
Reverse Engineering Software Ecosystems

Doctoral Dissertation submitted to the

Faculty of Informatics of the University of Lugano

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Mircea F. Lungu

under the supervision of

Michele Lanza

September 2009

Dissertation Committee

Prof. Dr. Margarett-Anne Storey University of Victoria, Canada
Prof. Dr. Radu Marinescu Politenica University of Timisoara, Romania
Dr. Wim De Pauw IBM TJ Watson Research Center, New York, USA
Prof. Dr. Mehdi Jazayeri University of Lugano, Switzerland
Prof. Dr. Matthias Hauswirth University of Lugano, Switzerland

Dissertation accepted on 3 September 2009

Research Advisor PhD Program Director

Michele Lanza Fabio Crestani

i

I certify that except where due acknowledgement has been given, the work presented in this
thesis is that of the author alone; the work has not been submitted previously, in whole or in
part, to qualify for any other academic award; and the content of the thesis is the result of work
which has been carried out since the official commencement date of the approved research pro-
gram.

Mircea F. Lungu
Lugano, 3 September 2009

ii

To my parents

iii

iv

One does not discover new lands without
consenting to loose track of the shore for
a very long time.

Andre Gide

v

vi

Abstract

Reverse engineering is an active area of research concerned with discovering techniques and
providing tools that support the understanding of software systems. All the techniques that
were proposed until now study individual systems in isolation.

However, software systems are seldom developed in isolation. Instead, many times, they are
developed together with other projects in the wider context of an organization or a community.
We call the collection of projects that are developed in such a context a software ecosystem.
Often, a software ecosystem and the knowledge associated with it is the most valuable asset of
its owner. Sometimes the ecosystem can be the very reason for the existence of the organization.

In this thesis we show that software ecosystems are an interesting and challenging subject
of study, and that reverse engineering techniques can be used beyond the level of individual
systems in the process of understanding software ecosystems.

Our main contributions are threefold: we introduce a methodology for reverse engineer-
ing software ecosystems, we provide tools that support the methodology, and we validate the
methodology on multiple case studies.

Our methodology is based on analyzing the source code and the information in the versioning
system repositories of the projects in an ecosystem and generating visual representations of
the results. These visual representations present the ecosystem from several complementary
perspectives. Given the large amount of information in an ecosystem, we provide exploration
mechanisms that allow one to navigate the wealth of information available about the ecosystem.

We distinguish between two dimensions of ecosystem exploration: horizontal exploration
allows one to navigate between different views of a given ecosystem, while vertical exploration
allows one to dive into the details of individual projects in the ecosystem. Supporting horizontal
exploration is a matter of linking the various ecosystem perspectives in the tool. Supporting
vertical exploration implies connecting the ecosystem level model to the detailed models of the
component projects and performing architecture recovery on those models.

Since architecture recovery cannot be fully automated, in our work we introduce two tech-
niques that ease the generation of intra-project architectural views. The first technique regards
automating the exploration based on the classification modules in a set of structural patterns.
The second technique regards automating the filtering of dependencies in the architectural views
based on the classification of the inter-module dependencies based on their evolution.

To validate our contributions we applied our tools and techniques on a set of ecosystem case
studies that belong to various organizations: two academic institutions, one industrial software
house, and one open-source community. We validated the techniques that work at the architec-
tural level on several well-known open source software systems.

vii

viii

Acknowledgements

There are three important components of every successful journey: getting to know yourself
better, discovering new things and places, and meeting new people. During my journey as a
graduate student I was fortunate to have all of the above. In this section I want to acknowledge
some of the great people I met while being a doctoral student at the University of Lugano and
the way they enriched my journey.

First of all, I would like to thank my advisor Michele Lanza for his advice and support during
the four years and a half I spent in Lugano. I am grateful for your encouragement, and for giving
me the freedom to explore the things that I considered worthy and interesting. I liked the fact
that there was always a good book that you could recommend, and I enjoyed our coffee breaks.
Teaching the programming fundamentals course was an enjoyable challenge. I learned a lot
from our work together.

With Doru Gîrba we discussed many parts of this thesis. I would like to thank him for being
always available in every possible way: available for discussing research when needed, available
for hosting me in his and Oana’s home when I was visiting Bern, and available for endless
debates in which the point was not necessarily winning but arguing. I hope we get to do more
of everything together in the future.

I would like to thank the members of my dissertation committee for accepting to review this
thesis as well as for the detailed feedback on the dissertation proposal. To those of you that I got
the chance to talk about the ideas in the thesis in person, I will say that it was great talking to
you and I really appreciated your time and advice.

Parts of the work in this thesis are based on work done in collaboration with Jacopo Malnati
who chose to do both his diploma and master projects under my supervision. Jacopo, working
with you was a pleasure and seeing your enthusiasm for software visualization was motivational.
Keep it up and maybe we get to work again in the future.

Then, I should acknowledge my collaboration with the colleagues in the Reveal research
group. To Romain Robbes I am obliged for reading the thesis in detail and providing feedback
on the first drafts. But the reasons for thanking Romain are not only thesis related: we wrote
articles together, we discussed research, way before writing the thesis, we taught together. Our
good-cop bad-cop routine during the programming fundamentals classes was mighty fun. To
Marco D’Ambros I am grateful for the discussions on the research that went in this thesis and for
the unforgettable trips around the world that we did together. I hope we get to do more invited
talks and more trips together. I know that for a while you will be busy educating the newest
D’Ambros in the family and I am sure you’ll do an awesome job at that. To Richard Wettel I am

ix

x

thankful for feedback and discussions on parts of this thesis as well as for the pair programming
sessions we did together on CodeCity and Softwarenaut. I’d like to tell you again: you are more
precise than a swiss watch and I admire you for this. Lile, thanks for your useful feedback on
the sixth chapter of this thesis. To the newer members of the Reveal research group: Fernando,
and Alberto - it was fun sharing the office and sometimes the desk with you.

I am grateful to Dani Ra̧tiu and Zsolt Husz for offering to read and make observations on
chapters of this thesis even if the subject was not your domain of interest. Dani, I would like to
thank you for your clear-headed feedback and also for the discussions we had on our research
topics while in Amsterdam in 2007. Zsolt, thanks for your extremely useful comments, and even
more, thanks for your friendship.

I owe special thanks to Reinout Heeck and to Soops BV for supporting us in our industrial
case study. Reinout took the time to install our tools, use them, and report on them, without
even meeting in person.

Adrian Kuhn from the University of Berne was my first academic collaborator: we got Hapax
and Softwarenaut to work together, and then we wrote my first scientific article. Adrian also
provided me with good feedback on one of the chapters of this thesis. There’s something cool
about the energy and enthusiasm that you and the other guys in Bern have.

I consider myself fortunate to have had a great half of a year as an intern at IBM T.J. Watson
in New York in the summer of 2007. Working there with Anand Ranganathan and Wim De
Pauw was a great experience. I’ll never forget our long discussions and imaginative solutions for
layouting those pesky semantic graphs.

There were other colleagues that in one way or another shaped this work. With Jeff we
shared the apartment for one year and I enjoyed long discussions we had that span a really
wide range of topics, which included software ecosystems but also music theory. I look forward
to improvising more blues together somewhere, someday. With Jochen we discussed multiple
times our research: sometimes it is nice to have an utterly pragmatic person to talk to. With
Cyrus we started the PhD Pizza Talks and did many great hikes with great discussions. Cyrus, I
wrote parts of this thesis while listening to your electronic music compilations!

And then there were all the other colleagues and friends that I meet during the Lugano period
that made this research possible by making my life outside work interesting: Nicolas, Giovanni
Luca, Alessandra, Mara, Adina, Giovanni (the sailor), Cedric, Morgan, Mostafa, Anna, Vaide,
Pilchin, Paolo, Edgar, Sara, Amir: we sailed the lake and surfed the sea; we improvised theater
and took dance classes; we organized movie nights and organized reading groups. Good times!

Last but not least I would like to thank my family: Ada, Anca, Viorica, and Filip. I always felt
your unconditional love, trust, and support. We have been through countless sunny moments
together, and we have been through difficult ones too. I am proud to be your son and brother.

Mircea Lungu
September 3, 2009

Contents

Contents xi

List of Figures xv

List of Tables xix

I Prologue 1

1 Introduction 3
1.1 Contributions . 6
1.2 Structure of the Dissertation . 7

2 State of the Art 9
2.1 Introduction . 10
2.2 Software Visualization . 11
2.3 Architecture Recovery . 13
2.4 Software Evolution Analysis . 16
2.5 Towards Reverse Engineering Software Ecosystems 18

II Ecosystems 21

3 Reverse Engineering Software Ecosystems 25
3.1 Introduction . 26
3.2 Ecosystems and Super-Repositories . 27
3.3 Related Concepts . 29
3.4 Benefits of Ecosystem Analysis . 31
3.5 Reverse Engineering Software Ecosystems . 32
3.6 The Revenge Process . 34

3.6.1 Super-Repository Data Extraction . 34
3.6.2 Automatic Data Analysis . 35
3.6.3 Data Cleanup . 36
3.6.4 Ecosystem Structure Discovery . 37
3.6.5 Architecture Recovery . 38

3.7 Modeling Ecosystems . 39
3.8 Discussion . 41

xi

xii Contents

3.9 Summary . 43

4 Ecosystem Viewpoints 45
4.1 Introduction . 46
4.2 Ecosystem Viewpoints . 46
4.3 Case Studies . 48
4.4 A Catalog of Ecosystem Viewpoints . 49

4.4.1 Size History . 50
4.4.2 Activity History . 54
4.4.3 Developer Activity Timeline . 59
4.4.4 Developer Collaboration . 63
4.4.5 Inter-Project Dependency Map . 66
4.4.6 Contextual Project Architecture . 70
4.4.7 Contextual Project Dependency Matrix . 73

4.5 Discussion . 76
4.6 Conclusions . 77

5 Two Case Studies of Ecosystem Reverse Engineering 79
5.1 Introduction . 80
5.2 The SCG Ecosystem . 80

5.2.1 Project-centric analysis . 80
5.2.2 Developer-centric analysis . 85
5.2.3 Analyzing a Framework in the Context of the Ecosystem 90

5.3 An Industrial Experience Report . 97
5.4 Discussion . 101
5.5 Conclusions . 102

III Architecture Recovery 103

6 Package Patterns for Architecture Recovery 107
6.1 Introduction . 108
6.2 Manual Exploration in Architecture Recovery . 109
6.3 Packages and Dependencies . 111
6.4 Vertical Package Slices . 113
6.5 Package Patterns . 115

6.5.1 Iceberg . 116
6.5.2 Fall-through . 117
6.5.3 Autonomous . 118
6.5.4 Archipelago . 119

6.6 Validation . 120
6.6.1 Pattern Frequency in Real-World Systems . 120
6.6.2 Do Overlapping Patterns Occur? . 121
6.6.3 Implementation in Softwarenaut . 122

6.7 Discussion . 123
6.8 Conclusions . 124

xiii Contents

7 Inter-Module Dependency Patterns 125
7.1 Introduction . 126
7.2 Dependencies and Relations . 127
7.3 Modeling Relationship Evolution . 129
7.4 The Relationship Evolution Filmstrip . 130
7.5 Inter-Module Relation Evolution Patterns . 133

7.5.1 Fossil Relation . 134
7.5.2 Lifetime Relation . 136
7.5.3 Old Relation . 138
7.5.4 Recent Relation . 140
7.5.5 Stable Relation . 142
7.5.6 Instable Relation . 144

7.6 Validation . 146
7.6.1 Pattern Frequency in Real-World Systems . 146
7.6.2 Implementation in Softwarenaut . 147

7.7 Discussion . 150
7.8 Conclusions . 152

IV Epilogue 153

8 Conclusions 155
8.1 Contributions . 155
8.2 Future Directions . 157

A The Revenge Toolset 161
A.1 The Small Project Observatory . 162

A.1.1 Data Cleanup . 164
A.1.2 Vertical Navigation . 165
A.1.3 The Architecture . 166

A.2 Softwarenaut . 168
A.2.1 Interacting with the Exploration View . 170
A.2.2 The Detailed Project Model . 172

Bibliography 175

xiv Contents

Figures

2.1 Our work builds on top of reverse engineering supported by architecture recovery,
software visualization, and software evolution analysis. 10

3.1 An overview of the Revenge process . 34
3.2 Interactive navigation connects the various ecosystem viewpoints 37
3.3 When understanding a single system at times one needs to perform architecture

recovery . 38
3.4 The relationships between the elements of the Lightweight Ecosystem Meta-Model 40
3.5 Three of the subclasses of the Change meta-model element 43

4.1 Ecosystem exploration pathways . 47
4.2 The construction principle of the Size History viewpoint 50
4.3 Size History in REVEAL: the time series represent classes grouped by projects . . . 51
4.4 Size History in Gnome: the top view has files grouped by projects; the bottom

graph has files grouped by file extensions . 52
4.5 The construction principle of the Activity History viewpoint 54
4.6 Activity History in SCG- the time series represent number of commits per month

aggregated to project level . 55
4.7 Activity History in Gnome - the time series represent number of commits per

month aggregated to project level . 56
4.8 Activity History in Gnome - time series represent file changes per month grouped

by file extension . 57
4.9 The construction principle of the Developer Activity Timeline viewpoint 59
4.10 Developer Activity Timeline in REVEAL- the developers are sorted according to

their activity similarity . 60
4.11 The history of the activity of the more than 900 Gnome developers. 62
4.12 The construction principle for the Developer Collaboration viewpoint 63
4.13 Developer Collaboration in SCG . 64
4.14 The construction principle for the Inter-Project Dependency Map viewpoint 66
4.15 Project Dependency Map viewpoint for the SCG ecosystem - color intensity is

proportional to the number of commits to the project 68
4.16 Inter-Project Dependency Map viewpoint in REVEAL- color intensity is propor-

tional to number of commits to project . 69
4.17 The construction principle of the Contextual Project Architecture view 70
4.18 The architecture of CodeCrawler . 71
4.19 The construction principle of the Contextual Project Dependency Matrix 73

xv

xvi Figures

4.20 The Contextual Project Dependency Matrix for the CodeCrawler project 74
4.21 The Contextual Project Dependency Matrix for the SmaCC project 75

5.1 The growth of the code in the Bern ecosystem . 81
5.2 The scatterplot of the projects in the SCG ecosystem. The x-axis represents project

size measured in number of classes; the y-axis represents activity measured in
number of commits to the version repository . 82

5.3 Two complementary perspectives on the projects that were active in the last year
in the Bern ecosystem . 84

5.4 The distribution of the number of months the developers are active in the SCG
ecosystem . 85

5.5 The periods when the 120 developers in the SCG ecosystem have been active . . 86
5.6 The top 20 percent developers in terms of number of active months in the ecosystem 87
5.7 The shapes of commit activity of six of the longest contributors to the ecosystem . 88
5.8 Collaboration relationships between the most active subset of developers in the

SCG ecosystem . 89
5.9 Overview of Moose: the size/activity evolution, the contributors, and topics ex-

tracted from code analysis . 91
5.10 Moose in the context of the ecosystem . 92
5.11 The dependency matrix between eight other projects in the SCG ecosystem and

Moose . 93
5.12 The details of the dependency between the ecosystem and MooseModel 94
5.13 Subclassing between four projects in the ecosystem and Moose 95
5.14 Developer Activity Lines during the last year in the Soops repository 97
5.15 At Soops collaboration is abundant . 98
5.16 Activity Evolution in the Soops Repository between June 2006 and June 2007

with (a) and without Jun (b). 99
5.17 Size Evolution in the Soops repository . 100

6.1 Reading from left to right the figure presents two successive expand operations.
Reading from right to left the figure presents to successive collapse operations. . . 110

6.2 A containment hierarchy of modules where the architectural components are
modeled in the modules X, Y and Z. 110

6.3 The two types of dependencies between packages . 112
6.4 a) the color coding. b) the four types of restricted packages; c) an example of the

way an extended package is represented . 113
6.5 The dependencies between between com.aelitis.azureus.core and a working set of

the packages in Azureus 2.5.0.4 and the vertical package slice of com.aelitis.azureus.core114
6.6 Possible Configurations for Iceberg packages. a and b are from Azureus while c is

a Perfect Iceberg from Infoglue. 116
6.7 Possible configurations of Fall-Through packages. a) and c) are from Infoglue and

b) is from Azureus . 117
6.8 Possible configurations of Autonomous packages. Package c) is from jEdit and is

also classified as Fall-Through . 118
6.9 Possible configurations of Archipelago packages. Packages a) and b) display per-

fect structural symmetry. 119

xvii Figures

6.10 Softwarenaut exploring the Azureus case study. In the Exploration Perspective the
packages are annotated with navigation suggestions 122

7.1 A very high level view of Azureus, generated with Softwarenaut 127
7.2 The relationship between Module 1 and Module 2 is the set containing the three

aggregated dependencies (D1, D2, and D3). 128
7.3 The part of the meta-model that supports relationship evolution analysis 130
7.4 The filmstrip principle: time flows from top to bottom, size metrics are mapped

on modules and dependencies . 131
7.5 The evolution of the relation between org.argouml.uml and org.argouml.persistence.132
7.6 A fossil relationship from the ArgoUML case study . 134
7.7 A lifetime relationships from the ArgoUML case study 136
7.8 An old relation from the ArgoUML case study . 138
7.9 A recent relation between two modules in the ArgoUML case study 140
7.10 Recent relationships that involve the org.argouml.i18n module. 141
7.11 A stable relationship from the Azureus case study . 142
7.12 An instable relationship from the Azureus case study 144
7.13 All 114 relationships between a set of 23 modules in Azureus 4.2 148
7.14 The difference between all the relation in the last version (left) and all the lifetime

relations in the system (left) in the Azureus case study 148
7.15 Integrating the dependency evolution patterns in Softwarenaut 149
7.16 A screenshot of the Relationship Evolution Pattern Browser during the analysis of

ArgoUML . 151

A.1 Screenshot presenting the various parts of the UI of Small Project Observatory . . 162
A.2 Two ways of filtering elements in SPO: by composing rules, and by interactively

eliminating elements from the viewpoints . 163
A.3 After setting the alias for the user kmaraas and markmc the developer that seemed

to be the most active in the Gnome ecoystem, became even more active 164
A.4 Visualizing in SPO an architectural view that was generated in Softwarenaut . . . 165
A.5 The architecture of SPO . 166
A.6 A screenshot of Softwarenaut exploring Softwarenaut. Details about the selected

dependency are presented in the right panel. 168
A.7 The relationship filtering panel in Softwarenaut . 170
A.8 The Detailed Project Model can model any hierarchical decomposition of a system

written in an object-oriented language . 172

xviii Figures

Tables

4.1 An overview of the four ecosystem case studies . 48
4.2 Average growth rates for four of the ecosystem case studies 53

6.1 Overview of the six open-source systems used during the package pattern valida-
tion experiments . 115

6.2 The frequency of occurrence of the patterns in the case study systems 120
6.3 Pairwise overlapping between the package patterns 121

7.1 The types of low-level dependencies between elements in an object-oriented system128
7.2 An overview of the Azureus and ArgoUML case studies 133
7.3 The frequency of occurence of the dependency patterns in the case studies 146

xix

xx Tables

Part I

Prologue

1

Chapter 1

Introduction

“In the long run, every program becomes rococo, then rubble” wrote Alan Perlis in 1982 [Per82].
Some years later, David Parnas argued along similar lines that changes to software systems
not done in concordance with the initial design of the system lead to the degradation of the
architecture, the decrease in quality of the code, and the increase in the maintenance effort
[Par94].

Sommerville [Som95] and Davis [Dav95] estimated that the cost of software maintenance
is between 50% and 75% of the overall cost of a software system; more recent studies attribute
even larger percentages to maintenance [Erl00]. This means that discovering techniques and
building tools that ease maintenance can have a strong impact on reducing the total cost of
software development.

The cost of maintenance is high, because maintenance is a time-consuming activity. Main-
tainers have to work hard to understand the structure, behavior and effects of the subject system
and its relationship to the application domain [BMW94]. Corbi showed in a study that more
than half of the time spent on maintenance is dedicated to understanding the system [Cor89].
There are two fundamental causes for the difficulty of program understanding: first, frequently
the system’s maintainers are not its developers so they are unaccustomed with the system; sec-
ond, often the documentation of the software is obsolete or missing [KC98], so the only source
of information that is available is the code.

For dealing with systems for which code is the only reliable representation, the IEEE-1219
standard recommends reverse engineering as a key supporting technology [IEE98]. Reverse
engineering is a process concerned with identifying a system’s components and their inter-
relationships, and creating representations of the system at a higher level of abstraction [CC90].
Thus, the main goal of reverse engineering is deriving information from the available software
artifacts and presenting this information in a way that is easily understandable for the developers
and analysts.

Over the last decades, reverse engineering research has provided a wide range of methods for
analyzing software systems and supporting their understanding. Each of these methods works
at one of three levels of granularity: at the lowest level, the methods support the understanding
of the source code of a system; at the next level, the methods are concerned with extracting
the design of a system; at the highest level, the methods focus on recovering the architecture of
a system. In all these cases, the focus of the analysis is an individual system isolated from its
context.

3

4

However, software systems are seldom developed and exist in isolation. Instead, they exist in
the wider context of an organization or a community, in larger software ecosystems. A software
ecosystem consists of the entire collection of software systems developed in an organization.
These projects share code, depend on one another, share developers between themselves, reuse
the same code, and can be built on similar technologies.

For companies with multiple teams of developers working on multiple software projects,
the maintenance, understanding, and monitoring of the software ecosystems can be critical.
Failing to maintain an accurate and holistic image of the ecosystem can lead to wasted effort
and development inefficiencies. Common reasons for such inefficiencies are:

• Reimplementing from scratch functionality that could have been reused from other projects
in the organization. These projects could have been developed in the past or can be cur-
rently undergoing development.

• Modifying a component without being aware of all the clients of that component and of
the way they use the component. This increases the risk of breaking the code of other
people.

• Failing to realize the actual structure of the teams and to optimize the collaboration be-
tween developers.

In order to avoid these and other similar, developers, project managers, software architects,
and quality assessment engineers need to be continuously aware of the evolution of the projects
and of the social structure that emerges around them: understanding and monitoring an ecosys-
tem means understanding both its social structure and its projects.

The main reason for which keeping track of the evolution of the ecosystem is difficult is that
there is usually no documentation at the ecosystem level. This means that significant knowledge
about the ecosystem exists only in latent form in the social structure of the organization. As the
ecosystem grows larger, the chance that any individual will be able to keep track of all its facets
decreases. This situation is aggravated in environments with a high turnover where it can be the
case that the ecosystem’s maintainers are not its developers. In our case studies, we encountered
multiple situations in which no developers are active in an ecosystem from the beginning to the
end.

Since no documentation exists and no individuals can keep track of all the information, a safe
solution is to generate ecosystem documentation based on the available sources of information.
Reverse engineering a software ecosystem means recovering high-level views that present as-
pects that are relevant for the understanding of the ecosystem from existing lower level sources
of information. The recovered views need to present both developer-centric and project-centric
aspects of the ecosystem.

In this context, we formulate our thesis in the following way:

Thesis

Visualizing structural and evolutionary information of software projects in the
context of their ecosystem supports the reverse engineering of the ecosystem
and improves the reverse engineering of the individual projects.

In this dissertation we show that visualizing the information stored in the versioning repos-
itories of the projects that are part of the ecosystem, when available, it is valuable for reverse

5

engineering. For this we introduce an ecosystem reverse engineering process we call Revenge.
The process is based on analyzing the super-repository associated with an ecosystem. A super-
repository is a collection of versioning systems for multiple projects. Super-repositories can be
implicit (they are just a collection of versioning repositories for a set of projects) or explicit (they
are more than the sum of the parts because they contain information about the relationships
between the individual projects that are versioned).

Revenge supports the reverse engineering of software ecosystems by automatically recover-
ing high-level views of the ecosystem. It also integrates the individual system reverse engineering
in the context of ecosystem reverse engineering in two ways. First, Revenge includes viewpoints
which present a system in the context of its ecosystem. Second, since Revenge supports the
navigation between the ecosystem granularity level to the system granularity level.

There are two types of information that Revenge uses when analyzing an ecosystem: the
meta-annotations present in the super-repository, and the source code of the contained projects.

Meta-annotations. This information regards both developers and projects and their evolution
in the context of the ecosystem. By modeling and analyzing this information we can re-
cover developer- and project-centric viewpoints that highlight the developer collaboration,
the inter-project dependencies, the developer activity history, the inter-developer depen-
dencies.

Source Code. By analyzing the source code, we can build detailed models of all the individual
projects in the ecosystem. The detailed models can be analyzed at different levels of
granularity. Since we consider the ecosystem to be the level above the architecture of
individual systems, we are mainly interested in analyzing the architecture of the individual
systems to support the understanding of the entire ecosystem.

Once the information in the super-repository is analyzed, the Revenge process generates
visual representations of the ecosystem that capture its various facets: the social structure, the
evolution of various metrics in the ecosystem, details about the developers that contribute to the
ecosystem, relationships between the composing projects, and views which present a system in
the context of the ecosystem.

Analyzing an ecosystem is an exploratory task: an analyst interactively navigates and inter-
acts with the generated visual representations. Indeed, the need for interactive visualization is
widely recognized by experts in reverse engineering [KC99].

To support the interactive exploration of the proposed viewpoints, in this thesis we introduce
tools that are part of our Revenge Toolset. The tools allow the navigation between the various
views and the interaction with the individual elements of the views. One particular type of inter-
action is top-down navigation, in which the analyst dives into architectural views of individual
projects in the ecosystem in order to learn more about them. This type of navigation crosses the
boundary of two levels of abstraction: the ecosystem level and the single-system, architectural
level. The importance of this type of navigation, was anticipated by Müller et al. when they
stated that “in the future of software engineering, it is important to understand software at various
levels of abstraction and maintain mappings between these levels” [MJS+00].

In our case, mapping the levels of abstraction means going from views that present the entire
ecosystem to views that present the architecture of the individual projects. Vertical navigation
is crucial since during the exploration of the ecosystem questions arise that need to be solved
based on low-level information about the individual projects. Examples of such questions are:
“What is the reason for the existence of a dependency between two projects?” or “Are there

6 1.1 Contributions

reusable components in this project?”. A general question that we answer in the context of
vertical navigation is “Can we learn more about an individual project when we study it in the
context of its ecosystem?”.

To support vertical navigation, ideally we would automatically generate meaningful archi-
tectural views of the system that would present relationships between the main components
of the project and present these architectural views in the context of the ecosystem. Since all
the existing architecture recovery techniques involve human intervention to various degrees,
Revenge assumes a step in which architectural views are recovered from individual systems in
the ecosystem. To reduce the amount of human involvement in the process, we introduce two
techniques: the first technique automates the discovery of relevant views based on classifying
modules in structural patterns, and the second technique automatically filters out relationships
based on the goal of the analysis.

1.1 Contributions

The contributions of this dissertation can be classified in three categories: methods and tech-
niques, case studies, and tools. We list them here:

Methods and Techniques

• Defining the problem of reverse engineering software ecosystems and presenting the impor-
tance of ecosystem analysis.

• Providing a methodology for reverse engineering software ecosystems. The methodology,
named Revenge, is based on recovering high-level, interactive, views of the ecosystem
that correspond to project-centered or developer-centered viewpoints. The methodology
emphasizes the importance of connecting the ecosystem granularity level with the single-
system granularity level in reverse engineering [LLGH07].

• Providing a meta-model for software ecosystems that is independent of the versioning system
and programming languages of the contained projects. The model combines information
from the analysis of the meta-information of the versioning systems of the projects and the
static analysis of the source code of the projects [LGL09].

• A technique for semi-automating the extraction of architectural views from software systems.
The technique is based on a classification of inter-module relationships based on their
evolution. Recovering architectural views of the projects in the ecosystem is part of the
Revenge methodology [LLG06].

• Techniques for analyzing and understanding high-level architectural relationships between
modules. To understand an architectural view one needs to understand the relationships
between modules in the view. Our approach supports this understanding by studying the
evolution of inter-module relationships [LL07].

Case studies

• Presenting a set of ecosystems as case studies. The studied ecosystems have a diverse prove-
nance: some are academic, some are industrial, and some are open-source [LLGH07;
LML09]. Their size ranges from tens to hundreds of projects and developers.

7 1.2 Structure of the Dissertation

Tools

• The Small Project Observatory is an online platform that supports ecosystem reverse engi-
neering through visualization and exploration [LGL09]. We built the tool to validate the
ecosystem reverse engineering methodology presented in this thesis.

The tool is available online and makes several of the case studies available for study.

• Softwarenaut is a tool for software architecture recovery through visualization and explo-
ration [LL06b]. Once the architectural views are obtained in Softwarenaut they can be
imported by The Small Project Observatory and used during the vertical navigation pro-
cess.

1.2 Structure of the Dissertation

Part I: Prologue. In this part we place our work in the broader context of reverse engineering.

• Chapter 2 (p.9) presents an overview of the related work in reverse engineering. Although
there is no work that treats entire ecosystems as first class entities, our work is closely
related to architecture recovery, software evolution analysis and software visualization.
The chapter surveys the relevant work in the corresponding areas.

Part II: Software Ecosystems. In this part we formally introduce the concepts of ecosystem
and ecosystem reverse engineering. We present our ecosystem reverse engineering process and
multiple case studies that range broadly in scope and size.

• Chapter 3 (p.25) introduces the concept of the software ecosystem as another level of ab-
straction in software analysis. Then it defines Revenge, our process for reverse engineering
software ecosystems which is an extension of traditional single-system reverse engineer-
ing.

• Chapter 4 (p.45) defines a catalog of ecosystem viewpoints. It also introduces a set of
ecosystems that we use as case studies. We illustrate the proposed viewpoints with exam-
ples from the case study ecosystems.

• Chapter 5 (p.79) introduces two case studies of ecosystem analysis. The first ecosystem
belongs to the Software Composition Group in Bern. During the case study we show how
in some cases analyzing an individual system in the context of the ecosystem can provide
supplementary insight into that system. The second belongs to an industrial partner who
performed the analysis himself on the company’s ecosystem.

Part III: Architecture Recovery. This part addresses challenges that are posed by understand-
ing single systems in the context of an ecosystem. The two main problems are automating the
generation of architectural views and understanding inter-module relationships.

• Chapter 6 (p.107) presents our semi-automatic approach to generating architectural views
of a software system. The approach is based on discovering package patterns. We validate
the patterns that we discover on several open-source systems.

8 1.2 Structure of the Dissertation

• Chapter 7 (p.125) introduces two complementary ways of analyzing inter-module relation-
ships. The relationship evolution filmstrip presents the evolution over time of a given
relationship. The semantic dependency matrix visually summarizes the low-level depen-
dencies that are abstracted in an inter-module relationship.

Part IV: Epilogue. In this part we step back and look at the entire work as a whole and then
conclude.

• Chapter 8 (p.155) concludes our work by discussing our approach and the lessons we
learned. We then present a set of research directions that are opened by this thesis.

• Appendix A (p.161) presents the tool support that made all the analysis in the thesis pos-
sible. We introduce the architecture and interaction facilities of Softwarenaut, our ar-
chitecture recovery tool and The Small Project Observatory, our ecosystem visualization
platform.

Chapter 2

State of the Art

Ecosystem reverse engineering is a continuation of traditional reverse engineering in two ways. On
the one hand, the techniques used in traditional reverse engineering can be used at the higher
abstraction level of software ecosystems. On the other hand, the understanding of an ecosystem is
not complete unless the individual projects in the ecosystem are understood too, therefore ecosystem
reverse engineering is a continuation of single system reverse engineering.

In this context, our research is related mainly to three reverse engineering subfields: software
visualization, architecture recovery, software evolution. We survey these research domains to identify
current limitations of the state of the art from the perspective of our research goals.

9

10 2.1 Introduction

2.1 Introduction

Maintaining individual systems that represent legacy code that was not written with mainte-
nance in mind, strongly requires adequate reverse engineering techniques and tools. Chikofsky
and Cross define reverse engineering as:

“The process of analyzing a subject system to identify the system’s components and
their relationships, and to create representations of the system in another form or at a
higher level of abstraction.” [CC90]

As the definition points out, reverse engineering has been traditionally done at the level
of individual systems. To the best of our knowledge, nobody has attempted before to reverse
engineer entire software ecosystems, so there is little direct related work. However, our work
reuses existing techniques used in reverse engineering, and draws inspiration from existing re-
verse engineering processes. Figure 2.1 highlights three main fields of related work: software
visualization, architecture recovery, and software evolution analysis.

Software
Visualization

Architecture
Recovery

Evolution
Analysis

Ecosystem
Reverse Engineering

Reverse Engineering

Figure 2.1. Our work builds on top of reverse engineering supported by architecture recovery,
software visualization, and software evolution analysis.

In this chapter we present in more detail the way our work is related to the three fields:

Software Visualization. Visualisation is a powerful mechanism that helps analysts to cope with
large amounts of information such as the one available in software ecosystems. Existing
research in software visualization addresses various levels of abstraction; from code-level
visualization to architectural-level visualizatoin, but no existing research addresses the
ecosystem level.

Architecture Recovery. Architecture recovery is a highly interactive process which aims at re-
covering architectural views of a system. The process is not yet fully automated but there
is room for improving the process, and the last part of our thesis is concerned with this.
Architecture recovery is an inspiration for ecosystem reverse engineering through the con-
cept of viewpoints and through the highly interactive nature of both the processes.

Software Evolution Analysis. Software evolution analysis is a research field which has already
considered collections of software systems as subjects of study. However, the focus of the
research was discovering principles of evolution for individual projects, and therefore the

11 2.2 Software Visualization

collection of projects was not studied as an entity in itself as it is the case in ecosystem
analysis.

Structure of the Chapter

We present the related work in the following order: in Section 2.2 (p.11) software visualizatoin, in
Section 2.3 (p.13) architecture recovery, and in Section 2.4 (p.16) evolution analysis. We conclude
the chapter with Section 2.5 (p.18) in which we go again through the main observations in the
chapter and show how they point to the need for analyzing software ecosystems.

2.2 Software Visualization

Software visualization is a specialization of information visualization in which the focus lies on
visualizing software [Lan03b]. Stasko et al. define software visualization as the use of the crafts
of typography, graphic design, animation, and cinematography with modern human-computer in-
teraction and computer graphics technology to facilitate both the human understanding and effective
use of computer software. [SDBP98]

The main goal of software visualization is to address specific questions whose answers are
hard to be expressed in plain numbers or in prose. Examples of such questions that are relevant
for maintenance and reverse engineering are: How do developers collaborate inside the organi-
zation? How are the maintenance activities distributed over the teams? How did the structure of
the organization evolve over time? What are the main components of the system and how do they
interact with one another?

Software visualization is a field with an extensive history. The first taxonomy of software
visualization tools was provided by Price et al. in 1993 [PBS93]. One criterion for the classi-
fication of software visualization tools is the data that the tool is visualizing. Based on it we
distinguish three main classes of visualization tools:

1. Algorithm animation tools are usually didactic, and their goal is to support understanding
algorithms [Bae81; RCoP92; BS84].

2. Dynamic visualization tools present information that is derived from instrumenting the
execution of the program [DPHKV93; DPJM+02; LN97]. Their goal is to support under-
standing the behavior of the systems.

3. Static visualization tools visualize information extracted by static analysis of the software
[MK88; SM95; Lan03a]. Their goal is to support the understanding of the structure of the
system.

Our work is focused on static visualization tools. These tools exist and work at several levels
of abstraction. The following classification is based on the types of elements that are visualized
at each abstraction level: lines of code for the code level, classes and files for the design level,
and modules and their relationships for the architectural level.

Code-Level Visualization. The most basic software visualization techniques are code format-
ting and pretty printing. Introduced in the 70s for Lisp in simpler form, the pretty printers
are today integrated in all modern IDEs.

12 2.2 Software Visualization

Even when displaying code-level information, visualization is most useful when larger
amounts of information need to be displayed. Eick et al. used a code line to pixel line
mapping for representing the files in a software system [ESJ92]. On top of this mapping,
they superimposed other types of information such as where functions are called or which
developer worked on a given line of code.

Later, Ducasse et al. used a character-to-pixel representation of methods in object-oriented
systems enriched with semantical information to provide overviews of the methods in a
system[DLR05].

Design-Level Visualization. At a higher level of abstraction, Lanza and Ducasse introduced
the class blueprint [DL05] which provides a call-flow based representation of classes. Class
blueprints are enriched with semantical information extracted from control flow analysis.

UML diagrams are the industry standard for representing object-oriented design and there
are many tools that provide support for recovering UML diagrams from code (e.g., Ratio-
nal Rose, ArgoUML, Enterprise Architect). However, UML is not targeted specifically for
reverse engineering [DDT99]. One of its main drawbacks is the lack of scalability. Termeer
et al. address the overview problem in their tool MetricView by augmenting UML diagrams
with visual representations of class metrics [TLTC05].

Lanza addressed the scalability problem with polymetric views, a lightweight software visu-
alization technique enriched with software metrics information [LD03; Lan03b]. A well-
known polymetric view, the System Complexity presents the class hierarchy of a system
where classes are represented as rectangles with three distinct metrics mapped on their
width, height and fill color intensity. Such a representation is more scalable than a UML
diagram, and can be used as a first step in the reverse engineering process.

Metrics are especially appropriate for presenting high-level overviews and supporting the
detection of outliers. A special class of visualization tools that combine structural and
metric visualization is 3D visualization tools. Marcus, Fend and Maletic propose in their
sv3D, a 3D representation of software systems inspired by Eick’s SeeSoft [MFM03]. Wettel
and Lanza argue that a city is an appropriate metaphor for the visual representation of
software systems and implement it in their CodeCity tool [WL07].

Some tools focus on visualizing the evolution of the relationships between classes in an
object-oriented system. For example, Collberg [CKN+03], focus on providing intelligent
and fast layout algorithms that present the evolution of the relationships between classes
and scales to very large systems.

Architectural-Level Visualization. One of the most common ways of specifying architecture
is to visualize the modules and the relationships in a system.

The first architectural visualization prototype was Rigi, a programmable reverse engineer-
ing environment which emphasizes visualization and interaction [MK88]. Rigi can visual-
ize the data as hierarchical typed graphs and provides a Tcl interpreter for manipulating
the graph data. The reconstruction process is based on a bottom-up process of grouping
the software elements into clusters by manually selecting the nodes and collapsing them.
Rigi also offers various capabilities for filtering the nodes, navigating the hierarchical mod-
els and making layouts. Rigi comprises both an extraction component and a user interface
component. Other architecture visualization tools were built on top of Rigi [KC98; OS01].

13 2.3 Architecture Recovery

One of the projects that was inspired by Rigi was the SHriMP tool [SM95] and its Eclipse-
based continuation, Creole [LMSW03]. SHriMP and Creole display architectural diagrams
using nested graphs. Their user interface embeds source code inside the graph nodes
and integrates a hypertext metaphor for following low-level dependencies with animated
panning, zooming, and fisheye-view actions for viewing high-level structures.

2.3 Architecture Recovery

Understanding the architecture of a large software system is a prerequisite for its maintenance
and development. Two problems make architecture understanding difficult: architecture is usu-
ally not explicitly represented in the code, and architecture is the subject of degradation, drift,
and erosion [PW92].

Jazayeri et al. defined architecture recovery as “the techniques and processes used to uncover
a system’s architecture from available information”[JRvdL00a].

Before defining architecture recovery one needs a definition of software architecture, of
which there are many definitions each one with a slightly different perspective. In this thesis
we use the one provided by Bass and Clemens according to whom software architecture is the
structure or structures of the system, which comprise software elements, the externally visible prop-
erties of those elements, and the relationships among them [BCK97]. This definition is similar to
the one proposed by the IEEE 1471 standard [14700], in that they both emphasize elements and
the relationships between them.

In large software systems, the architecture is specified through multiple architectural views.
An architectural view is a representation of a whole system or of part of a system from the
perspective of a related set of concerns. Each architectural view conforms to a viewpoint. A
viewpoint is a pattern or template from which to develop individual views by establishing the
purposes and audience for a view and the techniques for its creation and analysis [14700].

Although different authors propose different viewpoints [BCK97; Kru95; HNS00] there are
two points of consensus. First, all the proponents agree that the architecture of a system is
complex and multifaceted and that multiple viewpoints are needed to express it. Second, all
the authors specify one viewpoint which presents the modules and the static relationships be-
tween them. Bass and Clemens call this viewpoint the module viewpoint. Most of the work in
architecture recovery is focused on recovering views that correspond to the module viewpoint.

Architecture Recovery Tools

The majority of the architecture recovery techniques are based on the extract-abstract-view pro-
cess model [TSP96]. In such a process, data about source code artifacts is extracted from a
software repository. Using analysis techniques, this data is abstracted to a higher level. The
abstracted data is then presented by appropriate visualization means.

The model extraction step is done by specialized tools that are called parsers or fact extrac-
tors, that can either be stand-alone like the ANTLR parser generator, or part of larger analy-
sis frameworks like iPlasma [MMMW05] and Columbus CAN [FBTG02]. To allow the inter-
operability of the extractors and other tools the results of the extraction phase are usually ex-
ported in an intermediate format such as RSF [Won98], GXL [HWS00] or MSE [DGLD05].

Some architecture recovery techniques focus on the abstraction and analysis step, some focus
on the visualization step and yet others provide a common integration framework. Two of the

14 2.3 Architecture Recovery

classical architecture recovery platforms that focus on providing a common integration platform
are Dali and The Software Bookshelf. Both platforms are focused on providing an integration
framework for multiple individual tools:

Dali is a workbench focused on easing the interaction between various extraction, manipu-
lation, analysis, and presentation tools [KC98; KC99; WCK99]. The various tools interoperate
through a shared database. One of the cornerstone ideas of Dali is the fusion of views which lets
a user combine elements from multiple views together.

The Software Bookshelf is a framework for capturing, organizing, and managing information
about a system’s software [FHK+97]. The Bookshelf framework is an open architecture that
allows many reverse engineering tools to be integrated. Reverse engineering tools can populate
the Bookshelf and other tools can retrieve this information.

Architecture Recovery Processes

Over the years, researchers have proposed multiple theories of program comprehension. One of
the oldest theories argues that the developers use a bottom-up comprehension process in which
they read the code and as they read, they integrate the information and form higher level mental
models [Shn80]. An opposite theory argues that comprehension happens in a top-down fashion
and the developers first generate a high-level hypothesis about the code, and then proceed to
verify that hypothesis [Bro83; SE86]. Von Mayrhauser and Vans proposed an integrated model
in which programmers use both the processes and alternate between them[vMV95]. Letovsky
proposed a similar model in which he sees the programmers capable of exploiting either top-
down, or bottom-up approaches in the process of building the mental model of the program
[Let86].

Although none conforms exclusively to a single theory, the majority of the architecture pro-
cesses fall in two main classes, corresponding to whether they are dominantly assuming a top-
down or a bottom-up comprehension.

Top-down Processes

Top-down processes start with high-level knowledge such as requirements or architectural styles
and aim to discover architecture by formulating conceptual hypotheses and by matching them
to the source code [Bro83; SFM99].

A few examples of top-down processes can be found in literature:

• In 1999, Bowman, Holt and Brewster performed one of the most well-known case studies
of architecture recovery, by extracting the architecture of the Linux kernel [BHB99]. They
began their study by forming the conceptual architecture of the Linux kernel. The concep-
tual architecture, or the as-designed architecture, shows how the developers are thinking
about the system in terms of components and relationships between them. Then, they ex-
tracted the concrete architecture. The concrete architecture, or the as-is architecture shows
the relations that exist in the implemented system. By comparing the conceptual and the
concrete architecture, they discovered multiple occurrences of divergences between the
two types of architecture - especially at the relationship level.

• The idea of comparing the two types of architecture, was introduced earlier by Murphy
and Notkin in their reflexion modelling work [MN95; MNS95]. The reflexion models ap-
proach uses a regular expression mechanism for specifying components of the conceptual

15 2.3 Architecture Recovery

architecture and a lightweight, robust source model extraction tool for inferring a wide
array of relationships among the components of the concrete architecture.

• Christl et al. presented an evolution of the reflexion models [CKS05]. They enhance it
with automated clustering to facilitate the mapping phase. As in the reflexion models,
the reverse engineer defines his hypothesized view of the architecture in a top-down pro-
cess. However, instead of manually mapping hypothetic entities to concrete ones, the new
method introduces clustering analysis to partially automate this step.

• Other researchers have proposed similar approaches, which differ mainly in the way the
rules for specifying the conceptual architecture are defined. Mens et al. proposed another
variant of architecture conformance checking with their Intensional Views [MKPW06].
They use rules specified in Prolog to encode external constraints that are checked against
the actual source code. Recently Bruehlmann et al. use annotations to specify the mapping
between the software modules and the architectural layers of a system [BGGN08].

As we can see from the examples, these approaches tend to be geared towards verifying the
conformity of an architecture about which one has previous knowledge.

Bottom-up Processes

Bottom-up processes start with low-level knowledge about the system (such as the code), and
they progressively reduce these facts by filtering and abstraction until a high-level model of the
system is reached.

• The traditional tool that supports a bottom-up architecture recovery process is Muller’s
Rigi [MK88]. In Rigi, the user starts with a view which contains all the artifacts in the
system and refines the view by grouping elements together in higher-level abstractions,
and therefore, reducing its complexity. During the exploration, the user generates various
views which are representative for the architecture of the system.

• Krikhaar proposed the SAR (Software Architecture Reconstruction) technique for creating
abstracted, high-level views of the architecture of a software intensive system [Kri99].
The process of abstraction in SAR is based on relational partition algebra, an extension of
relational algebra introduced by Feij et al. that supports a formal description of software
architectures [FKO98].

• Riva proposed NIMETA, a view-based architecture reconstruction approach which is based
on the relational algebra [Riv04]. NIMETA emphasizes the selection of architectural con-
cepts and architecturally significant views that are reflecting the interests of the stakehold-
ers.

• Pinzger proposed the ArchView approach [Pin05] which is similar to SAR but augments
the analysis and visualization with information about the evolution of the modules in a
system. His evolution analysis takes into account the annotations from the versioning
system repository. ArchView proposes two types of views that summarize the extracted ar-
chitectural information: visualizations of multiple evolution metrics with Kiviat diagrams
and polymetric views.

16 2.4 Software Evolution Analysis

Bottom-up processes are more adequate for discovering the de facto architecture of a system
since they do not require a priori knowledge about the system. For this type of processes interac-
tion and support for exploratory analysis is critical [Riv04; KC99]. About the classical bottom-up
Dali, Kazman et al. declare that “probably the most important component of the Dali workbench
is the interaction element” (Kazman, 1999).

Commonalities between the two processes

There are two factors that unite the two previous architecture recovery processes:

1. The majority use multiple views to capture different aspects of the subject system’s ar-
chitecture. The different views can correspond to the same viewpoint like in the case of
Bowman et al. [BHB99] or present different viewpoints like in the case of Pinzger [Pin05].

2. They all involve the user playing an active exploratory role in the process. The user’s tasks
vary based on the starting state of the exploration process, and the operations that he has
at his disposition:

• In some processes the user starts the exploration with a view which contains all the
artifacts in the system. He then proceeds to refine the view by filtering and grouping
elements in the view. This is the case with most of the approaches based on Rigi
[MK88; OS01; KC99; Riv04].

• In some processes the user starts the exploration from a very high-level view of the
system. He then explores the architectural information by bringing information into
the view as needed. This type of navigation is the dominant interaction in SHriMP
and its Eclipse-based follow-up, Creole [SM95; LMSW03] as well as in our prototype
Softwarenaut [LKGL05].

• In some processes the user starts with a blank visualization. He then proceeds to add
elements as he explores and discovers the system. Janzen and De Volder use this
approach in JQuery [JV03] and Sinha et al. use this approach in Relo [SKM06].

Even if there are no fully automatic techniques, there is still a need for increasing the amount
of automation of the processes and decreasing the human involvement.

2.4 Software Evolution Analysis

In recent years considerable research effort has been directed towards understanding software
evolution. The basis for the work is the widespread use of versioning control systems and the
availability of open-source case studies.

There are two main research directions when studying system evolution: discovering general
principles of software evolution, and supporting program understanding and maintenance. We
elaborate on the main directions here.

Discovering general principles

In 1985 Lehman proposed a number of “laws of software evolution” [LB85; LPR+97]. The
laws are based on metrics collected by observing the evolution of multiple industrial systems

17 2.4 Software Evolution Analysis

over many years. The principles are very general. For example, the principle of continuing
change postulates that systems must be continually adapted else they become progressively less
satisfactory. Given the large variability in the environments, technologies and processes for
software development, it is not surprising that overarching, more specific principles are hard to
find.

When attempting to understand the fundamentals of the evolution of software systems re-
searchers need to investigate large groups of projects. They analyze these projects in parallel,
but they rarely look at the entire group of projects as the subject of the analysis. One such
example is the analysis of all the projects on SourceForge by Weiss [Wei05].

The Libresoft research group in Spain has investigated in several occasions entire collections
of software projects. In one instance, they analyzed the Debian Linux distribution and esti-
mated the cost of implementing it from scratch [ARGBH05]. In another article, they proposed
a methodology for analyzing how the developer turnover affects open-source software projects
by taking several representative open-source projects and analyzing the information in their ver-
sioning system repositories [RGB06]. In yet another case they studied from a social networking
point of view the developers that are working in the Apache and Gnome projects [LFRGBH06].

One project that does not perform evolution analysis per se, but is rather an enabler for this
type of analysis is FlossMole [CHC05]. The project compiles every two months a database with
statistics about a very large number of open-source projects. The database includes projects from
SourceForge, Freshmeat, RubyForge and a few other public project repositories.

Supporting Program Understanding and Maintenance

Since the versioning repository of a software project is a rich source of information, it is natural
that researchers attempt to use this information to support the development and maintenance
processes. The existing research in this direction analyzes the evolution of individual systems
focusing on different goals:

• Focus on predicting the locations of future changes. Sahraoui et al. studied the in-
terfaces of classes in libraries written in object-oriented systems in order to predict the
future stability of their interfaces [SBLE00]. Gîrba et al. used historical information about
a system to suggest starting points for the reverse engineering process based on the as-
sumption that those parts of the system that changed recently are the ones who need to
be understood first [GDL04]. In a related work, Zimmerman et al. showed that the parts
of the system that have changed together in the past are likely to change togehter in the
future [ZWDZ04]. Recently Robbes proposed an approach in which he keeps track of ev-
ery individual change that is collected through the IDE to allow for a more fine grained
analysis of the changes [Rob08].

• Focus on increasing the quality of IDE support during forward engineering. Cubranic
et al. have proposed using project information to support the automatic recommendation
of the parts of the system which are involved in a maintenance task [CMSB05]. In their
case, project information comprises a number of different sources, including the source
code versions, modification task reports, newsgroup messages, email messages, and doc-
umentation. Kersten suggested program elements that are likely to be related to the task
at hand based on a degree of interest model built from the history of the navigation in the
IDE [KM05]. Singer et al. proposed NavTracks a tool that keeps track of the navigation

18 2.5 Towards Reverse Engineering Software Ecosystems

history of software developers, forming associations between related files. These associa-
tions are then used as the basis for recommending potentially related files as a developer
navigates the software system [SES05].

• Focus on supporting program understanding. The work that uses evolutionary informa-
tion in the context of program understanding and reverse engineering has a strong visu-
alization component. Collberg studied the evolution of the structure of software systems
from the graph drawing optimization perspective [CKN+03]. He introduced a scalable
way of visualizing large evolving graph structures that represent classes in a software sys-
tem. Lanza visualized the system’s history in a matrix in which each row is the history of
a class. A cell in the Evolution Matrix represents a class and the dimensions of the cell are
given by evolutionary measurements [Lan01]. The analysis of a large number of classes
led to a classification of classes based on their evolution patterns [Lan03b]. Gîrba et al.
took the study of the class evolution one step further in his analysis of the evolution of the
class hierarchies [GLD05].

Holt and Pak developed the GASE tool to visualize the evolution of software architecture in
the large [HP96]. In their approach they present a visual diff between two representations
of the high-levels structure of the system uses colors to contrast new, common and deleted
parts of a software system. A similar and more recent work is Motive, a visualization of the
evolution of the architecture of the system that enables the user to view the effects of a set
of modification records on the architecture of a system [MGWJ07]. The authors argued
that visualizing the evolution of a system during a predefined standard interval - e.g. six
months, is not enough and architecture evolution visualization tools should visualize the
impact of any modification request.

• Focus on assessing code quality. In an analysis based on the information in the versioning
system, Gall et al. proposed retrospective analysis as a way of assessing the stability of
the system. They introduced visualizations that characterize the evolution of a module
[GJR99]. Nagappan et al. used historical information about the system to predict the
parts of the system which are going to be affected by failures [NBZ06]. Neuhaus used
evolutionary information about the system to predict parts of the system which are likely
to have vulnerabilities [NZHZ07].

One common characteristic of many of the approaches is the use of metrics. Pinzger studied
the evolution of the architecture of a system by visualizing and analyzing evolution metrics for
the system’s modules and their relationships [Pin05; PGFL05]. Lanza uses metrics in his evolu-
tion matrix to visually depict the evolutionary dynamics of the classes in the system [Lan01].

2.5 Towards Reverse Engineering Software Ecosystems

In this chapter we presented the state of the art in software visualization, evolution analysis, and
architecture recovery. Here we reiterate the main observations regarding the three fields that
are of interest to our work:

• Static software visualization techniques work at several levels of abstraction that range
from the code up to architecture. Although there are many software visualization tools,
none attempts to support software understanding at a level above architecture.

19 2.5 Towards Reverse Engineering Software Ecosystems

• Architecture recovery is an interactive process that requires a human analyst in the loop.
Even if there are no fully automatic architecture recovery processes, there is a need for
increasing the automated part.

• Although most of the work in software evolution analysis is focused on understanding
individual systems and supporting their maintenance, there are cases of analysis in which
people study entire groups of projects together. In these cases the goal is not building
tools that would enhance the maintenance but rather discovering general laws of software
evolution.

From the work we have presented we can derive a few constraints for ecosystem reverse
engineering:

• Multiple Viewpoints. Due to the inherent complexity of large software systems, their archi-
tecture cannot be captured in a single view. Instead, multiple viewpoints capture various
aspects of a system’s architecture. Given that software ecosystems are even more complex
than individual systems, the concept of viewpoint will be useful in their analysis too.

• Support for Exploration. Different architecture recovery techniques involve the user in the
process in different degrees and none is completely automated. They all involve the user
playing an active exploratory role in the exploration process. Ecosystem reverse engineer-
ing will also need to support an exploratory analysis.

• Navigation Between Levels of Abstraction. One special type of navigation will be navigating
between the ecosystem and the single system abstraction level. This will support under-
standing the importance of individual projects in the wider context of the ecosystem. Since
in our view, the abstraction level below the ecosystem is the architecture of a single system,
we dedicate our attention to bridging the two levels.

In the remainder of this thesis we present the way our ecosystem reverse engineering tech-
nique integrates with traditional reverse engineering and architecture recovery and how it uses
software visualization and evolution analysis in the process.

20 2.5 Towards Reverse Engineering Software Ecosystems

Part II

Ecosystems

21

Software ecosystems are another level of abstraction at which analysis of software can be per-
formed. One type of analysis is reverse engineering an ecosystem, a process which analyzes low-
level information about the component projects of the ecosystem and generates high-level views
that characterize the ecosystem, its component projects, and the social structure that emerges
around them.

In this part we introduce Revenge, our ecosystem reverse engineering methodology. Revenge
classifies the many possible visual perspectives on an ecosystem into viewpoints. We introduce
a catalog of ecosystem viewpoints and exemplify them on various academic, industrial, and
open-source ecosystem case studies.

To validate the methodology we apply it to two case studies of ecosystem analysis. The
first ecosystem belongs to the Software Composition Group in Bern. During the case study we
show how in some cases analyzing an individual system in the context of the ecosystem can
be useful to both the developers of the system and to clients that depend on that system. The
second ecosystem belongs to an industrial partner who performed the analysis himself on the
company’s ecosystem.

23

24

Chapter 3

Reverse Engineering Software
Ecosystems

Software ecosystems are collections of projects that represent important assets of organizations.
Understanding the legacy of code that exists in an ecosystem can support a more efficient allocation
of resources and can promote reuse. Since no single person can keep track of the large and diverse
amount of information that regards an ecosystem, and since there usually is no documentation for
the ecosystem, we need to reverse engineer the ecosystem by extracting useful information about it
from the available sources of information such as the source code of the projects or the associated
super-repository.

In this chapter we introduce Revenge, our ecosystem reverse engineering process. The process has
multiple steps, one of which is architecture recovery. Several of the steps involve interactive analysis
and exploration. The exploration happens in two dimensions: horizontal exploration allows the
navigation between various ecosystem viewpoints; vertical exploration allows diving into the details
of the architecture of an individual project.

The methodology relies on the Lightweight Ecosystem Model, a representation of an ecosystem
which is independent of the super-repository and the programming language used for the develop-
ment of the projects in the ecosystem.

25

26 3.1 Introduction

3.1 Introduction

No project is an island. Software projects exist in larger contexts that we call ecosystems. Organi-
zations with multiple teams of developers working on multiple software projects are vulnerable
to inefficiencies and problems. Scenarios that illustrate this are the following:

• Modifications applied to a component without awareness of all its clients and of the way
they use the component lead to future integrations problems.

• Failing to identify previous projects that already implemented a certain functionality leads
to a waste of resources, as the developers reimplement the functionality.

• Failing to realize the actual structure of the teams and to optimize the collaboration be-
tween developers results in the inefficient allocation of human resources.

To avoid these problems, the developers, the managers, and the architects need to be aware
of the legacy of source code, the relationships between the projects, and the social structure that
emerges in an ecosystem. This type of information is rarely documented at the ecosystem level.
Organization charts might exist that present the structure of the organization, but they fail to
capture the continuously shifting dynamics of developer collaboration. Dependencies between
projects might be documented, but they fail to capture the detailed reasons for the dependencies.
In many organizations these documents are missing altogether.

The insufficient documentation can be complemented with the knowledge acquired from the
contributors to the ecosystem. Nevertheless, there are problems with relying on individuals for
providing information about the ecosystem:

• Sooner or later the contributors leave the ecosystem. Since an ecosystem can exist inde-
pendently of every one of its individual contributors, it is often the case that no individual
developer contributes for all the ecosystem lifetime. As a result, no individual has all the
knowledge about the ecosystem.

• Given the large amount of data associated with an ecosystem, not even the most expe-
rienced contributor in the organization can keep track of all the aspects of ecosystem
evolution. And if there were such an experienced contributor, it would be unreasonable to
expect that every time a newcomer has a question about the ecosystem he refers it to him.

The goal of ecosystem reverse engineering is to document an ecosystem by extracting in-
formation about the associated social structure and the contained project structure from the
available sources of information. In this way, ecosystem reverse engineering increases the over-
all visibility and comprehensibility of the different facets of an ecosystem.

Structure of the Chapter

In Section 3.2 (p.27) we define two key concepts of our work: software ecosystems and super-
repositories. We then proceed to position the concept of a software ecosystem with respect to
other similar concepts in Section 3.3 (p.29). We present who is interested in analyzing ecosystems
in Section 3.4 (p.31). In Section 3.5 (p.32) we define ecosystem reverse engineering and in Section
3.6 (p.34) we introduce Revenge, our ecosystem reverse engineering process. In Section 3.7 (p.39)

we introduce the ecosystem meta-model that Revenge is based on. In Section 3.8 (p.41) we
discuss our approach and we conclude in Section 3.9 (p.43).

27 3.2 Ecosystems and Super-Repositories

3.2 Ecosystems and Super-Repositories

The term ecosystem comes from biology, and according to Webster’s dictionary, it represents the
complex of a community of organisms and its environment functioning as an ecological unit.

The organisms in a biological environment interact with one another, depend on one another
and influence one another. In biology studying an organism in the context of the whole ecosys-
tem can provide valuable information that otherwise would not be observable. At the same time,
in order to understand the whole ecosystem, one needs to be able to understand the individuals
and their interactions.

In our thesis we argue that software systems are part of larger systems that we call software
ecosystems. We define a software ecosystem as follows:

A software ecosystem is a collection of software projects which are developed and
which co-evolve together in the same environment.

The environment can be physical, like in the case of a company or a research group that has
a geo-spatial identity, but can also be virtual, like the projects that are part of an open-source
community. In our studies we have identified three types of environments that can host software
ecosystems:

• Companies. For a software company, the source code of its projects represents one of its
most valuable assets. Often companies that have multiple clients offer them variants of
the same product, and their ecosystem becomes populated with duplicated code that needs
to be managed. In the same time, the companies buy off-the-shelf frameworks or obtain
open-source software that they reuse to build their systems. Companies also develop tools
for internal use, or libraries that are used across projects.

• Research groups. Research groups, especially in the systems domain, maintain ecosystems
of projects built by students and researchers. One characteristic of the ecosystems that
are hosted in an academic environment is that they have a high developer turnover since
when the students finish their studies they leave the group. This results in the ecosystem
accumulating orphan projects that might contain reusable code.

• Open-source communities. The open-source software movement has enabled people from
all over the world to collaborate on projects around similar philosophies or goals. Two
such examples are the Gnome desktop suite1 and the ecosystem of projects managed by the
Apache Software Foundation2. One characteristic of the open-source software ecosystems
is the availability for reuse of the source code of the existing projects [Ray99]. However,
together with this availability comes the problem of finding the right project to reuse.

Each of these environments has an associated social context which emerges as a result of the
collaboration between the different contributors to the projects in the ecosystem. Indeed, inside
an ecosystem developers collaborate on projects, depend on the code of each other, and share
programming patterns and idioms. Each software ecosystem is characterized by its associated
social structure.

1http://www.gnome.org/
2http://www.apache.org/

28 3.2 Ecosystems and Super-Repositories

Some of the projects are developed inside the ecosystem from the beginning and co-evolve
together while others are imported from other ecosystems (e.g., third party libraries, off-the-
shelf frameworks). If the imported projects start evolving along with the projects that were
in the ecosystem from the beginning, they become part of the ecosystem. Since reuse is an
important principle in software engineering, in an ecosystem it is likely that the projects will
depend on one another, and reuse parts of code between themselves.

Customarily, the history of every project in the ecosystem is recorded in the versioning control
system of that project. At the ecosystem level we say that the history of the entire ecosystem is
recorded in a super-repository. We define a super-repository in the following way:

A super-repository is a collection of all the version control repositories for multiple
software projects.

The super-repository is therefore the technology behind the ecosystem concept. We distin-
guish between two types of super-repositories:

Explicit super-repositories. This type of repository allows for versioning multiple projects in
parallel. The project is a first-class entity in an explicit super-repository and this allows
for recording extra meta-data about the relationships between projects. Examples of ex-
plicit super-repositories are Store and SqueakSource for projects written in VisualWorks
Smalltalk or Squeak. In our work we looked at multiple case studies of explicit super-
repositories based on Store. Store is a version control system dedicated to versioning
systems implemented in VisualWorks Smalltalk [Cin00].

Implicit super-repositories. In this type of repository the existence of a super-repository of
projects is merely a convention. For example, in SVN the versions of all the projects are
kept in parallel in a common directory on the server, however, there is no explicit concept
of an ecosystem. Three of the most frequently used versioning systems that are usually
associated with implicit super-repositories are SVN, CVS, and Git [RL05; BRB+09].

Super-repositories are a rich source of information about an ecosystem. They contain infor-
mation about the developers in the form of annotations associated with the versioning system
operations. They also contain the various versions of the source code of the projects that are
useful in studying the evolution of the individual projects as well as the evolution as a whole.
Some super-repositories contain meta-information about project configurations and project de-
pendencies.

There are three possible relationships between an ecosystem and a super-repository:

1. The ecosystem includes multiple super-repositories. This is the case when an organization
has multiple super-repositories. In our case studies, the Lugano ecosystem contains a Store
super-repository for Smalltalk projects and a SVN repository for the Java projects.

2. The ecosystem has exactly one super-repository. This is the case in our Gnome case study
where all the projects are versioned in the same logical SVN super-repository.

3. Multiple ecosystems share a single super-repository. This is the case with public super-
repositories such as SourceForge, CodeHaus, and GoogleCode, which are so large that
several organizations can host all their projects inside them.

In our work we focused our attention on the first two cases since they were the only types of
ecosystems that we encountered in our case studies.

29 3.3 Related Concepts

3.3 Related Concepts

Project portfolios, product families, collections of unrelated projects, large individual systems,
and software distributions, are similar in some aspects to ecosystems. In this section we clarify
the similitudes, differences, and relationships between these concepts and software ecosystems.

Project Portfolios

Project portfolio management is a term used by project managers and project management or-
ganizations to describe methods for analyzing and collectively managing a group of current or
proposed projects based on numerous key characteristics. The fundamental objective of project
portfolio management is to determine the optimal mix and sequencing of proposed projects to
best achieve the overall goals of the organization - typically expressed in terms of hard eco-
nomic measures, business strategy goals, or technical strategy goals - while honoring constraints
imposed by management or external real-world factors. Typical attributes of projects being ana-
lyzed in a project portfolio management process include the total expected cost of each project,
consumption of scarce human or material resources, expected timeline and schedule of invest-
ment, expected nature, magnitude and timing of benefits to be realized, and relationship or
inter-dependencies with other projects in the portfolio.

The goal of project portfolio management is therefore to optimize the revenue of the com-
pany. Our goal is to support program understanding and to increase the awareness of the in-
teractions between the developers and the projects in an ecosystem. The different goals result
in different methods. In our approach, interactive visualization, static analysis, and integration
with the lower-level levels are preeminent.

Product Families

Product family engineering is a method that creates an underlying architecture for the product
platform of an organization [JRvdL00b]. It provides an architecture that is based on common-
ality as well as planned variabilities. The various product variants can be derived from the basic
product family, which creates the opportunity to reuse and diversify the products in the family.
Product family engineering focuses on the process of engineering new software products in a
way which allows reusing product components and applying variability with decreased costs
and time. Product family engineering is about reusing components and structures as much as
possible.

Although product families are collections of projects and ecosystems are also collections of
projects, the ecosystem concept is more general. In fact, a product family can be considered
as a special case of ecosystem. It is an ecosystem in which all the projects share an underlying
architecture. It is possible that some of the techniques that we apply on ecosystem analysis can
be used with product families. However, it is likely that inside the organization that owns it, the
product family is part of a larger software ecosystem.

Like in the case of project portfolio management, the main difference with respect to ecosys-
tems is the goal of the analysis: in one case the goal is understanding, in the other it is extracting
and reusing the common architectural components of multiple projects.

30 3.3 Related Concepts

Collections of Unrelated Projects

Random collections of projects are similar only since they are larger aggregations of projects but
they lack the organizational context of the software ecosystems.

One existing application for the analysis of unrelated collections of projects is code search.
Code search engines, such as Krugle (krugle.com), Google (codesearch.google.com), and Koders
(koders.com) index a large number of open source software projects, written in multiple lan-
guages. Academic research has also been directed towards supporting code search with projects
that perform keyword-based search [BNL+06] or other semantics-based approaches [Rei09].
The goal of the code search engines is to encourage reuse by supporting the discovery of similar
code [kru09]. A company or an organization which owns an ecosystem would indeed benefit
from being able to search its codebase.

One possible application of analyzing a semi-random group of projects is building a bench-
mark for design and quality assessment. One would create a set of projects that are representa-
tive for a given programming language or for a given technology, and then collect metrics about
the systems in the benchmark. These metrics would then be used to assess new systems. The
idea can also be applied inside an ecosystem.

Individual Systems

One question we still need to address is: “what is the difference between ecosystems and very
large individual systems?”. Both ecosystems and systems are containers of code, and if a system
is large enough, there can be a very large number of developers contributing to it.

The first difference is that the goals of the analysis are different. Since an ecosystem contains
multiple systems, the problems that are associated with ecosystems are distinct from the ones
associated with individual systems. Nevertheless, we show later that ecosystem level analysis
represents an entry-point for single system analysis.

The second difference is that a project is a unit of release. This results in dependencies
between projects and dependencies between modules inside a project being qualitatively differ-
ent. When a project depends on another project it depends on a certain version of the second;
when a module depends on another, the dependency does not involve any explicit versions of
the two. One effect of this is that the inter-project dependency graph is less cluttered than the
intra-project dependency graph.

The third difference is that a project is a unit of deployment (frameworks can be considered
as exceptions) whereas an ecosystem is not deployable, nor runnable itself. This limits the type of
analysis that one can perform on an ecosystem. For example dynamic analysis and performance
optimisation, which are important in the context of an individual system, are meaningless in the
context of an ecosystem.

Software Distributions

Linux distributions are probably the most complex software ecosystems that currently exist.
Built around the Linux kernel such distributions collect together applications that interact with
each other. However, there is no central coordination and there are no common goals for the
teams. These applications are subject to complex dependency graphs between themselves. A
distribution needs a large number of volunteers that manage the dependencies between the
projects. One of the most well-known distributions is Debian which was studied by Barahona et
al. [GBRM+08].

31 3.4 Benefits of Ecosystem Analysis

One of the main differences between Linux ecosystems and our concept of software ecosys-
tems is the fact that a distribution can be considered to be an individual executable system with
the individual applications and libraries playing the role of subsystems. As such, it is indeed
a particular case of a software ecosystem. However, the collection of projects that belong to a
company are rarely being part of an overarching system that uses all of them.

3.4 Benefits of Ecosystem Analysis

Different categories of stakeholders are interested in different aspects of the structure and evolu-
tion of an ecosystem. This is a result of the different stakeholders having different relationships
with the ecosystem. Here we present some of the different reasons for studying ecosystems of
several types of stakeholders: project managers, developers, software architects, and assessment
specialists.

Project managers are interested in how teams work, how projects evolve, and how to allo-
cate resources to the projects. They need to locate developers with expertise in specific
domains.

Organizational charts only show the team structure in a static, and often poorly main-
tained, form. Revealing the activity and collaboration of developers and the projects they
work on, shows how the actual work is being performed [GKSD05] and how the collabora-
tions between developers evolved over time. Moreover, since in general successful projects
need to continuously change [Leh80; LPR+97], a project manager needs to be up to date
with how projects change and what their current status is.

Developers know about the code they write, and have an idea about the parts of the project
that they are working on, but are usually not aware of the overall picture of the ecosystem.

An important source of information for developers, especially for newcomers to a project,
are other developers. Thus, developers need to know whom to ask various questions to
[CMSB05].

When an application is built out of components, developers need to know what compo-
nents have changed.

Developers might know the details of their particular project, but not be aware of the
relationship of that project with other projects. For example, the first time a developer
begins using a framework he would benefit from knowing how are the other projects that
use that framework and how, what are best practice patterns, what are the important
classes, etc. For the developers of the framework it would be useful to know how are the
clients of the framework using it so they consider the usage information as they evolve the
framework.

In the open-source context there are also developers looking for interesting projects they
can contribute to. Since not all of them have equal chances of success, for a potential
contributor it would be useful to gain insights into the evolution of the code, and the
social structure of a particular project.

Software architects are interested in analyzing past projects to understand the impact of ar-
chitectural decisions and finding components that can be reused between projects.

32 3.5 Reverse Engineering Software Ecosystems

They need to keep track of the existing reusable components and identify projects and
components that incorporate functionality of interest.

The quality assessment team is interested in continuously supervising the ecosystem to insure
that the quality of the projects in it remains high.

They are interested in collecting metrics about projects. It is known that programming
languages and methodologies are factors that have a strong impact on software metrics
[Mar02]. Extending the metric collection process to the ecosystem allows for the definition
of quality thresholds tuned for the specific needs of the organization.

One potential application of interest for the quality assessment team is detecting inter-
project code duplication. Code duplication inside a project is easy to detect because devel-
opers who collaborate on that project are likely to see the code of each other and observe
the duplication. However, when due to language or library limitations, developers who
work on different projects need to reimplement the same code over and over, they will not
be able to detect this pattern since they do not see the code of each other. Monitoring the
code at the level of the ecosystem could detect such a phenomenon and trigger the search
for a solution (e.g., creating a new library that eases the implementation of the new pieces
of code).

Each stakeholder is interested in a certain scenario which requires a specific type of in-
formation about the ecosystem. In this thesis we show how analyzing the information in the
super-repository associated with an ecosystem can support some of the scenarios that we have
presented involving developers and project managers.

3.5 Reverse Engineering Software Ecosystems

We define ecosystem reverse engineering as

the process of analyzing the low-level facts existent in the various sources of infor-
mation available for an ecosystem to identify the contained projects, their properties,
their relationships, and the social structure that emerges from the developer interac-
tions, with the ultimate goal of increasing the visibility of the various aspects of the
ecosystem.

The overarching goal of the process is to analyze the massive amount of low-level facts
available about the ecosystem and to generate high-level representations of the ecosystem. Vi-
sualization will play a central role in presenting the abstracted information.

As the definition specifies, the process has four goals:

1. Identifying the contained projects. Identifying the projects in a super-repository can
be automated to a large degree. Usually, conventions specify the way the projects are
represented in the super-repository. For example, in SVN there is usually a one-to-one
mapping between a versioning repository and a project. However, the identification is not
always straightforward. We discuss several such situations in Section 3.6.

2. Identifying the properties of the projects. An ecosystem is characterized by the set of
projects it contains. There are multiple criteria that can be used when characterizing this

33 3.5 Reverse Engineering Software Ecosystems

project set: the age of the projects, the size of the projects, the number of reused projects,
etc. Revenge engineering ecosystems does not stop at the identification of the projects but
continues with discovering their history and their properties.

3. Discovering the relationships between projects. Discovering the relationships between
the projects of an ecosystem is vital for the holistic understanding of the ecosystem.
Nonetheless recovering the inter-project relationships is not straightforward: in some cases
they need to be extracted from configuration files, while other times they need be extracted
from the source code of the projects by performing static analysis.

Identifying the dependencies between projects deepens the understanding of the individ-
ual projects involved: based on the inter-project relationships one can discover which
projects are the most critical in the ecosystem, search for reusable components, discover-
ing patterns of usage of a framework, or reveal the functionality provided by a library.

4. Discovering the social structure. Since the social structure is an inherent part of an
ecosystem, discovering information about it is fundamental for the understanding of the
ecosystem. The starting point for the analysis is the super-repository which contains infor-
mation about every commit and the developer that is associated with it.

The definition specifies that the ecosystem reverse engineering process uses the available
sources of information. Four such sources are:

1. The mailing list archives. The archived discussions between the developers can contain
pointers to key design decisions of the individual systems.

2. The issue tracking systems. The information about the bugs of the systems in the ecosystem
can pinpoint unstable projects.

3. The source code of the systems. Source code analysis can reveal the reasons for the existence
of dependency relations between projects.

4. The meta-information in the super-repository. Analyzing the information about the commits
and their authors can support building models of expertise of the developers as well as
recovering collaboration relationships between the developers in the ecosystem.

In our work we focus our attention on the last two sources since they are available in the
majority of the cases. Given that the information in the super-repository is inherently historical,
analyzing the evolution of the ecosystem will be an important part of our analysis.

The definition of ecosystem reverse engineering that we have presented in this section par-
allels the one of reverse engineering provided by Chikofsky and Cross [CC90]. Both define
processes that focus on analyzing low-level information and building high level abstracted views
from it. The sources of low-level information are different: super-repository in one case and
the source code of the system in the other case. There are two main differences between our
definition and theirs: (1) we are interested in projects while they are interested in components,
and (2) the social structure is essential for us.

34 3.6 The Revenge Process

3.6 The Revenge Process

Figure 3.1 presents an overview of Revenge, our reverse engineering process. The steps of the
process that are interactive and involve the analyst in an active way are colored in green. The
five steps of the process are:

• Super-Repository Data Extraction in which the information in the super-repository is ana-
lyzed and a super-repository-independent model is built out of it.

• Automatic Data Analysis in which the data is automatically analyzed, metrics calculated,
entities clustered together, etc.

• Ecosystem Structure Discovery in which the analyst explores a variety of visual representa-
tions of the ecosystem in an interactive way

• Data Cleanup in which the analyst amends and corrects the model based on the knowledge
obtained during the Ecosystem Structure Discovery process.

• Architecture Recovery in which the analyst analyses the architecture of a system in the
context of the ecosystem.

Super-Repository
Data Extraction

Ecosystem
Model

Repository

Ecosystem
Structure
Discovery

Architecture
Recovery

Automatic
Data

Analysis

Data Cleanup

Ecosystem
Views

Figure 3.1. An overview of the Revenge process

The figure also presents the fact that an intermediate representation of the ecosystem is
stored in an Ecosystem Model Repository and that the result of the process are sets of Ecosys-
tem and Architectural Views that are stored in their own repositories. We detail the ecosystem
representation in Section 3.7 and the views in Chapter 4.

In what follows we present in more detail the different steps of the process.

3.6.1 Super-Repository Data Extraction

The first step of Revenge is extracting information from the super-repository (or super-repositories)
associated with the ecosystem under study. Since there are many types of super-repositories, for
each one a new dedicated extractor is needed. To allow the rest of the analysis to be indepen-
dent of the type of super-repository, the extractors populate a Model Repository with models
that correspond to a common ecosystem meta-model, that we present in detail in Section 3.7.

There are two levels of detail at which information is extracted from the super-repository
and they correspond to two models:

35 3.6 The Revenge Process

1. A lightweight ecosystem model captures information about project and developer activity as
well as inter-project dependencies. This model contains information extracted by analyz-
ing the evolution of the super-repository. Such information regards the users who commit
to the repositories, the files that they touch, and their commits to the contained projects.

In some cases, the information about the inter-project dependencies can be extracted
by analyzing the super-repository or the configuration files that are associated with the
projects in it (e.g., the dependencies between eclipse plugins are specified in configuration
files).

In order to populate the lightweight ecosystem model, each type of super-repository needs
a specific type of model extractor.

2. A detailed project model is a comprehensive representation of a project. It complements
the model of a project in the lightweight ecosystem model with information extracted by
performing static analysis of the subject project. The detailed model goes down to the
level of modeling variable accesses and method invocations. The main analysis that we
perform based on this model is single project architectural recovery.

The detailed project model can represent systems written in any object-oriented language.
To populate the detailed project model we need distinct importers for every language.

In Section 3.7 we present more details about the two models.

3.6.2 Automatic Data Analysis

Once the model of an ecosystem is loaded in the Ecosystem Model Repository various analyses are
run on top of it. All the analyses that exist on top of the lightweight ecosystem model are super-
repository and language-independent. The analyses that Revenge performs on an ecosystem
model are:

• Collaboration detection. Detecting collaboration between the developers in the ecosystem.
Based on the information in the super-repository we can discover that developers commit
together on the same project so we can define a collaboration relationship between them.

• Inter-project dependency analysis. Sometimes the super-repository contains information
about the dependencies between projects, dependencies that are declared by the develop-
ers in configuration files or explicitly in the super-repository system. However, many times
this is not the case, so the dependencies need to be extracted based on the static analysis
of the projects in the ecosystem. Even when such dependency information exists, is only
tells whether two projects depend on one another or not, without providing information
about the details of the dependency. In order to find out the reason for the existence of a
given dependency between two projects, one needs to perform static analysis of the source
code of the two projects.

• Nautral language analysis. One type of analysis is performing natural language analysis
on the code of the projects. Based on the analysis of the natural language terms that
appear in the identifiers used in the code of the projects, we built a code search engine
and a developer profile which expresses the domain of expertise of the developer [LML09;
Mal09].

36 3.6 The Revenge Process

• Clustering artifacts. There are multiple criteria on which projects and developers can be
grouped together based on similarities in their properties. In Chapter 4 we present a view
in which developers and project are clustered together based on their activity patterns. We
presented elsewhere a method of discovering the architecture of the system by clustering
together classes that work on similar natural language terms [LKGL05].

• Collecting metrics. Some of the ecosystem understanding techniques, especially visualiza-
tion, are based on collecting metrics that characterize the ecosystem and its elements.
There are two types of ecosystem metrics that we compute in this context: metrics that
characterize the ecosystem in terms of its projects and metrics that characterize the ecosys-
tem in terms of its developers. Consequently, we define metrics that characterize a project
in the context of its ecosystem and metrics that characterize a developer in terms of its
ecosystem.

This list of analyses is not exhaustive. It presents the types of analysis that the Revenge
process can perform at the moment, and the ones that we present later in this thesis.

3.6.3 Data Cleanup

Automatic data analysis has one important limitation: there will always be tasks that the user
needs to manually perform. During the exploration of the ecosystem data, the user amends the
model as he discovers new facts about the ecosystem. Two reasons for which the user needs to
clean up and amend the data that was automatically extracted are:

• There is not always a mapping between developers and users in the super-repository.
The automatic importer considers each username that has committed to the super-repository
as being a developer. However, in all the case studies we have performed, there were ex-
ceptions to this rule. In some cases developers switch user names; in others they use
multiple user names in parallel.

• There is not always a direct mapping between projects and version repositories. Ini-
tially all the super-repository importers assume that there is a one-to-one mapping be-
tween the version repositories in the super-repository and the projects in the ecosystem.
However, there are situations when this is not the case. Some projects are versioned in
multiple repositories (e.g., this is the case with the Mozilla project [DLL06]). Some version
repositories are aliases, and some contain slightly different versions of the same project.

• There is not always a direct mapping between an ecosystem and a super-repository.
In such a case, merging the various super-repositories might result in duplicated projects
or duplicated user accounts int he versioning control system.

Another form of data cleanup is filtering out projects that are not interesting for the analysis.
Many ecosystems contain projects that were started and never finished, or projects for which
repositories were created, but they were not actually started. In such cases, these projects need
to be filtered from the analysis since they do not present interesting information about the
ecosystem.

37 3.6 The Revenge Process

3.6.4 Ecosystem Structure Discovery

Discovering the structure of the ecosystem is an interactive process of discovering views of the
system, correlating information, and navigating between them.

The complexity of a software ecosystem and the diverse goals of the different stakeholders
ensures that there are many possible visual perspectives form which one can look at an ecosys-
tem. We call them viewpoints. A viewpoint defines a number of relevant characteristics of a
visual representation, including the stakeholders and the concerns that are addressed by that
viewpoint, along with the modeling techniques and analytical methods used in the building of
views based on that viewpoint.

The four categories of viewpoints that are involved in ecosystem structure discovery are:

1. Project-Centric Viewpoints are centered on the ecosystem and present its project and code
aspects.

2. Developer-Centric Viewpoints are centered on the ecosystem and present its social aspects.

3. Single Project Viewpoints present the details about the architecture of an individual system
in the context of the ecosystem.

4. Single Developer Viewpoints present details about individual developers in the context of
the ecosystem.

Developer-
centric

Project-
centric

Single Project

Holistic
Viewpoints

Single
Developer

Horizontal Exploration

Focused
Viewpoints

Vertical Exploration

Project Developer

Ecosystem
Viewpoints

Figure 3.2. Interactive navigation connects the various ecosystem viewpoints

Figure 3.2 shows that all the viewpoints are inter-connected by navigation. The arrows
present possible exploration paths between the viewpoints. The two colors of the arrows corre-
spond to two types of exploration:

• Horizontal exploration. This type of exploration (marked with solid arrows) allows one
to navigate between different views which present the entire ecosystem as long as the

38 3.6 The Revenge Process

views are at the same abstraction level. Supporting horizontal exploration is a matter of
linking the various ecosystem perspectives in the tool.

• Vertical exploration. During ecosystem analysis, vertical exploration (marked with dotted
arrows) is appropriate when facing questions that need to be answered based on analyzing
individual projects and thus, changing the abstraction level at which the analysis is done.
This type of exploration allows one to dive into the details of an individual project that
belongs to the ecosystem.

3.6.5 Architecture Recovery

In Revenge there are two situations in which one performs architecture recovery in the context
of an ecosystem:

1. Performing Architecture Recovery to Support Ecosystem Understanding. When under-
standing the ecosystem it is necessary to understand the individual systems that compose
it. Since the detailed understanding of every system is out of discussion, the analyst needs
to obtain a high-level perspective on the system. An architectural view represents such
a high-level perspective. Figure 3.3 illustrates this idea and also the fact that sometimes
architectural views can be generated automatically and sometimes the process is only
semi-automatic and requires the involvement of the analyst.

Present
architectural views

in ecosystem
context

Architecture
Recovery

(semi-automatic)

Understand Single
System

Present
other high-level

system view

No
Yes

Can we
generate

architectural views
automatically?

Figure 3.3. When understanding a single system at times one needs to perform architecture
recovery

2. Using Ecosystem Information to support Architecture Recovery. Analyzing the system
in the context of its ecosystem can reveal the parts of the system that are important for the

39 3.7 Modeling Ecosystems

entire ecosystem since other projects depend on them. Chapter 5 presents a case study in
which we analyzed a framework in the context of its own ecosystem.

The Revenge process proposes a top-down exploration process for recovering the architec-
tural views from the analyzed system, but other techniques could also be used. In Appendix A.2
we present Softwarenaut, the tool that supports architecture recovery in the Revenge process.

3.7 Modeling Ecosystems

When defining the common ecosystem meta-model we inspired ourselves from the existing meta-
models for individual systems. In software evolution research there are two main approaches to
modeling the evolution of individual software systems:

1. Modeling only information that can be extracted from the versioning system. This is the
case in a large body of work in software evolution [DLL09; Pin05; GHJ98]. The ap-
proaches that choose this way of modeling have the advantage of a simple and fast extrac-
tion method.

2. Modeling evolving software systems as collections of individual versions, where each ver-
sion is modeled down to the level of variables, classes, and method calls [Gîr05; Lan03b;
HP96].

In the case of ecosystems, the full modeling approach would result in massive amounts of ex-
tracted information. The price is not worth paying since for many types of analysis – usually the
ones that are involved in the horizontal exploration of the system – the first modeling approach
is sufficient. At the same time, vertical exploration requires obtaining detailed views of some of
the individual system. In order to satisfy the need for detail and avoid a full modeling approach
we use a progressive modeling approach: we start with a lightweight ecosystem model and we
enrich that model on demand with detailed models of individual systems.

Figure 3.4 presents our software ecosystem meta-model that we call The Lightweight Ecosys-
tem Model. We iterate through its nine elements and detail each one:

1. Ecosystem. The ecosystem is a first class entity of our meta-model. An Ecosystem element
is the root element of a model. The meta-model allows for the association between an
Ecosystem element and multiple Super-Repository elements.

2. Super-repository. The super-repository is represented in the meta-model to allow a one-
to-one mapping of the domain concepts to the model. Its function is just to be a container
of projects. A Super-Repository element belongs to a single Ecosystem and contains a col-
lection of Projects.

3. Project. The meta-model element Project represents a software project. A project can only
belong to a single super-repository. It is the main element of the meta-model. We consider
the project to be the unit of versioning in the meta-model, so each project has associated a
series of Project Versions. A project contains a placeholder where a detailed project model
can be plugged in.

4. Project Version. A Project has multiple associated Project Versions and each version be-
longs to a unique project. Each Project Version is composed of multiple individual changes.

40 3.7 Modeling Ecosystems

0..1

0..1

1 *

*

1*

1

*2

1*

super-repositories

Lightweight
Ecosystem Model

name
versions

Project
projectVersions

Developer

target
type

Change

comment
date
developer
changes

Project
Version

from
to

Version
Relationship from

to
versionRelationships

Relationship

projects
Super-Repository

*

1

1
*

1

*

projectVersion

Detailed Project
Model

Figure 3.4. The relationships between the elements of the Lightweight Ecosystem Meta-Model

A project version can depend on versions of other projects. A project version has an asso-
ciated commit comment and is associated with the developer who performed the changes.
Each Project Version has a placeholder for detailed project models. Every project version
can be associated with a detailed model of the project at that point in time.

5. Relationship. A dependency relationship between two projects can exist at a given point
in time and disappear later. Therefore, the Relationship between two projects is the history
of all the Version Relationships that exist between all the versions of the two projects.

6. Version Relationship. The meta-model allows for modeling relationships between any
two Project Versions. The relationship element is general enough to represent various
types of dependency. However static dependencies are easiest to extract by analyzing
super-repositories. Every Version Relationship belongs to a Relationship.

7. Developer. The explicit modeling of the developer stands at the basis of developer-centric
ecosystem analysis. A Developer knows about the Project Versions that he contributes to.
Based on this link, a user of the meta-model can obtain all the other necessary information
about the developer by navigating the model.

8. Change. A Change is the lowest level of detail to which the meta-model goes with model-
ing an individual version of a project and without going into detailed and expensive static
analysis. A change is the set of all the differences between a version and the previous one.
Each Change is associated with a single Project Version.

41 3.8 Discussion

9. Detailed Project Model. Represents a detailed project model. Each such project model
knows about the Project Version it represens, in order to be able to discover the possible
relationships with other projects within the ecosystem.

The enumerated elements are part of the core meta-model. For different types of super-
repositories different concrete subclasses of the elements can be defined.

Enriching the Lightweight Ecosystem Model With Project Details

In Figure 3.4 the Detailed Project Model is represented with an order of multiplicity of zero or
one. This means that its existence is not mandatory. Indeed, there are a number of analyses
that can be performed without obtaining the detailed project model, and Chapter 4 presents
several. However, when during ecosystem analysis the analyst is facing questions that need to
be answered based on the architectural details of the individual projects, the Detailed Project
Model of the individual projects needs to be present.

There are two ways of making sure that the Detailed Project Model is present when needed:

1. Build all the Detailed Project Model for all the projects when creating the Lightweight
Ecosystem Model.

2. Have a lazy, on-demand initialization of the Detailed Project Model for a given project only
when the analysis requires it.

Choosing one solution over the other might depend on the size of the ecosystem and the type
of analysis that is desired. The lazy initialization version has the advantage that it will not load
the Detailed Project Model of the projects that are not interesting for the analysis, saving in this
way, time and memory.

If the Detailed Project Model can be created for each version of a system, that would result
in a very large memory model and a very time consuming process. In order to address this we
use a sampling approach where the Detailed Project Model would be created for those versions
of the system that are spaced at fixed time intervals.

One of the most frequent uses of the Detailed Project Model is to load the latest version of the
detailed model for each system in the ecosystem. In this way, one can analyze the dependencies
between the projects in the ecosystem, or any other type of analysis that is appropriate for the
latest version of the system.

3.8 Discussion

Tool Support

The process that we have presented in this chapter is supported by three reverse engineering
tools:

1. The Small Project Observatory (SPO) is implemented in Smalltalk and is an interactive
ecosystem visualization infrastructure. The tool includes a model extractor for Store super-
repositories. We present the tool in more detail in Appendix A.1.

42 3.8 Discussion

2. Softwarenaut supports the discovery of architectural views from single software systems.
Softwarenaut makes available a repository of architectural views that other applications
can request. Softwarenaut works based on the Detailed Project Model and is presented in
detail in Appendix A.2.

3. SVNMole is implemented in Java and is a model extractor used for SVN-based super-
repositories [LML09; Mal09]. The information extracted by SVNMole is exported to SPO
which has a large number of analyses available.

Implementing the Meta-Model

The fact that the Lightweight Ecosystem Model is language-independent allows us to use the
same type of visualization and analysis for ecosystems of projects written in Java, C/C++, and
Smalltalk and versioned in different super-repositories.

We list here some of the observations that we made from our experience of implementing
the meta-model in our tools and performing various case studies:

• The meta-model allows an ecosystem to have multiple associated super-repositories. How-
ever, in all our case studies we only found one-to-one mappings between ecosystems and
super-repositories.

• The way the concept of a project is represented varies among super-repositories. For SVN
super-repositories a project is associated with an individual repository. For Store super-
repositories a project is associated with a special Store entity called bundle. A bundle has
a list of prerequisite bundles that need to be loaded before that bundle is loaded. This
information can be used as dependency information.

• Having a common meta-model in a toolchain is important. Once we had the meta-model
implemented in both The Small Project Observatory and SVNMole we could transfer mod-
els extracted with the latter into the former. For the serialization and de-serialization of
the meta-model we use the FAME meta-modeling framework [KV08].

Modeling Changes

A change can be represented by different types of information, depending on the capacities of
the extractor and the amount of resources one is willing to use. The change is generic so it can
accommodate both file-based versioning systems and more complex, AST based systems. Figure
3.5 presents three of the changes we have implemented:

• File Change is the model of a file that has changed. All the information this type of change
models is the name of the file. This is used for keeping track of changes to files that do not
contain code or documentation.

• Diff Change is a change model that keeps track of the text that was modified in a file.
Based on this type of change modeling we performed natural language analysis of the
changes performed by every individual developer and were able to build a model of the
domain of expertise of each developer.

• Class Change is a change model that is more detailed than a File or a Diff change and
knows which methods were modified in a class.

43 3.9 Summary

target
type

Change

filename
FileChange

changedElements
ClassChange

textualDiff
DiffChange

Figure 3.5. Three of the subclasses of the Change meta-model element

Limitations of the Meta-Model

There are a few limitations of the ecosystem modeling technique that we have presented in this
chapter.

• The model does not take into consideration branches. However, branches are an important
part of version control, and they are at the very core of some versioning systems like git
[BRB+09].

• For some types of analysis even the Detailed Project Model could not be detailed enough. It
models individual systems to the level of a method, but without representing the ordering
of the statements in the method. This eliminates the possibility of performing some types
of static analysis such as control flow, or data flow analysis. These types of analysis might
be too low-level anyway when the broad goal is understanding the ecosystem.

• Modeling the evolution of the projects in the ecosystem is very costly from a memory point
of view since every version that we need to analyze has to be parsed and represented in
memory as complete Detailed Project Model. Although this is a very widespread method in
reverse engineering, there are alternatives. Such an alternative is to model just the changes
between versions, similar to what Robbes proposed in his doctoral thesis [Rob08].

3.9 Summary

We have started this chapter by introducing the concepts of a software ecosystem and a super-
repository. Then we argued for the importance and we defined the goals of ecosystem reverse
engineering. We then proceeded to present Revenge, our process that supports ecosystem reverse
engineering. We discussed every step of the process and showed how it includes architecture
recovery as an individual step. We then introduced the Lightweight Ecosystem Model, which
can represent ecosystems independently of the type of super-repository or of the programming
language of the contained projects. The remainder of the thesis presents work built on top of
this ecosystem meta-model.

44 3.9 Summary

Chapter 4

Ecosystem Viewpoints

The super-repository associated with an ecosystem contains large amounts of information that record
the activity of the contributors and store the evolution of the source code of the contained projects.
One way of making sense of this information is to generate visual representations of it. Since differ-
ent stakeholders will look at the ecosystem from different perspectives and with different concerns,
the visual representations can be classified into various ecosystem viewpoints based on the concerns
they address and the type of information they present.

In this chapter we introduce a catalog of ecosystem viewpoints that present different perspectives
on a software ecosystem. They present the evolution of the ecosystem based on metrics, illustrate
developer collaboration relationships, and unveil inter-project dependencies.

We illustrate the viewpoints with examples from four ecosystem case studies. The case study
ecosystems are variated: they come from industry, academia, and the open source community; their
size ranges from small ecosystems with a few tens of developers to large ecosystems with more than
a thousand contributors.

45

46 4.1 Introduction

4.1 Introduction

In the previous chapters we have seen that the super-repository associated with an ecosystem
contains the history of the source code of all the projects as well as information about all the
commits of the contributors. For an ecosystem with tens of projects this can represent a very large
quantity of information, which is available for analysis. One way of analyzing this information
is visualization, through which one can observe trends, discover correlations between variables,
and observe patterns in the data.

In this chapter we present a collection of visualizations that can be generated based on the
Lightweight Ecosystem Model. The visualizations support answering questions that concern
the ecosystem as a whole; they also represent entry points for further detailed analysis for the
analysis of the individual projects or developers of the ecosystem. Some of the visualizations
shed light on the evolution of the projects in the ecosystem, others reveal the social structure
and the collaborations that forms around the projects in the ecosystem, and yet others present
the dependency relations between the projects in the ecosystem.

Structure of the Chapter

In Section 4.2 (p.46) we introduce the concept of ecosystem viewpoints. In Section 4.3 (p.48)

we present the systems that we consider as case studies in this thesis. In Section 4.2 (p.46) we
present a catalog of ecosystem viewpoints. In Section 5.3 (p.97) we present as a validation of the
viewpoints a case study of applying them on an industrial case study. In Section 4.5 (p.76) we
discuss several problems that concern all the viewpoints. We conclude in Section 4.6 (p.77).

4.2 Ecosystem Viewpoints

There are many visualizations that can present aspects of an ecosystem. Presenting multiple vi-
sual representations of various aspects of an ecosystem is important since different stakeholders
and participants need different ecosystem perspectives to enable analysis and communication –
a marketing person needs a different ecosystem description than a programmer.

In order to organize these visualizations we introduce the concept of an ecosystem viewpoint.
An ecosystem viewpoint is a visual perspective on the ecosystem which presents a certain aspect
of it using a specific visual representation in order to address one or more concerns about the
ecosystem.

Ecosystem analysis is an exploratory process: while analyzing a view, questions will rise that
can be answered only by looking at view which is complementary or which is a detail a subset
of the elements in the current one. As a result, when analyzing an ecosystem, one needs to
navigate between the various viewpoints as the analysis unfolds.

Figure 4.1 presents a set of ecosystem viewpoints as well as the navigation paths between
them. Each viewpoint is represented as a labeled white rectangle 1 Each navigation path is an
arrow annotated with a problem, usually a question, that requires the transition from a given
viewpoint to another.

The two columns and two rows of Figure 4.1 illustrate two ways of classifying the ecosystem
viewpoints.

1The rectangles which have a dotted line represent viewpoints that are not going to be discussed in this chapter.

47 4.2 Ecosystem Viewpoints

Project-Centric Developer-Centric

How/Why do
the projects

in the
ecosystem
depend on

"P"?

Which
projects

depend on a
given

component?

Developer
Overview

What is the
project on
which "D1"
and "D2"

collaborate
about?

What is the
domain of

expertise of
"D"?

Which
projects did

"D" work on?How/Why is a
project used in
the context of

the
ecosystem?

Who
worked
on "P"?

How did
"D"

contribute
to "P"?

Holistic
Viewpoints

(Ecosystem
is subject)

Focused
Viewpoints

(Ecosystem
is context)

Developer
Expertise

Contextual
Project

Dependency
Matrix

Contextual
Project

Architecture

Inter-Project
Dependency

Map

Growth
History

Activity
History

Developer
Activity

Timeline

Developer
Collaboration

Figure 4.1. Ecosystem exploration pathways

1. On the columns, the viewpoints are classified as the ones that have the projects as their
main subject (left column) and the ones that have the developers as their subject (right
column).

2. On the rows, the viewpoints are classified as the ones that have the ecosystem as their
focus (top row) and the ones that have the ecosystem as their context (bottom row).

Based on the second type of classification, the viewpoints in the two categories serve different
purposes:

• The perspectives that have the ecosystem as focus, are holistic perspectives that have the
ecosystem as their main subject. They might contain representations of the individual
components of the ecosystem (e.g., projects or developers) but their goal is to support the
understanding of the ecosystem as a whole.

• The viewpoints that have the ecosystem as context are centered on individual elements
of the ecosystem (e.g., projects or developers) which are presented in the broader context

48 4.3 Case Studies

of the ecosystem. They might present elements, or information derived from the analysis
of the entire ecosystem, but their goal is to support the understanding of the individual
elements.

4.3 Case Studies

To validate our model and our analysis techniques, we chose to apply them on four ecosystems.
The chosen ecosystems belong to different organizations representing companies, open source
communities, and research groups. We list the ecosystems here:

1. Gnome. The Gnome family of systems is a desktop environment for Linux composed exclu-
sively of free software that is developed by an active open-source community. The project
has attracted in the 10 years since its inception more than 900 contributors.

2. SCG. The Software Composition Group (SCG) is a research group affiliated with the Uni-
versity of Berne in Switzerland. The group, led by Prof. Oscar Nierstrasz, is actively doing
research in software engineering and reverse engineering. Since 1997 the group has been
developing a large collection of prototypes and tools for program analysis, quality assess-
ment, and program understanding.

3. Soops. An Amsterdam-based software company, Soops BV is specialized in Smalltalk devel-
opment. Soops has experience with creating software for a wide variety of organisations
such as ministry departments, financial institutions and power exchanges. Soops writes
software in VisualWorks Smalltalk and uses Store for versioning their projects.

4. REVEAL. The REVEAL Research Group is affiliated with the Faculty of Informatics from the
University of Lugano, in Switzerland. The research group owns an ecosystem with open-
source projects developed for academic research. The tools presented in this dissertation
belong to this ecosystem.

Table 4.1 provides a numerical overview of the four ecosystems selected as case studies:

Repository Projects Size Unit Contributors Active Since Type VCS
Gnome 69 54.000 files 943 1998 O SVN
SCG 190 12.700 classes 76 2002 R Store
Soops 249 11.413 classes 20 2002 I Store
REVEAL 43 3.894 classes 36 2005 R Store

(The type abbreviations mean: O – open-source, R – research, and I – industrial)

Table 4.1. An overview of the four ecosystem case studies

All the ecosystems, with the exception of the second are versioned in an explicit super-
repository for Smalltalk called Store.

Gnome is versioned in an implicit super-repository. To analyze it, we extracted information
from all the version repositories of all the projects in the ecosystem. We chose to include Gnome
in the list of case studies for two reasons: (1) to validate the independence of the meta-model

49 4.4 A Catalog of Ecosystem Viewpoints

of the versioning control system, and (2) to test the scalability of our approach since Gnome is
the largest ecosystem that we applied our techniques on.

The data provided in Table 4.1 needs to be considered with care as the numbers are the
result of a simple counting. We show in the viewpoint examples that we present in the following
sections that super-repositories accumulate junk over time. Although certain projects fail, die off,
or were never supposed to be more than experiments the version repositories of these projects
are still recorded in the ecosystem. This is inherent to the nature of super-repositories, and adds
to the insight that super-repositories need to be understood in more depth.

4.4 A Catalog of Ecosystem Viewpoints

In this section we present a collection of viewpoints that are either focused on the ecosystem
or project-centric. In Figure 4.1 they are the rectangles represented with solid line (the ones
represented with a solid line in Figure 4.1). For each viewpoint in our catalog we specify several
types of information:

• Name. The name of the viewpoint is specified as subsection title.

• Category. One of the four viewpoint categories we introduced in Figure 4.1.

• Concerns. Each viewpoint has a set of concerns that can be solved by analyzing the
information present in the viewpoint. The concerns are presented as a list of questions.

• Construction Principles. Each viewpoint has a specific mechanimsm through which is
created. In this paragraph we talk about the analysis that needs to be performed before
generating the view, the visual conventions for the data representation, and the the possi-
ble variation points of the visualization.

• Examples. Each viewpoint is illustrated with actual examples from our ecosystem case
studies, performed with The Small Project Observatory (SPO). They are discussed in detail
and the trends and patterns in the data are explored.

• Implementation in SPO. All the presented viewpoints are implemented in SPO, and all the
figures used in this chapter are screenshots taken from SPO. Since in the implementation
they are interactive, we talk about the way in which the user can interact with the elements
of the visualization, and navigate from one to another.

• Discussion. This part analyzes the strengths and weaknesses of the viewpoint as well as
other discussion points inspired by the presented examples.

50 4.4 A Catalog of Ecosystem Viewpoints

4.4.1 Size History

Goal

To provide a quantitative overview of the evolution of the size of the source code in the ecosystem
over time.

Category

Holistic, Project-Centered

Concerns

• How did the codebase in the ecosystem grow over time?

• What type of projects does the ecosystem contain? Are they long-lived or not? Are they
written in different programming languages?

• How did the individual projects in the ecosystem contribute to the general growth?

• Are there distinct periods in the lifetime of the ecosystem with respect to the speed at
which it is growing?

Construction Principles

Several ecosystem metrics can be used to model its growth. If the chosen metric can be grouped
in categories, the categories are also displayed. For example, if the metric is number of files,
then the metric can be aggregated either by project or by file extension.

Figure 4.2 illustrates the construction principle of the Size History viewpoint:

• The view is constructed as a stacked graph, where multiple surfaces corresponding to
distinct time series are stacked to provide an overview of the ecosystem size evolution.

The overall shape of the view presents
the evolution of the size of the ecosystem

Size does not
change

Size
changes

Project 2

Project 1

Project 3

Number of
Classes

Figure 4.2. The construction principle of the Size History viewpoint

51 4.4 A Catalog of Ecosystem Viewpoints

• The time series represent groupings of the basic growth elements. The time-series data
points are spaced at uniform time intervals. The default time interval is a month, but can
be changed to a week or a day.

• One can choose different groupings of the basic elements. For example, if the growth
elements are files, they can be grouped in time series based on the projects that they
belong to or based on their extensions.

• The time series ordering strategy determines the vertical order of the time series. The
default ordering strategy is chronological in which the oldest time series are at the bottom.

• In the case in which the model that is behind the time series is a project the color of the
time series is that project’s specific color. The view emphasizes the periods in which the
size metric changes for each individual time series. The saturation of the color is high in
periods in which the size changes and low in periods in which the size remains the same.

Figure 4.2 illustrates the Size History viewpoint on a subset of the projects in the REVEAL
ecosystem. The basic elements are classes aggregated in projects. The time interval is 2005 –
2007 and the basic interval is a month. The time series vertical ordering strategy is chronological
with the oldest projects at the bottom.

The color coding of the view shows that the project at the bottom has not changed size after
the first half of 2005. The second project from the bottom has been growing with a few months
of stagnation since then.

Examples

REVEAL. In Figure 4.3 we can see the evolution of all the projects in the REVEAL ecosystem.
The codebase grows to more than 2,900 classes over the course of 6 years. Two projects slowly
grow until 2004. Then the ecosystem grows faster until 2007. At the beginning of 2007 there is
a large surge in new projects being added to the ecosystem.

Figure 4.3. Size History in REVEAL: the time series represent classes grouped by projects

A significant subset of the projects has a few initial months in which the size grows after
which size remains constant. This is the reason for the syncopated growth of the ecosystem.

52 4.4 A Catalog of Ecosystem Viewpoints

Also this means that the ecosystem contains many projects that were developed for a limited
amount of time, such as student projects.

Gnome. Figure 4.4 presents the Size History viewpoint on Gnome. The basic elements are
files. In the top view they are aggregated based on projects. In the bottom graph they are
aggregated based on their file extension. The time interval is one month.

The ecosystem grows continuously over its 10 years of existence to more than 50,000 files.
The top graph in Figure 4.4 shows that the growth of the ecosystem is the result of the

continuous growth of most of its contained projects. Based on the color coding of the size
change, the graph shows that each of the projects Gnome Applets, Evolution, and Evolution Data
Server has at most 6 months in which their size does not change. Project Gnome Panel is one of
the projects with the longest period of constant size (period marked as 1).

po

png

h
c

Gnome Applets

Evolution

Evolution
Data Server

Gnome
Panel

1

Figure 4.4. Size History in Gnome: the top view has files grouped by projects; the bottom
graph has files grouped by file extensions

53 4.4 A Catalog of Ecosystem Viewpoints

The bottom graph in Figure 4.4 shows the way the files of various types contribute to the
growth of the ecosystem. Files with the ’.png’ extension are the most numerous. Files with the
’.c’ and ’.h’ extension indicate that a considerable amount of the code in the ecosystem is written
in C. The time series of the files with the ’.po’ extension grows significantly after 2003. Since ’.po’
files are internationalization files, this reflects an increased attention to the internationalization
aspects.

Implementation in SPO. Selecting a time series brings up a pop-up menu that allows the
navigation to the detailed views of the project behind the time series. Selecting an interval in a
time-series allows for discovering the details of the changes performed in that interval.

Discussion

Ecosystem Growth. In all the case studies we performed we observed that the size of the
ecosystem is usually monotonically growing. Although at the size of the individual projects
might decrease at times (e.g., after refactoring), the aggregated size of the ecosystem
usually hides the individual project size decrease. Different ecosystems exhibit different
growth rates: Table 4.2 presents the growth rates for three of the ecosystems we studied2.

Ecosystem Months Active Avg. Growth Rate Unit
Gnome 120 400 files/month
SCG 98 129.6 classes/month
REVEAL 60 64.9 classes/month

Table 4.2. Average growth rates for four of the ecosystem case studies

Limited Activity Details. Although by using the color coding convention that we presented,
the Size History viewpoint shows which are the periods of activity in every project, a
dedicated viewpoint that captures the activity evolution in the ecosystem is needed. Such
a viewpoint can present the holistic view of the evolution of the activity as well as more
detailed activity information about each project.

Stacked Graph Limitations. The stacked graph has its own limitations. The dynamics of the
time series at the bottom distort the series on top. However, the graph is mainly dedicated
to observing the evolution of the metric at the ecosystem level. If one is interested in
seeing the details of the individual time series then representing the time series of the
individual projects in parallel coordinates is better.

2We do not have the data for Soops

54 4.4 A Catalog of Ecosystem Viewpoints

4.4.2 Activity History

Goal

To provide a quantitative overview of the evolution over time of the ecosystem project activity.

Category

Holistic, Project-Centered

Concerns

• How did the activity in the ecosystem evolve over time?

• Are there activity patterns that are evident in the history of the ecosystem?

• How did the individual projects in the ecosystem contribute to the overall activity?

Construction Principles

Multiple ecosystem activity metrics can be used to estimate the activity of the ecosystem. If the
metric can be aggregated in categories, the categories are also displayed. If the metric is number
of changed files, then the metric can be aggregated either by project or by file extension. The
goal is not precision, but rather, offering a high-level overview of the evolution of activity in the
ecosystem.

Figure 4.5 illustrates the construction principle of the Activity History viewpoint:

• The view is constructed as a stacked graph, where multiple surfaces corresponding to
distinct time series are stacked to provide an overview of the ecosystem activity evolution.

Project 2

Project 1

Number of
Commits

Project 3

The overall shape of the view presents
the evolution of the activity metric at the ecosystem level

Figure 4.5. The construction principle of the Activity History viewpoint

• The time series represent groupings of the basic elements that are the unit of measure for
activity (e.g., changed classes, changed files, commits). The time-series data points are
spaced at uniform time intervals. The default time interval is a month, but can be changed
to a week or a day.

55 4.4 A Catalog of Ecosystem Viewpoints

• One can choose different groupings of the basic elements. For example, if the units of
change are files, they can be grouped in time series based on the projects that they belong
to or based on their extensions.

• The time series ordering strategy determines the vertical order of the time series. The
default ordering strategy orders the time series from bottom to the top in ascending order
of their surface.

• In the case in which the model that is behind the time series is a project the color of the
time series is that projects specific color.

Figure 4.5 presents the activity of the same three projects that we presented in Figure 4.2.
They are all projects of the same developer that we extracted from the REVEAL ecosystem. The
figure shows that our developer alternates periods of high activity (up to 129 commits a month)
with periods of low, or even no activity. Two transition periods are visible in the graph: in the
first the effort was redirected from Project 1 to Project 2, and in the second, the focus has shifted
from Project 2 to Project 3, although the former project still remains active.

Examples

SCG. Figure 4.6 presents the Activity History of the SCG ecosystem. The activity metric is
number of changed classes per month, and is aggregated based on projects.

The activity is irregular with many spikes and valleys. Overall the trend of the activity is to
grow until 2007 when it drops sharply. There are no other visible patterns of activity. One of the
reasons seems to be the decrease in activity of the violet, blue and cyan projects.

Through the years, various projects gain importance and then disappear.

Figure 4.6. Activity History in SCG- the time series represent number of commits per month
aggregated to project level

56 4.4 A Catalog of Ecosystem Viewpoints

Introduction MaturityGrowth

(C) Evolution
(e-mail)

(B) Nautilus
(file manager)

(A) gnome-panel
(launcher)

(D)

Figure 4.7. Activity History in Gnome - the time series represent number of commits per month
aggregated to project level

Gnome. Figure 4.7 presents a view of gnome that corresponds to the Activity Evolution view-
point. The activity metric is number of changed classes per month, and it is aggregated based on
projects.

We can distinguish three phases in the lifetime of the ecosystem based on the patterns of
commit activity:

1. Introduction (1998 - 2000). This period has a few active projects and there is low activity.
Some of the projects that were started here will still be active at the time of the writing of
this dissertation; this is the case with the gnome-panel project (marked as A),

2. Growth (2000 - 2003). The activity on two projects overshadows all other projects. Marked
with (B) and (C) in Figure 4.7 the Nautilus (a file manager) and Evolution (an e-mail
program) projects take at times the majority of the effort.

3. Maturity (2003 - 2009). This period has a cyclical sequence of peaks and valleys of activ-
ity, pointing to development policies and release cycles. In every year there is a peak in
January which sometimes doubles the number of commits in the previous month. There
is no single project on which there is a focus in terms of activity. In the maturity period,
the highest number of commits per month is 3,600.

Figure 4.8 presents a different Activity History viewpoint on the Gnome ecosystem. The unit
of change is file changes aggregated based on their extensions.

The figure shows that compared to the number of changes per month to the ’.c’, ’.h’, and
’.po’ files all the other file extensions are insignificant. The ’.c’ files are changed more frequently
than the ’.h’ files – this was to be expected since the implementation of a function will usually
change more than the declaration. The effort on internationalization files dramatically increased
after 2001. Increasing the quality and keeping up to date texts and menus is a sign of GNOME

57 4.4 A Catalog of Ecosystem Viewpoints

.po

.c

.png

.h

Figure 4.8. Activity History in Gnome - time series represent file changes per month grouped
by file extension

project’s focus on usability. The files with the ’.png’ extension, which were preeminent in Figure
4.4 are almost invisible in this view. This is a consequence of the way such files are used: once
they are added to a project, they are rarely modified.

Implementation in SPO. When the individual time series represent elements of the meta-
model, like developers, or projects, one can select an individual element and navigate to views
that present details about it. Selecting an interval in a time-series allows for discovering the
details of the changes performed in that interval.

Discussion

Emergent Ecosystem Patterns. In the Gnome case study we have observed the patterns of
peaks before the six-monthly releases. The ecosystem exposes in that case an emergent
property that does not necessarily exist at every individual system level. Although some
of the projects in the ecosystem do not present peaks before every release cycle, the entire
ecosystem exhibits the pattern. In the same way, in SCG we observed that there is always
a dip in activity at the end of the year.

Limitations of Activity Metrics. The goal of the Activity History is to provide insights into
the evolution of the activity in the ecosystem. For this we use metrics like number of
commits per month, or number of files changed per month. However, these metrics need
to be considered with care: especially one should be aware when he makes comparisons
between projects or ecosystems. It can be the case that the culture of a project or ecosystem
encourages frequent small changes while the culture of another encourages large commits
performed seldom. If one needs to do such a comparison, he would have to use a metric
that takes into account also the number of lines of code changed.

58 4.4 A Catalog of Ecosystem Viewpoints

Stacked Chart Limitations. One of the limitations of this visualization is the fact that the
stacked graphs make it hard to distinguish the individual time series. If one wants to
focus on the individual time series, then representing the time series for all the projects in
parallel coordinates is better. The problem of distinguishing the individual series is more
acute than in the case of Size History because the activity in a project can fluctuate more
from a month to the next.

59 4.4 A Catalog of Ecosystem Viewpoints

4.4.3 Developer Activity Timeline

Goal

To present an overview of the developer activity in the ecosystem and highlight the periods when
the different developers were active.

Category

Holistic, Developer-Centered

Concerns

• Which are the developers that were active for the most amount of time?

• Are there patterns of developer activity?

• What is the turnover of the developers in the ecosystem?

Construction Principles

Figure 4.9 illustrates the construction principles of the viewpoint.

• Each row represents one developer, each column represents a period of one month. At
the intersection of the line and column there will be a mark if the developer has been
active in that month. The mark can have three dimensions corresponding to three distinct
levels of activity: low, medium, and high. The thresholds are by default 1, 10, and 100 -
corresponding to the mere existence of activity, a moderate level of activity, and a raised
level of activity.

Developer 1
Developer 2
Developer 3

time

Low Activity Medium Activity High Activity

The vertical ordering of
developers can vary

No Activity

Figure 4.9. The construction principle of the Developer Activity Timeline viewpoint

• Every developer line is colored with the developer’s specific color. In our implementation,
a developer color is constant between views since it is obtained by applying a hash function
to the developer name.

• There can be various orderings of the developers. The default is chronological based on
the first date of activity of the developers. Another ordering is based on the similarity of

60 4.4 A Catalog of Ecosystem Viewpoints

the developer activity patterns. Each developer has an associated binary vector of activity,
which models whether he has been active or not in each month. These vectors are then
clustered using a hierarchical clustering algorithm based on the Levenshtein [Lev66] dis-
tance between them. The resulting dendrogram is traversed to obtain an ordering that
positions developers with similar patterns of activity together.

Figure 4.9 presents the Developer Activity Timeline for three developers. The figure shows
how Developer 1 has been continuously active for the considered interval and his activity in-
creases over time from low, to medium, and high. The activity of Developer 3 decreases and
stops after 4 time intervals, when Developer 2 starts committing.

Examples

REVEAL. Figure 4.10 presents the history of activity of the 36 developers that are active in the
REVEAL ecosystem between 2005 and 2009. The developer rows are ordered by similarity.

The figure reveals three patterns of activity:

• Group A. These developers are the long-term contributors to the ecosystem. From all the
developers only the top two are active in 2009; they are PhD students, post-docs, and
professors working on research prototypes.

• Group B. These developers are active at the beginning of 2007 for between 4 and 6 months.
They are master students that work on their project and commit to the REVEAL super-
repository.

• Group C. These 11 developers are active for four months. They are bachelor students
working on various small projects for a course.

A

C

B

Figure 4.10. Developer Activity Timeline in REVEAL- the developers are sorted according to
their activity similarity

61 4.4 A Catalog of Ecosystem Viewpoints

The rest of the developers contribute little for very short amounts of time. They can be
filtered out if the goal of the analysis is to discover the main projects and the significant contrib-
utors to the ecosystem. Many of these developers are not even real developers but just accounts
that were created and not used.

Gnome. Figure 4.11 presents the Developer Activity Timeline for Gnome. It contains the his-
tory of activity of more than 900 developers that contributed to the ecosystem for 10 years. The
rows are ordered in such a way that developers that have similar activity patterns are clustered
together.

Figure 4.11 shows that no developer was active from the beginning to the end of the ecosys-
tem lifetime. There are a few developers that were present for almost all the ecosystem’s history.
The developer who comes the closest to having been active throughout all Gnome’s history is
krmarass, with more than 100 commits every month since nearly the beginning of the project.
The other developers that are active for long periods of time in the ecosystem are visible on the
top of the graph in Figure 4.11.

The bottom half of Figure 4.11 contains more than 450 developers who were active for a
short period in the history of the ecosystem and then disappeared.

Figure 4.11 shows several clusters of developers who have similar patterns of activity in time.
They arrive in the ecosystem about the same time and after a certain time they leave together.
Some developer groups have a short lifetime (e.g., C, D and E) while others have long lifetimes
(e.g., A and B). Some of the clusters are the result of people working on the same project. For
example cluster (A) is mainly composed of developers contributing to the Nautilus project.

Implementation in SPO. Selecting a developer in the view allows the navigation to developer
viewpoints. Filtering out individual developers. The vertical order of the developers can be
changed according to various criteria: first date, last date, or similarity.

Discussion

Discretizing the Levels of Activity. The view ignores the details of the activity of the developers
and maps all the actual values of the activity metric to three levels: low, medium, and high.
Initially we only used a binary logic for representing either the presence or the absence of
activity. Given that the difference between low activity and high activity can be significant,
we settled on using the three levels of activity. The thresholds are chosen based on our
experience to be 1, 10, and 100 commits.

Patterns of Developer Activity. Based on the length of the period in which the developers con-
tribute: some developers are one-timers who just come and go, some stay for a significant
amount of time, and some are in for the long haul. An ecosystem can be characterized by
a mix mix of the types of developers it contains.

The viewpoint is good at revealing groups of developers that join and leave at the same
time.

Limitations of the Visualization. One type of information that the viewpoint lacks is informa-
tion about the emergent social structure of the ecosystem as it can be inferred from the
collaboration relationships between the developers.

62 4.4 A Catalog of Ecosystem Viewpoints

(D)

(E)

(C)

(B)

(A)

Figure 4.11. The history of the activity of the more than 900 Gnome developers.

63 4.4 A Catalog of Ecosystem Viewpoints

4.4.4 Developer Collaboration

Goal

To present the way in which developers collaborate with each other within the ecosystem.

Category

Holistic, Developer-Centered

Concerns

• How do the developers collaborate in the context of the ecosystem?

• Which developers collaborate on which projects?

Construction Principles

Figure 4.12 illustrates the construction principle of the Developer Collaboration viewpoint:

• We say that two developers collaborate on a certain project if they both make modifications
to the project for a certain number of times, above a given threshold. Based on this
information we construct a collaboration graph where the nodes are developers and the
edges between them represent projects on which they collaborate.

• To represent the collaboration in an ecosystem the Developer Collaboration visually repre-
sents the collaboration graph

A node represents a developer.
The color intensity is proportional to

a chosen metric.

Developer 1

Developer 2

Developer 3An edge represents a project.
The color is specific to the

project.

Figure 4.12. The construction principle for the Developer Collaboration viewpoint

• Nodes in the graph are developers. On the color of a node we can map other metrics like
amount of activity in the ecosystem, or highlight whether the developer is active or not.

• Arcs between nodes represent collaboration relationships. For each project on which two
developers collaborate, there is an edge between them. The edge has the project’s specific
color.

64 4.4 A Catalog of Ecosystem Viewpoints

• The graph is drawn using a force-based layout algorithm which clusters connected nodes
together and offers an aesthetically pleasing layout [FR91]. Thus, developers who collab-
orate will be positioned closer together.

Figure 4.12 presents an example Developer Collaboration. Developer 1 collaborates with both
Developer 2 and Developer 3 on the green project; he collaborates with Developer 2 on the blue
project.

Examples

SCG. Figure 4.13 presents the Developer Collaboration viewpoint of the SCG ecosystem. The
color intensity of a node is proportional with the overall activity in the repository of the node
(i.e., the darker the node, the more active is the corresponding developer). The viewpoint allows
for a classification of developers based on their type of collaboration.

B

A

Figure 4.13. Developer Collaboration in SCG

Close to the center of the figure we can see a backbone of developers with high activity and
a large number of collaborations. Developers meyer, girba, kuhn, lanza, ducasse are highly active
as it can be inferred from the dark shade of their nodes and collaborate with many others on
projects. There is also a large number of developers who work alone. From these, some are very
active (e.g.,ponisio, renggli, wettel, lungu).

65 4.4 A Catalog of Ecosystem Viewpoints

Overall, the SCG super-repository shows a moderately coupled community. The bernese
research group has worked on many facets of reverse engineering during the past years, leading
to a myriad of tightly coupled tools. This might be a result of Conway’s law which states that
organizations that produce systems are constrained to produce designs which are copies of those
organizations [Con68].

Implementation in SPO. Filtering individual developers is possible, as well as rule-based fil-
tering multiple developers at once. If two nodes in the graph are detected as being aliases for
the same developer, they can be merged together.

To find out more about a developer, one can select a node in the graph and navigate to
detailed views of the corresponding developer. To find out the reason for a collaboration edge,
one can select the edge and navigate to the details of the corresponding project.

Discussion

Types of developers. Based on our experience with the Developer Collaboration applied on our
case studies, we observed three types of developers, loners, collaborators, and hubs.

1. Loners work independently on projects. Figure 4.13 shows that in SCG this type of
user is well represented, probably given to the independent nature of the develop-
ment performed during a PhD or Master’s degree.

2. Collaborators work with others on few projects. As an example, developer “lien-
hard" (point A) from Figure 4.13 is involved in a single project in which other two
developers work.

3. Hubs collaborate on many projects. For example, developer “wuyts" (point B) from
Figure 4.13 has connections to multiple developers and is involved in several projects.

Definition of Collaboration. The definition of developer collaboration can be improved. Cur-
rently two developers are considered to collaborate on a project even if they contribute
in different parts of the system or in different periods of time. In the future we plan to
experiment with more precise types of definitions for collaboration.

Visualizing Collaboration. There are two ways in which we can improve the visualization:

1. One way in which the visualization of the Developer Collaboration can be improved is
by representing the amount of collaboration between two developers. Currently the
relationship representation is binary: it either exists or it does not. The visualization
would be more expressive if we would map the amount of collaboration on the width
of a collaboration edge.

2. The Developer Collaboration viewpoint as we have presented is a static view. It
would be worth exploring the possibility of animating the collaboration relationships
between the developers over time.

66 4.4 A Catalog of Ecosystem Viewpoints

4.4.5 Inter-Project Dependency Map

Goal

To offer insight into the overall dependency structure existent between the projects of an ecosys-
tem.

Category

Holistic, Project-Centered

Concerns

• What is the general dependency structure between the projects in the ecosystem?

• What are the critical projects that many others depend on?

Construction Principles

Figure 4.14 illustrates the construction principle of the Inter-Project Dependency Map viewpoint:

• The projects in a system and their dependencies can be represented as a graph. The extrac-
tion of the dependency relations is super-repository dependent: some super-repositories
contain information about the dependencies and some don’t. In the latter case, the depen-
dencies need to be extracted by static analysis of the projects.

Project
1

Project
3

Project
2

An edge represents a
dependency between

two projects

A node represents a project.
The area is proportional to project's size.

The color intensity is proportional to
another chosen metric.

Figure 4.14. The construction principle for the Inter-Project Dependency Map viewpoint

• The nodes in the graph represent the subset of projects in the ecosystem which depend on
other projects, or a subset of them. Their size is always proportional to their actual size
as measured in one of the size metrics. The nodes have project metrics mapped on their

67 4.4 A Catalog of Ecosystem Viewpoints

color intensity. The default metric that is mapped on the color intensity is the number of
commits to that project.

• The edges in the graph are dependency relations between the projects.

• The layout of the graph is a force-directed hierarchical layout which arranges the entire
graph along a dominant vertical axis with the projects that are depended on by others
towards the bottom.

Figure 4.14 presents an example of Inter-Project Dependency Map for three projects in which
the fill color is proportional to the age of the project. Project 1 is a recent project (white fill) which
depends on two older (dark fill) projects Project 2 and Project 3.

Examples

SCG. Figure 4.15 presents the Inter-Project Dependency Map viewpoint of the SCG ecosys-
tem. To reduce the number of visible nodes Figure 4.15 presents the dependencies between the
projects in SCG that have more than 20 commits to the repository.

The projects in the ecosystem are well connected and there are many projects that build on
top of the functionality offered by others.

There are a few projects with a large number of commits that also have many other projects
that depend on themselves. Moose and CodeCrawler each has more than 6 other projects that
depend on them.

The bottom-most project is named Code Foo. It is small compared to the other projects in the
ecosystem, and has less commits, but there are 8 projects that depend on it including Moose. If
we consider the indirect dependencies, there are even more projects depending on it. The reason
for the large number of dependent projects is that Code Foo contains a series of utility classes that
augment the functionality in the basic Smalltalk libraries. Knowing this, it is surprising to see
that there are projects that do not depend on it. If the Inter-Project Dependency Map viewpoint
would have been easily visible in the ecosystem, maybe more people could have learned about
the project and reused its functionality.

To the right of the diagram we see Seaside, another project which has a considerable size and
multiple client projects.

REVEAL. Figure 4.16 presents a Inter-Project Dependency Map viewpoint on the REVEAL
ecosystem. The REVEAL ecosystem is four times smaller than the one of SCG; also, the in-
terconnected projects are less numerous. The color intensity is proportional to the number of
commits for that project. The view shows only the ones that are inter-dependent.

The project with the largest number of commits is the darkest node in the figure, The Small
Project Observatory. We can see that it depends on two other projects, which have a small number
of commits in the super-repository (their fill color is white): projects Moose and CodeFoo. We
have seen in the SCG ecosystem two projects with the same names, but with high activity. This
means that the two projects are actually developed in the SCG ecosystem and imported in the
REVEAL one.

In general, the projects that have a large size (as represented by the size of the corresponding
rectangle) and low commit activity (the fill color is close to white), are likely projects that were
imported into the ecosystem. In this particular case we have four such projects highlighted:

68 4.4 A Catalog of Ecosystem Viewpoints

Moose Code Crawler

CodeFoo

Seaside

Figure 4.15. Project Dependency Map viewpoint for the SCG ecosystem - color intensity is
proportional to the number of commits to the project

Seaside, Moose, CodeFoo, and CodeCrawler. For each one of them, we have seen homonimous
projects in the SCG ecosystem with high activity.

The next project with a large number of commits is Softwarenaut, our architecture recovery
prototype. This project is one of the largest projects in the ecosystem and it also depends on
Moose.

The figure shows eight projects with a large number of commits that depend on others. These
are likely the projects that are developed in the ecosystem.

Implementation in SPO. Selecting a project allows the navigation to views which present
project details for it. Projects can be highlighted based on various criteria: life cycle phase,
amount of effort invested, etc. It is possible to filter individual projects as well as multiple
projects based on rules.

Discussion

Limitations of the Data Model. The Inter-Project Dependency Map is based on the Lightweight
Ecosystem Model, which contains limited information about the individual projects. An-
alyzing an Inter-Project Dependency Map viewpoint can lead to multiple questions that
require detailed information about the code of the individual projects. Some example
questions are:

69 4.4 A Catalog of Ecosystem Viewpoints

The Small Project Observatory

Softwarenaut

Moose Seaside

Code Crawler

CodeFoo

Figure 4.16. Inter-Project Dependency Map viewpoint in REVEAL- color intensity is propor-
tional to number of commits to project

• What is the reason for the existence of a given dependency between two projects?

• What functionality exposed by a given project is used by the others in the ecosystem?

When the user faces such questions, he needs to navigate into the details of individual
projects to answer them. To support this, the Lightweight Ecosystem Model needs to be
complemented with a Detailed Project Model.

Layout Scalability. Providing an interactive implementation of The Inter-Project Dependency
Map is a challenge. For large ecosystems, the number of dependencies can be very large
and the layout algorithm can not avoid generating very large graph representations. In our
implementation of the viewpoint the user can zoom and pan the graph. One alternative
direction could be detecting unconnected, or loosely connected subgraphs and instead of
presenting a single Inter-Project Dependency Map viewpoint, presenting multiple comple-
mentary perspectives on it.

70 4.4 A Catalog of Ecosystem Viewpoints

4.4.6 Contextual Project Architecture

Goal

To offer an overview of the architecture of the system and highlight on it the way the other
projects in the ecosystem interact with the project.

Category

Focused, Project-centric

Concerns

• What is the internal structure of the system, and how do the modules interact with each
other?

• What parts of the system are used and visible from the ecosystem? How are they dis-
tributed over the system?

• Are there modules that other projects reuse that are easy to reuse?

Construction Principles

Figure 4.17 illustrates the construction principles of the Contextual Project Architecture view-
point:

Module A

An edge represents a
dependency between two

projects. Its width is
proportional to its strength.

Each node is a
module. Its size is

proportional to
module size.

Contents of the
module are rectangles

inside. Their areas
are proportional to

their size.

Color highlights types
of relationships with

the ecosystem.

Module B

Figure 4.17. The construction principle of the Contextual Project Architecture view

• The modules are represented as nodes in the graph. The area of the node is proportional
to the size of the corresponding module. Inside the modules the contained classes and
submodules are represented as boxes with areas that are proportional to their respective
sizes.

• The dependencies between modules are represented as the edges in the graph. The width
of the edge is proportional to the strength of the dependency.

71 4.4 A Catalog of Ecosystem Viewpoints

• The classes that contain functionality invoked by other classes in the ecosystem are high-
lighted with red. The classes that are subclasses by other classes in the ecosystem are
highlighted with blue. The classes that are both invoked and subclasses are highlighted in
violet.

Examples

CodeCrawler. One of the systems in the SCG ecosystem is CodeCrawler, a software visualiza-
tion tool. It is a project that several other projects extend.

Figure 4.18 presents a Contextual Project Architecture view of the system which includes
seven modules from the system and their relationships. An eighth module, which contains the
tests was filtered out since it was adding dependencies to many of the packages making the view
too cluttered.

The package contains the
largest class in the

system which is also
referred by other projects.

One class
is both

subclassed
and used

Some classes are
subclassed, others are

used.

Figure 4.18. The architecture of CodeCrawler

The large package is the UI of the tool. The largest class in it, named CodeCrawler is used
by external projects. Three of the modules that the UI depends on are also used by other classes
in other projects in the ecosystem. Classes in two of these modules are subclassed by classes in
external projects.

72 4.4 A Catalog of Ecosystem Viewpoints

If a potential user would look for reusable code, he would see that the modules of the projects
are strongly inter-connected and it is likely that extracting a single component would not be
straightforward.

However, both packages CCCore and CCGlyphs could become self-sufficient and probably
more reusable if one dependency would be removed. To do this one would need to inspect in
more details the two outgoing dependencies and discover whether it is desirable that they are
removed.

Implementation in SPO. The view is implemented in both our tools SPO and Softwarenaut.
In SPO the interaction is limited to inspecting the names of the elements. In Softwarenaut
the interaction is more complex, includes obtaining details about each of the elements, and is
presented in Appendix A.

Discussion

The High-Level Nature of the Viewpoint. In a scenario in which one wants to obtain an overview
of the structure of the system the high-level nature of the viewpoint is useful. However,
the viewpoint is not meant to replace UML diagrams or other representations, but rather
to be a complementary view, which presents the entry point for further analysis.

Highlighting Other Types of Information. There are various other types of information that
are appropriate to be highlighted on a high-level, architectural view of the system, when
analyzing it in the context of the ecosystem.:

• Test coverage results overlaid on top of an architectural view would reveal the parts
that are save to reuse and the parts that might not.

• Parts of the system that have been worked on recently are useful for a team to keep an
eye on the progress of the project. In this case the architectural views would function
as a shared war room console [OBM05].

• Non-code documents such as emails extracted from the mailing-list and bug reports ex-
tracted from the issue-tracking system would allow detecting the parts of the system
that are more prone to defects.

Layout Scalability. The architectural views are generated manually by a user using our ar-
chitecture recovery tool called Softwarenaut. The information about the system in the
context of the ecosystem is then overlaid on top of each architectural view. There are two
main drawbacks of this approach:

• The lack of automation in the architectural view generation. This means that in
the middle of ecosystem exploration, if for a system there is no architectural view
saved, the user needs to switch hats, perform architecture recovery, and then return
to ecosystem exploration. Part III of this thesis will discuss techniques that ease the
generation of architectural views.

• The layout can become cluttered since since in most of the systems we encountered,
the number of dependencies between the modules is very large. This reduces the
usefulness of automatic layout techniques. Instead our tools offer the possibility of
filtering nodes and dependencies in such a way that the viewer can focus on specific
aspects of the view.

73 4.4 A Catalog of Ecosystem Viewpoints

4.4.7 Contextual Project Dependency Matrix

Goal

To present the details of the dependency between a project and the other projects in the ecosys-
tem.

Category

Focused, Project-Centered

Concerns

• Which classes are used by most of the projects in the ecosystem?

• Which projects from the ecosystem are the strongest connected?

Construction Principles

The rows are classes in the subject project. The columns are the projects in the ecosystem that
depend on it.

Project 1 Project 2 Project 3 Project 4

InvocationsInvocationsInvocationsInvocations

Class 1 5/10 1/1 20/30 5/5

Class 2 2/2 1/1

Class 3 2/4

 method3A 2/2

 method3B 2/2

InheritancesInheritancesInheritancesInheritances

Class 4 1 1 1

Class 5 2 2

Figure 4.19. The construction principle of the Contextual Project Dependency Matrix

The content of the cells can be either one or two numerical values:

• In the invocations part there are two numerical values: the number of distinct invoked
methods and the total number of calls that go to methods of the class.

• In the inheritances part there is one numerical value: the number of classes that directly
inherit from classes in the project under focus.

The coloring of the cells follows the following rule:

• A class is highlighted in green if it is used in more than half of the projects in the matrix.

• A class is highlighted in yellow if it is used only in a single project: in such a case investi-
gation could be needed to make sure that the usage is correct.

74 4.4 A Catalog of Ecosystem Viewpoints

The amount of the details in the table can be modified by selecting a class and showing more
details:

• In the invocations part new rows are added for the methods of the class that are involved
in the dependency

• In the inheritances part the names of the subclasses are displayed in the cells.

Figure 4.19 presents an example Contextual Project Dependency Matrix.

Examples

CodeCrawler. Figure 4.20 presents the Contextual Project Dependency Matrix for the Code-
Crawler project. The view complements the Contextual Project Architecture presented in Figure
4.18. The first thing we observe is the large number of classes that are highlighted in yellow:
this means that the project is being used in an different way by every project that depends on it.

The only two classes that three out of four dependent projects are inheriting from: Code-
Crawler and CCEdgePlugin.

BugCrawler
Package

Crawler
Quala SCGConAn

InvocationsInvocationsInvocationsInvocations

CCCircleLayout 1/1

CCCompositeFigure 1/7

CCGlyph 3/52

CCGraph 1/2

CCLineFigure 1/2

CCMaxRadiusCircleLayout 1/2

CCNode 1/3

CCNodeGlyph 8/17

CodeCrawler 1/1

InheritancesInheritancesInheritancesInheritances

CCCompositeFigure 5

CCDrawingProxy 1

CCEdgePlugin 6 4 3

CCGenericLayout 3 1

CCGraphManager 1

CCNamedFigure 2

CCNodePlugin 7 1 1

CCRectangleFigure 1

CCRoot 1

CCSpecificLayout 4

CCViewSpecManager 1

CodeCrawler 1

Figure 4.20. The Contextual Project Dependency Matrix for the CodeCrawler project

The figure shows that the PackageCrawler project dominantly invokes functionality while the
BugCrawler and SCGConAn only subclass from the project.

75 4.4 A Catalog of Ecosystem Viewpoints

SmaCC. SmaCC is a parser generator project which, although not currently active, has multiple
projects that depend on it in the SCG ecosystem.

Figure 4.21 presents the Contextual Project Dependency Matrix for the project. There are no
method calls but every one of the five dependent projects subclasses SmaCCParser and SmaCC-
Scanner. Also, with the exception of MooseAda the number of subclasses of the two classes is the
same. It seems that for every scanner there needs to be an equivalent parser.

CodeSnooperCodeSnooper FJ MooseAda Nanola SCG BibOuter

InvocationsInvocationsInvocationsInvocationsInvocations

InheritancesInheritancesInheritancesInheritancesInheritances

SmaCCParser 1 1 17 1 4

SmaCCScanner 1 1 16 1 4

Figure 4.21. The Contextual Project Dependency Matrix for the SmaCC project

Discussion

Types of Dependencies. The Contextual Project Dependency Matrix is using two types of depen-
dency information: class inheritances and method invocations. We use these two types of
dependencies because they can be extracted using static analysis. However, if other types
of dependencies would be available they could also be used.

Types of Projects. In the examples in this section we saw that different projects have different
ways of interacting with the ecosystem: functionality in some projects is primarily reused
by the others, and functionality in others is primarily inherited by the ecosystem. It would
be interesting to study whether various types of projects can be detected based on the
pattern of interaction with the ecosystem. Two possible types of projects that could be
detected in this way would be:

• Frameworks will be primarily depended on by other projects in the ecosystem because
classes in them will be subclassed in the clients.

• Libraries will be primarily depended on by other projects in the ecosystem because
the classes and functions they provide will be used by the clients.

Declared vs. Extracted Dependencies. In Store, the projects declare dependencies between
themselves. Often the actual dependencies diverge from the declared ones. In such cases,
extracting the inter-project dependencies allows one to discover two types of divergences:
the first are dependencies which are declared but are not needed, and the second are
dependencies which are needed but are not declared.

Having the detailed contents of the dependency between two projects is useful even if the
declared and existing dependencies co-exist since the detailed dependency can provide
much more information for understanding or taking decisions regarding the given inter-
project dependency.

76 4.5 Discussion

4.5 Discussion

Privacy Concerns

Some of the data that the viewpoints present concerns delicate issues such as the amount of
developer commits to the ecosystem. One should be aware of the interpretation pitfalls when
looking at such data – although tempting, bridging the gap between the measured metric values
and quality attributes such as developer performance is fraught with peril. For example, it might
seem that a developer with a high commit count is more useful to the company but people have
different ways of working and a developer committing many small changes might still be less
instrumental to the company than one who commits seldom but works on an important project.
This is why the perspectives should not be considered alone but in a larger context.

In the case of open-source systems this data is publicly available, and there are other projects
that tap into it, such as Ohloh3. In the business world, this type of information might be confi-
dential or not be available.

Types of projects

In the various viewpoints we have seen that the projects in an ecosystem can be placed in various
classes, depending on the point of view from which we look at them. Several of the classifications
that we have presented in this chapter are:

• In-House vs. Imported Projects. The projects which have a very low commit count and a
very large size are very likely to be imported in the ecosystem.

• Active vs. Discontinued. There comes a time in the lifetime of any project when it is not
maintained anymore. Each ecosystem has its share of discontinued projects.

• Stand-alone vs. Dependent. Some of the projects are reusing functionality from the other
projects, some are providing functionality, and some are not dependent in any way of the
other projects in the ecosystem.

In SPO we have implemented automatic mechanisms for detecting these types of projects.
They can be used to either filter or highlight the projects in a view.

Visualizing Structural Evolution

All the structural viewpoints that we have introduced (Inter-Project Dependency Map, Con-
textual Project Dependency Matrix, Contextual Project Architecture) present the dependencies
between multiple systems by considering a single version of each system. Usually the analysis
is applied on the latest version of the system since it is the current state of the ecosystem that
needs to be understood. It would be worth investigating in which ways these viewpoints can be
enriched with evolutionary information about the system.

Tool Support

All the viewpoints that we have presented in this chapter are implemented in The Small Project
Observatory. The advantage of seeing the viewpoints in The Small Project Observatory as op-
posed to listing them in a catalog is the interactivity. A user can navigate between the various

3http://www.ohloh.net

77 4.6 Conclusions

viewpoints according to the navigation paths we presented for each viewpoint and can inspect
individual elements of the view. Moreover, some of the viewpoints can be displayed in parallel,
so the user can make correlations between elements in them.

4.6 Conclusions

In this chapter we have shown that both developer-centric and code-centric viewpoints of an
ecosystem can be recovered by the analysis of the associated super-repository. We introduced a
catalog of viewpoints that support answering a variety of questions about the ecosystem. These
questions concern the activity of the developers and projects, the social structure that emerges
around the ecosystem, and the inter-project relationships. All the viewpoints are built based on
information that is derived from the Lightweight Ecosystem Model.

We illustrated the viewpoints with examples from four ecosystems of mixed provenance: one
industrial, two academic, and one open-source.

78 4.6 Conclusions

Chapter 5

Two Case Studies of Ecosystem
Reverse Engineering

In this chapter we present in depth analyses for two software ecosystems: the first belongs to the
Software Composition Group, a research group affiliated with the University of Bern; the second
belongs to Soops BV, a software development company from The Netherlands. We use SPO to generate
viewpoints of the system and to navigate between them. In the case of the Software Composition
Group we show how analyzing the architecture of a framework in the context of the entire ecosystem
can reveal patterns of usage of the framework that can be useful for both the developers of the
framework and its clients.

79

80 5.1 Introduction

5.1 Introduction

In the previous chapter we introduced a catalog of ecosystem viewpoints. For each one we
presented its construction mechanism, the concerns that it addresses, as well as its advantages
and drawbacks. However, all the viewpoints were presented individually. During an analysis
session the observations in an viewpoint need to be corroborated or detailed by using other
viewpoints in an interactive exploration process.

In this chapter we present two ecosystem reverse engineering case studies in which we illus-
trate the interactive nature of the ecosystem reverse engineering process. We performed the two
case studies on two ecosystems that belong to two organizations:

• The Software Composition Group (SCG) is a research group affiliated with the University
of Berne in Switzerland. The group, led by Prof. Oscar Nierstrasz, is actively doing re-
search in software engineering and reverse engineering. Since 1997 the group has been
developing a large collection of prototypes and tools for program analysis, quality assess-
ment, and program understanding. Since 2002 the group is using Store as a versioning
system for the Smalltalk projects.

• Soops BV is a software company specialized in Smalltalk development based in Amster-
dam, in the Netherlands. In the case of Soops we did not carry the analysis ourselves but
we allowed our industrial partner to perform the analysis and report on the results.

One difference between the two case studies is the time when they were performed. The
Soops case study was performed more than one year before the SCG case study. In the time
between the two experiments, our tools became more powerful, with more features, and this
difference visible in the experiments. We discuss this point at the end of the chapter in more
detail.

Structure of the Chapter

In Section 5.2.1 (p.80) we analyze the projects in the SCG ecosystem and in Section 5.2.2 (p.85)

we analyze the developers in it. We then focus the analysis on the details of a single project in
the SCG ecosystem in Section 5.2.3 (p.90). Section 5.3 (p.97) presents the report of the Soops case
study. We end the chapter with a discussion in Section 5.4 (p.101) and conclusions in Section 5.5
(p.102).

5.2 The SCG Ecosystem

We carried our analysis in three phases: we started with a developer analysis phase in which we
observed the activity and collaboration of the developers; we continued with a project analysis
phase in which we discovered projects which are important to the ecosystem; we concluded by
choosing one of the most important projects in the ecosystem, and by understanding the way it
fits in the greater ecosystem context.

5.2.1 Project-centric analysis

Figure 5.1 presents the Size History of the SCG ecosystem. The growth of the ecosystem is
sustained: from 2002 when it started with a single project with 70 classes to 2009 when it

81 5.2 The SCG Ecosystem

contains 217 projects and 12,500 classes.
One can detect three phases in the evolution of the ecosystem. The first, marked A, shows a

linear growth of the code to 6,000 classes in four years. The second, marked B, almost doubles
the amount of code in the repository in about one year. The third phase, marked C, represents a
slowing down in the evolution of the system.

A

B

C

6.200

11.000 NOC

time

Figure 5.1. The growth of the code in the Bern ecosystem

In this viewpoint the color of a project is transparent for the months in which its size remains
constant. The figure shows that many projects do not change their size after they are introduced
in the repository. Moreover, some projects start with a large number of classes and then do not
change. To investigate this phenomenon, we need to switch to a different view: the current one
is only targeted at presenting an overview of the entire ecosystem’s growth dynamics.

Figure 5.2 presents a scatterplot view of the projects in the ecosystem in which the horizontal
coordinate represents the number of commits to a project and the vertical coordinate represents
the number of classes in the latest version of the project. Each project has its specific color to
ease identification between the views.

In Figure 5.2 we distinguish three regions corresponding to three types of projects.

A. The Imported Projects. The projects that we observed in the previous view as being inactive
are placed in this view at the top, near the vertical axis, in region A. They have low activity
and high number of classes. In fact, as the chart shows they are the largest 10 projects in
the ecosystem. The very large size over activity ratio is an indication that those projects
were imported into the ecosystem for reuse purposes.

This is consistent with the Smalltalk approach to reuse. Since in Smalltalk everything
runs in a single image on top of a virtual machine, when one wants to reuse a library or
a framework he needs to load the code of the respective project in the same image as
the project that needs it. To ease the loading of the code, many times, the administrator

82 5.2 The SCG Ecosystem

100

MooseAareTraceScraperCodeCrawler

A

B

C

Figure 5.2. The scatterplot of the projects in the SCG ecosystem. The x-axis represents project
size measured in number of classes; the y-axis represents activity measured in number of com-
mits to the version repository

of a Smalltalk Store repository completely imports already existing projects in the Store
repository of the organization.

In this case, these projects are external libraries and frameworks needed by some of the
in-house projects.

B. The Small Projects. There is a high density of projects in the neighborhood of the origin, in
the area marked as B. They have less than 100 commits and usually less than 100 classes.
This group of projects includes projects that were abandoned, small student projects, ad-
hoc projects, libraries, and also the projects that at the moment of the analysis are just
starting.

C. The Large In-House Projects. The region marked as C contains projects with more than
100 commits and up to 300 classes. These are the largest and most active projects in the
ecosystem. They have either been developed inside the ecosystem, or have been imported
at the beginning and then developed further.

It is interesting to see that the Moose project, with more than 1500 commits (the rightmost
point on the graphic), is not the largest project (as measured in number of classes), even
though all the other projects are much less active. This is a sign of a project which is more
refined and which has undergone more maintenance work than the others.

For the rest of the analysis we focus our attention on the Large In-House projects. Filtering
out the others we remain with 36 projects.

83 5.2 The SCG Ecosystem

The Recently Active, In-House Projects

Figure 5.3 presents two perspectives on the Large In-House projects that are developed in-house
and have been active in the last year: the top one is a Activity History viewpoint and the bot-
tom one is a Inter-Project Dependency Map viewpoint. The views complement each other, and
together they present both evolutionary information (activity evolution) and structural informa-
tion (project size, inter-project dependencies). The dependencies presented in the Inter-Project
Dependency Map are static, compile-time dependencies that are extracted from the versioning
system meta-data.

The dependency graph shows that only one project is independent from the others: Small-
wiki has been very active in the first two years of the ecosystem (2002 - 2004) after which the
activity decreased to occasional maintenance level. The project can depend on other external
projects or libraries, but we are only displaying the in-house projects.

The figure shows that from the projects currently active and built in-house, multiple projects
have at least one subordinate project. The projects with the most subordinates are:

• Moose. The project is the in-house project with the largest number of projects that depend
on it (both if we consider only the currently active projects or all the projects that exist in
the ecosystem). The activity view shows that the project is the oldest in the ecosystem. The
inter-project dependency view shows that Moose is the largest project that is still active in
the ecosystem.

• CodeFoo. The project is at the bottom of the dependency tree since many projects depend
on it, but it does not depend on others. It is used by six projects in this view, including
Moose and Mondrian. In the entire ecosystem 10 projects are directly depending on it.

• Mondrian. In Figure 5.3 the project is highly visible in 2006. The project was indeed a
one-year high-effort project and then activity on the project has faded out. However, even
after activity on the project faded away, there were still projects that used it. The figure
shows three projects that depend on it.

When a project depends on other projects, one cannot completely understand it unless he
can understand the relationships of the project with its environment. When a project is used by
many other projects, one can gain insight into the project by studying the way the other projects
are using it.

Since it is the third time we encountered the Moose project during our exploration in the next
section we focus our attention on it.

Concluding the project-centric analysis

Although the ecosystem contains a large number of projects, not all of them are equally impor-
tant assets for the organization. Some of the projects were not developed in-house, so there
was no manpower invested in them; other projects are small and without much activity. Some
projects, on the other hand have been developed in-house, represent the result of a large ef-
fort, and they provide functionality to other projects too. These are the critical projects in an
ecosystem.

84 5.2 The SCG Ecosystem

Mondrian

SmallWiki

Moose

CodeFoo

Figure 5.3. Two complementary perspectives on the projects that were active in the last year in
the Bern ecosystem

85 5.2 The SCG Ecosystem

5.2.2 Developer-centric analysis

Figure 5.5 presents the Developer Activity Timeline viewpoint of the ecosystem. We can see that
during the 7 years of existence of the SCG ecosystem, more than 120 developers contributed
code to it.

The rows of the matrix are ordered to have developers that have similar patterns of activity
positioned close to each other. However, there are no obvious patterns besides a few clusters of
developers who come and go around similar periods of time.

The turnover in the ecosystem is pretty high. The graph shows that not even a single de-
veloper has been continuously active for the entire duration of existence of the ecosystem. One
developer (ducasse) has been active since 2002 but with many gaps in activity. There are several
other developers that have been active for long periods of time. A large part of the developers
contribute for short periods of time and then they leave. This is the result of the large number
of students who work on their projects inside the group.

Since only by looking at the figure we cannot easily see the total amount of activity of each
contributor, we summarize this information in Figure 5.4. The histogram shows that the periods
of activity of the contributors vary widely.

• About twenty percent of the contributors are active for significant periods of time relative
to the lifetime of the ecosystem. In fact, the top 20 percent of the developers have been
active for more time than the bottom 80 percent of the developers and have committed
three times as much code as the bottom 80 percent of the developers. The projects that
they work on are probably the projects that are critical for understanding the ecosystem.

• A large number of developers are active for more than six months but less than a year.
These are probably bachelor and master students who work on projects in the group.

• Twenty percent of the developers are active one month or less. At a closer inspection we
discovered that in all these cases, the contributors have performed a couple of commits.
These are external experts who might submit a patch, or user accounts that are used once
and then never used again.

• After closer investigation we discovered that the top 20% commuters contribute to more
than 75% of the projects in the ecosystem.

0

7.5

15.0

22.5

30.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 19 20 21 22 23 32 33 37 38 39 41 43 53 76

22

15

7

0

Developers

Months

Figure 5.4. The distribution of the number of months the developers are active in the SCG
ecosystem

86 5.2 The SCG Ecosystem

2002 2003 2004 2005 2006 2007 2008 2009

anselm
lore

raza
mikeh

cimpan
rwhitney

horvath
chaider

mroberts
alander

jedep
bertolami

glorp
tgriggs

Adriaan
fred

boris
markr
poyet

bernard
seanw

dehondt
klnsrgn

jamesr
loewis
michael

Reinout
Nic

quixotik
kdh

jbadger
PackageBot

etanter
meer

jvhen
ananda

peirs

Cham
antony

bruehlmann
uquillas

stephany
mooser

bobw
marco

andy
robbes

bulckaen
bertuli

ratiu
sames

sellos
bouazza

streit
dozsa

urfer
bbadger

freidig
gaelli

johanb
verwaest

verjus
frey

johanF
tomM

johanB
kim

tomT
kris

voinescu
balint

buehler
rothlisberger

locher
bergel

tichelaar
buchli

aebi
alloui

pollet
hofstetter

suen
lienhard

fpluquet
seeberger

huget
wysseier

kobel
stettler

reichhart
oscar

mbany
damas

wampfler
meyer

vogel
talerico

smichael
bunge

matter
menanteau

aknight
scg

abdeen
junker

loretan
ricky

wuyts
arevalo

renggli
lanza

ponisio
lungu

kuhn
greevy

dambros
girba

ducasse

Figure 5.5. The periods when the 120 developers in the SCG ecosystem have been active

87 5.2 The SCG Ecosystem

Reordering the rows of the matrix in descending order of the number of months in which
the developers are active allows us to spot the developers who have been active for the longest
timespan. Figure 5.6 presents the top 20 percent developers in terms of number of months
active.

2002 2003 2004 2005 2006 2007 2008 2009

smichael
matter

aknight
scg

mbany
vogel

lienhard
locher

abdeen
bunge

lungu
junker

wuyts
ducasse

arevalo
dambros

renggli
ponisio

meyer
lanza

kuhn
greevy

girba

Figure 5.6. The top 20 percent developers in terms of number of active months in the ecosystem

The developers that were active for the longest timespan are ducasse, lanza, and girba who
all started contributing in 2002.

The developer with the highest number of active months is girba; he has been active for
72 months with only two months in which he did not commit to the ecosystem. Since he is
represented by the top row in the figure, he is also the developer with the largest number of
commits to the ecosystem.

Zooming in on individual developers

In order to find out more about these developers we can zoom in into the details of the activity
of each one. Figure 5.7 presents the details of activity for the top four developers in Figure 5.6.
The view is a stacked graph of project activity time-series where the y-axis is represented by
number of commit per month. Each project is colored with its specific color.

The activity of each developer has peaks and valleys. The difference from peak to valley can
be considerable, for example, in the middle of 2006 girba has a peak activity of 175 commits to
the ecosystem in one month and in the next his activity falls to 25 commits.

• Developer girba contributes for six years to more than 21 projects. Initially he starts work-
ing on Van and then later he expands in multiple projects. The graphic shows that although
he focuses on a few projects for longer periods of time he contributes to many projects and
works on many projects in parallel. Projects that he works on include: Moose, Van, and
Mondrian.

• Developer greevy works on a few main projects. Until mid 2006 she works mainly on
AareTraceScraper and after that point she focuses on DynaMoose. In mid-2005 she has a
short period in which she is active in the Moose project.

• Developer kuhn is active for four years. His main projects include Moose, Hapax and
CodeFoo.

88 5.2 The SCG Ecosystem

lanza

CodeCrawler

girba
Moose

Van

Mondrian

greevy

DynaMooseAareTraceScraper

kuhn

Hapax

CodeFoo

Figure 5.7. The shapes of commit activity of six of the longest contributors to the ecosystem

• Developer lanza works on six projects during four years then continues with a low level of
activity for two more years while maintaining one of his projects. The two main projects
that he works on are CodeCrawler and Moose.

One observation is that all the top developers contribute to multiple projects. Another obser-
vation is that all of them contribute to various degrees to the Moose project.

89 5.2 The SCG Ecosystem

Developer Collaboration

The information in the Developer Activity Timeline does not reveal information about the col-
laboration between developers. To learn about this aspect of the ecosystem, we inspect the
Developer Collaboration viewpoint.

Figure 5.8 presents a Developer Collaboration viewpoint on the same set of developers from
Figure 5.6. The fill intensity of a node is proportional to the number of commits to the ecosystem.
The links between them have the color of the projects that they work together on. By inspecting
the links between the developers we encounter projects that we have already encountered in our
project-centric analysis: Moose, Mondrian, etc.

wuyts

locher
lanza

renggli

meyer

lienhar...

wettel

bunge

arevalo

girbaducasse

kuhn

abdeen junker

matter greevy
dambros

DynaMooseChronia

Moose Mondrian

Figure 5.8. Collaboration relationships between the most active subset of developers in the
SCG ecosystem

We see that from our subset of developers, there are only two who work alone: arevalo and
wettel. All the others collaborate to different degrees on multiple projects with girba, lanza, kuhn,
ducasse at the center of the graph being involved in a large number of collaboration relationships.
We also see that greevy who is the second most active developer in the ecosystem in terms of
commits, collaborates with two other developers.

We conclude that the main group of developers in the SCG ecosystem has been collaborating
extensively on the core projects of the ecosystem.

Concluding the developer-centric analysis

In this section we have seen that in the SCG ecosystem, various aspects of the developer activity
and collaboration follow a Pareto rule. Less than 20 percent of the developers contributed the
majority of code; less than 20 percent of the developers have been active for more than 80%
of the total number of man-months. In general, understanding the projects on which the most
important contributors collaborate is likely to lead to discovering important components of the
ecosystem. In the SCG case, four of the most active developers contribute to multiple projects,
and there is at least one project to which all of them contribute.

90 5.2 The SCG Ecosystem

5.2.3 Analyzing a Framework in the Context of the Ecosystem

Understanding a project in the wider context of its ecosystem can reveal information that is not
visible if one analyzes only the project. In this section we will analyze a framework that is part
of the SCG ecosystem. Three possible framework understanding scenarios are:

1. A potential user is contemplating using a framework. What are the classes in the frame-
work that the other clients are using?

2. A client of the framework wants to make sure that he is using the framework in the right
way. What are the patterns of usage that other clients are using?

3. A developer is maintaining a library. How are people using his code? Who is using which
parts of his code?

In this section we show that these questions can be answered by analyzing a project in the
context of its ecosystem.

An Overview of Moose

In the previous sections we have encountered Moose as one of the projects that reappeared as
an outlier in many of the views. This is not surprising, since Moose is the reverse engineering
flagship of Software Composition Group [NDG05]. It is a framework that is the basis of multiple
projects, including our own Softwarenaut. Several of the observations we made about moose
were:

• It is one of the oldest and largest projects in the ecosystem

• Many projects depend on it; some are discontinued, and some are currently active.

• It has the highest number of commits to its repository and the top four active developers
in the ecosystem have been working on it during its lifetime.

Figure 5.9 presents three views of the Moose project: (1) the size/activity evolution, (2) a
tag cloud of the terms used in the code of the project, and (3) a list of the developers involved
in the project.

The size/activity evolution chart shows that the project has been active for 7 years. The size
grows in the first month to 90 classes (it is likely that the project is imported into the ecosystem)
and after that, grows slowly to 200 classes. There are a few points in time were the size of the
code is actually decreasing; it is very likely that the decrease in size is a result of refactoring.
The activity has peaks of more than 50 commits a month, with a large peak in mid-2006.

The word cloud shows that the frequently used terms in the code of the project are related
to object oriented modeling. The terms are extracted from the code and then stemmed based on
the Porter stemming algorithm before being presented[Por80]. Terms like famix, import, class,
method, package are characteristic to reverse engineering. The term history exists as a result of
Moose supporting multiple version analysis.

Based on the number of commits to the project we can observe three types of developers that
contribute to the project: (1) developers girba, kuhn, lanza and ducasse are the main develop-
ers since they all have large number of commits; (2) developers wuyts, locher, greevy, abdeen,
tichelaar each contributed more than ten commits but that is an order of magnitude less than
the first group; (3) the remaining 24 developers contributed little to the project.

91 5.2 The SCG Ecosystem

Figure 5.9. Overview of Moose: the size/activity evolution, the contributors, and topics ex-
tracted from code analysis

Detailed Dependency Analysis

Having formed an opinion about the size and activity around the project, we move on to under-
standing the role of the project in the ecosystem. The main obstacle to understanding this role,
is the fact that Moose has no other documentation besides the comments that are scattered in
the code.

Since the project is written in Smalltalk, a language which does not implement the concept
of interfaces, or any means of public and private visibility, reading the code to discover the
functionality exposed by the framework means reading all the code and this is not the ideal
approach.

A better way of finding out how to use the project is to see how other projects are using it.
In order to discover the way the project is used in the context of the ecosystem, we switch our

analysis from the high-level analysis based on the lightweight ecosystem model to the detailed
dependency analysis that is possible based on the detailed project model. We model Moose and
the systems that are dependent on it using the detailed project model.

Architectural Views in an Ecosystem Context

SPO provides the possibility of visualizing architectural views of the system and highlighting
various aspects on it. Figure 5.10 highlights the information about the invocations and the
inheritance in the context of the ecosystem on an architectural view of the most recent version
of Moose.

92 5.2 The SCG Ecosystem

The classes that contain functionality invoked by other classes in the ecosystem are high-
lighted with red. The classes that are subclasses by other classes in the ecosystem are highlighted
with blue. The classes that are both invoked and subclasses are highlighted in violet.

AbstractEntity

Group

Invocations
Inheritances
Invocatins &
Inheritances

Legend

Figure 5.10. Moose in the context of the ecosystem

The figure shows ten modules from Moose and their interactions. Since it was adding de-
pendencies to many of the modules and cluttering the view, the MooseTest package was filtered
out. Also, to simplify the view, the dependencies that were abstracting less than 5 invocations
were filtered out too.

Figure 5.10 shows that only three of the modules in the view are visible for the other projects
in the ecosystem:

• MooseFAMIXModel is the package which contains the largest class in the system FAMIXClass
and the largest number of classes that are reused.

• MooseCore is the only module that contains two classes that are both subclassed and whose
methods are invoked from the ecosystem.

• MooseHismo is a package whose entire size is smaller than the size of the largest class in
the ecosystem.

93 5.2 The SCG Ecosystem

Without further detailed analysis it is not possible to assert with certainty but the view allows
us to presume that MooseCore package contains reusable code: other projects use functionality
from it, subclass classes from it, and it only depends weakly on the MooseFAMIXModel package.
The two classes AbstractEntity and Group which are both invoked and subclassed in the same
time, are good starting points for a more detailed reuse analysis.

The Contextual Project Dependency Matrix

Figure 5.11 presents the Inter-Project Dependency Map between Moose and eight of the projects
that depend on it in the SCG ecosystem. The figure shows that methods in 17 of the 222 classes
in the project are invoked from other projects. A developer of Moose that is interested in seeing
how the other projects in the ecosystem depend on the project can look at two aspects of the
dependencies:

Chronia CodeCity
Code

Crawler

Dyna

Moose
Maispion Quala

Small

Dude

Software

naut

InvocationsInvocationsInvocationsInvocationsInvocationsInvocationsInvocationsInvocationsInvocations

AbstractEntity 6/47 3/11

ClassGroup 1/1 5/6

ClassHistory 1/3

FAMIXAbstractNamedEntity 1/1

FAMIXAccess 1/6

FAMIXClass 19/35 4/11 7/11 2/3

FAMIXFile 1/1

FAMIXInheritanceDefinition 1/1 1/1

FAMIXInvocation 1/4 1/30

FAMIXMethod 1/1 5/38 2/5

FAMIXPackage 5/13 1/4

Group 1/4

ModelHistory 4/19

MooseElement 1/1

MooseModel 1/5 4/5 9/71 1/1 2/2

MSEModel 6/17

PackageHistory 1/3

InheritancesInheritancesInheritancesInheritancesInheritancesInheritancesInheritancesInheritancesInheritances

AbstractEntity 1 4 9 1 6

AbstractFileImportTest 2

Group 1 3 4 2

Figure 5.11. The dependency matrix between eight other projects in the SCG ecosystem and
Moose

• Strength. From the strength point of view there are two extreme types of project:

1. Strongly coupled. Projects CodeCity, DynaMoose, and Softwarenaut are very strongly
dependent on Moose.

94 5.2 The SCG Ecosystem

2. Weakly coupled. Projects Chronia, Maispion, and Quala are very loosely coupled with
Moose

• Composition. Based on the combination of invocation and inheritance dependencies we
can distinguish three types of projects:

1. Projects that only invoke functionality in Moose. This is the case with CodeCity, Code-
Crawler, Softwarenaut. In this case it happens that all the three tools are visualization
tools that build on top of the framework without trying to extend it.

2. Projects that only inherit from Moose. This is the case with Maispion and Quala. Both
the projects subclass AbstractEntity, and the former also subclasses Group.

3. Projects that both invoke and inherit from Moose. Three of the projects are in this
category: Chronia, DynaMoose, and SmallDude. All the three projects subclass Ab-
stractEntity and Group, and SmallDude also subclasses AbstractFileImporterTest.

A framework user would be interested in discovering the classes that are the most widely
used in the framework since they could represent good starting points for a deeper understand-
ing of the project. Figure 5.11 shows that four classes are used by more than 50% of the projects
that depend on Moose:

1. MooseModel. Methods in the class are invoked from five systems and it is the only class
that is used by Chronia. Figure 5.12 shows that the class does not provide a large interface:
three of the dependent systems use a single method from it.

Chronia CodeCity
Dyna

Moose
Small Dude Softwarenaut

MooseModel 1/5 4/5 9/71 1 2

 addEntity:(Object) 5 1 12

 allTraceClassAssociations() 4

 allTraceMethodAssociations() 4

 allTracePackageAssociations() 2

 allTraces() 32

 asMSEString() 1

 createTraceEntityAssociations() 7

 createTraceMethodAssociations() 6

 exportMSEOn:(Object) 1

 exportMSEToFile() 1

 getOtherTraces:(Object) 3

 inferNamespaceBelongsToBasedOnNames() 1

 isModel() 1

 isSmalltalk() 2

 simpleModel5() 1

Figure 5.12. The details of the dependency between the ecosystem and MooseModel

2. FAMIXClass. Methods in the class are invoked from four systems in the ecosystem. The
number of distinct methods that are used from this class is higher than in the case of
MooseModel: CodeCity uses 19 of the methods defined in the class.

95 5.2 The SCG Ecosystem

3. AbstractEntity is the most subclassed class in Moose. Chronia and Quala add a subclass
each, DynaMoose adds four, SmallDude adds six, and Maispion adds nine classes. Figure
5.13 shows the details of the invocations table. From the name of the subclass defined by
Chronia (AbstractChroniaEntity) we can assume that the project defines other subclasses.
The class comment is: “AbstractEntity represents any entity in a model”. Therefore, every
framework extension that wants to add a new entity to the model needs to subclass this
class.

InheritancesInheritancesInheritancesInheritancesInheritances

Chronia Dyna Moose Maispion Quala Small Dude

AbstractEntity 1 4 9 1 6

AbstractChroniaEntity Trace Bridge CCPhaseWrapper Developer

Reference UserIdentity SourceCodeLine

AbstractEvent Mailbox Detector

TraceEntityAssociation AbstractRepository SourceCodeFragm
ent

AbstractRepositoryUser Duplication

AbstractProject Multiplication

Activity

EmailUser

Thread

AbstractFileImportTestAbstractFileImportTest 2

MooseMetricsTest

MooseFileTest

Group 1 3 4 2

AbstractChroniaGroup AliasGroup UserIdentityGroup DuplicationGroup

ActivationGroup EmailUserGroup MultiplicationGroup

TraceGroup EmailMessageGroup

ThreadGroup

Figure 5.13. Subclassing between four projects in the ecosystem and Moose

4. Group is subclassed ten times in total in projects Chronia, DynaMoose, Maispion, and Small-
Dude. In Chronia it has a direct subclass (AbstractChroniaGroup) which has in turn four
other subclasses. Looking at our case studies we can see that there is a parallelism between
subclassing AbstractEntity and subclassing Group as it is illustrated by the pairs: Duplica-
tion – DuplicationGroup, Multiplication – MultiplicationGroup, Trace – TraceGroup, etc.. The
only exception is the single subclass Moose has in Quala.

The developers of the projects that depend on Moose would be interested in comparing the
way they use the framework with other users. Four projects are alone in using certain classes:

1. CodeCity has the highest number of classes that only itself uses. One class that models a
software artefact (i.e.,FAMIXAccesss and three classes that are modeling histories of soft-
ware artefacts (i.e.,ClassHistory, PackageHistory, ModelHistory, PackageHistory). A second
set models relationships between model elements: FAMIXAccess, FAMIXInheritanceDefini-
tion.

2. DynaMoose is the only project that depends on MooseElement. At a closer inspection we
discovered that the class AbstractEvent calls the method freshID from the private protocol
of MooseElement1. This is likely a use which was not intended by the Moose developers.

1Protocols are a Smalltalk mechanism for annotating methods. Its main purpose is supporting browsing and naviga-
tion but developers use it also to suggest properties of methods. In this case the protocol suggests that the method is

96 5.2 The SCG Ecosystem

3. SmallDude uses two classes that the other projects do not and subclasses one test (i.e.,
AbstractFileImportTest). The interesting thing is the subclassing of a test case which does
not represent a problem, since the developers expected it to be subclasses: they created
an abstract class.

4. Softwarenaut is the only project using the MooseModel class. At a closer inspection we dis-
covered that the class is deprecated and does not exist anymore in the most recent version
of Moose, but instead has been replaced with MooseModel, a class that Softwarenaut also
uses. Normally Softwarenaut should not be able to refer both the classes in the same time
since they represent the same concept in different versions of the framework. After fur-
ther investigations we discovered that the project references the discontinued class from a
region with dead code so this is why we were not aware of it. Based on this observation
we decided to remove the dead code and the references to MooseModel.

Concluding the Moose Analysis

In this section we showed that if we extend the Lightweight Ecosystem Model with the detailed
project model we can extract information about the usage of Moose by the other projects in
the ecosystem. We studied two types of usage: invocations and inheritance. We visualized the
information about the classes in Moose used by other projects in the ecosystem with dependency
matrices as well as by overlaying dependency information on top of an architectural view of
Moose. For each type of usage, we discovered that there are only a few key classes in Moose that
are used in the ecosystem.

Analyzing the Moose framework in the context of its ecosystem provided results that can be
useful for three types of users:

• A Potential Client. Since Moose has no external documentation besides comments scattered
through the code, a potential client of the framework would need to read the source
code and the associated comments, or to ask the Moose developers how to use it. In this
section we showed that by analyzing the framework in the context of the ecosystem we can
generate architectural views which could support such a potential user in understanding
what are the key classes of the framework. We have seen that all the classes that are
interesting for a client are found in two packages and a user would probably start by
understanding those two packages. These are the classes that are most likely to be useful
for a new project which is built on top of Moose.

• Existing Clients. We have seen how a client can compare the way he is using the framework
with the way the other existing clients use the framework in order to discover unusual
patterns of usage. In our case we discovered that the Softwarenaut project was using a
class that was deprecated and not used anymore by any other active project.

• The Developers. Based on the information presented in the architectural views in this
section, the developers of the framework can be aware of the classes that are used by the
clients of the framework. This means that they can easily deprecate a class if they see
that no other project depends on it and will think twice before deprecating a class that
everybody counts on (like MooseModel).

supposed to be private, and not called from a different class. However, there is no language mechanism for restricting
access to the method and AbstractEvent calls it.

97 5.3 An Industrial Experience Report

5.3 An Industrial Experience Report

In our search for an industrial partner interested in analyzing its project ecosystem we ap-
proached Soops BV, an Amsterdam-based software company, and asked if we could analyze their
super-repository using SPO. For privacy reasons they denied, but offered instead to install the
tool on their own, experiment with it themselves, and report back their experience. We present
the report here and discuss it later.

Overview

The development team at Soops has been using Store since it was first released in the 5i version
of VisualWorks. Over time we found that bundles2, were too cumbersome to be used in an agile
process, particularly in an everybody owns the code setting, so Soops has since declined to use
bundles to group code packages, instead we opted to use a different mechanism called lineups 3.
In our case the repository contains both lineups and bundles, where bundles are created by parties
outside Soops and lineups relate to code created at Soops. The first thing that needed to be done
was to adapt SPO to support lineup analysis. An initial analysis run reports 249 projects in the
repository, adjusting the filters to only show activity in the past year reduces this number to 188.
All further analyses are restricted to the past year.

Developer Activity Timeline

The first thing that we wanted to see was the history of developer activity. Looking at Figure 5.14
some things stand out.

C

E

T

Figure 5.14. Developer Activity Lines during the last year in the Soops repository

User ’Mpf’ is only occasionally contributing to the repository. The reason is that he is outsourced
to customers of Soops and hence shows gaps in his commit behavior. Packagebot only committed
early in the year, this reveals a breach of Soops’ publishing protocol: the PackageBot login was
not intended to be used for committing, but this was not enforced by access controls. Three of the

2Bundles are the Store mechanism for projects. The term will be used interchangeably with projects in this section
3Lineups are a mechanism for specifying dependencies between projects in Store.

98 5.3 An Industrial Experience Report

developers (marked E, C and T) show no activity over this period of time. These three developers
were external hires in earlier years, their names still appear in the graph because the projects they
worked on are still under active development.

Developer Collaboration

To learn more about the developer structure we switch to the Collaborations perspective. Figure 5.15
shows a couple of disconnected developers, of those ’aknight’ and ’chronos’ refer to authors of third-
party packages. PackageBot should have never committed as explained earlier. Marco is a developer
who writes test suites, he does not contribute application code so he rarely commits into the same
packages as the developers. ’Mpf ’ is in the same position as Marco but has helped develop the test
tool itself as well, which shows as some of his collaboration edges in the graph. Eric was maintaining
a single project, mainly together with Tom. The remaining people show strong collaboration which
reflects the situation at Soops where developers regularly switch between projects. Trying to untangle
this central knot of collaborations by switching to a hierarchical layout gives little extra clarity,
collaboration appears to be abundant.

Reinout

Terry

Tom

PackageBot

Nic

Olaf

tom

Eric

Mac

Adriaan

Cham

Georges

Albert

Cees

Mpf

Marco

Christiaan

georges

chronosaknight

E

CT

Figure 5.15. At Soops collaboration is abundant

Activity History

As we have seen in the previous view, several of the developers are not part of the core team of the
company so we filtered their projects. On the remaining projects we generated an Activity Evolution
perspective, shown in Figure 5.16.

Looking at the commit activity there is one project standing out as being ’large’, mousing over it
reveals that this is the ’Jun’ project, a third party OpenGL access layer that has been used at Soops for
research purposes. Jun is not distributed in a format compatible with the Store repository. Scripts
are available on the web to convert Jun to Store but this proved to be cumbersome, quite a large
number of commits were required before a properly loading project bundle was created. Since Jun is

99 5.3 An Industrial Experience Report

Jun

a)

b)
1 1

1A A A

B

C

Figure 5.16. Activity Evolution in the Soops Repository between June 2006 and June 2007 with
(a) and without Jun (b).

not core to Soops’ products, we elide it from the graph using the filters supplied by SPO (displayed
in part (b) of the figure).

The graph now shows a more regular spread of activity over the projects, interpreting the graph
requires ’mousing over’ the various parts to see which project names they are associated with. This
reveals that bundles are drawn as the bottom layers of the graph and lineups as the top layers. Since
at Soops this dichotomy aligns closely with the third-party vs Soops’s software we can concentrate
on these two halves separately. Looking at the bottom half we see three surges of activity (marked
as A) on July 2006, March 2007 and May 2007. Mousing over reveals that the brown swaths are
related to the ’Base VisualWorks’ bundle, these activity surges show at what times Soops published a
VisualWorks release into this repository. The first two peaks correspond to builds internal to Cincom4

that Soops has access to, the last one signifies the official release of VisualWorks 7.5. Further
inspection of the bundle names reveals that these commits in 2006 only comprise two bundles (’Base
VisualWorks’ and ’Tools-IDE’) present in the base Smalltalk image, whereas the two activity peaks
in 2007 comprise many more bundles related to externally loadable libraries delivered with the
VisualWorks product.

4The supplier of VisualWorks Smalltalk.

100 5.3 An Industrial Experience Report

Moving our attention to Soops specific projects in the top of the graph we see two that stand
out by their activity: the light blue swath with its activity peak in August 2006 (marked as B)
and the brown ribbon spanning from February to June (marked as C). Mousing over the interactive
diagram reveals that the first one is related to a ’plugin’ created by Soops to communicate with a
third-party product. This project had many technological challenges at lower layers (multi-threaded
COM connect) requiring several rewrites of it’s core components and this is why the development
spanned half a year. Moving on to the brown area at the right this shows to be a major application
that has only recently been ported from VisualWorks version 3 to version 7.5. Since version 3 uses
another SCM tool (Envy) than 7.5 it has never been committed to this repository until porting the
project got underway in February 2007. As can be seen activity on that modernization project has
steadily grown since it was ported.

Size History

Looking at the sizes of projects (Figure 5.17, again with ’Jun’ elided) we can see that the size of the
code in the repository has a general tendency to increase even if there are periods in the lifetime of
the super-repository where the size decreases. Looking at the projects in the repository we can see
multiple projects which are being touched intermittently, a sign of ongoing maintenance.

A

B

C

Figure 5.17. Size Evolution in the Soops repository

One of the most prominent projects in the figure is the somewhat ’fat’ one at the bottom signify-
ing the Cincom product which hardly varies in volume (marker A), except once in march 2007 where
it collapses slightly. The light-blue line that disappears in March 2007 (marker B) is the ’Refactoring
Browser’ tool that has been renamed and assimilated into existing bundles. Oddly SPO shows an
overall reduction of code here while we would expect no change of size, merely a different distribu-
tion between projects. In the range June - September 2007 we see that Soops’ code also decreases in
size, this can in part be attributed to changes in code generating tools that were introduced, sparser
code was generated for the ’Soops-API’ project. The reasons for other declines of size are not readily
apparent, trolling through the release comments shows that code for one project ’Market Config-
uration Server’ has been moved to other packages. It seems that SPO no longer counts this code
as part of a project, this could be due to the fact that Lineups don’t carry enough information to
automatically discern between code contained in a project and code that is a mere prerequisite. The
bands on top of the graphic starting in February (marker C) relate to the project mentioned earlier
that was ported from VisualWorks 3.

101 5.4 Discussion

Concluding the Soops Case Study

The experiment with Soops was the first time we handed over one of our tools to be tested
without our presence. Although we did not have control over the experiment we were satisfied
to see that the developers were in terested in using the tool and reporting on its usage. However,
as soon as they tried to apply it, they discovered that the way they were defining their projects
was different than the one recommended by Store. They were using an ingenious way of defining
projects that, although using the Store facilities, was circumventing the traditional conventions
in order to obtain increased control and customizability. In order to adapt to their peculiar
approach, we had to modify our Store importer to take into account their convention. While we
modified the importer, the meta-model needed no modifications. The big lesson learned is that
we need to be ready to adapt the tools to the peculiarities of the case studies.

5.4 Discussion

Going into Project Details

We performed the Soops case study with an early version of SPO. At that time, we we only
had available views which were based on the Lightweight Ecosystem Model. In the SCG case
study, we added the Inter-Project Dependency Map and the Contextual Project Dependency Ma-
trix which provided us with important information about the structure of the projects in the
ecosystem.

However, looking at the high-level dependencies between projects we could see that many
projects in ecosystem depend on Moose without knowing the reason for it. Going into the details
of the dependencies between Moose and the other projects in the ecosystem revealed the key
classes that were the reasons for the dependencies, the classes that other projects have to use if
they want to use the services of Moose.

The Importance of Interactivity

In the SCG case study we saw that it was valuable to have the possibility of navigating between
views, customizing them, and corroborating observations between them in order to understand
the importance of the projects and developers in the ecosystem. At times we needed to zoom
into an individual project and discover the detailed way in which it interacted with other projects
in the ecosystem.

In the Soops case study the interactive features of SPO were also useful. Upon analyzing
the natural language terms in the report we observed the various terms that were suggesting
interactive actions were repeated through the report: switch to, mousing over, looking at, elide it,
further inspection, we see.

On Dependency Analysis

In this case study we have used two ways of detecting dependencies between projects: the first
uses meta-information existent in the versioning system about the dependencies between the
projects; the second aggregates low-level information extracted from static analysis of the code.
Both types of information have their own limitations. On the one hand, the meta-annotations
need to be specified by the developers and it is sometimes that case that the specified dependen-
cies are out of sync with the code. On the other hand, the aggregated low-level dependencies are

102 5.5 Conclusions

sometimes imprecise. In a dynamic language, if a method is defined in two or more projects we
cannot be sure, by performing static analysis of the code, which project is supposed to satisfy the
dependency in the given context. In SPO, we let the user to choose whether to ignore ambiguous
dependencies that could be fulfilled by multiple classes in multiple projects.

Other Types of Views

In this section we showed how overlying on top of an architectural view information about
the usage of a given project in the context of the ecosystem can support understanding the
project. We exemplified this approach with architectural views generated by our tool Software-
naut. There are multiple other types of architectural views and diagrams that can present the
basis on which to highlight the interactions of the system with the ecosystem. A tool that wants
to be useful for industrial applications would need to be able to integrate multiple such views.

Developer Collaboration and the Structure of the Organization

We have seen two examples in which the structure of the organization was reflected in the
collaboration relationships as they can be extracted from the super-repository of an ecosystem.
This was visible both in the case of Soops, an organization which functions on the principle
of everybody owns the code, and SCG, an organization where people have a certain degree of
freedom to choose whether they want to associate and collaborate or to work alone.

5.5 Conclusions

In this chapter we have presented two case studies of ecosystem analysis. The first one was
carried by us and had three phases: in the first phase, we observed and analyzed the activity
and collaboration of the developers; in the second phase we continued with project analysis
discovering projects which are important to the ecosystem; in the third phase we focused on
such a critical project, the Moose framework, and analyzed one of its architectural views in the
context of the ecosystem. Through the analysis, we discovered facts that can be used by both the
developers of the system and the clients of the framework. The second case study was performed
by an industrial partner and limited to the Ecosystem Structure Discovery.

Part III of the thesis will present techniques for obtaining architectural views of software
systems.

Part III

Architecture Recovery

103

We have seen in the previous part that architectural views of individual systems can be aug-
mented with information about the interaction of the system with its ecosystem. These views
can support both the developers and the clients of the subject projects.

However, obtaining those architectural views is a process that has not been fully automated
yet. The process requires manual intervention to perform data exploration, cleaning and filter-
ing. In the context of ecosystem analysis, where the focus is not the system but the ecosystem,
automating the architecture recovery as much as possible is critical.

In this part of our thesis, we show how we extended the existing body of research in architec-
ture recovery towards automating the recovery process and focusing the analysis. We present a
technique for automating the top-down exploration process by recommending operations based
on the properties of the modules of the system. We then provide a way of focusing on a subset
of the existing relationships in the software system which is based on a classification of the re-
lationships based on their evolution in time as it can be recovered from the versioning system
information.

105

106

Chapter 6

Package Patterns for Architecture
Recovery

One way of discovering architectural views of a system is using top-down exploration tools. During
top-down exploration, the user navigates the package hierarchy of the system. He can choose from
a large number of exploration paths after every interactive exploration operation.

In this chapter we propose a classification of packages based on their interaction with other
packages into a catalog of package patterns. The patterns can be used to augment exploration with
suggestions of the operations that will lead to architecturally relevant views.

The classification is based on information regarding the structural properties of the packages as
well as considering each package in the wider context of the system and considering the way each
package interacts with one another.

We validate the relevance of the patterns by analyzing their frequency of occurrence in six open-
source systems.

107

108 6.1 Introduction

6.1 Introduction

According to Jazayeri et al.,

Architecture recovery refers to the techniques and processes used to uncover a sys-
tem’s architecture from available information [JRvdL00a].

In order to recover the architecture of a system, one needs to define architecture first. There
are many definitions of architecture and each captures the concept from a slightly different
viewpoint. The IEEE 1471-2000 standard defines software architecture as “the fundamental
organization of a [software] system embodied in its components, their relationships to each other,
and to the environment, and the principles guiding its design and evolution” [14700].

In the case of large software systems the architecture is specified through multiple architec-
tural views that correspond to a set of given architectural viewpoints. An architectural viewpoint
is a pattern or template from which to develop individual views by establishing the purposes and
audience for a view and the techniques for its creation and analysis. Even if different authors
propose different viewpoints [BCK97; Kru95; HNS00] the consensus is that multiple viewpoints
are needed for capturing all the various facets of software architecture.

Bass et al. propose three main types of viewpoints:

1. Module views present the modules in the system and their relations as they can be extracted
from the analysis of the code.

2. Component and connector views present runtime components such as servers, clients, pro-
cesses and databases and the mechanisms of communication between them such as sock-
ets, pipes, and remote procedure calls.

3. Allocation views map the various modules and components to the development environ-
ment and runtime environment.

Usually, architecture recovery tools focus on recovering module views through visualization
and interaction [MNS95; MK88; SM95]. While some steps of the process are usually automated
(e.g., fact extraction, view generation), none of the tools works completely without human inter-
vention. In some cases the user has to group related artifacts together based on their similarity
of purpose [MK88]. In others the user has to compare the architecture as-extracted with the
architecture as-predicted [MNS95]. Yet in others the user has to decide which exploration paths
to follow [SM95; LKGL05].

In this chapter we present a set of patterns of package structure that support the semi-
automation of the exploration process.

Structure of the Chapter

In Section 6.2 (p.109) we present the manual exploration process that is used in architecture
recovery. In Section 6.3 (p.111) we introduce two ways of looking at packages and inter-package
dependencies. In Section 6.4 (p.113) we introduce a visualization for packages that provides
an overview of the interaction of the package with the other packages in the system or in an
architectural view. In Section 6.5 (p.115) we distill a set of patterns of packages based on our
experience with the previously introduced visualization technique. In Section 6.6 (p.120) we
validate the relevance of patterns by studying their occurence in several open source systems.
We discuss our techniques in Section 6.7 (p.123) and we conclude the chapter in Section 6.8
(p.124).

109 6.2 Manual Exploration in Architecture Recovery

6.2 Manual Exploration in Architecture Recovery

Some programming languages feature modules as first class entities such as VisualWorks Smalltalk
with its packages and bundles that can be individually versioned and deployed. However, none
of the mainstream programming languages offers language-level support for modeling the ar-
chitecture of the system.

In this situation, the architectural concepts such as the components of a system are mapped
on other mechanisms that can either belong to the language (such as packages in Java) or be
external to the language (such as directories in C/C++).

Since the architecture recovery techniques that we present in this chapter are general enough
that they can work with any object oriented language, our only assumption about the way the
architectural components are represented in the source code is that they are by modules which
are containers for other modules and other artifacts. The contained modules do not need to be
necessarily of the same type as the containers, e.g., in Java packages are containers for classes
and other packages while classes are containers for methods and attributes.

Exploration Operations

Top-down exploration tools take a hierarchical decomposition of the software system and, start-
ing from the view with the highest abstraction level, allow the user to generate new views by
applying exploration operations [RMC91] that are applied on the working set. The working set is
the list of modules that are visible during the exploration at a certain moment. The exploration
operations transform the input working set in the following ways:

• Expand. By applying the expand operation on a node, the node is replaced in the view
with nodes representing its children. The operation can be represented in set notation in
the following way.

Ex pandN (WS) =WS− N + child ren(N)

• Collapse. By collapsing a node corresponding to a module, the node, together with all the
nodes representing the siblings of the module are removed from the view and replaced
with a node representing the parent module. In set notation the operation is represented
as follows:

CollapseN (WS) =WS− N − sibl ings(N) + parent(N)

• Filter. By filtering a node, that node (and implicitly its children) will be removed from the
working set. In set notation the operation is represented as follows:

F il terN (WS) =WS− N

Figure 6.1 shows how the working set is modified by the expand and collapse operations.
In a large system, the exploration of the hierarchical module decomposition results in an

explosion of possible exploration paths. Deciding which operation to apply on a working set
influences the views that can be obtained later during exploration. From the large number of
possible views that the user can generate, only a limited set will be relevant for the architecture
of the system.

110 6.2 Manual Exploration in Architecture Recovery

A B
A1

B

A2

A1 B1

A2
B2

A

A1 A2

A3

A4 A5

B

1 2

A

A1 A2

A3

A4 A5

B

A1 A2

A

A1 A2

A3

A4 A5

B

A1 A2

expand A expand B

collapse
A1 and A2

collapse
B1 and B2

Working
Set

Section
View

Working Set = {A,B} Working Set = {A1,A2,B} Working Set = {A1,A2,B1,B2}

Figure 6.1. Reading from left to right the figure presents two successive expand operations.
Reading from right to left the figure presents to successive collapse operations.

Architecturally relevant views

We consider that a view is relevant for the architecture of the system when all the modules in the
working set represent architectural components and they are at the right level of abstraction.

Figure 6.2 shows a system in which three subsystems are modeled in modules X, Y and Z.

B

A

X Y

Z

C

X1 X3X2

Figure 6.2. A containment hierarchy of modules where the architectural components are mod-
eled in the modules X, Y and Z.

In this case, two views that are not architecturally relevant are the following:

• A view in which X is expanded into its submodules X1, X2, and X3. Such a view is not
architecturally relevant because the three submodules do not represent subsystems: they
only help in the implementation of subsystem X.

111 6.3 Packages and Dependencies

• A view presenting B unexpanded. Such a view is not architecturally relevant since B does
not represent a subsystem: it is merely a container for the two components X and Y.

The example shows that the responsibility of deciding whether a view is relevant or not is
carried by the reverse engineer. During the navigation process, he has to analyze each view and
decide whether all the modules in the view are at the right abstraction level or not. After each
exploration operation, the reverse engineer has to address the following questions for each of
the modules in the view:

1. Is the module at a higher abstraction level than needed? Then expand it.

2. Is the module at the right abstraction level? Then do not expand it.

3. Is the module at a lower abstraction level than needed? Then collapse it.

4. Is the module not relevant for the current architectural view? Then filter it out.

5. Is there a set of modules that need to be grouped into a single component? Then merge
them together.

The challenge that results from here is providing a way to automate the module characteri-
zation process such that the user does not have to analyze every module in the working set after
every exploration operation.

Our solution to this problem is based on a classification of modules based on their relation
with the other modules in the system and on their internal structure. The result of the classi-
fication is a set of module patterns that have associated exploration operations that need to be
performed once the modules appear in a view. The solution that we present in the remainder of
this chapter assumes that the following constraints are respected:

• The system is written in an object-oriented language.

• The system is decomposed in a rich hierarchy of modules and submodules. This is usually
the case in large software systems.

• The architectural components are found at diverse depth levels in the module hierarchy.

6.3 Packages and Dependencies

In the remainder of this chapter we use examples of modules from several Java case studies, and
we consider the system decomposition to be represented by the package hierarchy.

Packages are the main mechanism for the decomposition and modularization of a system
written in Java, and they are essential for the understanding and maintenance of non-trivial
programs. The Java language specification defines packages as scoping mechanism. In practice
the programmers use packages also as a mechanism for the hierarchical organization of the
source code. The semantics of a package then become ambiguous since it might refer to the
entire hierarchy under it or simply to the classes in the scope of the package.

To avoid confusion we introduce two terms for the two concepts. We call a restricted package
the root of the package hierarchy, or the package seen as a scoping mechanism, and an extended
package the package as a module, which is organized hierarchically [LLG06]. When we talk
about restricted packages and extended packages we consider them units of organization and

112 6.3 Packages and Dependencies

containers for classes: the restricted packages contains only the classes in its own scope while
the extended package contains all the classes in its scope together with all the classes in the
extended packages it may contain.

Dependencies between packages

Some languages support explicit relationships between modules. This is the case with import
statements in Java or the prerequisite relationships between packages in Visual Works Smalltalk.
However there are two problems with these explicit relationships:

1. They are not universal. Software systems written in the C programming language do not
have the concept of a module as an explicit entity. Modules are implicitly inferred from
the directory structure of the project. Since there is no concept of a module, there will not
be a concept of an explicit inter-module dependency.

2. They are insufficient for some types of analysis. For some understanding tasks, the depen-
dency relations need to be aggregated from lower level packages to higher level ones and
from the classes to the packages. Sometimes even the number of the dependencies be-
tween two packages is important for the understanding of the relationship between them.

To address these two problems we lift relationships between the low-level entities such as
classes and methods to the package level. The relationships between the low-level entities are
explicit in the source code and they can be extracted from the code. Dependencies can be either
invocations between methods of a class, inheritance relations between classes or access relations
between classes. These types of relations are defined by the FAMIX language-independent meta-
model that describes the static structure of object oriented software systems 1.

Based on the two perspectives on a package that we have presented earlier, there are two
types of package dependencies:

A

B

C1

C

D

C2

Restricted
dependency

InvocationExtended
dependency

C4

C3

C5

Figure 6.3. The two types of dependencies between packages

• A Restricted Dependency is the dependency between two restricted packages. It represents
the set of all the low-level, explicit dependencies between the elements contained in the
two restricted packages. In Figure 6.3 the dependency between the restricted packages B
and D consists of the invocation between C1 and C2. There is no dependency between the
restricted packages A and C.

1http://moose.unibe.ch/docs/FAMIX

113 6.4 Vertical Package Slices

• An Extended Dependency is the dependency between two extended packages. It represents
the set of all the low-level, explicit dependencies between the elements defined in the two
extended packages. In Figure 6.3 the dependency between the extended packages A and
C consists of two invocation: one from C1 to C2 and one from C1 to C5.

Both types of inter-package dependencies have a direction. To indicate the direction, we use
the terms incoming dependencies and outgoing dependencies.

Restricted Package Types

Our goal is to characterize an extended package based on its interaction with other packages
in a working set. To do this we characterize the interaction of each of its subpackages with the
extended packages in the working set. Based on its interaction with a set of extended packages
in a working set, a restricted package can be classified in four types:

1. Silent package - it has no dependencies with the extended packages in the working set.

2. Consumer package - is a dependency relation directed from the restricted package to at
least one of the packages in the working set.

3. Provider package - is a package for which there is at least a dependency relation from the
packages in the working set to the considered restricted package.

4. Hybrid package - is a package for which there are dependencies in both directions between
the package and the packages in the working set.

6.4 Vertical Package Slices

Figure 6.4 a) proposes a package visualization called Vertical Package Slices used for characteriz-
ing the interaction of an extended package with other packages in a working set. The interactions
represent dependency relations between restricted packages.

Outgoing Invocations
Count

none high

Incoming
Invocations Count

none high

Silent

Consumer

Provider

Hybrid

Restricted Package
Types

Extended Package
Example

a) b) c)

Figure 6.4. a) the color coding. b) the four types of restricted packages; c) an example of the
way an extended package is represented

Figure 6.4 presents the construction principle of the visualization. The extended package is
represented as a tree. Each restricted package is represented as a circle with a red border if there

114 6.4 Vertical Package Slices

are invocations going out of the package and a blue fill if there are invocations coming into the
package. The shade of each color is proportional to the number of invocations it represents (e.g.,
the larger the number of outgoing invocations for a restricted package, the darker the red border
of its representation).

The visual representation of the four types of packages that we have presented before are
presented in Figure 6.4 b). Figure 6.4 c) presents the way virtual package slicing is applied to an
extended package by applying the visual convention on each individual restricted sub-package.

By using the vertical package slices visualization, we can characterize the interaction of an
extended package and its working set. Figure 6.5 illustrates this on a package from the Azureus
2.5.4.0 case study. The top visualization presents an architectural view of com.aelitis.azureus.core
and its dependencies to the other packages in a working set. The figure offers a birds-eye view on
the interactions, but it hides the rich hierarchical structure that lies behind com.aelitis.azureus.core
and the way the sub-packages in this hierarchy interact with the working set.

The bottom view presents the vertical package slices of the com.aelitis.azureus.core in the same
working set as the top view. The view highlights the way each of the subpackages contributes to
the interaction with the working set.

Figure 6.5. The dependencies between between com.aelitis.azureus.core and a working set of
the packages in Azureus 2.5.0.4 and the vertical package slice of com.aelitis.azureus.core

115 6.5 Package Patterns

6.5 Package Patterns

After experimenting with the vertical package slices we observed that several patterns occurred
over and over. This section presents four of the patterns we encountered that support aug-
menting the exploration with suggestions about the worthiness of following certain exploration
paths.

The patterns are organized as a catalog and are presented using the following structure: short
description, detection rule, suggestion, rationale, and discussion. The Suggestion is the action
that is recommended for the conforming packages. The reason for the suggestion is explained in
Rationale. The Detection Rule is a set of tests that are used to detect whether a package conforms
to the pattern or not. A Discussion ends the description of the pattern.

While presenting the patters we give examples of occurrences of the patterns in open source
systems. The 6 systems that we consider are listed in Table 6.1. They are all open-source
systems, that were chosen at the time of the analysis because of their high level of activity on
SourceForge.net.

System Purpose Version
ArgoUML UML modeling 0.16.1
Azureus BitTorrent client 2.2.0.2
Columba Java email client 1.0 RC2
Hipergate Customer relation management 2.1.17
Infoglue Content management platform 1.3.2
jEdit Text editor for programmers 4.3 pre2

Table 6.1. Overview of the six open-source systems used during the package pattern validation
experiments

The names of the four patterns are: Iceberg, Autonomous, Archipelago, and Fall-Through.

116 6.5 Package Patterns

6.5.1 Iceberg

An Iceberg is a package on which other packages in the working set depend, but the dependency
is limited to the restricted version of the package. This means that from the point of view of the
other packages, its subpackages are hidden: all they see is the tip of the iceberg.

c)b)a)

Figure 6.6. Possible Configurations for Iceberg packages. a and b are from Azureus while c is
a Perfect Iceberg from Infoglue.

Suggestion: Do not expand the package

Rationale: Although the subpackages of such a package might use functionality provided by
other packages in the working set, the extended package acts as one logical provider of
functionality and the understanding of the other packages would not benefit from expand-
ing it.

Detection Rule: An Iceberg is a package for which the following rules hold:

1. The package in the restricted sense is either a Provider package or a Hybrid package.

2. None of the descendant subpackages in the restricted sense is a Provider or Hybrid
package.

Discussion: A special case of the pattern is a Perfect Iceberg for which all the subpackages are
of type Silent. Such a package is probably a well delimited component and unit of reuse
or it could be an implementation of the Facade design pattern [GHJV95]. An example of
such a package is package c) from Figure 6.6.

A different kind of Iceberg package could be detected by statistical means as being a pack-
age for which the exposed functionality/defined functionality ratio is very low.

117 6.5 Package Patterns

6.5.2 Fall-through

A Fall-Through package is one that contains a single subpackage and whose restricted version is
a Silent package. Such a package should be expanded as it provides no interesting information.

a) b) c)

Figure 6.7. Possible configurations of Fall-Through packages. a) and c) are from Infoglue and b)
is from Azureus

Suggestion: Expand the package.

Rationale: The description implies that the only information that such a package could pro-
vide would be conveyed by its name. There is no architectural information loss if the user
expands the package; on the contrary, he gains information, since by expanding the pack-
age the name of the inner package becomes visible, and the visible information becomes
more precise.

Detection Rule: For a package to be a Fall-Through package it has to respect two conditions:

1. The package should have only one direct subpackage.

2. The package seen in a restricted sense should be a Silent package.

Discussion: Usually the top level packages in a Java system are Fall-Through packages. This
is a result of having the top-level packages in a hierarchy mimic the domain name of the
publisher (e.g., org.bouncycastle.*).

The suggestion might conflict with other suggestions in the case where several patterns ap-
ply for the same package (e.g., Autonomous pattern). In case of conflict, the Fall-Through
suggestion should have priority.

118 6.5 Package Patterns

6.5.3 Autonomous

An Autonomous package is one which contains at least one Provider subpackage and no Con-
sumer or Hybrid subpackages. In other words, an autonomous package does not depend on the
other packages in the working set.

c)b)a)

Figure 6.8. Possible configurations of Autonomous packages. Package c) is from jEdit and is
also classified as Fall-Through

Suggestion: Do not expand the package.

Rationale: Such a package does not depend on any other packages in the working set. This
means that it is an independent provider of functionality.

Detection Rule: For a package to be an Autonomous package it has to respect two conditions:

1. At least one descendant of the package, or the package itself, regarded in the re-
stricted sense should be of type Provider.

2. None of the descendant packages or the package itself regarded in the restricted
sense can be of type Consumer or Hybrid.

Discussion: The Autonomous pattern has a more strict rule for detecting modular compo-
nents in the code than the Iceberg. This is due to the second condition which forces an
Autonomous package to not depend on any of the other packages in the working set.

If a package is classified as both Autonomous and Iceberg at the same time, the suggestion
is reinforced. On the other hand, if a package is detected as being Autonomous and Fall-
Through (see package c from Figure 6.8), the Fall-Through suggestion has priority.

The existence of Autonomous packages in a system is a sign of a good modular design.

119 6.5 Package Patterns

6.5.4 Archipelago

An Archipelago is a package which contains at least three direct subpackages which, when re-
garded in the extended sense, do not depend on one another.

c)b)a)

Figure 6.9. Possible configurations of Archipelago packages. Packages a) and b) display perfect
structural symmetry.

Suggestion: Do not expand the package.

Rationale: Because there are no invocations between the subpackages, it means that there
is no need for collaboration for achieving the desired functionality. Such a situation can
appear in three cases: (1) when the package contains alternative implementations of the
same concept (e.g., architecture dependent implementations); (2) when the package rep-
resents a collection of entities of the same type (e.g., plugins, entities from the domain
model); (3) when the contained subpackages are bundled together for lack of a better
alternative (e.g., a utilities package).

Only in the last case it might be argued that it is possible to bring more architectural
information by expanding the package. However, it can be assumed that the subpackages
are not important for the system if they were bundled in a utilities package, therefore, it
is unlikely that the user would obtain architectural information by expanding them.

Detection Rule: For a package to be an Archipelago package it has to respect two conditions:

1. It should have at least three direct subpackages.

2. The direct subpackages in the extended sense should not depend one on another.

Discussion: Figure 6.9 presents three examples of archipelago packages from JEdit and
Azureus. One interesting fact is that some of the Archipelago packages that we have
detected presented surprising symmetries at the structural level. This is probably the re-
sult of detecting sets of similar artifacts packaged together. The structural symmetry of the
contained packages could be another way of detecting the Archipelago pattern.

During our experiments we have detected cases where a package that contained several
entities of the same kind was not detected as an Archipelago because two out of seven
packages depended very lightly on a third. One solution to this problem and other of the
same kind would be to modify the rules in such a way that they use fuzzy logic and return
a smaller confidence when the rules are not fully obeyed.

120 6.6 Validation

6.6 Validation

To validate the relevance of the patterns we have presented in the previous section, we answered
the following two questions:

1. How frequent do the package patterns appear in real world systems?

2. Do overlapping patterns occur? Do they contradict or reinforce each other in their sugges-
tions?

To answer these questions we studied the occurrence of the presented patterns in all the 6
systems from Table 6.1. We report here on the methodology and the results of the study.

6.6.1 Pattern Frequency in Real-World Systems

To answer this first question, we devised an exploration simulation experiment. For each system
and each pattern we set a script to start from the top-most view on the system and successively
expand the packages it encounters. Each time a package is brought into view for the first time,
it is characterized in the context of the current working set. For the presented patterns this
is enough as the characterization stays the same even if the other packages are expanded or
collapsed.

Table 6.2 presents the results of the experiment. The Tested column of the table presents
the number of packages that were expanded and classified. The Percent column presents the
percentage of packages for which suggestions were offered for every system.

Hereafter we discuss the results, separately for each pattern.

System Tested Iceberg Fall-Through Autonomous Archipelago Total Percent
ArgoUML 67 5 6 3 1 15 22%
Azureus 250 34 15 9 8 66 26%
Columba 171 5 4 3 1 13 7%
Hipergate 77 5 5 3 0 13 16%
Infoglue 70 6 23 0 2 31 44%
jEdit 40 1 8 4 1 14 40%

Table 6.2. The frequency of occurrence of the patterns in the case study systems

Iceberg. In every system the Iceberg patterns were around 10% of all the packages. It is only
in jEdit that the percentage is very low. The reason for this is that in jEdit the package hierarchy
is minimal. After manually checking the packages that conform to the Iceberg pattern we did
not find any false positives.

In jEdit we found bsh, a Perfect Iceberg (labeled c in Figure 6.6). At a closer look we under-
stood why the package is so well modularized: it contains the BeanShell Java scripting inter-
preter 2 which is third party code and therefore does not depend on the other components of the
system.

2http://www.beanshell.org/

121 6.6 Validation

Autonomous. The occurrence rate of Autonomous packages is low compared to the other pack-
age patterns. In the Infoglue case study we detected no autonomous package. One of the reasons
for the low occurrence rate is that when the reusable components are not that big they are bun-
dled in a single package and when they are big, they might present their functionality through a
facade package.

Some of the detected patterns are surprising. For example package b) from Figure 6.8 is
completely independent of all the packages in the system. At the same time, it has incoming
invocations at all the levels of the hierarchy. After closer inspection we found out that the
package contains 47 interfaces.

Archipelago. Although Archipelago does not have a high occurrence rate the detected pack-
ages were in all the cases conforming to the intended rationale of the pattern: they were either
collections of packages with parallel functionality or packages gathering together other utility
sub-packages.

Fall-Through. The pattern is well represented in the analyzed systems. The pattern is comple-
mentary to Iceberg and Archipelago, but not to Autonomous.

6.6.2 Do Overlapping Patterns Occur?

As it can be seen from their definitions, the patterns are not always mutually exclusive. Some
packages can conform to the detection rules of several patterns at the same time. To find how
often this phenomenon happens, we executed the same automatic top-down exploration experi-
ment as in Section 6.6.1. This time we focused on detecting situations in which multiple patterns
apply to the same package.

Iceberg Fall-Through Autonomous Archipelago
Iceberg - impossible 0 2 (r)
Fall-Through impossible - 8 (c) impossible
Autonomous 0 8 (c) - 5 (r)
Archipelago 2 (r) impossible 5 (r) -

The “(r)” and “(c)” marks indicate whether the two overlapping patterns have identical and
opposite suggestions, respectively.

Table 6.3. Pairwise overlapping between the package patterns

Table 6.3 presents the aggregated results. There are three possibilities of cell content based
on the relation between the patterns on the corresponding row and column. If they can never
overlap, the content is impossible. Otherwise the cell contains the number of times the two
patterns overlap. If as a result of the overlap, the same suggestion is being reinforced, then the
cell contains a (r), if they conflict then it contains a (c).

The table shows that there only a few packages have multiple classifications. There are
7 cases in which the patterns reinforce each other’s suggestion and 8 times when the sugges-
tions are contradictory. In the case where a package is classified as both Autonomous and Fall-
Through, the suggestions are contradictory. This is not a problem because as we proposed in the

122 6.6 Validation

discussion related to the Fall-Through pattern, in such a case the suggestion of expanding the
package has priority.

6.6.3 Implementation in Softwarenaut

The Vertical Package Slices is one of the detail views that Softwarenaut provides for modules.
Figure 6.10 presents a screenshot from the Azureus case study in which org.bouncycastle is se-
lected in the main exploration perspective and is highlighted in the detail perspective. The view
is interactive - so the individual restricted packages can be explored starting from the detail
perspective is this is desired.

Map
Perspective

Detail
Perspective

Autonomous Module
Fall-Through Module

Pattern - Color
Mapping

Exploration
Perspective

Aura

Figure 6.10. Softwarenaut exploring the Azureus case study. In the Exploration Perspective the
packages are annotated with navigation suggestions

The tool assists the user in navigation by annotating the exploration view with suggestions
based on package patterns. When a package present in the exploration perspective is detected
as conforming to one of the patterns it is highlighted with a colored aura that corresponds to
that pattern.

Figure 6.10 shows one Autonomous and two Fall-Through packages highlighted with colored
auras. The packages for which the recommendation is expand are highlighted with auras colored
in shades of red, while the ones for which the recommendation is stop are highlighted with auras
colored with shades of blue.

123 6.7 Discussion

6.7 Discussion

Human Decision

We consider the approach presented in this chapter a first step towards an automatic decompo-
sition of a system based on its package structure. However, in the current stage, the decomposi-
tion process can not be fully automated because there are two situations when human decision is
needed: when there are no heuristics that apply on a given package and when there are heuris-
tics that propose different actions for the same package. In these cases the user has to decide
the operation based on intuition and the available information.

Generality vs. Specificity

The simplicity of the approach is both a strength and a weakness. On the one hand, using the
same technique other languages and other dependency types can be analyzed. On the other
hand, the technique uses only high-level information about the structure and interaction of the
analyzed packages.

One way of using more specific information in the analysis would be to distinguish between
the various types of dependencies. In this chapter, we only identified dependencies between
packages by analyzing the invocations between them. However, other kinds of relationships (e.g.,
inheritance, interface implementation, variable access) are also important for the understanding
of the architecture.

Other Types of Package Patterns

There are other types of packages that we did not list in our catalog but which are interesting for
architecture recovery: utility packages and testing packages. The utility packages are packages
that contain functionality that could not be fit anywhere else, and as a result, many of the other
packages in the system depend on them. The testing packages are packages that depend on all
the other packages in the system if they are testing all the system’s functionality. One common
feature of these packages is that they all introduce a lot of dependencies, ergo a lot of visual
clutter, in the architectural views. Besides this, these packages are not critical components in
the architecture of the system. In both the cases the automatic exploration suggestion would be
filtering them out.

Patterns Usage

The patterns were developed with the explicit goal of helping in the exploration process. How-
ever, there is nothing that impedes their utilization as stand-alone. They could be used to detect
violations of good design rules or could detect possible improvements in the package structure
of the system. Automatically detecting Iceberg packages can be a starting point for detecting
reusable architectural components. This can be performed at the system level, but also at the
ecosystem level.

Multiple Architectural Views

Architecture recovery is not over once the user has generated an architectural view. Some of the
modules in the view might be large enough to have their own internal architecture. The user

124 6.8 Conclusions

will in such a case save the first architectural view and proceed to discover architectural views
for these components. At the end of the process he will have discovered multiple architectural
views of the system.

In our toolset, Softwarenaut maintains a repository of architectural views for each system
analyzed with it. Once the repository is populated with views, the views can can be requested
by other tools and used as maps on top of which other type of information can be highlighted.
In Figure 5.10 we have shown an architectural view of Moose used in SPO on top of which all
the classes that are used by the other projects in the ecosystem are highlighted.

6.8 Conclusions

In this chapter we have introduced the Vertical Package Slices, a new visualization of software
packages that characterizes the interaction between a package and a set of other packages. Based
on our experience of working with the Vertical Package Slices we have introduced four types of
package patterns. The patterns capture recurring types of behavior of a package in the context of
a working set that can also be used for providing automatic suggestions during the exploration.
We have evaluated the relevance of the package patterns by studying their occurrence in six
open-source software systems. Finally we have presented the way we have enriched Software-
naut, our exploration prototype with suggestions based on the package patterns. The techniques
we introduced do not dismiss the need for manual exploration for architecture recovery, but are
a first step towards the automatic view generation.

The focus of this chapter has been packages. In the next chapter we will focus on the depen-
dencies between packages.

Chapter 7

Inter-Module Dependency Patterns

Architecture recovery is not over once a set of architectural views are generated. Understanding the
roles of the modules in an architectural view, and understanding the reasons for the existence of the
relationships between them is critical for understanding the view itself.

In this chapter we present a set of techniques that support the understanding of relationships
based on the analysis of their evolution. We introduce the Relationship Evolution Filmstrip, a visu-
alization technique that presents the evolution of an inter-module relationship over the lifetime of
the system. Based on our experience of applying the Relationship Evolution Filmstrip, we propose a
catalog of inter-module relationships evolution patterns. We support both the visualization and the
patterns with examples from two large open source software systems.

As an application of the relationship evolution patterns, we present the way they can be used to
focus the analysis during the top-down exploration, by filtering out certain dependencies in archi-
tectural views.

125

126 7.1 Introduction

7.1 Introduction

Understanding relationships in an architectural view is essential for understanding the view.

Discovering a set of architectural views of a system through top-down exploration is only the
first step towards understanding the architecture of the system. Once an architectural view is
obtained, the roles of the modules and the reason for the existence of the relationships between
them need to be understood. Metaphorically, if an architectural view would be a phrase, the
modules would be the nouns, and the relationships would be the verbs. The relationships are
the ones that glue together the view in a coherent picture.

Research in architecture recovery has focused mainly on recovering modules and architec-
tural views from the source code and little on understanding inter-module dependencies. There
are only a few research directions that follow this lead:

• Filtering out dependencies during exploration. Most exploration tools provide the possibil-
ity of filtering edges in the dependency graph based on the type of the edge, e.g., filtering
method-calls or inheritance relationships [Lan03a; SM95; MK88; SKM06]. However, none
of the tools allows filtering the relationships based on their evolution.

• Detecting the changes in the dependency structure between two versions of the system.
Holt and Pak were among the first to visualize the evolution of software systems at the
architectural level. They proposed a detailed visualization of the changes of dependencies
between two versions of several modules [HP96]. On the same structural representation
of the modules, they show the new dependencies, the removed dependencies or the com-
mon dependencies. Their approach was focused towards visualizing the evolution of the
dependencies between two versions.

• Understanding the evolution of the inheritance relationships. An approach which treats
histories of entities as a whole is taken by Gîrba et al. [GLD05] who characterize the
evolution of whole class hierarchies by combining metrics and visualization. They propose
a visual representation for summarizing the evolution of the class hierarchies.

This chapter is dedicated to pushing forward the research into understanding inter-module
relationships. We advance the state of the art by providing techniques that support the analysis
of the evolution of inter-module relationships. We support relationship understanding by an-
swering specific questions about the evolution of a given relationship (e.g.,“How old is a given
relationship?”, “How stable is a given relationship?”) or about the evolution of the relationships in
the entire system (e.g.,“Which relationships have been in the system from the beginning?” “Which
relationships have been introduced in the latest version of the system?”,).

In order to answer this question and other related ones, we need to model the relationship
between two modules as an entity that has a history and can be traced through the versions of the
system. Based on this model of the history of a relationship, we introduce a visualization that we
call the Relationship Evolution Filmstrip. The Relationship Evolution Filmstrip summarizes the
dynamics of the evolution of the relationship between two modules. Based on our experience
with the Relationship Evolution Filmstrip we propose a set of patterns of evolution of inter-
module relationships.

127 7.2 Dependencies and Relations

Structure of the Chapter

In Section 7.2 (p.127) we discuss the different types of relationships that exist between modules
in a software system. In Section 7.3 (p.129) we propose a meta-model that supports evolutionary
analysis of the relationships between modules. As a first application of the meta-model in Section
7.4 (p.130) we introduce a visualization technique that highlights the evolution of inter-module
relationships. Section 7.5 (p.133) represents a catalog of patterns of relationship evolution. In
Section 7.6 (p.146) we validate the relationship evolution patterns by studying their occurence
in open source systems and their filtering power. We discuss our approach in Section 7.7 (p.150)

and conclude in Section 7.8 (p.152).

7.2 Dependencies and Relations

Figure 7.1 presents an architectural view of Azureus, as it is represented in Softwarenaut. The
modules in the figure are Java packages. The visible dependencies represent aggregations of
low-level dependencies between the classes and methods in the corresponding packages. Aggre-
gating the low-level dependencies allows us to provide more information to the user than the
simple dependency graph that can be constructed based on the package import dependencies
declared in the Java code. In this case, the width of the edges representing each dependency
is proportional to the number of low-level dependencies abstracted in that dependency. We can
therefore see that the azureus2 and aelitis packages have very strong dependencies between
themselves compared to the other packages in the view.

Figure 7.1. A very high level view of Azureus, generated with Softwarenaut

128 7.2 Dependencies and Relations

All architecture recovery tools need to lift lower level relationships to the level of modules.
Table 7.1 presents various types of low-level relationships that can be extracted from object-
oriented programming languages.

Low-Level Dependencies From To
Inheritance Class Class
Invocation Method Method
Variable Access Method Instance Variable
Interface Implementation Class Interface

Table 7.1. The types of low-level dependencies between elements in an object-oriented system

These low-level dependencies we also call explicit dependencies. Based on the explicit de-
pendencies, we can define high-level relationships between modules. We distinguish between
two types of high-level relations between modules: inter-module dependencies and inter-module
relations.

Module 1 Module 2

C2

C1
B1

B2

low-level
dependencies

typeA

D2 (M1,M2,typeA)
C4

C5

B3
B4

D1 (M1,M2,typeB)

low-level
dependencies

type B

D3 (M2,M1,typeA)

Figure 7.2. The relationship between Module 1 and Module 2 is the set containing the three
aggregated dependencies (D1, D2, and D3).

Inter-Module Dependencies. We define an aggregated dependency, or an inter-module depen-
dency, of type T between a source module (Ms) and a destination module (Md) as the
set of all the relations of type T that exist between artefacts contained in Ms and all the
low-level artefacts contained in Md .

It follows that there are various types of aggregated dependencies between two modules
(e.g., inheritance dependencies, invocation dependencies, etc.) and that a dependency
between two modules is directed (i.e., MA depends on MB does not imply that MB depends
on MA).

129 7.3 Modeling Relationship Evolution

We define the cardinality of an aggregated dependency to be the number of explicit de-
pendencies abstracted in it. Cardinality is a measure of the strength of the dependency.

Inter-Module Relations. We define an inter-module relation between two modules as the set
of all the inter-module dependencies between the two modules.

Therefore, a relation exists between two modules if there is at least one aggregated de-
pendency between them. Due to the recursive nature of our definition of module, implicit
relationships exist between modules residing at any abstraction level in the module hier-
archy.

Unlike the dependencies, the relations do not have a direction.

Figure 7.2 illustrates the difference between the two concepts. It shows to two modules
between which the low-level dependencies can be abstracted into three aggregated dependencies
D1, D2 and D3. The relation between the three modules is the set of these three dependencies.

7.3 Modeling Relationship Evolution

In this chapter, we focus on understanding inter-module relations and their evolution. In order
to analyze them we need to first provide a meta-model that can represent relationships and their
history. Based on the meta-model we will provide analysis techniques.

Figure 7.3 presents the meta-model that we use for modelling relationship evolution. It is
inspired by Hismo, the history meta-model introduced by Girba [Gîr05]. The meta-model ex-
tends both the concepts of implicit dependency and relationship presented in the previous section
to multiple versions of the system.

The meta-model contains two types of elements:

Versions. The snapshot versions represent software artefacts as modelled after performing static
analysis on a single version of the analyzed system. The snapshot versions are the enti-
ties whose evolution is to be studied. In our case they are ModuleVersion, Aggregated

Dependency Version, and RelationVersion.

Histories. A history keeps track of an ordered collection of versions. The relations between
the histories parallel the relationships between the snapshot versions. In our case, the
Relationship History is composed by a set of Aggregated Dependency History objects just
as the Relationship Version is composed by a set of Aggregated Dependency objects.

In order to build the model of the evolution of a system, one needs to build multiple snapshot
models and connect the individual entities through the versions with the help of the histories.

To do this, one needs first to decide how many and which versions of the system should
one model. Usually where multiple models are analyzed, researchers use a sampling approach
in which models of the system are built at various stages in the lifetime of the system. One
approach is to sample the system at constant intervals of time, such as every six months. Another
approach is to sample the system based on the release dates of the system, when this information
is available.

130 7.4 The Relationship Evolution Filmstrip

from
to

Aggregated
Dependency

Version

Low-level
Dependency

source
destination

Invocation

contains *

An Inter-Module Relation is
a set of dependencies
between two modules

versions: Array

Aggregated
Dependency

History

modules: Array

Module
History

subclass
superclass

Inheritance
sourceClass
variable

Access

Module
Version

modules
dependencies

Relation
Versionversions: Array

dependencies: Set

Relation History

The Module
Version is modeled as in the
single-version analysis we

presented in Chapter 7

*contains*contains
*contains

Figure 7.3. The part of the meta-model that supports relationship evolution analysis

7.4 The Relationship Evolution Filmstrip

The Relationship Evolution Filmstrip is a technique for visualizing and analyzing the evolution
of inter-module relationships. The goal of the filmstrip is to support understanding relation-
ships between modules. We implemented it in our tool Softwarenaut where it functions as a
detail view that can be obtained when one selects a relationship between two modules in an
architectural view.

The Relationship Evolution Filmstrip is a composite visualization of the evolution of a rela-
tionship between two modules. Figure 7.4 presents the construction principles of the Relation-
ship Evolution Filmstrip. They are the following:

• The relationship under study is represented in multiple consecutive versions of the system.
The versions are chronologically arranged vertically, from top to bottom. This results in
the oldest version at the top of each filmstrip.

• The relationship representation in version k includes the two involved modules repre-
sented as squares. The side of the square in version k is proportional to the size of the
corresponding module in that version (e.g., number of lines of code).

131 7.4 The Relationship Evolution Filmstrip

Version 1

Version k

Version n

....

....

Node Size
Proportional to module

size as measured in LOC

Edge Width
Proportional to number of low level

dependencies abstracted in the
implicit dependency

Edge Color
Encodes the type of the

dependency

Module A Module B

....

Figure 7.4. The filmstrip principle: time flows from top to bottom, size metrics are mapped on
modules and dependencies

• The relationship representation version k contains an edge for every type of implicit depen-
dency that exists between the two associated modules in that version. The width of every
edge in version k is proportional to the cardinality of the associated implicit dependency
in that version.

• The implicit relationships are color coded (in our examples, invocation dependencies are
represented in black and the inheritance dependencies are represented in red).

Having the metrics mapped on both the width of the implicit dependencies and the modules
allows for detecting the trends in the evolution of these metrics at a glance.

Example

Figure 7.5 presents the evolution over six versions of the relationship between org.argouml.uml

and org.argouml.persistence, two of the packages in the ArgoUML case study.
The uml module is on the left side of the image and the persistence module is on the right.

The difference in size between the two modules is due to the fact that the uml module is much
larger (52 KLOC in the last version) than the persistence module (3 KLOC in the last version).
We can see that while the uml structure and size developed slowly over time, the persistence

module disappeared between versions 0-14 and 0-16. We can see how during the lifetime of the

132 7.4 The Relationship Evolution Filmstrip

Figure 7.5. The evolution of the relation between org.argouml.uml and
org.argouml.persistence.

system, the relation between the two modules was continuously changing: if at the beginning
there were weak invocation dependencies in both directions, later the dependencies disappeared
and in the last two versions appeared again but stronger.

The filmstrip tells the story of the evolution of certain relationship between two modules.
When the reverse engineer needs to understand a particular implicit dependency, he needs an-
other visualization technique which will be specific to that type of dependency (e.g., an depen-
dency matrix as we have presented in [LL06a].

In this case, by inspecting the dependency between the two packages in version 0.12 we
found out that the uml package depends on persistence package mainly because of the func-
tionality provided by the DBLoad and DBStore classes, which handle saving and loading a model
from a database. By inspecting the dependency in version 0.18 when it appears again stronger,
we found that this time one of the main actor classes in the provider (i.e., persistence) is the Per-
sistenceManager class, a singleton that handles saving and loading the models in various formats
like XMI, UML, etc. The functionality remained the same, the implementation changed.

133 7.5 Inter-Module Relation Evolution Patterns

7.5 Inter-Module Relation Evolution Patterns

Based on our experience of using the Relationship Evolution Filmstrip in analyzing architectural
views of software systems, we distilled a set of patterns of relationship evolution that we present
here. The patterns capture patterns of evolution of inter-module relations. They are defined
based on the appearance and disappearance of the aggregated dependencies between the two
corresponding modules.

The patterns can be classified in two main categories:

1. Age-related patterns. These patterns can be defined based on the historical presence of an
inter-module relation. We look at four age-related patterns: fossil, old, lifetime and recent.

2. Dynamics-related patterns. These patterns can be defined based on the semantics of the
relations, i.e., the contained dependencies and the way they evolve. We look at two types
of dynamics-related patterns: stable and instable.

In this section we present a catalog of patterns. For every pattern we provide a definition, a
discussion of the importance of that dependency pattern for architecture recovery, and examples
of occurrences of that pattern in one of our case studies. As case studies we use two open-source
systems: Azureus and ArgoUML. Azureus is a well-known BitTorrent client and was the most
active project on Sourceforge at the time of performing this work. ArgoUML is a UML modelling
environment that includes support for all various types of diagrams.

Table 7.2 presents a brief overview of the two case studies. Azureus is larger both if measured
in number of classes or number of packages in the last version.

System / Metric Azureus ArgoUML
Versions 6 8

Packages in last version 596 142
Classes in last version 4,656 1,834

Table 7.2. An overview of the Azureus and ArgoUML case studies

For each system we had to analyze multiple versions. For ArgoUML we chose all the 8 even
releases between 0.10 and 0.241. For Azureus we chose all the 6 major releases between 2.1.0
and 4.0.2.

The catalog of patterns follows.

1ArgoUML uses an odd/even release schedule with 0.even releases as stable releases and 0.odd releases as developer
releases

134 7.5 Inter-Module Relation Evolution Patterns

7.5.1 Fossil Relation

Definition. A fossil relation is one that existed between two modules for one or multiple versions
and was removed before the last analyzed version of the system.

Category: Age-related

org.argouml.cognitive
ui

org.argouml.
kernel

Figure 7.6. A fossil relationship from the ArgoUML case study

Example. Figure 7.6 presents a fossil relationship from ArgoUML. The two modules involved
are org.argouml.cognitive.ui and org.argouml.kernel. The reason for the existence of the de-
pendence are multiple classes in the cognitive.ui module depending on the Wizard class from

135 7.5 Inter-Module Relation Evolution Patterns

kernel. Wizard is an abstract class for wizards - UI-based sequences of questions that guide the
user during project creation. The relationship disappears in version 18. We inspected the reason
for the disappearance and we found out that the Wizard class was moved from the destination
module to the source module in a refactoring that reduced the coupling between modules.

Discussion. The number of fossil relations in the history of the system is a characteristic of a
system’s evolution. A system that has a very large number of fossil relations has evolved in a
more dramatic way than a system with few or no fossil relations.

Normally, the uncontrolled evolution of a system tends to increase the number of dependen-
cies in the system. One of the reasons for this is that individual developers do not understand the
way their code fits into the greater context of a large software system, so they introduce depen-
dencies between components that were not supposed to exist. Indeed, in a recent study Knodel
et al. showed that when a system that automatically checks the conformance of the new code to
the envisioned architecture is in place, the number of inter-module dependencies remains lower
than otherwise [KMR08].

As a consequence, the disappearance of inter-module relationships from a system is likely
to be the result of purposeful cleaning and restructuring of the system. It would be worth of
studying whether systems that have a larger percentage of fossil relations have a better structure
than systems with a lower percentage of such relations.

In our case studies we observed that the fossil relationships tended to be relationships that
were not particularly strong. It is indeed intuitive that strong relationships are less likely to
disappear since removing them requires more effort and more dramatic changes.

136 7.5 Inter-Module Relation Evolution Patterns

7.5.2 Lifetime Relation

Definition. A lifetime relation is one that exists throughout all the versions of the analyzed system:
including both the first and the last ones.

Category: Age-related

org.argouml.
uml

org.argouml.
ui

Figure 7.7. A lifetime relationships from the ArgoUML case study

Example. Figure 7.7 presents a lifetime relationships from the ArgoUML case study. The rela-
tionship between org.argouml.uml and org.argouml.ui is composed of four implicit dependen-
cies: 2 inheritance dependencies (red) and two invocation dependencies (black). The invocation
dependency from uml to ui aggregates in the first version 250 explicit relationships and grows

137 7.5 Inter-Module Relation Evolution Patterns

to over 800 in the last analyzed version. The other dependencies do not fluctuate much in size
with time.

The relationship is part of the architectural backbone since it was in the system from the first
to the last version. The two modules uml and ui are central to the system: ui encapsulates all the
main user-interface classes and uml – the largest model in the system – contains the model that
is behind the diagrams in ArgoUML. The uml module uses the uml module to access information
from the model.

Discussion. Lifetime relationships are relevant to the reverse engineer because they represent
the backbone of the architecture: the unchanged parts of the architecture are probably the ones
that are the most interesting to study when one first encounters a software system.

One of the ways in which software architecture decays over time is by the introduction of
new relationships between modules that do not conform to the initial architectural design. This
results in a decreased modularity of the code [EGK+01]. From the point of view of the reverse
engineer this means that recovering views which present modules and their inter-relations will
result in an information overload problem: the number of relations that he has to study will be
large, and not all these relations have the same importance for the architecture.

To address the information overload problem, one should focus on the analysis of the lifetime
relationships first. Since they are in the system from the beginning they are likely relevant for the
architecture. Since they are in the system in the last version, it means that they stood the test of
time. The advantage of starting the analysis with the lifetime relationships is that they represent
a small percentage of the relationships in a system, and therefore they reduce considerably the
information that needs to be analyzed.

Analyzing the lifetime relationships is better than simply studying the relationships in the
first version of the system, i.e., the ones that existed before the architecture decay, since some of
them will disappear, as the existence of Fossil relationships proves.

138 7.5 Inter-Module Relation Evolution Patterns

7.5.3 Old Relation

Definition. An old relation is one that has been introduced in the first 20% of the project lifetime,
excluding the first version, and survived until the last analyzed version.

Category: Age-related

org.argouml.
uml

org.argouml.
model

Figure 7.8. An old relation from the ArgoUML case study

Example. Figure 7.8 presents the evolution of the relation between org.argouml.uml and org.

argouml.model. The model module appeared only in the second version under analysis. The fig-
ure shows that for three versions the relationship was bidirectional and then the dependency
direction stabilized in version 18. The reason for the weak dependency from model to uml was
the existence of several invocations to the UUIDGenerator class. Starting with version 18 UUID-
Generator was moved to the uml module and the dependency was removed.

139 7.5 Inter-Module Relation Evolution Patterns

Discussion. Old relationships are relevant for reverse engineering for the same reason as the
lifetime relationships: they have been in the system for a long amount of time and probably
represent critical relationships in the system. The old relationships address the drawback of the
lifetime relationships of being too strictly defined.

Using the more relaxed definition of Old Relations instead of the one of Lifetime Relations is
useful in the analysis of some systems. One particular case are systems developed using an agile,
incremental approach, in which critical relationships between the components might be added
later in the life of the system. By defining the old relationships we allow for more flexibility in
detecting relevant relationships in the system.

There are two factors that can influence the detection of old relationships:

• The number of versions that are modelled and used for the analysis. In our cases, since
we analyzed only the major releases of the two systems, the number of releases is low: 8
releases for ArgoUML and 6 releases for Azureus.

• The 20% threshold that is used for the definition of this pattern. The threshold is one
possible variation point of the analysis. For types of analysis that involve a user and a UI,
the user could be allowed to tune this threshold according to the needs of the analysis at
hand.

140 7.5 Inter-Module Relation Evolution Patterns

7.5.4 Recent Relation

Definition. A recent relation is a relation that has been introduced in the last 20% of the project
lifetime and remained in the system until the latest analyzed version.

Category: Age-related

org.argouml.
kernel

org.argouml.
i18n

Figure 7.9. A recent relation between two modules in the ArgoUML case study

Example. Figure 7.9 presents the introduction of a recent relationship between org.argouml.kernel

and org.argouml.i18n modules. The i18n module is responsible with the internationalization as-
pects of the system. The two modules had independent evolutions until version 18 when there
was the need for internationalization support in one of the classes of the kernel.

Figure 7.10 shows an architectural view of ArgoUML as generated by Softarenaut. The focus

141 7.5 Inter-Module Relation Evolution Patterns

in this view is on the org.argouml.i18n module is which is in the center, represented together
with 5 other modules that have recently introduced relationships with it.

Figure 7.10. Recent relationships that involve the org.argouml.i18n module.

Discussion. Focusing on the analysis of recent relationships can be useful in two ways:

1. Understanding the direction of evolution of the system. Beginning analysis with the recent
relationships, one can explore the artefacts which are involved in them and in this way
discover what is the new functionality added to the system.

2. Discovering relationships that are candidates for refactoring. In a system in which the
architects monitor the progress of the system such as the one presented by Rötsche and
Krikhaar [RK02], special attention must be dedicated to recent relations, as they are more
likely candidates of not conforming to the architecture guidelines. A special category of
recent relations are the newborn relations, which appeared in the last version of the system.

The discussion on the number of analyzed versions and the 20% threshold affecting the
detection of relationships from the previous section holds also here.

142 7.5 Inter-Module Relation Evolution Patterns

7.5.5 Stable Relation

Definition. A stable relation is one for which there are no implicit dependencies appearing or
disappearing during its evolution.

Category: Dynamics-related

com.aelitis.azureus.
ui

org.gudy.azureus2.
core3

Figure 7.11. A stable relationship from the Azureus case study

Example. Figure 7.11 presents the evolution of the relationship between com.aelitis.azureus.

ui and org.gudy.azureus2.core3 in the Azureus case study. The relationship is an old relationship
that is introduced in the second release that we analyze and remains in the system until the latest
version.

The org.gudy.azureus2.core3 module slowly grows with time. On the other hand, com.

aelitis.azureus.ui grows fast in the last two versions. Together with this growth, the number
of invocations between it and org.gudy.azureus2.core3 also increases from 12 dependencies in
version 2.2, to 1.100 in version 4.2.

143 7.5 Inter-Module Relation Evolution Patterns

Discussion. The definition allows for the explicit dependencies of various types appearing and
disappearing during the evolution of the relationship as long as the implicit ones do not change.

The stable relations are important because, if a stable relation is also a lifetime relation, it
is very likely that it represents an architectural foundation of the system. Information about the
development process of the system can shed more light on the importance of the relation: in
a system developed using an agile methodology it is more likely that the relationships will be
more dynamic than in a system developed using a more conservative development model.

144 7.5 Inter-Module Relation Evolution Patterns

7.5.6 Instable Relation

Definition. An instable relation is one for which new implicit dependencies appear or disappear
during its evolution.

Category: Dynamics-related

org.gudy.azureus2.
pluginsimpl

com.aelitis.azureus.
core

Figure 7.12. An instable relationship from the Azureus case study

Example. Figure 7.12 presents an instable relationship from the Azureus case study. The re-
lationship between org.gudy.azureus2.pluginsimpl and com.aelitis.azureus.core evolves dra-
matically through the evolution of the system.

Appearing in version 2.2 the relationship represents a mutual invocation dependency be-
tween the two modules. In the next version, a new inheritance dependency is introduced from
pluginsimpl to core. The structure of high-level, implicit dependencies remains unchanged until
version 4.2 when an inverse inheritance dependency is introduced from core to pluginsimpl.

Discussion. An instable relation can change quantitatively and must change qualitatively dur-
ing the system’s evolution. A qualitative change involves the appearance of new types of inter-

145 7.5 Inter-Module Relation Evolution Patterns

module dependencies. A quantitative change involves the appearance of new explicit dependen-
cies.

The existence of instable relations in a software system is a sign that the initial design was
not adequate and needed to be changed, or that the architecture of Azureus decayed with time.
The instable relations are a good point for further investigating a system’s problems.

A particular case of instable relation is an intermittent relation for which there are versions
in which the relation disappears completely as there are no more dependencies between the two
modules.

146 7.6 Validation

7.6 Validation

In this chapter we have presented two concepts: the Relationship Evolution Filmstrip visual-
ization and based on it, the relationship evolution patterns. In this section we first perform a
quantitative study of the occurrence of the patterns in real-world systems. Then we show how
we improved Softwarenaut, our architecture recovery tool, based on the patterns.

7.6.1 Pattern Frequency in Real-World Systems

In order to quantify the capacity of the relationship evolution patterns to function as filters,
we analyzed their frequency of occurrence in the two case study systems that we used in this
chapter: Azureus and ArgoUML.

To find out the answer, we devised the following experiment. For each system we set a script
to start from the top-most view on the system and successively expand the modules it encounters.
Each time a new relationship is brought into view for the first time, it is characterized based on
its evolution and assigned to one or more patterns that it conforms to.

To do this, we first formally defined the patterns so we were able to encode them to be
used by a query engine. Using the query engine, we extracted statistics about the frequency of
occurrence of patterns in various software systems.

System Azureus ArgoUML
Fossil 386 5% 155 18%
Lifetime 912 12% 176 21%
Old 676 9% 149 18%
Recent 1,351 18% 122 14%
Stable 5,917 79% 492 59%
Instable 1,508 21% 329 41%

Table 7.3. The frequency of occurence of the dependency patterns in the case studies

Table 7.3 presents the results of the experiment. One first observation is that the total number
of relationships encountered during the exploration simulation is much larger in the case of
Azureus than in the case of ArgoUML. This is due to the package structure of Azureus being four
times more complex than the one of ArgoUML, which results in more views being generated
during the exploration, and more inter-module relationships appearing in these views.

After studying the frequency of occurrence of the patterns we make the following observa-
tions:

1. In the ArgoUML and Azureus case studies we encountered large differences in the per-
centage of fossil relations. In Azureus fossil relations represent 5% of the total number
of relations while in ArgoUML they represent 18% of the total. One can say that Azureus
went through a less dramatic evolution as ArgoUML since less relationships disappeared
during its evolution.

2. The lifetime relationships are good filters since they represent only 21% in ArgoUML and
12% in Azureus of the total number of relations.

147 7.6 Validation

3. The old relationship pattern is a good filter since in both cases the number of old relation-
ships is less than 20%.

4. There are less lifetime and less old relationships in Azureus than in ArgoUML. This means
that the architecture of the system evolved more incrementally than the one of ArgoUML.

5. The recent relationship pattern is also a good filter with 18% of the relationships in
Azureus and 14% in ArgoUML being characterized in this category.

6. The majority of the relations in the two systems are stable. We can observe that ArgoUML
has many more instable relations, denoting a heavily evolving architecture. This corrobo-
rates with observation 1.

7. In both our case studies, the number of old relationships is slightly less than the number
of lifetime relationships: 9% in ArgoUML and 18% in Azureus. One of the reasons for the
difference is probably the fact that the evolution of Azureus was much more aggressive
than the one of ArgoUML.

The table presents the filtering power of the individual patterns. If multiple filters are applied
in the same time, the filtering capacity will be increased. For example, in an architecture recovery
scenario, if the Lifetime pattern does not filter enough, one can combine it with the Stable
pattern to focus more the analysis on relations which are more likely to be relevant for the
architecture.

7.6.2 Implementation in Softwarenaut

Filtering to Reduce Information Overload

The dependency structure of a software system is usually a graph with a very large number of
edges. If the system is not well modularized, analyzing the graph can easily become intimidating.

Figure 7.13 presents all the relationships that exist between a set of modules in the latest
version of the Azureus case study. The size of the modules is proportional to their size as mea-
sured in lines of code. The figures that represent the modules use a treemap-inspired layout to
show whether they contain other subpackages. The high-level implicit dependencies are repre-
sented as edges in the graph and the width of the edge is proportional to the number of explicit
dependencies abstracted in them.

Some of the modules that are represented in the figure contain submodules too, so if they
would be expanded, the number of edges in the graph would become even larger.

The large number of relationships insures that an automatic graph layout is almost impos-
sible and a user will have a hard time focusing on any relation in particular. A smarter layout
algorithm can marginally improve the visualization but the main problem will still would still re-
main: from the all the 114 visible dependencies, which are the most important for understanding
the architecture, and with which should the reverse engineer begin his analysis?

In order to reduce the amount of dependencies present in such a graph, in Softwarenaut, we
use a technique that is based on the dependency patterns that we presented in this chapter. The
principle is simple: not all the relationships are equally relevant for every task. When analyzing
a system with a specific goal, the analysis will focus first on those relationships that are most
relevant for the chosen goal. Two goals that can benefit from such an approach are recovering
an architecture and assessing the quality of an architecture:

148 7.6 Validation

• When recovering the architecture of a system, the lifetime and old relationships are more
relevant. They represent the architectural backbone of the system and their stability over
time insures that it is worth analyzing them first.

• When assessing the quality of an architecture, the recent relationships are of higher inter-
est. Since they were recently introduced, they are more likely to be contrary to the original
intended architecture. They might be the result of architectural decay or of changes to the

Figure 7.13. All 114 relationships between a set of 23 modules in Azureus 4.2

Figure 7.14. The difference between all the relation in the last version (left) and all the lifetime
relations in the system (left) in the Azureus case study

149 7.6 Validation

system performed by new developers that are unaware of the architecture. Continuously
monitoring these relationships can be a good quality assurance policy.

Figure 7.14 presents two views on the same set of modules as Figure 7.13. The left side
presents all the 21 dependencies that existed between the displayed nodes in all the versions of
the system. The right part of the figure presents the 36 dependencies that were introduced in
the system in the latest version. Both the numbers are very low in comparison with the number
of relationships that are present in the last version of the system.

One observation about the difference between the lifetime patterns and the newborn pat-
terns is the size of the relations. Four very strong dependencies (including between 1300 and
3400 low-level relationships) are included in the lifetime relationships. In the case of the new-
born relationship, the strongest dependency abstracts 40 explicit dependencies and many of the
implicit dependencies have a cardinality of one.

The Relationship Evolution Filmstrip

The Relationship Evolution Filmstrip is integrated in Softwarenaut as a detailed view for inter-
module dependencies. Figure 7.15 presents a screenshot of Softwarenaut and the way the Rela-
tionship Evolution Filmstrip is integrated.

Selected
Relationship

Relationship
Evolution
Filmstrip

Figure 7.15. Integrating the dependency evolution patterns in Softwarenaut

When a dependency between two modules is selected in the main panel, the detail panel of-

150 7.7 Discussion

fers a palette of visualizations that present the selected dependency. The Relationship Evolution
Filmstrip is one of the views available if information about multiple versions of the system is
available. Using the Relationship Evolution Filmstrip, the user can study the evolution over time
of individual relationships.

The Relationship Evolution Filmstrip implementation in Softwarenaut is interactive. The
user can select any individual dependency that is part of the relationship in any of the versions
and dive down into the components of that dependency. By inspecting individual dependencies,
and comparing subsequent dependencies the user can learn about the evolution of the system.

The Relationship Evolution Pattern Browser

A different usage scenario than the ones presented earlier is one in which the user wants to
browse the relationships in the system that conform to a certain pattern classification without
using the exploratory interface of Softwarenaut. For such a case, we provide tool support with
our Relationship Evolution Pattern Browser.

Figure 7.16 presents the Relationship Evolution Pattern Browser, a tool that provides the
possibility of querying a system for predefined relation patterns. The tool allows the user to
select several versions of a system and query them for relationships that conform to a given
query. Once the results are obtained, the user can inspect each one. This can be used for
detecting instable dependencies or other types of dependencies that could be the starting point
for problem detection.

7.7 Discussion

Varying the Abstraction Level

In this chapter our focus was on studying the evolution of inter-module relationships. However,
similar techniques can be applied at various levels of abstraction.

• The Ecosystem Level. Studying the evolution of the inter-project relationships can be done
in a similar way. To be able to generate the filmstrip for an inter-project relationship,
one needs to obtain a Detailed Project Model of every version of the two projects that are
associated with the relationship under analysis.

Detecting patterns of evolution for the relationships between projects in an ecosystem
would have similar applications to the ones we described in this chapter: first, it would
support understanding the reason for the dependency between projects, and second, it
would enables filtering the project dependency graphs based on the type of relationship
between the projects.

One special type of analysis possible at the ecosystem level is studying the evolution of
the relationships between a framework and its clients over time. Some of the clients will
update when the framework is updated, others will probably remain dependent on earlier
versions of the framework.

• Inter-Class Dependencies. The patterns can be defined also at the class level as opposed
to being defined at the module level. Studying the evolution of inter-class dependencies
can support more precise analysis. Currently an inter-module relationship can be either

151 7.7 Discussion

Available
Systems

Defined
Patterns

Results

Selected
Result

Figure 7.16. A screenshot of the Relationship Evolution Pattern Browser during the analysis of
ArgoUML

detected as conforming to a given pattern or not without regard of how many of the
explicit dependencies that compose it have to that pattern.

On Entity Identity

One well-known problem in the reverse engineering literature is the entity identity problem: hav-
ing two entities at two different moments in time, how do we know whether they are different
versions of the same entity.

In our analysis, we use the most common way of recovering identity. We identify entities that
have the same name in subsequent versions. The drawback of such an approach is that it fails
to recognize refactorings such as renaming or moving. Various approaches have been proposed
for solving this problem: Antoniol et al. [ADPM04] use information retrieval, Zou and Godfrey
compute entity fingerprints [ZG03].

In our case, with the exception of the Lifetime relationships, all the other patterns could be
affected by rename refactorings applied at the package level. In the future we plan to integrate
a better approach to recovering identity in our tools.

152 7.8 Conclusions

Other Types of Filters

Studying the evolution of high-level relationships between modules can be extended further.
One such possible extension is associating information about bugs extracted from the version-
ing system repositories with each high-level dependency. In this way, the dependencies that
are associated with more bug reports can be considered as being the more critical parts of the
architecture.

Related Work

Wierda et al. recover the architectural decomposition of a system into subsystems. As a clustering
criterion they used the inter-class dependencies. They observed that if they use for clustering
only those dependencies that were in the system in both the first and the last versions, the
decompositions are more precise [WDLS06]. This observation supports our approach of using
the lifetime relationships as more architecturally relevant than the other relationships.

One work which is similar to ours is the architectural evolution animation proposed by Abram
Hindle et al. [HJK+07]. Their YARN visualization prototype animates the evolution of depen-
dencies between the modules of a system. The main difference between our approach and theirs
is that we work on a snapshot-based model and they work on a commit-based model in which ev-
ery commit to the versioning system is taken into account and visualized in the animation. Their
commit-based model is both an advantage and a disadvantage. The advantage is clear - they
benefit from more detailed information about the system. The disadvantage is that following an
animation of all the commits is time consuming and they do not provide a query mechanism for
visualizing only special types of relations.

7.8 Conclusions

We started this chapter by introducing a distinction between inter-module dependencies and
inter-module relations. Then, we argued for the importance of enriching software exploration
tools with the capacity of analyzing the relations between the modules in a software system.

The Relationship Evolution Filmstrip visualization that we propose presents the evolution
of a relationship between two modules through multiple versions. Based on the experience of
using the filmstrip we extracted a set of inter-module dependencies evolution patterns.

We showed how our exploration tool, Softwarenaut, makes use of the patterns to recover
architectural information useful both for software architects and reverse engineers.

Part IV

Epilogue

153

Chapter 8

Conclusions

We started our thesis observing that, although a large body of research in reverse engineering
has been dedicated to understanding individual software systems, systems are developed in the
broader context of software ecosystems. At the time we started our work on analyzing ecosys-
tems, techniques and tools that would support the reverse engineering of individual software
systems were abundant while their equivalents at the software ecosystem level were missing.
As a result, in this thesis, we proposed techniques and tools for supporting software ecosystem
understanding.

8.1 Contributions

In this dissertation we have extended traditional software reverse engineering from individual
systems to entire software ecosystems. We did this by a series of contributions to the state of the
art. In this section we re-iterate through the main contributions:

• Introducing the problem of reverse engineering software ecosystems. The first con-
tribution of our thesis is making explicit the concept of a software ecosystem and providing
arguments for the importance of reverse engineering software ecosystems. By reverse engi-
neering a software ecosystem we understand analyzing the low level information existent
in the super-repositories associated with the ecosystem and generating high-level views
that capture the different aspects of it. A super-repository is a collection of versioning
systems for multiple projects.

• Introducing a catalog of ecosystem viewpoints. In this dissertation we introduced a
catalog of ecosystem viewpoints. An ecosystem viewpoint is a perspective from which one
can visualize an ecosystem which has associated a set of concerns that can be addressed
by analyzing the view.

Based on the ecosystem elements that are under analysis we classified the viewpoints
as project-centered, when they present information about the component projects, and
as developer-centered, when they present information about the emerging social structure
associated with the ecosystem.

Based on the subject of the associated concerns we classified the ecosystem viewpoints in
two classes:

155

156 8.1 Contributions

1. Holistic Viewpoints, that have the ecosystem as subject. Their goal is to support the
holistic understanding of the ecosystem by showing how the individual elements of
the ecosystem interact in the context of the ecosystem.

2. Focused Viewpoints, that have the ecosystem as context. Their goal is to improve the
understanding of the individual elements of the ecosystem by analyzing them in the
broader context of the ecosystem.

The catalog presents holistic viewpoints that are both project-centered and developer-
centered, as well as project-centered focused viewpoints.

• Introducing a process for reverse engineering software ecosystems. In this disser-
tation we introduced an ecosystem reverse engineering process we called Revenge. The
process is based on extracting and analyzing the evolution of the source code and the
meta-information available in the super-repository associated with an ecosystem. The re-
sults of the analysis are presented as visual perspectives on an ecosystem that capture its
various complementary facets: social structure, project structure, code growth, and ac-
tivity evolution. To manage the wealth of information available we provide mechanisms
that allow one to explore the available information. One such mechanism is navigating
between the generated ecosystem viewpoints.

In Revenge, we distinguish two types of navigation. The first, horizontal navigation al-
lows one to navigate between different views of a given ecosystem. Supporting horizontal
navigation is a matter of linking the various ecosystem perspectives in the tool. The sec-
ond, vertical navigation, allows one to dive into the details of individual projects in the
ecosystem. The type of project detail that we focused on were the architectural views.
Supporting vertical navigation implies therefore connecting ecosystem reverse engineer-
ing with individual system architecture recovery.

• Introducing a super-repository-independent ecosystem meta-model. In order to al-
low the analysis of different ecosystems and different super-repositories one needs to have
a representation of an ecosystem which is independent of the different versioning sys-
tems and languages used. In this work we proposed an ecosystem meta-model, named
Lightweight Ecosystem Model, which stands at the basis for our process and tool support.
For detailed types of analysis, such as architecture recovery, the Lightweight Ecosystem
Model needs to be a Detailed Project Model for the individual projects.

This modeling approach is general enough to allow the representation of different types
of ecosystems that are versioned in different types of super-repositories, specific enough
to to allow a wide range of analysis, and lightweight enough to allow a fast construction
and manipulation.

As a validation of the generality of our modelling technique, in our case studies we have
analyzed two types of ecosystems: Smalltalk ecosystems based on a Store versioning
system that belonged to companies, research groups and open source communities and
language independent ecosystems of projects versioned in SVN repositories such as the
Gnome software project ecosystem.

• Providing techniques for increasing the degree of automation in architecture recov-
ery. To support vertical exploration and diving into the architectural details of individual
systems one needs to recover architectural views from them. Since architecture recovery

157 8.2 Future Directions

is a manual process, we provided two techniques for the semi-automation of the process.
Both the techniques are based on discovering structural and evolutionary patterns in soft-
ware. The two types of patterns are:

– Patterns of Packages Interaction. We proposed a classification of packages based
on their interaction with other packages in a system. The patterns can be used to aug-
ment exploration with suggestions of the operations that will lead to architecturally
relevant views.

– Patterns of Inter-Package Dependency Evolution. We proposed a classification of
the inter-module dependencies based on their evolutionary dynamics. The patterns
can be used to focus the analysis by filtering out dependencies that are not relevant
for certain goals.

• Providing tool support for ecosystem reverse engineering. The ecosystem reverse
engineering process is supported by two tools:

– Softwarenaut is a tool that supports architecture recovery. Softwarenaut is built on
top of the Detailed Project Model and supports the discovery of architectural views
from the analysis of the source code of the individual projects. Once architectural
views are obtained in Softwarenaut, they are used in SPO.

– The Small Project Observatory is a tool that supports ecosystem reverse engineer-
ing that is available online. SPO is built on top of the Lightweight Ecosystem Model
ecosystem meta-model and supports a variety of overview viewpoints of an ecosys-
tem, supports various types of filtering and allows the navigation into the architec-
tural details of individual projects.

• Providing a series of ecosystem case studies. Through the dissertation we introduced
several ecosystems as case studies. We used them to illustrate the ecosystem viewpoints
with real-world examples and we used them to validate our methodology. For the latter
purpose, we analyzed in detail two two ecosystems. The first belongs to the Software
Composition Group in Bern. During the case study we showed how analyzing an individual
system in the context of the ecosystem can be useful to both the developers of the system
and to clients that depend on that system. The second ecosystem belongs to an industrial
partner who performed the analysis himself on the ecosystem of the company.

Several of the ecosystems can be explored online where they are available through The
Small Project Observatory.

8.2 Future Directions

During our research we encountered multiple possible continuation paths for the work presented
in this dissertation. In this section we outline three research directions that we would like to
pursue in the future.

• Perform More Case Studies Two directions that we will follow in the future is performing
new analyses on the case studies we already have as well as discovering new case studies.
Three special cases are:

158 8.2 Future Directions

– Gnome. In the Gnome ecosystem we did not go into detailed inter-project analysis
since we did not have the tools to parse and create models for all the languages in
which the projects in the ecosystem are written. Also our Detailed Project Model
only works with object-oriented programming languages and some of the projects in
Gnome are written in C.

– Soops. When Soops performed their analysis The Small Project Observatory and
Softwarenaut were not integrated, so they could not perform architecture recovery
on their systems. We would like to follow up and see if they are interesting in another
case study.

– Other ecosystems. There are other interesting open-source ecosystems that we plan
to analyze in the future. One of them is the one belonging to the Apache Software
Foundation.

• Integrating Other Sources of Information In this thesis, we extracted the ecosystem
information from two main sources: the code of the projects in the ecosystem and the
meta-annotations associated with the commits to the super-repository. Other complemen-
tary sources of information can be useful for enriching ecosystem understanding. Two
such sources are the Issue Tracking System and the Mailing List Archive associated with
each project. Cubranic et al. integrate all these sources of information to recommend to
the developer artifacts that are useful for the task at hand [CMSB05]. In the context of
the ecosystem, these information sources can be useful for other reasons:

– The Issue Tracking System. Information from the issue tracking system (e.g., Trac or
Bugzilla) can be integrated in the analysis to allow the estimation of the quality of
the projects or to discover the critical parts of an existing project.

– The Mailing List Archive. Information from the mailing lists associated with the
projects in the ecosystem can be used to reinforce the information about the social
relationships between the contributors to the ecosystem as it is being done already
by some researchers (e.g., Bird and Devanbu [BGD+06]) but not in the context of
software ecosystems.

That integrating sources of information is an interesting future direction it is shown also
by the interest of the Jazz team at IBM Research who is working on a platform which
explicitly links together all the various resources and artifacts and that the developers are
working on in the context of a single project. Their focus is on forward engineering.

• Supporting Ecosystem Analysis in Forward Engineering In this dissertation, the focus of
ecosystem analysis was on reverse engineering. We believe reverse engineering ecosystems
will become more and more preeminent, as more of the organizations that own large
software ecosystems realize the need of better understanding their own software legacy
that is hidden in their software ecosystem.

It is normal that the first type of ecosystem analysis be reverse engineering. We already
have the ecosystems and we need to make sense of them. However, in the future, after
we will have learned enough about ecosystems, the research will need to shift from re-
verse engineering to forward engineering and provide tool support for forward ecosystem
engineering.

159 8.2 Future Directions

Making the forward engineering tools ecosystem aware can mean integrating with the
continuous integration tools such as CruiseControl or Maven. In this context, one of the
directions that would be interesting would be the continuous monitoring of two aspects of
ecosystem evolution:

– Inter-project dependencies. In a world where reuse is key, many projects will be de-
pending on many libraries and frameworks. For the developer of the framework it
will be useful to know when and how his clients depend on his code. For the clients,
it will be useful to know when the projects that they depend on change, and whether
the upgrade affects the current API.

– Inter-project code duplication. Code and functionality duplication inside a single
project can be avoided if the developers put the effort of discovering it and refac-
toring. However, the situation in which developers across independent projects need
to write the same functionality over and over cannot be avoided since the duplication
is out of the field of vision of any one of them.

Shifting the focus of the analysis from the post-facto type of analysis that reverse engineer-
ing implies, to a more dynamic monitoring model in which ecosystem analysis will support
the forward engineering process will be challenging. We will need to adapt the existing
techniques and use new ones in improving the development of software ecosystems.

• Ecosystem Reverse Engineering in Education The Portable Software Bookshelf project
provided an online repository with a few architectural case studies that anybody could
easily access [FHK+97]. In our work we are continuing their tradition by making available
online, in an easy way, through the SPO website several ecosystem case studies that the
public can use. We envision that they will represent interesting resources for software
engineering courses. In the future we also plan to discover and import into SPO other
ecosystem case studies.

Moreover, given that the SPO platform, and ecosystem reverse engineering in general, is
just an entry point and a context for individual project architecture recovery, we also made
easily available a series of case studies of architecture recovery for all the systems that
are contained in the ecosystems available online. We believe that software engineering
students can use them to observe and compare various software architectures.

To support even further the publication of architecture recovery case studies, in the future
we plan to create a virtual ecosystem which would contain preeminent software projects
that would become accessible through SPO.

Having a central repository of case studies would be a powerful concept because it would
allow discussions around the proposed systems, discussions that would span course and
university boundaries. For this, we also plan to integrate collaboration features in SPO.

160 8.2 Future Directions

Appendix A

The Revenge Toolset

In this part of the thesis we describe the interface and the architecture of the two tools that
support the Revenge process:

1. The Small Project Observatory. The tool provides visualization and exploration of an
ecosystem based on the Lightweight Ecosystem Model. When vertical exploration is needed,
SPO requests architectural views from Softwarenaut.

2. Softwarenaut. The tool provides support for the discovery of architectural views from
single software systems. Softwarenaut makes available a repository of architectural views
that other applications, including SPO, can request.

The current distinction between the two tools is due to the fact that we initially started our
work on architecture recovery, and only later we ventured into ecosystem analysis. As a result
the two tools need to interact: if an architectural view is not available for a system, the analyst
needs to use Softwarenaut to discover the view. In the future, the interactive part could be
integrated in SPO and the switching between tools would not be necessary anymore.

161

162 A.1 The Small Project Observatory

A.1 The Small Project Observatory

The Small Project Observatory (SPO)1 drives our research in ecosystem visualization. The tool
supports both horizontal and vertical exploration of software ecosystems. The tool is based
on interactive visualization. Figure A.1 presents a screenshot of SPO during the analysis of an
ecosystem.

2. Available
Perspectives

4. View
Configuration

3. Active Filters

5. Detail
Perspective

1.Interactive
View

Figure A.1. Screenshot presenting the various parts of the UI of Small Project Observatory

The main elements of the user interface of SPO are:

1. The Interactive View. The central panel displays a specific ecosystem viewpoint. In Figure
A.1 we see the activity (measured in terms of commits to the repository) over a period
of 5 years. The view is interactive in the sense that the user can select and filter the
depicted projects, obtain contextual menus for the projects or navigate between various
perspectives. Figure A.1 presents the contextual menu obtained when the user selects a
given project.

2. Multiple Viewpoints. The Available Perspectives panel presents the list of all available
viewpoints. SPO provides multiple viewpoints on an ecosystem so a user can choose the
ones that are appropriate for the type of analysis he needs. Currently SPO implements all
the viewpoints we have presented in Chapter 4 and several others.

1The Small Project Observatory is available at http://spo.inf.unisi.ch/

163 A.1 The Small Project Observatory

3. Filtering. Filters are important since they can limit the analysis to relevant subsets of the
data, or remove individual elements which are not of interest. SPO provides two ways of
filtering elements in the views:

(a) The Filtering Panel allows the user to create rule-based filters by combining prede-
fined filters. The user can save composite filters and load them. The left side of
Figure A.2 presents the project filtering panel. The panel lists the active filters which
in this case are the projects that were “Active in the last year” and were developed
“In-House”.

(b) Filters can be applied individually by interacting with any viewpoint and using the
contextual menus to filter out elements. The right side of Figure A.2 shows the
contextual menu of the element representing Softwarenaut.

Figure A.2. Two ways of filtering elements in SPO: by composing rules, and by interactively
eliminating elements from the viewpoints

4. View Configuration. Each view exposes a set of parameters that can be configured from
the web interface. Figure A.1 presents the configuration panel for the view which presents
the history of activity in the ecosystem.

5. Detail perspectives. Providing details on demand is a way of coping with complexity
[Shn96]. To the right of the exploration view there are detail panels that provide addi-
tional information on the view or on the selected elements in the view. In Figure A.1 the
detail panel presents the list of developers which are involved in the projects in the view
and the projects they are involved in.

The navigation between the various ecosystem perspectives is done by interacting with the
elements in the interactive view or selecting different perspectives from the Available Perspec-
tives panel. In this respect, the views are both information presenters and navigation handlers.

164 A.1 The Small Project Observatory

A.1.1 Data Cleanup

Figure A.3 presents on a scatterplot the contributors to the Gnome ecosystem. The vertical axis
presents the number of non-code commits to the ecosystem. The horizontal axis presents the
number of commits to files that contain source code. The left side of the figure is initial. In the
right side the two user names kmaraas and markmc have been unified in a single data point.

Set Alias (markmc, kmarass)

Figure A.3. After setting the alias for the user kmaraas and markmc the developer that seemed
to be the most active in the Gnome ecoystem, became even more active

The figure illustrates the interactivity of SPO. The contextual menu allows one to declare
aliases for the selected developer.

165 A.1 The Small Project Observatory

A.1.2 Vertical Navigation

In order to support vertical navigation, SPO requests architectural views from Softwarenaut.
Some of the architectural views can be generated automatically, while for others the user needs
to open Softwarenaut, manually explore the system, and generate the views. Once architectural
views are available, SPO can present them and highlight various elements in them.

Figure A.4 presents an architectural view loaded in SPO. The two user interface elements
highlighted are:

• The list of available architectural views is marked with 1. It presents all the views that are
available for the given system and can be retrieved from Softwarenaut. In Figure A.4 there
are two views available: the one called main, and the one called main with tests.

• The list of available queries that can be used for selection is marked with 2. Currently two
types of queries are available:

1. Queries that detect elements of the system that interact with the ecosystem. For
example, all the classes that have methods that are called from the ecosystem, or all
the classes that are subclassed in the ecosystem.

2. Queries that detect elements that were active at certain periods in the lifetime of the
system. For example, all the classes that were active recently.

1. Available
Architectural

Views

2. Highlight
Queries

Figure A.4. Visualizing in SPO an architectural view that was generated in Softwarenaut

166 A.1 The Small Project Observatory

A.1.3 The Architecture

Figure A.5 presents a diagram of the architecture of SPO. The main components are the import
module, the ecosystem models, the analysis and cache modules, and the visualization engine.
We briefly present each one of the modules.

Internal Representation
Projects, Developers, HistoriesInternal Representation
Projects, Developers, Histories

Super-
Repository

SVN

CVS

Store

Super-
Repository

SPO

Seaside
Web

Development
Framework

Ecosystem Evolution Model
Projects, Developers, Histories

Analysis
Metrics,

Aggregation

Visualization
Layout Engine,

JS/SVG
Generator

Import and Automatic Update

SVN

CVS

Store
SVG Enabled

Super-
Repository

Web
Browser

Cache

Figure A.5. The architecture of SPO

• The Import module is responsible for interfacing with the super-repository, pulling data
from it, and populating the ecosystem model. Until now we have implemented two im-
port modules that work with two types of super-repositories: Store and SVN. To support
the ecosystem evolution monitoring, the Import module is responsible with the automatic
importing of new information from the super-repository as the information becomes avail-
able.

• SPO can act as a portal for ecosystem analysis. At any given time it can contains several
models of ecosystems, each of them conforming to the ecosystem meta-model.

• The Analysis module is computing metrics, discovering collaborations, analyzing devel-
oper and project vocabularies, and all the other types of analysis that are be performed on
an ecosystem model.

• Due to the highly interactive and exploratory nature of the tool, SPO generates dynami-
cally all the web pages and all the visualizations they contain. The Cache module caches
all the results of the analysis to speed up the view generation process.

• The visualization module takes as input information from the internal representation, anal-
ysis and cache modules and generates views from it. The module contains the layout en-
gine and the SVG generator. The JavaScript interaction code is generated dynamically for
every view.

167 A.1 The Small Project Observatory

Some of the graph based views (e.g., project dependency) use the hierarchical layout al-
gorithm provided by dot [GN00].

• Seaside is a web application framework which emphasizes a component based approach
to web application development. We use seaside because it offers a unique way to have
multiple control flows on a page, one for each component [DLR07].

168 A.2 Softwarenaut

A.2 Softwarenaut

Softwarenaut2 is an application whose goal is to support the discovery of architectural views a
software system. The tool is tailored for reverse engineering large industrial software systems
written in object-oriented languages. Until now we have analyzed systems written in Java, C++,
and Smalltalk.

1. Exploration
View

2. Detail
 View

3. Overview
 View

Figure A.6. A screenshot of Softwarenaut exploring Softwarenaut. Details about the selected
dependency are presented in the right panel.

The UI of Softwarenaut is composed of three linked complementary visual perspectives that
present information about the system during the exploration. Figure A.6 presents Softwarenaut
visualizing an architectural view of itself. The figure illustrates the three complementary views
that the tool supports:

1. The Exploration View. The Exploration View is the main view in Softwarenaut. It is a

2Softwarenaut is available at http://www.inf.unisi.ch/phd/lungu/snaut

169 A.2 Softwarenaut

graph-based representation of modules and their dependencies. The modules are repre-
sented as nodes in the graph and their dependencies are represented as directed edges
between the modules. Each dependency edge is an aggregation of low-level dependencies
between the two associated modules.

2. The Detail View. This view presents details for the entity that is currently selected in the
Exploration View. The goal of this view is to provide insight into the details of the element
selected in the exploration view.

The detail view displays information about the structure of modules, their composition,
the structure of the inter-module dependencies, and their composition. Because there are
many types of details that can be displayed for an entity, they are implemented as plug-ins
and a new detail view is simple to add. The system populates the list of plug-ins at runtime
by searching for all the classes in the system that implement the view protocol. Figure A.6
presents one of the detail representations of an inter-module dependency: the evolution
filmstrip.

The detail view in Figure A.6 presents details for the selected dependency under the form
of a list of classes that are called by the source module and the number of times they are
called. The view can be refined by diving into the details of the classes and seeing which
of the methods in the class are called and how many times. From the methods one can
navigate to the source code.

In Chapter 6 and Chapter 7 we have presented two types of detail visualizations, one for
modules and one for inter-module relationships.

3. The Overview View. The overview view presents the entire hierarchy of the system
and highlights on it the modules that are currently visible in the exploration view. The
Overview view presents a horizontal slice through the system [Won00]. The view is inter-
active: the user can navigate to the details of the elements in the view, or select elements
in the detailed view and have the selection propagate to the exploration view. This view is
significant because it offers a sense of orientation during the top-down navigation.

170 A.2 Softwarenaut

A.2.1 Interacting with the Exploration View

There are several ways in which the analyst interacts with the Exploration View in Softwarenaut.

1. Exploration Operations. An exploration session with Softwarenaut starts with a high-
level view on the system that the user subsequently refines. The refinement is done with
four types of operations:

(a) Expand. A node in the view is replaced with its children.

(b) Collapse. A set of nodes in the view is replaced with their parent.

(c) Filter. An individual node/edge or a set of nodes/edges is filtered out from the view.

(d) Group. A set of nodes is grouped together.

2. Filtering. Figure A.7 presents the relation filtering panel as implemented in Software-
naut. Several filters can be combined to obtain new and more powerful ones. During the
exploration, the user generates many views. If a filter is active, each time a new view is
generated, only those dependencies that the filter allows to be visible are visible.

Figure A.7. The relationship filtering panel in Softwarenaut

Filtering is crucial to avoid too many elements being displayed in the exploration view.
Softwarenaut implements filters for both nodes and edges in the graph. There are multiple
types of filters:

• Metric-based filters. Filtering entities and relationships based on their properties.
One example of this is filtering the weak dependencies or filtering the modules that
do not depend on others.

• Type-based filters. Filtering entities or relations of a given type. One example of this
is showing only inheritance relationships, or filtering out the classes in a system.

• Explicit filters. Filtering a given element of the view that was arbitrarily selected by
the user.

171 A.2 Softwarenaut

When it comes to filtering relationships there are two types of filters: deep filtering and
shallow filtering.

• Deep Filtering. Removes the low-level dependencies that match a given condition
from the analysis. For example, removing all the invocation relationships that go to
polymorphic classes, will not remove the visual dependency between two modules if
it contains other types of low-level dependencies.

• Shallow Filtering. This type of filter removes completely from the view the relation-
ship between to modules when a given condition relationship holds. For example,
removing from the view all the dependencies that abstract less than 100 explicit de-
pendencies.

3. History Operations. Softwarenaut keeps a history of the exploration and filtering actions
to support undo and redo operations. This is a requirement for information exploration
tools [Shn96] that few architecture recovery tools implement.

4. Loading and Saving Views. In order to allow the analysis sessions to be saved and con-
tinued, and in order to allow the exporting of the architectural views to other tools (such
as it is the case with SPO), Softwarenaut allows saving and restoring the configuration of
a view.

172 A.2 Softwarenaut

A.2.2 The Detailed Project Model

The detailed model of an object oriented system in Revenge (and implicitly in Softwarenaut)
is obtained by extracting low-level facts from the source code of the system and aggregating
them into high-level views of the system. The aggregation process happens along a hierarchical
decomposition of the system and involves both the entities extracted from the source code and
their relationships:

• The entities are aggregated along a hierarchical decomposition of the system. Our as-
sumption is that the code is organized hierarchically based on modularity mechanisms
specific to each language: packages in Java, modules in Ada, directories in C++, bundles
in VisualWorks Smalltalk, etc.

• The relationship aggregation process, also called lifting [FKO98] needs to be based on a
hierarchical decomposition of the system.

When a hierarchical decomposition is not provided, we can automatically generate one using
clustering techniques. We presented elsewhere an experiment with clustering the classes in a
system based on the similarity in the natural language terms that are used in their definitions
[LKGL05].

*
*

*

*
Entity Relationship

Composite
Entity

Leaf
Entity

2

Explicit
Relationship

InheritanceInvocationClass MethodModule

*

Cluster

Implicit
Relationship

Access

Detailed
Project
Model

Figure A.8. The Detailed Project Model can model any hierarchical decomposition of a system
written in an object-oriented language

The diagram from Figure A.8 presents two types of abstract entities and two types of abstract
relations:

• Leaf Entities. The leaf entities are the basic object-oriented programming building blocks
used for the structuring of software. Depending on the analyzed relationship, the leaf
entities can be either methods or classes.

173 A.2 Softwarenaut

• Composite Entities. The composite entities are containers for other entities. They can have
direct mappings to programming language entities, such as classes, packages, namespaces
or modules but can also represent abstract composites such as clusters.

• Explicit Relationships. These are the relations between two entities. They are extracted
from the code. The ones that we are interested in are method invocations, class inheritance
and field access.

• Implicit Relationships. The model admits relationships between any abstract entities. How-
ever, in software systems explicit relationships usually exist only between the leaf entities.
Therefore, the relations between the composite entities are inferred bottom-up from the
relations existing between the leafs. The result is that between any two high-level compo-
nents, we have a relation that represents a collection of all the relations between the leaf
components aggregated in them.

Automatically aggregating the low-level relations, and then letting the user navigate from the
highest abstraction level downwards is the exact opposite of the approach that Müller proposed
with Rigi [MK88]. In their case, the user starts from the lowest-level facts and aggregates them
as he climbs up in the abstraction hierarchy. Their approach does not scale when analyzing
very large systems because the number of low-level artifacts is too large. Storey took the same
top-down navigation approach in her work on SHriMP [SM95].

174 A.2 Softwarenaut

Bibliography

[14700] IEEE Std 1471-2000. IEEE Std 1471-2000. IEEE recommended practice for architec-
tural description of software-intensive systems. IEEE Architecture Working Group,
2000.

[ADPM04] Giuliano Antoniol, Massimiliano Di Penta, and Ettore Merlo. An automatic ap-
proach to identify class evolution discontinuities. In IWPSE ’04: Proceedings of the
Principles of Software Evolution, 7th International Workshop, pages 31–40, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

[ARGBH05] Juan José Amor, Gregorio Robles, Jesús M. González-Barahona, and Israel Her-
raiz. Measuring libre software using debian 3.1 (sarge) as a case study: Prelimi-
nary results. Upgrade Magazine, 2005.

[Bae81] R.M. Baecker. Sorting out sorting (video). Siggraph Video Review 7, 1981.

[BCK97] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
Addison-Wesley Professional, 1997.

[BGD+06] Christian Bird, Alex Gourley, Prem Devanbu, Michael Gertz, and Anand Swami-
nathan. Mining email social networks. In MSR ’06: Proceedings of the 2006 inter-
national workshop on Mining software repositories, pages 137–143, New York, NY,
USA, 2006. ACM.

[BGGN08] Andrea Brühlmann, Tudor Gîrba, Orla Greevy, and Oscar Nierstrasz. Enriching
reverse engineering with annotations. In MoDELS ’08: Proceedings of the 11th
international conference on Model Driven Engineering Languages and Systems, pages
660–674, Berlin, Heidelberg, 2008. Springer-Verlag.

[BHB99] Ivan T. Bowman, Richard C. Holt, and Neil V. Brewster. Linux as a case study: its
extracted software architecture. In ICSE ’99: Proceedings of the 21st international
conference on Software engineering, pages 555–563, Los Alamitos, CA, USA, 1999.
IEEE Computer Society Press.

[BMW94] Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas E. Webster. Program un-
derstanding and the concept assignment problem. Commun. ACM, 37(5):72–82,
1994.

[BNL+06] Sushil Bajracharya, Trung Ngo, Erik Linstead, Yimeng Dou, Paul Rigor, Pierre
Baldi, and Cristina Lopes. Sourcerer: a search engine for open source code sup-
porting structure-based search. In OOPSLA ’06: Companion to the 21st ACM SIG-

175

176 Bibliography

PLAN symposium on Object-oriented programming systems, languages, and applica-
tions, pages 681–682, New York, NY, USA, 2006. ACM.

[BRB+09] Christian Bird, Peter C. Rigby, Earl T. Barr, David J. Hamilton, Daniel M. German,
and Prem Devanbu. The promises and perils of mining git. 2009.

[Bro83] Ruven Brooks. Towards a theory of the comprehension of computer programs.
International Journal of Man-Machine Studies, 18:543–554, 1983.

[BS84] M.H. Brown and R. Sedgewick. A system for algorithm animation. ACM Computer
Graphics, 18(3):177–186, 1984.

[CC90] Elliot J. Chikofsky and James H. Cross. Reverse engineering and design recovery:
A taxonomy. IEEE Softw., 7(1):13–17, 1990.

[CHC05] Megan Conklin, James Howison, and Kevin Crowston. Collaboration using oss-
mole: a repository of floss data and analyses. SIGSOFT Softw. Eng. Notes, 30(4):1–
5, 2005.

[Cin00] Cincom. Team Development with VisualWorks. Cincom Technical Whitepaper,
2000.

[CKN+03] Christian Collberg, Stephen Kobourov, Jasvir Nagra, Jacob Pitts, and Kevin
Wampler. A system for graph-based visualization of the evolution of software.
In SoftVis ’03: Proceedings of the 2003 ACM symposium on Software visualization,
pages 77–ff, New York, NY, USA, 2003. ACM.

[CKS05] Andreas Christl, Rainer Koschke, and Margaret-Anne Storey. Equipping the re-
flexion method with automated clustering. In WCRE ’05: Proceedings of the 12th
Working Conference on Reverse Engineering, pages 89–98, Washington, DC, USA,
2005. IEEE Computer Society.

[CMSB05] D. Cubranic, G.C. Murphy, J. Singer, and K.S. Booth. Hipikat: a project memory
for software development. Software Engineering, IEEE Transactions on, 31(6):446–
465, June 2005.

[Con68] Melvin E. Conway. How do committees invent? Datamation, 14(4):28–31, April
1968.

[Cor89] T. A. Corbi. Program understanding: challenge for the 1990’s. IBM Syst. J.,
28(2):294–306, 1989.

[Dav95] Alan M. Davis. 201 principles of software development. McGraw-Hill, Inc., New
York, NY, USA, 1995.

[DDT99] Serge Demeyer, Stéphane Ducasse, and Er Tichelaar. Why unified is not universal.
uml shortcomings for coping with round-trip engineering. In Proceedings UML’99
(The Second International Conference on The Unified Modeling Language), volume
1723 of LNCS, pages 630–645. Springer-Verlag, 1999.

177 Bibliography

[DGLD05] Stéphane Ducasse, Tudor Gîrba, Michele Lanza, and Serge Demeyer. Moose: a col-
laborative and extensible reengineering environment. In Tools for Software Main-
tenance and Reengineering, RCOST / Software Technology Series, pages 55–71.
Franco Angeli, Milano, 2005.

[DL05] Stéphane Ducasse and Michele Lanza. The class blueprint: Visually supporting the
understanding of classes. IEEE Trans. Softw. Eng., 31(1):75–90, 2005. Member-
Lanza„ Michele.

[DLL06] Marco D’Ambros, Michele Lanza, and Mircea Lungu. The evolution radar: Visu-
alizing integrated logical coupling information. In Proceedings of MSR 2006 (3rd
International Workshop on Mining Software Repositories), pages 26–32. ACM Press,
May 2006.

[DLL09] Marco D’Ambros, Michele Lanza, and Mircea Lungu. Visualizing co-change in-
formation with the evolution radar. In IEEE Transactions on Software Engineering
(TSE), IEEE CS Press, to be published, 2009.

[DLR05] Stéphane Ducasse, Michele Lanza, and Romain Robbes. Multi-level method un-
derstanding using Microprints. In Proceedings of VISSOFT 2005 (3th IEEE Interna-
tional Workshop on Visualizing Software for Understanding), 2005.

[DLR07] Stephane Ducasse, Adrian Lienhard, and Lukas Renggli. Seaside: A flexible en-
vironment for building dynamic web applications. IEEE Software, 24(5):56–63,
2007.

[DPHKV93] Wim De Pauw, Richard Helm, Doug Kimelman, and John Vlissides. Visualizing
the behavior of object-oriented systems. In OOPSLA ’93: Proceedings of the eighth
annual conference on Object-oriented programming systems, languages, and applica-
tions, pages 326–337, New York, NY, USA, 1993. ACM.

[DPJM+02] Wim De Pauw, Erik Jensen, Nick Mitchell, Gary Sevitsky, John M. Vlissides, and
Jeaha Yang. Visualizing the execution of java programs. In Revised Lectures on
Software Visualization, International Seminar, pages 151–162, London, UK, 2002.
Springer-Verlag.

[EGK+01] Stephen G. Eick, Todd L. Graves, Alan F. Karr, J. S. Marron, and Audris Mockus.
Does code decay? assessing the evidence from change management data. IEEE
Trans. Softw. Eng., 27(1):1–12, 2001.

[Erl00] Len Erlikh. Leveraging legacy system dollars for e-business. IT Professional,
2(3):17–23, 2000.

[ESJ92] S.C. Eick, J.L. Steffen, and E.E. Sumner Jr. Seesoft - a tool for visualizing line ori-
ented software statistics. IEEE Transactions on Software Engineering, 18(11):957–
968, 1992.

[FBTG02] Rudolf Ferenc, Arpad Beszedes, Mikko Tarkiainen, and Tibor Gyimóthy. Columbus
- reverse engineering tool and schema for c++. In ICSM ’02: Proceedings of the
International Conference on Software Maintenance (ICSM’02), page 172, Washing-
ton, DC, USA, 2002. IEEE Computer Society.

178 Bibliography

[FHK+97] P. J. Finnigan, R. C. Holt, I. Kalas, S. Kerr, K. Kontogiannis, H. A. Müller, J. My-
lopoulos, S. G. Perelgut, M. Stanley, and K. Wong. The software bookshelf. IBM
Syst. J., 36(4):564–593, 1997.

[FKO98] L. Feijs, R. Krikhaar, and R. Van Ommering. A relational approach to support
software architecture analysis. Softw. Pract. Exper., 28(4):371–400, 1998.

[FR91] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed place-
ment. Software Practive and Experience, 2:1129–1164, 1991.

[GBRM+08] Jesus M. Gonzalez-Barahona, Gregorio Robles, Martin Michlmayr, Juan José
Amor, and Daniel M. German. Macro-level software evolution: a case study of
a large software compilation. Empirical Software Engineering, 2008.

[GDL04] T. Gîrba, S. Ducasse, and M. Lanza. Yesterday’s weather: Guiding early reverse
engineering efforts by summarizing the evolution of changes, 2004.

[GHJ98] Harald Gall, Karin Hajek, and Mehdi Jazayeri. Detection of logical coupling based
on product release history. In ICSM ’98: Proceedings of the International Conference
on Software Maintenance, page 190, Washington, DC, USA, 1998. IEEE Computer
Society.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley, Reading, Mass.,
1995.

[Gîr05] Tudor Gîrba. Modeling History to Understand Software Evolution. PhD thesis, Uni-
versity of Berne, Berne, 2005.

[GJR99] Harald Gall, Mehdi Jazayeri, and Claudio Riva. Visualizing software release his-
tories: The use of color and third dimension. Software Maintenance, IEEE Interna-
tional Conference on, 0:99, 1999.

[GKSD05] Tudor Girba, Adrian Kuhn, Mauricio Seeberger, and Stéphane Ducasse. How de-
velopers drive software evolution. In IWPSE ’05: Proceedings of the Eighth Interna-
tional Workshop on Principles of Software Evolution, pages 113–122, Washington,
DC, USA, 2005. IEEE Computer Society.

[GLD05] Tudor Gîrba, Michele Lanza, and Stéphane Ducasse. Characterizing the evolution
of class hierarchies. In Proceedings of 9th European Conference on Software Main-
tenance and Reengineering (CSMR’05), pages 2–11, Los Alamitos CA, 2005. IEEE
Computer Society.

[GN00] Emden R. Gansner and Stephen C. North. An open graph visualization system and
its applications to software engineering. Softw. Pract. Exper., 30(11):1203–1233,
2000.

[HJK+07] Abram Hindle, Zhen Ming Jiang, Walid Koleilat, Michael W. Godfrey, and
Richard C. Holt. Yarn: Animating software evolution. Visualizing Software for
Understanding and Analysis, International Workshop on, 0:129–136, 2007.

179 Bibliography

[HNS00] Christine Hofmeister, Robert Nord, and Dilip Soni. Applied Software Architecture.
Addison-Wesley, 2000.

[HP96] R. Holt and J. Y. Pak. Gase: visualizing software evolution-in-the-large. In WCRE
’96: Proceedings of the 3rd Working Conference on Reverse Engineering (WCRE ’96),
page 163, Washington, DC, USA, 1996. IEEE Computer Society.

[HWS00] R.C. Holt, A. Winter, and A. Schurr. Gxl: toward a standard exchange format.
Reverse Engineering, 2000. Proceedings. Seventh Working Conference on, pages 162–
171, 2000.

[IEE98] IEEE. IEEE Standard for Software Maintenance. IEEE Std 1219-1998, pages –, Oct
1998.

[JRvdL00a] Mehdi Jazayeri, Alexander Ran, and Frank van der Linden. Software architecture
for product families: principles and practice. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2000.

[JRvdL00b] Mehdi Jazayeri, Alexander Ran, and Frank van der Linden. Software architecture
for product families: principles and practice. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2000.

[JV03] Doug Janzen and Kris De Volder. Navigating and querying code without getting
lost. In AOSD ’03: Proceedings of the 2nd international conference on Aspect-oriented
software development, pages 178–187, New York, NY, USA, 2003. ACM.

[KC98] Rick Kazman and S. Jeromy Carriere. View extraction and view fusion in architec-
tural understanding. In Proceedings of the 5th International Conference on Software
Reuse, Victoria, B.C., 1998.

[KC99] Rick Kazman and S. J. Carriere. Playing detective: Reconstructing software archi-
tecture from available evidence. Automated Software Engineering, 1999.

[KM05] Mik Kersten and Gail C. Murphy. Mylar: a degree-of-interest model for ides. In
AOSD ’05: Proceedings of the 4th international conference on Aspect-oriented soft-
ware development, pages 159–168, New York, NY, USA, 2005. ACM.

[KMR08] Jens Knodel, Dirk Muthig, and Dominik Rost. Constructive architecture compli-
ance checking – an experiment on support by live feedback. In Proceedings of the
24th IEEE International Conference on Software Maintenance (ICSM 2008), pages
287–296, 2008.

[Kri99] Rene Krikhaar. Software Architecture Reconstruction. PhD thesis, University of
Amsterdam, 1999.

[Kru95] Philippe Kruchten. The 4+1 view model of architecture. IEEE Softw., 12(6):42–50,
1995.

[kru09] Code maintenance best practices. 4 essential skills for lean times. Whitepaper,
Krugle Inc., 2009.

[KV08] Adrian Kuhn and Toon Verwaest. FAME, a polyglot library for metamodeling at
runtime. In Workshop on Models at Runtime, pages 57–66, 2008.

180 Bibliography

[Lan01] Michele Lanza. The evolution matrix: recovering software evolution using soft-
ware visualization techniques. In IWPSE ’01: Proceedings of the 4th International
Workshop on Principles of Software Evolution, pages 37–42, New York, NY, USA,
2001. ACM.

[Lan03a] Michele Lanza. Codecrawler - lessons learned in building a software visualiza-
tion tool. In CSMR ’03: Proceedings of the Seventh European Conference on Soft-
ware Maintenance and Reengineering, page 409, Washington, DC, USA, 2003. IEEE
Computer Society.

[Lan03b] Michele Lanza. Object-Oriented Reverse Engineering — Coarse-grained, Fine-
grained, and Evolutionary Software Visualization. PhD thesis, University of Berne,
2003.

[LB85] M. M. Lehman and L. A. Belady. Program evolution: processes of software change.
Academic Press Professional, Inc., San Diego, CA, USA, 1985.

[LD03] M. Lanza and S. Ducasse. Polymetric views - a lightweight visual approach to
reverse engineering. Software Engineering, IEEE Transactions on, 29(9):782–795,
2003.

[Leh80] M.M. Lehman. Programs, life cycles, and laws of software evolution. Proceedings
of the IEEE, 68(9):1060–1076, Sept. 1980.

[Let86] Stanley Letovsky. Cognitive processes in program comprehension. In Papers pre-
sented at the first workshop on empirical studies of programmers on Empirical studies
of programmers, pages 58–79, Norwood, NJ, USA, 1986. Ablex Publishing Corp.

[Lev66] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady, 10:707–710, 1966.

[LFRGBH06] L. Lopez-Fernandez, G. Robles, J. M. Gonzalez-Barahona, and I. Herraiz. Applying
social network analysis to community-driven libre software projects. International
Journal of Information Technology and Web Engineering, 1(3):27–48, 2006.

[LGL09] Mircea Lungu, Tudor Gîrba, and Michele Lanza. The small project observatory:
Visualizing software ecosystems (to appear). EST special issue of the Science of
Computer Programming, 2009.

[LKGL05] Mircea Lungu, Adrian Kuhn, Tudor Gîrba, and Michele Lanza. Interactive explo-
ration of semantic clusters. In 3rd International Workshop on Visualizing Software
for Understanding and Analysis (VISSOFT 2005), pages 95–100, 2005.

[LL06a] Mircea Lungu and Michele Lanza. Softwarenaut: cutting edge visualization. In
SoftVis ’06: Proceedings of the 2006 ACM symposium on Software visualization,
pages 179–180, New York, NY, USA, 2006. ACM.

[LL06b] Mircea Lungu and Michele Lanza. Softwarenaut: Exploring hierarchical system
decompositions. In Proceedings of the 10th European Conference on Software Main-
tenance and Reengineering (CSMR’06), pages 349–350, 2006.

181 Bibliography

[LL07] Mircea Lungu and Michele Lanza. Exploring inter-module relationships in evolv-
ing software systems. In Proceedings of CSMR 2007 (11th European Conference on
Software Maintenance and Reengineering), pages 91–100, Los Alamitos CA, 2007.
IEEE Computer Society Press.

[LLG06] Mircea Lungu, Michele Lanza, and Tudor Gîrba. Package patterns for visual ar-
chitecture recovery. In Proceedings of CSMR 2006 (10th European Conference on
Software Maintenance and Reengineering), pages 185–196, Los Alamitos CA, 2006.
IEEE Computer Society Press.

[LLGH07] Mircea Lungu, Michele Lanza, Tudor Girba, and Reinout Heeck. Reverse engineer-
ing super-repositories. In WCRE ’07: Proceedings of the 14th Working Conference on
Reverse Engineering, pages 120–129, Washington, DC, USA, 2007. IEEE Computer
Society.

[LML09] Mircea Lungu, Jacopo Malnati, and Michele Lanza. Visualizing gnome with the
small project observatory. In Proceedings of MSR 2009 (6th IEEE Working Confer-
ence on Mining Software Repositories), 2009.

[LMSW03] Rob Lintern, Jeff Michaud, Margaret-Anne Storey, and Xiaomin Wu. Plugging-in
visualization: experiences integrating a visualization tool with eclipse. In SoftVis
’03: Proceedings of the 2003 ACM symposium on Software visualization, pages 47–
ff, New York, NY, USA, 2003. ACM.

[LN97] Danny B. Lange and Yuichi Nakamura. Object-oriented program tracing and visu-
alization. Computer, 30(5):63 – 70, 1997.

[LPR+97] M.M. Lehman, D.E. Perry, J.F. Ramil, WM Turski, and PD Wernick. Metrics and
Laws of Software Evolution - The Nineties View. In METRICS ’97: Proceedings of
the 4th International Symposium on Software Metrics, Washington, DC, USA, Nov.
5-7th 1997. IEEE Computer Society.

[Mal09] Jacopo Malnati. Developer-centric analysis of svn ecosystems. Master’s thesis,
University of Lugano, 2009.

[Mar02] Radu Marinescu. Measurement and Quality in Object-Oriented Design. PhD thesis,
Department of Computer Science, Politehnica University of Timi̧soara, 2002.

[MFM03] Andrian Marcus, Louis Feng, and Jonathan I. Maletic. 3d representations for soft-
ware visualization. In SoftVis ’03: Proceedings of the 2003 ACM symposium on
Software visualization, pages 27–36, New York, NY, USA, 2003. ACM.

[MGWJ07] Andrew McNair, Daniel M. German, and Jens Weber-Jahnke. Visualizing software
architecture evolution using change-sets. In WCRE ’07: Proceedings of the 14th
Working Conference on Reverse Engineering, pages 130–139, Washington, DC, USA,
2007. IEEE Computer Society.

[MJS+00] Hausi A. Müller, Jens H. Jahnke, Dennis B. Smith, Margaret-Anne Storey, Scott R.
Tilley, and Kenny Wong. Reverse engineering: a roadmap. In ICSE ’00: Proceedings
of the Conference on The Future of Software Engineering, pages 47–60, New York,
NY, USA, 2000. ACM.

182 Bibliography

[MK88] H.A. Muller and K. Klashinsky. Rigi: a system for programming-in-the-large. Soft-
ware Engineering, 1988., Proceedings of the 10th International Conference on, pages
80–86, 1988.

[MKPW06] Kim Mens, Andy Kellens, Frédéric Pluquet, and Roel Wuyts. Co-evolving code and
design with intensional views — a case study. Journal of Computer Languages,
Systems and Structures, 32(2):140–156, 2006.

[MMMW05] C. Marinescu, R. Marinescu, P. F. Mihancea, and R. Wettel. iplasma: An integrated
platform for quality assessment of object-oriented design. In In ICSM (Industrial
and Tool Volume, pages 77–80. Society Press, 2005.

[MN95] Gail C. Murphy and David Notkin. Lightweight source model extraction. In SIG-
SOFT ’95: Proceedings of the 3rd ACM SIGSOFT symposium on Foundations of soft-
ware engineering, pages 116–127, New York, NY, USA, 1995. ACM.

[MNS95] G. Murphy, D. Notkin, and K. Sullivan. Software reflexion models: Bridging the
gap between source and high-level models. In Proceedings of SIGSOFT ’95, Third
ACM SIGSOFT Symposium on the Foundations of Software Engineering, pages 18–
28. ACM Press, 1995.

[NBZ06] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining metrics to pre-
dict component failures. In ICSE ’06: Proceedings of the 28th international confer-
ence on Software engineering, pages 452–461, New York, NY, USA, 2006. ACM.

[NDG05] Oscar Nierstrasz, Stéphane Ducasse, and Tudor Gviewpointırba. The story of
moose: an agile reengineering environment. SIGSOFT Softw. Eng. Notes, 30(5):1–
10, 2005.

[NZHZ07] Stephan Neuhaus, Thomas Zimmermann, Christian Holler, and Andreas Zeller.
Predicting vulnerable software components. In CCS ’07: Proceedings of the 14th
ACM conference on Computer and communications security, pages 529–540, New
York, NY, USA, 2007. ACM.

[OBM05] Ciaran O’Reilly, David Bustard, and Philip Morrow. The war room command con-
sole: shared visualizations for inclusive team coordination. In SoftVis ’05: Pro-
ceedings of the 2005 ACM symposium on Software visualization, pages 57–65, New
York, NY, USA, 2005. ACM.

[OS01] Liam O’Brien and Christoph Stoermer. Architecture reconstruction case study.
Technical report, CMU/SEI-2001-TR-026, 2001.

[Par94] David Lorge Parnas. Software aging. In ICSE ’94: Proceedings of the 16th interna-
tional conference on Software engineering, pages 279–287, Los Alamitos, CA, USA,
1994. IEEE Computer Society Press.

[PBS93] Blaine A. Price, Ronald M. Baecker, and Ian S. Small. A principled taxonomy of
software visualization. Journal of Visual Languages & Computing, 4(3):211–266,
September 1993.

[Per82] Alan J. Perlis. Special feature: Epigrams on programming. SIGPLAN Not., 17(9):7–
13, 1982.

183 Bibliography

[PGFL05] Martin Pinzger, Harald Gall, Michael Fischer, and Michele Lanza. Visualizing mul-
tiple evolution metrics. In SoftVis ’05: Proceedings of the 2005 ACM symposium on
Software visualization, pages 67–75, New York, NY, USA, 2005. ACM.

[Pin05] Martin Pinzger. ArchView - Analyzing Evolutionary Aspects of Complex Software
Systems. PhD thesis, Vienna University of Technology, 2005.

[Por80] Martin F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of software
architecture. SIGSOFT Softw. Eng. Notes, 17(4):40–52, 1992.

[Ray99] Eric S. Raymond. The Cathedral and the Bazaar. O’Reilly & Associates, Inc., Se-
bastopol, CA, USA, 1999.

[RCoP92] Griua-Catalin Roman, Kenneth C. Cox, C. Donald ox, and Jerome Y. Plun. Pa-
vane: A system for declarative visualization of concurrent computations. Journal
of Visual Languages and Computing, 3:161–193, 1992.

[Rei09] Steven P. Reiss. Semantics-based code search. In ICSE ’09: Proceedings of the
2009 IEEE 31st International Conference on Software Engineering, pages 243–253,
Washington, DC, USA, 2009. IEEE Computer Society.

[RGB06] Gregorio Robles and Jesus Gonzalez-Barahona. Contributor turnover in libre soft-
ware projects. In IFIP International Federation for Information Processing, volume
203, pages 273–286. Springer Boston, 2006.

[Riv04] Claudio Riva. View-based Software Architecture Reconstruction. PhD thesis, Tech-
nical University of Vienna, 2004.

[RK02] T. Rötschke and R. Krikhaar. Architecture Analysis Tools to Support Evolution
of Large Industrial Systems. In Proc. IEEE International Conference on Software
Maintenance (ICSM 2002), pages 182–193, 2002.

[RL05] Romain Robbes and Michele Lanza. Versioning systems for evolution research. In
Proceedings of IWPSE 2005 (8th International Workshop on Principles of Software
Evolution), pages 155–164. IEEE Computer Society, 2005.

[RMC91] George G. Robertson, Jock D. Mackinlay, and Stuart K. Card. Cone trees: animated
3d visualizations of hierarchical information. In CHI ’91: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 189–194, New York, NY,
USA, 1991. ACM Press.

[Rob08] Romain Robbes. Of Change and Software. PhD thesis, University of Lugano, Octo-
ber 2008.

[SBLE00] H.A. Sahraoui, A.M. Boukadoum, H. Lounis, and F. Etheve. Predicting class li-
braries interface evolution: an investigation into machine learning approaches.
Software Engineering Conference, 2000. APSEC 2000. Proceedings. Seventh Asia-
Pacific, pages 456–464, 2000.

184 Bibliography

[SDBP98] John T. Stasko, John Domingue, Marc H. Brown, and Blaine A. Price, editors.
Software Visualization — Programming as a Multimedia Experience. The MIT Press,
1998.

[SE86] E. Soloway and K. Ehrlich. Empirical studies of programming knowledge. Readings
in artificial intelligence and software engineering, pages 507–521, 1986.

[SES05] J. Singer, R. Elves, and M.-A. Storey. Navtracks: supporting navigation in software
maintenance. Software Maintenance, 2005. ICSM’05. Proceedings of the 21st IEEE
International Conference on, pages 325–334, 2005.

[SFM99] M.-A. D. Storey, F. D. Fracchia, and H. A. Müller. Cognitive design elements to
support the construction of a mental model during software exploration. J. Syst.
Softw., 44(3):171–185, 1999.

[Shn80] Shneiderman. Software Psychology: Human Factors in Computer and Information
Systems. Winthrop Publishers, 1980.

[Shn96] Ben Shneiderman. The eyes have it: A task by data type taxonomy for information
visualizations. In IEEE Visual Languages, pages 336–343, College Park, Maryland
20742, U.S.A., 1996.

[SKM06] V. Sinha, D. Karger, and R. Miller. Relo: Helping users manage context during
interactive exploratory visualization of large codebases. Visual Languages and
Human-Centric Computing, 2006. VL/HCC 2006. IEEE Symposium on, pages 187–
194, 2006.

[SM95] Margaret-Anne D. Storey and Hausi A. Müller. Manipulating and documenting
software structures using SHriMP Views. In Proceedings of ICSM ’95 (Interna-
tional Conference on Software Maintenance), pages 275–284. IEEE Computer Soci-
ety Press, 1995.

[Som95] Ian Sommerville. Software engineering (5th ed.). Addison Wesley Longman Pub-
lishing Co., Inc., Redwood City, CA, USA, 1995.

[TLTC05] M. Termeer, C. F. J. Lange, A. Telea, and M. R. V. Chaudron. Visual exploration
of combined architectural and metric information. In VISSOFT ’05: Proceedings of
the 3rd IEEE International Workshop on Visualizing Software for Understanding and
Analysis, page 11, Washington, DC, USA, 2005. IEEE Computer Society.

[TSP96] Scott R. Tilley, Dennis B. Smith, and Santanu Paul. Towards a framework for
program understanding. In WPC ’96: Proceedings of the 4th International Workshop
on Program Comprehension (WPC ’96), page 19, Washington, DC, USA, 1996. IEEE
Computer Society.

[vMV95] Anneliese von Mayrhauser and A. Marie Vans. Program comprehension during
software maintenance and evolution. IEEE Computer, 28(8):44–55, 1995.

[WCK99] S. Woods, S. Carrire, and R. Kazman. The perils and joys of reconstructing archi-
tectures, 1999.

185 Bibliography

[WDLS06] Andreas Wierda, Eric Dortmans, and Lou Lou Somers. Using version information
in architectural clustering - a case study. In CSMR ’06: Proceedings of the Con-
ference on Software Maintenance and Reengineering, pages 214–228, Washington,
DC, USA, 2006. IEEE Computer Society.

[Wei05] D. A. Weiss. A large crawl and quantitative analysis of open source
projects hosted on sourceforge. In Research Report ra-001/05, Institute
of Computing Science, Pozna University of Technology, Poland, 2005. At
http://www.cs.put.poznan.pl/dweiss/xml/publications/index.xml, 2005.

[WL07] Richard Wettel and Michele Lanza. Visualizing software systems as cities. Visualiz-
ing Software for Understanding and Analysis, International Workshop on, 0:92–99,
2007.

[Won98] Kenny Wong. The rigi user’s manual — version 5.4.4. Technical report, University
of Victoria, 1998.

[Won00] Kenny Wong. The reverse engineering notebook. PhD thesis, University of Victoria,
Victoria, B.C., Canada, Canada, 2000.

[ZG03] Lijie Zou and Michael W. Godfrey. Detecting merging and splitting using origin
analysis. In WCRE ’03: Proceedings of the 10th Working Conference on Reverse
Engineering, page 146, Washington, DC, USA, 2003. IEEE Computer Society.

[ZWDZ04] Thomas Zimmermann, Peter Weisgerber, Stephan Diehl, and Andreas Zeller. Min-
ing version histories to guide software changes. In ICSE ’04: Proceedings of the
26th International Conference on Software Engineering, pages 563–572, Washing-
ton, DC, USA, 2004. IEEE Computer Society.

186 Bibliography

	Contents
	List of Figures
	List of Tables
	I Prologue
	Introduction
	Contributions
	Structure of the Dissertation

	State of the Art
	Introduction
	Software Visualization
	Architecture Recovery
	Software Evolution Analysis
	Towards Reverse Engineering Software Ecosystems

	II Ecosystems
	Reverse Engineering Software Ecosystems
	Introduction
	Ecosystems and Super-Repositories
	Related Concepts
	Benefits of Ecosystem Analysis
	Reverse Engineering Software Ecosystems
	The Revenge Process
	Super-Repository Data Extraction
	Automatic Data Analysis
	Data Cleanup
	Ecosystem Structure Discovery
	Architecture Recovery

	Modeling Ecosystems
	Discussion
	Summary

	Ecosystem Viewpoints
	Introduction
	Ecosystem Viewpoints
	Case Studies
	A Catalog of Ecosystem Viewpoints
	Size History
	Activity History
	Developer Activity Timeline
	Developer Collaboration
	Inter-Project Dependency Map
	Contextual Project Architecture
	Contextual Project Dependency Matrix

	Discussion
	Conclusions

	Two Case Studies of Ecosystem Reverse Engineering
	Introduction
	The SCG Ecosystem
	Project-centric analysis
	Developer-centric analysis
	Analyzing a Framework in the Context of the Ecosystem

	An Industrial Experience Report
	Discussion
	Conclusions

	III Architecture Recovery
	Package Patterns for Architecture Recovery
	Introduction
	Manual Exploration in Architecture Recovery
	Packages and Dependencies
	Vertical Package Slices
	Package Patterns
	Iceberg
	Fall-through
	Autonomous
	Archipelago

	Validation
	Pattern Frequency in Real-World Systems
	Do Overlapping Patterns Occur?
	Implementation in Softwarenaut

	Discussion
	Conclusions

	Inter-Module Dependency Patterns
	Introduction
	Dependencies and Relations
	Modeling Relationship Evolution
	The Relationship Evolution Filmstrip
	Inter-Module Relation Evolution Patterns
	Fossil Relation
	Lifetime Relation
	Old Relation
	Recent Relation
	Stable Relation
	Instable Relation

	Validation
	Pattern Frequency in Real-World Systems
	Implementation in Softwarenaut

	Discussion
	Conclusions

	IV Epilogue
	Conclusions
	Contributions
	Future Directions

	The Revenge Toolset
	The Small Project Observatory
	Data Cleanup
	Vertical Navigation
	The Architecture

	Softwarenaut
	Interacting with the Exploration View
	The Detailed Project Model

	Bibliography

