular, we use number of attributes (i.e., NOA) for both width and depth
of a class and number of methods (i.e., NOM) for the height of the cuboid representing a class.
The magnification in Figure A.1 exemplifies these mappings.

A.2.2 Color Harmonies and Blends

Our Blended City presents different types of data, from structural properties of source code to
stack traces and interaction data. Structural source code relationships (i.e., nesting of the pack-
age and software metrics) are the foundations for the layout while colors present the remaining
information. We use a triadic color scheme made of primary colors to present this information:
Yellow for source code changes, red for stack traces, and blue for interaction data. Figure A.3
shows a the color wheel with an emphasis on the triadic color scheme, where colors are evenly
spaced around the color wheel.

Primary
Colors

(Color Triad)

Yellow

RedBlue

Figure A.3. Color wheel and triadic color scheme

This offers strong visual contrast while retaining balance, and color richness. Using colors
equally spaced around the color wheel facilitate the addition of extra sources of information, i.e.,
when we need to display n sources of information, we can create a new color harmony composed
of n colors evenly spaced around the color wheel.

Color Blends. The three primary colors can only depict entities which are affected by a single
of the three information sources. However, in a given timespan a class might be affected by both
IDE interactions and stack traces, for example when a developer is adding new functionalities
to a class and testing them. To depict this information, we use linear color blends between the
different sources of information. A class with both IDE interactions and stack traces is depicted
in purple, the linear blend between the color of IDE interactions (i.e., blue) and stack traces (i.e.,
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red). Figure A.4 shows examples of the different linear color blends on the triadic color scheme
adopted by our visualization. In this work we only considered the linear blending of colors. It
is part of our future work the investigation of different techniques to combine the colors, i.e.,
color-weaving.

Source Code
Changes (SC)

  Stack
Traces (ST)

Interaction
  Events (IE)

SC+STSC+IE

IE+ST

SC+ST+IE

Figure A.4. Linear color blend on triadic color scheme

Aging Mechanism. When the user selects a timespan to visualize, the tool pre-loads and dis-
plays also the data happening in the immediately preceding interval (of the same length). This
enables the user to draw conclusions from the visualization having also in mind what happened
immediately before. To show this data, the tool uses an aging mechanism that linearly reduces
the color saturation as the age of the datapoint grows, i.e., the older the more intense fading
towards the default color of nodes (i.e., gray). Figure A.5 shows how colors fade with such
mechanism in a timeline.

SC+ST
SC+IE

IE+ST
SC+ST+IE

Selected
Interval

Past
Interval

SC
IE
ST

Figure A.5. Aging process: example in the Timeline

In the “present” interval (i.e., the one selected by the user), colors are at their default satu-
ration. In the “past” interval, instead, the color saturation fades. At the end of this interval, the
nodes have the default color, i.e., light gray.

A.2.3 Under the Hood

The tool deals with a large volume of entries coming from heterogeneous data sources. To
conveniently manage them we standardized their format, using different data pre-processors,
and store them in a central place. We use MongoDB3 databases to conveniently store the data.

3See http://mongodb.org/

http://mongodb.org/
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When the user selects a timespan to visualize (Fig. A.6.1), the tool loads the data through
optimized MongoDB queries (Fig. A.6.2) and builds the blended model of the data (Fig. A.6.3).
Later it computes the city layout, applies the blended color scheme, and presents the view to the
user (Fig. A.6.4). The user can then use the toolbar to refine the visualization (Fig. A.6.5).

“Blended” Model
Vie

w

MongoDB

2

3
1

5

4

Figure A.6. The architecture of the Blended City

A.3 Telling Development Stories with the Visualization

This section presents four stories,4 that narrate the evolution of the Pharo system:

• Those Awkward Neighbors;

• Market Districts;

• New in Town; and

• The Purple Buildings.

4To increase the readability of this Section, we present each story on a new page.
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Those Awkward Neighbors

By selecting the full available timespan of the data we obtain a visualization that displays all the
activities that involved the Pharo system over a period of five months. This enables to obtain a
comprehensive view of the system evolution and derive long-term considerations and properties.
Figure A.7 shows the overall view of the available data. One interesting example is represented
by what we call the awkward neighbors, i.e., big but silent packages that have little or no activity.

Figure A.7. View of the City with all the Activities

In the lower part of Figure A.7, we can spot two big packages that contain entities that are
mostly colored with grey, meaning that they had almost no activity in the whole timeframe.
Moreover, they present almost no change in the entities they are composed of, and since the
color of the changes is blended, those are all antecedent to the selected start date. This means
that in the last release they have been mostly ignored. These two districts are the packages
Graphics-Files and Compiler.

A further investigation of the package Graphics-Files reveals that it contains 10 classes. These
classes are dedicated to exporting graphics and writing them in different file formats. Since Pharo
stores the dates of the changes of a method, we can determine when the changes took place. We
can see that there are three main batches of changes: A small update in 2014, regarding a small
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refactoring of an error message, one in 2001 and one in 1997. This is interesting, because it
indicates that the package has been part of the system for a long time, it had little changes and
is by now a solid foundation of the system. Similarly, the package Compiler contains 46 classes,
and apart from some recent modification in 2013 to the structure of the compiler, many of the
methods are unmodified since 2006, 2003, or 1998.

One might wonder how it is possible that some parts are older than the Pharo project itself.
The reason is that Pharo was born as a fork of the Squeak project5, which in turn is a re-
implementation of the original Smalltalk-80 system, which was evolved from the Smalltalk-
72 system. This means that some of the methods and classes in these packages might very well
be 40+ years old.

5See http://www.squeak.org

http://www.squeak.org
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Market Districts

While examining some of the packages with the most activities, we found districts with many
interactions from all three data sources, and we call them market districts. Figure A.8 shows an
example of market districts corresponding to the packages of Spec and Morphic. Morphic is the
core graphic library of Pharo, while Spec is an UI framework built on top of Morphic.

Figure A.8. Spec and Morphic Market Districts

Many classes are involved in exceptions, they were recently changed or they were subject
to developer interactions. This reveals a long known problem in the community: The code of
Morphic is old and have been ported through various platforms. The case of Spec is similar: since
Spec is a framework built on top of Morphic, it shares its weakness and part of its complexities.

Differently from the awkward neighbors, the market districts for Morphic and Spec are not
settled and solid: Instead, they are often causes of bugs and issues. The view also shows that
many classes that act as entry points received frequent developer interactions, meaning that they
likely have an unclear public interface.

Moreover, we can see that the Morphic packages are still frequently changed, showing that
the community is constantly trying to fix the codebase. Finally, the high number of classes
involved in the stack traces suggests that the code modification, together with the difficulty of
understanding the API, is likely a cause of many programming errors. In particular, there are
some hotspots, i.e., packages where classes are mostly colored in red only. These classes are
involved in failures, but they are rarely modified or involved in interaction data.
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Figure A.9. Changes in the Pharo system

These theses are confirmed by the fact that the community is trying to replace the code of
Morphic with a new, polished and easy-to-use replacement called Bloc, to address issues that we
can be spot in Figure A.8. However, as the complexity of the picture suggests, replacing this
code is not an easy task, and has been work-in-progress for more than a year now.
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New in Town

During the development of Pharo 4, many classes got updated and some new components were
added. We want to analyze the progressive introduction of these changes, and how they impacted
the system after the integration. We then use the sliders in Fig. A.1.B to remove all the data
sources, except for the changes. Figure A.9 shows in full yellow the entities touched by a change
in the last five months, and in blended yellow the changes in the previous five months. We
can verify that there are elements that remained untouched, while some others were subject to
intense development.

By moving the slider we can select a timespan to restrict the changes to a given moment of
the story of the components and inspect the status of the system during time. We can notice
that from a certain point on there was the appearance of packages related to the GT-Tools, a set
of tools to improve the interaction with the objects in the system. By restricting the timespan
to the beginning of January (i.e., the first appearance of activities), to determine the moment
of integration.

Figure A.10 visualizes the Blended City for the GT-Tools packages. Some classes are involved
in all three data sources, i.e., they are colored in dark brown. This can be explained by the fact
that the first phases of integration usually require adaptation, refinement, and debugging, thus
generating (other than changes) frequent exceptions and developer interactions.

Figure A.10. The changes of GT-Tools Packages

The other interesting observation that we can derive from the visualization is that the classes
involved in user activities are also the biggest. This can be explained by considering that those
classes act as main entry points to the package, a starting point for developers who want to use
or inspect the code.
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The Purple Buildings

A benefit of our approach is that a data source can be removed to spot behaviors that are
independent from it. Figure A.11 shows the Blended City for Pharo with only stack traces and
developer interactions. While the stories we presented so far try to consider the code entities at
a package level, without changes the Blended City reveals the interesting role of some classes.

Figure A.11. A view of the system highlighting only stack traces and developer interactions

Scattered across the system, there are some big and medium classes colored of purple with-
out apparent correlation with the color of its neighbors. By inspecting their names, we find
examples like DateAndTime, Float, Job, SmalltalkImage, Socket, SocketStream, SystemWindow,
TestRunner, and many others related to rendering of graphics, that we covered in the previous
stories. These classes are not problematic per se, but represent an interesting area of the system
that we could define as Advanced APIs. These classes appear in many stack traces and in many
development interactions, an information that suggests that they occour near the source of the
exceptions, when these exceptions are not directly generated from them. This context could
signify that the user is trying to understand a class that has a name suggesting a behavior, but
that she needs some further understanding to learn how to use the objects of the class by trying
the various methods. The use of this information could be used by the maintainer of the system
to prioritize the areas of that could need more public documentation, to ease the learning process
of those entities and their API.
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Note that the same information, blended with the addition of code changes and applied
to classes that are not part of the core system, could signify that a developer is applying a
Test Driven Development approach, by implementing incomplete methods and completing them
whenever the system tries to execute a method that is not yet implemented.

A.4 Reflections

Software analyses and visualizations usually focus on giving a detailed representation of a single
aspect of the examined entities. We presented an approach where we visualize data from three
different data sources and contexts, blending them to produce multi-dimensional information
about a system, its code and how developers interact with it. We considered a combination of
system changes during the development phase of a system, the interaction data generated by
users and the stack traces of the exceptions triggered during the daily usage of the platform.
Out tool visualizes blended information on a city view of the source code of the Pharo IDE, a
dynamic, flexible and active programming ecosystem. We showed how our tool allows to select
different timespans and weigh the diverse components, to enable a fine grained inspection of each
entity during its recent evolution.

We believe that our approach has a real potential to be successfully applied in a development
context to allow for multi-dimensional incremental and interactive analysis of a system, support-
ing a deeper understanding of the code entities by highlighting the synergies among its recorded
activities, and the relations and interesting behaviors otherwise hidden or harder to detect.

We illustrated four stories where we extract and analyze some real-world issues by looking
at the blending of the data and identifying some existing problems, or finding suggestions for
problems that could be addressed by the maintainers of the platform to improve the system.
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B
Gamifying Software Engineering with Interaction Data

What is a game? According to McGonigal [McG11] games share four defining traits:
a goal, rules, a feedback system, and voluntary participation. The goal gives a sense
of purpose. The rules unleash creativity and foster strategic thinking. The feedback

system provides motivation. The voluntary participation makes the experience safe and pleasur-
able. Suits sums it up with “playing a game is the voluntary attempt to overcome unnecessary
obstacles” [Sui05]. McGonigal provides several examples of contexts, ranging from house holding
chores to physical exercise, where the performance of subjects has been boosted through gami-
fication [McG11]. While this may seem remote from software engineering, Werbach and Hunter
provide an illuminating example closer to our discipline: Microsoft ’s testing team in charge of
the multi-language aspect of Windows 7 invented the Language Quality Game, recruiting thou-
sands of participants who reviewed over half a million dialog boxes, logging 6,700 bug reports,
resulting in hundreds of fixes [WH12]. Another example is StackOverflow, a Q&A website where
asking and answering technical questions is rewarded with points and badges. There is evidence
that gamification is in part responsible for StackOverflow ’s success [VFS13].

“The programmer, like the poet, works only slightly
removed from thought-stuff. He builds his castles in
the air, from air, creating by exertion of the
imagination.”

— Frederick P. Brooks [Bro95]

This chapter describes our vision on how to use fine-grained interaction data recorded with
DFlow to develop a gamification layer on top of an IDE, the main vehicle for creating software.
Modern IDEs have become powerful tool suites that allow one to construct, understand, and
modify software systems. Several decades ago Weinberg defined programming as a “kind of
writing” [of source code] [Wei85]. We believe this is a fundamentally flawed perception, and
among others is also responsible for the wrong assumption that productivity can be measured
in terms of lines of code [Jon78, Bro95]. We believe developers are unsung heroes and deserve a
mechanism that rewards them for a good job. Programming is more than lines of code.

Structure of the Chapter

Section B.1 explains our vision and Section B.2 details our first steps. Section B.3 discusses
potential directions for the future and Section B.4 concludes the chapter.
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B.1 A Gamification Layer for the IDE

As opposed to the common belief that gamification is a recent, under-explored and thus not very
scientific domain, behind it there is in fact a strong scientific intuition, rooted in the realm of
psychology, and more specifically behaviorism, an approach that combines elements of philosophy,
methodology, and theory [Ski78]. In fact, behaviorism, whose main tenet is “if you do this you’ll
get that”, is the antithesis of successful gamification, because simple rewarding mechanisms like
token programs have been shown to be bound to fail [Koh93] in the long run. Put simply, our
goal is not to assign points to development actions. Such a simplistic approach is destined to fail.
Rather, we propose a comprehensive approach where the ultimate goal is the creation of an alter
ego of a developer, which we believe is the key to enable what McGonigal [McG11] identified
as the 4 key aspects of successful gamification: i) Satisfying work (after all, programming is
creative), ii) the experience/hope of being successful, iii) a social connection, and iv) a deeper
meaning. We believe that the creation of an alter ego is the key to provide both short-term and
long-term gratification to developers.

B.1.1 Our vision

Our aims is to devise an approach that leverages fine-grained interaction data mined from an
IDE to provide a mechanism that rewards them for a good job. DFlow models and silently
harvests the low-level action performed by developers inside the IDE offering a complete and
precise summary of what is being done. We identify three building blocks in our vision:

Session Digest. The session digest is a short-term form of gratification, similar to the one
present in fitness apps, offered to developers for their last development session. It summarizes
the last session from various perspectives, e.g., how was time used, how much was achieved from
a coding point of view, which program entities were involved, etc. It also enables to dig into the
fine-grained recorded data and acquire a deeper understanding.

Alter Ego. A developer is like a character in a role-playing game: She moves her first steps,
evolves, acquires new skills, and unlocks new achievements. Developers are thus assigned an
avatar that they can evolve, providing them short- and long-term satisfactions to turn software
development into a more engaging activity.

Development Empire. The last, and most ambitious goal is provide developers with long-term
gratification mechanisms. We envision a comprehensive gamification layer on top of the IDE: the
Development Empire. It is not all about assigning points to them, but a ramified system that
rewards complex actions and best practices (adherence to design patterns and design heuristics
[Rie96], test-driven development, etc.) of a developer with badges, achievements, and trophies
of different types. The history and the evolution of the alter ego of a developer is a key factor.
When this mechanism is in place, all the alter egos will originate a new community, where people
can observe, challenge, and interact with other developers.

B.2 Session Digest: Free Hugs for Developers

The “session digest” is a form of short-term gratification for developers, that can potentially
augment their level of engagement. We shape and frame the rewards in a digest as visual summary
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of the development session. The digest is composed of three main parts: i) an overview of the
development session; ii) a selection of fine grained information to highlight the most important
actions; and iii) a glimpse on the “profile” of the developer. The general overview, e.g., in terms
of how the developer spent her time, serves as an entry point for the digest. Once the developer
gets the global picture, she can use the remaining part of the digest to retrospectively analyze
how well she did in the current session. The last part, the developer profile, summarizes the
developer’s avatar status.

Session Digest
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Figure B.1. Session Digest: How have you spent your time? What did you do?

Figure B.1 depicts a sample session digest prototype on top of the standard IDE window.
The left part of the digest serves as a general overview on how the developer spent her time.
The overview is achieved by a sunburst visualization accompanied by a set of time metrics.
Figure B.2 shows the sunburst in details. Its central part distinguishes the time devoted to the
three different high-level activities, namely: browsing (orange), inspecting (green), and search
(yellow). For each of the three types of activities, the visualization shows four time components:
navigation (green), editing (red), understanding (dark green), and user interface (pale orange).

For completeness, the visualization provides the same information as text. We quantify these
time components using interaction histories mined with DFlow [MMLK14].

After an overview, a developer has the possibility to dig into her last development session by
means of the central part of the digest. In the example of Figure B.1, the central part shows
an interactive tree visualization that portrays all the entities that she has interacted with in
her last session. The tree has 4 different levels, (1) subsystems, (2) packages, (3) classes, and
(4) methods. Each entity have a color to represent the intensity of the interactions: gray for
entities with no interactions (i.e., inserted only as a transitive closure to complete the tree) and a
color scale from light blue (i.e., few interactions) to orange (i.e., lot of interactions) for the other
elements. Below this view there is a table that shows how many entities were respectively added,
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Time Components

Activities

Navigation
UnderstandingEditing
User Interface

Browsing
Inspecting
Searching user interface

understanding

Duration
of inspecting
activities

Figure B.2. Activities and time components in a sunburst visualization

modified, or removed. In Figure B.1, the bottom right corner presents the activity view. This
view, detailed in Figure B.3, uses a custom layout to decompose a single high-level development
activity. It depicts mouse, keyboard, and meta events. The first two kinds of events have a
duration, proportional to the width of the rectangles representing them. Meta events have no
duration since they represent IDE actions such as saving a method. Their color represents their
type, according to the impact they have on source code. Navigation events (green) do not modify
source code, inspect events (yellow) are a deeper form of navigation (i.e., in a debugger), while
editing events (red) modify source code. In the session digest, for example, we can show the
hardest activity, as depicted in Figure B.1.

keyboard events

mouse events

navigation
inspection
edit

time

Figure B.3. Activity View: Decomposing an high-level development activity

The last component of the digest is the developer’s profile, depicted in the top right corner. It
shows a profile picture of the developer, her level, points, trophies, badges, and lets her provide a
“sentiment feedback” about the last development session on a smiley scale. This enables analyses
on what characterizes, for example, a frustrating session. Figure B.1 shows a prototypical profile
of the first author of this paper. He is at level 4, with 2,321 points. In the last session he
achieved 1 new trophy and received 2 new badges. Overall, he owns 23 trophies and 12 badges.
This goes towards an application of gamification in software development [Mas14]. Gamification,
if carefully engineered [McG11], can increase the motivation and engagement of developers. For
an open source community, such as the one behind the Pharo IDE1, our target development
environment, this can provide several benefits. Having more motivated people will most likely

1See pharo.org

pharo.org
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increase both the quality and the quantity of the contributions to the community. At the same
time, this will originate a novel developer community that, at first sight, is similar to Open HUB,2

the open source network formerly known as Ohloh. But our vision goes beyond mere version
control system data. We imagine a rich developer profile that includes interactions with different
sources of information including, but not limited to, IDE interactions. For example, the system
will integrate bug tracking systems, questions and answers services, mailing list participation,
etc. Points, trophies, and badges will cross the boundaries of semantically different domains,
delineating a comprehensive profile for developers.

B.3 Extending the Session Digest

Regardless from the fact that we can present IDE interaction data from different perspectives,
the session digest can also be extended in multiple, orthogonal, directions. When we realize the
vision discussed in Section 14.1, the digest could leverage and present information coming from
different sources. If we only focus on the research topics of the members of our research group,3

at the time of writing, we foresee the following extensions:

Bug-tracking Systems. Tommaso Dal Sasso is working on how the process of submitting bug
reports and patches can be ameliorated [SL14]. Dal Sasso et al. are trying integrate the process
of submitting a bug report directly within the IDE. Once bug-tracking information is available in
the IDE, statistics about how a developer behaves in reporting and fixing bugs can be integrated
inside the session digest. For example, we can keep track on how active a contributor is in the
bug-fixing process, i.e., how much she contributes, how many bugs she fixes, or how many issues
she submits to the bug tracker system.

Coding Style and Guidelines. Yuriy Tymchuk4 is working on code style and quality metrics.
The session digest can include evolutionary visualizations on how quality and style of a software
system evolved over time. This information gives a tangibile feedback, and intrinsically a reward,
to developers investing efforts in ameliorating the design and implementation of their systems.

Questions & Answers Services (Q&A). Luca Ponzanelli is working on integrating Q&A services
inside the IDE. We envision IDEs that harness the potential of the crowd knowledge, for example
by letting a developer read, answer, and post new questions on these platforms directly from
the IDE [PBL13]. At that point, our digest can include such information and reward developers
that better exploit and contribute to the crowd knowledge base.

Discussion

These ideas are only few of the many sources of data that the session digest can present to a
developer. In turn, they set the ground for our more ambitious and extensive gamification layer
built into an object-oriented IDE.

2See https://www.openhub.net
3See http://reveal.inf.usi.ch
4Former member of REVEAL, now part of the SCG Group at the University of Bern.

https://www.openhub.net
http://reveal.inf.usi.ch
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B.3.1 How Can We Evaluate a Gamification System?

A good starting point to evaluate a gamification system is to assess to what extent it meets
McGonigal’s four key aspects of successful gamification [McG11]:

1. Satisfying work. In his book Graham compares programmers (or better hackers) to painters,
saying that programming is a creative activity not dissimilar from painting [Gra08]. Ac-
cording to McGonigal, creative work is one of the kinds of work that leads to satisfaction.
We should assess to what extent our gamification system makes programming an even more
satisfying work.

2. Experience/hope of being successful. We should assess to what extent short- and long-term
rewards offered by the Development Empire are enough to keep high the hope of being
successful.

3. Social connection. The participation of programmers to the Development Empire will
originate a novel community. The hope is that community promotes new social connections
and is an additional source,

4. Deeper meaning. The final aim is to understand whether the Development Empire serves
to grant a deeper meaning to software development activities.

Our target IDE is always the Pharo IDE. Behind Pharo there is a an open-minded and
reachable community, with whom we are directly in touch. If we introduce such a gamification
layer inside the Pharo IDE we should rely on Pharo developers and strongly value their feedback.

The goal while evaluating such a system is to assess to what extent developers benefit from
what we propose, in terms of engagement, self satisfaction, and improved productivity. The first
step is to release the gamification system to the Pharo community and conduct a continuous
qualitative evaluation. Interviews and questionnaires will help us to evaluate the design of the
gamification system and refine it to meet the expectations of developers. This would enable a
positive feedback loop with developers, eliciting latent issues that cannot be foreseen in advance.
Another hypothesis would be to conduct a comparative evaluation between developers partici-
pating in the Development Empire and developers using the standard Pharo release. We want
to assess different parameters such as satisfaction, engagement, productivity, and quality of the
code being produced. We imagine that developers involved in the Development Empire will likely
achieve better results, in terms of code quality, productivity, and community engagement with
respect to the others. At the same time they might “feel better” due to the rewarding mechanism
offered by our system.

B.4 Reflections

We presented our vision and initial design of a micro-gamification layer on top of an object-
oriented IDE. Our long term goal is a system that rewards long-term growth in terms of de-
velopment skills. Synergies between gamification and software engineering are a very novel
phenomenon. In this work we first explained the scientific intuitions, which are rooted into in
the realm of psychology, a field which is orthogonal to software engineering. We strongly believe
that such an approach might have a positive impact, particularly—but not only—on small and
open-minded communities, such as the one we are targeting.
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