
Research Advisor Research Co-Advisor

Prof. Dr. Gabriele Bavota Prof. Dr. Michele Lanza

R E V E A L

OPINION MINING FOR
SOFTWARE DEVELOPMENT

Bin Lin

Dissertation Committee

Prof. Carlo Alberto Furia Università della Svizzera italiana, Switzerland
Prof. Paolo Tonella Università della Svizzera italiana, Switzerland
Prof. Martin Pinzger Alpen-Adria-Universität Klagenfurt, Austria
Prof. Denys Poshyvanyk The College of William & Mary, USA

Dissertation accepted on 10 June 2020

Research Advisor Co-Advisor

Prof. Gabriele Bavota Prof. Michele Lanza

Ph.D. Program Co-Director Ph.D. Program Co-Director

Prof. Walter Binder Prof. Silvia Santini

i

I certify that except where due acknowledgement has been given, the work presented in
this thesis is that of the author alone; the work has not been submitted previously, in whole
or in part, to qualify for any other academic award; and the content of the thesis is the result
of work which has been carried out since the official commencement date of the approved
research program.

Bin Lin
Lugano, 10 June 2020

ii

Abstract

Opinion mining, which uses computational methods to extract opinions and sentiments from
natural language texts, can be applied to various software engineering (SE) tasks. For ex-
ample, developers can mine user feedback from mobile app reviews to understand how to
improve their products, and software team leaders can assess developers’ mood and emo-
tions by mining communication logs or commit messages. Also, the growing popularity of
technical Question & Answer (Q&A) websites (e.g., Stack Overflow) and code-sharing plat-
forms (e.g., GitHub) made available a plethora of information that can be mined to collect
opinions of experienced developers (e.g., what they think about a specific software library).
The latter can be used to assist software design decisions.

However, such a task is far from trivial due to three main reasons: First, the amount of
information available online is huge; second, opinions are often embedded in unstructured
data; and third, recent studies have indicated that opinion mining tools provide unreliable
results when used out-of-the-box in the SE domain, since they are not designed to process
SE datasets.

Despite of all these challenges, we believe mining opinions from online resources enables
developers to access peers’ expertise with ease. The knowledge embedded in these opinions, once
converted into actionable items, can facilitate software development activities.

We first investigated the feasibility of using state-of-the-art sentiment analysis tools to
identify sentiment polarity in the software context. We also examined whether customizing
a neural network model with SE data can improve its performance of sentiment polarity
prediction. Based on the findings of these studies, we proposed a novel approach for recom-
mending APIs with rationales by mining opinions from Q&A websites to support software
design decisions. On the one hand, we shed light on the limitations researchers face when
applying existing opinion mining techniques in SE context. On the other hand, we illustrate
the promise of mining opinions from online resources to support software development ac-
tivities.

iii

iv Abstract

Acknowledgments

It has been almost four years since I first arrived in Lugano, but it seems like only yesterday.
Although the journey of my Ph.D. is not considered very long, it definitely impacts me sig-
nificantly. I am truly grateful for everything I have come across and all the kindness I have
received during these years.

First of all, I would like to thank my advisors, Prof. Gabriele Bavota and Prof. Michele
Lanza. I am extremely lucky to have this opportunity to work with such tremendously sup-
portive advisors. Gabriele, thank you for always providing me with fast and constructive
feedback all these years. I have learned so much about research from you, and I am so
proud of being your first Ph.D. student. Michele, thanks for always sharing your insightful
opinions and senior experience. And very importantly, thank you for showing us the sense
of beauty and decency, which benefits us profoundly.

Since I set my foot in the REVEAL group, I have never been alone. People come and
go, but it is every one of you who makes these years full of fun. I will never forget those
interesting moments in the Via Balestra office. Specifically, I would like to express my grat-
itude to the following people who have gone through part or all of my Ph.D. journey with
me: Andrea Mocci, Luca Ponzanelli, Roberto Minelli, Tommaso Dal Sasso, Emad Aghajani,
Jevgenija Pantiuchina, Fengcai Wen, and Alejandro Mazuera Rozo. I am also very glad to see
the REVEAL group growing, and I wish all the best to Rosalia Tufano and Luca Pascarella,
who just embarked their journey in REVEAL. I would also extend my gratitude to all the
members of Software Institute, some of whom have become good friends. It is especially
precious to see our institute getting stronger and more united.

I would also like to express my sincere gratitude to the members of my dissertation
committee: Prof. Carlo Alberto Furia, Prof. Tonella Paolo, Prof. Martin Pinzger, and Prof.
Denys Poshyvanyk. Thank you for accepting my invitation, taking time to review this thesis,
and attending my defense.

Many thanks to my collaborators. Indeed, collaboration is one of the most interesting
parts in an academic life. It is my great honor and pleasure to have the chance to work with
so many excellent fellow students and professors: Simone Scalabrino, Prof. Rocco Oliveto,
Fiorella Zampetti, Prof. Massimiliano Di Penta, Prof. Andrian Marcus, Prof. Nikolaos Tsan-
talis, Maria Caulo, Prof. Giuseppe Scanniello, Nathan Cassee, Prof. Alexander Serebrenik,
Prof. Nicole Novielli, Luca Traini, Rungroj Maipradit, Prof. Hideaki Hata, Yutaro Kashiwa,
and Prof. Yasutaka Kamei. Particularly, I would like to give a big shout-out to Alexander,
who took me into the research field of software engineering. Without his support and en-
couragement, I would never be able to reach where I am now.

I want to express my profound gratitude to my parents. I have been far away from home
for 10 years, but there is not a single moment when I cannot feel their unconditional love
and care. Without their support, I would never be able to come this far. Last but not least, I

v

vi Acknowledgments

would like to thank my girlfriend Nan, for bringing me so much happiness, and helping me
learn how to become a better me. What’s past is prologue. I believe we will overcome all
the difficulties and reach our dreamland together.

Contents

Contents vii

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Thesis Statement . 3
1.2 Research Contributions . 3

1.2.1 Performance Examination of Opinion Mining Techniques 3
1.2.2 Approach for Mining Opinions from Online Discussions 4

1.3 Outline . 4

2 State of the Art 7
2.1 Opinion Mining in a Nutshell . 7
2.2 Opinion Mining Techniques for SE . 8

2.2.1 The Perils of Using Opinion Mining Techniques Out-Of-The-Box 8
2.2.2 Customizing Opinion Mining Techniques for SE Tasks 9

2.3 Applications of Opinion Mining in SE . 11
2.3.1 Opinion Mining to Support Software Requirements Engineering 11
2.3.2 Opinion Mining to Support Software Design and Implementation . . . 12
2.3.3 Opinion Mining to Support Software Maintenance and Evolution . . . 13
2.3.4 Opinion Mining and Human Aspects of Software Development 15

2.4 Discussion . 17

3 Sentiment Polarity Analysis in Software Engineering Contexts 19
3.1 Customizing The State-Of-The-Art Sentiment Analysis Tool 20

3.1.1 Mining Opinions in SE Datasets . 20
3.2 Negative Results of Customization . 23
3.3 Evaluating Sentiment Polarity Analysis for SE . 25

3.3.1 Research Questions and Context . 25
3.3.2 Data Collection and Analysis . 27
3.3.3 Results . 28

3.4 Threats to Validity . 32
3.5 Lessons Learned . 33
3.6 Conclusion . 34

vii

viii Contents

4 Mining Opinions from Q&A Sites to Support Software Design Decisions 37
4.1 Rationale-Based Software API Recommender: A Proposal 38

4.1.1 Motivation . 38
4.1.2 System Architecture . 39
4.1.3 OPINER: The Most Relevant and the State-Of-The-Art Tool 40

4.2 POME: Pattern-based Opinion MinEr . 43
4.2.1 API Miner . 43
4.2.2 Fine-Grained Linker . 43
4.2.3 Aspect Classifier . 44
4.2.4 Polarity Analyzer . 49
4.2.5 POME in Action . 49

4.3 Evaluating the Performance of POME . 51
4.3.1 Research Questions . 51
4.3.2 Context Selection & Data Collection . 51
4.3.3 Data Analysis . 54

4.4 Results Discussion . 54
4.5 Threats to Validity . 59
4.6 Conclusion . 60

5 Conclusions and Future Work 61
5.1 Limitations . 62

5.1.1 Customization of STANFORD CORENLP . 62
5.1.2 Performance Improvement of POME . 62
5.1.3 Various Available Data Online . 62
5.1.4 Opinion Mining in Different Software Development Activities 63

5.2 Future Work . 63
5.2.1 Improvement of Opinion Mining Techniques 63
5.2.2 Support for Different Software Development Activities 64

5.3 Closing Words . 64

Appendices 67

A On the Uniqueness of Code Redundancies 69
A.1 Introduction . 70
A.2 Study Context . 71
A.3 Study I: Source Code Redundancy . 72

A.3.1 Research Questions . 72
A.3.2 Data Extraction . 73
A.3.3 Data Analysis . 74
A.3.4 Results . 74

A.4 Study II: Language Models & Code Completion 79
A.4.1 Research Questions . 79
A.4.2 Data Extraction . 80

Contents ix

A.4.3 Data Analysis . 80
A.4.4 Results . 81

A.5 Threats to Validity . 85
A.6 Related Work . 86

A.6.1 Code Redundancy . 86
A.6.2 Code Completion . 86

A.7 Conclusion . 87

B On the Impact of Refactoring Operations on Code Naturalness 89
B.1 Introduction . 90
B.2 Related Work . 91
B.3 Study Design . 91

B.3.1 Research Question . 91
B.3.2 Study Context . 92
B.3.3 Data Collection . 92
B.3.4 Data Analysis . 93

B.4 Preliminary Results . 94
B.4.1 Statistical Analysis of Results . 94
B.4.2 Examples of Cross-Entropy Change . 96
B.4.3 Comparison with the Study by Arima et al. 97

B.5 Threats to Validity . 97
B.6 Conclusion and Future Work . 98

C Investigating the Use of Code Analysis and NLP to Promote a Consistent Usage
of Identifiers 99
C.1 Introduction . 100
C.2 Related Work . 101

C.2.1 Thies and Roth [TR10] - Static code analysis 102
C.2.2 Allamanis et al. [ABBS14] - NLP . 103

C.3 LExicAl Renaming . 104
C.4 Evaluation . 110

C.4.1 Study Design . 110
C.4.2 Results . 113

C.5 Threats to Validity . 117
C.6 Conclusion . 118

D On The Quality of Identifiers in Test Code 119
D.1 Introduction . 120
D.2 Related Work . 121

D.2.1 Quality of Identifiers . 121
D.2.2 Rename Refactoring . 122

D.3 Study I: Quality of Identifiers in Test Code . 123
D.3.1 Research Question . 123
D.3.2 Study Context and Data Collection . 124

x Contents

D.3.3 Data Analysis . 126
D.3.4 Results . 126

D.4 Study II: Identifier Renaming in Test Code . 133
D.4.1 Research Question . 133
D.4.2 Study Context . 133
D.4.3 Data Collection and Analysis . 134
D.4.4 Results . 135

D.5 Threats to Validity . 140
D.6 Conclusion and Future Work . 141

E Knowledge Transfer in Modern Code Review 143
E.1 Introduction . 144
E.2 Related Work . 145

E.2.1 Taking Stock . 148
E.3 Study Design . 148

E.3.1 Hypothesis . 148
E.3.2 Study Context . 149
E.3.3 Measures . 151
E.3.4 Data Analysis . 153

E.4 Results . 155
E.4.1 PRs Acceptance Rate . 156
E.4.2 Accepted PRs Closing Time . 158
E.4.3 Comments Posted in PRs . 159
E.4.4 Sentiment Polarity of Comments . 161
E.4.5 Answering our Research Question . 162

E.5 Threats to Validity . 163
E.6 Conclusions . 165

F Datasets 167
F.1 Sentiment Polarity Analysis in Software Engineering Contexts 167

F.1.1 Dataset of Mobile App Reviews . 167
F.1.2 Dataset of Stack Overflow Discussions . 167

F.2 Mining Opinions from Q&A Sites to Support Software Design Decisions . . . 168
F.2.1 Dataset of API-Related Opinions . 168
F.2.2 Dataset of POME and OPINER . 168

F.3 On The Quality of Identifiers in Test Code . 168

Bibliography 169

Figures

3.1 Example of the labeling needed to build the Stanford CoreNLP training set. . 21
3.2 Web app used to label the sentiment polarity of the nodes extracted from Stack

Overflow sentences. 22

4.1 Our vision of the rationale-based software API recommender system. 39
4.2 The homepage of OPINER. 41
4.3 Screenshot of the “Aspects” page of the most reviewed API “com.fasterxml.jackson”

from OPINER. 42
4.4 Web app used to label the opinions expressed in sentences. 46
4.5 An example of a positive pattern belonging to the performance category. . . . 48
4.6 Information and opinions about the “Gson” API presented by POME. 50

A.1 Redundancy rate for sequences having different lengths 75
A.2 Redundancy rate for different types of code constructs when no abstraction is

applied. 76
A.3 Redundancy rate of different code constructs when no abstraction is applied

and the sequence length is 9. 77
A.4 Statistical comparisons for the redundancy rates of different types of code

constructs for sequences of length 9. 77
A.5 Microsoft Thrifty: Cumulative frequency for sequences of length 9. 78
A.6 Prediction accuracy rates of the language model when supporting code com-

pletion (top 1 recommendation). 81
A.7 Accuracy of the language model when supporting code completion on differ-

ent constructs (top-1 recommendation) . 82
A.8 Accuracy of the 3-gram model when supporting code completion on different

constructs (top-1 recommendation) . 83
A.9 Statistical comparisons for the accuracy of the 3-gram language model on

different code constructs . 84

B.1 Cross-entropy change after refactoring . 96

C.1 Precision and recall of the LEAR recommendations when varying Cp 109

D.1 Characteristics of identifiers having different quality levels, as perceived by
the study participants . 131

D.2 Precision of rename refactoring techniques on test code 137

E.1 Acceptance rate for PRs submitted by developers. 156

xi

xii Figures

E.2 Closing time (in minutes) for PRs submitted by developers. 157
E.3 Number of general comments for PRs submitted by developers. 158
E.4 Number of source code comments for PRs submitted by developers. 159

Tables

3.1 Testing results of STANFORD CORENLP SO. 24
3.2 Examples of sentiment polarity analysis results of Stanford CoreNLP SO. . . . 25
3.3 Dataset used for evaluating sentiment polarity analysis tools in SE 27
3.4 Evaluation results for sentiment analysis tools applied in SE domain. In bold

the best results. 29
3.5 Confusion matrices on the Stack Overflow dataset. 31

4.1 Regular expressions for extracting API-related sentences in Stack Overflow
Answers. 43

4.2 Dataset used for patterns’ definition and training of the machine learning al-
gorithms. 44

4.3 Numbers of sentences identified for each of the aspects during manual analysis. 45
4.4 Dataset used to answer RQ1 & RQ2. 51
4.5 Dataset used to answer RQ3 . 52
4.6 Performance of the best Machine Learning approach using seven different set

of features and the Pattern matching approach. 55
4.7 Evaluation results for sentiment analysis tools. 56
4.8 Precision for POME and OPINER in aspect & sentiment prediction. 57

A.1 Dataset Statistics . 71
A.2 Identified code constructs . 74

B.1 Considered Refactorings in Our Study . 93
B.2 Detected Refactorings and Their Impact on the Code Naturalness 94
B.3 Statistical Tests of File Cross-Entropy Before and After Refactoring 95

C.1 Five rename refactoring tagged with a yes . 108
C.2 Context of the study (systems and participants) 110
C.3 Participants’ answers to the question Would you apply the proposed rename

refactoring? . 114
C.4 Refactorings tagged with yes, maybe, and no . 115
C.5 Overlap metrics . 117

D.1 Subject projects for Study I: Identifier quality. 124
D.2 Number of identifiers inspected for each project 125
D.3 Evaluation of identifier quality given by evaluators 127
D.4 Frequency of scores given to identifier quality 128

xiii

xiv Tables

D.5 Evaluation of manually written variables . 128
D.6 Quality of Identifiers in Test Code vs Production Code for JACKSON CORE and

ORMLITE CORE . 129
D.7 Dataset Statistics . 134
D.8 Ratio of variables for which a rename refactoring is generated (manual-oracle) 136
D.9 Ratio of variables for which a rename refactoring is generated (mined-oracle) 136
D.10 Performance comparison of rename refactoring techniques for identifiers in

production code and test code . 138
D.11 Statistical tests of precisions of rename refactoring techniques for mined-oracle 138
D.12 Results of rename refactoring techniques for manual-oracle when trained on

test code . 139

E.1 Groups for each “knowledge” measure . 155
E.2 Cross-project scenario - Knowledge groups created by past PRs: Results of

the Mann-Whitney test (adj. p-value) and Cliff’s Delta (d). We only report
results of comparisons that are: (i) statistically significant and (ii) have at
least a small effect size. 160

E.3 Cross-project scenario - Knowledge groups created by past commits: Results
of Mann-Whitney test (adj. p-value) and Cliff’s Delta (d). We only report
results of comparisons that are (i) statistically significant, and (ii) have at
least a small effect size. 161

E.4 Single-project scenario - Knowledge groups created by past commits: Results
of Mann-Whitney test (adj. p-value) and Cliff’s Delta (d). We only report
results of comparisons that are (i) statistical significant, and (ii) have at least
a small effect size. 162

1
Introduction

In 2003, Dave et al. [DLP03] proposed a novel approach which uses a classifier to iden-
tify the sentiment of product review sentences, i.e., whether these sentences are positive
or negative. They addressed the process as “opinion mining”, and in their perspective, “an
opinion mining tool would process a set of search results for a given item, generating a list of
product attributes (quality, features, etc.) and aggregating opinions about each of them (poor,
mixed, good).” This is the first time that the term “opinion mining” appeared in the computer
science literature. However, researchers’ efforts to mine opinions can be dated back even ear-
lier. For example, in a work published in 2002, Pang et al. [PLV02] employed three machine
learning techniques (i.e., Naive Bayes, Maximum Entropy Classification, and Support-Vector
Machines) to classify the sentiment embedded in movie reviews. In the same year, Turney
[Tur02] proposed an unsupervised learning algorithm to classify reviews of automobiles,
banks, movies, and travel destinations as recommended or not recommended, leveraging the
semantic orientation assigned to the phrases which contain adjectives or adverbs.

Tasks that capture sentiment polarity (positive or negative) are also called “sentiment
analysis” in some other studies [NY03, Liu15]. In fact, the terms “opinion mining” and
“sentiment analysis” are often used interchangeably [PL07, Liu15].

Meanwhile, the concept of “opinion mining” is also constantly evolving and no longer
limited to classifying texts into different polarities. For example, Conrad and Schilder [CS07]
analyzed subjectivity (i.e., whether the text is subjective or objective) of online posts when
mining opinions from blogs in the legal domain. Hu et al. [HCC17] adopted a text summa-
rization approach, which identifies the most informative sentences, to mine opinions from
online hotel reviews. These new perspectives pose the requirement for a broader definition
of opinion mining. In this dissertation, we refer to “opinion mining” as the process of analyz-
ing “people’s opinions, appraisals, attitudes, and emotions toward entities, individuals, issues,
events, topics, and their attributes”, as proposed by Liu [Liu11].

In recent years, opinion mining has also attracted considerable attention from software
engineering (SE) researchers. Studies have seen the usage of opinion mining in collecting in-
formative app reviews, aiming at understanding how developers can improve their products
and revise their release plans [IH13, CLH+14, PSG+15, VBR+16, MKNS16, SBR+19]. Be-
sides, researchers have also applied opinion mining techniques to monitor developers’ emo-

1

2 Introduction

tions expressed during development activities [GB13, MTAO14, OMD+16, SLS16, CLN17,
Wer18, LA19]. Opinion mining has also been used to assess the quality of software products
[DY13, Ato20].

While there is an increasing number of SE studies leveraging opinion mining, many re-
searchers tend to use opinion mining tools designed for other domains, which often leads to
unreliable results [TJA14, JSDS17]. Novielli et al. [NCL15] also highlighted and discussed
the challenges of employing existing sentiment analysis techniques to detect affective ex-
pressions from texts containing technical lexica, as typical in programmers’ communication.
These facts call for opinion mining techniques curated with software-related data to address
the problem of low accuracy when applied in SE contexts.

To overcome these limitations, researchers have spent considerable efforts in customizing
existing opinion mining techniques or proposing new approaches. Some of these tools (e.g.,
SENTISTRENGTH-SE [IZ17]) improve the performance of original approaches by enriching
built-in vocabularies with domain-specific ones and adding additional heuristic rules, while
others (e.g., EMOTXT [CLN17], SENTI4SD [CLMN18]) trained entirely new machine learning
classifiers based on software-related data without modifying the existing opinion mining
approaches.

Nevertheless, the proposed approaches are not always thoroughly evaluated with differ-
ent datasets and in different application domains. For instance, an approach working on
discussions from Q&A sites might not perform well when applied on bug reports. Therefore,
it is necessary to carefully inspect the performance of these techniques before using them.

Additionally, in current studies, opinion mining techniques have only been applied to a
few scenarios, while we believe they can benefit many other software development activi-
ties. For example, as software systems are becoming increasingly complex, developers often
need to obtain relevant information from various online resources (such as Q&A websites,
mailing lists, and issue tracking systems). These resources often include opinions valuable
in different software development tasks, such as software design (e.g., understanding which
libraries to use for certain functionalities) and software maintenance (e.g., learning how to
fix a certain bug in software systems).

However, implementing approaches for these tasks remains far from trivial. First of
all, the amount of information available in online resources can be overwhelming. For in-
stance, Stack Overflow1, one of the most popular Q&A websites used by developers, featured
around 19 million questions and 28 million answers by the end of March 2020. Moreover,
Stack Overflow is just one important source developers might consult during software de-
velopment. GitHub2, the most popular code sharing platform, hosts more than 160 million
repositories as of March 2020. These repositories also contain huge amounts of opinions
embedded in issue reports, commit messages, and comments. Given the fact that these valu-
able opinions are widely distributed, developers often have to invest significant amounts of
time on extracting and aggregating useful pieces of information from different resources,
which results in constant context switching and reduced productivity. In other words, being
unable to efficiently retrieve and reuse this information undermines its value. Furthermore,

1https://www.stackoverflow.com
2https://github.com/

https://www.stackoverflow.com
https://github.com/

1.1 Thesis Statement 3

text information online is often noisy [DH09], and the texts often contain spelling mistakes,
grammatical errors, and irrelevant information. Additionally, the format of the media con-
taining information is not uniform, since the text can be embedded in Q&A sites, source
files, issue tracking systems, mailing lists, etc. Given all these difficulties, the value of useful
opinions embedded in online resources is under-exploited but worth further attention.

1.1 Thesis Statement

We formulate our thesis as follows:

Mining opinions from online resources enables developers to access peers’ expertise
with ease. The knowledge embedded in these opinions, once converted into action-
able items, can facilitate software development activities.

To validate our thesis, we investigated the possibility of applying and customizing ex-
isting opinion mining techniques in SE context [LZB+18]. We also implemented POME, an
approach that, given the functionality developers want to implement expressed in the natural
language, is able to recommend to developers the best APIs to use together with a rationale
explaining the reason for such a recommendation [LZB+19].

Our results can be leveraged to understand the concrete difficulties of applying opin-
ion mining techniques in a software-related context. We also provide a novel approach for
mining developers’ opinions from online discussions, thus laying the foundations for a novel
generation of opinion mining techniques in the SE field.

1.2 Research Contributions

The contributions of our research can be grouped in two high-level categories: i) the per-
formance examination of opinion mining techniques in the SE context [LZB+18], and ii) a
novel approach for mining opinions from software-related online discussions [LZB+19].

1.2.1 Performance Examination of Opinion Mining Techniques

• We re-train a neural network-based sentiment analysis model with Stack Overflow
sentences (Section 3.1). The dataset and scripts used for the re-training process are
publicly available, such that other researchers can build their own models on top of it.

• We provide two datasets with labeled sentiment polarities, which gives researchers
more possibilities to evaluate their own sentiment analysis approaches (Section 3.3.1).

• We investigate the accuracy of commonly used tools to identify the sentiment of software-
related texts (Section 3.3.3). We also study the impact of different datasets on tool
performance (Section 3.3.3).

• We point out the concrete difficulties faced by existing techniques in identifying the
sentiment in software-related contexts (Section 3.5).

4 Introduction

1.2.2 Approach for Mining Opinions from Online Discussions

• We propose a novel approach to sentiment polarity identification and quality aspect
classification, which exhibits a higher precision than a state-of-the-art technique (Sec-
tion 4.2).

• We implement a tool which takes as input the text describing a functionality developers
want to implement, and returns recommendations on which APIs developers can use
and what the advantages and disadvantages are regarding different quality aspects
(e.g., performance, compatibility) (Section 4.2.5).

• We provide a dataset containing Stack Overflow discussions with labeled sentiment
polarities and corresponding quality aspects, allowing researchers to train and evaluate
their own approaches (Section 4.3).

• We also evaluate several machine learning-based approaches with different settings,
providing an overview of the performance of traditional machine learning approaches
for sentiment polarity identification and quality aspect categorization (Section 4.4).

1.3 Outline

This dissertation is structured in the following chapters:

Chapter 2 presents an overview of the state of the art, including the general concepts of
opinion mining, the customization of opinion mining techniques in the SE context, and
the application of opinion mining in various software development activities.

Chapter 3 describes our attempt to customize a widely used sentiment analysis tool STAN-
FORD CORENLP with software related data. Meanwhile, this chapter also presents the
evaluation of the performance of different opinion mining techniques when applied in
SE context. This chapter is based on the following publications [LZB+18, LZO+18]:

Sentiment Analysis for Software Engineering: How Far Can We Go?

Bin Lin, Fiorella Zampetti, Gabriele Bavota, Massimiliano Di Penta, Michele Lanza, Rocco
Oliveto. In Proceedings of the 40th International Conference on Software Engineering (ICSE
2018) – Technical Track, pp. 94–104, 2018

Two Datasets for Sentiment Analysis in Software Engineering

Bin Lin, Fiorella Zampetti, Rocco Oliveto, Massimiliano Di Penta, Michele Lanza, Gabriele
Bavota. In Proceedings of the 35th International Conference on Software Maintenance and Evo-
lution (ICSME 2018) – Artifact Track, pp. 712, 2018

Chapter 4 presents our plan to build a software API recommender system, which can take
as input texts describing what functionality developers want to implement, and rec-
ommends the APIs they can use with rationals. To reach this goal, we propose Pattern-
based Opinion MinEr (POME), a novel approach that leverages natural language pars-
ing and pattern-matching to mine online discussions and recommend suitable APIs

1.3 Outline 5

to developers with rationales. This chapter is based on the following publication
[LZB+19]:

Pattern-Based Mining of Opinions in Q&A Websites

Bin Lin, Fiorella Zampetti, Gabriele Bavota, Massimiliano Di Penta, Michele Lanza. In Proceed-
ings of the 41st International Conference on Software Engineering (ICSE 2019) – Technical Track,
pp. 548-–559, 2019

Chapter 5 concludes this dissertation by summarizing our work and indicating future re-
search directions based on the results we achieved.

During our research, before we ended up with the research topic presented in this dis-
sertation, we had also explored several different research directions. The relevant studies
are presented in our appendices, which are structured as follows:

Appendix A presents a study of the redundancy of several types of code constructs in a
large-scale dataset of active Java projects mined from GitHub, unveiling that redun-
dancy is not uniform and mainly resides in specific code constructs. We further in-
vestigate the implications of the locality of redundancy by analyzing the performance
of language models when applied to code completion. This chapter is based on the
following publication [LPM+17]:

On the Uniqueness of Code Redundancies

Bin Lin, Luca Ponzanelli, Andrea Mocci, Gabriele Bavota, Michele Lanza. In Proceedings of
the 25th International Conference on Program Comprehension (ICPC 2017) – Technical Research
Track, pp. 121–131, 2017

Appendix B presents an empirical study which investigates the impact of different types of
refactoring operations on the naturalness of the refactored code, i.e., how refactoring
operations impact the repetitiveness and predictability of source code. This chapter is
based on the following publication [LNBL19]:

On the Impact of Refactoring Operations on Code Naturalness

Bin Lin, Csaba Nagy, Gabriele Bavota, Michele Lanza. In 26th IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER 2019) - Early Research Achievements
Track, pp. 594–598, 2019

Appendix C presents LEAR, which employs a customized version of the n-gram language
model to recommend renaming operations for variables declared in methods and method
parameters. We also conduct a large-scale empirical study to evaluate the meaningful-
ness of the renaming recommendations generated by LEAR and other state-of-the-art
techniques. This chapter is based on the following publication [LSM+17]:

Investigating the Use of Code Analysis and NLP to Promote a Consistent Usage of Identi-
fiers

Bin Lin, Simone Scalabrino, Andrea Mocci, Rocco Oliveto, Gabriele Bavota, Michele Lanza. In
Proceedings of the 17th International Working Conference on Source Code Analysis and Manipu-
lation (SCAM 2017) – Research Track, pp. 81-90, 2017

6 Introduction

Appendix D presents an empirical study which assesses the quality of identifiers in test
code. The study mainly consists of a survey involving participants evaluating the qual-
ity of identifiers in both manually written and automatically generated test cases from
ten open source software projects. This chapter is based on the following publication
[LNB+19]:

On The Quality of Identifiers in Test Code

Bin Lin, Csaba Nagy, Gabriele Bavota, Andrian Marcus, Michele Lanza. In Proceedings of the
19th International Working Conference on Source Code Analysis and Manipulation (SCAM 2019)
– Research Track, pp. 204–215, 2019

Appendix E presents a mining-based study investigating how and whether the code review
process helps developers to improve their contributions to open source projects over
time. More specifically, we analyze 32,062 peer-reviewed pull requests (PRs) made
across 4,981 GitHub repositories by 728 developers, and verify if the contribution
quality of a developer increases over time (i.e., when more and more reviewed PRs are
made by that developer). This chapter is based on the following publication [CLB+20]:

Knowledge Transfer in Modern Code Review

Maria Caulo, Bin Lin, Gabriele Bavota, Giuseppe Scanniello, Michele Lanza. In Proceedings
of the 28th International Conference on Program Comprehension (ICPC 2020) – Research Track,
accepted

As we have created several datasets in our studies, to facilitate replication, we describe
these datasets in Appendix F. In the end, we list all the acronyms used in this dissertation in
“Acronyms”.

2
State of the Art

In this chapter, we present the categories of opinion mining tasks, as well as the customiza-
tions and applications of opinion mining techniques in the SE domain. We conclude this
chapter by outlining the limitations of current studies and indicating potential directions for
improvement.

2.1 Opinion Mining in a Nutshell

While opinion mining covers a wide range of tasks, those tasks can usually be categorized
into:

• Sentiment polarity and positivity degree identification, which is applied to classify
the opinions expressed in the text into one of the distinguishable sentiment polarities
(e.g., positive, neutral, or negative). For example, Ranco et al. [RAC+15] identified
the sentiment in the tweets related to finance, and inspected its impact on stock price
returns.

• Subjectivity detection and opinion identification, which is applied to decide whether
a given text contains subjective opinions or objective information. For example, Sata-
pathy et al. [SCC+17] detected the opinionated tweets on the nuclear energy, which
serve as a basis to understand whether social media bias exists toward this controver-
sial energy.

• Joint topic-sentiment analysis, which consider topics and opinions simultaneously
and search for their interactions. For example, Wang [Wan10] proposed a topic sen-
timent mixture model, which analyzed the sentiment polarity (positive, neutral, or
negative) for each of the detected topics (e.g., price, battery life) of mobile phone
reviews.

• Viewpoints and perspectives identification, which is applied to detect the general
attitudes expressed in the texts (e.g., political orientations) instead of detailed opinions

7

8 State of the Art

toward a specific issue or narrow subject. For example, Pla and Hurtado [PH14] col-
lected politics-related tweets and used sentiment analysis techniques to classify users
into three political tendency categories: left, right, and center, with the remaining of
the users categorized as undefined.

• Other non-factual information identification, which include emotion detection, hu-
mor recognition, text genre classification, etc. For example, Barros et al. [BMO13]
reveal the possibility to leverage emotion detection (joy, sadness, anger, fear) to auto-
matically classify poems into different categories (e.g., love, satire, religious).

2.2 Opinion Mining Techniques for SE

In this section, we first illustrate the potential perils of using existing opinion mining tech-
niques out-of-the-box for SE tasks. We then present the efforts of researchers on customizing
opinion mining techniques in SE.

2.2.1 The Perils of Using Opinion Mining Techniques Out-Of-The-Box

Thanks to the pioneers of opinion mining research, there are many existing approaches re-
searchers can use out-of-the-box. These include, for example, SENTISTRENGTH [TBP+10]
and Natural Language Toolkit (NLTK) [HG14]. Researchers often use these tools directly
without extra tuning, although they are trained on data from completely different domains.
For example, a common task of opinion mining in SE is sentiment polarity identification
(i.e., classifying text into three polarity categories: positive, neutral, or negative). The most
adopted tool by SE researchers is SENTISTRENGTH [TBP+10], which is based on a sentiment
word strength list and some heuristics including spell checking and negation handling. Its
word list is based on comments taken from myspace.com/, making it unsuitable for SE ap-
plications.

Another popular tool, NLTK [HG14], is a lexicon and rule-based sentiment analysis tool
leveraging Valence Aware Dictionary and sEntiment Reasoner (VADER), which, in turn, is
tuned to social media text (especially micro-blogging).

A different approach is used by STANFORD CORENLP [SPW+13], which leverages Recur-
sive Neural Networks (RNNs) and is able to compute the sentiment of a sentence based on
how words compose the meaning of the sentence, and not by summing up the sentiment
of individual words. However, STANFORD CORENLP has also been trained on a corpus of
documents outside the SE domain, namely movie reviews.

As these existing sentiment polarity analysis tools were not conceived to be applied on
SE artifacts, researchers posed questions about their applicability in the software domain.
Indeed, several studies have been conducted to verify their reliability when applied in SE
contexts.

For example, Tourani et al. [TJA14] used SENTISTRENGTH to extract sentiment infor-
mation from user and developer mailing lists of two major successful and mature projects
from the Apache software foundation: Tomcat and Ant. They found that SENTISTRENGTH

myspace.com/

2.2 Opinion Mining Techniques for SE 9

achieved a very low precision when compared to human annotated ground truth, i.e., 29.56%
for positive sentences and 13.1% for negative sentences. The low precision is caused by
the ambiguous technical terms and the difficulty of distinguishing extreme positive/nega-
tive texts from neutral ones. Meanwhile, the challenges of employing sentiment analysis
techniques to assess the affective load of text containing technical lexica, as typical in the
communication among programmers, have also been highlighted by Novielli et al. [NCL15].

Jongeling et al. [JSDS17] conducted a comparison of four widely used sentiment po-
larity analysis tools: SENTISTRENGTH, NLTK, STANFORD CORENLP, and ALCHEMY API. They
evaluated their performance on a human labeled golden set of JIRA issue comments from
a developer emotions study by Murgia et al. [MTAO14]. As a result, they found none of
them can provide accurate predictions of expressed sentiment in the SE domain. They also
observed that disagreement exists not only between sentiment analysis tools and the de-
velopers, but also between different sentiment analysis tools themselves. Their experiment
also confirmed that disagreement between these tools can lead to contradictory results when
using them to conduct SE studies.

A similar study on evaluating sentiment analysis tools was conducted by Imtiaz et al.
[IMGM18]. Instead of JIRA issue comments, they analyzed the performance of six tools
(SENTISTRENGTH, NLTK, STANFORD CORENLP, ALCHEMY API, SENTI4SD, and SENTICR) on
589 manually labeled GitHub comments. Their results also suggested that these tools have
a low agreement with human ratings, and even human raters have a low agreement among
themselves. In addition to sentiment polarity, this study also evaluates the performance of a
politeness detection tool developed by Danescu-Niculescu-Mizil et al. [DSJ+13]. The result
plotted a similar trend of unreliability.

The performance of some techniques, which require extra training, was also assessed
by researchers. Shen et al. [SBS19] compared the performance of three machine learning
approaches (i.e., Logistic Regression, Support-Vector Machine, Naive Bayes Classifier) for
sentiment polarity prediction when trained on technical and non-technical datasets. By test-
ing against a dataset consisting of 4,800 Stack Overflow comments, they found that domain
related datasets have a positive impact on the improvement of prediction accuracy.

The results achieved in these studies call for a sentiment analysis technique curated with
SE related data to address the problem of low accuracy when dealing with technical terms
and specific application contexts.

2.2.2 Customizing Opinion Mining Techniques for SE Tasks

To overcome the limitations of the existing sentiment analysis techniques, researchers have
devoted considerable efforts into customizing them for SE tasks. Generally speaking, there
are two types of approaches: 1) lexicon and rule-based, and 2) machine learning-based.

Lexicon and rule-based approaches

Lexicon and rule-based approaches identify the sentiment or opinions in the text by lever-
aging dictionaries and/or heuristic rules. These approaches can usually be used directly
without extra tuning for a new task. An intuitive idea for improving their performance

10 State of the Art

in software related tasks is exploiting domain-specific dictionaries and additional heuristic
rules.

An example is SENTISTRENGTH-SE [IZ17], built upon the popular sentiment analysis tool
SENTISTRENGTH [TR10]. The authors revisited the built-in dictionary of SENTISTRENGTH,
and neutralized words usually expressing no sentiment in SE contexts. They also incorpo-
rated extra heuristics, such as taking into account the word context to minimize ambiguity.
Their evaluation showed that the new tool significantly outperformed SENTISTRENGTH when
applied on SE artifacts.

Detecting Emotions in Valence Arousal space in software engineering text (DEVA) [IZ18a],
a dictionary-based lexical approach for detecting excitement, stress, depression, and relax-
ation expressed in SE texts, also integrated two domain-specific dictionaries (Software En-
gineering Arousal Dictionary and the valence dictionary used by SENTISTRENGTH-SE). Their
evaluation showed that DEVA outperforms the approach adopting only general-purpose dic-
tionaries.

Machine learning-based approaches

Most machine learning-based approaches used in SE studies are supervised learning tech-
niques. To use this type of approaches, researchers often need to re-train the classifier. In
practice, they either incorporate software related data into the original training set, or simply
only use a new domain-specific dataset.

An example of improving the original classifier by incorporating SE data is SENTIMOJI

[CCL+19]. SENTIMOJI is a sentiment polarity prediction approach, which considers the
meaning of emojis. This approach is built on DEEPMOJI [FMS+17], a deep learning model
trained on tweets with emojis for analyzing sentiment in the text. The authors curated the
original DEEPMOJI model with emoji-labeled texts from GitHub posts, and obtained promis-
ing performance compared to other state-of-the-art sentiment analysis tools.

In many other cases, researchers re-trained commonly used machine learning classi-
fiers with only software related data. Support-Vector Machine (SVM) [BGV92] is one of the
most popular classifiers in this scenario. Examples include SENTI4SD [CLMN18], EMOTXT

[CLN17], and MARVALOUS [IAZ19]. SENTI4SD [CLMN18] is an approach for analyzing sen-
timents in developers’ communication channels. The authors trained a SVM classifier with a
dataset of Stack Overflow questions, answers, and comments manually annotated for emo-
tions and sentiment polarities. Trained with the same dataset, the authors of SENTI4SD also
built EMOTXT [CLN17], another SVM-based technique for recognizing specific emotions (e.g.,
joy, love, and anger) in SE texts. Islam et al. [IAZ19] trained a SVM classifier with emotion-
annotated datasets of 5,122 JIRA and Stack Overflow comments to build MARVALOUS, a tool
detecting four emotional states (excitation, stress, depression, and relaxation).

Of course, SVM is not the only classifier used by researchers for opinion mining. For
example, SENTICR [ABIR17], a sentiment polarity prediction tool for code review interac-
tions, employed Gradient Boosting Tree [PP11] instead of SVM. SENTICR was trained with
2,000 sentiment polarity-annotated review comments from 20 popular open source software
projects.

2.3 Applications of Opinion Mining in SE 11

The results obtained by above approaches indicate that incorporating SE data is a promis-
ing direction to move forward to improve the performance of existing opinion mining tools
on software-related data.

2.3 Applications of Opinion Mining in SE

In this section, we present how opinion mining techniques are used to support various soft-
ware development activities. More specifically, we categorize the applications of opinion
mining into the following types: 1) supporting software requirements engineering, 2) sup-
porting software design and implementation, 3) supporting software maintenance and evo-
lution, and 4) understanding human aspects of software development.

2.3.1 Opinion Mining to Support Software Requirements Engineering

There are various sources which contain valuable opinions for facilitating requirements engi-
neering. For instance, developers can analyze online discussions to understand users’ need.
Moreover, they can learn how to shape their software from the documents of other projects.

For example, researchers have applied opinion mining to extract non-functional require-
ments. Liu et al. [LLY+18] proposed CoLlaborative App Permission recommendation (CLAP),
which mines the descriptions of similar apps to recommend potentially required permis-
sions (e.g., access to locations). CLAP identifies similar apps by considering their titles, de-
scriptions, permissions, and categories. From app descriptions of the similar apps, CLAP
then identifies permission-explaining sentences by verb phrase identification and keyword
matching. The evaluation of CLAP on 1.4 million apps exhibited its promise to help de-
velopers decide which permissions are required in their apps. Casamayor et al. [CGC10]
proposed a semi-supervised learning approach to identify non-functional requirements. Un-
like traditional supervised learning approaches which require a large amount of annotated
training data, their approach only used a small set of annotated requirements (functional
or non-functional) in conjunction with unannotated requirements. The underlying idea is
that co-occurring words often belong to the same class. Their approach achieved accuracy
rates of over 70%. Wang et al. [WHGW17] have investigated the possibility of identifying
security requirements. They used five metrics (the number of issue comments, the average
textual length of issue comments, the quantity of attachments in an issue, the number of
types of attachments in an issue, the number of developers involved in an issue) to build a
security requirements classifier. Their results indicated that four out of these five metrics are
discriminative of security requirements.

A number of other studies exploited opinion mining to identify both functional and non-
functional requirements. Liu et al. [LLLL19] proposed an approach to mine domain knowl-
edge from the descriptions of similar apps, and recommend developers with potential func-
tional and non-functional requirements. By evaluating 574 apps, their approach achieved
a precision of 88.09% and a recall of 74.45%, on average. Kurtanović and Maalej [KM17]
adopted the supervised machine learning technique SVM, leveraging lexical features, to clas-
sify requirements as functional or non-functional. Their approach obtained a high precision

12 State of the Art

of 92%. They also tried to classify the non-functional requirements into more fine-grained
categories (e.g., usability, security) and obtained high precision and recall values (up to 93%
and 90%, respectively).

Opinion mining can be also applied to detect the defects in requirements. Ferrari et al.
[FGR+18] applied rule-based natural language processing (NLP) techniques to detect defects
(e.g., vague terms, missing unit of measurement) in the requirement documents of a railway
signaling manufacturer. Their experience confirmed that NLP can be used to detect defects
even in a very large set of industrial requirements documents.

2.3.2 Opinion Mining to Support Software Design and Implementation

Since developers often share their programming expertise online, mining opinions from their
online discussions can effectively support other developers’ engineering work, especially
when facing a similar task. For example, researchers have investigated the feasibility of
mining the knowledge regarding different implementation approaches to support develop-
ers design decisions.

Uddin and Khomh [UK17b] proposed OPINER, an approach to mine API-related opinions
and give users a quick overview of the pros and cons of APIs when choosing which API to use
to implement a specific feature. OPINER is able to detect the polarity of sentences related to
libraries by using a customized version of the Sentiment Orientation algorithm [HL04]. The
algorithm was originally developed to mine customers’ opinions about computer products.
Uddin and Khomh customized the tool with words specific to library reviews. OPINER can
also classify the mined opinions into “aspects” by exploiting machine learning classifiers
using as predictor variables the frequency of single words and of n-grams appearing in the
sentences.

Huang et al. [HCX+18] proposed DIFFTECH, which compares different software tech-
nologies (e.g., TCP v.s. UDP) by applying natural language processing techniques on relevant
Stack Overflow discussions. The authors maintain a database of comparable software tech-
nologies by mining tags of Stack Overflow posts. With the help of such a database, DIFFTECH

extracts sentences related to technology comparisons. These sentences are further processed
by TF-IDF to extract keywords (e.g., security, speed) representing the compared aspect.

Some other studies have focused on mining opinions to gain knowledge regarding the
usage of APIs. For example, Serva et al. [SSPV15] mined negative code examples from
Stack Overflow. More specifically, they applied sentiment analysis to the questions on Stack
Overflow which contain code segments. By obtaining code examples discussed with nega-
tive sentiments, developers can avoid making similar mistakes and possibly improve their
code. Zhang and Hou [ZH13] mined online discussions of Oracle’s Java Swing Forum
to extract problematic API features. Their proposed approach, named HAYSTACK, identi-
fied the negative sentences using a sentiment analysis approach, and parsed these negative
discussions with pre-defined grammatical patterns to disclose problematic features. Wang
et al. [WPWZ19] mined Stack Overflow to extract short practical and useful tips regarding
API usage from developer answers. Their proposed approach DEEPTIP employed Convo-
lutional Neural Network (CNN) architectures to train a model with a corpus of annotated

2.3 Applications of Opinion Mining in SE 13

texts (labeled as “tip” or “non-tip”). Their approach achieved a high precision of over 80%.
Ahasanuzzaman et al. [AARS20] proposed CAPS, an approach to classify Stack Overflow
posts concerning API into issue related and non-issue related. CAPS used a statistical model-
ing method (Conditional Random Field) to detect issue-related sentences. These sentences,
together with the features collected from posts (e.g., the experience of users), are fed into
another logistic regression-based classifier to finally decide whether a post is issue-related
or not.

Several studies have focused on extracting relevant code snippets by analyzing the text
around them. Ponzanelli et al. [PBL13] developed an IDE plugin to automatically formu-
late queries from the current code context and present a ranked list of relevant Stack Over-
flow discussions. Developers can simply drag & drop code samples from such discussions to
speedup their implementation tasks. Nguyen et al. [NNN16] as well as Campbell and Treude
[CT17] have developed tools to convert natural English texts describing a task (e.g., “how to
read a file in Java”) into source code snippets implementing the described feature. This is
done by matching the textual description to Stack Overflow discussions to then exploit the
code snippets in them as “code translations” for the provided description.

Stack Overflow has also been mined to recommend comments for source code. Rahman
et al. [RRK15] proposed a heuristic-based approach to extract insightful discussions regard-
ing issues, concerns, or tips. The heuristics used include comment popularity, code segment
relevance, comment rank, comment word count, and comment sentiment polarity. A rank-
ing mechanism considering all these five heuristics was adopted to produce the final list of
comments for source code.

2.3.3 Opinion Mining to Support Software Maintenance and Evolution

Several works have focused the attention on the mining of opinions reported in reviews
posted by users of mobile applications (apps). Analyzing the polarity of apps’ reviews is
particularly useful to support the evolution of mobile apps [CLH+14, GMBV12, CW13, GM14,
PSG+15, SBR+19]. For example, developers can gain insights on what features are desired
by their users and which bugs are manifesting as application failures.

Indeed, it has been proven that applying opinion mining techniques to app reviews
helps developers to find useful information for app maintenance and evolution. Goul et al.
[GMBV12] applied a sentiment analysis tool to over 5,000 reviews of productivity apps, ob-
serving that sentiment analysis can help spot sentence-level, feature-based comments.

Several studies have investigated why users like or dislike mobile apps with opinion min-
ing approaches. Gu and Kim [GK15] proposed Software User Review Miner (SURMINER), a
review summarization framework. SURMINER classifies reviews into five categories (aspect
evaluation, praises, feature requests, bug reports, and others). Aspect-opinion pairs (e.g.,
<background, nice>) are extracted from those reviews falling into the “aspect evaluation”
category.

Using the same categories as Gu and Kim [GK15], Review Summary (REVSUM) proposed
by Shah et al. [SSP19] considers not only aspect evaluation, but also feature requests and
bug reports, for which REVSUM generates feature-level summaries.

14 State of the Art

Instead of general opinions, Fu et al. [FLL+13] focused on the negative reviews from
users, as these reviews are more likely to help developers to improve their apps. Their tool,
named WISCOM, applies topic modeling to the reviews associated with low ratings (1-star
or 2-star) in order to extract keywords from the reviews and categories them into ten topics.
As a result, many keywords in these topics exhibit clear reasons of dissatisfaction from users,
such as “crashes” and “boring”.

Some other studies have attempted to understand which aspects of mobile apps draw the
most concerns of users. Carreño et al. [CW13] presented a technique based on Aspect and
Sentiment Unification Model (ASUM) to extract common topics (e.g., updates, features) from
apps’ reviews and present users’ opinions about those topics. Guzman et al. [GM14, GAB15]
used SENTISTRENGTH to support a similar task. With their approach, a diverse sample of
user reviews is automatically presented to developers with an overview of different opinions
and experiences mentioned in the whole set of reviews. These studies allow developers to
understand what users care about, which is critical in software design evolution.

Instead of directly presenting topics and their associated opinions to developers, many
efforts have stepped back and focused on a more fundamental problem: how to correctly
classify app reviews based on the type of information they provide. Indeed, given the huge
amount of reviews available in app stores, how to efficiently identify the subset of reviews
which interest developers remains a challenge.

Iacob and Harrison [IH13] proposed Mobile App Review Analyzer (MARA), which identi-
fies feature requests from app reviews based on a set of pre-defined linguistic rules. Panichella
et al. [PSG+16] presented ARDOC, a tool which automatically classifies app reviews into five
categories: information giving, information seeking, feature request, problem discovery, and
other. Similarly, Maalej et al. [MKNS16] adopted a slightly different classification schema,
in which reviews are categorized as bug reports, feature requests, user experiences, and text
ratings. Chen et al. [CLH+14] used topic modeling to automatically group reviews into the
ones reporting bugs, suggesting new features to implement, or not being informative (i.e.,
not containing information useful for the app evolution). These studies enable developers
to quickly focus on valid information and plan their next steps to evolve the software sys-
tems. Khan et al. [KXLW19] proposed Crowd-based Requirements Engineering approach by
Argumentation (CROWDRE-ARG), an approach extracting users’ opinions revtoward given
features. As a running example, the authors retrieved discussions regarding a new Google-
Map feature from Reddit online forum. CROWDRE-ARG classified the sentences from the
discussions into three categories: 1) issues, 2) design alternatives or new features, and 3)
supporting, attacking and neutral arguments or claims.

Ciurumelea et al. [CSPG17] takes the review classification to a more fine-grained level.
Their approach User Request Referencer (URR) classifies reviews into six high level (e.g.,
compatibility) and 12 low level categories (e.g., device, android version, and hardware,
which are all related to compatibility). Moreover, their approach recommends which rel-
evant source code files need to be modified.

Besides app review classification, how to schedule the timeline to deal with these reviews
has also been investigated. Scalabrino et al. [SBR+19] proposed Crowd Listener for releAse
Planning (CLAP), an approach not only clustering related reviews into different categories

2.3 Applications of Opinion Mining in SE 15

(e.g., functional bug report, suggestion for new feature, report of performance problems),
but also prioritizing the clusters of reviews to be implemented. CLAP has been proved useful
for planning the subsequent app release.

Besides app reviews, opinion mining has also been applied to classify tweets related to
software projects [GAS17]with the similar goal of helping developers better understand user
needs and providing important information for software evolution.

Opinion mining has also been involved in the bug fixing process. Antoniol et al. [AAP+18]
built a classifier to identify whether an entry in the issue tracker is a bug or an enhancement.
A precision between 64% and 98% and a recall between 33% and 97% were achieved when
Alternating Decision Trees, Naïve Bayes Classifiers, and Logistic Regression are adopted.

Yang et al. [YZL18] proposed a novel bug severity-prediction approach by analyzing
emotion similarity. The core idea behind their approach is comparing the emotion words in
bug reports from the training set with those in the new bug report. The reliability of this
approach for predicting bug severity has been verified on five open source projects. Similar
studies were conducted by Umer et al. [ULS18] and Ramay et al. [RUY+19]. Differently
from Yang et al. [YZL18], the authors used an adapted version of Naïve Bayes Multinomial
as the classifier, Umer et al. [ULS18] adopted SVM, while Ramay et al. [RUY+19] adopted
a deep neural network-based classifier.

Besides bug severity prediction, Goyal and Sardana [GS17] used a sentiment based
model to predict the fixability of non-reproducible bugs. The authors found out that the
reports of non-reproducible bugs contain more negative sentiment compared to those of re-
producible bugs. Therefore, they incorporated the sentiment into the original meta-fields
of bug reports and trained the classifier with various algorithms (Zero-R, Naïve Bayes, J48,
random tree, and random forest) for fixability prediction. As a result, J48 and Naïve Bayes
outperformed others when tested in Firefox and Eclipse projects, respectively.

2.3.4 Opinion Mining and Human Aspects of Software Development

Opinion mining techniques have also been used to study the human aspects of software de-
velopment. Understanding developers’ mental status and interaction behaviors can provide
insights for better team management. Therefore, lots of studies have been dedicated to the
analysis of developers’ sentiment expressed during software development activities.

Werder [Wer18] inspected how emotions of development teams evolved over time in
1,121 GitHub projects. Their results indicated that the positive sentiment in teams gradu-
ally reduces over time in general. Lanovaz and Adams [LA19] compared the sentiment of
users and developers in two R mailing lists: R-help and R-devel, which mainly target R users
and developers, respectively. Their results suggested that developers tend to express more
emotions. Moreover, the negative posts in R-help are more likely to receive no replies, while
this does not hold for the R-devel mailing list.

Some researchers have specifically inspected the sentiment in commit comments. Guz-
man et al. [GAL14] analyzed the sentiment of over 60k commit comments on GitHub and
provided evidence that projects having more distributed teams tend to have a higher posi-
tive polarity in their emotional content. Moreover, comments written on Mondays are more

16 State of the Art

likely to be negative. A similar study was conducted by Sinha et al. [SLS16]. By analyzing
a much larger dataset (over 2.25 million commit comments), they observed that the neg-
ative sentiment was about 10% more than the positive sentiment. Interestingly, Tuesdays
seem to have the most negative sentiment, which contradicts the findings of Guzman et al.
[GAL14]. Singh and Singh [SS17a] performed another study concerning sentiment in com-
mit messages. Instead of all commit messages, they focused on refactoring-related ones.
After analyzing over 3k refactoring related commit messages from 60 GitHub projects, they
found that developers tend to express more negative than positive sentiments. This result is
consistent with that of Sinha et al. [SLS16]. The study by Pletea et al. [PVS14] compared the
sentiment expressed in security-related and non-security related discussions around commits
and pull requests on GitHub. Their study provided evidence that developers tend to be more
negative when discussing security-related topics.

In addition to commit comments, Claes et al. [CMF18] examined the use of emoticons
in issue comments. In their study, 1.3 million and 4.5 million comments were extracted,
respectively, from the issue tracking systems of Apache and Mozilla. After analyzing these
comments, they found that Mozilla developers use much more emoticons than Apache de-
velopers, and Mozilla developers are more likely to express sadness and surprise with emoti-
cons.

Paul et al. [PBS19] looked into the sentiment in code reviews from the perspective of
gender differences. They mined the code reviews from six popular open source software
projects, and compared the sentiment expressed by male and female developers. Their
study disclosed that females tend to express less sentiments than males. Meanwhile, it is
not uncommon that male developers express fewer positive encouragements to their female
counterparts.

Given that many studies have answered what sentiments are embedded in software de-
velopment activities, some have examined how these sentiments can impact the development
activities. For example, researchers have investigated the relation between the sentiment in
issue comments and the issue resolution process. Ortu et al. [OAD+15] analyzed the cor-
relation between the sentiment in 560k JIRA comments and the time to fix a JIRA issue,
finding that positive sentiment expressed in the issue description might reduce issue fixing
time. Cheruvelil and da Silva [CdS19] analyzed the sentiment in issue comments and as-
sociated it to the issue reopening. They found that negative sentiment might lead to more
issue reopenings, although the impact is not large.

Besides issue resolution, attention has also given to continuous integration builds. Souza
and Silva [SS17b] analyzed the relation between developers’ sentiment and builds performed
by continuous integration servers. They found that negative sentiment both affects and
is affected by the result of the build process. That is, the negative sentiment expressed
in commits is more likely to result in broken builds, while broken builds can also lead to
negative sentiment.

The impact of sentiment on code review process has also been investigated. Asri et al.
[AKU+19] analyzed how the sentiment in developers’ comments impacts the code review
process outcome. By mining the historical data from four open source projects, they found
that the code reviews with negative comments take longer to process.

2.4 Discussion 17

The study by Garcia et al. [GZS13] instead focused on the impact of sentiment on de-
velopers’ activeness in software projects. The authors analyzed the relation between the
emotions and the activity of contributors in the Open Source Software project GENTOO.
They found that contributors are more likely to become inactive when they express strong
positive or negative emotions in the issue tracker, or when they deviate from the expected
emotions in the mailing list.

While most studies mainly considers the impact of sentiment on software development
activities, Freira et al. [SCON18] explored how feedback on GitHub can impact develop-
ers’ mood. By analyzing 78k pull requests and 268k corresponding comments, they found
that negative comments have a larger impact on developers’ mood, compared to positive
comments. The impact is more evident for first-time contributors, who might even refrain
themselves from making further contributions to the repositories, especially in large software
projects.

2.4 Discussion

While opinion mining has gained considerable popularity and its applications cover a wide
range of SE tasks, we believe that there are still abundant opportunities to further improve
the performance and maximize the value of opinion mining for software-related tasks.

Regarding the opinion mining techniques, while several approaches have been proposed
and customized to the software context, they are often evaluated on a specific dataset (e.g.,
issue reports). It remains unknown whether these tools can still achieve reliable performance
when applied on other datasets (e.g., Stack Overflow discussions). More investigations are
required to understand their abilities. If limitations are spotted, it will be necessary to pro-
pose new approaches which better fit the context.

Regarding software requirements engineering, to recommend functional or non-functional
requirements, most of the current approaches mine relevant knowledge from the documents
or descriptions of similar software projects. It is also likely that no similar project can be
found in the market, or that the requirements are scattered in many different projects. There-
fore, adding external information sources like online discussions can be considered. Addi-
tionally, how to assemble the requirements collected from different projects still remains a
challenge.

Regarding software design and implementation, while researchers have managed to use
opinion mining to assist developers in choosing relevant APIs or techniques, some perfor-
mance limitations still exist. For example, sentiment analysis tools not specifically tuned
to software related contexts are used, which might lead to unreliable results. Besides, the
quality attributes used to compare the APIs/techniques are often automatically generated
with topic modeling, which sometimes can be arbitrary and not meaningful for developers.
Additionally, when mining online resources to support development activities, researchers
often only exploit one source of information, which is a very limited part of the available
online discussions. Lots of valid information from other channels is ignored.

Regarding software maintenance and evolution, none of the studies have attempted to
convert opinions into practical actions for software maintenance activities, such as bug fixing.

18 State of the Art

As developers often discuss how to solve certain issues in both Q&A websites and issue
tracking systems, these discussions can be mined to advise other developers.

Regarding human aspects of SE , while many studies provide valid insights with opinion
mining (e.g., relation between emotions and productivity), converting the provided infor-
mation into practical actions is still a big challenge. Understanding what is happening is
merely the first step. More studies should be conducted to leverage these insights to facili-
tate the development process, such as increasing productivity and promoting more inclusive
environments.

In this dissertation, we mainly focus on addressing the following challenges. First, given
the unreliable performance of existing sentiment polarity analysis tools when applied in SE ,
we investigate whether we can customize a state-of-the-art approach to obtain high accuracy
for identifying sentiment polarity in software related texts (Chapter 3). Second, as automat-
ically classifying online software related discussions often leads to arbitrary categories, we
develop a new technique, which can produce both accurate and meaningful results (Chap-
ter 4).

3
Sentiment Polarity Analysis in Software
Engineering Contexts

The SE community has adopted sentiment analysis tools for various purposes (Section 2.3),
such as assessing the polarity of mobile app reviews [GMBV12], and identifying distress or
happiness in a development team et al. [TJA14]. Most of the prior works leverage sentiment
analysis tools not designed to work on software-related textual documents. This “out-of-the-
box” usage has been criticized due to the poor accuracy these tools achieved when applied in
a context different from the one for which they have been designed and/or trained [TJA14,
NCL15, JSDS17]. For example, the STANFORD CORENLP [SPW+13] opinion miner has been
trained on movie reviews. In essence, the key to make sentiment analysis successful when
applied on SE datasets might be their customization to the specific context.

Given the warning raised by previous work in our field (Section 2.2.1), there was the
need for training and customizing the sentiment polarity analysis tool to the Stack Over-
flow context. Also, looking at the opinion mining literature, we decided to adapt STANFORD

CORENLP, a state-of-the-art approach based on Recursive Neural Networks (RNNs). STAN-
FORD CORENLP is able to compute the sentiment polarity of a sentence not by just summing
up the sentiment of positive/negative terms, but by grammatically analyzing the way words
compose the meaning of a sentence [SPW+13].

We built a training set by manually assigning a sentiment polarity score to a total of∼40k
sentences/words extracted from Stack Overflow. Despite the considerable manual effort, the
empirical evaluation we performed on our customized tool led to negative results, with un-
acceptable accuracy levels in classifying positive/negative opinions. Given this, we started
a thorough empirical investigation aimed at assessing the actual performance of sentiment
polarity analysis tools when applied on SE datasets with the goal of identifying a technique
able to provide acceptable results. We experimented with all major techniques used in our
community, by using them out-of-the-box as well as with customization designed to work
in the SE context (e.g., SENTISTRENGTH-SE [IZ17]). Also, we considered three different SE
datasets: (i) our manually built dataset of Stack Overflow sentences, (ii) comments left on
issue trackers [OMD+16], and (iii) reviews of mobile apps [VBR+16].

19

20 Sentiment Polarity Analysis in Software Engineering Contexts

Our results show that none of the state-of-the-art tools provides a precise and reliable
assessment of the sentiments expressed in the manually labeled Stack Overflow dataset we
built (e.g., all the approaches achieve recall and precision lower than 40% on negative sen-
tences). Results are marginally better in the app reviews and in the issue tracker datasets,
which however represent simpler usage scenarios for sentiment polarity analysis tools.

We share our experience and negative findings with the SE research community, show-
ing the current difficulties in applying sentiment polarity analysis tools to software-related
datasets, despite major efforts in tailoring them to the context of interest. Our results should
also warn researchers to not simply use a (customized) sentiment polarity analysis tool as-
suming that it provides a reliable assessment of the sentiment polarities expressed in sen-
tences, but to carefully evaluate its performance. Finally, we share our large training dataset
as well as all the tools used in our experiments and the achieved results [LZB+b], to foster
replications and advances in this novel field.

Structure of the Chapter

Section 3.1 presents how we customized the state-of-the-art sentiment polarity analysis tool
STANFORD CORENLP. Section 3.2 reports the negative results we obtained during evaluation.
Section 3.3 reports the design and results of the study we performed to assess the perfor-
mance of sentiment analysis tools on SE datasets, while Section 3.4 discusses the threats
that could affect the validity of our results. Finally, after a discussion of lessons learned
(Section 3.5), Section 3.6 concludes this chapter.

3.1 Customizing The State-Of-The-Art Sentiment Analysis Tool

In the section, we detail our work to customize the state-of-the-art sentiment polarity analysis
tool STANFORD CORENLP with software related data. We report the negative results we
achieved in Section 3.2.

3.1.1 Mining Opinions in SE Datasets

Previous work that attempted to mine opinions in SE datasets [TJA14, NCL15, JSDS17] of-
fers a clear warning: Using sentiment analysis/opinion mining techniques out-of-the-box on SE
datasets is a recipe for negative results. Indeed, these tools have been designed to work on
user’s reviews of products/movies and do not take into consideration domain-specific terms.
For example, the word robust has a clear positive polarity when referred to a software prod-
uct, while it does not express a specific sentiment in a movie review. This pushed researchers
to create customized versions of these tools, enriching them with information about the sen-
timent of domain-specific terms (e.g., SENTISTRENGTH-SE by Islam and Zibran [IZ17]).

Despite the effort done by some authors in developing customized tools, there is a sec-
ond major limitation of the sentiment polarity analysis tools mostly used in SE (e.g., SEN-
TISTRENGTH [TBP+10]). Such tools assess the sentiment of a sentence by looking at the
single words in isolation, assigning positive/negative scores to the words and then summing

3.1 Customizing The State-Of-The-Art Sentiment Analysis Tool 21

these scores to obtain an overall sentiment for the sentence. Thus, the sentence composi-
tion is ignored. For example, a sentence such as “I would not recommend this library, even
though it is robust and fast” would be assessed by these techniques as positive in polarity,
given the presence of words having a positive score (i.e., robust, fast). Such a limitation
has been overcome by the STANFORD CORENLP [SPW+13] approach used for the analysis of
sentiment in movies’ reviews. The approach is based on a Recursive Neural Network (RNN)
computing the sentiment of a sentence based on how words compose the meaning of the
sentence [SPW+13]. Clearly, a more advanced approach comes at a cost: The effort re-
quired to build its training set. Indeed, it is not sufficient to simply provide the polarity for a
vocabulary of words but, to learn how positive/negative sentences are grammatically built
on top of positive/negative words, it needs to know the polarity of all intermediate nodes
composing a sentence used in the training set.

I

would not

,

recommend

this library

even

though

it

is

robust and

fast

Figure 3.1. Example of the labeling needed to build the Stanford CoreNLP training set.

We discuss the example reported in Fig. 3.1. Gray nodes represent (sequences of) words
having a neutral polarity, red ones indicate negative sentiment, green ones positive sentiment.
Overall, the sentence has a negative sentiment (see the root of the tree in Fig. 3.1), despite
the presence of several positive terms (the tree’s leafs) and intermediate nodes.

To use this sentence composed of 14 words in the training set of the RNN, we must pro-
vide the sentiment of all 27 nodes in the Penn Treebank-style phrase structure tree [SPW+13],
depicted in Fig. 3.1. This allows the RNN to learn that while “it is robust and fast” has a pos-
itive polarity if taken in isolation, the overall sentence is expressing a negative feeling about
the API due to the “I would not recommend this library” sub-sentence.

Given the high context-specificity of our work to SE datasets (i.e., Stack Overflow posts),
we decided to adopt the STANFORD CORENLP tool [SPW+13], and to invest a substantial ef-
fort in creating a customized training set for it. Indeed, as highlighted in previous work [TJA14,
NCL15, JSDS17], it makes no sense to apply an approach trained on movie reviews on
datasets in SE contexts.

22 Sentiment Polarity Analysis in Software Engineering Contexts

Building a Training Set for Sentiment Polarity Analysis

We extracted from the latest available Stack Overflow dump (dated July 2017) the list of
all discussions (i) tagged with Java, and (ii) containing one of the following words: li-
brary/libraries, API(s). Given our original goal (i.e., recommending Java APIs on the basis
of crowdsourced opinions), we wanted to build a training set as domain-specific as possi-
ble for the RNN. By applying these filters, we collected 276,629 discussions from which we
extracted 5,073,452 sentences by using the STANFORD CORENLP toolkit [MSB+14]. We ran-
domly selected 1,500 sentences and manually labeled them by assigning a sentiment polarity
score to the whole sentence and to every node composing it.

Figure 3.2. Web app used to label the sentiment polarity of the nodes extracted from Stack Overflow
sentences.

The labeling process was performed by five evaluators and supported by a Web applica-
tion we built (Fig. 3.2). The Web app showed to each evaluator a node (extracted from a
sentence) to label with a sentiment polarity going from -2 to +2, with -2 indicating strong
negative, -1 weak negative, 0 neutral, +1 weak positive, and +2 strong positive score. The
choice of the five-levels sentiment polarity classification was not random, but driven by the
observation of the movie reviews training set made publicly available by the authors of the
STANFORD CORENLP [SPW+13] sentiment analysis tool1. Note that a node to evaluate could
be a whole sentence, an intermediate node (thus, a sub-sentence), or a leaf node (i.e., a single
word). To avoid any bias, the Web app did not show to the evaluator the complete sentence
from which the node was extracted. Indeed, knowing the context in which a word/sentence
is used could introduce a bias in the assessment of its sentiment polarity. Finally, the Web

1https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip

https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip

3.2 Negative Results of Customization 23

application made sure to have two evaluators for each node, thus reducing the subjectivity
bias. This process, which took ∼90 working hours of manual labeling, resulted in the total
labeling of the sentiment polarity for 39,924 nodes (i.e., 19,962 nodes extracted from the
1,500 sentences × 2 evaluators per node).

Once the labeling was completed, two of the evaluators worked on the resolution of con-
flicts (i.e., cases in which two evaluator assigned a different sentiment polarity to the same
node). All the 279 conflicts involving complete sentences (18.6% of the labeled sentences)
were fixed. Indeed, it is of paramount importance to assign a consistent and double-checked
sentiment polarity to the complete sentences, considering the fact that they will be used as
a ground truth to evaluate our approach. Concerning the intermediate/leaf nodes, we had a
total of 2,199 conflicts (11.9% of the labeled intermediate/leaf nodes). We decided to only
manually solve 123 strong conflicts, meaning those for which there was a score difference
≥ 2 (e.g., one of the evaluators gave 1, the other one -1), while we automatically process the
2,076 having a conflict of only one point. Indeed, slight variations of the assigned sentiment
polarity (e.g., one evaluator gave 1 and the other 2) are expected due to the subjectivity of
the task. The final sentiment polarity score was s, in case there was agreement between the
evaluators, while it was round[(s1 + s2)/2] in case of unsolved conflict, where round is the
rounding function to the closest integer value and si is the sentiment polarity assigned by
the i th evaluator.

3.2 Negative Results of Customization

We performed the assessment of the customized STANFORD CORENLP on the dataset of man-
ually labeled 1,500 Stack Overflow sentences. Among those sentences, 178 are positive,
1,191 are neutral, and 131 are negative. We performed a ten-fold cross validation: We
divided the 1,500 sentences into ten different sets, each one composed of 150 sentences.
Then, we used a set as a test set (we only use the 150 complete sentences in the test set, and
not all their intermediate/leaf nodes), while the remaining 1,350 sentences, with all their
labeled intermediate/leaf nodes, were used for training2. Since we are mostly interested in
discriminating between negative, neutral, and positive opinions, we discretized the sentiment
polarity in the test set into these three levels. Sentences labeled with the sentiment polarity
scores “-2” and “-1” are considered negative (-1), those labeled with the score “0” as neutral
(0), and those labeled with the scores “+1” and “+2” as positive (+1). We discretized the
output of the RNN into the same three levels (i.e., +1, 0, and +1). We assessed the accuracy
of the opinion miner by computing recall and precision for each category. Computing the
overall accuracy would not be effective, given the vast majority of neutral opinions in our
dataset (i.e., a constant neutral classifier would obtain a high accuracy, ignoring negative and
positive opinions).

2The STANFORD CORENLP tool requires—during the training of the neural network—a so called development
set to tune some internal parameters of the network. Among the 1,350 sentences with intermediate/leaf nodes
in training set we randomly selected 300 sentences for composing the development set at each run.

24 Sentiment Polarity Analysis in Software Engineering Contexts

Table 3.1. Testing results of STANFORD CORENLP SO.

(a) Testing results of STANFORD CORENLP SO on all the sentences and neutral sentences.

Batch
correct
prediction

neutral
sentences

Neutral
precision

Neutral
recall

1 113 118 0.835 0.898
2 112 118 0.853 0.839
3 116 121 0.819 0.934
4 123 122 0.875 0.918
5 110 119 0.833 0.840
6 129 118 0.891 0.975
7 93 130 0.911 0.631
8 117 116 0.809 0.948
9 111 113 0.770 0.947

10 115 116 0.799 0.957

Overall 1139 1191 0.836 0.886

(b) Testing results of STANFORD CORENLP SO on positive sentences and negative sentences.

Batch
positive
sentences

Positive
precision

Positive
recall

negative
sentences

Negative
precision

Negative
recall

1 10 0.250 0.200 22 0.333 0.227
2 15 0.294 0.333 17 0.471 0.471
3 15 0.000 0.000 14 0.273 0.214
4 9 0.600 0.333 19 0.471 0.421
5 10 0.167 0.100 21 0.375 0.429
6 11 0.600 0.273 21 0.688 0.524
7 6 0.111 0.167 14 0.196 0.714
8 17 0.400 0.118 17 0.556 0.294
9 18 0.333 0.056 19 0.375 0.158

10 20 1.000 0.050 14 0.300 0.214

Overall 131 0.317 0.145 178 0.365 0.365

Table 3.1 reports the results achieved by STANFORD CORENLP SO3 on Stack Overflow
sentences. The table shows the number of correct predictions, the number of positive/neu-
tral/negative sentences in the batch of testing sets and the corresponding precision/recall
values, while the last row reports the overall performance on the whole dataset. Table 3.2
shows some concrete examples of sentiment polarity analysis with STANFORD CORENLP SO.

3STANFORD CORENLP SO is the name of the tool with our new model trained with Stack Overflow discussions,
while STANFORD CORENLP is the sentiment analysis component of STANFORD CORENLP with the default model
trained using movie reviews.

3.3 Evaluating Sentiment Polarity Analysis for SE 25

Table 3.2. Examples of sentiment polarity analysis results of Stanford CoreNLP SO.

Sentence Oracle Prediction

It even works on Android. Positive Positive
Hope that helps some of you with the same problem. Positive Negative
There is a central interface to access this API. Neutral Neutral
How is blocking performed? Neutral Negative
I am not able to deploy my App Engine project locally. Negative Negative
Anyway, their current behavior does not allow what you want. Negative Neutral

The results shown in Table 3.1 highlight that, despite the specific training, STANFORD

CORENLP SO does not achieve good performance in analyzing the sentiment polarity of Stack
Overflow discussions. Indeed, its precision and recall in detecting positive and negative senti-
ments are all below 40%, thus discouraging its usage in SE applications. Although STANFORD

CORENLP SO can correctly identify more negative than positive sentences, only a small frac-
tion of the sentences with positive/negative sentiment is identified. Also, there are more
mistakenly than correctly identified sentences in both sets.

Based on the results we achieved, it is impracticable to build on the top of STANFORD

CORENLP SO a reliable SE application: The high percentage of wrong sentiment polarity
classification will likely result in unsatisfactory results. Thus, besides the huge effort we
spent to train STANFORD CORENLP SO with a specific and large software dataset, we failed
in achieving an effective sentiment analysis estimator. For this reason, we decided to shift
our focus and perform a deeper analysis of the accuracy of sentiment analysis tools when
used on software-related datasets. Specifically, we aim to understand whether (i) domain
specific training data really helps in increasing the accuracy of sentiment polarity analysis
tool; and whether (ii) other state-of-the-art sentiment polarity analysis tools are able to
obtain good results on SE datasets, including our manually labeled Stack Overflow dataset.
Understanding how these tools perform can also help us gain deeper insights into the current
state of sentiment polarity analysis for SE.

3.3 Evaluating Sentiment Polarity Analysis for SE

Given the negative results we achieved in customizing the state-of-the-art sentiment polarity
analysis tool STANFORD CORENLP with Stack Overflow data, we shift our focus to investi-
gate how different contexts can impact the effectiveness of existing sentiment analysis tools.
Therefore, we conducted a study to analyze the accuracy of these tools when applied to
SE datasets. The context of this study consists of text extracted from three software-related
datasets, namely Stack Overflow discussions, mobile app reviews, and JIRA issue comments.

3.3.1 Research Questions and Context

This study aims to answer the following research questions:

26 Sentiment Polarity Analysis in Software Engineering Contexts

• RQ1: How does our STANFORD CORENLP SO perform compared to other sentiment polar-
ity analysis tools? We want to verify whether other state-of-the-art sentiment polarity
analysis tools are able to achieve better accuracy on the Stack Overflow dataset we
manually built, thus highlighting limitations of STANFORD CORENLP SO. Indeed, it
could be that our choice of the STANFORD CORENLP and therefore of developing STAN-
FORD CORENLP SO was not the most suitable one, and other existing tools already
provide better performance.

• RQ2: Do different software-related datasets impact the performance of sentiment polarity
analysis tools? We want to investigate the extent to which, analyzing other kinds of
SE datasets, e.g., issue comments and app reviews, sentiment polarity analysis tools
would achieve different performance than for Stack Overflow posts. For example,
such sources might contain less neutral sentences and, the app reviews in particular,
be more similar to the typical training sets of sentiment polarity analysis tools.

The context of the study consists of textual documents from three different software
repositories, i.e., (i) Q&A forums, i.e., Stack Overflow discussions, (ii) app stores, i.e., users’
reviews on mobile apps, and (iii) issue trackers, i.e., JIRA issue comments.

We chose these types of textual documents as they have been studied by SE researchers,
also in the context of sentiment polarity analysis [PSG+15, OAD+15, CLN17, UK17b]. As
our goal is to evaluate the accuracy of different sentiment polarity analysis tools on these
three datasets, we need to define the ground truth sentiment polarity for each of the sen-
tences/texts they contain.

The following process was adopted to collect the three datasets and define their ground
truth:

• Stack Overflow discussions. We reuse the ground truth for the 1,500 sentences used
to evaluate STANFORD CORENLP SO .

• Mobile app reviews. We randomly selected 341 reviews from the dataset of 3k re-
views provided by Villarroel et al. [VBR+16], which contains manually-labeled reviews
classified on the basis of the main information they contain. Four categories are con-
sidered: bug reporting, suggestion for new feature, request for improving non-functional
requirements (e.g., performance of the app), and other (meaning, reviews not belong-
ing to any of the previous categories). When performing the random selection, we
made sure to respect the proportion of reviews belonging to the four categories in
the original population in our sample (e.g., if 50% of the 3k reviews belonged to the
“other” category, we randomly selected 50% of our sample from that category).

Once selected, we manually labeled the sentiment polarity of each review. The labeling
process was performed by two evaluators. The evaluators had to decide where the text
is positive, neutral, or negative. A third evaluator was involved to solve 51 conflict
cases.

• JIRA issue comments. We use the dataset collected by Ortu et al. [OMD+16], contain-
ing 4k sentences labeled by three raters with respect to four emotions: love, joy, anger,

3.3 Evaluating Sentiment Polarity Analysis for SE 27

and sadness. This dataset has been used in several studies as the “golden set” for eval-
uating sentiment analysis tools [JSDS17, IZ17]. During the original labeling process,
each sentence was labeled with one of six emotions: love, joy, surprise, anger, sadness,
fear. Among these six emotions, love, joy, anger, and sadness are mostly expressed. As
also done by Jongeling et al. [JSDS17], we map the sentences with the label love or joy
into positive sentences, and those with label anger or sadness into negative sentences.

The new datasets are used for testing only, and they are not involved in the tool training
process. Table 3.3 reports for each dataset (i) the number of sentences extracted, and (ii)
the number of positive, neutral, negative sentences.

Table 3.3. Dataset used for evaluating sentiment polarity analysis tools in SE

Dataset # sentences # positive # neutral # negative

Stack Overflow 1,500 178 1,191 131
App reviews 341 186 25 130
JIRA issue 926 290 0 636

3.3.2 Data Collection and Analysis

On the three datasets described above we experimented with the following tools, which are
popular in the SE research community:

• SENTISTRENGTH. SENTISTRENGTH does not give the sentiment polarity of the text di-
rectly, instead, it reports two sentiment strength scores of the text analyzed: one score
for the negative sentiment expressed in the text from -1 (not negative) to -5 (extremely
negative), the other for the positive sentiment expressed from 1 (not positive) to 5 (ex-
tremely positive). We sum these two scores, and map the sum of over 0, 0, and below
0 into positive, neutral, and negative, respectively.

• NLTK. Based on VADER SENTIMENT ANALYSIS, NLTK reports four sentiment strength
scores for the text analyzed: “negative”, “neutral”, “positive”, and “compound”. The
scores for “negative”, “neutral”, and “positive” range from 0 to 1, while the “com-
pound” score is normalized to be between -1 (most extreme negative) and +1 (most
extreme positive). As suggested by the author of the VADER component4, we use
the following thresholds to identify the sentiment of the text analyzed: score ≥ 0.5:
positive; −0.5< score < 0.5: neutral; score ≤ −0.5: negative.

• STANFORD CORENLP. By default, STANFORD CORENLP reports the sentiment polarity
of the text on a five-value scale: very negative, negative, neutral, positive, and very
positive. Since we are only interested in discriminating between negative, neutral,
and positive opinions, we merged very negative into negative, and very positive into
positive.

4https://github.com/cjhutto/vaderSentiment

https://github.com/cjhutto/vaderSentiment

28 Sentiment Polarity Analysis in Software Engineering Contexts

• SENTISTRENGTH-SE. As it is a tool based on SENTISTRENGTH, and uses the same format
of reported results, we interpret its sentiment score by adopting the same approach we
used for SENTISTRENGTH.

• STANFORD CORENLP SO. Similarly, we use the same approach adopted for STANFORD

CORENLP to convert five-scale values into three-scale values. To examine the perfor-
mance on app reviews and JIRA issue comments, we used the Stack Overflow labeled
sentences (including internal nodes) as training set5.

We assess the accuracy of the tools by computing recall and precision for each of the
three considered sentiment categories (i.e., positive, neutral, negative) in each dataset.

3.3.3 Results

Table 3.4 reports the results we achieved by applying the five sentiment polarity analysis
approaches on the three different SE datasets. The table reports the number of correct pre-
dictions made by the tools, and precision/recall for predicting sentiment of positive/neu-
tral/negative sentences. For each dataset/metric, the best achieved results are highlighted
in bold. In the following we discuss the achieved results aiming at answering our research
questions.

RQ1: How does our Stanford CoreNLP SO perform as compared to other sentiment polarity
analysis tools?

To answer RQ1, we analyze the results achieved by the five tools on the Stack Overflow
dataset we built.

As for the comparison of STANFORD CORENLP SO with the original model of STANFORD

CORENLP, the results show that on neutral sentences STANFORD CORENLP SO achieves a
better recall while keeping almost the same level of precision. Also, on positive and negative
sentences STANFORD CORENLP SO is still able to provide a good increment of the precision.

However, in this case the increment of precision has a price to pay: STANFORD CORENLP
SO provides levels of recall lower than STANFORD CORENLP. The comparison between STAN-
FORD CORENLP and STANFORD CORENLP SO should be read taking into account that the
original STANFORD CORENLP model is trained on over 10k labeled sentences (i.e., >215k
nodes). STANFORD CORENLP SO is trained on a smaller training set. Thus, it is possible that
a larger training set could improve the performance of STANFORD CORENLP SO. However, as
of now, this is a mere conjecture.

5In this case, 20% of the training set was used as development set.

3.3 Evaluating Sentiment Polarity Analysis for SE 29

Table 3.4. Evaluation results for sentiment analysis tools applied in SE domain. In bold the best
results.

(a) Evaluation results for the whole dataset and neutral sentences.

Dataset Tool
correct
prediction

Neutral
precision

Neutral
recall

Stack Overflow

SENTISTRENGTH 1,043 0.858 0.772
NLTK 1,168 0.815 0.941
STANFORD CORENLP 604 0.884 0.344
SENTISTRENGTH-SE 1,170 0.826 0.930
STANFORD CORENLP SO 1,139 0.836 0.886

App reviews

SENTISTRENGTH 213 0.113 0.320
NLTK 184 0.093 0.440
STANFORD CORENLP 237 0.176 0.240
SENTISTRENGTH-SE 201 0.106 0.400
STANFORD CORENLP SO 142 0.084 0.320

JIRA issues

SENTISTRENGTH 714 - -
NLTK 276 - -
STANFORD CORENLP 626 - -
SENTISTRENGTH-SE 704 - -
STANFORD CORENLP SO 333 - -

(b) Evaluation results for the whole positive and negative sentences.

Dataset Tool
Positive
precision

Positive
recall

Negative
precision

Negative
recall

Stack Overflow

SENTISTRENGTH 0.200 0.359 0.397 0.433
NLTK 0.317 0.244 0.625 0.084
STANFORD CORENLP 0.231 0.344 0.177 0.837
SENTISTRENGTH-SE 0.312 0.221 0.500 0.185
STANFORD CORENLP SO 0.317 0.145 0.365 0.365

App reviews

SENTISTRENGTH 0.745 0.866 0.815 0.338
NLTK 0.751 0.812 1.000 0.169
STANFORD CORENLP 0.831 0.715 0.667 0.754
SENTISTRENGTH-SE 0.741 0.817 0.929 0.300
STANFORD CORENLP SO 0.770 0.253 0.470 0.669

JIRA issues

SENTISTRENGTH 0.850 0.921 0.993 0.703
NLTK 0.840 0.362 1.000 0.269
STANFORD CORENLP 0.726 0.621 0.945 0.701
SENTISTRENGTH-SE 0.948 0.883 0.996 0.704
STANFORD CORENLP SO 0.635 0.252 0.724 0.409

30 Sentiment Polarity Analysis in Software Engineering Contexts

When looking at other tools, the analysis of the results reveal that all the experimented
tools achieve comparable results and—more important—none of the experimented tools is
able to reliably assess the sentiment expressed in a Stack Overflow sentence. Indeed, while
all the tools are able to obtain good results when predicting neutral sentences, their accuracy
falls when working on positive and negative sentences. For example, even considering the
tool having the highest recall for identifying positive sentences (i.e., SENTISTRENGTH) (i)
there is only 35.9% chance that it can correctly spot a positive sentence and (ii) four out of
five sentences that it will label as positive will be actually false positives (precision=20%).
The recall is almost the same as randomly guessing which has 33.3% chance of success.
These results reveal that there is still a long way to go before researchers and practitioners
can use state-of-the-art sentiment polarity analysis tools to identify the sentiment expressed
in Stack Overflow discussions.

RQ1 main findings: (i) the training of STANFORD CORENLP on Stack Overflow discus-
sions does not provide a significant improvement as compared to the original model trained
on movie reviews; (ii) the prediction accuracy of all tools are biased toward the majority
class (neutral) for which a very good precision and recall is almost always achieved; and
(iii) all tools achieve similar performance and it is impossible to identify among them a clear
winner or, in any case, a tool ensuring sufficient sentiment assessment of sentences from
Stack Overflow discussions.

RQ2: Do different software-related datasets impact the performance of sentiment analysis
tools?

To answer RQ2, we compare the accuracy of all tools on the three datasets considered in
our study. When we look at results for app reviews, we can see that, differently from what
observed in the Stack Overflow dataset, most tools can predict positive texts with reasonable
precision/recall values. Even for negative reviews, the results are in general much better. It
is worth noting that STANFORD CORENLP is competitive for identifying positive and negative
sentiment as compared to other tools. Indeed, compared to other texts in SE datasets, such as
Stack Overflow discussions and JIRA issues, app reviews can be less technical and relatively
more similar to movie reviews, with which the original model of STANFORD CORENLP is
trained. However, when identifying neutral app reviews, all tools exhibit poor accuracy.
This is likely due to the fact that, while positive and negative app reviews could be easily
identified by the presence/absence of some “marker terms” (e.g., the presence of the bug
term is likely related to negative reviews), this is not the case for the neutral set of reviews,
in which a wider and more variegate vocabulary might be used.

When inspecting results for JIRA issue comments, we find that STANFORD CORENLP and
SENTISTRENGTH-SE have better accuracy than other tools, with SENTISTRENGTH-SE provid-
ing a better precision-recall balance across the two categories of sentiment (i.e., positive and
negative). Despite the mostly good results achieved by the experimented tools on the JIRA
dataset, there are some important issues in the evaluations performed on this dataset.

First, the absence of neutral sentences does not provide a clear and complete assessment
of the accuracy of the tools. Indeed, as shown in the app reviews, neutral texts might be,

3.3 Evaluating Sentiment Polarity Analysis for SE 31

in some datasets, the most difficult to identify, likely due to the fact that they represent that
“grey zone” close to both positive and negative sentiment.

Table 3.5. Confusion matrices on the Stack Overflow dataset.

SENTISTRENGTH

Positive Neutral Negative

Positive 47 66 18
Neutral 173 919 99
Negative 15 86 77

NLTK
Positive Neutral Negative

Positive 32 96 3
Neutral 64 1121 6
Negative 5 158 15

STANFORD CORENLP
Positive Neutral Negative

Positive 45 30 56
Neutral 145 410 636
Negative 5 24 149

SENTISTRENGTH-SE
Positive Neutral Negative

Positive 29 93 9
Neutral 59 1108 24
Negative 5 140 33

STANFORD CORENLP SO
Positive Neutral Negative

Positive 19 96 16
Neutral 39 1055 97
Negative 2 111 65

Second, the JIRA dataset is built by mapping emotions expressed in the comments (e.g.,
joy or love) into sentiment polarities (e.g., positive). However, such a mapping does not
always hold. For instance, positive comments in issue tracker does not always express joy

32 Sentiment Polarity Analysis in Software Engineering Contexts

or love (e.g., thanks for the updated patch), thus allowing to obtain a very partial view of the
accuracy of sentiment polarity analysis tools.

To highlight the importance of neutral items in the evaluation of a sentiment polarity
analysis tool, Table 3.5 shows the confusion matrices obtained by the five different sentiment
polarity analysis tools on the Stack Overflow dataset (see Table 3.3). In the matrices, each
row represents the actual sentiment polarity, while each column represents the predicted
sentiment polarity using corresponding tools.

All tools are effective in discriminating between positive and negative items. For exam-
ple, our STANFORD CORENLP SO only misclassified two negative sentences as positive, and 16
positive sentences as negative. NLTK only misclassifies five negative sentences as positive,
and three positive sentences as negative. The errors are mostly due to negative/positive
sentences classified as neutral and vice versa. This confirms the issues found by Tourani
et al. [TJA14] when using SENTISTRENGTH on SE data, and this is why evaluating sentiment
polarity analysis tools on datasets not containing neutral sentences introduces a consider-
able bias. Similar observations hold for the app reviews dataset, in which the performance
in classifying neutral reviews is, as shown in Table 3.4, extremely poor.

RQ2 main findings: The accuracy of sentiment polarity analysis tools is, in general, poor
on SE datasets. We claim this because we found no tool able to reliably discriminating be-
tween positive/negative and neutral items. Indeed, while the accuracy on the app reviews
and JIRA datasets are acceptable (i) in the app reviews dataset the accuracy in identify-
ing neutral items is very low, and (ii) the data obtained with the JIRA dataset can not be
considered as reliable due to the discussed issues.

3.4 Threats to Validity

Threats to construct validity concern the relation between theory and observation. The
first concern is related to our manual sentiment labeling. Sentiment expressed in the text
might be misinterpreted by people. Also, the labeling might be impacted by subjective opin-
ions of evaluators. Although we adopted an additional conflict resolving process, it is not
guaranteed that the manually assigned sentiment is always correct.

Another threat is the sentiment score mapping, i.e., mapping five-scale sentiment to
three-scale sentiment. Indeed, sentiment expressed in the text have different degrees. Pre-
dicting slightly negative sentence as neutral should be considered a smaller mistake than
predicting a very negative sentence as neutral, since the threshold to draw a line between
the neutral and the negative sentiment can be more subjective.

Threats to internal validity concern internal factors we did not consider that could
affect the variables and the relations being investigated. In our study, they are mainly due
to the configuration of sentiment analysis tools/approaches we used. In most cases, we use
the default or suggested parameters, for example, the threshold for NLTK. However, some
parameters might be further tuned to increase the sentiment prediction performance.

Threats to conclusion validity concern the relation between the treatment and the out-
come. During our study, we randomly selected sentences from Stack Overflow discussions
and app reviews from an existing dataset [VBR+16]. While we considered statistically sig-

3.5 Lessons Learned 33

nificant samples, we cannot guarantee that our samples are representative of the whole
population.

Threats to external validity concern the generalizability of our findings. While the
evaluation has considered the most commonly used sentiment analysis tools in SE, some
less popular tools might have been ignored. Constantly there are lots of new ideas and
approaches popping up in the NLP domain, but few of them have been examined and verified
in the SE context. Since our goal is to seek a good sentiment polarity analysis tool for
software-related texts, in this chapter we only select the tools already used in previous SE
studies. Our datasets are limited to three frequently mined SE repositories, while texts in
other contexts, such mailing list and IRC chats, are not considered.

3.5 Lessons Learned

The results of our study provided us with a number of lessons learned.
No tool is ready for real usage of identifying sentiment polarity expressed in SE

related discussions yet. No tool, including the ones specifically customized for certain SE
tasks, is able to provide precision and recall levels sufficient to entail the tool adoption for
a task such as identifying the sentiment of Stack Overflow posts. By relying on such tools,
we would certainly generate wrong predictions. Our results are a warning to the research
community: Sentiment polarity analysis tools should always be carefully evaluated in the
specific context of usage before building something on top of them.

Specific re-training is required, but does not represent a silver bullet for improving
the accuracy. Previous literature has pointed our that sentiment polarity analysis tools can-
not be used out-of-the-box for SE tasks [JSDS17, TJA14, NCL15, IZ17]. In some cases, tools
have introduced a data preprocessing or a re-training to cope with the specific SE lexicon, in
which there are positive or negative words/sub-sentences that are not positive or negative
in other contexts, or vice versa (e.g., the word bug generally carries a negative sentiment
when referred to an API, while it can be considered neutral in movie reviews). However,
as results have shown, this might still be insufficient to guarantee good accuracy in terms
of both precision and recall on all polarity levels. Also, customization is very dataset spe-
cific, and therefore applying the tool on different datasets would require a new training. In
other words, customizing a sentiment analysis tool for JIRA does not make it ready for Stack
Overflow and vice versa. Finally, some algorithms, such as recursive neural networks, require
costly re-training. In our case, the training performed with 1,500 sentences (which turned
into labeling almost 40k nodes) revealed to be insufficient for a clear improvement of the
STANFORD CORENLP accuracy.

Some SE applications make sentiment polarity analysis easier than others. Senti-
ment analysis tools perform better on app reviews. App reviews contain sentences that, in
most cases, clearly express the opinion of a user, who wants to reward an app or penalize
it, by pointing out a nice feature or a serious problem. Hence, the context is very similar to
what those sentiment tools are familiar with. Still, as observed, the tools’ performance on
the neutral category is very poor. Looking at the issue tracker data, besides the lack of neu-
tral sentences in the JIRA dataset (which per se makes the life of the sentiment analysis tools

34 Sentiment Polarity Analysis in Software Engineering Contexts

much easier), again the predominance of problem-reporting sentences may (slightly) play
in favor of such tools. Stack Overflow is a different beast. Posts mostly contain discussions
on how to use a piece of technology, and between the lines somebody points out whether an
API or a code pattern is good or less optimal. In many cases, without even expressing strong
opinions. This definitely makes the applicability of sentiment analysis much more difficult.

Should we expect 100% accuracy from sentiment polarity analysis tools? No, we
should not. In our manual evaluation, out of the 1,500 Stack Overflow sentences we manu-
ally labeled, there were 279 cases of disagreement (18.6%). This means that even humans
are not able to agree about the sentiment expressed in a given sentence. This is also in line
with findings of Murgia et al. [MTAO14] on emotion mining: Except when a sentence ex-
presses clear emotions of love, joy and sadness, even for humans it is hard to agree. Hence,
it is hard to expect that an automated tool can do any better. Having said that, advances are
still needed to make sentiment analysis tools usable in the SE domain.

Text reporting positive and negative sentiment is not sufficient to evaluate senti-
ment polarity analysis tools. As discussed, the most difficult task for sentiment analysis
tools is to discriminate between positive/negative vs neutral sentiment, while they are quite
effective in discriminating between positive and negative sentiment. This is why datasets
such as the JIRA one that we, and others, used in previous work [JSDS17, IZ17], is not suffi-
cient to evaluate sentiment polarity analysis tools. We hope that releasing our dataset [LZB+b]
will help in more robust evaluations of sentiment polarity analysis tools.

3.6 Conclusion

In this chapter, we trained a new model to identify the sentiment polarity of software-related
texts on a set of 40k manually labeled sentences/words extracted from Stack Overflow dis-
cussions. We also compared the performance of STANFORD NLP based on our new model with
other state-of-the-art sentiment analysis tools commonly used in SE studies. Our results sug-
gest that no tool is ready for practical use in SE applications yet, and further investigations
on how to leverage domain-specific features of texts for sentiment analysis are necessary.

Some say that the road to hell is paved with good intentions. Our work started out with
what we consider a promising idea: We wanted to customize a state-of-the-art sentiment
polarity analysis approach for the SE domain. To do so, we wanted to leverage the large
body of knowledge that is stored in Q&A websites like Stack Overflow. The approach was
going to exploit opinion mining using deep learning through RNN. However, as we finalized
our work we noticed that it simply did not work, because of the unacceptable performance.

The reason for the failure is manifold. Firstly, it highlights how machine learning, even
in its most advanced forms, is and remains a black box, and it is not completely clear what
happens in that black box. To this one can add the design principle “garbage in, garbage
out”: No matter how advanced a technique, if the input is not appropriate, it is improbable
that an acceptable output can be produced. In the specific case one might argue that Stack
Overflow is not really the place where emotions run high: It is a place where developers
discuss technicalities. Therefore it is rather obvious that opinion mining will have a hard
time. While this might be true, our study revealed that also in datasets where emotions

3.6 Conclusion 35

are more evident, like app reviews and issue trackers, there is an intrinsic problem with the
accuracy of current state-of-the-art sentiment analysis tools.

Our negative experience indicates that simple customization of existing sentiment po-
larity analysis tools might not be enough for obtaining satisfactory accuracy in sentiment
polarity detection for SE tasks. Instead, we need a novel approach essentially different from
the existing ones. Therefore, we decided to adopt a pattern matching-based solution, which
is introduced in Chapter 4.

36 Sentiment Polarity Analysis in Software Engineering Contexts

4
Mining Opinions from Q&A Sites to Support
Software Design Decisions

Our previous work in Chapter 3 has shown that out-of-the-box, customized or re-trained
sentiment polarity analysis tools are particularly unreliable (and very often in disagreement)
when applied to SE corpora. Therefore, it is very unlikely to obtain satisfactory results when
applying these tools in SE tasks. We have to propose an alternative approach to accurately
identify the sentiment polarity in online discussions. Meanwhile, we also need to consider
how we can leverage the sentiment information for providing correct and insightful opinions
to developers.

A recent work by Uddin and Khomh [UK17c] dealt with API opinion mining by relying
on an SVM-based aspect classification approach and a customized Sentiment Orientation
algorithm [HL04]. Stemming from the positive and negative results highlighted in previous
attempt to automatically mine API opinions and from the seminal work by Uddin and Khomh
[UK17c] in this field, we propose a novel approach named Pattern-based Opinion MinEr
(POME), which leverages linguistic patterns contained in Stack Overflow sentences referring
to APIs, and classify whether (i) a sentence refers to a particular API aspect (functional,
documentation, community, compatibility, performance, reliability, or usability), and (ii) it
has a positive or negative polarity.

To achieve these goals, we first link sentences contained in Stack Overflow discussions
to APIs using a modified version of the approach by Treude and Robillard [TR16]. Then,
we parse the sentences using the spaCy NLP library [spa] and identify whether a sentence
matches a pattern among 157 manually defined ones. Each pattern consists of a natural
language parse tree where each leaf can either be a generic part-of-speech (e.g., a noun) or, in
some cases, a specific part-of-speech (taken from a thesaurus we have built), characterizing
an aspect positively or negatively.

We have evaluated our approach along three dimensions:

1. We assess the precision and recall of POME in identifying API-related opinions in Stack
Overflow on a manually labeled dataset of 1,662 sentences. We compare different
variants of POME based on simple pattern matching as well as on machine learning

37

38 Mining Opinions from Q&A Sites to Support Software Design Decisions

algorithms, finding that its best configuration achieves a precision ranging between
0.61 and 1.00 and a recall ranging between 0.13 and 0.44, depending on the quality
aspect subject of the opinion.

2. We compare the performance of the opinion polarity assessment when using pattern
matching with six sentiment analysis tools, finding that the defined 157 patterns help
in achieving higher values of precision/recall both for positive (0.92 precision and 0.99
recall) and for negative (0.94 precision and 0.73 recall) opinions.

3. We conducted a survey with 24 Computer Science students and professional developers
to collect their assessment about the precision of the opinions mined by POME and by
the state-of-the-art opinion mining tool OPINER [UK17c] for four popular APIs. The
achieved results show that, for most of the quality aspect categories (e.g., usability),
POME is able to mine opinions with a higher precision than OPINER.

4. We release POME’s source code, the Web app used to label patterns, and the list of
patterns we manually defined and all the data used in our evaluations in a replication
package [LZB+a].

Structure of the Chapter

Section 4.1 presents our proposal of a rationale-based API recommender system. Section 4.2
thoroughly describes the technical details of POME, the core technique behind the system.
Section 4.3 reports the design of the study we performed to assess the performance of
POME on sentiment polarity identification and quality aspect categorization, and Section 4.4
presents the corresponding results. Finally, after the discussion of threats to validity (Sec-
tion 3.5), Section 4.6 concludes this chapter.

4.1 Rationale-Based Software API Recommender: A Proposal

In this section, we present our proposal to build a rationale-based software API recommender.
More specifically, we describe our motivation, outline the architecture for such a recom-
mender system, and present the most relevant and the state-of-the-art tool. We also discuss
why we need a novel approach for system implementation.

4.1.1 Motivation

Online discussions among software developers through various communication channels —
e.g., mailing lists, issue trackers, and above all Question & Answer (Q&A) forums such as
Stack Overflow — are playing a major and increasingly important role in software devel-
opment. Such sources bring various pieces of information, including examples of how to
use programming language constructs, application programming interfaces (APIs) or frame-
works, and discussions about design choices or algorithmic solutions to certain development
problems. To cope with the limited search capabilities of Q&A forums and other sources, and

4.1 Rationale-Based Software API Recommender: A Proposal 39

to alleviate developers’ burden of manually searching for relevant information, researchers
have proposed a wide variety of recommender systems. Such systems can for example link
Stack Overflow discussions to code snippets [RR13], produce documentation [WYT13], en-
hance existing documentation by mining Stack Overflow discussions [SIH14], or identify
insights about APIs [TR16].

Naturally, developers’ discussions contain opinions, e.g., whether a certain API is suitable
for solving a given problem, or what the pros and cons of a given framework are. For exam-
ple, some developers might recommend an API for its rich functionality, while others may
warn about its performance. Recommenders could therefore exploit such opinions — i.e.,
perform opinion mining — and suggest APIs that best satisfy the developers’ needs, which
can be better functionality, better performance, increased compatibility, ease of use, etc.

Given the potentially valuable information embedded in these online discussions, we
propose to design and implement a system to recommend software APIs to developers with
rationales (i.e., what the benefits and the drawbacks to adopt a specific API are). Our goal is
to assist developers in assessing the quality of software APIs exploiting crowdsourced knowl-
edge by mining developers’ opinions on Stack Overflow.

4.1.2 System Architecture

In our perspective of a rationale-based software API recommender, the system should take as
input a short description of a task at hand (i.e., functional requirements), and then suggest
which APIs developers can use, and what the pros and cons of adopting those APIs are. The
basic idea is to leverage crowdsourced knowledge by mining opinions posted by developers
while discussing on Q&A websites such as Stack Overflow.

stackoverflow
Developer

10

Front-end Maven

API
miner

1

database

2

fine-grained
linker

3

4 5

polarity
analyzer

8 9

11

aspect
classifier

6

7

Figure 4.1. Our vision of the rationale-based software API recommender system.

40 Mining Opinions from Q&A Sites to Support Software Design Decisions

The overall idea is depicted in Fig. 4.1. The dashed arrows represent dependencies (e.g.,
1 and 3), while the full arrows indicate flows of information pushed from one component

to another. Arrows depicted in red (i.e., those numbered from 1 to 9) indicate operations
performed only once with the goal of storing crowdsourced opinions about software APIs in
a database; the black ones represent instead actions triggered by a request for recommen-
dations about the software API to use made by the developer using the front-end.

The API miner mines from the maven central repository1 all available Java APIs (1 in
Fig. 4.1). The relevant information about these APIs is then extracted and stored into our
database 2 .

The fine-grained linker mines Stack Overflow discussions to establish links between the
APIs stored in the database 4 and relevant sentences in Stack Overflow discussions 3 . For
example, the sentence “Apache commons-io is the straightforward solution to programmati-
cally copy files” is linked to the commons-io library.

Knowing the sentences related to an API, the aspect classifier categorizes each sentence on
the basis of the non-functional requirements it refers to (e.g., usability, performance, security,
community support, etc.) 6 , and adds this information to the database 7 . The sentences
not classified as “none” (i.e., those discussing quality aspects relevant to mined opinions
about APIs) are then analyzed by the polarity analyzer 8 , that identifies the sentiment they
express and consequently their polarity, i.e., positive or negative (we ignore sentences having
a neutral sentiment since they are not of interest when mining opinions), and stores this
information in the database 9 .

Finally, a developer interested in accessing opinions about an API can submit a textual
query through the Web-based front-end 10 . She can search for a specific API or, if she
does not know which API to use, the query can be used to describe the task she wants to
perform (e.g., reading JSON files in Java). This information is provided to a Web service 11
to identify the most relevant APIs for the given query and provide as output the opinions
mined for them.

4.1.3 Opiner: The Most Relevant and the State-Of-The-Art Tool

The closest work to our proposed API recommender system is OPINER [UK19]2, an online
API review search and summarization engine we discussed in Section 2.3.2. To grasp a better
understanding of how OPINER works, we illustrate with an example.

As it can be seen from Fig. 4.2, users can find an API in three different means:

• Search API. Users can search with the API names to directly locate a specific API.

• Search API Aspect. Users can search with the keyword representing an aspect (e.g.,
Usability). OPINER will present the list of the most popular APIs based on the aspect.
Meanwhile, the lists of APIs with the most positive and the most negative reviews
regarding this aspect are also returned.

1http://central.maven.org/maven2/maven/
2The online app can be found at http://opiner.polymtl.ca/.

http://central.maven.org/maven2/maven/
http://opiner.polymtl.ca/

4.1 Rationale-Based Software API Recommender: A Proposal 41

Figure 4.2. The homepage of OPINER.

• Search API Usage. Users can search with the API name to see how the API is used in
code fragments. A brief summary of the API is also given.

To understand how OPINER classifies API-related discussions into different categories and
sentiment polarities, we take the most reviewed API “com.fasterxml.jackson” as an ex-
ample (Fig. 4.3). OPINER adopted both a pre-defined list of static aspects (e.g., performance,
security) and dynamically inferred aspects for specific APIs (e.g., the aspect “implementa-
tion” for the API “com.fasterxml.jackson”). The discussions on API are categorized into
static aspects with a classifier based on SVM, while the dynamic aspect identification is done
with the help of a text summarization technique TextRank [MT04]. Each aspect is ranked
with up to five stars to indicate how positive the relevant discussions are by assessing the
sentiment polarity in the texts.

OPINER was evaluated by recruiting professional software engineers to pick the right API
for two development tasks. Their results indicate that with the help of OPINER, developers
can make the right decision more accurately and quickly.

Coincidentally, we were working on our approach for the proposed rationale-based API
recommender system at the same time when Uddin and Khomh were crafting OPINER. In
fact, Uddin and Khomh opted for a customized version of the Sentiment Orientation algo-
rithm [HL04] to detect the sentiment polarity of sentences related to APIs. Given our experi-
ence reported in Chapter 3 regarding the performance of state-of-the-art sentiment polarity
analysis approaches, we adopted an entirely different solution based on pattern matching.
We show in Section 4.4 the detailed comparison between the two tools.

42 Mining Opinions from Q&A Sites to Support Software Design Decisions

Figure 4.3. Screenshot of the “Aspects” page of the most reviewed API “com.fasterxml.jackson”
from OPINER.

While tools like OPINER can already classify API-related opinions into different aspects
and sentiment polarity, it is pre-assumed that developers know which APIs can be used to
implement certain functionalities. This is however not always the case when a developer en-
counters a new task in an unfamiliar domain. Meanwhile, as discussed in Section 2.2.1, pre-
vious studies have already warned us the necessity to carefully verify the reliability of opin-
ion mining tools before they are applied in software related contexts. Indeed, the amount
of online discussions related to APIs is huge. We need to make sure that developers can get
correct information without too much noise. Therefore, a technique with a high precision
is desired. To reach this goal, we decided to customize a state-of-the-art approach for our
specific application.

4.2 POME: Pattern-based Opinion MinEr 43

4.2 POME: Pattern-based Opinion MinEr

As introduced in Section 4.1.2, our proposed rationale-based API recommender system con-
sists of four main components: 1) an API miner, 2) a fine-grained linker, 3) a polarity an-
alyzer, and 4) an aspect classifier. In the following, we detail the design of these main
components in our novel approach Pattern-based Opinion MinEr (POME).

4.2.1 API Miner

The API miner is implemented as a Web scraper for extracting all available Java APIs from
the Maven central repository [mav]. We record for each API its: (i) name, (ii) description,
(iii) link to the jar file of the latest version, and (iv) release date of the jar file. We collected
this information for a total of 116,318 APIs, between May and June 2017, storing it in our
database.

Table 4.1. Regular expressions for extracting API-related sentences in Stack Overflow Answers.

No Regular expression Case sensitive?

1 (?i). ∗ \bPackageName\.TypeName\b.∗
Description: Fully-qualified API type [TR16]

2 . ∗ (̂| [a-z]+ |[\.!?] |[\(<])TypeName)([> \)\., !?$] |[a-z]+).∗ Ø
Description: Non-qualified API type [TR16]

3 .∗< a.∗href.∗PackageName/TypeName\.html.∗> .∗< /a > .∗ Ø
Description: Link to the API official documentation [TR16]

4 . ∗ ClassName\.MethodName[\(] Ø
Description: Reference to a method of a specific class

4.2.2 Fine-Grained Linker

This component retrieves sentences from Stack Overflow posts related to a given API. Given
an API (e.g., Google Gson), we use the information collected by the API miner to down-
load its jar file. Using Java Reflection we extract the complete list of its classes and meth-
ods. We then link sentences in Stack Overflow discussions to APIs, using a reimplemen-
tation of the linker by Treude and Robillard [TR16]. There are two differences between
our approach and the one by Treude and Robillard [TR16]. First, while they use the Stack
Overflow API to retrieve the Stack Overflow discussions, we rely on the December 2017
official Stack Overflow data dump to avoid issues related to usage limitations of the API.
Second, they use the first three regular expressions reported in Table 4.1 to identify sen-
tences including (i) the fully-qualified API type (e.g., com.google.code.gson); (ii) the non-
qualified API type (e.g., Gson); and (iii) the link to the official API documentation (e.g.,

44 Mining Opinions from Q&A Sites to Support Software Design Decisions

Table 4.2. Dataset used for patterns’ definition and training of the machine learning algorithms.

Category
sentences # sentences

URL
linked validated

Bytecode APIs 2,645 999 goo.gl/rzoqc7

Embedded SQL DB 622 622 goo.gl/kknzvD

HTTP Clients 1,714 999 goo.gl/b8vgQN

JSON APIs 4,764 999 goo.gl/9cas1C

Reflection APIs 481 481 goo.gl/6935xc

SSH APIs 246 246 goo.gl/2ih4h6

Overall 10,481 4,346 -

https://sites.google.com/site/gson/gson-user-guide). In our approach, we also re-
trieve Stack Overflow sentences matching the fourth regular expression shown in Table 4.1.
We decided to include this fourth regular expression since we observed that many sentences
on Stack Overflow discuss issues related to APIs by referring to specific APIs rather than to the
API type (i.e., name) or to its documentation. While this additional regular expression might
introduce false positives, matching both the class name and the method name mitigates this
risk. We discuss the precision of this additional regular expression in Section 4.5.

We use the fine-grained linker to identify all relevant sentences for a given API only from
Stack Overflow answers (i.e., we do not consider questions), because opinions are unlikely to
reside in the questions, where users mostly ask for help. Also, we discard sentences belonging
to questions posted before the release date of the API jar file under analysis, to reduce the
risk of mining opinions referring to old releases of the API. The sentences identified by the
fine-grained linker, along with the link to the respective API, are stored in the POME’s database
for all previously mined APIs.

4.2.3 Aspect Classifier

The aspect classifier analyzes the stored sentences to identify the quality aspect(s) discussed
in them. In the following, we discuss different ways to perform this task, while in Section 4.3
we explain how we identified the best solution.

Pattern matching-based approach

The conjecture is that users providing opinions about APIs on Stack Overflow tend to use
repetitive discourse patterns that can be encoded to capture both the quality aspect(s) and
the sentiment of the opinion (thus, pattern matching can be used in the context of the polarity
analyzer). To identify the patterns, we manually analyzed 4,346 Stack Overflow sentences
identified by the fine-grained linker as related to APIs belonging to the six categories of pop-
ular APIs (provided by Maven central) reported in Table 4.2.

goo.gl/rzoqc7
goo.gl/kknzvD
goo.gl/b8vgQN
goo.gl/9cas1C
goo.gl/6935xc
goo.gl/2ih4h6
https://sites.google.com/site/gson/gson-user-guide

4.2 POME: Pattern-based Opinion MinEr 45

Table 4.2 reports the name of the category, the number of API-related sentences ex-
tracted from Stack Overflow discussions, the number of sentences we manually analyzed,
and the link to Maven central listing the APIs belonging to the specific category. From
each category, we only extracted sentences related to the five most used APIs listed on
https://mvnrepository.com/. For categories having more than 1,000 linked sentences,
we manually analyzed only a randomly selected subset to avoid bias in the definition of the
patterns (i.e., extract patterns that are very specific to one predominant API category in our
dataset).

Table 4.3. Numbers of sentences identified for each of the aspects during manual analysis.

Quality aspect
Opinions

Negative Positive

Community 2 8
Compatibility 21 10
Documentation 3 29
Functional 13 153
Performance 12 26
Reliability 18 10
Usability 9 74

None 3,958

The 4,346 sentences have been manually analyzed by four evaluators (authors of this
study), with the support of a Web app (Fig. 4.4), to categorize each one as expressing or not
an opinion about the linked API. Each sentence was randomly assigned to two of the four
evaluators, resulting in '2,180 sentences per evaluator. In case a sentence did not report
any opinion, we assigned the “none” label. If an opinion was identified, the evaluator firstly
selected the part of the sentence reporting the opinion. Then, she classified the selected part
of the sentence in terms of the quality aspect(s) the opinion refers to (e.g., compatibility).
No predefined list of quality aspects was provided. However, every time the evaluator had
to analyze a sentence, the Web application showed the list of quality aspects created so far,
allowing the evaluator to select one of the already defined aspects. In a context like the one
encountered in this work, where the number of possible quality aspects might be large, such
a choice helps using consistent naming without introducing a substantial bias. The list of
aspects obtained during the labeling process is as follows, and Table 4.3 presents the number
of sentences identified for each of the aspects.

• Sentences related to the community aspect talk about the activities of the community
maintaining the API (e.g., is the API actively maintained?).

• Sentences related to the compatibility aspect talk about the compatibility of the API
with respect to specific platforms, programming languages, or other APIs.

https://mvnrepository.com/

46 Mining Opinions from Q&A Sites to Support Software Design Decisions

Figure 4.4. Web app used to label the opinions expressed in sentences.

• Sentences related to the documentation aspect talk about the content/quality of the
API documentation.

• Sentences related to the functional aspect talk about the features offered/not offered
by the API.

• Sentences related to the performance aspect talk about the performance of the API
(e.g., speed, memory footprint).

• Sentences related to the reliability aspect talk about the reliability of the API (e.g.,
whether it is buggy or not).

• Sentences related to the usability aspect talk about the usability of the API, in terms of
how easy is to use/adapt it and evolve/maintain the code using it.

The evaluator also assigned a negative or positive sentiment to the reported opinion (this
information is used in the context of the polarity analyzer) and, finally, she identified in the
selected part of the sentence the Parts-of-Speech (POS) referring to the linked API and the
quality aspect(s), i.e., noun, adjective, etc. To better understand the process, let us discuss

4.2 POME: Pattern-based Opinion MinEr 47

an example of manual analysis. Consider the sentence: “Based on my personal experience,
Gson is the fastest library out there”. First, the evaluator selects the part reporting the opinion,
in this case: “Gson is the fastest library”. Then, she assigns the performance quality aspect
and a positive sentiment to it. Finally, she marks “Gson” as a proper noun referring to the
library, and “fastest” as an adjective related to the quality aspect assigned to the opinion (i.e.,
performance).

Once each sentence was manually analyzed by any two of the evaluators, we collected all
the conflicts and solved them by adding a third evaluator who was not previously involved
in the analysis of that sentence. A conflict could be related to (i) the part of the sentence
selected as opinion, (ii) the sentiment polarity assigned to the opinion, and (iii) the quality
aspect(s) identified.

The output includes 388 sentences classified as reporting an opinion and referring to
seven different quality aspects (and 3,958 discarded as not discussing quality aspects). Ta-
ble 4.3 reports the number of positive and negative opinions identified for each of them.
About 9% of the linked sentences (388/4,346) explicitly report negative or positive opinions
related to one of the quality aspects. While the percentage might look low, if we consider
the number of posts on Stack Overflow (∼50M at the date of the writing), the amount of
opinions is still impressive.

The 388 API-related sentences manually annotated have been exploited to identify recur-
rent patterns used in Stack Overflow discussions for expressing opinions about APIs. With
“patterns” we refer to lexical rules that capture the syntax and semantics of the opinionated
sentences. One of the evaluators conducted a pilot study using API-related sentences includ-
ing opinions about performance. Since we wanted to define patterns considering both the
syntax and the semantic of the API-related sentences, the evaluator working on the patterns’
extraction not only had the quality aspect and the sentiment assigned to each sentence as
information, but also the parts of speech related to each token (i.e., noun, verb, adjective,
adverb etc.) as well as their syntactic dependencies.

To reduce the number of patterns belonging to the same quality aspect, the evaluator
could also create a bag of words related to verbs, adjectives and adverbs and use them for
defining patterns. A positive pattern of the performance category is shown in Fig. 4.5.

The Pos_Adjective_Performance includes positive adjectives linkable to performance, such
as fastest, performant, etc.

Once the pilot study was completed, the evaluator trained other three evaluators in a
30-minute session that involved discussing the results and some ambiguous sentences. The
API-related sentences belonging to the other six quality aspects were randomly distributed
among the four evaluators. For each quality aspect, all the API-related sentences were coded
by the same evaluator. The same API-related sentence can fall into more than one quality
aspect. For this reason, it is possible to infer more than one pattern from the same sentence.
At the end of the patterns’ extraction, all the evaluators created a catalog of inferred patterns
to merge similar patterns into a more general pattern. Each decision taken at this stage was
representative of the opinion of all evaluators.

In the end, we obtained a list of 157 patterns, each one representative of a specific quality
aspect expressing a specific sentiment. Given a sentence S as input, the aspect classifier can

48 Mining Opinions from Q&A Sites to Support Software Design Decisions

Quality Aspect & Sentiment: Performance | Positive
Rule: [Verb_To_Be] [Pos_Adjective_Performance]
Dependency requirement: [Verb_To_Be] should be the first parent node of
[Pos_Adjective_Performance] with a POS tag of verb.
Example: Gson [is] the [fastest] library out there.
Parsed syntactic dependencies:

Gson
PROPN

is
VERB

the
DET

fastest
ADJ

library
NOUN

out
ADV

there
ADV

nsubj amod

det
attr

advmod

advmod

Figure 4.5. An example of a positive pattern belonging to the performance category.

then be used to check whether S matches one of the defined patterns. To do this, the aspect
classifier uses the spaCy [spa] NLP library to build a dependency tree of S. The tree reports
(i) the POS in S, and (ii) the dependency relations between the tokens composing S. This
allows to (i) easily verify whether S matches a given pattern, and (ii) identify negated terms,
needed to correctly assess the sentiment polarity of the matched pattern (e.g., if a positive
pattern for performance is matched but a positive performance adjective is negated, then
the sentiment polarity is inverted to negative).

Machine learning-based approach

Another possibility to implement the aspect classifier is to use a machine learning algorithm
trained on a set of manually labeled sentences.

We exploit previously labeled sentences (Table 4.2) to train machine learners to classify
a given sentence into eight categories: the seven quality aspects we consider plus “none”.
Specifically, we used all the sentences with opinions and randomly selected same amount of
sentences without opinions for training to avoid bias. We used the scikit-learn [PVG+11]
Python library to experiment with 10 different machine learners. As predictor variables,
we used the terms contained in the sentences. For preprocessing we remove stop words
and punctuations, and performed word stemming. We considered each term as a predictor
variable. Besides analyzing the single words contained in each sentence, we extract the set
of n-grams composing it, considering n ∈ [2 . . . 3].

We consider as features for the machine learner the presence/absence of the 157 pat-
terns, i.e., whether a sentence matches each of the patterns we previously defined. There is
a key difference between the pattern matching approach and employing patterns as a feature
of a machine learner. In the first case, patterns are used as rules, and sentences matching a
given pattern are automatically classified into an aspect and sentiment polarity. In the second

4.2 POME: Pattern-based Opinion MinEr 49

case, the presence of a pattern, may (or may not) contribute toward a classification along
with other features. We experimented each machine learner with seven different combina-
tions of features: (i) BOW-only (Bag Of Words), only considering single terms, (ii) n-grams-
only, (iii) patterns-only, (iv) BOW+n-grams, (v) BOW+patterns, (vi) n-grams+patterns, and
(vii) BOW+n-grams+patterns. A possible problem is that some categories are rarer than
others. A machine learning algorithm tends to assign sentences to more frequent categories,
because an error in under-represented categories is more acceptable than an error in other
categories to achieve a better overall accuracy. To prevent this, we re-balanced our training
set using Synthetic Minority Over-sampling TEchnique (SMOTE) [CBHK02], an oversam-
pling method which creates synthetic samples from the minor class. We experimented each
algorithm both with and without SMOTE.

4.2.4 Polarity Analyzer

The polarity analyzer analyzes the sentences classified as relevant by the aspect classifier to
identify the sentiment polarity of the opinions. We investigated two different options for the
implementation of the polarity analyzer, and we evaluate their performance to pick the best
one (see Section 4.3).

Pattern matching-based approach

The set of 157 patterns we extracted for the aspect classifier can be also used to assess the
sentiment polarity of the opinions.

Indeed, each pattern is related to an aspect and to a sentiment polarity. Thus, the first
possibility is to use pattern matching to identify the sentiment of opinions.

Sentiment polarity analysis tools

A second possibility to determine a sentence’s sentiment polarity is to exploit one of the many
sentiment analysis tools existing in the literature. We experimented with six of them with
their default settings: SENTISTRENGTH [TBP+10], SENTISTRENGTH-SE [IZ17], NLTK [HG14],
SENTICR [ABIR17], SENTI4SD [CLMN18], and STANFORD CORENLP [SPW+13].

4.2.5 POME in Action

We implemented POME as an online application. POME implements a Java API search engine.
A developer who needs to parse JSON files without prior knowledge of any relevant API, can
search with a query “parse JSON”. POME uses Information Retrieval (IR) techniques to list
the APIs in the database having a textual description relevant for the query. The developer
can select an API, for example “Gson”, to assess what the users’ opinions about this API are.

POME will then present relevant information about “Gson” as shown in Fig. 4.6, and
including:

1. Basic information. The API group ID, artifact ID, link to the jar file, license, and
description 2 .

50 Mining Opinions from Q&A Sites to Support Software Design Decisions

1

2

4

5

3

Figure 4.6. Information and opinions about the “Gson” API presented by POME.

2. Opinions on the API classified by aspect. POME analyzes the polarity of the mined
opinions and presents the results with a bar chart 3 , where the green and orange
depict the percentages of positive and negative opinions, respectively. Each bar in the
chart stands for one aspect, while the top bar summarizes the overall polarity of all
opinions, that are listed in the table below 5 . By clicking a bar in the chart, POME

only shows in the table opinions related to the aspect of interest.

3. Opinions on related APIs. POME also presents a bar chart 4 summarizing opinions of
related APIs, i.e., same/similar functionality, identified as the ones having a high tex-
tual similarity in terms of description or belonging to same categories in Maven. Each
bar stands for one API, and bars are ordered by decreasing ratio of positive opinions.
Users can open the information pages of related APIs by clicking the bars.

4.3 Evaluating the Performance of POME 51

Table 4.4. Dataset used to answer RQ1 & RQ2.

Category # APIs # sentences URL

Configuration APIs 20 67 goo.gl/gnQr51

Mocking 37 199 goo.gl/6iTVeQ

Validation Frameworks 40 171 goo.gl/sQ15rp

XML Processing 34 468 goo.gl/TwPtgD

JDBC Pools 5 757 goo.gl/yDuWq1

Overall 136 1,662 -

4.3 Evaluating the Performance of POME

As we have implemented the novel approach POME for our rationale-based API recommender
system, we need to evaluate the accuracy of POME in mining opinions from Stack Overflow
discussions and classifying these opinions according to the quality aspects they refer to (e.g.,
performance, usability, compatibility) and their sentiment polarity (i.e., negative or positive).
Therefore, in this study, we collected 2,075 sentences extracted from Stack Overflow discus-
sions related to 136 APIs from the Maven central repository [mav]. The material used in this
evaluation along with its working dataset is available in our replication package [LZB+a].

4.3.1 Research Questions

We aim at answering the following research questions (RQs):

RQ1: How does a rule-based aspect classifier for Stack Overflow perform, compared to machine
learning approaches? This RQ compares the performance of different implementations
of the aspect classifier, i.e., the pattern matching approach and the machine learning
approaches.

RQ2: How does the rule-based polarity analyzer perform, compared to state-of-the-art sen-
timent analysis tools? This RQ evaluates the accuracy of the polarity analyzer when
using (i) a pattern matching approach, or (ii) six state-of-the-art sentiment analysis
tools.

RQ3: How does POME perform compared to OPINER, a state-of-the-art tool for mining opinions
from Stack Overflow? This RQ compares POME with OPINER [UK17c].

4.3.2 Context Selection & Data Collection

Table 4.4 and Table 4.5 present the datasets we used.

goo.gl/gnQr51
goo.gl/6iTVeQ
goo.gl/sQ15rp
goo.gl/TwPtgD
goo.gl/yDuWq1

52 Mining Opinions from Q&A Sites to Support Software Design Decisions

Table 4.5. Dataset used to answer RQ3

Aspect
POME opinions OPINER opinions

pos # neg # sum # pos # neg # sum

community 1 0 1 2 0 2
compatibility 6 5 11 3 0 3
documentation 16 0 16 9 4 13
functional 123 10 133 19 13 32
performance 11 8 19 5 2 7
reliability 3 4 7 2 22 24
usability 16 2 18 92 35 127

Total 176 29 205 132 76 208

Study context for RQ1 and RQ2

We considered a set of sentences from Stack Overflow discussions, mined from the official
Stack Overflow dump dated Dec 2017, identified using our fine-grained linker as relevant to
one of the 136 APIs belonging to the five popular categories of APIs from Maven central listed
in Table 4.4. 1,662 sentences were mined as relevant to at least one of the 136 subject APIs.
The 136 APIs used in the context of RQ1 and RQ2 have not been used to define the patterns
exploited by our approach for the opinions detection and classification. We performed a
manual analysis to categorize each of the 1,662 sentences as expressing or not an opinion
about the linked API. In case the sentence did not report any opinion, we assigned it to a
“no opinion” label. Instead, if an opinion was identified, the sentence was further classified
in terms of the quality aspect(s) the opinion refers to (i.e., one or more among community,
compatibility, documentation, functional, performance, reliability, and usability). Finally, the
sentiment of the reported opinions was manually assessed by assigning a value between
negative and positive.

The manual analysis was performed by three evaluators and, also in this case, was sup-
ported by a Web application ensuring that two evaluators were assigned to each sentence.
All 1,662 sentences were labeled by two evaluators. The Cohen’s kappa coefficient is 0.6492
for sentiment and is 0.6494 for aspect, which demonstrates a substantial agreement. A
fourth evaluation not involved in the manual analysis then solved conflicts. A conflict can
concern the sentiment of a sentence as well as the quality aspects assigned to it. Overall,
523 sentences (31%) were classified as reporting opinions (505 related to one aspect, 18
to two aspects): community (10), compatibility (73), documentation (41), functional (246),
performance (30), reliability (56), and usability (85). This manual process was performed
before the definition of the patterns’ catalog to avoid the evaluators being influenced during
the process. Also, in RQ3 we involved external evaluators in the judgment of the opinions
mined by POME (and by OPINER [UK17c]), to have an external and unbiased view on the
quality of the mined opinions.

4.3 Evaluating the Performance of POME 53

To answer RQ1, we ran different POME implementations on the dataset of 1,662 sentences
to assess their accuracy in identifying opinion aspects. The implementations include the
pattern matching approach and machine learning approaches in all variations (Section 4.2).

Concerning RQ2, we compared the accuracy of POME in assessing the sentiment of opin-
ions with the six sentiment analysis tools mentioned in the previous section. We only con-
ducted the comparison on the subset of 523 sentences for which the best configuration of the
aspect classifier (output of RQ1) can detect the existence of opinions. Indeed, when envision-
ing POME as a tool deployed to mine opinions and assign a polarity to them, our priority was
to identify the polarity analyzer implementation better suited for the sentences identified by
the aspect classifier as opinions, since the discarded ones are not shown to the POME user.

Study context for RQ3

To compare with OPINER [UK17c], we collected the opinions mined by the two tools for four
APIs including “springframework”, “glassfish.jersey”, “mongodb”, and “google.gwt”,
and asked developers and CS students to assess their accuracy. Those APIs are listed in
the top-ten “most reviewed APIs” in OPINER [UK] and were not used in the POME’s pattern
definition nor in RQ1 and RQ2. Once the best aspect classifier (RQ1) and polarity analyzer
(RQ2) were identified, we ran POME on the Stack Overflow data dump to identify opinionated
sentences related to the four APIs, collecting in total 205 opinions.

To compare with OPINER we performed the following steps3. First, we collected the opin-
ions mined by OPINER for the subject APIs from the original implementation of the authors
[UK]. Second, we only considered the opinions mined by OPINER for the same APIs that
are related to the same aspects used in POME. Third, OPINER uses a set of heuristics to link
Stack Overflow sentences onto APIs. One of the heuristics it uses is the explicit mention of
the library in the sentence (similar to what we also do). Other heuristics focus on increas-
ing the number of collected opinions (i.e., higher recall) at the expense of precision. For
example, the “same conversation association” links an opinionated sentence to the nearest
library mentioned in a Stack Overflow conversation. Since in RQ3 we evaluate the precision
of the mined opinions, we did not want to penalize OPINER by considering for POME sen-
tences linked with an approach designed to ensure high precision (like the one implemented
in our fine-grained linker) and for OPINER sentences linked with heuristics possibly introduc-
ing imprecisions. Therefore, among all opinionated sentences mined by OPINER, we only
considered those explicitly mentioning the subject library. Finally, since OPINER identified
more sentences than POME, we tried to balance the number of sentences to be evaluated by
participants for the two tools: if the number of sentences identified by OPINER for a spe-
cific aspect was lower or equal than 10, we kept all sentences related to that aspect. This
applied to community, compatibility, and performance. Otherwise, for a given aspect Ai , we
compute the percentage pAi

of sentences identified by OPINER for Ai (e.g., if 10 out of 100
overall opinions mined by OPINER are related to Ai , then such a percentage is 10%). Then,
we randomly select pAi

× npome, where npome is the total number of opinions identified by
POME, among those identified by OPINER for Ai .

3The comparison was conducted in May 2018.

54 Mining Opinions from Q&A Sites to Support Software Design Decisions

We invited 11 developers, 12 Computer Science (CS) students (BSc, MSc, PhD), and 1
postdoc to evaluate the accuracy of the opinions mined by POME and by OPINER for the sub-
ject APIs. Participants had an average of 7.5 years of Java development (median=6). Each
participant was asked to use a Web app to label the aspect and sentiment polarity (posi-
tive, neutral, negative) expressed in the sentences. While the tools automatically classify the
sentiment polarity into positive or negative, we gave to the annotators the option to select
neutral, to identify false positives in the sentiment identification. The sentences were ran-
domly selected from the considered APIs, and shown in random order. Participants were not
aware that the opinions were extracted from different tools to avoid any type of bias. Each
sentence was labeled by two participants, and participants were required to label at least 30
sentences. On average, participants labeled 48.5 sentences (median=36).

Each sentence was firstly labeled by two participants. If two participants did not agree
with each other on either aspect or sentiment, a third participant would be asked to solve
conflicts related to the aspect classification and to the sentiment polarity again through the
Web app. For 18 sentences identified by OPINER, the participants solving the conflict were
not able to assign an aspect/sentiment with a high confidence. Thus, we preferred to exclude
these 18 sentences from our dataset, as they are characterized by a high degree of subjectivity
(three humans were not able to agree on the aspect and or sentiment polarity). The final
number of opinions evaluated in RQ3 for each tool is reported in Table 4.5.

4.3.3 Data Analysis

To answer RQ1 we compare the precision and recall of each experimented approach in clas-
sifying sentences (as belonging or not to one of the seven aspects) for the dataset of 1,662
sentences. To answer RQ2 we compare the precision and recall of the sentiment analysis
classification performed by the pattern matching approach and the six sentiment analysis
tools. To answer RQ3 we compare the precision of the opinions mined by POME and OPINER

both in terms of aspects they identify and sentiment assigned to the opinions. We report
the percentage of correctly identified aspects and sentiment for both tools. To compare the
precision of POME and OPINER we use Fisher’s exact test [Fis22], which statistically com-
pare proportions. Since we perform multiple comparisons (one for each aspect) we adjust
p-values using Holm’s correction [Hol79]. We also report, for the overall dataset, the Odds
Ratio (OR) i.e., the ratio between the chance (odd) POME has to correctly classify aspect and
sentiment v.s. odd achieved by OPINER.

4.4 Results Discussion

RQ1: How does a rule-based aspect classifier for Stack Overflow perform, compared
to machine learning approaches? Table 4.6 reports the precision and recall in detecting
each of the seven quality aspects discussed in API-related sentences. Table 4.6 compares
the performance obtained using the pattern matching approach (bottom row) and the best
performing machine learner, i.e., LINEARSVM. We show the results when using SMOTE to
balance the training set, since it ensured a boost in performance. Also, we do not show the

4.4 Results Discussion 55

Table 4.6. Performance of the best Machine Learning approach using seven different set of features
and the Pattern matching approach.

(a) Performance for the aspects “community”, “compatibility”, and “documentation”.

Community Compatibility Documentation
Pr Rc Pr Rc Pr Rc

BOW-only 0.00 0.00 0.39 0.10 0.21 0.71
BOW+n-grams 0.00 0.00 0.38 0.07 0.34 0.45
patterns-only 0.00 0.00 0.75 0.12 1.00 0.21
BOW+patterns 0.00 0.00 0.76 0.30 0.60 0.36
n-grams+patterns 0.00 0.00 0.75 0.12 1.00 0.21
BOW+n-grams+patterns 0.00 0.00 0.87 0.27 1.00 0.24
Patternd matching 1.00 0.20 0.86 0.33 0.95 0.44

(b) Performance for the aspects “functional”, “performance”, “reliability”, and “usability”.

Functional Performance Reliability Usability
Pr Rc Pr Rc Pr Rc Pr Rc

BOW-only 0.33 0.03 0.75 0.10 0.21 0.09 0.88 0.08
BOW+n-grams 0.26 0.11 0.67 0.07 1.00 0.02 1.00 0.08
patterns-only 0.63 0.10 1.00 0.37 0.00 0.00 1.00 0.13
BOW+patterns 0.66 0.16 1.00 0.37 0.00 0.00 1.00 0.13
n-grams+patterns 0.63 0.10 1.00 0.37 0.00 0.00 1.00 0.13
BOW+n-grams+patterns 0.63 0.13 1.00 0.37 0.00 0.00 1.00 0.13
Pattern matching 0.61 0.30 1.00 0.40 0.78 0.13 1.00 0.32

results when using n-grams only, as this approach obtained poor accuracy. The complete
results including all machine learning approaches are in the replication package [LZB+a].

While a reasonable recall is useful to get enough recommendations, in the context of
opinion mining a high precision is preferable to avoid misleading recommendations.

Using BOW for training the machine learner guarantees a relatively high precision for
two of the seven quality aspects, namely usability (0.88) and performance (0.75), with a re-
call floating around 0.10. Adding n-grams does not significantly improve the performance
of POME with respect to BOW-only. The only exception is for reliability for which the LIN-
EARSVM is able to reach a precision equals to 1, but with a very low recall (0.02). The limited
contribution of n-grams is in line with the findings of Uddin and Khomh [UK17a].

When patterns are included as features (from the third to the sixth rows in Table 4.6),
the performance substantially improves, especially for precision. Training the LINEARSVM
with patterns only is sufficient to obtain the similar performance ensured by the combination
of all features (BOW+n-grams+patterns). This confirms the pivotal role of patterns in the
classification.

Finally, the last row of Table 4.6 reports results obtained using the patterns as rules (i.e.,
plain pattern matching) without any learning algorithm. The precision for all aspect cate-
gories is comparable to the one obtained using patterns as features for training LINEARSVM,

56 Mining Opinions from Q&A Sites to Support Software Design Decisions

Table 4.7. Evaluation results for sentiment analysis tools.

Tool # correct
Positive
precision

Positive
recall

Negative
precision

Negative
recall

SentiStrength 48 0.73 0.23 0.35 0.34
SentiStrength-SE 11 0.78 0.05 0.44 0.09
NLTK 30 0.83 0.17 0.67 0.14
SentiCR 8 0.00 0.00 0.80 0.18
Senti4SD 21 0.72 0.09 0.57 0.18
Stanford CoreNLP 63 1.00 0.15 0.29 0.93
Pattern matching 166 0.92 0.99 0.94 0.73

with the exception that other approaches failed to detect sentences with community aspect.
It is worth noting that the recall is significantly higher. The approach using pattern-matching
is able to obtain, for each quality aspect, a precision varying in the range [0.61-1.00] with
a recall varying in [0.13-0.44]. The API-related sentences belonging to documentation or
performance are the ones better identified in terms of both precision (0.95 and 1.00) and
recall (0.44 and 0.40). For both reliability and community, the precision is high (0.78 and
1.00, respectively) with a low recall (0.13 and 0.20).

Given the above results, our decision was to implement the aspect classifier of POME

using the pattern matching approach, given its simplicity and performance.
RQ2: How does the rule-based polarity analyzer perform, compared to state-of-the-

art sentiment analysis tools? To answer RQ2, we use the 186 API-related sentences identi-
fied as containing opinions when running the implementation of the aspect classifier chosen
in RQ1. Table 4.7 reports the precision and recall, of (i) six state-of-the-art sentiment analysis
tools and (ii) the pattern-based approach, in identifying the sentiment expressed in the sen-
tences. As also highlighted in previous literature [LZB+18], sentiment analysis tools show
poor performance in identifying the sentiment (positive or negative) reported in SE datasets.
Our results tend to confirm the above statement and, most importantly, underline how the
pattern-based approach outperforms the state-of-the-art tools for both positive and negative
opinions. This is expected since (i) the patterns have been properly determined looking
at API-related sentences mined from Stack Overflow, and (ii) the sentences considered for
evaluation have been selected using the approach that verifies the presence of at least one
of the 157 patterns. Specifically, for both positive and negative opinions, the pattern-based
approach has a precision ≥ 0.90. The recall is higher for positive opinions than for negative
ones (0.99 and 0.64 respectively).

To sum up, the pattern-based approach has good performance in terms of both precision
and recall, while for sentiment analysis tools a high precision comes at the expense of low
recall. The only exception to this trend is STANDFORD CORENLP that, however, exhibit a very
low precision for the negative opinions. Looking more in-depth at the low recall of sentiment
analysis tools, it is possible to state that the big challenge resides in the presence of many
sentences wrongly classified as neutral.

4.4 Results Discussion 57

Table 4.8. Precision for POME and OPINER in aspect & sentiment prediction.

Predicted aspect
Aspect prediction Sentiment prediction
POME OPINER POME OPINER

Community 1.00 0.00 1.00 0.50
Compatibility 0.36 0.33 0.45 0.33
Documentation 0.75 0.54 0.69 0.54
Functional 0.75 0.16 0.76 0.16
Performance 0.79 0.58 0.68 0.43
Reliability 0.57 0.46 0.57 0.42
Usability 0.67 0.24 0.78 0.41

Overall 0.72 0.28 0.73 0.38

As an example, when a sentence clearly reports that the API provides some useful features
(“the Commons Configuration project from Apache will do the job; it will allow you to write
and read Properties files”) the pattern-based approach is able to correctly identify it as a
positive opinion, while all the sentiment polarity analysis tools label it as neutral. The same
happens for the sentence “as already stated above there is a compatibility issue with mockito-
all”, in which the pattern-based approach is able to recognize the presence of a negative
feeling from the compatibility point of view, while the sentiment analysis tools classify the
sentence as neutral. Note that this is a limitation of these tools in the specific context in
which we are using them. However, this does not mean that they do not achieve satisfactory
performance when assessing the sentiment polarity in other contexts (e.g., users’ happiness
on Stack Overflow).

Given the above results, in POME we rely on the pattern-matching approach to identify
sentiment polarity, rather than using existing sentiment analysis tools.

RQ3 How does POME perform compared to OPINER, a state-of-the-art tool for mining
opinions from Stack Overflow? To answer RQ3, we compare the results of both aspect de-
tection and sentiment analysis achieved by POME and OPINER on the sentences they extracted
from Stack Overflow.

Results shown in Table 4.8 indicate that POME achieves an overall better precision. That
is, when POME identifies an aspect from a discussion, the chance of it being correct is higher
than that identified by OPINER (0.72 vs 0.28).

According to Fisher’s exact test, the difference is statistically significant (p-value< 0.001)
with an OR=6.6, i.e., POME has 6.6 times more chances of providing a correct aspect clas-
sification than OPINER. The same trend holds for each aspect except “compatibility", where
both OPINER and POME exhibit low performance. One example of misclassification by POME

in this category is “it did not work for me with my spring-boot version”, classified by POME as
compatibility-related (due to the pattern “did not work [...] [proper noun] version”). The
study participants labeled the sentence as not reporting any opinion, probably because it is
not clear whether the problem experienced by the user is an actual compatibility issue (as
opposed, e.g., to a misuse of the API by the user).

58 Mining Opinions from Q&A Sites to Support Software Design Decisions

POME significantly outperforms OPINER when identifying opinions related to “usability"
and “functional" aspects, with the Fisher’s exact test indicating that differences are statisti-
cally significant (adjusted p-value< 0.001). In other cases differences are not statistically
significant on single categories because of the small number of samples. However, the ORs
are always in favor of POME, ranging from 1.1 for “compatibility" to 16.0 for “functional". We
can conclude that POME performs better than OPINER in aspect identification. Since for most
aspects POME can achieve a precision greater than 0.6, we can say that the opinions mined
by POME are generally reliable, considering that a random assignment of aspect would result
in a precision of 1/8 (0.125).

We qualitatively discuss some examples related to functional-related sentences, in which
POME obtains a 0.75 precision as compared to the 0.16 achieved by OPINER. Examples of
sentences correctly classified in this aspect by POME are “you can do most of this config us-
ing application.properties if you are using spring-boot”, and “the Guava library has an Order-
ing.greatestOf method that returns the greatest K elements from an Iterable [...]”. Concerning
the misclassifications related to the functional aspects, one of the POME’s patterns causing
false positives is “[with|use] [library] [pronoun] [helping verb] [verb]” (see [LZB+a] for an
explanation of this pattern) that matches, for example, the sentence “if you are using mongo-
java-driver then you can have a look at this SO answer”. This pattern was responsible for 7
out of the 33 false positives in the functional aspect. However, it also helped in identifying 8
true positives, thus posing the usual recall vs precision dilemma. As for OPINER, its precision
in identifying opinions about functional aspects is quite low. The misclassifications include
“I am working on a jersey web service” and “an important architectural difference is that GWT-
RPC operates at a more functional level”. Probably, this is due to the features (words) used
by the machine learner to classify the aspects. Indeed, “service” and “functional” are likely
to be keywords characterizing feature-related sentences.

When comparing the results of sentiment prediction, POME almost doubles the precision
of OPINER (0.73 vs 0.38), and performs better in all categories. Fisher’s exact test indicates
that the observed differences are, again, statistically significant for “functional" and “usabil-
ity" (adjusted p-value< 0.001 in both cases). In other cases the test did not report significant
differences, again because of the limited number of samples. The ORs are always in favor of
POME, ranging from 1.6 of “compatibility" to 16.7 of “functional". On the overall dataset, we
have a statistically significant difference (p-value< 0.001) and an OR=4.3, i.e., POME has
four times more chances of OPINER in indicating the correct sentiment polarity. Also for what
concerns the sentiment prediction the strongest difference between the two approaches is
observed in the functional-related sentences. Since we already discussed this category for
the aspect identification, we focus our qualitative analysis on the compatibility-related sen-
tences, the ones exhibiting the smaller difference in sentiment prediction precision among
the two approaches (0.45 vs 0.33). Here, the POME’s misclassifications are mostly due to
the wrong handling of negations, often caused by misspelling/typing issues. For example,
POME misclassifies as positive the sentiment of the sentence “the problem is that FrameLay-
out.LayoutParams constructor doesn`t support another FrameLayout as a parameter until the
api 19.” due to the use of the backtick instead of an apostrophe, which caused the negation
handling failure. Other examples are typos like “cann’t” instead of “can’t”. Integrating a spell

4.5 Threats to Validity 59

checker could solve the problem, although it must cope with having source code words not
being correct English words.

Concerning OPINER, the main problem is represented by sentences considered by the
participants as do not actually reporting an opinion and, thus, being neutral in terms of
sentiment while classified as positive/negative by the tool. This is the case for “BTW, I’m
working with Spring MVC”, classified as a positive compatibility sentence by OPINER and as
non-opinionated by participants.

Despite the better results achieved by POME, OPINER identifies a higher number of
opinions for these APIs (4 times higher than that identified by POME), thus very likely
exhibiting a higher recall. POME has been designed to favor precision over recall, and in
RQ3 we are only focusing on the precision of the mined opinions, since assessing the recall
would require the analysis of the entire Stack Overflow. The precision reported in RQ3 is
not as high as for the other RQs. This might depend on the specific dataset and/or on whom
performed the labeling. The datasets used in the previous RQs have been created by the
authors, having a deeper knowledge of the problem. Also, they discussed cases where there
was a disagreement, while this did not happen for RQ3 participants. Although instructions
were given for evaluators of RQ3, the annotation task remains highly subjective. In spite of
these concerns, POME advances the current state-of-the-art in aspect and sentiment identifi-
cation. Also, the difficulty annotators had in their task highlights once more that grasping
API opinions from Stack Overflow sentences is not an easy task, and therefore recommenders
such as POME and OPINER are valuable.

4.5 Threats to Validity

Construct validity. This affects the creation of the labeled dataset used in RQ1 and RQ2. The
threat has been mitigated by having multiple evaluators classifying aspects and sentiments.
As for the slightly modified approach by Treude and Robillard [TR16], we manually validated
all the sentences extracted with the fourth regular expressions introduced by us in order to
discriminate between sentences referring to APIs. Among the 10,481 sentences extracted
by our Fine-grained linker, 360 have been identified using the fourth rule in Table 4.1. One
evaluator manually analyzed all of them, classifying 74% of the sentences correctly linked
to the API [LZB+a].

Internal validity. It is possible that a different calibration of the machine learners produce
better results. Therefore, results reported in Table 4.6 and Table 4.5 represent a lower-bound
for the different configurations of POME.

Conclusion validity. Where needed we supported our claims through appropriate sta-
tistical procedures. As for the aspect-specific comparison, it is possible that Type-II errors
occurred (failed to reject hypothesis due to limited sample), however we showed how the
differences were statistically significant on the overall dataset.

External validity. While we have validated POME, and compared it with OPINER, on un-
seen data, it is possible that a different dataset would exhibit different results. Also, another
dataset could exhibit different distributions of the identified aspects, and, possibly, further
aspects we did not consider. However, this still makes the approach applicable, possibly

60 Mining Opinions from Q&A Sites to Support Software Design Decisions

by augmenting the set of identified patterns. POME is suitable for popular APIs, due to the
large availability of opinions to mine. However, this applies to any recommender based on
(historical) data mining.

4.6 Conclusion

Given the fact that existing approaches as well as their customized versions cannot achieve
satisfactory performance in identifying sentiment polarity in software related data, we pro-
pose POME, an approach that leverages natural language parsing and pattern-matching to
determine their polarity (positive vs negative). At the same time, POME also classifies Stack
Overflow sentences referring to APIs according to seven aspects (e.g., performance, usabil-
ity). Our empirical studies indicate that POME can achieve a high accuracy in identifying
both quality aspects and sentiment polarity. POME also outperforms a state-of-the-art tool
(OPINER [UK17c]). POME aids developers to quickly gain understandings of the overall qual-
ity, pros, and cons of APIs.

Our design and implementation of POME has successfully proved the possibility of mining
opinions from online resources to support software design decisions (i.e., choosing suitable
APIs). As opinions are embedded in many other kinds of sources, and they can be related to
many other development activities, our future work is given.

5
Conclusions and Future Work

We strongly believe that mining opinions from online resources can allow developers to
easily access peers’ expertise. By extracting knowledge from these opinions and convert it
into actionable items, we can facilitate software development activities.

We presented the current state of the art in opinion mining and their applications within
SE contexts. Meanwhile, we highlighted the limitations of current studies regarding the lack
of performance verification and the under-exploited value of opinion mining for software-
related tasks.

Given the fact that existing approaches often lead to unsatisfactory accuracy when ap-
plied to SE, in this dissertation, we first attempted to re-train the state-of-the-art technique
STANFORD CORENLP with software related data. The re-training was performed on a set
of 40k manually labeled sentences/ words extracted from Stack Overflow. Despite such an
effort- and time-consuming training process, the results were negative. That is, there was
no significant performance improvement for our customized version of STANFORD CORENLP.
We then temporarily changed our focus and performed a thorough investigation of the ac-
curacy of commonly used tools to identify the sentiment polarity of SE related texts. The
results showed that none of these state-of-the-art tools achieved a reliable assessment of the
sentiment polarities expressed in our manually labeled dataset. Meanwhile, we also studied
the impact of datasets on tool performance, and found that the performance varies on dif-
ferent datasets. Our study alarmed the research community about the strong limitations of
current sentiment polarity analysis tools.

Given these negative results achieved, we proposed another approach, Pattern-based
Opinion MinEr (POME), which leverages natural language parsing and pattern-matching to
classify not only sentiment polarity (positive v.s. negative), but also seven aspects related
to quality aspects of APIs (e.g., performance, usability). The patterns have been inferred by
manually analyzing 4,346 sentences from Stack Overflow linked to a total of 30 APIs. Based
on this approach, we have investigated how online resources can be leveraged to help devel-
opers take decisions during software implementation. More specifically, we implemented a
rationale-based software API recommender system, which takes as input the textual descrip-
tion of a certain functionality and recommends to developers suitable APIs with rationales
(i.e., what the pros and cons are to adopt a specific API).

61

62 Conclusions and Future Work

We evaluated POME by (i) comparing our pattern-matching approach with machine learn-
ers leveraging the patterns themselves as well as n-grams extracted from Stack Overflow
posts; (ii) assessing the ability of POME to detect the polarity of sentences, as compared to
sentiment analysis tools; (iii) comparing POME with the state-of-the-art Stack Overflow opin-
ion mining approach, OPINER, through a study involving 24 human evaluators. Our study
showed that POME exhibits a higher precision than a state-of-the-art technique (OPINER), in
terms of both opinion aspect identification and polarity assessment.

Given the high accuracy achieved by POME, we demonstrated the possibility of mining
opinions from Q&A sites to assist developers in decision making when they need to compare
and choose APIs for completing programming tasks.

5.1 Limitations

While we have achieved promising results for mining opinions from online discussions to
support software design decisions, we foresee several limitations of our study, mainly con-
cerning four aspects: 1) the customization of STANFORD CORENLP can be further improved;
2) the performance of our proposed approach POME can be further improved, especially the
recall; 3) we only leveraged the discussions on Stack Overflow, while there are much more
data available online; and 4) we only focused on mining opinions to support design deci-
sions, while there are many other software development activities where opinion mining can
be beneficial.

5.1.1 Customization of Stanford CoreNLP

In our study, we labeled 1,500 Stack Overflow sentences and their 20k internal nodes to
customize STANFORD CORENLP. For RNN-based approach, we would expect that if we feed
in more reliable labeled data, the performance can be improved.

5.1.2 Performance Improvement of pome

Although our proposed approach POME achieved a high precision, the recall was still not
comparably promising. For popular APIs, this might not be a big issue, as there are abun-
dant opinions available online. However, for APIs which are not widely discussed, failing
to extract relevant information might significantly reduce the usefulness of our approach.
Therefore, more effort should be devoted to further improving the performance of the cur-
rent opinion mining techniques.

5.1.3 Various Available Data Online

In our study, we mainly focused on leveraging discussions on Stack Overflow. In fact, devel-
opers share their opinions and knowledge in various communication channels under modern
software development practices, such as email lists, IRC, and GitHub. Scarce relevant discus-
sions can also be found on social media for general purposes, such as Twitter and Facebook.

5.2 Future Work 63

However, to maximize the value of all these data, there are still some open challenges
to address. First, the linking between different information sources might be missing and
needs to be re-discovered. For example, when developers try to find a solution to fix an
issue raised on issue tracking systems, they might ask for help on Stack Overflow. How to
link the questions on Stack Overflow back to the issues is not trivial. Second, these online
communication channels might have very different structures, which requires researchers
designing specific approaches for each information source, resulting in a substantial effort.

5.1.4 Opinion Mining in Different Software Development Activities

In our study, we mainly discussed how to support software design decisions using opinion
mining. In fact, the opinions online can also assist in many different software development
activities, with some of them illustrated in Section 2.3.

5.2 Future Work

Given the limitations of our study, we foresee the following directions as our future work.

5.2.1 Improvement of Opinion Mining Techniques

To improve the performance of opinion mining techniques, there are several directions we
can potentially investigate:

1. Addressing the ambiguity of technical terms. As discussed before, one major reason of
the unsatisfactory performance of opinion mining techniques is that these approaches
can often “misunderstand” the technical terms. This concerns two aspects. First,
proper nouns such as API names may hinder the correct interpretation of part-of-
speech. For example, “Spark”, a well known cluster-computing framework, is often
parsed as a verb, especially when it is not correctly capitalized. Second, the same
term might have different sentiment in different contexts. For instance, the word “is-
sue” is considered expressing neutral sentiment in the sentence “This issue report is
well-written”, while it can also express negative sentiment in sentences like “This is
definitely an issue”. One possible solution is to leverage domain specific vocabularies
and to consider the grammatical position of the technical terms at the same time.

2. Training or tuning the approach with more data. When we train or tune our approach,
the more reliable data we feed in, the better performance we can achieve. While it is
an expensive process to manually label the data, we believe the benefits it brings can
justify these efforts. At the same time, it is worth investigating whether incorporating
data from other relevant domains to the training set can contribute to performance
improvement.

64 Conclusions and Future Work

5.2.2 Support for Different Software Development Activities

While opinion mining can be applied to various types of software development activities,
below we give two examples related to software maintenance and documentation.

Opinion Mining in Software Maintenance

In online Q&A websites like Stack Overflow, developers often suggest several different so-
lutions to an implementation related question. In these solutions, developers sometimes
provide not only their preferences based on personal experience, but also concrete tests and
experiments. This information can be leveraged to help developers refactor their own imple-
mentation by replacing it with a more efficient one verified by other developers. In a more
practical scenario, we can foresee an intelligent IDE able to indicate which parts of source
code can be refactored by mining opinions on similar code from Stack Overflow.

The challenges for this research direction mainly come from two aspects: 1) the discus-
sion often involves several different entities (e.g., implementation approaches) at the same
time, and it is not trivial to extract the corresponding pieces of information for each entity;
2) the dimensions involved can be much wider and more fine-grained than the aspects we
have identified in our previous work POME.

Opinion Mining in Software Documentation

Another interesting direction to investigate is mining opinions to support software docu-
mentation. Since developers usually have limited time to complete software components
and they are often unwilling to document their code, lots of software projects lack proper
documentation, which results in difficulties when maintaining existing code. If we can mine
developers’ internal discussions to automatically generate or augment software documenta-
tion, it will be valuable for maintainers to better and more quickly understand the software
systems.

Indeed, it is common for developers to reason about their implementation on commu-
nication channels to get their code changes accepted. This makes it possible to extract the
rationale behind developers’ code implementation, and injects it in the documentation. This
problem is not trivial due to several factors: 1) discussions might be long, 2) several de-
velopers might voice their opinions, 3) and some opinions may not be adopted in the end.
Therefore, it is necessary to accurately retrieve the relevant piece of information and sum-
marize it.

5.3 Closing Words

In this dissertation, we showed that mining opinions from online discussions can efficiently
support design decisions during software development. We highlighted the intrinsic problem
regarding the accuracy of current state-of-the-art opinion mining tools, and the necessity of
carefully verifying the performance of opinion mining techniques when applying them in the
SE domain. We also pointed out that simply customizing existing opinion mining approaches

5.3 Closing Words 65

with software related data does not necessarily guarantee performance improvement. In
fact, there are no universally reliable opinion mining tools for SE tasks. Instead, when re-
searchers attempt to choose the tool to mine opinions from software related texts, they will
sometimes need to re-design or customize an approach exclusively for that specific task.

We urge that researchers should think twice when using off-the-shelf opinion mining
tools designed outside the SE field. While this increases the difficulty of conducting relevant
studies, this extra effort of understanding and tailoring methodologies can advance our field.
Indeed, given the vast amount of valuable information online and the potential benefits
developers might receive from that, the hard work will eventually pay off.

66 Conclusions and Future Work

Appendices

A
On the Uniqueness of Code Redundancies

Code redundancy widely occurs in software projects. Researchers have investigated the ex-
istence, causes, and impacts of code redundancy, showing that it can be put to good use,
for example in the context of code completion. When analyzing source code redundancy,
previous studies considered software projects as sequences of tokens, neglecting the role of
the syntactic structures enforced by programming languages. However, differences in the
redundancy of such structures may jeopardize the performance of applications leveraging
code redundancy.

We present a study of the redundancy of several types of code constructs in a large-scale
dataset of active Java projects mined from GitHub, unveiling that redundancy is not uniform
and mainly resides in specific code constructs. We further investigate the implications of
the locality of redundancy by analyzing the performance of language models when applied
to code completion. Our study discloses the perils of exploiting code redundancy without
taking into account its strong locality in specific code constructs.

This study is based on the following publication [LPM+17]:

On the Uniqueness of Code Redundancies

Bin Lin, Luca Ponzanelli, Andrea Mocci, Gabriele Bavota, Michele Lanza. In Proceedings of the 25th
International Conference on Program Comprehension (ICPC 2017) – Technical Research Track, pp. 121–
131, 2017

69

70 On the Uniqueness of Code Redundancies

A.1 Introduction

Code redundancy, namely identical parts of code occurring multiple times, is common in
software projects [DRD99], and manifests itself in different forms. At a coarse-grained level,
developers may explicitly duplicate code snippets with different intentions, for example to
break through given programming language limitations, or to construct reusable coding tem-
plates [KBLN04]. While literature often suggests that this kind of redundant code, called
code clones, is to be avoided as it can lead to code bloat, not all code redundancies are
harmful [KG06a]. Moreover, numerous practical applications leveraging code redundancy
have been implemented for different purposes, such as locating bugs [LLMZ06], support-
ing refactoring operations [BMD+00], detecting plagiarism [BTZ07], and supporting code
completion [HBS+12].

A particular kind of redundancy, considering code at the token level, has been the subject
of recent studies, and proven to be effective for numerous applications. To understand how
redundant software is, at the token level, Gabel and Su [GS10] fragmented source code
into fixed-length sequences (i.e., token-level n-grams) and measured uniqueness of software
by quantifying the sequence redundancy. The authors examined 6,000 projects and found
that software is highly repetitive when the sequences are short, e.g., given sequences of six
tokens, more than half of the code is redundant. Also, Tu et al. [TSD14] reported on the
localness of software, showing that code exhibits repetitive forms in local contexts at the file
level, i.e., repetitions of a specific n-gram localized in few files.

Hindle et al. [HBS+12] showed that source code is “natural”, which means it is highly
repetitive and predictable, even more than natural language.

This does not come as surprise: Unlike natural language, programming languages are
more constrained by syntax, and these constraints are likely to correlate with repetitiveness.
Moreover, Ray et al. [RHG+16] studied a large set of bug fix commits from 10 Java projects,
and investigated the relationship between buggy code and code “naturalness”. As a result,
they found that buggy code is less “natural”.

However, some constructs (e.g., method and class declarations) are more constrained
than others (e.g., sequences of method calls) and thus one might wonder if every part of
the source code is equally redundant. Currently, there is no detailed analysis regarding this
particular matter. Understanding where code redundancy resides is important as it might
improve the performance of applications that leverage code redundancy.

Hindle et al. [HBS+12] developed a simple code completion engine for Java based on
an n-gram language model and examined their engine on five Apache projects: Ant, Maven,
Log4J, Xalan, and Xerces. For each project, they trained a trigram model from the corpus
of the tokenized source code, and used two tokens to predict the next token. They com-
bined this approach with the default Eclipse code recommendation engine, and the results
suggested that an n-gram language model can effectively improve the performance of the
recommendation engine. Since different parts of source code might have different levels of
redundancy, we are interested in investigating whether the n-gram model based completion
performs equally well in different parts of code, from which we can further infer whether
unevenly distributed redundant code impacts the applications leveraging code redundancy.

A.2 Study Context 71

We address this problem with two different studies performed on a large-scale dataset
composed of 2,640 Java project repositories. First, we analyze the overall redundancy rate of
the source code and then compare it with the redundancy rates of 12 source code constructs
(e.g.,import and class declarations, catch blocks, etc.). Our results suggest that although
code redundancy is common in software, it is very localized in specific code constructs (e.g.,
in package declarations). Then, we explore the influence of the significantly different code
redundancy rates observed for the code constructs on the performance of the language model
based code completion. We find that while the language model is very accurate when recom-
mending code tokens belonging to typically redundant constructs, its performance strongly
decreases when suggesting tokens related to poorly redundant code constructs. In essence,
our findings highlight the importance of considering the strong locality of code redundancy
when exploiting it.

Structure of the Chapter

We describe our problem context in Section A.2. Section A.3 explores the redundancy of
different code constructs, and Section A.4 focuses on an application, i.e., the language model
based code completion, to analyze the impact of the unequal code redundancy. We discuss
the threats that affect the validity of our studies in Section A.5. Finally, Section A.6 illustrates
the related work and Section A.7 outlines the conclusions.

A.2 Study Context

Table A.1 summarizes the dataset used for our studies.

Table A.1. Dataset Statistics

Overall Per project
Mean Median St. deviation

Java files 1,461,290 554 237 1,123
Tokens 1,079,112,838 4,087,549 152,873 970,681

ELOC 146,886,573 55,639 20,892 125,762
Forks 314,594 119 25 412
Stars 864,227 327 50 1,194

% Java code - 91.5 92.4 5.6

The study context consists of 2,640 open source Java projects hosted on GitHub, mined
on Nov 21, 2016 using the following constraints:

• Programming language. Projects need to have at least 80% of their effective lines
of code (ELOC, lines of code without comments and empty lines) [DRD99] written in
Java. Java is the reference language for the infrastructure used in this study.

• Activity level. To exclude inactive projects, they need to have at least one commit in
the three months preceding the data collection.

72 On the Uniqueness of Code Redundancies

• Popularity. The number of forks1 and stars2 of a repository are two proxies for its
popularity on GitHub. Forking a repository means getting a copy of the repository
to implement changes not affecting the original project. Starring a repository allows
GitHub users to express their appreciation for the project. Projects with less than
ten stars and no forks are excluded from the dataset, to avoid the inclusion of likely
irrelevant projects.

• Size. Projects must have at least 50 files and 5,000 ELOC. Again, the goal is to filter
out irrelevant projects.

2,714 projects satisfy these constraints. We removed 74 projects that could not be cor-
rectly parsed by the tools we use (e.g., ANTLR, SRCML). Table A.1 reports descriptive statis-
tics for size and popularity of the selected projects, showing a high degree of diversity of
the dataset in terms of both these attributes. The complete list of projects considered in the
studies is available in our replication package[LPM+].

A.3 Study I: Source Code Redundancy

The goal of the study is to assess to what extent source code is redundant both when consider-
ing it as a whole (i.e., the complete code base of a software project) as well as when focusing
on specific code constructs (e.g., when considering import declarations). The context of the
study consists of the 2,640 Java projects detailed in Section A.2. While previous research
already investigated the source code redundancy phenomenon [GS10, HBS+12, AS14], to
the best of our knowledge there are no studies (i) run on such a scale3, and (ii) analyzing
the redundancy rate of different code constructs.

A.3.1 Research Questions

We aim at answering the following research questions (RQ):
RQ1: How redundant is source code? This RQ aims at assessing to what extent source

code is redundant. In the context of RQ1 we analyze the code redundancy when considering
the complete code base of a software project. RQ1 will corroborate/confute the findings
of previous studies reporting the high redundancy of source code [GS10, HBS+12, AS14].
Moreover, the results of RQ1 serve as a reference for RQ2, in which we assess the redundancy
rate of different code constructs.

RQ2: To what extent are different code constructs redundant? This RQ sheds light on the
redundancy rate of different code constructs, missing in the current literature. Knowing the
redundancy rate of different constructs is necessary to design techniques and tools assuming
the high repetitiveness of code, e.g., language models supporting code completion [HBS+12].

1https://help.github.com/articles/fork-a-repo/
2https://help.github.com/articles/about-stars/
3The study by Gabel and Su [GS10] is run on 6,000 projects. However, they sample a limited number of

tokens (∼1,500) from each project, while we analyze all tokens from each project (on average, 432,290 tokens
per project).

https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/about-stars/

A.3 Study I: Source Code Redundancy 73

While these techniques work fairly well in general, they might perform poorly when dealing
with specific parts of the code being always unique or rarely repetitive.

A.3.2 Data Extraction

To answer our research questions and measure code redundancy we adopt a methodology
similar to the one used by Gabel and Su [GS10]. In particular, for each project Pi in our
dataset, we perform the following steps:

Code sequencing. We tokenize the Pi ’s source code and extract tokens’ sequences of
length l (i.e., token-level l-grams). The sequences extraction is performed in each Pi ’s Java
file starting from its first token (e.g.,package) and using a sliding window of length l advanc-
ing at steps of one token. For example, assuming l = 9, from the code statement for(i=0;
i<n; i++) the following sequences are extracted: “for(i=0; i<n”, “(i=0; i<n;”, “i=0;
i<n; i”, “=0; i<n; i++”, “0; i<n; i++)”. We analyze code redundancy for sequences of
different lengths by varying l from 3 to 60 in steps of 3 (i.e., 3, 6, 9, etc.). This process
resulted in the extraction of over 1 billion tokens and around 1 billion sequences. Also, we
tokenize each sequence at two different abstraction levels: no abstraction and token type
only. For the no abstraction approach, the sequence if (a > b) is tokenized into the list
of tokens “if, (, a, >, b,)”. For token types only, the same sequence is tokenized into a
list of lexical classes “IF, LB (left bracket), ID (identifier), GT (greater than), ID, RB (right
bracket)”. Token types are generated with ANTLR4 [Par13].

Sequence redundancy detection. We mark each of the extracted sequences as either
“redundant” (i.e., there exists at least one repetition of the sequence in Pi) or “not redundant”
(i.e., the sequence is unique in Pi). Differently from Gabel and Su [GS10], we look at code
redundancy within the scope of each single project: We do not consider a sequence s j ∈ Pi
as redundant if it also appears in another project Pk. This choice is dictated by the fact that
some “practical” applications of code redundancy make more sense when only considering
the code from a single project.

For example, regarding the language model used to support code completion [HBS+12],
the authors built a different model for each system. This is needed as each project has its own
domain and thus its own vocabulary. Since in our second study we investigate if and how
the differences in the redundancy rate of different code constructs impact the performance
of such techniques, we decided to focus on the code redundancy within each single project.

Linking tokens to code constructs. To address RQ2 we need to identify the code con-
struct to whom the analyzed tokens belong. To this aim, we parse the source code by relying
on the SRCML infrastructure [CDM13] and assign each token to one of the twelve code con-
structs listed in Table A.2 (in bold the tokens belonging to the specific code construct). We
extract matched code constructs without considering whether they contain other constructs
or not. For example, the code sequence “for(int i=0; i<n; i++)” is classified as a “for
control” construct, although it contains a variable declaration “int i=0;”.

While other code constructs could be extracted, we maintain that the number and di-
versity of constructs considered in our study to be sufficient to observe differences in the
redundancy rate of different parts of the source code.

74 On the Uniqueness of Code Redundancies

Table A.2. Identified code constructs

Construct Example
package package com.abc;

import import java.io.*;

if condition if(a == b) {. . .}
while condition while(a > n) {. . .}
for control for(int i=0; i<n; i++) {. . .}
class declaration class Square extends Shape

{. . .}
method declaration public int getX {. . .}
method call System.out.println("Hello!");

method body public int getX { return x;

}
variable declaration int x = 0;

catch parameter catch (Exception e) {. . .}
catch block catch (Exception e) {break;}

A.3.3 Data Analysis

We answer RQ1 by reporting box plots depicting the redundancy rate of tokens belonging to
sequences (i) tokenized by using both the no abstraction and the token type only representa-
tion and (ii) having different lengths l. The redundancy rate is computed as the number of
tokens belonging to sequences marked as “redundant” divided by the total number of tokens
in the analyzed sequences [GS10].

To answer RQ2, we compare via box plots the redundancy rate of tokens belonging to
different code constructs. We also statistically compare the redundancy rate of the different
constructs by exploiting the Mann-Whitney test [Con99]with results intended as statistically
significant at α= 0.05.

To control the impact of multiple pairwise comparisons (e.g., the redundancy of tokens
belonging to the package construct is compared against the redundancy of tokens belonging
to the if condition, the while condition, etc.), we adjust p-values using the Holm’s correction
[Hol79]. We also estimate the magnitude of the differences by using the Cliff’s Delta (d),
a non-parametric effect size measure [GK05] for ordinal data. We follow well-established
guidelines to interpret the effect size: negligible for |d| < 0.10, small for 0.10 ≤ |d| < 0.33,
medium for 0.33≤ |d|< 0.474, and large for |d| ≥ 0.474 [GK05].

A.3.4 Results

We discuss the achieved results according to the two RQs.
1) RQ1: How redundant is source code? Fig. A.1 shows the boxplots depicting the tokens’

redundancy rate for sequences having increasing lengths, both when no abstraction is used
as well as when considering only the token type.

A.3 Study I: Source Code Redundancy 75

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
Sequence length

0.0

0.2

0.4

0.6

0.8

1.0

Re
du

nd
an

cy
 ra

te

(a) no abstraction

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
Sequence length

0.0

0.2

0.4

0.6

0.8

1.0

Re
du

nd
an

cy
 ra

te

(b) token type only

Figure A.1. Redundancy rate for sequences having different lengths

The red square in each boxplot represents the mean value of the distribution. We draw
three main conclusions:

1. When considering the project’s code as a whole, source code is highly redundant.
For tokens belonging to sequences of length 3, the redundancy rate is very high, also
without abstraction (i.e., when considering exact copies of the 3 tokens), with a median
of 0.95. High redundancy rates (> 0.5) are generally observed for sequences of length
up to 15.

2. The longer the sequences the lower the redundancy rate. The trend depicted in
Fig. A.1 is clear, and highlights a sort of logarithmically decreasing function when
observing the median values of the boxplots from left (short sequences) to right (long
sequences).

This is to be expected, since it is much less likely to find duplications of long sequences
as compared to shorter ones.

3. When only considering the token type, the redundancy rate substantially in-
creases. Again, this is an expected results, considering the abstraction level intro-

76 On the Uniqueness of Code Redundancies

6 12 18 24 30 36 42 48 54 60
0.0

0.2

0.4

0.6

0.8

1.0
import

6 12 18 24 30 36 42 48 54 60
0.0

0.2

0.4

0.6

0.8

1.0
package

6 12 18 24 30 36 42 48 54 60
0.0

0.2

0.4

0.6

0.8

1.0
method body

6 12 18 24 30 36 42 48 54 60
0.0

0.2

0.4

0.6

0.8

1.0
if condition

6 12 18 24 30 36 42 48 54 60
0.0

0.2

0.4

0.6

0.8

1.0
while condition

6 12 18 24 30 36 42 48 54 60
0.0

0.2

0.4

0.6

0.8

1.0
for control

6 12 18 24 30 36 42 48 54 60
0.0

0.2

0.4

0.6

0.8

1.0
method declaration

6 12 18 24 30 36 42 48 54 60
0.0

0.2

0.4

0.6

0.8

1.0
class declaration

6 12 18 24 30 36 42 48 54 60
0.0

0.2

0.4

0.6

0.8

1.0
method call

6 12 18 24 30 36 42 48 54 60
0.0

0.2

0.4

0.6

0.8

1.0
catch block

6 12 18 24 30 36 42 48 54 60
0.0

0.2

0.4

0.6

0.8

1.0
catch parameter

6 12 18 24 30 36 42 48 54 60
0.0

0.2

0.4

0.6

0.8

1.0
variable declaration

Figure A.2. Redundancy rate for different types of code constructs when no abstraction is applied.

duced when only looking for token types. For example, while the two sequences if(a
> b) and if(c > d) are considered as different in the no abstraction approach, they
are considered as redundant from the token type only perspective.

Our findings thus corroborate the observations by Gabel and Su [GS10], and confirm the
high redundancy of source code. Our next RQ investigates where the redundancy is, when
looking more closely at the source code.

2) RQ2: To what extent are different code constructs redundant? Fig. A.2 shows the box-
plots depicting the redundancy rate for different types of code constructs when considering
sequences of different lengths without applying abstraction4. Concerning the impact of the
sequence length on the redundancy rate, all code constructs follow the same trend previously
observed for the whole project. However, it is evident that tokens belonging to different types
of code constructs do not exhibit the same redundancy rate.

4Results for the token type only approach is in our replication package[LPM+]

A.3 Study I: Source Code Redundancy 77

im
po

rt

pa
cka

ge

meth
od

bo
dy if

con
dit

ion while

con
dit

ion for

con
tro

l

meth
od

de
cla

rat
ion

cla
ss

de
cla

rat
ion

meth
od

cal
l cat

ch

blo
ck

cat
ch

pa
ram

ete
r

va
ria

ble

de
cla

rat
ion pro

jec
t

Code construct type

0.00

0.25

0.50

0.75

1.00

Re
du

nd
an

cy
 ra

te

Figure A.3. Redundancy rate of different code constructs when no abstraction is applied and the
sequence length is 9.

im
po

rt
pa

ck
ag

e
m

et
ho

d
bo

dy
if

co
nd

iti
on

wh
ile

 c
on

di
tio

n
fo

r c
on

tro
l

m
et

ho
d

de
cla

ra
tio

n
cla

ss
 d

ec
la

ra
tio

n
m

et
ho

d
ca

ll
ca

tc
h

bl
oc

k
ca

tc
h

pa
ra

m
et

er
va

ria
bl

e
de

cla
ra

tio
n

import
package

method body
if condition

while condition
for control

method declaration
class declaration

method call
catch block

catch parameter
variable declaration negligible

small

medium

large

Figure A.4. Statistical comparisons for the redundancy rates of different types of code constructs for
sequences of length 9.

Fig. A.3 compares the redundancy rate of code constructs when the sequence length is
9. The redundancy rate of the whole project is also shown in Fig. A.3 (boxplot on the right),
serving as a baseline for comparison. The main message highlighted by Fig. A.3 is that the
redundancy rate of different code constructs significantly differs. This is clear, for example,
when comparing import declarations (median=0.97) and while conditions (median=0.57).
Such strong differences are confirmed by the statistical analysis in Fig. A.45.

5Results for sequences of different lengths are in our replication package[LPM+]

78 On the Uniqueness of Code Redundancies

10

100

1000

10
,0

00

20
,0

00

30
,0

00

40
,0

00

50
,0

00

60
,0

00

70
,0

00

80
,0

00

90
,0

00

10
0,

00
0

11
0,

00
0

12
0,

00
0

13
0,

00
0

14
0,

00
0

5,0
00

15
,0

00

25
,0

00

35
,0

00

45
,0

00

55
,0

00

65
,0

00

75
,0

00

85
,0

00

95
,0

00

10
5,0

00

11
5,0

00

12
5,0

00

13
5,0

00

14
5,0

00

fre
qu

en
cy

cumulative number of sequences of length 9

1

Figure A.5. Microsoft Thrifty: Cumulative frequency for sequences of length 9.

In the heatmap in Fig. A.4, a white block indicates that the difference in terms of redun-
dancy rates of two code constructs is not statistically significant (adjusted p-value ≥ 0.05).
Blocks with four different grayscale values from light to dark represent a significant differ-
ence accompanied by a negligible, small, medium and large effect size, respectively. Con-
firming what can previously observed, import, package, and catch parameter constructs
are significantly more redundant than other constructs. All of the statistical comparisons
result in a significant difference, and 74% of the cases have medium or large effect sizes.
Thus, the statistical analysis confirms the high variability of redundancy rate for different
types of code constructs.

Up to now we considered as redundant a token from a sequence repeated at least once
[GS10]. We also investigated the frequency of redundant sequences (i.e., how many times
sequences are repeated in the code). Indeed, the frequency with which a sequence is re-
peated in the code impacts techniques leveraging code redundancy, like language models
that need to learn what the likely sequences of code tokens are.

The analysis being computationally expensive, we performed it on 30 randomly selected
projects. Fig. A.5 shows, using a logarithmic scale, the frequency of the 144,494 unique
tokens sequences of length 9 extracted from Microsoft Thrifty.

While the code redundancy, measured as explained in Section A.3.2, is quite high for
this system (0.80)—indicating that most of tokens belong to redundant sequences—the
median frequency of the redundant sequences is just 2, with a third quartile of 4. This
means that at least 75% of the redundant sequences in this system are repeated at most 4
times in the code, while there are very few sequences repeated hundreds of times (lead-
ing to the long tailed distribution in Fig. A.5). The most redundant sequence (743 repeti-
tions) is (org.apache.thrift.protocol., generally used in catch statements (e.g.,catch
(org.apache.thrift.protocol.TProtocolException)). Other very frequent sequences

A.4 Study II: Language Models & Code Completion 79

are those related to import statements (e.g.,import com.microsoft.thrifty.schema.—
161 times).

When looking at the frequency of redundant sequences, most of the code redundancy is
in very specific parts of the code. Indeed, we observed a long tailed frequency distribution
shown in Fig. A.5 for all the 30 selected systems6. Such a characteristic of code redundancy
can strongly impact approaches leveraging it. This is the focus of our second study.

A.4 Study II: Language Models & Code Completion

The goal of this study is to investigate the performance of an n-gram language model aimed
at recommending the next code token to write (i.e., the nth token) given n−1 written tokens.
Basically, we assess the accuracy of the language model proposed by Hindle et al. [HBS+12]
for code completion both overall (i.e., when used in any part of the source code) as well as
when focusing on specific code constructs.

A language model is a probability distribution that estimates how often a sentence oc-
curs in a textual dataset. Language models are widely employed in many domains such
as speech recognition and code completion. The n-gram model is one of the most com-
monly used language models and it determines the probability of having a word wi given
the previous n-1 words. Such a probability is denoted by p(wi|wi−1, wi−2, . . . , wi−n+1), where
wi−n+1, . . . , wi−1, wi are n continuous words. The probability that wi follows wi−n+1, . . . , wi−2,
wi−1 is estimated by training the language model on a training test, composed of textual
documents. When applying the language model to software-related tasks, the training set is
composed of code documents.

The most common way to evaluate the performance of a n-gram model is instead to
run it on an previously unseen set of test documents (again, code documents in the case of
software-related tasks) known as the test set, and assess its ability to predict the actual word
wi following a sequence of n− 1 consecutive words extracted from the test set (this process
is repeated for many sequences) [CG96]. Our conjecture is that the substantially different
redundancy rates observed in Study I for the different code constructs might influence the
performance of the language model and suggest its applicability only to specific parts of the
code (i.e., the ones having high redundancy).

A.4.1 Research Questions

The study aims at answering the following RQs:
RQ3: How effective is the language model in supporting code completion? This RQ assesses

the performance of the n-gram language model when applied to code completion. The eval-
uation approach followed in this study is similar to the one of Hindle et al. [HBS+12], where
they evaluated the a 3-gram language model on five systems. We (i) run a much larger eval-
uation involving 2,640 subject systems, and (ii) study the impact of the n parameter on the
model performance.

6Results available in our replication package [LPM+].

80 On the Uniqueness of Code Redundancies

RQ4: How effective is the language model in supporting code completion for different code
constructs? This RQ investigates whether and how the predictive performance of the n-gram
language model varies on different code constructs (i.e., the same 12 constructs considered
in Study I). To the best of our knowledge, this is the first study running such an analysis.

RQ4’s findings will shed some light on the importance of considering the strong locality
of code redundancy.

A.4.2 Data Extraction

To answer our research questions we perform the following steps for each project Pi in our
dataset:

1. Create training and test sets. We randomly split the Pi ’s Java files into a training set
accounting for 90 % of Pi ’s ELOC, and a test set composed by the remaining 10%. Our train-
ing/testing strategy is different with respect to the one adopted by Hindle et al. [HBS+12].
They randomly selected 200 files from each subject system, using 160 for training and 40
for testing. Such an approach does not consider the whole project’s code base, and does
not provide a clear indication of the “amount of code”, intended as ELOC, actually used for
training and testing; indeed, this strongly depends on the size of the specific files selected
for training and testing.

2. N-grams extraction. As done in Study I, we tokenize the Pi ’s Java source code in
both training and test set. Note that no abstraction is used in this study, since we want to
support code completion by recommending to the developer the exact token to write given
the previous n−1 tokens (as done in [HBS+12]). We vary n from 3 (the original value used
in [HBS+12]) to 15 at steps of one (i.e., 3, 4, 5, etc.).

3. Linking tokens to code constructs. As done in Study I, we map each token to one of the
code constructs listed in Table A.2. This allows us to answer RQ4, by reporting the perfor-
mance of the language model when predicting tokens belonging to different code constructs.

After collecting this data, for each project Pi and for each considered value of n, we train
the language model on the n-grams extracted from the Pi ’s training set, obtaining a model
MPi ,n. Then, we run MPi ,n on the n-grams extracted from the Pi ’s test set, trying to predict
for each n-gram the nth token given the n− 1 continuous tokens preceding it. Overall, this
resulted in the testing of the language model on a minimum of 104,953,587 n-grams (for
n= 15) and a maximum of 106,726,166 (for n= 3).

A.4.3 Data Analysis

We answer RQ3 by showing boxplots reporting the percentage of tokens correctly predicted
by the language model (i.e., its accuracy) for each of the experimented n values. Since the
language model provides a ranked list of tokens likely following the provided n− 1 tokens
(with the most likely on top), we compute the model accuracy when considering the top t
recommendations it generates, varying t from 1 to 10 at steps of one. For example, when
considering t = 1, we consider a recommendation as correct only if the correct token appears
in the first position of the ranked list, while for t = 10 the recommendation is tagged as
correct if the correct token appears in the top-10.

A.4 Study II: Language Models & Code Completion 81

Concerning RQ4, we compare the accuracy of the language model when predicting to-
kens belonging to different code constructs. This is done via boxplots and statistical tests,
following the same procedure adopted in RQ2.

A.4.4 Results

0 3 4 5 6 7 8 9 10 11 12 13 14 15
Sequence length

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
ac

cu
ra

cy

Figure A.6. Prediction accuracy rates of the language model when supporting code completion (top
1 recommendation).

1) RQ3: How effective is the language model in supporting code completion? Fig. A.6 shows
the accuracy of the n-gram language model when used to support code completion. In
particular, Fig. A.6 reports the accuracy achieved when only considering the top ranked
suggestion (i.e., the token having the highest probability of following the n−1 tokens) when
varying n between 3 and 15.

The language model achieves its maximum accuracy (median = 0.48) when n = 3, and
its performance regularly decreases with the increasing of n (worst accuracy achieved at n=
15). Such a finding might seem counterintuitive. Indeed, one would expect that the more
information is fed into the language model, i.e., the higher the number of n− 1 subsequent
tokens provided to the model, the easier is for the model to guess the nth following token.
Increasing the number of tokens fed into the model does also (i) increases the possible noise
provided to it, and (ii) reduces to “locality” of the n-1 fed tokens (i.e., increases the likelihood
of having tokens belonging to different statements). Let us discuss this using the following
example statements:

import org.program_comprehension.*;
import java.io.*;
public static void main ...

Considering our experimental design, when using n=3, we start reading the first two
tokens (import org) and ask the language model to recommend the third one (.). Then,
we feed the following two tokens (org.) and again ask the language model to suggest the
third token (program_comprehension). This process is continued until we reach the last
token in the file. As we can see, for low values of n we provide very localized sequences of

82 On the Uniqueness of Code Redundancies

3 5 7 9 11 13 15
0.0

0.2

0.4

0.6

0.8

1.0
import

3 5 7 9 11 13 15
0.0

0.2

0.4

0.6

0.8

1.0
package

3 5 7 9 11 13 15
0.0

0.2

0.4

0.6

0.8

1.0
method body

3 5 7 9 11 13 15
0.0

0.2

0.4

0.6

0.8

1.0
if condition

3 5 7 9 11 13 15
0.0

0.2

0.4

0.6

0.8

1.0
while condition

3 5 7 9 11 13 15
0.0

0.2

0.4

0.6

0.8

1.0
for control

3 5 7 9 11 13 15
0.0

0.2

0.4

0.6

0.8

1.0
method declaration

3 5 7 9 11 13 15
0.0

0.2

0.4

0.6

0.8

1.0
class declaration

3 5 7 9 11 13 15
0.0

0.2

0.4

0.6

0.8

1.0
method call

3 5 7 9 11 13 15
0.0

0.2

0.4

0.6

0.8

1.0
catch block

3 5 7 9 11 13 15
0.0

0.2

0.4

0.6

0.8

1.0
catch parameter

3 5 7 9 11 13 15
0.0

0.2

0.4

0.6

0.8

1.0
variable declaration

Figure A.7. Accuracy of the language model when supporting code completion on different constructs
(top-1 recommendation)

n−1 tokens to predict the nth one. In other words, the n−1 tokens are generally part of the
same code statement and narrow down the possible tokens that can follow them.

When n= 15, in the example above we provide as input to the language model the whole
first two import statements (for a total of 14 tokens), asking the language model to predict
the 15th token (i.e., public). In this case it is challenging for the language model to guess
the correct token, due to the poor localization of the fed information (the 14 input tokens
belong to statements unrelated with the one in which we ask the language model to support
the auto completion).

Our results support the findings by Bruch et al. [BMM09] and Nguyen et al. [NNN+12],
and highlight the importance of exploiting contextual information when supporting code
completion. The accuracy obtained when considering the top t recommendations with t
going from 2 to 10 is available in our replication package [LPM+] and is consistent with the
same observations.

A.4 Study II: Language Models & Code Completion 83

im
po

rt

pa
cka

ge

meth
od

bo
dy if

con
dit

ion while

con
dit

ion for

con
tro

l

meth
od

de
cla

rat
ion

cla
ss

de
cla

rat
ion

meth
od

cal
l cat

ch

blo
ck

cat
ch

pa
ram

ete
r

va
ria

ble

de
cla

rat
ion pro

jec
t

Code construct type

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
ac

cu
ra

cy

Figure A.8. Accuracy of the 3-gram model when supporting code completion on different constructs
(top-1 recommendation)

RQ4: How effective is the language model in supporting code completion for different code
constructs?

Fig. A.7 shows the accuracy of the n-gram language model (for different values of n) when
used to support code completion on different code constructs (again, when the top recom-
mendation is considered, other results in [LPM+]). Overall, the trend is the same previously
observed for the whole project: The model performs better for small n values.

What heavily varies is the performance of the language model when applied to the dif-
ferent types of code constructs. To zoom into this analysis, Fig. A.8 and A.9 compare the
performance of the 3-gram language model on the different constructs via boxplots and sta-
tistical tests, respectively. Hereafter, we discuss the results for n= 3 as in the original paper
by Hindle et al. [HBS+12], while results for other values of n are available in the replication
package [LPM+]. The achieved results highlight that:

• The performance of the language model varies a lot across different types of code
constructs. This is clear both in the boxplots (Fig. A.8) as well as from the results of
the statistical analysis (Fig. A.9), in which several significant differences accompanied
by a medium/large effect size are observed. For example, the performance of the lan-
guage model is very good when supporting code completion for import and package

statements (median=0.76), while it strongly drops when working on while conditions
(median=0.36).

• There is a clear correlation between the redundancy rate of code constructs, and
the performance of the language model when applied on them. While this is evi-
dent when putting together the results of our two studies, we also compute the correla-
tion between the redundancy rate of code constructs and the accuracy of the language
model in predicting tokens belonging to them by using the Spearman rank correlation

84 On the Uniqueness of Code Redundancies

im
po

rt
pa

ck
ag

e
m

et
ho

d
bo

dy
if

co
nd

iti
on

wh
ile

 c
on

di
tio

n
fo

r c
on

tro
l

m
et

ho
d

de
cla

ra
tio

n
cla

ss
 d

ec
la

ra
tio

n
m

et
ho

d
ca

ll
ca

tc
h

bl
oc

k
ca

tc
h

pa
ra

m
et

er
va

ria
bl

e
de

cla
ra

tio
n

import
package

method body
if condition

while condition
for control

method declaration
class declaration

method call
catch block

catch parameter
variable declaration negligible

small

medium

large

Figure A.9. Statistical comparisons for the accuracy of the 3-gram language model on different code
constructs

analysis [Coh13]. We obtained a correlation coefficient of ρ = 0.71, highlighting a
strong correlation on the basis of the guidelines provided by Cohen [Coh13].

We further dig into the results by looking for the code tokens correctly predicted by the
language model when setting n= 3 on the same 30 randomly selected systems used in Study
I. We discuss in detail the results for Microsoft Thrifty, on which 13,176 out of 29,763 tokens
have been correctly predicted (44% accuracy).

The top ten correctly predicted tokens on this system are: “.”, “(”, “)”, “;”, “}”, “{”,
“public”, “thrift”, “apache”, “=”, accounting for a total of 9,494 (72%) of the correctly
predicted tokens. Only two of the top-10 correctly predicted tokens are project specific
(i.e., “thrift” and “apache”) and they are correctly predicted since, as shown in Study I,
frequently used in catch statements. In addition, 1,073 correctly predicted tokens (a further
8%) is represented by Java keywords. The results obtained from other 29 systems are in line
with these findings and confirm that most of the correctly predicted tokens are not project
specific.

We believe that these findings are of paramount importance when considering the use
of language models for supporting code completion. Indeed, while the performance of the
language model could be overall acceptable (e.g., 44% accuracy on Microsoft Thrifty), it
is mostly effective in recommending tokens (i) belonging to very specific parts of the code
(e.g., import and catch statements), and (ii) mainly representing syntactic sugar of the
programming language.

A.5 Threats to Validity 85

Our results indicate that language models alone cannot effectively support code comple-
tion and that, as proposed by Hindle et al. [HBS+12], they can only complement recommen-
dations generated by other techniques. Also, our findings clearly highlight the strong impact
that unevenly redundancy rates of code constructs can have on applications assuming the
high redundancy of source code.

A.5 Threats to Validity

Threats to construct validity concern the relation between theory and observation. In this
work they are mainly due to the measurements we performed.

In Study II, we assess the performance of the language model presented by Hindle et al.
[HBS+12] in supporting code completion by using their same experimental design. In par-
ticular, given a project Pi , we train the language model on a set of Pi ’s files and test it on all
the n-grams (we experimented with different values of n) extracted from files belonging to
the test set. As done in [HBS+12], each file in the test set was scanned from the beginning
to the end to extract all its n-grams on which the language model was then evaluated.

Such an approach aims at simulating the code writing by the developer: She writes the
first n−1 tokens, and uses the code completion to recommend the nth token, then she writes
other n− 1 tokens, and again uses code completion to suggest the next token, etc. Clearly,
developers do not write code by following such a linear approach from the beginning to the
end, and we acknowledge such a threat.

Note also that the performance we report for the language model cannot be directly com-
pared with the one reported in the original paper by Hindle et al. [HBS+12]. Indeed, while
we report the raw accuracy of the language model when used to support code completion, in
[HBS+12] the authors show the gain in terms of accuracy obtained over the Eclipse built-in
code completion module. Since our primary goal was to show how the different redundancy
rates of code constructs impact the performance of techniques exploiting such a redundancy,
we preferred to report the language model accuracy by itself.

Threats to internal validity concern external factors we did not consider that could
affect the variables and the relations being investigated. In Study I, when assessing software
redundancy, we did not experiment with all possible sequence lengths, but we limited our
analysis to sequences going from 3 to 60 tokens at steps of 3. Still, the trend observed in the
achieved result is quite clear, and shows that, as expected, the redundancy rate decreases
with the increase of the sequence length (see Fig. A.2). We do not expect to observe anything
different by further increasing the sequence length.

In both our studies, we did not consider all possible code constructs that can be extracted
from Java systems. However, the number and diversity of the considered constructs have
been sufficient to observe differences in the redundancy rate and in the accuracy of the
language model.

Threats to conclusion validity concern the relation between the treatment and the out-
come. Although this is mainly an observational study, wherever possible we used an appro-
priate support of statistical procedures, integrated with effect size measures that, besides the
significance of the differences found, highlight the magnitude of such differences.

86 On the Uniqueness of Code Redundancies

Threats to external validity concern the generalizability of our findings. While our two
studies have been performed on a large code base including 2,640 projects, we are aware
that (i) all subject projects are written in Java, thus calling for the need of analyzing software
projects written in other programming languages, and (ii) we limited our analysis to open
source projects ignoring industrial systems.

A.6 Related Work

A.6.1 Code Redundancy

Code clones, i.e., code fragments similar to other ones by some given definition of similarity
[RCK09], are a common form of code redundancy, and have been widely studied. We limit
our discussion to few of the works focusing on clones. Baker [Bak95] inspected two systems
and tried to find maximal sections of code over a certain length which are exactly the same
or only differ in parameter names. Their results indicate that around 20% of the code is
(near-)duplicated. Roy and Cordy [RC08] examined 15 Java and C systems, and reported
that ∼15% of the Java methods and 2.5% of the C functions are exact clones. Kapser and
Godfrey [KG04] conducted two case studies and reported that 50% of the clones were related
to function clones. With another case study on the Apache web server, they later showed the
existence of “cloning hotspots”: 17% of the code contained 38% of the clones [KG06b].

Mockus [Moc07] analyzed 13.2 million source code files from open source projects, and
reported that over 50% of files were reused across projects. While our work is naturally
related to code clones, we focus on the code redundancy phenomenon at a lower granularity
level, with the goal of investigating (i) how it varies in code constructs, and (ii) how this
variations impacts the performance of techniques leveraging code redundancy.

Other studies have explored code redundancy from a different perspective. Barr et al.
[BBD+14] found that 42% of the code changes can be largely reconstituted from existing
code. Nguyen et al. [NNN16] reported that 12.1% of the routines (i.e., a portion of code that
performs a specific task, such as methods) are repeated between 2 and 7 times in projects.
Finally, the study by Gabel and Su [GS10] is certainly the most related to our work. Indeed,
Study I represents a differentiated replication of the investigation presented in [GS10], fea-
turing a different and larger code base and investigating at a fine-grained level how code
redundancy changes across code constructs.

A.6.2 Code Completion

Code completion is one of the killer features of modern IDEs, and researchers have proposed
different methods to improve code completion accuracy. Again, due to the lack of space we
focus our discussion on a few representative works.

By mining existing code, Bruch et al. [BMM09] (i) filter out candidates from the list of
tokens recommended by the IDE that are not relevant to the current working context and
(ii) rank candidates based on how relevant to the context they are. These features help in
substantially improve the standard IDE code completion engine.

A.7 Conclusion 87

Also Nguyen et al. [NNN+12] exploited context-sensitive information in their GraPacc
approach, showing its effectiveness in supporting code completion. GraPacc models API
usage patterns by relying on a graph representation, where nodes represent actions (e.g.,
method calls) and controls (e.g., while) points, and edges represent control and data flow
dependencies between nodes. Context information such as the relation between API ele-
ments and other code elements is considered for ranking most fitted API usage patterns.

Raychev et al. [RVY14] extracted sequences of method calls from a large codebase and
trained a language model on them. They applied this model to support the autocompletion
of method calls, achieving an accuracy of 90% when considering the top three results. We
experimented in Study II the previously discussed language model proposed by Hindle et al.
[HBS+12], showing that its performance substantially varies when applied to constructs
characterized by different redundancy.

The language model proposed by Hindle et al. was improved by Nguyen et al. [NNNN13,
NNN16] and by Tu et al. [TSD14]. Nguyen et al. [NNNN13] presented a statistical semantic
language model for source code extending the standard language model by annotating each
token with its type and semantic role. Also, they exploit a more advanced n-gram topic
model to support code completion. In a related work of the authors, they also proposed the
use of an AST-based language model instead of the n-gram language model to recommend
the next valid syntactic template and detect common syntactic templates [NNN16].

Tu et al. [TSD14] enriched the language model with a cache exploiting a specific localness
of software, i.e., repetitions of a specific n-gram localized in few files. Other approaches
[TSD14, NNNN13, NNN16] achieve improvements over the language model proposed by
Hindle et al. [HBS+12].

In our study we chose to adopt the simplest approach (i.e., Hindle et al. [HBS+12]) since
our goal was not to experiment with the best code completion tool available, but to show
that approaches leveraging code redundancy should consider its strong locality in specific
code constructs.

A.7 Conclusion

We examined the redundancy of code constructs, and investigated the impact of its inequality
on an application leveraging code redundancy, namely n-gram based code completion.

Our results indicate that while software is quite redundant when considered as a whole,
the redundancy is localized in specific code constructs. Such a characteristic of code re-
dundancy strongly impacts the performance of application exploiting code redundancy, like
n-gram based completion.

Our future work will focus on the definition of smarter code completion tools leveraging
our findings, and on customizing the use of the language model on the basis of the specific
code constructs on which it is applied.

88 On the Uniqueness of Code Redundancies

B
On the Impact of Refactoring Operations on Code
Naturalness

Recent studies have demonstrated that software is natural, that is, its source code is highly
repetitive and predictable like human languages. Also, previous studies suggested the exis-
tence of a relationship between code quality and its naturalness, presenting empirical evi-
dence showing that buggy code is “less natural” than non-buggy code. We conjecture that
this quality-naturalness relationship could be exploited to support refactoring activities (e.g.,
to locate source code areas in need of refactoring). We perform a first step in this direction
by analyzing whether refactoring can improve the naturalness of code.

We use state-of-the-art tools to mine a large dataset of refactoring operations performed
in open source systems. Then, we investigate the impact of different types of refactoring
operations on the naturalness of the impacted code. We found that (i) code refactoring does
not necessarily increase the naturalness of the refactored code; and (ii) the impact on the
code naturalness strongly depends on the type of refactoring operations.

This study is based on the following publication [LNBL19]:

On the Impact of Refactoring Operations on Code Naturalness

Bin Lin, Csaba Nagy, Gabriele Bavota, Michele Lanza. In 26th IEEE International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER 2019) - Early Research Achievements Track, pp.
594–598, 2019

89

90 On the Impact of Refactoring Operations on Code Naturalness

B.1 Introduction

Software is not unique. Researchers have discovered that for sequences of six tokens ex-
tracted from the source code, the probability of finding the same sequence in other software
projects is higher than 50% [GS10]. Based on this finding, Hindle et al. [HBS+12] introduced
the concept of source code “naturalness”, to indicate that source code is highly repetitive and
predictable, just like a text written in human language. They showed that this characteristic
can be captured by statistical language models and can be leveraged for different SE tasks,
such as code completion [TSD14] and fault localization [RHG+16]. The latter application
proposed by Ray et al. was possible thanks to the finding that buggy code is less natural (i.e.,
less predictable) than correct code [RHG+16].

One interesting unanswered question is whether software refactoring (i.e., the activity
of improving code quality without modifying the system’s external behavior) can be seen
as a process implicitly aiming at improving code naturalness. Intuitively, we might think
the source code is easier to maintain if it is more natural, as there are fewer “surprising”
and “unfamiliar” code fragments for developers. Thus, it can be conjectured that developers
focus their refactoring attentions on code exhibiting low naturalness. If such a conjecture
is confirmed, information about the naturalness of code components could be leveraged to
support refactoring operations (e.g., by identifying code components in need of refactoring).

We perform a first step in that direction by investigating whether refactoring operations
applied by software developers result in an improvement of the code naturalness.

We use RMINER [TME+18], a state-of-the-art refactoring miner tool, to mine 1,448 real
refactoring operations performed by software developers in 619 open source projects. These
operations cover 10 different refactoring types (e.g., move method, extract class). Once these
operations are collected, we employ the statistical language model proposed by Tu et al.
[TSD14] to measure the naturalness of the code components before and after the refactor-
ing. This allows us to verify whether different types of refactoring operations improve the
code naturalness. Our results show that the impact on the code naturalness strongly depends
on the specific type of refactoring operation. For example, “Extract Method” refactoring is
more likely to increase the code naturalness, while “Pull Up Method” refactoring often leads
to lower naturalness. These results suggest that leveraging code naturalness for identifi-
cation of refactoring opportunities is far from trivial, and highlight the need for additional
investigations in this direction.

Structure of the Chapter

We illustrate the related work in Section B.2 and describe the design of our study in Sec-
tion B.3. Section B.4 presents our preliminary results. The threats that affect the validity
of our studies are discussed in Section B.5. In the end, Section B.6 outlines the conclusions
and future work.

B.2 Related Work 91

B.2 Related Work

The naturalness of software has received considerable attention in the SE research commu-
nity. After the seminal work by Hindle et al. [HBS+12], several studies have investigated the
code naturalness from different perspectives. Tu et al. [TSD14] found that the distribution
of repetitive code is highly skewed in the source code. Lin et al. [LSM+17] disclosed that
different parts of source code are not equally repetitive.

Researchers have also studied the relation between naturalness and software defects.
Campbell et al. [CHA14] found that syntax errors are less natural than other code, and this
fact can be used to augment compilers’ ability to locate missing and extra tokens. Ray et al.
[RHG+16] evaluated the naturalness of buggy code and the corresponding fixes by analyzing
over 8,000 fix commits from 10 Java projects. Their results showed that buggy code is less
natural, and the naturalness increases once the bug is fixed. They also showed that focusing
on unnatural code is cost-effective in finding bugs compared to other state-of-the-art static
bug finders.

The most relevant work is the study conducted by Arima et al. [AHK18], which uses
code naturalness as a metric to evaluate whether a refactoring operation is effective. With
the assumption that appropriate refactoring should raise the code naturalness, the authors
constructed a gold set of 28 refactoring operations extracted from JUnit41 by searching
for the keywords “refactor” and “clean” in commit logs and manually filtering out those
commits containing more than one refactoring. As a result, the code naturalness increases
after 19 out of the 28 refactorings, which indicates that naturalness might be a potential valid
metric for evaluating the quality of refactoring. Our study, while having a similar objective
(i.e., studying the impact of refactoring operations on code naturalness) is performed on a
much larger dataset composed of 1,448 refactorings extracted from 619 systems. We also
investigate the impact of refactoring operations on the code naturalness by considering the
type of implemented refactoring (e.g., move method) as an independent variable to study
(possibly having an effect on the “naturalness” dependent variable).

B.3 Study Design

Our goal is to investigate whether refactoring operations increase the naturalness of the
refactored code. We assess how the code naturalness is impacted (i) overall, meaning when
considering all types of refactoring operations together, and (ii) by specific types of refactor-
ing.

B.3.1 Research Question

Our study aims at answering the following Research Question (RQ):
RQ: How does refactoring impact the naturalness of source code? This RQ assesses how

the naturalness of source code changes after refactoring operations. We also investigate
whether there is an observable difference for the change in naturalness for different kinds

1https://github.com/junit-team/junit4

92 On the Impact of Refactoring Operations on Code Naturalness

of refactorings. To the best of our knowledge, this is the first study running such an analysis
on a large dataset while considering specific refactoring types.

The findings of this RQ will shed light on the possibility of using code naturalness to
support the identification of code components in need of refactoring.

B.3.2 Study Context

The study context consists of 619 Java projects on GitHub2, mined on Nov. 6, 2018, using
the following selection criteria:

• Activity level. To exclude inactive projects, the projects must have at least one commit
in the three months preceding the data collection.

• Popularity. Projects need to have at least 100 forks3 and 100 stars4, to avoid the
inclusion of likely “toy-projects”. Forks and stars serve as two proxies for the popularity
of software repositories on GitHub.

We found 2,663 projects satisfying these constraints. However, due to the computational
cost of our experimental design that requires retraining the statistical language models as-
sessing the naturalness several times (details follow), we selected from this set a random
subset of 1,500 projects for our study. We believe that 1,500 projects still ensure a good gen-
eralizability of our results. After mining refactoring operations from these repositories, we
found 619 projects containing at least one of the refactoring operations we study (discussed
in Section B.3.3). These 619 projects compose our study context.

B.3.3 Data Collection

To answer our research question and measure code naturalness, we first mine refactoring
operations from the collected projects, and then assess the naturalness of the impacted code
components before and after each refactoring commit.

Refactoring Mining

We use RMINER [TME+18] to mine the refactoring operations in the randomly selected 1,500
projects. RMINER extracts refactoring operations by inspecting two adjacent commits using
an AST-based statement matching algorithm. RMINER is reported to have a precision of over
0.95 for most refactoring types, except “Change Package” (0.85) and “Move Field” (0.884).
The recall achieved by RMINER is also fairly high: 0.80 for most refactoring types, except
“Rename Class” (0.711), “Extract & Move Method” (0.412), and “Move Method” (0.764).
Thus, adopting RMINER allows us to obtain different types of refactorings with considerable
accuracy. While RMINER can detect various types of refactorings, in this study we only con-
sider those do not requiring the creation of new source code files (e.g., we exclude “Extract

2https://github.com/
3https://help.github.com/articles/fork-a-repo/
4https://help.github.com/articles/about-stars/

B.3 Study Design 93

Class” refactoring), since this avoids the introduction of confounding factors in the compu-
tation of the code naturalness (i.e., the naturalness of the same files before/after refactoring
is compared). Table B.1 reports the types of refactoring operations considered in our study.

Table B.1. Considered Refactorings in Our Study

Level Refactorings considered

Method Extract Method, Inline Method, Pull Up Method, Push Down Method,
Rename Method, Move Method, Extract and Move Method

Field Pull Up Field, Push Down Field, Move Field

After obtaining all the commits with refactoring operations, we filtered out commits in
which more than one refactoring type was applied, again to better isolate and study the effect
of a single type of refactoring operation on the code naturalness. In the end, we obtained
1,448 refactoring operations from 619 projects, while no relevant refactorings were detected
in the other 881 projects.

Naturalness Measurement

Like the work by Tu et al. [TSD14] and Ray et al. [RHG+16], we use cross-entropy to assess
the naturalness of code components. The idea behind cross-entropy is that if a code snippet
is more natural, it will be more likely to appear in the training corpus. The cross-entropy of
a code snippet S composed by tokens t1...tn of length N is calculated as

HM (S) = −
1
N

log2 PM (S) = −
1
N

N
∑

1

log2 P (t i|h) (B.1)

where PM (S) and P (t i|h) are the probabilities estimated by the language model M , t i is the
token to be predicted, and h is the preceding tokens followed by t i . In our study, we adopted
the cache language model proposed by Tu et al. [TSD14]. This model combines a traditional
n-gram language model and an added “cache” component to exploit the localness property
of source code. Like other statistical language models, it learns from a corpus of source code,
and then predicts the probability P of occurrence for each token in the new file. In practice,
a low cross-entropy indicates high naturalness.

To understand how naturalness changes due to refactoring, we measure the natural-
ness for every commit that has a refactoring operation. For each refactoring operation, we
construct a training corpus, composed of all the files in the commit before the refactoring,
excluding the files being refactored. This corpus is used to compute the cross-entropy of the
excluded files and their corresponding refactored version.

B.3.4 Data Analysis

We compare the cross-entropy change caused by each type of refactoring operation via violin
plots. The comparison of cross-entropy of files before and after refactoring is also performed

94 On the Impact of Refactoring Operations on Code Naturalness

via statistical tests by using the Wilcoxon signed-rank test [Wil45], with results intended as
statistically significant at p ≤ 0.05. We also estimate the magnitude of the differences by
using the effect size r, which can be used for the Wilcoxon signed-rank test [Fie13]. We
follow well-established guidelines to interpret the effect size: negligible for |r|< 0.10, small
for 0.10≤ |r|< 0.3, medium for 0.3≤ |r|< 0.5, and large for |r| ≥ 0.5 [Coh92].

B.4 Preliminary Results

We first provide an overview of how code naturalness changes after refactoring with sta-
tistical analysis, and then give concrete examples of refactoring activities that had a posi-
tive/negative effect on code naturalness. Finally, we compare our results with those achieved
by Arima et al. [AHK18].

B.4.1 Statistical Analysis of Results

Table B.2 reports the impact of the 1,448 detected refactoring operations on the cross-
entropy of the involved code components. Despite the quite large set of refactoring op-
erations considered in our study, it is worth noticing that the mined refactorings are not
equally distributed regarding their refactoring type. Indeed, “Extract Method” and “Rename
Method” account for 66.0% of the total refactorings. Among all refactoring types, “Push
Down Method” and “Push Down Field” are the least performed, and account only for 1.0%
of the overall dataset. In the following analyses, these two types of refactorings are excluded
due to the low number of occurrences.

Table B.2. Detected Refactorings and Their Impact on the Code Naturalness

Refactoring type Total
cross-entropy

increased
cross-entropy

unchanged
cross-entropy

decreased

Extract Method 488 174 (35.7%) 0 (0.0%) 314 (64.3%)
Inline Method 57 37 (64.9%) 0 (0.0%) 20 (35.1%)
Pull Up Method 45 33 (73.3%) 0 (0.0%) 12 (26.7%)
Push Down Method 5 2 (40.0%) 0 (0.0%) 3 (60.0%)
Rename Method 468 220 (47.0%) 68 (14.5%) 180 (38.5%)
Move Method 126 76 (60.3%) 0 (0.0%) 50 (39.7%)
Extract & Move Method 162 60 (37.0%) 0 (0.0%) 102 (63.0%)
Pull Up Field 18 7 (38.9%) 0 (0.0%) 11 (61.1%)
Push Down Field 10 4 (40.0%) 0 (0.0%) 6 (60.0%)
Move Field 69 32 (46.4%) 0 (0.0%) 37 (53.6%)

Sum 1,448 645 (44.5%) 68 (4.7%) 735 (50.8%)

For all these refactorings, we calculated the cross-entropy change (i.e., the difference
between the cross-entropy after refactoring and cross-entropy before refactoring) of the file

B.4 Preliminary Results 95

Table B.3. Statistical Tests of File Cross-Entropy Before and After Refactoring

Refactoring type P-Value Effect size

Extract Method < 0.001 0.180 (small)
Inline Method 0.202 0.119 (small)
Pull Up Method < 0.001 0.414 (medium)
Rename Method 0.177 0.044 (negligible)
Move Method 0.029 0.138 (small)
Extract and Move Method < 0.001 0.213 (small)
Pull Up Field 0.122 0.258 (small)
Move Field 0.727 0.030 (negligible)
Overall 0.453 0.003 (negligible)

being refactored. When reading the table, we have to be aware of the fact that high cross-
entropy stands for low naturalness. Therefore, when the cross-entropy change is above zero,
the naturalness of the code actually drops. Similarly, the naturalness increases when the
cross-entropy change is negative.

Table B.2 shows that overall, although the decrease of cross-entropy (increase of natu-
ralness) is more common than the increase of cross-entropy (decrease of naturalness), the
difference is not substantial (i.e., 50.8% vs 44.5%). When it comes to specific refactoring
types, “Inline Method”, “Pull Up Method”, “Rename Method”, and “Move Method” are more
likely to reduce the code naturalness. Among these five refactoring types, “Pull Up Method”
has the highest possibility (73.3%) to reduce the naturalness. All other refactoring types
tend to increase the code naturalness, despite the fact that there is still a large percentage
of cases in which the naturalness decreases. Thus, our preliminary analysis of the achieved
results does not show any clear relationship between refactoring and code naturalness.

To better understand the impact of refactoring operations on the code naturalness, we
applied statistical tests to the cross-entropy values before and after refactoring for all the
files being refactored. In Table B.3, we can find that for half of the refactoring types, there
is no statistically significant difference (p-value ≥ 0.05) between the cross-entropy before
and after refactoring. Meanwhile, the magnitude of the difference is mostly limited (with
negligible or small effect size). The only exception here is the “Pull Up Method” refactoring.
The comparison of cross-entropy values result in a statistically significant difference (p-value
< 0.05), with a medium effect size. The result is in line with our findings from Table B.2.

To further understand how the impact of different types of refactoring on code natural-
ness differs, we also visualize the cross-entropy difference with violin plots in Fig. B.1. In the
violin plots, the thickness of the outer layer represents how likely the cross-entropy change
will fall into this value. In the center of each violin plot, the white dot represents the median;
the thick black bar represents the interquartile range, and thin black line represents the 95%
confidence interval.

Looking at Fig. B.1 we can see that “Extract Method”, “Pull Up Field”, ”Rename Method”,
and “Extract And Move Method” refactorings are the least likely to impact the code natu-

96 On the Impact of Refactoring Operations on Code Naturalness

Ove
ral

l

Extr
ac

t M
eth

od

Inl
ine

 M
eth

od

Pull
 U

p M
eth

od

Ren
am

e M
eth

od

Mov
e M

eth
od

Extr
ac

t A
nd

 M
ov

e M
eth

od

Pull
 U

p F
iel

d

Mov
e F

iel
d

Refactoring type

−2

−1

0

1

2
C

ro
ss

-e
nt

ro
py

 c
ha

ng
e

Figure B.1. Cross-entropy change after refactoring

ralness, as most of the cross-entropy changes are close to zero. “Pull Up Method” can often
bring large naturalness change to files, especially by reducing the code naturalness.

B.4.2 Examples of Cross-Entropy Change

To gain a more intuitive impression on how refactoring impacts the code naturalness, we
extracted some examples from our dataset.

“Inline Method” refactoring was performed on the class “View” from the project “Car-
bon”5. In this refactoring operation, the calls to method “setTint” were replaced with
the body of “setTint”, consisting in a call to the method “setTintList”. The replaced
method “setTint” was also deleted in the class. After this refactoring, the cross-entropy
of this class file increased from 2.418 to 2.430, thus resulting in a reduction of code natu-
ralness. Intuitively, since the refactored method was used multiple times in the class, one
might think that the increase of cross-entropy was caused by the fact that the replaced token
“setTint” is much more common (i.e., has a lower cross-entropy) in the source code than
“setTintList”. We inspected the cross-entropy of each token in the class before and after
the refactoring to verify this assumption. However, we found out that the cross-entropy of the
tokens “setTint” and “setTintList” are actually similar (whose value varies in different
token positions due to the difference of preceding tokens). As a matter of fact, the removed
tokens with significantly lower cross-entropy were those composing the method declaration,
such as “public” and “void”. Indeed, since the idea behind naturalness is based on the
repetitiveness of tokens, these reserved keywords often have a much lower cross-entropy.
One interesting direction to explore in future is how the cross-entropy of identifiers, which
are the tokens carrying semantic information, changes during refactoring.

5https://goo.gl/NBRBah

https://goo.gl/NBRBah

B.5 Threats to Validity 97

“Extract Method” refactoring operation was performed on the class “CacheHandler”
from the project “AutoLoadCache”6. In this refactoring operation, multiple lines of code in
the method “proceedDeleteCacheTransactional” were moved to a newly created method
“clearCache”, and these lines were replaced with a call to “clearCache”. After refactoring,
the cross-entropy of this class file was reduced to 3.776 from 3.813, namely the code natural-
ness increased. “Extract Method” is the opposite operation of “Inline Method”, therefore, it
is unsurprising that the naturalness change caused by “Extract Method” displays an opposite
trend. Similarly, the major difference between the versions (before and after refactoring) is
the extra tokens needed for declaring the new method.

B.4.3 Comparison with the Study by Arima et al.

We compare the results we achieved with the results from the study by Arima et al. [AHK18].
Some interesting facts are spotted.

In our study, only 50.8% of the total refactorings increase the code naturalness, which
is much lower than what has been observed in [AHK18] (67.9%). The reason behind this
different finding could be explained by the different datasets employed in the two studies.
First, the dataset used in [AHK18] is composed of only 28 refactorings (as compared to the
1,448 considered in our study), thus possibly indicating peculiarities of the specific refac-
toring operations considered. Second, the 28 refactorings used in [AHK18] have all been
mined from a single, well-known project, namely JUnit 4, while in our study we extracted
the studied refactorings from a variegated set of 619 projects. It is possible that the “quality”
of the refactorings applied in JUnit 4 is higher, thus resulting in a naturalness increase that
we did not observe in our dataset. Clearly, this is only an assumption, which needs to be
carefully verified. However, it also indicates a direction to work with: We might need to
better understand the association between code quality and naturalness, which is not fully
disclosed in the research community.

In the work of Arima et al. [AHK18], 7 out of 9 (77.8%) “Extract Method” refactorings
increase the code naturalness, which is in line with our result: 64.3% of the “Extract Method”
refactorings result in increased naturalness. Although no significant difference between the
cross-entropy before and after refactoring was found during our statistical analysis, there
are indications that “Extract Method” refactoring might help in improving the naturalness of
code. Similarly, 2 out of 3 “Inline Method” refactorings in their study lead to a naturalness
decrease, meanwhile, the same trend applies to 64.9% of our cases. However, since they
inspected a smaller number of “Inline Method” refactorings, much more refactorings need
to be examined to make a solid comparison.

B.5 Threats to Validity

Threats to construct validity concern the relation between theory and observation. In
this work, we use RMINER to detect refactorings. While the precision achieved by this tool
is very high [TME+18], we are aware that our results can be affected by the presence of

6https://goo.gl/r4FE26

https://goo.gl/r4FE26

98 On the Impact of Refactoring Operations on Code Naturalness

false positives. Also, RMINER can identify a specific set of refactoring operations, while the
definition of refactoring is broader.

Threats to internal validity concern external factors we did not consider that could
affect the variables and the relations being investigated. In our study, when calculating
the entropy for source code, we did not experiment with all possible configurations of the
used language model. An adapted 3-gram model with an additional cache is used. We
do not expect to observe a significant difference in the overall result trend with different
configurations.

Threats to external validity concern the generalizability of our findings. While we
investigated a large number of refactoring operations, we are aware that only Java and
open source software projects are considered in our study.

B.6 Conclusion and Future Work

We investigated how refactoring impacts the naturalness of source code by inspecting 1,448
refactoring operations from 619 Java projects. We studied the impact of refactoring types on
the naturalness of the modified code components. Our results show that refactorings do not
necessarily make source code more natural, and that naturalness changes in different ways
for different types of refactorings.

Our study serves as the first step toward using naturalness information to support refac-
toring activities. In the future, we will conduct more thorough empirical studies to under-
stand the correlation between refactoring quality and code naturalness. That is, we would
like to examine whether naturalness can be a good indicator for effective refactorings with
high quality code. We will also investigate the possibility of use the naturalness of source
code combined with other metrics, such as Chidamber and Kemerer metrics [HM96], to
support the identification of code components in need of refactoring.

C
Investigating the Use of Code Analysis and NLP
to Promote a Consistent Usage of Identifiers

Meaningless identifiers as well as inconsistent use of identifiers in the source code might
hinder code readability and result in increased software maintenance efforts. Over the past
years, effort has been devoted to promoting a consistent usage of identifiers across different
parts of a system through approaches exploiting static code analysis and natural language
processing (NLP). These techniques have been evaluated in small-scale studies, but it is
unclear how they compare to each other and how they complement each other. Furthermore,
a full-fledged larger empirical evaluation is still missing.

We aim at bridging this gap. We asked developers of five projects to assess the mean-
ingfulness of the recommendations generated by three techniques, two already existing in
the literature (one exploiting static analysis, one using NLP) and a novel one we propose.
With a total of 922 rename refactorings evaluated, this is, to the best of our knowledge, the
largest empirical study conducted to assess and compare rename refactoring tools promot-
ing a consistent use of identifiers. Our study sheds light on the current state-of-the-art in
rename refactoring recommenders, and indicates directions for future work.

This study is based on the following publication [LSM+17]:

Investigating the Use of Code Analysis and NLP to Promote a Consistent Usage of Identifiers

Bin Lin, Simone Scalabrino, Andrea Mocci, Rocco Oliveto, Gabriele Bavota, Michele Lanza. In Pro-
ceedings of the 17th International Working Conference on Source Code Analysis and Manipulation (SCAM
2017) – Research Track, pp. 81-90, 2017

99

100 Investigating the Use of Code Analysis and NLP to Promote a Consistent Usage of Identifiers

C.1 Introduction

In programming languages, identifiers are used to name program entities; e.g., in Java, iden-
tifiers include names of packages, classes, interfaces, methods, and variables. Identifiers ac-
count for∼30% of the tokens and∼70% of the characters in the source code [DP06]. Naming
identifiers in a careful, meaningful, and consistent manner likely eases program comprehen-
sion and supports developers in building consistent and coherent conceptual models [DP06].

Instead, poorly chosen identifiers might create a mismatch between the developers’ cog-
nitive model and the intended meaning of the identifiers, thus ultimately increasing the risk
of fault proneness. Indeed, several studies have shown that bugs are more likely to reside
in code with low quality identifiers [BWYS09, AAT+12]. Arnaoudova et al. [AEO+10] also
found that methods containing identifiers with higher physical and conceptual dispersion are
more fault-prone. This suggests the important role played by a specific class of identifiers,
i.e., local variables and method parameters, in determining the quality of methods.

Naming conventions can help to improve the quality of identifiers. However, they are
often too general, and cannot be automatically enforced to ensure consistent and meaningful
identifiers. For example, the Java Language Specification1 indicates rules for naming local
variables and parameters: e.g., “should be short, yet meaningful”. Clearly, these requirements
do not guarantee consistent variable naming.

For example, developers might use “localVar” and “varLocal” in different code lo-
cations even if these two names are used in the same context and with the same meaning.
Also, synonyms might be used to name the same objects, such as “car” and “auto”. Finally,
developers might not completely adhere to the rules defined in project-specific naming con-
ventions.

Researchers have presented tools to support developers in the consistent use of identi-
fiers. Thies and Roth [TR10] analyzed variable assignments to identify pairs of variables
likely referring to the same object but named differently. Allamanis et al. [ABBS14] pio-
neered the use of NLP techniques to support identifiers renaming. Their NATURALIZE tool
exploits a language model to infer from a code base the naming conventions and to spot
unnatural identifiers (i.e., unexpected identifiers), that should be renamed to promote con-
sistency.

To obtain a reliable evaluation of approaches supporting automatic identifier renaming,
the original authors of the source code should be involved in assessing the meaningfulness of
the suggested refactorings. However, running such evaluations is expensive, thus refactoring
techniques are often evaluated in “artificial scenarios” (e.g., injecting a meaningless identi-
fier in the code and check whether the tool is able to recommend a rename refactoring for it)
and/or by relying on the manual evaluation of a limited number of recommended rename
refactorings. For example, Thies and Roth [TR10] manually assessed the meaningfulness
of 32 recommendations generated by their tool. Instead, Allamanis et al. [ABBS14] firstly
analyzed 33 rename recommendations generated by NATURALIZE, and then opened pull re-
quests in open source projects to evaluatethe meaningfulness of 18 renaming recommended
by NATURALIZE (for a total of 51 data points).

1https://docs.oracle.com/javase/specs/jls/se7/html/jls-6.html

https://docs.oracle.com/javase/specs/jls/se7/html/jls-6.html

C.2 Related Work 101

We aim at assessing the meaningfulness of the rename refactorings recommended by
state-of-the-art approaches on a larger scale (922 evaluations in total) and by only rely-
ing on developers having a first-hand experience on the object systems of our study. We
evaluated two existing approaches, i.e., the one by Thies and Roth [TR10] exploiting static
code analysis, and the NATURALIZE tool [ABBS14] using NLP techniques to support identifier
renaming. In addition, we propose a variation of NATURALIZE, named LExicAl Renaming
(LEAR), exploiting a different concept of language model more focused on the lexical infor-
mation present in the code. We conducted extensive empirical comparison of these three
tools. Our results support the potential practical use of the identifier renaming approaches
and indicates directions for improvement.

Structure of the Chapter

In Section C.2 we discuss the related work, while Section C.3 presents LEAR. In Section C.4
we report the evaluation study and the comparison with the baseline approach. Section C.5
discusses the threats to validity. Finally, Section C.6 outlines the conclusions.

C.2 Related Work

We discuss the literature related to the study of identifiers’ quality and to techniques sup-
porting the automatic identifier renaming. We describe in detail two of the techniques that
are part of our empirical study, and in particular the approach by Thies and Roth [TR10]
and the NATURALIZE tool by Allamanis et al. [ABBS14]. The third approach involved in our
evaluation, named LEAR, is described in Section C.3.

Lawrie et al. [LMFB06] report the results of an experiment in which over 100 develop-
ers were asked to describe 12 different functions. The functions used three different types
of identifiers, i.e., single letters, abbreviations, and full words. The results showed that
developers tend to comprehend identifiers composed of full words better than single let-
ters/abbreviations. Lawrie et al. [LFB07b] also investigated the identifier quality based on
almost 50 million lines of code, covering different programming languages. They found that
modern software projects have better quality of identifier names than old projects.

Butler et al. [BWYS09] used eleven identifier naming guidelines for Java to evaluate the
quality of identifiers. They found statistically significant associations between the identifier
names violating at least one guideline and code quality issues reported by a static analysis
tool. Based on this finding, Butler et al. [BWYS10] conclude that some of these naming
guidelines can be used as a light-weight diagnostic to identify areas of potentially problematic
code. Murphy-Hill et al. [MPB12] investigated the adoption of refactoring tools in the IDE,
reporting that rename refactoring is among the most frequently performed operations.

Much effort has been devoted to improving the quality of identifier names, for example
via identifier splitting [GPAG13, CMM12, EHPV09] and expansion [HFB+08, LB11]. How-
ever, these approaches cannot address the problem caused by non-adherence to naming
conventions or by the inconsistent use of identifiers.

102 Investigating the Use of Code Analysis and NLP to Promote a Consistent Usage of Identifiers

Reiss [Rei07] proposed a tool that learns code style from existing source code, such
as identifier conventions and indentation, and applies it automatically on a new code arti-
fact, thus making it consistent with the rest of the system. A similar tool is SmartFormat-
ter [CGP07] that also learns the lexical form of terms used in identifiers.

Caprile and Tonella [CT00] proposed an approach to restructure identifiers with the goal
of enhancing their meaningfulness. The approach builds a standard lexicon dictionary and a
synonyms dictionary by analyzing a set of programs. Then, when analyzing a new program,
the devised approach decomposes each identifier into the terms composing it and checks
whether each term is “standard” according to the built dictionary. Non-standard terms are
suggested to be replaced by their standard forms (e.g., expand upd into update). While
their approach was foundational for the field of identifier restructuring, we do not consider
it in our empirical study since we focus on techniques aimed at promoting a consistent use
of identifiers across a system. The approach by Caprile and Tonella [CT00] is focused on
improving the meaningfulness of identifiers, without considering their consistent use.

Høst and Østvold [HØ09a] presented an approach to identify naming bugs, i.e., a method
name not representative of its implementation. The approach mines method naming rules
from a corpus of Java applications, and suggests renamings for methods not following the
learned rules. In our study we did not consider the approach by Høst and Østvold since we
focus on techniques recommending identifier renames for methods’ variables and parame-
ters. Feldthaus and Møller [FM13] proposed a technique to support rename refactorings in
JavaScript. When a developer decides to rename a variable v, a static analysis technique is
applied to identify v’s occurrences that need to be consistently renamed. The list of identified
occurrences is provided to the developer for inspection. Jablonski and Hou [JH07] proposed
Consistent ReNaming (CReN), a tool to track copy-and-paste clones and support identifier
renaming in the IDE. A set of rules based on relationships between identifiers is used to in-
fer developers’ intentions (e.g., two identifiers that are frequently renamed together). Also
these two approaches have not been considered in our study since we focus on techniques
suggesting renaming operations to promote a consistent use of identifiers.

C.2.1 Thies and Roth [TR10] - Static code analysis

Thies and Roth [TR10] present a tool to support identifier renaming based on informa-
tion extracted via static code analysis. They exploit information of variable assignments
to identify the inconsistent identifier use to name variables referring to the same object.
The authors consider two types of assignments: 1) a variable is assigned to another vari-
able (e.g., paper= bestPaper); 2) a variable is assigned to a method invocation (e.g.,
paper= getBestPaper()). For the latter, the assignment can be seen as the assignment to
the returned variable. In our example, assume that the method getBestPaper() returns a
variable named “bestPaper”, the assignment is treated as paper= bestPaper. Once the
information about variable assignments is extracted for all variables, an assignment graph
is constructed where each node represents a variable and an edge connecting two variables
represents an assignment. If an edge connects two nodes named with different identifiers but
representing two variables of the same type, the tool generates a rename recommendation.

C.2 Related Work 103

To evaluate their approach, Thies and Roth [TR10] applied their tool to four open source
projects, and manually inspected renaming suggestions generated for variables with non-
primitive types. As a result, 21 out of 32 suggestions appear to be beneficial. Among the
21 useful suggestions, 4 of them are related to synonyms and 17 to inaccurate choice of the
identifiers.

In our study, we re-implemented the approach proposed by Thies and Roth since their
tool is not publicly available and we refer to this approach as CA-RENAMING, to stress the
fact that it only relies on static code analysis. We selected this approach because it is one of
the very few existing approaches aiming to reduce the inconsistent use of identifiers, while
most approaches focus on increasing the meaningfulness of identifiers without considering
naming consistency.

C.2.2 Allamanis et al. [ABBS14] - NLP

Allamanis et al. [ABBS14] present a framework, named NATURALIZE, to recommend natural
identifier names and formatting conventions by applying NLP to source code. One of the
goals of NATURALIZE is to promote identifier consistency. NATURALIZE exploits a n-gram lan-
guage model to estimate the probability that a specific identifier should be used in a given
context to name a variable. Language models are widely employed in many domains such
as speech recognition and code completion. The n-gram model is one of the most com-
monly used language models and it determines the probability of having a word wi given
the previous n-1 words. This probability is denoted by p(wi|wi−1, wi−2, . . . , wi−n+1), where
wi−n+1, . . . , wi−1, wi are n continuous words. The probability that wi follows wi−n+1, . . . , wi−2,
wi−1 is estimated by training the language model on a training set, composed of textual doc-
uments. When applying the language model to software-related tasks, like code completion,
the training set is composed of code documents.

NATURALIZE follows a two-step approach to recommend a rename refactoring for a vari-
able v:

1. Generating candidate names. NATURALIZE uses the abstract syntax tree (AST) of the
program under analysis to find the set of locations, L, in which v appears. Then, it
builds a snippet S representing the context in which v is used by taking the lowest
common ancestor in AST of nodes in L [ABBS14]. S is then linearly scanned by using
a moving window of length n, where n is the number of tokens. A token could be
an identifier, a syntactic symbol of the programming language, like “;”, a reserved
keyword of the language and so on. All n-grams containing v are extracted and the
collection of these n-grams becomes the context set of v. If another variable vi other
than v occurs in at least one similar context (i.e., in at least one similar n-gram), a
new snippet Si is created, i.e., S with all v replaced by vi , and it is added to the list of
alternative candidates.

2. Ranking candidates. A score function leveraging a language model is defined to rank
the candidates generated in the previous step. While any probability model can be

104 Investigating the Use of Code Analysis and NLP to Promote a Consistent Usage of Identifiers

used in the score function, the authors apply the n-gram language model we previ-
ously describe to assess the probability of a given candidate. In other words, given
the context (i.e., the set of n-grams) where an identifier v is used, the probability of
renaming v into vi is higher if vi is used in the training set in which the language model
has been built in a similar context.

To evaluate NATURALIZE, the authors assessed the meaningfulness of the refactorings
recommended for 30 methods (for a total of 33 variable renamings). Half of the suggestions
were identified as meaningful. Also, they submitted 18 patches to five GitHub projects,
among which 14 were accepted.

The goal of NATURALIZE (i.e., promoting consistency), its peculiarity of relying on NLP
techniques, and its availability2, made it an obvious choice for our study.

We started from the core idea behind NATURALIZE (i.e., using a language model to pro-
mote a consistent identifier use) to define an alternative rename refactoring approach, named
LEAR , that is presented in the next section and tries to overcome some limitations of the NAT-
URALIZE approach. For example, NATURALIZE uses all textual tokens in the n-gram language
model (including, e.g., punctuation) to characterize the context in which an identifier is used;
we believe that all the syntactic sugar in the programming language could mostly represent
noise for the language model, thus reducing the quality of the rename recommendations.
Also, NATURALIZE does not verify whether the recommended rename refactorings are valid
or not (e.g., it is not possible to rename an identifier id used in ids in a method m, if ids is al-
ready used in m to name any other variable/parameter. We present LEAR in the next section,
by paying particular attention to stressing its main differences with respect to NATURALIZE.

C.3 LExicAl Renaming

Our LEAR recommends renaming operations related to (i) variables declared in methods
and (ii) method parameters. The renaming of methods/classes as well as of instance/class
variables is not currently supported, since, as it will be clearer later, LEAR works at method
level. The support of other types of identifiers is part of our future work agenda. In the
following we describe in detail the main steps of LEAR.

Identifying methods and extracting the vocabulary. LEAR parses the source code of
the input system by relying on the SRCML infrastructure [CDM13]. The goal of the parsing
is to extract (i) the complete list of methods, and (ii) the identifiers’ vocabulary, defined as
the list of all the identifiers used to name parameters and variables (declared at both method
and class level) in the whole project. From now on we refer to the identifiers’ vocabulary
simply as the vocabulary. Once the vocabulary and the list of methods have been extracted,
the following steps are performed for each method m in the system. We use the method in
Listing C.1 as a running example.

N-gram Extraction from m. We extract all textual tokens from the method m under
analysis, by removing (i) comments and string literals, (ii) all non-textual content, i.e., punc-
tuation and (iii) non-interesting words, such as Java keywords and the name of method m

2http://groups.inf.ed.ac.uk/naturalize/

http://groups.inf.ed.ac.uk/naturalize/

C.3 LExicAl Renaming 105

itself. Basically, we only keep tokens referring to identifiers, excluding the name of m, and
non-primitive types, which are Java keywords. This is one of the main differences with
respect to NATURALIZE.

Indeed, while NATURALIZE uses all textual tokens in the n-gram language model (includ-
ing, e.g., Java keywords), we only focus on tokens containing lexical information. We expect
sequences of only lexical tokens to better capture and characterize the context in which a
given identifier is used.

Listing C.1. Example of method analyzed

public void pr in tUse r (in t uid) {
S t r ing q = " SELECT WHERE user_ id = " + uid ;
User user = runQuery (q) ;
System . out . p r i n t l n (user) ;

}

The list of identifiers extracted from printUser includes: uid, String, q, uid, User,
user, runQuery, q, System, out, println, user. Again, our conjecture is that such a list
of tokens captures the context—referred to method printUser—where an identifier (e.g., q)
is used. After obtaining the identifier list, we extract n-grams from it such that the language
model can use them to estimate the probability that a specific identifier should be used in a
given context.

Lin et al. [LPM+17] found that the n-gram language model achieves the best accuracy
in supporting code completion tasks when setting n = 3. The same value was used in the
original work by Hindle et al. [HBS+12] proposing the usage of the language model for code
completion. Therefore, we build 3-grams from the extracted list of tokens. In our running
example, ten 3-grams will be extracted, including: 〈uid, String, q〉, 〈String, q, uid〉, 〈q,
uid, User〉, 〈uid, User, user〉, etc.

Generating candidate rename refactoring. For each variable/parameter identifier in
m (in the case of printUser: uid, q, and user), LEAR looks for its possible renaming by
exploiting the vocabulary built in the first step. Given an identifier under analysis id, LEAR

extracts from the vocabulary all the identifiers ids which meet the following constraints:

• C1: ids is used to name a variable/parameter of the same type as the one referred by
id. For example, if id is a parameter of type int, ids must be used at least once as an
int variable/parameter;

• C2: ids is not used in m to name any other variables/parameters. Indeed, in such a
circumstance, it would not be possible to rename id in ids in any case;

• C3: ids is not used to name any attribute of the class Ck implementing m nor in any
class Ck extends, for the same reason explained in C2.

The constraint checking not considered in NATURALIZE represents another difference be-
tween LEAR and NATURALIZE.

We refer to the list of valid identifiers fulfilling the above criteria as VIid . Then, LEAR

uses a customized version of the 3-gram language model to compute the probability that
each identifier ids in VIid appears, instead of id, in all the 3-grams of m including id.

106 Investigating the Use of Code Analysis and NLP to Promote a Consistent Usage of Identifiers

Let T Pid be the set of 3-gram patterns containing at least once id, and t pid→ids
be a 3-

gram obtained from a pattern t pid ∈ T Pid where the variable id is replaced with a valid
identifier ids ∈ V Iid . We define the probability of a given substitution to a variable as:

P(t pid→ids
) =

count(t pid→ids
)

∑

y∈V Iid
count(t pid→y)

(C.1)

When the pattern is in the form of 〈id1, id2, id〉, the probability of a substitution corresponds
to the classic probability as computed by a 3-gram language model, that is:

P(〈id1, id2, id〉id→ids
) = P(ids|id1, id2) =

count(〈id1, id2, ids〉)
count(〈id1, id2〉)

(C.2)

To better understand this core step of LEAR, let us discuss what happens in our running
example when LEAR looks for possible renaming of the uid parameter identifier. The 3-
grams of printUser containing uid are: 〈uid, String, q〉, 〈String, q, uid〉, 〈q, uid,
User〉, and 〈uid, User, user〉.

Assume that the list of identifiers VIid (i.e., the list of valid alternative identifiers for
uid) includes userId and localCount. LEAR uses the language model to compute the
probability that userId occurs in each of the 3-grams of printUser containing uid. For
example, the probability of observing userId in the 3-gram 〈q, uid, User〉 is:

p(q,userId,User) =
count(q,userId,User)

count(q,y,User)
(C.3)

where count(q,userId,User) is the number of occurrences of the 3-gram 〈q,userId,User〉
in the system, and count(q,y,User) is the number of occurrences of the corresponding 3-
gram, where y represents any possible identifier (including userId itself). Note that the
count function only considers n-grams where ids has the same type as id. Also, it does not
take into account n-grams extracted from the method under analysis. This is done to avoid
favoring the probability of the current identifier name used in the method under analysis as
compared to the probability of other identifiers.

How the probability for a given identifier to appear in a n-gram is computed also differen-
tiates LEAR from NATURALIZE. In the example reported above, NATURALIZE in fact computes
the probability of observing User following 〈q,userId〉:

p(User|q,userId) =
count(q,userId,User)

count(q,userId)
(C.4)

The two probabilities (i.e., the one computed by LEAR and by NATURALIZE), while based on
similar intuitions, could clearly differ. Our probability function is adapted from the standard
language model (i.e., the one used by NATURALIZE) in an attempt to better capture the context
in which an identifier is used. This can be noticed in the way our denominator is defined: it
keeps intact that identifiers’ context in which we are considering injecting userId instead
of uid.

C.3 LExicAl Renaming 107

The average probability across all these 3-grams is considered as the probability of ids
being used instead of id in m.

This process results in a ranked list of VIid identifiers having on top the identifier with
the highest average probability of appearing in all the 3-grams of m as a replacement (i.e.,
rename) of id. We refer to this top-ranked identifier as Tid .

Finally, LEAR uses the same procedure to compute the average probability that the identi-
fier id itself appears in the 3-grams where it currently is. If the Tid has the higher probability
of appearing in the 3-grams is than id, a candidate rename refactoring has been found (i.e.,
rename id in Tid). Otherwise, no rename refactoring is needed.

Assessing the confidence and the reliability of the candidate recommendations.
LEAR uses two indicators acting as proxies for the confidence and the reliability of the recom-
mended refactoring. Given a rename refactoring recommendation id → Tid in the method
m, the confidence indicator is the average probability of Tid to occur instead of id in the
3-grams of m where id appears.

We refer to this indicator as Cp, and it is defined in the [0, 1] interval. The higher Cp,
the higher the confidence of the recommendation. We study how Cp influences the quality
of the recommendations generated by LEAR in the following.

The “reliability” indicator, named Cc , is the number of distinct 3-grams used by the lan-
guage model in the computation of Cp for a given recommendation id → Tid in the method
m. Given 〈id1, id2, id〉 a 3-gram where id appears in m, we count the number of 3-grams
in the system in the form 〈id1, id2, x〉, where x can be any possible identifier. This is done
for all the 3-grams of m including id, and the sum of all computed values is represented by
Cc . The conjecture is that the higher Cc , the higher is the reliability of the Cp computation.
Indeed, the higher Cc , the higher the number of 3-grams from which the language model
learned that Tid is a good substitution for id. Cc is unbounded on top. We study what is the
minimum value of Cc allowing reliable recommendations in the following.

Note that while NATURALIZE does also provide a scoring function based on the probability
derived by the n-gram language model to indicate the confidence of the recommendation
(i.e., the equivalent of our Cp indicator), it does not implement a “reliability” indicator cor-
responding to Cc .

Tuning of the Cc and Cp indicators. To assess the influence of the Cp (confidence) and
Cc (reliability) indicators on the quality of the rename refactorings generated by LEAR, we
conducted a study on one system, named SMOS. We asked one of the SMOS developers
(having nowadays six years of industrial experience) to assess the meaningfulness of the
LEAR recommendations. SMOS is a Java web application developed by a team of Master
students, and composed by 121 classes for a total of ∼23 thousand lines of code (KLOC).
We used the SMOS system only for the tuning of the indicators Cp and Cc , i.e., to identify
minimum values needed to receive meaningful recommendations for both of them. SMOS
is not used in the actual evaluation of our approach, presented in Section C.4.

We ran LEAR on the whole system and asked the participant to analyze the 146 rename
refactoring generated by LEAR and to answer, for each of them, the question Would you apply
the proposed refactoring?, assigning a score on a three-point Likert scale: 1 (yes), 2 (maybe),
and 3 (no). We clarified with the participant the meaning of the three possible answers:

108 Investigating the Use of Code Analysis and NLP to Promote a Consistent Usage of Identifiers

1 (yes) must be interpreted as “the recommended renaming is meaningful and should be
applied”, i.e., the recommended identifier name is better than the current one;

2 (maybe) must be interpreted as “the recommended renaming is meaningful, but should
not be applied”, i.e., the recommended identifier is a valid alternative to the one cur-
rently used, but is not a better choice;

3 (no) must be interpreted as “the recommended rename refactoring is not meaningful”.

The participant answered yes to 18 (12%) of the recommended refactoring, maybe to 15,
and no to 113. This negative trend is expected, considering the fact that we asked the par-
ticipant to assess the quality of the recommended refactoring independently from the values
of the Cp and the Cc indicators. That is, given the goal of this study, also recommendations
having very low values for both indicators (e.g., Cp = 0.1 and Cc = 1) were inspected, despite
we do not expect them to be meaningful. Table C.1 reports five representative examples of
rename refactoring tagged with a yes by the developer.

Table C.1. Five rename refactoring tagged with a yes

Original name Rename Cp Cc

mg managerUser 1.00 146
e invalidValueException 0.90 356
buf searchBuffer 0.89 5
result classroom 0.87 15
managercourseOfStudy managerCourseOfStudy 0.67 12

By inspecting the assessment performed by the participant, the first thing we noticed is
that recommendations having Cc < 5 (i.e., less than five distinct 3-grams have been used by
the language model to learn the recommended rename refactoring) are generally unreliable,
and should not be considered. Indeed, out of the 28 rename refactoring having Cc < 5,
one (3%) was accepted (answer “yes”) by the developer and three (10%) were classified as
maybe, despite the fact that 22 of them had Cp = 1.0 (i.e., the highest possible confidence
for the generated recommendation). Thus, when Cc < 5 even recommendations having a
very high confidence are simply not reliable. When Cc ≥ 5, we noticed that its influence on
the quality of the recommended renames is limited, i.e., no other clear trend in the quality of
the recommended refactoring can be observed for different values of Cc . Thus, we excluded
the 28 refactoring recommendations having Cc < 5 and studied the role played by Cp in the
remaining 118 recommendations (17 yes, 12 maybe, and 89 no).

Fig. C.1 reports the recall and precision levels of our approach when excluding the rec-
ommendations having Cp < t, with t varying between 1.0 and 0.1 at steps of 0.1. Note
that in the computation of the recall and precision we considered the 29 recommendations
accepted with a yes (17) or assessed as meaningful with a maybe (12) as correct (i.e., the
maybe answers are equated to the yes answers, and considered correct). This choice was
dictated by the fact that we see the meaningful recommendations tagged with maybe as
valuable for the developer, since she can then decide whether the alternative identifier name

C.3 LExicAl Renaming 109

pr
ec

isi
on

recall
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cp=1.0

Cp=0.9
Cp=0.8

Cp=0.7

Cp=0.6

Cp=0.5

Cp=0.4

Cp=0.3 Cp=0.2

Cp=0.1

Figure C.1. Precision and recall of the LEAR recommendations when varying Cp

provided by our approach is valid or not. For a given value of t, the recall is computed as
the number of correct recommendations having Cp ≥ t divided by 29 (the number of correct
recommendations). This is an “approximation” of the real recall since we do not know the
actual number of correct renamings that are needed in SMOS. In other words, if a correct
rename refactoring was not recommended by LEAR, it was not evaluated by the participant
and thus is not considered in the computation of the recall.

The precision is computed as the number of correct recommendations having Cp ≥ t
divided by the number of recommendations having Cp ≥ t. For example, when considering
recommendations having Cp = 1.0, we only have three recommended renames, two of which
have been accepted by the developer. This results in a recall of 0.07 (2/29) and a precision
of 0.67 (2/3)—see Fig. C.1.

Looking at Fig. C.1, we can see that both recall and precision increase moving from Cp =
1.0 to Cp = 0.8, reaching recall=0.42 (12/29) and precision=0.92 (12/13). This means
that only one among the top-13 recommendations ranked by Cp has been considered as not
meaningful by the developer. Moving toward lower values of Cp, the recall increases thanks
to the additional recommendations considered, while the precision decreases, indicating that
the quality of the generated recommendations tend to decrease with lower Cp values (i.e.,
there are higher chances of receiving a meaningless recommendation for low values of Cp).
It is quite clear in Fig. C.1 that the likelihood of receiving good rename recommendations
when Cp < 0.5 is very low.

Based on the results of the performed tuning, we modified our tool in order to generate
refactoring recommendations only when Cc ≥ 5 and Cp ≥ 0.5. This parameter setting will

110 Investigating the Use of Code Analysis and NLP to Promote a Consistent Usage of Identifiers

be used for all the projects subject of our evaluation, i.e., no project-specific tuning will be
performed. In the evaluation reported in Section C.4 we will further study the meaningful-
ness of the generated recommendations of rename refactorings for different values of Cp in
the significant range, i.e., varying between 0.5 and 1.0.

C.4 Evaluation

This section presents the design and the results of the empirical study we carried out to
compare the three previously introduced approaches for rename refactoring.

C.4.1 Study Design

The goal of the study is to assess the meaningfulness of the rename refactorings recom-
mended by CA-RENAMING, NATURALIZE, and LEAR.

The perspective of the study is of researchers who want to investigate the applicability of
approaches based on static code analysis (i.e., CA-RENAMING) and on the n-gram language
model (i.e., NATURALIZE and LEAR) to recommend rename refactorings. The context is rep-
resented by objects, i.e., five software projects on which we ran the three experimented tools
to generate recommendations for rename refactorings, and subjects, i.e., seven developers of
the objects assessing the meaningfulness of the recommended rename refactorings.

To limit the number of refactoring recommendations to be evaluated by the developers,
we applied the following “filtering policy” to the experimented techniques:

Table C.2. Context of the study (systems and participants)

(a) Context of the study – systems

System Type # of classes LOCs Developers

THERIO Web App 79 13K 2
LIFEMIPP Web App 72 7K 2
MYUNIMOLANDROID Android App 96 27K 4
MYUNIMOLSERVICES Web Services 100 8K 7
OCELOT Desktop App 182 22K 2

(b) Context of the study – participants

System Participants Experience (mean) Occupation

THERIO 1 7+ years PhD Student
LIFEMIPP 2 7+ years Professional; PhD Student
MYUNIMOLANDROID 1 5+ years Professional
MYUNIMOLSERVICES 2 3+ years Bachelor students
OCELOT 1 7+ years PhD student

C.4 Evaluation 111

• LEAR: Given the results of the tuning of the Cp and the Cc indicators, we only consider
the recommendations having Cc ≥ 5 and Cp ≥ 0.50.

• NATURALIZE: We used the original implementation made available by the authors with
the recommended n = 5 in the n-gram language model. To limit the number of rec-
ommendations, and to apply a similar filter with respect to the one used in LEAR,
we excluded all recommendations having a probability lower than 0.5. Moreover,
since NATURALIZE is also able to recommend renamings for identifiers used for method
names (as opposed to the other two competitive approaches), we removed these rec-
ommendations, in order to have a fair comparison.

• CA-RENAMING: No filtering of the recommendations was applied (i.e., all of them were
considered). This is due to the fact that, as it will be shown, CA-RENAMING generates
a much lower number of recommendations as compared to the other two techniques.

Despite these filters, our study involves a total of 922 manual evaluations of recommen-
dations for rename refactoring. Note also that no comparison will be performed in terms
of running time (i.e., the time needed by the techniques to generate the recommendations),
since none of them requires more than a few minutes (<5) per system.

Research Questions and Context

Our study is steered by the following research question:

• RQ1 Are the rename refactoring recommendations generated by approaches exploiting
static analysis and NLP meaningful from a developer’s point of view?

The object systems taken into account are five Java systems developed and actively main-
tained at the University of Molise in the context of research projects or as part of its IT in-
frastructure. As subjects, we involved seven of the developers maintaining these systems.
Table C.2 shows size attributes (number of classes and lines of code (LOC)) of the five sys-
tems, the number of developers actively working on them (column “Developers”), the num-
ber of developers we were able to involve in our study (column “Participants”), the average
experience of the involved participants, and their occupation3.

As it can be seen we involved a mix of professional developers and Computer Science
students at different levels (Bachelor, Master, and PhD). All the participants have at least
three years of experience in Java and they are directly involved in the development and
maintenance of the object systems.

THERIO is a Web application developed and maintained by Master and PhD students. It
is currently used for research purposes to collect data from researchers from all around the
world. LIFEMIPP is a Web application developed and maintained by a professional developer
and a PhD student. LIFEMIPP has been developed in the context of a European project and it
is currently used by a wide user base. MYUNIMOLANDROID is an Android application devel-
oped and maintained by students and professional developers. It is available on the Google

3Here “Professional” indicates a developer working in industry.

112 Investigating the Use of Code Analysis and NLP to Promote a Consistent Usage of Identifiers

PlayStore, and has been downloaded over 1,000 times, and it is mostly used by students
and faculties. MYUNIMOLSERVICES is an open-source software developed and maintained by
students and professional developers. Such a system is the back-end of the MYUNIMOLAN-
DROID app. Finally, OCELOT is a Java desktop application developed and maintained by PhD
students. At the moment, it is used by researchers in an academic context.

Data Collection and Analysis

We run the three experimented approaches (i.e., CA-RENAMING, NATURALIZE, and LEAR) on
each of the five systems to recommend rename refactoring operations. Given R the set of
refactoring recommended by a given technique on system P, we asked P ’s developers in-
volved in our study to assess the meaningfulness of each of the recommended refactor-
ings. We did not disclose which tool generated the recommendations to the developers.
We adopted the same question/answers template previously presented for the tuning of the
LEAR’s Cc and Cp indicators. In particular, we asked the developers the question: Would you
apply the proposed refactoring? with possible answers on a three-point Likert scale: 1 (yes),
2 (maybe), and 3 (no). Again, we clarified the meaning of these three possible answers.

Overall, participants assessed the meaningfulness of 725 rename refactorings, 66 rec-
ommended by CA-RENAMING, 357 by NATURALIZE, and 302 by LEAR across the five systems.
Considering the number of participants involved (e.g., two participants evaluated indepen-
dently the recommendations generated for LIFEMIPP), this accounts for a total of 922 refac-
toring evaluations, making our study the largest empirical evaluation of rename refactoring
tools performed with developers having first-hand experience on the object systems.

To answer our research question we report, for the three experimented techniques, the
number of rename refactoring recommendations tagged with yes, maybe and no. We also
report the precision of each technique computed in two different variants. In particular,
given R the set of refactorings recommended by an experimented technique, we compute:

• Precyes, computed as the number of recommendations in R tagged with a yes divided
by the total number of recommendations in R. This version of the precision considers as
meaningful only the recommendations that the developers would actually implement.

• Precyes∪ma y be, computed as the number of recommendations in R tagged with a yes
or with a maybe divided by the total number of recommendations in R. This version
of the precision considers as meaningful also the recommendations indicated by the
developers as a valid alternative to the original variable name but not calling for a
refactoring operation.

Due to lack of space, we discuss the results aggregated by technique (i.e., by looking at
the overall performance across all systems and as assessed by all participants). The tools
and raw data are available in our replication package [LSM+].

Finally, we analyze the complementarity of the three techniques by computing, for each
pair of techniques (Ti , T j), the following overlap metrics:

cor rectTi∩T j
=
|cor rectTi

∩ cor rectT j
|

|cor rectTi
∪ cor rectT j

|
(C.5)

C.4 Evaluation 113

cor rectTi\T j
=
|cor rectTi

\ cor rectT j
|

|cor rectTi
∪ cor rectT j

|
(C.6)

cor rectT j\Ti
=
|cor rectT j

\ cor rectTi
|

|cor rectTi
∪ cor rectT j

|
(C.7)

The formulas above use the following metrics:

• cor rectTi
represents the set of meaningful refactoring operations recommended by

technique Ti;

• cor rectTi∩T j
measures the overlap between the set of meaningful refactorings recom-

mended by Ti and T j;

• cor rectTi\T j
measures the meaningful refactoring operations recommended by Ti only

and missed by T j .

The latter metric provides an indication on how a rename refactoring tool contributes
to enrich the set of meaningful refactorings identified by another tool. Such an analysis is
particularly interesting for techniques relying on totally different strategies (e.g., static code
analysis vs NLP) to identify different rename refactoring opportunities. Due to space limita-
tion, we only report the three overlap metrics when considering both the recommendations
tagged with yes and maybe as correct. The overlap metrics obtained when only considering
the “yes recommendations” as meaningful are available in [LSM+].

C.4.2 Results

Table C.3 reports the answers provided by the developers to the question “Would you ap-
ply the proposed rename refactoring?”. Results are presented by approach, starting with the
technique based on static code analysis (i.e., CA-RENAMING [TR10]) followed by four differ-
ent variations of NATURALIZE and of LEAR using different thresholds for the confidence of
the generated recommendations. Table C.3 does also report the Precyes and Precyes∪ma y be
computed as described in Section C.4.1.

General Trends. Before discussing in detail the performance of the experimented tech-
niques, it is worthwhile to comment on some general trend reported in Table C.3. First of all,
the approaches based on NLP generate more recommendations than CA-RENAMING. This holds
as well when considering the highest confidence threshold we experimented with (i.e., 0.8).
Indeed, in this case LEAR generates a total of 130 rename refactorings (on average 18.57 per
system) and NATURALIZE 88 (12.57 on average), as compared to the 80 recommended by
CA-RENAMING (11.43 on average).

Another consideration is that LEAR recommends a higher number of refactorings that are
accepted by the developers with respect to NATURALIZE and to CA-RENAMING. Overall, 111
rename refactorings recommended by LEAR have been fully accepted with a yes, as compared
to the 76 by NATURALIZE and 21 by CA-RENAMING.

114 Investigating the Use of Code Analysis and NLP to Promote a Consistent Usage of Identifiers

Table C.3. Participants’ answers to the question Would you apply the proposed rename refactoring?

(a) Statistics of “yes”, “maybe”, “no” answers

Approach Confidence
yes # maybe # no

overall mean overall mean overall mean

CA-RENAMING N/A 21 3.00 30 4.29 29 4.14

NATURALIZE >=0.5 76 10.86 99 14.14 284 40.57
NATURALIZE >=0.6 59 8.43 67 9.57 193 27.57
NATURALIZE >=0.7 35 5.00 43 6.14 107 15.29
NATURALIZE >=0.8 20 2.86 21 3.00 47 6.71

LEAR >=0.5 111 15.86 140 20.00 129 18.43
LEAR >=0.6 99 14.14 112 16.00 85 12.14
LEAR >=0.7 67 9.57 69 9.86 50 7.14
LEAR >=0.8 55 7.86 50 7.14 25 3.57

(b) Precision of the compared techniques

Approach Confidence
recomm.

Precyes∪ma y be Precyes
overall mean

CA-RENAMING N/A 80 11.43 63.75% 26.25%

NATURALIZE >=0.5 459 65.57 38.13% 16.56%
NATURALIZE >=0.6 319 45.57 39.50% 18.50%
NATURALIZE >=0.7 185 26.43 42.16% 18.92%
NATURALIZE >=0.8 88 12.57 46.59% 22.73%

LEAR >=0.5 380 54.29 66.05% 29.21%
LEAR >=0.6 296 42.29 71.28% 33.45%
LEAR >=0.7 186 26.57 73.12% 36.02%
LEAR >=0.8 130 18.57 80.77% 42.31%

Also, the higher number of accepted refactorings does not result in a lower precision.
Indeed, LEAR does also achieve a higher Precyes with respect to CA-RENAMING (29.21% vs
26.25%) and to NATURALIZE (16.56%). The precision of NATURALIZE is negatively influenced
by the extremely high number of recommendations it generates when considering all those
having confidence ≥ 0.5 (i.e., 459 recommendations). Finally, LEAR’s and NATURALIZE’s pre-
cision is strongly influenced by the chosen confidence threshold. The values on Table C.3 show
an evident impact of the confidence threshold on Precyes and Precyes∪ma y be for both the
approaches. Indeed, going to the least to the most conservative configuration for the con-
fidence level, Precyes∪ma y be increases by ∼14% (from 66.05% to 80.77%) for LEAR and by
∼38% for NATURALIZE (from 38.13% to 76.14%), while Precyes increases by ∼13% for LEAR

(from 29.21% to 42.31%) and by ∼6% for NATURALIZE (from 16.56% to 22.73%).

C.4 Evaluation 115

These results indicate one important possibility offered by these two approaches based
on a similar underlying model: Depending on the time budget developers want to invest,
they can decide whether to have a higher or a lower number of recommendations, being
informed of the fact that the most restrictive threshold is likely to just generate very few
false positives, but also to potentially miss some good suggestions.

Per-project analysis. Table C.4 reports examples of recommendations generated by the
three approaches and tagged with yes, maybe, and no.

Table C.4. Refactorings tagged with yes, maybe, and no

System Original name Rename Conf . Tag

C
A
-R

E
N

A
M

IN
G

LIFEMIPP i insect N/A yes
THERIO pk idCollection N/A yes
MYUNIMOLANDROID data result N/A maybe
OCELOT hash md5final N/A maybe
OCELOT navigator this N/A no
MYUNIMOLANDROID fullname fullnameOk N/A no

N
AT

U
R

A
LI

Z
E

OCELOT callString macro 0.92 yes
MYUNIMOLANDROID factory inflater 0.75 yes
OCELOT declaration currentDeclaration 0.79 maybe
MYUNIMOLSERVICES moduleName name 0.69 maybe
LIFEMIPP species t 0.64 no
MYUNIMOLSERVICES username token 0.91 no

LE
A

R

LIFEMIPP image photo 1.00 yes
MYUNIMOLSERVICES careerId pCareerId 0.63 yes
OCELOT type realType 0.91 maybe
LIFEMIPP file fileFullName 0.67 maybe
THERIO pUsername pName 0.59 no
MYUNIMOLANDROID info o 1.00 no

Moving to the assessment performed by participants on each project (data available in
our replication package [LSM+]), we found that the accuracy of the recommendations gen-
erated by the three tools substantially varies across the subject systems.

For example, on the LIFEMIPP project, CA-RENAMING is able to achieve very high values of
precision, substantially better than the ones achieved by the approaches based on NLP. The
refactoring recommendations for the LIFEMIPP project have been independently evaluated by
two developers. Both of them agreed on the meaningfulness of all eight recommendations
generated by CA-RENAMING. Indeed, the first developer would accept all of them, while
the second tagged five recommendations with yes and three with maybe. NATURALIZE and
LEAR, instead, while able to recommend a higher number of yes and maybe recommendations
as opposed to CA-RENAMING (on average 19 for NATURALIZE and 22 for LEAR vs the 8 for
CA-RENAMING), present a high price to pay in terms of false positives to discard (0 false
positives for CA-RENAMING as compared to 49 for NATURALIZE and 19 for LEAR). Such a

116 Investigating the Use of Code Analysis and NLP to Promote a Consistent Usage of Identifiers

cost is strongly mitigated when increasing the confidence threshold. Indeed, when only
considering recommendations having confidence ≥ 0.8, the number of false positives drops
to 1 (first developer) or 0 (second developer) for LEAR and to 8 or 6 for NATURALIZE.

However, LEAR and NATURALIZE still keep an advantage in terms of number of yes and
maybe generated recommendations (13 and 14—depending on the developer—for LEAR,
and 12, for both developers, for NATURALIZE). A similar trend has also been observed for
MYUNIMOLSERVICES.

When run on MYUNIMOLANDROID, CA-RENAMING only recommends three rename refac-
torings, two tagged with a maybe and one discarded (no). NATURALIZE generates 65 recom-
mendations, with nine yes, 14 maybe, and 42 no. Finally, LEAR generates 35 suggestions,
with six yes, 12 maybe, and 17 no.

This is the only system in which we did not observe a clear trend between the quality
of the refactoring recommended by LEAR and the value used for the Cp threshold. Indeed,
the precision of our approach is not increasing with the increase of the Cp value. This is due
to the fact that the developer involved in the evaluation of the refactoring for the MYUNI-
MOLANDROID rejected with a no seven recommendations having Cp ≥ 0.8.

We asked the developer for further comments to check what went “wrong” for this spe-
cific system, and in particular we asked to comment on each of these seven cases. Some of
the explanations seemed to indicate more a maybe recommendation rather than the assigned
no. For example, our approach recommended with Cp = 0.9 and Cc = 54 the renaming ac-
tivity → navigationDrawer. The developer explained that the activity identifier refers to an
object of FragmentActivity that is casted as a NavigationDrawer and, for this reason,
he prefers to keep the activity name rather than the recommended one. Another false pos-
itive indicated by the developer was renaming info→ o, where info is a method parameter
of type Object. LEAR learned from the MYUNIMOLANDROID’s trigrams that the developers
tend to name a parameter of type Object with o. This is especially true in the implementa-
tion of equals methods. Thus, while the renaming would have been consistent with what
is present in the system, the developer preferred to keep the original name as being “more
descriptive”, rejecting the recommendation. MYUNIMOLANDROID is also the only system in
which NATURALIZE achieves a higher precision than LEAR when considering the most restric-
tive confidence (i.e., ≥ 0.8).

Finally, on the THERIO and on the OCELOT projects, LEAR substantially outperforms the
two competitive approaches. On THERIO, The CA-RENAMING approach achieves Precyes =
0.33 and Precyes∪ma y be = 0.47, as compared to the Precyes = 0.37 and Precyes∪ma y be = 0.74
achieved by LEAR when considering only recommendations having Cp ≥ 0.6. LEAR also
generates a much higher number of yes (35 vs 5) and maybe (13 vs 2) recommendations.
Examples of recommendations generated by LEAR and accepted by the developers include pk
→ idTaxon and o→ occurrences, while an example of rejected recommendation is pUsername
→ pName. NATURALIZE also achieves its best performance on THERIO when considering all
recommendations having confidence ≥ 0.6 (Precyes = 0.35 and Precyes∪ma y be = 0.74), but
with a lower number of yes (23) and maybe (8) recommendations with respect to LEAR. A
similar trend is also observed on OCELOT, where LEAR is able to recommend 89 renamings
with a Precyes∪ma y be = 0.93.

C.5 Threats to Validity 117

Overlap Metrics Analysis. Table C.5 reports the three overlap metrics between the
experimented techniques.

Table C.5. Overlap metrics

Ti T j cor rectTi∩T j
cor rectTi\T j

cor rectT j\Ti

CA-RENAMING LEAR 1.00% 16.05% 82.94%
CA-RENAMING NATURALIZE 0.00% 22.57% 77.43%
LEAR NATURALIZE 4.16% 57.21% 38.63%

The overlap in terms of meaningful recommendations provided by the different tools is
extremely low; 1% between CA-RENAMING and LEAR, 0% between CA-RENAMING and NATU-
RALIZE, and 4% between LEAR and NATURALIZE. While the low overlap between the tech-
niques using static code analysis and NLP is somehow expected, the 4% overlap observed
between LEAR and NATURALIZE is surprising considering the fact that LEAR is inspired by the
core idea behind NATURALIZE. This means that the differences between the two techniques
described in Section C.3 (e.g., only considering the lexical tokens in the language model
as opposed to using all tokens) have a strong impact on the generated recommendations.
While this was already clear by the different performance provided by the two approaches
(see Table C.3), it is even more evident from Table C.5.

LEAR is able to recommend 82.94% of meaningful renamings that are not identified by
CA-RENAMING, and 57.21% that are not recommended by NATURALIZE. However, there is
also a high percentage of meaningful rename refactorings recommended by CA-RENAMING

(16.05%) and NATURALIZE (38.63%) but not identified by LEAR. This confirms the very high
complementarity of the different techniques, paving the way to novel rename refactoring
approaches based on their combination, which will be investigated in our future work.

C.5 Threats to Validity

Threats to construct validity are mainly related to how we assessed the developers’ per-
ception of the refactoring meaningfulness. We asked developers to express on a three-point
Likert scale the meaningfulness of each recommended refactoring making sure to carefully
explain the meaning of each possible answer from a practical point of view.

Threats to internal validity are represented, first of all, by the calibration of the LEAR

confidence Cp and Cc indicators. We performed the calibration of these indicators on one
project (SMOS) not used in the LEAR’s evaluation, by computing the recall vs precision curve
for different possible values of the Cp indicator. This was not really needed for the Cc indi-
cator, for which we just observed the unreliability of the recommendations having Cc < 5.
Concerning the other approaches, for the NATURALIZE’s n-gram model parameter we adopted
the one used by its authors (i.e., n = 5) and we relied on their implementation of the ap-
proach. To limit the number of refactoring recommendations, we excluded the ones having
a probability lower than 0.5. This choice certainly does not penalize NATURALIZE, since we

118 Investigating the Use of Code Analysis and NLP to Promote a Consistent Usage of Identifiers

are only considering the best recommendations it generates. As for CA-RENAMING, we used
our own implementation (available in [LSM+]).

Threats to external validity are related to the set of chosen objects and to the pool of
participants. Concerning the objects, we are aware that our study is based on refactorings
recommended on five Java systems only and that the considered systems, while not trivial,
are generally of small-medium size (between 7 and 27 KLOC). Also, we were only able to
involve in our study seven developers. Still, as previously said, (i) we preferred to limit
our study to developers having a first-hand experience with the object systems, rather than
inviting also external developers to take part in our study, and (ii) despite the limited number
of systems and developers, our results are still based on a total of 922 manual inspections
performed to assess the quality of the refactorings.

C.6 Conclusion

We assessed the meaningfulness of recommendations generated by three approaches—two
existing in the literature (i.e., CA-RENAMING [TR10] and NATURALIZE [ABBS14]) and one
presented in this chapter (i.e., LEAR)—promoting a consistent use of identifiers in code. The
results of our study highlight that:

1. Overall, LEAR achieves a higher precision, and it is able to recommend a higher number
of meaningful refactoring operations with respect to the competitive techniques.

2. While being the best performing approach, LEAR still generates a high number of false
positives, especially when just considering as meaningful the recommendations tagged with
a yes by the developers (i.e., the ones they would actually implement). This means that there
is large room for improvement in state-of-the-art tools for rename refactoring.

3. The experimented approaches have unstable performance across the different systems.
Indeed, even if LEAR is, overall, the approach providing the most accurate recommendations,
it is not the clear winner on all the object systems. This indicates that there are peculiarities
of the software systems that can influence the performance of the three techniques.

The above observations will drive our research agenda, including: (i) revising our ap-
proach to exploit more information (e.g., data flow graph) to increase its performance, and
(ii) studying the characteristics of the software systems that influence the accuracy of the
rename refactoring tools.

D
On The Quality of Identifiers in Test Code

Meaningful, expressive identifiers in source code can enhance the readability and reduce
comprehension efforts. Over the past years, researchers have devoted considerable effort
to understanding and improving the naming quality of identifiers in source code. However,
little attention has been given to test code, an important resource during program compre-
hension activities.

To better grasp identifier quality in test code, we conducted a survey involving manually
written and automatically generated test cases from ten open source software projects. The
survey results indicate that test cases contain low quality identifiers, including the manually
written ones, and that the quality of identifiers is lower in test code than in production code.
We also investigated the use of three state-of-the-art rename refactoring recommenders for
improving test code identifiers. The analysis highlights their limitations when applied to test
code and supports mapping out a research agenda for future work in the area.

This study is based on the following publication [LNB+19]:

On The Quality of Identifiers in Test Code

Bin Lin, Csaba Nagy, Gabriele Bavota, Andrian Marcus, Michele Lanza. In Proceedings of the 19th
International Working Conference on Source Code Analysis and Manipulation (SCAM 2019) – Research
Track, pp. 204–215, 2019

119

120 On The Quality of Identifiers in Test Code

D.1 Introduction

Identifiers represent a major part of the source code [DP06] and program comprehension be-
comes significantly harder when they are not meaningful [LMFB06, LFB07b]. Indeed, while
comprehending code, programmers rely on the meaning encoded in names [HØ09b], since
those are supposed to record knowledge and communicate key concepts in the source code
[DP06, But09]. Poor identifier names can hinder code comprehension and negatively affect
code quality [BWYS09]. Moreover, studies have found that the low quality of identifiers may
also threaten the performance of identifier based SE tools [PVH+11, GMPV13].

Consequently, many naming conventions, guidelines, and best practices have been dis-
tilled to help developers to choose appropriate names for their identifiers. For example,
the Java Language Specification1 indicates rules for naming local variables and parameters:
e.g., “should be short, yet meaningful”; “one-character identifiers should be avoided, except
for temporary and looping variables, or where a variable holds an undistinguished value of
a type”. Researchers have also extensively studied what makes an identifier good or bad
[LMFB06, LFB07b, HØ09a, HØ09b, BDL+13], and how it is possible to automatically im-
prove existing ones using natural language processing (NLP) [BHL11], thesauruses [CT00],
or statistical language models [ABBS15, LSM+17].

Existing empirical studies and rename refactoring techniques target the source code as
a whole when studying/improving identifier names, often ignoring the test code, despite its
important peculiarities. For instance, many studies found that developers take less care of the
quality of test code as compared to production code, thus leading to possible quality issues in
the tests [BGP+19, BGPZ15, ZRvDD11, ANVZ14, CDL+16, SPZ+18], including specific types
of smells [DMBK01, BQO+15, TPB+16] accompanied by refactorings aimed at removing
them [DMBK01].

The quality problem of test code is further exacerbated when using automated test suite
generators [PPZ+16, GSGO18]. These tools [FA11] represent a useful aid to identify defects
through a systematic, automatic approach and to improve the coverage of a test bed. Another
possible use case is to generate an initial test suite and then manually improve/evolve it. In
any case, the generated code, and especially the assertions of tests, need to be manually
validated. Hence, the quality of the generated code matters, including the meaningfulness
of the used identifiers.

We first present an empirical investigation of the quality of identifiers in test code and
compare it to the quality of production code. Given the result that the quality of identifiers is
often unsatisfactory, especially for the test code, we investigate whether the identifier quality
can be improved by three state-of-the-art renaming recommenders: CA-RENAMING [TR10],
NATURALIZE [ABBS14], and LEAR [LSM+17]. More specifically, in this chapter we address
the following research questions:

RQ1: What is the quality of identifiers in the test code of open source projects? We
conducted a survey asking 19 participants to inspect the quality of identifiers in both, human-
written manually and automatically generated, test code. As target systems, we select ten
open source Java projects maintained by companies/organizations or by small teams of de-

1https://docs.oracle.com/javase/specs/jls/se7/html/jls-6.html

https://docs.oracle.com/javase/specs/jls/se7/html/jls-6.html

D.2 Related Work 121

velopers, ensuring high popularity and diversity of the target projects. The participants were
asked to judge the identifiers and to list for the characteristics of high- and low-quality iden-
tifiers. To ease the interpretation of the achieved results and to have a baseline for compar-
ison, we also asked four of the 19 participants to evaluate the quality of identifiers in the
production code of two of the subject systems.

RQ2: What is the accuracy of rename refactoring approaches when applied on test
code identifiers? We evaluate three state-of-the-art rename refactoring approaches, namely
CA-RENAMING, NATURALIZE, and LEAR. We use the same ten projects used to answer RQ1 and
429 additional projects from GitHub. We assess the rename refactorings with two different
datasets as oracle: 1) the high-quality identifiers obtained as an output of RQ1, 2) identifiers
from the test code of open source projects that underwent code reviews. We also used the two
systems for which we collected evaluations related to the quality of identifiers in production
code to compare the performance of the renaming tools on the test and on the production
code.

Our results show that low-quality identifiers are spread both in manually written and in
automatically generated tests, and this problem is more relevant in test than in production
code (RQ1). State-of-the-art rename refactoring tools are of little help in improving the
identifier quality of test code while their performance is more promising for production code
(RQ2). Major advances are needed in this field. Given our findings, we outline a research
agenda for future work in the area.

Structure of the Chapter

Section D.2 provides an overview of the related literature. Section D.3 presents the design
and results of our survey investigating the quality of identifiers in test code, while Section D.4
examines whether state-of-the-art rename refactoring techniques can improve the identifier
quality in test code. In Section D.5 we discuss the threats that could affect the validity of
our studies. Finally, Section D.6 concludes the chapter.

D.2 Related Work

D.2.1 Quality of Identifiers

Strong connections have been discovered between bad identifier names and code quality
issues [BWYS09]. Researchers have put a considerable amount of effort into investigating
which characteristics of identifier names can influence program comprehension, positively
or negatively.

Deissenboeck and Pizka [DP06] introduced two important concepts for good identifier
naming: consistency and conciseness. They also proposed a model based on bijective map-
pings between concepts and names. The model requires that each concept should have a
unique name and this name should be able to represent the concept correctly.

Lawrie et al. [LMFB06, LFB07b] studied the impact of identifier length on program
comprehension and found out that developers can easily comprehend source code with full

122 On The Quality of Identifiers in Test Code

word identifiers or well-formed abbreviations. However, excessively long identifiers might
hinder program comprehension as they overload short-term memory. A recent study with 72
professional C# developers conducted by Hofmeister et al. [HSH17] provides evidence that
using full words in identifiers helps developers in code comprehension, compared to letters
and abbreviations.

Lawrie et al. [LFB07b, LFB07a] also analyzed identifier usage in 186 programs written
in four different programming languages. Their findings disclose that better programming
practices are producing higher quality identifiers.

Binkley et al. [BDL+13] conducted an experiment with 150 participants to understand
the impact of identifier styles on program comprehension. As a result, they discovered that
camel casing can help novices detect identifiers more accurately, at a cost of more time
needed.

Researchers have also investigated practical issues (e.g., bad smells, inconsistencies) orig-
inating from identifier naming. Kim et al. [KK16] performed interviews with developers,
finding that developers often deal with inconsistent identifiers and the inconsistency is more
common in larger projects. Butler et al. [BWY15] analyzed 3.5 million Java reference name
declarations in 60 well-known Java projects, and manually tagged around 46,000 names.
Their study shows that the use of unknown abbreviations and words is not rare in the source
code and might potentially hinder program comprehension.

Abebe et al. [AHTM09] introduced the notion of “lexicon bad smell” to indicate potential
problems in identifier names. With the tool they built, they were able to identify 15,633 bad
smells in Alice, an open-source software system containing around 1.5 million lines of code,
demonstrating the wide spread of imperfect identifiers.

Arnaoudova et al. [APA16] presented a catalogue of 17 linguistic antipatterns (LAs) cap-
turing inconsistencies among the naming, documentation, and implementation of attributes
and methods, showing that LAs are negatively perceived by developers who highlighted their
negative impact on code comprehension.

Fakhoury et al. investigated how poor lexica of source code negatively affects the read-
ability of source code, thus hindering comprehension processes [FMAA18].

To the best of our knowledge, our study is the first focusing on the quality of identifiers
used in test code.

D.2.2 Rename Refactoring

Identifiers are often composed of abbreviations, and researchers have proposed techniques
like identifier splitting [HBL+14, GPAG13, CMM12, EHPV09] and expansion [HFB+08, LB11]
to ease their comprehension. However, in practice, lots of identifiers do not follow naming
conventions and can be composed of meaningless tokens. Researchers have also investigated
rename refactoring approaches, which rename the identifier with a more meaningful and/or
consistent name.

Corbo et al. [CGP07] and Reiss [Rei07] proposed renaming approaches able to learn
code identifier conventions from existing code. The rename refactoring approaches proposed

D.3 Study I: Quality of Identifiers in Test Code 123

by Feldthaus and Møller [FM13] and by Jablonski and Hou [JH07], instead, focus on the
relations between variables, inferring whether one variable should be changed together with
others.

Caprile and Tonella [CT00] proposed an approach to enhance the meaningfulness of
identifiers with a standard lexicon dictionary and a thesaurus collected by analyzing a set
of programs, replacing non-standard terms used in identifiers with a standard one from the
dictionaries.

Thies and Roth [TR10] proposed a static analysis based approach to support identi-
fier renaming: if a variable v1 is assigned to an invocation of method m (e.g., name =

getFullName), and the type of v1 is identical to the type of the variable v2 returned by
m, then rename v1 to v2. This was effective when experimented on open source projects.

Allamanis et al. [ABBS14] proposed NATURALIZE, a n-gram language model based ap-
proach which suggests new names to identifiers. The n-gram model predicts the probability
of the next token given the previous n-1 tokens. NATURALIZE learns coding conventions from
the codebase, promoting the consistent use of identifiers. The approach trains a language
model on the rest of the project code, and then predicts the identifier names for the target
files. Building on top of NATURALIZE, Lin et al. [LSM+17] proposed LEAR, combining code
analysis and n-gram language models. The differences between LEAR and NATURALIZE are 1)
while NATURALIZE considers all the tokens in the source code, LEAR only focuses on tokens
containing lexical information; 2) LEAR also considers the type information of variables.

The approach proposed by Daka et al. [DRF17] is explicitly designed to rename identifier
in test code and, in particular, in automatically generated unit tests. It generates descrip-
tive method names for automatically generated unit tests by summarizing API-level coverage
goals. A relevant work by Høst and Østvold [HØ09a] identifies the “bugs” in method names,
meaning names that do not reflect the responsibilities implemented in the method. This
approach recommends new method names by learning naming rules from a corpus of Java
applications. Since these tools [HØ09a, DRF17] only recommend method names, they can-
not be used in our study to suggest names for variables.

We assess the accuracy of three identifier renaming techniques [TR10, ABBS14, LSM+17]
when applied on test code, including a comparison of their performance on production code.

D.3 Study I: Quality of Identifiers in Test Code

Our goal is to better understand the characteristics of good/bad identifiers used by local
variables in test methods.

D.3.1 Research Question

Studies [LMFB06, HØ09a, HØ09b] have investigated the quality of identifiers in produc-
tion code, yet little attention has been given to test code. We aims to answer the Research
Question (RQ):

RQ1: What is the quality of identifiers in the test code of open source projects?

124 On The Quality of Identifiers in Test Code

The quality of the identifiers was judged by 19 participants, who were also required to
justify their quality assessment by explicitly reporting what makes an identifier good or bad.
Given the advances in automatic test case generation [FA11], we also asked participants
to judge the quality of identifiers in automatically generated test cases for the same set of
projects. Instructions were distributed to participants, stressing that high-quality identifiers
make the code easier to read and understand.

The set of identifiers deemed as “good” in this study will be used as a ground truth in
our second study (Section D.4).This allows to have a manually validated ground truth, over-
coming one of the limitations of experimentations performed to evaluate the performance
of naming approaches, in which researchers often use the identifiers defined by developers
in open source projects as oracle [ABBS15].

D.3.2 Study Context and Data Collection

Table D.1. Subject projects for Study I: Identifier quality.

Project Repository # Java files ELOC

Community projects
COMMONS LANG https://goo.gl/wdZMf9 323 75,958
GSON https://goo.gl/JkG9CV 176 22,272
JACKSON CORE https://goo.gl/WTeh3N 238 42,150
PLEXUS-UTILS https://goo.gl/j3ckGk 128 24,710
REST ASSURED https://goo.gl/ivx7jK 171 9,175

Team projects
JESQUE https://goo.gl/GJxAuv 121 10,339
JONGO https://goo.gl/M2nDdK 155 8,190
LA4J https://goo.gl/fPKYDX 117 13,480
NATTY https://goo.gl/RBznPG 27 3,854
ORMLITE CORE https://goo.gl/TXaRiR 280 34,970

The study context consists of the 10 open source Java projects from GitHub (Table D.1).
We selected well-known projects maintained by companies/organizations (from now on com-
munity projects), as well as projects maintained by small teams (from now on team projects).
We selected five projects for each of these two categories, by adopting the following selection
criteria:

• Popularity. For community projects, we selected popular libraries hosted on Maven
(https://mvnrepository.com/) and used by at least 500 client projects. For the
team projects, we select projects having more than 300 stars on GitHub, to filter out
“toy projects”.

• Diversity. The projects are of different size and type and run by different entities,
preventing the bias of internal coding conventions and programming practices.

https://mvnrepository.com/

D.3 Study I: Quality of Identifiers in Test Code 125

To answer RQ1, we conducted a survey asking 19 participants to manually inspect the
quality of identifiers in both, human-written and automatically generated, test code.

Manually written test code. For each of the 10 projects, we randomly selected eight test
methods from different classes to guarantee the generalizability and parsed them with Java-
Parser (https://javaparser.org/). In total, we extracted 237 manually written identifiers
from these 80 test methods.

Automatically generated test code. We used EvoSuite [FA11] to generate test code for
the selected projects, randomly selecting two test methods from each project. We collected
46 automatically generated identifiers.

Summarizing, we extracted 283 identifiers, 237 manually written and 46 automatically
generated. We preferred to have more manually written than automatically generated iden-
tifiers since we expect automatically generated identifiers to follow a limited number of
naming patterns and, thus, a smaller number of instances is necessary to observe a trend in
the data.

We also asked four participants to judge the quality of identifiers in the production code
of JACKSON CORE and ORMLITE CORE (i.e., one community and one team project). This was
done to (i) have a term of comparison when discussing the results achieved in terms of quality
of the identifiers in test code, and (ii) verify whether there is a difference in the quality of
identifiers used in test and production code. In this case, we extracted 47 identifiers from 20
methods (10 per system) contained in 20 different classes of the two systems. Note that the
study on the production code identifiers has only been conducted on two systems since we
preferred to polarize the participants’ effort toward the evaluation of test identifiers, being
this the main goal of our study.

Table D.2 summarizes the identifiers judged for each project.

Table D.2. Number of identifiers inspected for each project

Project
human written

test identifiers
auto. gener.
test identifiers

human written
prod. identifiers

Total

COMMONS LANG 17 7 - 24
GSON 20 4 - 24
JACKSON CORE 38 8 26 46
PLEXUS-UTILS 16 2 - 18
REST ASSURED 12 3 - 15
JESQUE 25 7 - 32
JONGO 15 3 - 18
LA4J 26 6 - 32
NATTY 28 3 - 31
ORMLITE CORE 40 3 21 43
Sum 237 46 47 330

https://javaparser.org/

126 On The Quality of Identifiers in Test Code

Judgment of identifiers quality

Through convenience sampling, we invited 19 participants, including 4 professional develop-
ers, 11 computer science students (BSc, MSc, PhD), 2 academic staff to evaluate the quality
of the identifiers collected from the previous steps, based on how well the identifiers support
code comprehension. Participants had an average of 6.6 years experience of Java develop-
ment (median=7.0, min=1, max=15), 1.5 years industrial experience (median=1, min=0,
max=5), and 2.8 years experience of software testing (median=1, min=0, max=12). None
of the participants was involved in the development of the subject projects.

Participants judged the identifiers from one test (or production) method at a time using a
Web app we developed2. The app showed one test case/method at a time together with links
to the methods in the production code that it tests. Participants are not explicitly informed
whether the displayed method is manually written or automatically generated. The quality
of an identifier was judged on a 3-point scale: “good”, “acceptable”, “poor”. Participants could
also select a “not sure” option.

Participants were asked to motivate their judgment by explaining the positive and nega-
tive characteristics of identifiers. An identifier judged as having a good (poor) quality could
have both positive and negative characteristics. We provided two lists of predefined cat-
egories based on a literature review we performed (one for positive and one for negative
characteristics, the detailed lists can be found in Section D.3.4), and participants could also
add their own quality attributes. Moreover, they had the option to suggest a new name for
the identifiers.

On average, each participant assessed the quality of 33.3 identifiers (median=23, min=16,
max=118). Each identifier was evaluated by two participants, totaling 566 manual evalua-
tions for test code and 94 for production code identifiers.

D.3.3 Data Analysis

To answer RQ1, we plot the distribution of quality scores for the identifiers used in the subject
test code. We discuss the characteristics of good and poor identifiers as reported by partici-
pants and compare the assessments provided for community projects and team projects, and
the differences between human written and automatically generated identifiers. We also
compare the quality of manually written identifiers in test and production code for JACKSON

CORE and ORMLITE CORE.

D.3.4 Results

Table D.3 reports the evaluations given by the participants to the quality of the identifiers
subject of our study. Since each identifier has been judged by two evaluators, we report
the frequency of each possible pair of evaluations and their ratio to the total number of
evaluation pairs.

2The screenshots of the Web app can be found in the replication package: https://identifierquality.
bitbucket.io/webapp/

https://identifierquality.bitbucket.io/webapp/
https://identifierquality.bitbucket.io/webapp/

D.3 Study I: Quality of Identifiers in Test Code 127

Table D.3. Evaluation of identifier quality given by evaluators

Evaluation of identifiers Manually written Automatically generated

both good 59 (24.9%) 0 (0.0%)
both acceptable 13 (5.5%) 4 (8.7%)
both poor 36 (15.2%) 9 (19.6%)
both unsure 0 (0.0%) 0 (0.0%)
good & acceptable 43 (18.1%) 8 (17.4%)
good & poor 36 (15.2%) 6 (13.0%)
good & unsure 2 (0.8%) 0 (0.0%)
acceptable & poor 46 (19.4%) 19 (41.3%)
acceptable & unsure 1 (0.4%) 0 (0.0%)
poor & unsure 1 (0.4%) 0 (0.0%)

Sum 237 (100.0%) 46 (100.0%)

Agreement Analysis

Assessing the quality of an identifier is subjective and depends on the experience and coding
habits of developers. We first look at the level of agreement reached by the study participants.
For manually written variables, 45.6% of evaluations for the same identifier reached an
agreement: both evaluators rate the same identifier as “good” (24.9%), “acceptable” (5.5%)
or “poor” (15.2%). Since each identifier was judged on a 3-point scale, we also computed
the cases of “weak agreement”, meaning a 1-point difference on the quality assessment scale
(i.e., “good vs acceptable” and “acceptable vs poor”). In this case, the ratio of agreement
reaches 83.1%. 15.2% quality assessments gave totally different quality scores (i.e., “good
vs poor”), which confirms that developers can have very different views on what a good
identifier actually is.

For automatically generated variables, evaluators agreed in 28.3% of cases (as opposed
to the 45.6% of the manually written code) and weakly agreed in 87.0% of cases. 13.0%
obtained an inconsistent assessment (i.e., “good vs poor”).

The obtained agreement level confirmed the high subjectiveness of this task. It also
highlighted a good level of agreement in discriminating between good and poor identifiers,
with only ∼15% of identifiers falling in this strong disagreement scenario.

We also manually inspected these ∼15% of identifiers, and illustrate them with some ex-
amples. One interesting controversial identifier is “notDao”. In that test case, “dao” was cre-
ated to represent an object of type LocalBigDecimalNumeric. The developer used “notDao”
to represent another object of a different numeric class. While one evaluator believes this
identifier is informative enough, the other considers “notDao” misleading as readers might
think it is a Boolean value. Another example is the identifier “value”, assigned to a string
“easter ’06”. “value” is intended to be parsed by a date parser. While one evaluator thinks
this identifier is meaningful and concise, the other believes “value” is too general.

128 On The Quality of Identifiers in Test Code

Quality of Identifiers

Table D.4 reports the quality scores assigned by participants to test code identifiers.

Table D.4. Frequency of scores given to identifier quality

Evaluation Manually written Automatically generated Sum

good 199 (42.0%) 14 (15.2%) 213 (37.6%)
acceptable 116 (24.5%) 35 (38.0%) 151 (26.7%)
poor 155 (32.7%) 43 (46.7%) 198 (35.0%)
unsure 4 (0.8%) 0 (0.0%) 4 (0.7%)
Sum 474 (100.0%) 92 (100.0%) 566 (100.0%)

Manually written vs automatically generated. For manually written identifiers, 42%
of the ratings indicate a good quality and an additional 24.5% an acceptable quality. ∼33%
of evaluations pointed to poor-quality identifiers. This indicates that poor identifiers are
frequent in manually written test code.

For automatically generated variables we obtained only 15.2% good evaluations (as com-
pared to the 42% of manually written ones), with an additional 38% of acceptable ratings,
i.e., evaluators were not satisfied with the quality of identifiers in automatically generated
test cases in almost half of the cases.

If we compare the results for manually written and automatically generated variables,
the quality of manually written identifiers is better overall, especially considering that the
automatic test case generation approach rarely generates “good” identifiers according to
the study participants. It is worth highlighting that in ∼53% of the cases the evaluators
considered the automatically generated identifiers at least as acceptable, indicating the use
of good naming heuristics in EvoSuite.

Table D.5. Evaluation of manually written variables

Evaluation Community projects Team projects
manual variables manual variables

good 65 (31.6%) 134 (50.0%)
acceptable 62 (30.1%) 54 (20.1%)
poor 77 (37.4%) 78 (29.1%)
unsure 2 (1.0%) 2 (0.7%)
sum 206 (100%) 268 (100%)

We further analyze the obtained results in Section D.3.4 to better understand the reasons
behind these quantitative findings.

Community projects vs team projects. Table D.5 reports the quality scores assigned to
manually written variables in community projects and team projects.

D.3 Study I: Quality of Identifiers in Test Code 129

Table D.6. Quality of Identifiers in Test Code vs Production Code for JACKSON CORE and ORMLITE

CORE

Evaluation Test code Production code
manual variables manual variables

good 55 (35.3%) 49 (52.1%)
acceptable 41 (26.3%) 38 (40.4%)
poor 58 (37.2%) 7 (7.5%)
unsure 2 (0.2%) 0 (0.0%)
sum 156 (100%) 94 (100%)

A quality score is assigned by a single participant to one identifier (i.e., a single eval-
uation). This means that each identifier results in two quality scores assigned by the two
participants evaluating it, thus 237 manually written identifiers lead to 474 scores. As ex-
plained before, the same identifier could have both a good and a poor evaluation.

We can see from the table that for community projects, the ratios of “good”, “acceptable”,
and “poor” quality evaluations are quite similar (∼30%), while for team projects around
half of the evaluations pointed to a good identifier quality. This seems to indicate that the
presence of organizations behind community projects does not guarantee better code quality
assurance, at least not for identifiers quality in test code.

Test Code vs Production Code. Finally, we conclude our quantitative analysis by com-
paring the quality of manually written identifiers in test and production code as judged by
four participants for two subject systems (i.e., JACKSON CORE and ORMLITE CORE). Table D.6
shows the achieved results: For production code, 92.5% of identifiers are judged as having
a good or an acceptable quality, as compared to the 61.6% of the test code identifiers from
the same systems. While a full comparison of the quality of identifiers in test and production
code is out of the scope of this chapter , the results obtained on these two systems seem to
indicate that the quality problem is more evident in test code rather than in production code.
Additional data is present in our online appendix [LNB+].

Qualitative Analysis

Fig. D.1 summarizes the reasons provided by participants when classifying a test code iden-
tifier as having a good quality (a), an acceptable quality (b), or a poor quality (c). These
reasons are the characteristics that make an identifier perceived as good, acceptable, or poor.
We did not report characteristics listed in less than 1% of cases.

Concerning “good” identifiers, “it expresses a pattern”, “it is too general”, and “it uses a
useless sequence number” are the characteristics provided by the evaluators, while all others
were predefined by us, based on the related literature. Among the listed characteristics, the
most selected ones are “it is meaningful” and “it is concise”: Participants appreciated short
identifiers having, however, a clear meaning (e.g., config is considered good as it refers to
an object of type HeaderConfig).

130 On The Quality of Identifiers in Test Code

It
is

 c
on

si
st

en
t w

ith
 te

st
ed

 c
od

e

It
ex

pr
es

se
s

a
pa

tte
rn

It
is

 c
on

ci
se

It
is

 s
em

an
tic

al
ly

 c
on

si
st

en
t

It
fo

llo
w

s
pr

oj
ec

t n
am

in
g

co
nv

en
tio

ns

It
is

 s
yn

ta
ct

ic
al

ly
 d

is
tin

ct
 fr

om
 o

th
er

 id
en

tif
ie

rs

It
is

 p
ro

pe
rly

 c
ap

ita
liz

ed

It
is

 m
ea

ni
ng

fu
l

It
us

es
 a

 u
se

le
ss

 s
eq

ue
nc

e
nu

m
be

r

It
is

 to
o

ge
ne

ra
l

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

manually written identifiers
automatically generated identifiers

(a) Characteristics of “good” identifiers

It
is

 c
on

si
st

en
t w

ith
 te

st
ed

 c
od

e
It

is
 c

on
ci

se
It

is
 s

em
an

tic
al

ly
 c

on
si

st
en

t
It

is
 s

yn
ta

ct
ic

al
ly

 d
is

tin
ct

 fr
om

 o
th

er
 id

en
tif

ie
rs

It
fo

llo
w

s
pr

oj
ec

t n
am

in
g

co
nv

en
tio

ns
It

is
 p

ro
pe

rly
 c

ap
ita

liz
ed

It
is

 m
ea

ni
ng

fu
l

It
us

es
 a

 u
se

le
ss

 s
eq

ue
nc

e
nu

m
be

r
It

is
 s

yn
ta

ct
ic

al
ly

 s
im

ila
r t

o
an

ot
he

r i
de

nt
ifi

er
It

is
 to

o
sh

or
t

It
do

es
 n

ot
 re

pr
es

en
t i

ts
 ty

pe
It

is
 to

o
ge

ne
ra

l
It

m
is

us
es

 u
nd

er
sc

or
es

It
is

 im
pr

op
er

ly
 c

ap
ita

liz
ed

It
is

 n
ot

 m
ea

ni
ng

fu
l

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

manually written identifiers
automatically generated identifiers

(b) Characteristics of “acceptable” identifiers

D.3 Study I: Quality of Identifiers in Test Code 131

It
is

 c
on

ci
se

It
is

 s
em

an
tic

al
ly

 c
on

si
st

en
t

It
fo

llo
w

s
pr

oj
ec

t n
am

in
g

co
nv

en
tio

ns
It

is
 p

ro
pe

rly
 c

ap
ita

liz
ed

It
is

 m
ea

ni
ng

fu
l

It
us

es
 a

 u
se

le
ss

 s
eq

ue
nc

e
nu

m
be

r
It

en
co

de
s

ty
pe

 in
fo

rm
at

io
n

in
 th

e
na

m
e

It
is

 s
em

an
tic

al
ly

 in
co

ns
is

te
nt

It
is

 in
co

ns
is

te
nt

 w
ith

 th
e

te
st

ed
 c

od
e

It
is

 s
yn

ta
ct

ic
al

ly
 s

im
ila

r t
o

an
ot

he
r i

de
nt

ifi
er

It
is

 to
o

sh
or

t
It

do
es

 n
ot

 re
pr

es
en

t i
ts

 ty
pe

It
is

 to
o

ge
ne

ra
l

It
do

es
 n

ot
 fo

llo
w

 p
ro

je
ct

 n
am

in
g

co
nv

en
tio

ns
It

is
 im

pr
op

er
ly

 c
ap

ita
liz

ed
It

is
 n

ot
 m

ea
ni

ng
fu

l

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

manually written identifiers
automatically generated identifiers

(c) Characteristics of “bad” identifiers

Figure D.1. Characteristics of identifiers having different quality levels, as perceived by the study
participants

Two factors considered by evaluators as contributing to high quality identifiers are se-
mantic consistency (i.e., no different identifiers are used for the same concept), and consis-
tency with the tested code (i.e., it uses the same terms used in the tested code to represent
a specific concept). For example, the methods setIndexName and getIndexName appear in
multiple test cases, all the identifiers they interact with are consistently named as indexName,
without any use of other names such as index and name. Moreover, indexName is also con-
sistently used in the methods tested by these test cases.

Good-quality identifiers also had some negative characteristics highlighted by the par-
ticipants, and in particular “it is too general” (e.g., when an object is named with the name
of the class it instantiates) and “it uses a useless sequence number” which, as discussed in the
following, is one of the main issues with the automatically generated identifiers.

Moving to the poor-quality identifiers, besides the predefined characteristics, one addi-
tional characteristic has been contributed by the evaluators: “it does not represent its type”.
Fig. D.1-(c) shows that different problems exist in the low-quality manually written and au-

132 On The Quality of Identifiers in Test Code

tomatically generated variables. For manually written variables, the major issues include:
1) “the identifiers are not meaningful” (e.g., a for a matrix); 2) “the identifiers are too gen-
eral” (e.g., type for the type of a token); and 3) “the identifiers are too short” (e.g., g for a
JsonGenerator object). Two other attributes which account for around 5% of occurrences
each are “syntactically similar to another identifier” (i.e., similar identifiers are used for other
concepts, such as applicationConfigurator and applicationConfiguration) and “not
representing its type” (e.g., strings is used to name a DateMap object).

For automatically generated variables, the dominant issue is that identifiers include “use-
less sequence numbers”. Indeed, EvoSuite assigns the object type as variable names followed
by a progressive number (e.g., a new instance of a JsonReader object is called jsonReader0).
This heuristic, while very simple, helps EvoSuite obtain some meaningful identifiers, espe-
cially in the case where a single variable of a specific type is used (e.g., a single JsonReader

is instantiated).
In this case, the progressive number is not disturbing and there is no reason for a more

specific name (since only one variable of that type exists in the test method), explaining
why the identifiers are assessed as good by the participants, despite the presence of a “useless
sequence number” (see Fig. D.1-(a)).

More specific names and advanced heuristics are needed when the role played in the test
method by two variables of the same type must be disambiguated through their identifiers.

Being “not meaningful” and “too general” are two evident problems for automatically
generated identifiers, accounting for 12% and 14% of the negative characteristics mentioned
by the evaluators for the automatically generated tests. In very few cases, evaluators report
the misuse of underscore or of capitalization as negative characteristics of identifiers in both
manually written and automatically generated variables. These are issues that could be easily
fixed with existing tools.

Finally, the acceptable identifiers (see Fig. D.1-(b)) represent a mix of good and bad
practices, justifying their rating in between good and poor identifiers.

Participants’ recommendations to improve poor identifiers

As previously said, participants could suggest a new name for an identifier, when it was
judged as not good enough. The recommendations can be found in our replication package.
By inspecting the identifiers rated as good and the 205 identifiers suggested by participants,
we observed three patterns:

1 Participants prefer full name identifiers to abbreviations. For example, both evalua-
tions judging the quality of the qb identifier recommended to rename it into queryBuilder,
thus confirming the importance of techniques supporting the automatic expansion of iden-
tifiers (e.g., [HFB+08, LB11]).

2 Plural format of an object type is recommended for the list of a certain type of objects.
For example, dataGroups is suggested to replace dataGroup, which is a list of DataGroup
objects.

3 Identifiers assigned to get methods and identifiers used as parameters of set methods
are suggested to be consistent with the method names. For example, foreignCollection

D.4 Study II: Identifier Renaming in Test Code 133

is considered a good name for a local variable assigned to the getForeignCollection()

method.
We plan to conduct larger surveys in the future to distill a list of additional good naming

practices and integrate them in rename refactoring and code generation tools.

D.4 Study II: Identifier Renaming in Test Code

The goal of this study is to assess whether state-of-the-art rename refactoring techniques can
improve the identifier quality, especially for the test code.

D.4.1 Research Question

Given the fact that the quality of identifiers in test code is indeed a problem, one might
wonder whether we can automatically improve it. While rename refactoring techniques have
been proven useful on the production code by several studies [TR10, ABBS14, LSM+17],
their effectiveness on test code remains unknown.

We aim at answering the following research questions:
RQ2: What is the accuracy of rename refactoring approaches when applied on test code

identifiers?
This RQ aims at exploring the possibility of using state-of-the-art rename refactoring

techniques [TR10, ABBS14, LSM+17] to improve identifier quality of test code.

D.4.2 Study Context

The study context consists of the same ten projects used in our first study and 429 additional
projects mined from GitHub and used for the training/test of the refactoring techniques.

To select the tools, we first investigated which rename refactoring techniques can be ap-
plied to rename variable identifiers. This led to the identification of three state-of-the-art
approaches, namely CA-RENAMING3 [TR10], NATURALIZE [ABBS14], and LEAR [LSM+17].
These techniques are described in Section D.2. We used the original implementations pro-
vided by the authors of NATURALIZE and LEAR, and reimplemented CA-RENAMING.

We consider two types of ground truths to assess the accuracy of the experimented tech-
niques. One is the set of 201 high-quality identifiers obtained as output of Study I, including
the identifiers that were assessed by both evaluators as at least acceptable (i.e., good-good,
good-acceptable, acceptable-acceptable) as well as the identifiers suggested by participants
as a good alternative to the poor identifiers. From now on, we refer to this ground truth as
the manual-oracle. The second set includes reviewed test code identifiers used in the 429
additional projects we mined for this study (from now on, mined-oracle). Similarly to what
has been done in the literature, the idea for the mined-oracle is to assess the ability of the
experimented techniques in recommending identifiers for a given variable in a test method.

3Note that CA-RENAMING is not the original name proposed by Thies and Roth, the researchers presenting
this approach (that has no specific name), but the name assigned in [LSM+17], in which LEAR was compared to
CA-RENAMING.

134 On The Quality of Identifiers in Test Code

The assumption is that these identifiers are meaningful and, as seen in RQ1, such a strong
assumption does not always hold, since low-quality identifiers are still prevalent in manually
written code. We mitigate this issue in two ways. First, we also compute the accuracy of the
rename refactoring techniques on the manual-oracle including manually checked identifiers
assessed to be meaningful. Second, we only consider in mined-oracle identifiers from the
test methods of the 429 projects that have been submitted in pull requests on GitHub and
underwent a code review process. This should increase the confidence in the high quality of
the identifiers in mined-oracle.

To understand how the performance of rename refactoring approaches differ for produc-
tion code, we also constructed the manual-oracle for production code identifiers in the same
way with the data collected in our first study, which consists of 42 identifiers from JACKSON

CORE and ORMLITE CORE.
To build the mined-oracle, we first mined Java projects from GitHub on Sept. 1, 2018,

using the following selection criteria:

• Activity level. To exclude inactive projects, the projects must have at least one commit
in the three months preceding the data collection.

• Popularity. Projects must have at least 100 forks and 100 stars, in order to exclude
“toy-projects”.

This process resulted in the selection of 2,583 Java projects. Then, we excluded the
projects for which the test methods that underwent a review process in the latest version have
less than 50 identifiers usable in our dataset, to ensure a good representativeness for each of
the included projects. This led to the final 429 projects part of our dataset, including 24,355
reviewed test files. The test files were identified when their name started with “Test” or
when they were located under a folder named “src/test” or “tests”. Table D.7 summarizes
the dataset used in this study.

Table D.7. Dataset Statistics

Overall Per project
Mean Median St. deviation

Java files 166,558 388.2 256.0 385.6
total test files 46,260 107.8 62.0 138.7

test files for study 24,355 56.8 24.0 99.7
variables for study 397,936 927.6 396.0 1533.6

D.4.3 Data Collection and Analysis

The three considered rename refactoring techniques rely on a training phase to learn naming
patterns: LEAR [LSM+17] and NATURALIZE [ABBS14] need to build a language model based
on n-grams extracted from the training code, while CA-RENAMING [TR10] needs to extract
static type information and returned identifiers from declared methods in the training code.

D.4 Study II: Identifier Renaming in Test Code 135

We experimented with different training scenarios to understand whether projects them-
selves or other projects are more helpful for training recommenders to rename identifiers in
test code:

• Training on production code. Given the test code of a system A on which we apply a
given renaming technique T , we train T on A’s production code. Thus T learns naming
conventions that are specific to project A.

• Training on test code. We train T on the large corpus of test code, extracted from re-
viewed and merged pull requests of 429 open source projects. Thus T learns naming
conventions specific for test code, across several projects. The idea behind this sce-
nario is that software is in general very repetitive and natural [HBS+12]. Due to the
high computational cost of this procedure, this second training scenario has only been
performed by using the 429 projects for training and the 10 projects used in Study I
as testing (i.e., the ones part of the manual-oracle).

We ran the three techniques on the manual-oracle (both scenarios) and on the mined-
oracle (only in the “training on production code” scenario). For production code identifiers,
we only performed training on other production code in the project. We also only ran the
three techniques on the manual-oracle.

We used two different matching approaches to determine whether the techniques provide
correct renaming recommendations: 1) exact match (the recommended identifier is identical
to the one in the oracle); 2) fuzzy match, meaning that at least 50% of the tokens (words
identified through CamelCase splitting) composing the identifier in the oracle appear among
the tokens used in the recommended identifier.

For test code identifiers, we compare via box plots the precision of the techniques in the
different training scenarios and on the two oracles. The comparisons are also performed via
the Mann-Whitney test [Con99], with results intended as statistically significant at α= 0.05.
To control the impact of multiple pairwise comparisons (e.g., the precision of CA-RENAMING

is compared with both NATURALIZE and LEAR), we adjust p-values with the Holm’s correction
[Hol79]. We estimate the magnitude of the differences by using the Cliff’s Delta (d), a non-
parametric effect size measure [GK05]. We follow well-established guidelines to interpret
the effect size: negligible for |d| < 0.10, small for 0.10 ≤ |d| < 0.33, medium for 0.33 ≤
|d|< 0.474, and large for |d| ≥ 0.474 [GK05].

For identifiers in production code, we list in a table the precision of the techniques for
the two projects, and we also display the performance of the same projects when applying
these techniques in their test code.

D.4.4 Results

Training on production code

We analyze the performance of rename refactoring techniques from two aspects: 1) the abil-
ity to generate recommendations for rename refactoring, 2) the correctness of the generated
recommendations.

136 On The Quality of Identifiers in Test Code

Ability to generate recommendations. Understanding how many recommendations
can be generated can help us assess the applicability of rename refactoring tools in practice.
Therefore, as the first step of our analysis, we inspect the percentage of identifiers involved
in our study for which the three techniques can recommend an identifier name. Note that
with “recommending an identifier name” we do not refer to the scenario in which a new
name is recommended for a variable, but to the scenario in which a name (any name) is
recommended, even the original one. Indeed, for a given variable, the three techniques
might not be able to generate a recommendation. In particular, CA-RENAMING does not gen-
erate a recommendation in the case in which: 1) the variable to rename is not assigned to a
method invocation (e.g., for String name = “Max”, CA-RENAMING cannot be applied — see
Section D.2 for a description of the CA-RENAMING technique) or if the invoked method re-
turns a variable of a different type (e.g., String age = (String) getAge() with getAge()

returning an integer). The other two techniques (NATURALIZE and LEAR) are both based on
n-gram language models, and do not trigger any recommendation when a minimum confi-
dence threshold set by the original authors is not met for a generated identifier.

Tables D.8 and D.9 report descriptive statistics (e.g., mean across projects) of the ratio
of variables with renaming recommendations for test code generated by CA-RENAMING, NAT-
URALIZE and LEAR on the manual-oracle and the mined-oracle, respectively. CA-RENAMING is
omitted in Table D.8 as it is unable to generate any renaming recommendation.

The achieved results show the limited percentage of cases in which these approaches are
actually able to generate a recommendation. Indeed, even by considering the approach gen-
erating the highest number of recommendation (i.e., LEAR), it can only be applied on ∼20%
of the test code identifiers of a given project. Not surprisingly, CA-RENAMING has the lowest
applicability, given its strong constraint making it applicable only to variables assigned to a
method invocation returning the same type. NATURALIZE can generate refactoring recom-
mendations for around 10% of the variables in the manual-oracle, while for mined-oracle
this percentage significantly drops. This difference might be the consequence of test method
sampling when building the manual-oracle dataset.

Table D.8. Ratio of variables for which a rename refactoring is generated (manual-oracle)

Approach Mean Median St. deviation

NATURALIZE 12.2% 9.9% 0.133
LEAR 22.1% 17.9% 0.199

Table D.9. Ratio of variables for which a rename refactoring is generated (mined-oracle)

Approach Mean Median St. deviation

CA-RENAMING 0.9% 0.1% 0.023
NATURALIZE 3.6% 0.0% 0.075
LEAR 26.1% 24.0% 0.251

D.4 Study II: Identifier Renaming in Test Code 137

Naturalize LEAR
Rename refactoring approach

0.0

0.2

0.4

0.6

0.8

1.0
P

re
ci

si
on exact match

fuzzy match

(a) Precision of rename refactoring techniques on manual-oracle

CA-Renaming Naturalize LEAR
Rename refactoring approach

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on exact match
fuzzy match

(b) Precision of rename refactoring techniques on mined-oracle

Figure D.2. Precision of rename refactoring techniques on test code

Correctness of the generated recommendations. Fig. D.2 compares the precision of
rename refactoring techniques when applied on the manual-oracle and the mined-oracle.

For the reason mentioned before, since CA-RENAMING does not generate any recommen-
dation for the manual-oracle, it is not plotted on Fig. D.2a. The main message highlighted by
Fig. D.2 is that the precision is in general quite low in terms of recommending good identifiers
for test code. Moreover, although LEAR significantly outperforms the other two approaches
(see Table D.11), the average and median precision is still lower than 50% even when only
fuzzy match is required. However, it is worth noting that the low precision does not neces-
sarily mean the generated identifiers are wrong, due to the matching rules we adopted to
define “correctness”. As we know, in practice, often many variants of identifiers can well
fit in the code context. Therefore, the precision people perceive with these tools could be
higher than the values presented here.

138 On The Quality of Identifiers in Test Code

Table D.10. Performance comparison of rename refactoring techniques for identifiers in production
code and test code

(a) Results of NATURALIZE

NATURALIZE

Project # var. # Recomm. Prec. (exact) Prec. (fuzzy)

JACKSON CORE (Prod. code) 24 5 40.0% 40.0%
JACKSON CORE (Test code) 35 4 0.0% 0.0%
ORMLITE CORE (Prod. code) 18 8 37.5% 62.5%
ORMLITE CORE (Test code) 37 0 0.0% 0.0%

(b) Results of LEAR

LEAR

Project # var. # Recomm. Prec. (exact) Prec. (fuzzy)

JACKSON CORE (Prod. code) 20 55.0% 60.0%
JACKSON CORE (Test code) 3 0.0% 0.0%
ORMLITE CORE (Prod. code) 7 42.9% 57.1%
ORMLITE CORE (Test code) 0 0.0% 0.0%

Table D.11. Statistical tests of precisions of rename refactoring techniques for mined-oracle

(a) Results of P-value

Comparison P-Value (exact match) P-Value (fuzzy match)

CA-RENAMING vs NATURALIZE 0.74 0.0037
CA-RENAMING vs LEAR <0.0001 0.0003
NATURALIZE vs LEAR <0.0001 <0.0001

(b) Results of effect size

Comparison Effect size (exact match) Effect size (fuzzy match)

CA-RENAMING vs NATURALIZE 0.01 (Negligible) 0.10 (Negligible)
CA-RENAMING vs LEAR 0.29 (Small) 0.14 (Negligible)
NATURALIZE vs LEAR 0.31 (Small) 0.29 (Small)

To better compare these rename refactoring approaches, we applied statistical analysis
to the precisions of the renaming recommendations. For the manual-oracle, we compared
NATURALIZE against LEAR. The p-value of 0.35 (exact match)/0.44 (fuzzy match) indicates
that the precision difference between NATURALIZE and LEAR is not statistically significant.
However, the situation changes on the mined-oracle. In the Table D.11, we can find that there
is no statistically significant difference (adjusted p-value≥ 0.05) between CA-RENAMING and
NATURALIZE when exact match is required. However, the advantage of LEAR is visible in

D.4 Study II: Identifier Renaming in Test Code 139

any case. All of the statistical comparisons with CA-RENAMING and NATURALIZE result in a
statistically significant difference, with small or negligible effect sizes.

Test Code vs Production Code. Table D.10 compares the performance of rename refac-
toring techniques when they are applied to production code and test code (manual-oracle).
CA-RENAMING is also omitted as no recommendation was generated for both production and
test code. We can notice that rename refactoring approaches can generate more recommen-
dations for production code, and the precision is much higher. This result indicates that
rename refactoring techniques are less effective when used to improve the quality of test
code identifiers as compared to production code identifiers.

Training on test code

Table D.12. Results of rename refactoring techniques for manual-oracle when trained on test code

(a) Results of NATURALIZE

NATURALIZE

Project # variables # recomm. Precision (exact) Precision (fuzzy)

NATTY 22 12 50.0% 50.0%
JONGO 12 0 0.0% 0.0%
COMMONS LANG 14 10 0.0% 0.0%
JACKSON CORE 35 0 0.0% 0.0%
PLEXUS-UTILS 14 0 0.0% 0.0%
JESQUE 21 10 10.0% 10.0%
GSON 18 14 28.6% 43.0%
REST ASSURED 12 0 0.0% 0.0%
LA4J 16 0 0.0% 0.0%
ORMLITE CORE 37 0 0.0% 0.0%

(b) Results of LEAR

LEAR

Project # variables # recomm. Precision (exact) Precision (fuzzy)

NATTY 22 1 0.0% 0.0%
JONGO 12 0 0.0% 0.0%
COMMONS LANG 14 1 0.0% 0.0%
JACKSON CORE 35 3 0.0% 66.7%
PLEXUS-UTILS 14 5 0.0% 40.0%
JESQUE 21 0 0.0% 0.0%
GSON 18 0 0.0% 0.0%
REST ASSURED 12 0 0.0% 0.0%
LA4J 16 0 0.0% 0.0%
ORMLITE CORE 37 2 0.0% 50.0%

140 On The Quality of Identifiers in Test Code

Table D.12 reports the performance of NATURALIZE and LEAR on the manual-oracle of test
code identifiers, when training on test code from other projects. In this case, CA-RENAMING

was unable to generate any recommendation, as it heavily relies on program analysis. Since
no production code was used for training, CA-RENAMING could not retrieve the declarations
of methods used in test cases. Therefore, CA-RENAMING is excluded in this study.

Both NATURALIZE and LEAR perform poorly in this task. The unsatisfactory performance
comes from two aspects: the amount and the precision of generated refactoring recommen-
dations. More specifically, NATURALIZE failed to generate recommendations for six projects,
while LEAR could not recommend any identifier for five projects. As a side note, LEAR can gen-
erate at maximum five refactoring recommendations when applied on the manual-oracle and
trained with test code. When it comes to the precision of exactly matched recommendations,
the performance is extremely poor for LEAR. That is, none of the generated recommendations
is correct, which is not the case for NATURALIZE.

We can also spot some major differences between these results and the previous ones.
Although the performance of both techniques drop significantly, in this study NATURALIZE

performs better than LEAR in terms of the number of exactly matched generated recommen-
dations. The reason could be the nature of the training materials. Unlike the previous study,
in which the training of the techniques was performed on the production code of the same
system for which the test code identifiers were recommended, training on the test code from
other projects likely results in the learning of linguistic patterns that are not representative
of the “test project” (i.e., the one for which identifiers must be recommended). This might
be due to a vocabulary mismatch between the code used for training and the one used for
test. LEAR seems to be more sensitive to this change since it only considers tokens carrying
out semantic information during the training (i.e., the identifiers used in method names,
parameters, and variables), while NATURALIZE, also learns from syntax-related tokens (e.g.,
Java keywords), thus being able to better deal with the vocabulary mismatch.

Although researchers have proved that source code is repetitive [GS10, HBS+12, LPM+17],
our study discloses that to recommend renaming operations for test code, it might be more
effective to train these approaches on the related production code rather than from a massive
dataset containing thousands of projects.

D.5 Threats to Validity

Construct validity. In Study I, instead of using proxy measures, we preferred to let partici-
pants evaluate the quality of identifiers used in test code. While how to perceive the identifier
quality may vary among different participants, the subjectiveness of such an evaluation was
mitigated by involving two evaluators for each identifier. Also, although a four or five-level
Likert scale [Opp92] could have provided a more accurate evaluation of the identifiers’ qual-
ity, we preferred a simpler three-level scale to facilitate the task to the respondents.

In Study II, we assessed the performance of the experimented techniques by adopting
two different ground truths that complement each other. Indeed, the manual-oracle is small
in size, but includes identifiers manually classified as meaningful. The mined-oracle, instead,
includes 397,936 identifiers, thus ensuring a good generalizability at the risk, however, of

D.6 Conclusion and Future Work 141

including some poor-quality identifiers in the ground truth. This threat was mitigated by
only considering in the mined-oracle identifiers from test code that underwent code review.

Internal validity. The experience of the participants involved in Study I could have
played a role in the assessment of the identifiers quality. We only involved participants having
at least one year of Java experience but, due to the limited number of participants, we did
not analyze the influence of their experience on the quality assessments they provided.

External validity. The validity of Study I is limited by the 19 participants and by the
selected projects of our study. This, as a consequence, partially impacted the generalizabil-
ity of Study II concerning the results achieved on the manual-oracle. Also, when running
our studies on production code, we only considered identifiers from two systems (and their
respective evaluations provided by four participants in Study I). This is a clear limitation to
the generalizability of the findings related to the comparison between test and production
code performed in both studies. However, our focus is on test code identifiers, and pro-
duction code identifiers were only considered to have a baseline for comparison, easing the
interpretation of the achieved results. Details about the results achieved on production code
identifiers are available in our appendix [LZB+a].

D.6 Conclusion and Future Work

We studied the the quality of identifiers in test code and compared it with identifiers in pro-
duction code. We also analyzed the attributes that are deemed important in determining the
quality of identifiers and assessed the performance of three state-of-the-art rename refac-
toring techniques in suggesting good identifiers. The results of our study provide us with a
number of lessons learned.

The quality of identifiers in test code is a notable problem. Even in well-known
projects run by open source organizations, one out of three quality assessments performed
by developers would result in the identification of a poor-quality identifier. This highlights
the need for techniques and tools able to help developers in identifying and fixing these
problematic identifiers, and leads us to our next point.

The performance of state-of-the-art rename refactoring techniques is far from promis-
ing for improving the unsatisfactory identifier quality of test code. In the best case sce-
nario, these techniques achieve a limited precision, lower than 50% on average. We observed
that training language models on the production code of the same system for which test code
identifiers should be recommended as a more promising training approach as compared to
the usage of a large set of test cases extracted from other systems. Techniques specifically
tailored for test code and, for example, exploiting its relationship with the tested produc-
tion code, might be required to substantially increase the automated support provided to
developers for the renaming of test code identifiers.

Automatically generated test code suffers even more from identifiers’ quality issues.
This result, while expected, highlights the need for integrating more sophisticated naming
heuristics in tools for the automatic generation of test cases. Our findings in Study I disclose
that some simple heuristics (e.g., the use of plural for naming variables representing collec-
tions of objects) could be implemented with very little effort, and would generate identifiers

142 On The Quality of Identifiers in Test Code

appreciated by software developers.
These findings dictate our future research agenda.
Reproducibility. The data used in our studies as well as the experimented renaming

approaches are available for replication (https://identifierquality.bitbucket.io/).
This includes the manual-oracle output of Study I that could represent a valuable resource
for testing rename refactoring approaches tailored for test code.

https://identifierquality.bitbucket.io/

E
Knowledge Transfer in Modern Code Review

Knowledge transfer is one of the main goals of modern code review, as shown by several
studies that surveyed and interviewed developers. While knowledge transfer is a clear ex-
pectation of the code review process, there are no analytical studies using data mined from
software repositories to assess the effectiveness of code review in “training” developers and
improve their skills over time. We present a mining-based study investigating how and
whether the code review process helps developers to improve their contributions to open
source projects over time. We analyze 32,062 peer-reviewed pull requests (PRs) made across
4,981 GitHub repositories by 728 developers who created their GitHub account in 2015. We
assume that PRs performed in the past by a developer D that have been subject to a code
review process have “transferred knowledge” to D. Then, we verify if over time (i.e., when
more and more reviewed PRs are made by D), the quality of the contributions made by D
to open source projects increases (as assessed by proxies we defined, such as the acceptance
of PRs, or the polarity of the sentiment in the review comments left for the submitted PRs).
With the above measures, we were unable to capture the positive impact played by the code
review process on the quality of developers’ contributions. This might be due to several fac-
tors, including the choices we made in our experimental design. Additional investigations
are needed to confirm or contradict such a negative result.

This study is based on the following publication [CLB+20]:

Knowledge Transfer in Modern Code Review

Maria Caulo, Bin Lin, Gabriele Bavota, Giuseppe Scanniello, Michele Lanza. In Proceedings of the
28th International Conference on Program Comprehension (ICPC 2020) – Research Track, accepted

143

144 Knowledge Transfer in Modern Code Review

E.1 Introduction

Code review is the process by which peer developers inspect the code written by a team-
mate to assess its quality, to recommend changes and, finally, to approve it for merging
[BLNS16]. Previous works have investigated code review from several perspectives. Some
authors studied the factors influencing the likelihood of getting a patch accepted as the re-
sults of the code review process [WND08, BKHG13], while others studied the reviewing
habits of developers in specific contexts [RS11]. Several works focused on the benefits, mo-
tivations, and expectations of the review process. Most of these studies are qualitative in
nature [RGS08, BB13, BBZJ14], and were conducted by surveying/interviewing developers
or by inspecting their conversations in mailing lists or issue trackers of open source projects.
Only a few researchers analyzed data from a quantitative perspective, mostly to assess the
impact of code review on code quality (e.g., the relationship between code review and post-
release defects) [KP09, MKAH14, MMK15, BR15].

The work conducted at Microsoft by Bacchelli and Bird [BB13] provided qualitative ev-
idence of the central role played by code review in knowledge transfer among developers.
However, no quantitative, mining-based study has tried to investigate this phenomenon, and
in particular to answer the following high-level research question (RQ): Does code review en-
able knowledge transfer among developers?.

Answering this RQ, by mining software repositories, is far from trivial since: (i) quanti-
tatively measuring knowledge transfer is challenging and an open research problem by itself
and (ii) many confounding factors come into play when collecting developer-related data
from online repositories. We quantitatively answer the above research question by making
the following assumptions:

• The number of reviewed pull requests (PRs) a developer made in the past across all repos-
itories she contributed to is a proxy of the transferred knowledge she benefited of. Given a
developer D, we assume that the higher the number of closed PRs (i.e., accepted and
rejected ones) that were subject to review (i.e., received comments from peer devel-
opers) D performed, the higher the knowledge transfer D benefited of.

• We can measure the actual benefits of the knowledge transfer experienced through the code
review process by a developer, by observing if, with the increase of the received knowledge
transfer, the quality of her contributions to open source projects increases as well. Given
the various types of projects involved, it is necessary to adopt contribution quality
measures which are independent from project languages and domains. We assume
that how code reviewers respond to developers’ PRs can reflect the quality of the sub-
mitted contribution.We use as proxies for the quality of the contributions provided by
D: (i) the percentage of D’s PRs that are accepted (expected to increase over time);
(ii) the time required to review the changes D contributes (expected to decrease);
(iii) the amount of recommendations provided by the reviewers to improve the code
D contributes in PRs (expected to decrease); and (iv) through sentiment analysis, the
polarity of the sentiment in the discussion of the PRs D submits (expected to be more
positive).

E.2 Related Work 145

Based on these assumptions, we analyzed the contribution history of 728 developers
across 4,981 repositories hosted on GitHub. We studied whether the number of reviewed
PRs opened in the past by a developer impacts the quality of her contributions over time.

We grouped developers into different sets based on the amount of knowledge transfer
they benefited of (low, medium-low, medium-high, high), as assessed by the number of re-
viewed PRs they performed in the past. Any result achieved with such an experimental
design may be due to a simple increase of the developer’s experience over time rather than
to the knowledge transfer that took place over the reviewed PRs. To control for this, we
replicated our analysis by grouping the developers based on the number of commits rather
than the number of reviewed PRs they performed in the past (into the four groups listed
above). Using our experimental design with the measures mentioned above, we were not
able to capture the positive impact played by the code review process on the quality of de-
velopers’ contributions. Such a negative result might be due to several factors, including the
choices we made in our experimental design (see Section E.3). For this reason, additional
studies are needed to corroborate or contradict our findings.

Structure of the Chapter

In Section E.2, we discuss related work, while the design of our mining-based study is pre-
sented in Section E.3. The results and the threats that could affect their validity are discussed
in Section E.4 and Section E.5, respectively. We conclude the chapter in Section E.6.

E.2 Related Work

Recent works on PR-based software development [RR14, TDH14, SdLJMP15a, SdLJMP15b,
SVT16, PM18, KRB+18, CSM19] have focused on the motivations of acceptance or rejection
of changes proposed in the form of PRs after the code review process, identifying various
influencing factors, such as:

• Programming Language: proposed changes in Java are the least easily accepted,
whereas for C, Typescript, Scala and Go the opposite happens [RR14], [SdLJMP15a];

• Size and Complexity of the PR: the greater the size and complexity of the PR to
be reviewed (e.g., the number of the commits, or the committed files) the lower the
likelihood of acceptance [TDH14], [SdLJMP15b], [SVT16], [PM18], [KRB+18];

• Addition and Change of files: PRs which propose to add files have a 8% lower chance
of acceptance [SdLJMP15a]; the same applies for PRs which contain many changed
files [PM18];

• Excessive forking: PR acceptance decreases when many forks are present [RR14];

• Tests: contributions including test code have higher chances to be merged [TDH14],
[CSM19];

146 Knowledge Transfer in Modern Code Review

• Developer’s type: if the PR was made by a member of the core team, it has more
chances to be accepted as compared to a PR made by an external. The existence of
a social connection between the requester, the project and the reviewer, positively
influences merge decisions [SdLJMP15a], [TDH14], [KRB+18];

• Experience in making PRs: the higher the percentage of previously merged PRs by
a developer, the higher the chances of acceptance [CSM19]. Developers with 20 to
50 months of experience are the most productive in submitting and being accepted
their PRs [RR14]. When a PR is the first made by a developer, the chance of a merge
considerably decreases [TDH14], [SdLJMP15b], [SdLJMP15a], [KRB+18];

• Number of comments: the more comments have been made in the PR discussion, the
lower the chance of acceptance [TDH14], [SVT16].

Bosu et al. [BGB15] investigated which factors lead to qualitatively high code reviews.
To discern if a code review feedback is useful or not, the authors built and verified a classi-
fication model, and executed it on 1.5 million review comments from 5 Microsoft projects,
finding several factors that affect the usefulness of reviews feedback: (i) the working period
of the reviewer in the company: in the first year she tends to provide more useful comments
than afterward; (ii) reviewers from different teams gave slightly more useful comments than
reviewers from the same team; (iii) the density of useful comments increases over time;
(iv) source code files had the highest density of useful comments than other types of files;
and (v) the higher the size of the change (i.e., the number of files involved) that the author
would bring to a project, the lower the usefulness of the review comments to such an author,
confirming in some sense the results by Weißgerber et al. [WND08]. Weißgerber et al. stud-
ied the email archives of two open source projects to find which factors affect the acceptance
of patches. They found that small patches (at most 4 lines changed) have higher chances to
get accepted, but the size of a patch does not significantly influence acceptance time.

Baysal et al. [BKHG13] investigated which factors affect the likelihood of a code change
to be accepted after code review. They extracted both “ordinary” factors (code quality-
related) and non-technical ones, such as organizational (company-related) and personal
(developers-related) features, finding that nontechnical factors significantly impact the code
review outcome.

Company and developers-related factors of reviews practices (in open-source projects)
have been qualitatively studied also by Rigby et al. [RGS08, RS11], who compared, by
means of emails archives and version control repositories, the two techniques used by de-
velopers of Apache server project: review-then-commit and commit-then-review [RGS08].
Apache reviews resulted to be early and frequent, related to small and completed patches
(in line with Weißgerber et al. [WND08]), and conducted by a small number of develop-
ers. Rigby et al. [RS11] also investigated (i) the mechanisms and behaviors that developers
use to find (or ignore) code changes they are competent to review and (ii) how developers
interact with one another during the review process.

Research has also been conducted to study how software quality is impacted by code
reviews, and how they allow to identify defects. Kemerer and Paulk [KP09] studied the

E.2 Related Work 147

review rate to adopt to have effective reviews when removing defects or influencing the
software quality. The authors studied two datasets from a personal software process (PSP)
approach with regression and mixed models. The PSP review rate turned out to be signif-
icant for the effectiveness of bug-fixing tasks. Mäntylä et al. [ML09] classified the issues
found by both students and professional developers during code review. They found that
75% of issues concerned “evolvability” (e.g., limited readability/maintainability of code).
Beller et al. [BBZJ14] confirmed this finding by classifying changes brought by the reviewed
code of two open-source software projects. They found a 3:1 ratio between maintainability-
related and functional defects. They also found that bug-fixing tasks need fewer changes
than others, and the person who conducts the review does not impact the number of re-
quired changes. Czerwonka et al. [CGT15] observed that code reviews often do not identify
functionality problems. The authors found that code reviews performed by unskilled devel-
opers are not effective, highlighting the importance of social aspects in code review.

McIntosh et al. quantitatively studied the relationship between software quality and (i)
the amount of changes that have been code reviewed, and, (ii) code review participation,
i.e., the degree of reviewer involvement in the code review process [MKAH14]. The authors
studied three projects and found that both aspects are linked to software quality: poorly
reviewed code leads to components with up to two post-release defects; low participation
up to five. Bavota and Russo [BR15] studied the impact of code review on the quality of
the committed code. They found that unreviewed commits have twice more chances of
introducing bugs as compared to reviewed commits. Also, code committed after a review is
more readable than unreviewed code.

Morales et al. [MMK15] studied the effect of code review practices on software design
quality. They considered the occurrences of 7 design and implementation anti-patterns and
found that the lower the review coverage the higher the likelihood to observe those anti-
patterns in code. Bernart et al. [BMG10, BG13] highlighted that continuous code review
practices in agile development produce high benefits to a project, such as (i) the reduction of
the effort in SE practices, (ii) the support of collective ownership; and (iii) the improvements
in the general understandability of the code.

Recent research work also focused on the content of conversations deriving from the code
review activity, the topic of the discussions, and how developers emotionally felt [LYY+17,
DOB+18, OMT19]. Li et al. [LYY+17] classified review comments according to a custom tax-
onomy of topics, finding that (i) PRs submitted by inexperienced contributors are likely to
have potential problems even if they passed the tests; and (ii) external contributors tend to
not follow project conventions in their early contributions. Destefanis et al. [DOB+18] ana-
lyzed GitHub issues commenters (i.e., those users who only post comments without posting
any issues nor proposing changes to repositories) from the effectiveness perspective. The
authors found that commenters are less polite and positive, and express a lower level of
emotions in their comments than other types of users. Ortu et al. [OMT19] found that
GitHub issues with a high level of Anger, Sadness, Arousal and Dominance are less likely to
be merged, while high values of Valence and Joy tend to make issues merged.

Bacchelli and Bird [BB13] studied the tool-based code review practices adopted at Mi-
crosoft, reporting that even if finding defects remains the main motivation for reviews, they

148 Knowledge Transfer in Modern Code Review

provide additional benefits, such as knowledge transfer, increased team awareness, and cre-
ation of alternative solutions to problems.

E.2.1 Taking Stock

The relevance of code reviews has been investigated from different perspectives. The ef-
fect of code reviews on knowledge transfer has been only marginally studied, let alone from
a quantitative perspective, which is the goal of this chapter: We used the number of past
reviewed PRs submitted by a developer as a proxy for the amount of knowledge transfer
she has been subject to. Then, we assess whether with the increase in received knowledge
transfer, the quality of submitted code contributions improves over time. From this perspec-
tive, the most similar work is the recent one by Chen et al. [CSM19], in which the authors
found that the highest the percentage of previously merged PRs by a developer, the higher
the chances of acceptance of new PRs.

Differently from Chen et al. [CSM19], we consider past submitted PRs (both accepted
and rejected) that have been actually reviewed (i.e., received at least one comment from peer
developers), to get a “reliable” proxy of the amount of knowledge transfer of a developer
in the past. Also, besides analyzing the impact of the received knowledge transfer on the
likelihood of acceptance for future submitted PRs, we consider many other proxies to assess
the quality of the contributions submitted by a developer.

E.3 Study Design

E.3.1 Hypothesis

Software development is a knowledge-intensive activity [BD08]. Qualitative research pro-
vided evidence that code review plays a pivotal role in knowledge transfer among develop-
ers [BB13]. However, no quantitative evidence exists in support of this claim. In this study,
we mine software repositories to quantitatively assess the knowledge transfer happening
thanks to code review.

There is no well-established metric to assess the “quantity of knowledge” involved in a
given process. Knowledge can be classified as either explicit (which “can be spoken and codi-
fied in words, figures or symbols”) or tacit (which “is embedded in individuals’ minds and is hard
to express and communicate to others”) [EH04]. We focus on the tacit knowledge acquired by
developers over time, which cannot be easily seen and quantified. More specifically, we in-
vestigate whether the experience gained by receiving feedback during code review improves
the quality of developers’ future contributions to open source projects. Intuitively, one might
expect that developers gradually gain knowledge by receiving feedback from their peers,
thus improving their skills over time. Therefore, we formulated and studied the following
hypothesis:

H. The quality of developers’ contributions to software projects will increase with
the experience gained from their past reviewed PRs.

E.3 Study Design 149

E.3.2 Study Context

The study context consists of 728 developers, 4,981 software repositories they contributed
to, and 77,456 closed PRs (among which 32,062 PRs are peer-reviewed).

Developers selection

To run our study, we collected information about GitHub users (from here onward referred
to also as developers), who created their account in 2015. This was done to collect at least
four years of contribution history for each developer. Since data was collected in September
2019, we can observe ∼4 years of contributions even for users who created their GitHub
account in December 2015. A four-year time window is long enough to observe enough PRs
submitted by developers and, consequently, to study the knowledge transfer over time.

We used the GitHub Search API1 to retrieve the developers who joined GitHub on the first
day of each month in 2015. Since the GitHub Search API only provides up to 1,000 results
for search, we collected a total of 12,000 developers who created their account in 2015 (i.e.,
1,000 per month). As the next step, we collected all the PRs submitted by these 12,000
developers across all GitHub repositories they contributed to.

Since the GitHub Search API cannot return over 1,000 PRs for a single developer, to
ensure the data completeness, we excluded nine developers who submitted over 1,000 PRs
in the studied time window. This reduced the number of developers to 11,991.

We removed from our dataset developers who submitted too few PRs. This was needed
since we want to analyze how the quality of developers’ contributions to open source projects
changes over time. Having only one or two PRs submitted by a developer would not allow
to perform such an analysis. For this reason, we excluded from our study all developers who
submitted less than 30 PRs in the considered time period (i.e., 2014-2019). This further
filter removed 11,173 developers, leaving 818 developers in total.

Pull requests collection and filtering

We collected all the “closed” PRs submitted by the 818 subject developers from the day they
joined GitHub until the end of September 2019, when we collected the data. This led to a
total of 77,456 PRs spanning 9,845 repositories. We only focused on closed PRs to be sure
that the PRs underwent a code review process and, thus, were either accepted or rejected
instead of still pending. For each PR, we collected the following information:

1. Creation date: the date in which the PR was submitted.

2. Acceptance: whether the closed PR was accepted.

3. Closing date: the date in which the PR was closed.

4. Source code comments: the comments left by the reviewers that are explicitly linked to
parts of the code submitted for review. Comments left by the PR author are excluded.

1https://developer.github.com/v3/search/

https://developer.github.com/v3/search/

150 Knowledge Transfer in Modern Code Review

5. General comments: all the comments left in the PR discussion by all the developers
other than the PR author, excluding source code comments. These comments are gen-
erally used to ask for clarifications or to explain why a PR should be accepted/rejected.
Source code comments, instead, reports explicit action items for the PR author to im-
prove the submitted code. We separate the source code comments and the general com-
ments, as there might be different levels of technical details in these two categories.

6. Author: the author of the PR.

7. Contributors: all the developers who have been involved in the discussion and handling
of the PR.

Since we plan to use the comments related to each PR as one of the variables for our study,
i.e., to assess the amount of feedback received by developers as well as to check whether a PR
was actually subject to code review (meaning, it received at least one comment), we removed
general comments posted by bots (this problem does not occur for source code comments).
We discriminated whether a comment was left by a bot following the steps below:

1. We calculated how many general comments each commenter (i.e., entity who posted at
least one comment in the considered PRs) left in the PRs and sorted them in descending
order. As a result, around 60% of the comments were left by the top-500 commenters,
with a long tail of commenters only posting a handful of comments in their history.

2. For these top-500 commenters, we manually checked their usernames and profile im-
ages. If the username contained “bot,” or the profile image represented a robot, we
then further inspected whether their comments followed a predefined structure, e.g.,
“Automated fastforward with [GitMate.io] (https://gitmate.io) was successful!”, by
gitmate-bot. If this was the case, we considered the commenter as a bot.

3. For the rest of the commenters, we manually checked the GitHub profiles of those
whose username contained “bot”.

This process led to the disclosure of 147 bot commenters. The manual identification of
the bots was done by a collaborator of this study, and the final output (i.e., the 147 removed
bots) is available in our replication package [CLB+].

After this cleaning process, we further excluded 90 developers from our study since they
authored less than 30 closed PRs (including those which did not receive comments). This
led to the final number of 728 developers considered in our study, who authored a total of
77,456 PRs (among which 32,062 PRs received comments).

Project collection

We cloned all the projects2 in which the selected developers submitted at least one PR, for
a total of 4,981 repositories. To provide a better overview of the collected projects, our

2This was done since we also used in our analysis the number of commits performed by the studied developers
over time. While this information can be collected through the GitHub APIs as well, cloning the repositories
simplified data collection.

E.3 Study Design 151

replication package[CLB+] also includes basic information (e.g., programming languages,
project size) of these repositories.

E.3.3 Measures

To verify our hypothesis, we use proxies to measure the knowledge transfer experienced by
developers through their past reviewed PRs and to assess the quality of developers’ contri-
bution over time.

Knowledge measures

We use the number of reviewed PRs a developer contributed (authored) in the past (i.e.,
before the current PR) as a proxy of the amount of knowledge transferred to her thanks
to the code review process. That is, we assume that the more closed and peer-reviewed
PRs a developer has, the more knowledge the developer gained. In our study, we consider
that peer-reviewed PRs are those which received at least one comment by non-bot users. The
rationale behind this choice is that if no comments are given by other developers, we assume
that the PR was not subject of a formal review process and, thus, it is not interesting for our
goals, since no transfer knowledge can happen in that PR. We compute this number for each
developer before each of their peer-reviewed PR. We use this variable to split developers
into different groups based on the knowledge transfer they experienced (i.e., low, medium-
low, medium-high, and high), and compare the quality of the submitted contributions (as
assessed by the proxies described in the following section) among the different groups. This
means that the same developer can belong, in different time periods, to different groups
(i.e., she starts in the low transfer knowledge group, she then moves to medium-low, etc.).
The exact process used for data analysis is detailed later on.

To verify whether the quality of the submitted contributions is actually influenced by the
knowledge transfer during code review or if it is just a result of the increasing developer’s
experience over time, we also collected the number of commits performed in the past by
each developer before submitting each PR. The commits are extracted from all repositories
in which the developers submitted at least one PR. As done for the past PRs, we use past
commits to split developers into groups and contrast the quality of their contributions over
time.

This allows us to see whether potential differences in contribution quality among the
groups can be attributed to the code review process put into place in PR (i.e., these dif-
ferences are visible when splitting developers based on past reviewed PRs, but not when
splitting them based on past commits) or if they are mainly due to changes in the experience
over time (i.e., the differences can be observed both when splitting by past reviewed PRs as
well as by past commits). When retrieving past commits for developers, there are two issues
worth noting: 1) The developer’s username on GitHub (as extracted using the GitHub API)
might be different from the author name in the Git commit history (as extracted from the Git
logs); 2) One developer might use several different identities to author commits. Therefore,
we employed the following process to map GitHub accounts to their corresponding iden-
tities. For each of the 728 developers included in our study, we first tried to match their

152 Knowledge Transfer in Modern Code Review

GitHub account to the author names in the commits of the repositories they contributed to
through PRs. As a result, 360 GitHub usernames could be matched to the commit author
names, while no link could be established for the remaining 368 accounts. For this latter, we
manually checked their GitHub profile and tried to match their displayed name and email to
the author names and emails in Git logs. If no match was found, we manually inspected the
“contributors” page of their corresponding repositories on GitHub to check if the developer
has made any commits. If the developer did not appear in the list of contributors, we as-
sume no commit was made by the developer. Otherwise, we manually browsed developers’
commits to those repositories (which is not possible to retrieve with the GitHub API), and
obtained the commit hash. Then, in the local repository, we checked the commit information
linked to the commit hash, such that we could obtain the author names they used for com-
mits. As developers might use multiple author names in the commits, we also recorded the
other author names associated with the same email addresses they used, and iterated this
process with the newly found author names until no new author name emerged. Through
this manual process, we managed to collect the identities of 715 developers, while for the
rest 13 we assume they did not make any commit.

Contribution quality measures

We assume that with the knowledge transfer one of the major benefits developers receive
is the improvement of the quality of their contributions (i.e., PRs) over time. While there
are a few existing metrics to evaluate code quality (see e.g., Chidamber and Kemerer (CK)
metrics [SK03] and bug count [MCP+09]), some limitations hinder their applications in our
study context: 1) The software repositories involved can be written in different program-
ming languages, making it impossible to set universal thresholds for CK metrics, let alone
not all programming languages are object-oriented. 2) Metrics like bug count rely on the as-
sumption that bugs can be identified thanks to the consistent usage of issue tracking systems,
which is not always the case.We do not pick repositories of specific languages or program-
ming domains as we believe knowledge gained from different types of projects can still be
beneficial. In our study we adopt quality contribution measures which are independent from
the programming language and application domain. For each submitted PR, we use the fol-
lowing contribution quality measures as dependent variables:

General comments received. The number of general comments received from all the de-
velopers other than the PR author. We expect that with the increase of past reviewed PRs
(i.e., with more knowledge transfer the developer benefited of), fewer discussions will be
triggered by the PR, leading to a reduction of general comments.

Source code comments received. The number of source code comments received from all
the developers other than the PR author. Similarly to general comments received, we would
expect that the source code comments received will decrease over time as well.

Acceptance Rate. The rate of the past PRs acceptance. We expect that the percentage of
accepted PRs over time will increase.

Accepted PR closing time. The time (in minutes) between the creation and the closing of
the accepted PRs. We expect that the time needed to accept PRs will decrease over time.

E.3 Study Design 153

Sentiment of source code comments. The sentiment polarity of all source code comments
in the PRs. We expect that with the increase of contribution quality more appreciation will be
received in the code review. Thus, the sentiment of the developer embedded in the comments
should be increasingly positive over time.

Sentiment of general comments. The sentiment polarity of all the general comments in
the PRs. Similarly to source code comments, we expect general comments will also be more
positive over time.

Sentiment analysis. To calculate the sentiment polarity of the comments in the PRs, we
adopted SENTISTRENGTH-SE [IZ18b] and SENTI4SD [CLMN18]. Both tools are designed to
work on software-related datasets. For each PR, we aggregate all comments and feed them
into these two sentiment analysis tools. Comments are not considered if 1) they are empty,
which is possible in general comments when the reviewer just assigns a status to the PR (e.g.,
“Approved”); or 2) the text contains special characters other than English letters, numbers,
punctuation, or emoticons.

SENTISTRENGTH-SE returns a negative sentiment score (from -1 to -5) and a sentiment
score (from +1 to +5). We summed up the two scores and standardized the result in the
following way, as suggested by the original authors:

1. a new score “-1” is assigned if the sum is lower than -1;

2. a new score “0” is assigned if the sum is in [-1; 1];

3. a new score “1” is assigned if the sum is higher than 1.

SENTI4SD returns three sentiment polarity categories (i.e., “positive”, “negative” or “neu-
tral”), and we standardized these values to “-1”, “0”, and “1”, respectively.

E.3.4 Data Analysis

Our hypothesis suggests that developers, who benefited of higher knowledge transfer thanks
to the past reviewed PRs they submitted, are also the ones contributing higher quality PRs
in the project. We verify this hypothesis thanks to the data previously extracted: Each peer-
reviewed PRi submitted by any of the studied developers represents a row in our dataset,
reporting (i) the knowledge transfer measures, meaning the number of past reviewed PRs
performed by the developer before PRi as well as our control variable, represented by the
number of commits she performed in the past (i.e., before PRi); and (ii) the contribution
quality measures (i.e., acceptance of PRs, number of general comments, etc.). However, the
contribution quality measures cannot be only computed for the current PR. Indeed, this would
make our analysis heavily biased by outliers. For example, a developer having a certain level
of knowledge transfer measures may have submitted nine PRs before PRi , having all of them
accepted but PRi . Indicating a 90% acceptance rate as a proxy for the quality of her recent
contributions would be more representative of the actual facts rather than reporting a 0%
since only considering PRi . Therefore, we rely on a fixed sliding window with a length of five
PRs to compute the contribution quality measures for each row in our dataset. Instead of
reporting the contribution quality measures only for PRi , we compute these measures on the

154 Knowledge Transfer in Modern Code Review

most recent five PRs (including PRi) submitted by PRi ’s author. There are two exceptions to
this process. First, for the measure accepted PR closing time we consider the most recent five
accepted PRs. Second, for the sentiment polarity, we only considered the comments in PRi ,
since there is a guarantee that PRi contains at least one comment. We ignore the history of
each developer before she performed at least five PRs. This ensures that there are always
five PRs falling into the fixed sliding window.

Following the above-described process, we created two different datasets, named cross-
project scenario and single-project scenario. In the first, we consider all PRs and all commits
performed across all repositories to which a developer contributed, assuming that knowledge
acquired thanks to the code review process performed on project Px , can help developers in
submitting better contributions not only to project Px , but also to project Py . While both
datasets contain one row for each PR performed by the developer in any repository, they
differ in the way we compute the knowledge transfer measures and the contribution quality
measures. Given a row in the dataset representing the PRi , in the single-project scenario only
PRs and commits performed in the past by the developer in the same project PRi belongs to
are considered. This means, for example, that a developer who made 50 PRs in the past, only
12 of which belong to the same project as PRi , will get 12 as the number of past reviewed
PRs she submitted in the row corresponding to PRi . Differently, in the cross-project scenario,
these measures are computed by considering all PRs and commits submitted in any project
by PRi ’s developer (50 in the example).

Once the datasets were created, we split their rows (i.e., contributions representing PRs)
based on the knowledge transfer measures of the developer who submitted them. In partic-
ular, we extract the first (Q1), second (Q2), and third (Q3) quartile of the distributions for
the number of past reviewed PRs submitted and the number of past commits performed by de-
velopers. Then, we split the rows into four groups based on the number of past reviewed PRs
submitted: low (≤ Q1), medium-low (> Q1 & ≤ Q2), medium-high (> Q2 & ≤ Q3), and high
(> Q3). Note that, while a contribution (i.e., a row in our dataset) can only appear in one of
these groups, the PRs submitted by a developer can appear in more than one group, since her
number of past reviewed PRs submitted increases over time. We perform the same grouping
also for the number of past commits. Table E.1 lists the value ranges of each “knowledge”
measure (the value denoted by n) for each group in both cross-project and single-project sce-
narios. For example, when we are considering the single project scenario and the knowledge
measure # past reviewed PRs, all the PRs whose author made up to eleven PRs in the past
fall into the low experience group.

Statistical methods

For both cross-project and single-project scenarios and each of the experience measures (i.e.,
past reviewed PRs, # past commits), we compare via box plots the contribution quality
measures in different knowledge groups. The comparisons are also performed via the Mann-
Whitney test [Con99], with results intended as statistically significant at α = 0.05. Mann-
Whitney test is a robust non-parametric test when we did not know a priori (and we could not
assume) what kind of distribution of data we had [Mot10]. To control the impact of multiple

E.4 Results 155

Table E.1. Groups for each “knowledge” measure

Knowledge measure
Knowledge

group
Study scenario

Single project Cross project

past reviewed PRs

low n≤11 n≤19
median-low 11<n≤26 19<n≤46
median-high 26<n≤64 46<n≤110

high n>64 n>110

past commits

low n≤20 n≤52
median-low 20<n≤67 52<n≤171
median-high 67<n≤215 171<n≤446

high n>215 n>446

pairwise comparisons (e.g., the “low knowledge group” is compared with all the other three
groups), we adjust p-values with Holm’s correction [Hol79]. We estimate the magnitude of
the differences by using the Cliff’s Delta (d), a non-parametric effect size measure. We follow
well-established guidelines to interpret the effect size: negligible for |d| < 0.148, small for
0.148≤ |d|< 0.33, medium for 0.33≤ |d|< 0.474, and large for |d| ≥ 0.474 [GK05].

Note that, before running these analyses, we first remove outliers from the compared
data distributions. Given Q1 and Q3 the first and third quartile of a given distribution,
and IQR the interquartile range computed as Q3-Q1, we remove all values lower than Q1-
(1.5×IQR) or higher than Q3+(1.5×IQR)[Tuk77]. This was done for the analyses carried
out for (i) the number of general comments received, (u) the number of source code comments
received, and (iii) the accepted PR closing time. This was instead not needed for the percentage
of accepted PRs (as it is always between 0 and 1), and for the comment sentiment scores
(always between -1 and 1).

E.4 Results

The box plots in Figures E.1, E.2, E.3, and E.4 show the trends of the dependent variables
(i.e., the contribution quality measures), for both the cross- (left) and single- (right) project
scenarios, with respect to the two independent variables (i.e., the knowledge measures).

In particular, the top part of each figure reports the results obtained when splitting de-
velopers into “knowledge groups” based on the past reviewed PRs they submitted, while the
bottom part shows the same results when grouping developers based on the number of past
commits they performed. The red dot represents the mean value in each box plot.

In Table E.2, we report the results of the Mann-Whitney test and Cliff’s Delta for past
reviewed PRs in the cross-project scenario. The same analyses are reported in Tables E.3
(cross-project) and E.4 (single-project) for past commits. Due to lack of space, the tables
only report results of comparisons that are (i) statistically significant (i.e., adjusted p-value
lower than 0.05), and (ii) have at least a small effect size (i.e., Cliff’s |d| ≥ 0.148). For
the same reason, the table reporting the results achieved in the single-project scenario when

156 Knowledge Transfer in Modern Code Review

●

●●●●●●●●

●●

●

●●●●●●

●●●●

●●

●●

●●

●●●●●●

●

●●●●●●●

●

●

●●

●●●

●

●●

●●●

●

●

●●●●

●

●

●●

●●

●●●

●

●●●●●●

●

●

●●

●●●●●●

●●

●

●●●●●●●●

●

●●●●

●●

●

●●●●●●●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●

●●●●

●

●●

●●●●

●●●●●●●

●●●

●●

●

●●●●●●●●

●

●●●●●●●●

●●●

●

●●

●●●●●

●

●

●●●

●●●●

●●

●

●

●

●

●

●

●●●●●

●

●

●●●●●●●●●●●●●

●●

●●●●●●

●

●

●

●●●●

●

●●

●●●●

●●●●●●

●

●

●

●

●●

●

●●●●

●●●●●●

●●

●

●●●●●●●●●

●

●●●

●●

●

●

●●

●●●

●

●●

●●

●●●●●●

●●●

●

●●●●●●

●●●●

●

●●●

●

●

●

●●●●●●

●●●

●●

●

●●●●●●●●

●●●●●●

●

●●●

●●

●

●

●●

●

●

●

●

●

●●●●●●●●

●

●●●

●

●

●●●●

●

●●●●●●●●●●●●●

●

●●●

●

●●●

●

●

●

●

●●●●●●●●●●

●

●●●●●

●●●●●

●●

●●●●●●●

●

●●

●●●

●●●

●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●

●●

●●●●

●●●

●●

●●●

●

●●●●●

●●●●●●

●

●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●

●●

●

●●

●●●

●

●

●

●

●●

●●●●

●●

●●●●●

●

●●

●

●

●

●●●●●

●●

●●●

●●

●●

●●●●●●●●

●●●●●●●●●

●

●●●●●

●●

●●●●●●●

●●

●●●●●●●●●●●●

●●●

●●

●●

●●

●●

●

●●

●

●●●

●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●

●●●●●●●●●

●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●● ●●●

●●●

●●●●●●●●●●●

●●●

●●●●●

●

●

●●●●●●

●●

●

●

●●●

●●●●●●●●●●●●

●●●●

●●●●

●

●●●

low medium−low medium−high high

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Developer Experience

Av
er

ag
e

Ac
ce

pt
an

ce

●

●
●

●

●

●

●●●●●

●

●●●●●●●

●

●

●

●●●

●

●●●●●

●●

●

●

●●●●

●●

●●●●

●●

●●●●●

●

●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●

●●●

●●●●●●●●

●●

●

●●

●

●

●●●●●●

●

●●●●●●

●●

●

●

●

●●●●●●●●●

●●●●●●●●●●

●

●

●

●●●

●●

●●●●●●●●●●●●

●

●●

●

●●●●

●

●

●

●

●●

●●●●●

●●●●

●●

●

●●●●●

●●●●●●●●●●●●●●●●

●

●●●●

●●

●●●●●●

●●

●●●●●●●●●●

●●

●●

●

●●●●●●

●●

●●●●●●●

●

●●

●●

●●●●●

●

●●

●

●

●

●●●●●●

●

●●

●●●●●

●

●●●●

●●●

●●●●●●●●

●●

●

●●●

●●

●●●●

●

●●●

●

●●●●

●

●

●●

●●

●

●

●

●

●●●●●

●●

●●●●●●●●

●●●

●●

●●●

●●●

●●

●●●●●●●●●●●●●●

●

●●

●●●

●

●●

●●●●●●●●●●●●●●●●

●

●●

●●

●●●

●●

●●●●●●●●●●●

●●

●●●●●

●

●●

●●

●●●●●●●

●

●

●

●●●●●●●●●●

●

●●

●●●●

●

●●●●

●

●

●●●●●

●

●●●●●●●●●●●●●●

●

●●●

●●

●

●●●

●●●

●

●●●●

●

●●●●●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●●●●●●●●●●●●●●

●

●

●●●●●●●

●

●●

●

●

●●●●

●●

●●●●●●●●

●

●

●

●

●●

●

●●

●

●●

●●

●

●●●

●●

●●●●●

●●●

●●●●●●●●●

●●●●

●●

●

●●

●

●●●

●●●●●

●●

●

●●●●●

●

●●●

●

●●●●

●●

●●

●●

●●●

●

●●●

●

●●●●●●● ●●●●●●●●●●●

●

●●●

●

●●●

●

●●

●●●●●●

●●

●●●●

●●

●●●●●

●

●

●●●●●●●●●●●●●●●●

●

●●●●

●●

●

●●●●●●●●●●

●●

●●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●

●●

●

●●●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●

●●

●

●●●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●

●●

●

●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●

●●●●

●●

●

●●

●●●

●

●●●●●●●●

●●

●●

●●●●●●●●●●●●●

●●

●●●●

●

●

●●

●●●

●

●●●●●●

●

●

●

●●●●●●●●●

●●

●●●

●●

●●

●●●●

●

●

●●

●●

●●

●●

●●●●

●●

●

●●●●

●●

●●●●●

●

●●●●●●●●●

●

●

●

●●●

●

●●●

●

●

●●

●●

●

●

●●●

●●●●●●

●●

●●

●●●●●●●●●●●●

●

●

●

●●●●●●

●●●●●

●●●●●●●●●

●

●●

●

●●●●

●●

●●

●●●●●

●

●

●

●●

●●

●●●

●●●

●●●●●●●●●

●

●●●●●

●●

●●

●●

●●●●●●

●

●

●●

●●●●

●●●

●●●●

●●●●

●●●●●

●●●●

●●●●●●●

●●●

●●●●

●

●

●●●

●●●

●●

●

●●●●●●●●●

●

●●●●●

●●●●●●

●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●

●

●●●

●

●

●●

●●●●●●●●●●●●●

●

●●●

●●●

●●●

●

●

●

●●

●●

●●●●●●●●●●●●●●●●●●●●

●

●●●●

●●

●

●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●

●

●

●●●●

●

●●●●●

●

●

●●●●●●

●●●

●

●●

●●●●●

●●●●●●

●

●

●●

●●●●●●

●

●●●●●●

●

●●●●●●●

●●

●●●●●●

●●

●●●●●●●

●●

●●●●

●●●

low medium−low medium−high high

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Developer Experience

Av
er

ag
e

Ac
ce

pt
an

ce

●

●
●

●

Cross-project Single-project

low med-low med-high high

Knowledge group (by past reviewed PRs submitted)

low med-low med-high high

10
0

80
60

40
20

0
Ac

ce
pt

an
ce

 R
at

e

10
0

80
60

40
20

0
Ac

ce
pt

an
ce

 R
at

e

●

●

●

●●●●●●●

●●

●

●●●●●●

●●●●

●●

●●

●●

●●●●●●●

●

●●

●●

●●●●●●●●●●●●

●

●●

●

●

●

●●●

●●●

●

●

●●●●

●●

●●

●●●●●

●●

●●●●●●●

●●

●

●●●●●●●●

●

●

●●

●

●●●●●●●●●

●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●

●

●●

●●●●

●●●●●●●●●●

●●●

●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●

●●●

●

●

●●●●●

●

●

●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●●●●●●

●●●

●

●

●

●●

●

●●●●

●●●●●

●●

●

●●●

●●

●

●

●●

●●●

●

●●

●●●

●●

●●

●●●●

●

●●

●●●●●

●

●

●●

●●●

●

●●●

●

●

●

●●●●●

●●●●

●

●●●

●

●

●

●●●●●●●

●

●●

●●

●

●●●

●●

●

●●●●●●●●

●●●●●●

●

●●●●

●●

●

●

●●

●

●

●

●

●●

●●

●●

●●●●●●●●●●●●●●●

●●

● ●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●

●

●●●

●

●

●●

●●●●●●●●●●●

●

●●●●●

●●●●●

●●●●●

●●

●●

●●

●

●

●●●●

●

●●●●●●●

●●●

●●●

●

●●●●●

●●●●●●●●●●

●●

●●

●●●●●●●●●●●

●●

●

●●

●

●●●●●

●●

●●●●●●

●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●●●●●●●●●●

●●●●●●

●

●●

●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●

●●

●●●●●●●●●

●●●

●

●

●●

●

●●

●

●●●

●●

●●●●●●●●●●●

●●

●●

●●

●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●

●●●●●●●

●●

●

●●

●●●

●

●●●●●●●●●

●

●●●●

●

●●●●

●

●

●●●●●●

●●

●

●

●●●

●●●●●●●●●

●●●●

●● ●●●●●●●●●●●●●●

●●●

●●●●●●

●

●●●●●●●●●●

low medium−low medium−high high

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Developer Experience

Av
er

ag
e

Ac
ce

pt
an

ce
●

●
●

●

●

●

●●●●●●●●●●

●

●●●●●●●

●

●

●

●●●

●

●●●●●

●●

●

●

●●

●

●

●●●●

●●

●●●●●

●

●●●●●●

●●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●

●●●

●●●●●●

●

●●●●●

●●

●

●●

●

●

●●●●●●●

●

●●●●●●

●●

●●●

●

●

●●●●●●●●●

●●●●●●●●

●

●●●

●●

●●●●●●●●●●●●●●●

●

●●

●

●●●●

●

●

●

●

●●

●●●●

●●●●●

●●

●

●●

●

●

●●

●

●

●●●●

●●

●

●●●●

●●

●●●

●●

●●●●●●●●●●●●●

●●

●●

●

●●●●●●

●●

●●●●●●●●

●●●

●

●●●

●

●●

●

●

●●

●

●

●

●●●●●●●●

●

●●

●●●●●

●

●●●●

●●●

●●●●●●●

●

●●●

●

●

●●

●

●

●

●●●●●

●

●●●●

●●

●●●●●●●●●

●

●●

●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●●

●

●●●●●●●

●●

●●●●●

●

●●

●●

●●●●●●●

●

●

●

●●●●●●●●

●

●●

●●●●

●

●●●●

●●

●

●●●

●●

●●●●●●●●●●●●●●●●

●●

●

●●●

●●●

●

●●●●●●●●●

●●

●●●●

●

●

●●

●●●●

●

●●●●●

●●●●●●

●

●

●●●●

●

●●●●

●

●

●

●●●

●

●

●

●●

●

●●

●

●

●

●

●●●●●●●●●●●●●●

●

●

●●●●●●

●

●●●●●●●●

●

●

●●●

●●

●●●●●●

●●●

●●

●●●●

●

●

●●

●●

●●

●●

●

●●

●●

●●

●

●

●●

●●●●

●●●●

●●●

●●●●●●●●●●●

●●●●

●●●●

●●●●●

●●

●

●●

●

●●●

●

●●

●●

●●

●●

●●●

●

●●●

●

●●●●

●

●

●

●●●●●●●●

●●

●●

●

●

●●●

●●●●●●●

●

●●●●●●●●●●

●

●●

●

●●

●

●●●●●●●●●●●●

●

●●●●●●

●●

●●

●●●

●●

●

●●●●●●●

●

●●●●●

●

●

●

●●●●●

●●●●●

●●●●●●●●●

●

●●●

●●

●●●●●●●

●●

●

●●●

●●

●●●●●●

●

●●

●

●●

●

●●●●●

●

●

●●

●●

●●●

●●●●

●

●

●

●

●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●

●

●●●

●●

●●●●●●●●●●●●

●●●

●●●●

●●

●

●●

●●●

●

●●●●●●

●●●●●●●

●

●●●●●●

●●

●●●●●●

●

●

●●

●●

●

●●

●

●●

●●

●●●●●

●●

●

●●

●●●●●

●

●●●●●●●●●

●

●●●●

●

●●●

●●●●

● ●●●●

●

●●●●●

●●

●●●●●●●●●●●●●●●

●●

●●●●●

●●

●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●●

●●●

●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●

●

●●●

●●●●

●

●●

●●●

●●●

●

●●●

●●●

●●

●

●●●●●●

●

●

●●●●●●

●●●

●

●●

●●●●

●

●

●●●●●●●●●

●

●

●●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●

●

●●●

●●

●●●●●●

●●

●●●●●●●

●●

●●●●

●●●●●●●●●●●● ●●●●●●●

●●●●●

●

●

●

●

●●

●●

●●●●●●●

●

●●●●

●●

●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●

●

●●

●●●

●●●●

●●●●

●●●●●

●●●●

●●

●●

●

●

●●●●

●

●●●●●●●●●●

●

●●●●●

●

●●

●

●●

low medium−low medium−high high

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Developer Experience

Av
er

ag
e

Ac
ce

pt
an

ce

●

● ● ●

Cross-project Single-project

low med-low med-high high

Knowledge group (by commits performed in the past)

low med-low med-high high

10
0

80
60

40
20

0
Ac

ce
pt

an
ce

 R
at

e

10
0

80
60

40
20

0
Ac

ce
pt

an
ce

 R
at

e

(a) (b)

(c) (d)

Figure E.1. Acceptance rate for PRs submitted by developers.

using past reviewed PRs as independent variable is not reported, since all comparisons where
either not significant or with a negligible effect size. Tables reporting the complete results
of the statistical analyses are available in our replication package [CLB+].

In the following, we discuss the achieved results grouping them by dependent variable,
commenting the results obtained when using both the past PRs and the past number of
commits as criteria to split developers into “knowledge groups”.

E.4.1 PRs Acceptance Rate

By looking at the boxplots reported in Fig. E.1 (a) and (b), we can observe an almost flat
trend of the Acceptance Rate (expressed in percentage) of PRs when the past reviewed PRs
submitted by a developer serve as a proxy for her knowledge. That is, at least by looking at
Fig. E.1 (top part), we did not observe any effect of the knowledge transfer on the likelihood
of future PRs to be accepted.

E.4 Results 157

●

●
●

●

●

●

●

●●●

●●●
●

●

●

●

●

●

●

●●●●

●

●
●

●●●●

●

●

●●

●
●

●
●

●

●

●

●

●

●●

●

●●●●
●●

●

●●

●
●
●

●●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●●●

●●

●
●●●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●
●
●●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●
●

●

●

●

●
●●
●

●

●●

●●

●●

●●

●

●

●●

●

●

●

●●

●

●
●

●
●●

●●●●

●

●

●●

●

●

●●●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●●

●●

●

●

●●
●

●
●

●

●
●●

●

●●

●●

●

●

●

●

●

●●●

●

●

●

●

●
●

●
●●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●●

●●●●●

●

●

●

●●

●

●

●

●

●●

●

●

●●
●

●●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●●●●
●

●

●
●

●●

●

●

●

●

●●

●
●

●

●

●●
●

●
●
●

●

●

●

●

●

●
●●
●

●

●●●●

●●

●

●

●

●
●

●

●●

●

●

●●

●

●

●●

●●

●●
●

●

●
●
●

●

●

●

●

●●

●

●
●

●●

●●
●

●

●

●

●

●●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●●●

●●●

●●

●●

●

●

●●

●

●

●●●

●

●

●
●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●●

●●

●●

●●

●

●
●●
●●
●

●

●

●

●●

●●●

●

●

●
●

●●

●

●

●
●
●
●

●●

●

●

●

●

●●●

●
●

●●●●

●

●

●

●●

●
●

●●

●●●

●

●
●

●

●

●

●

●

●

●

●●

●●

●●●

●●

●
●

●●

●
●

●

●

●

●●●
●●

●

●

●

●

●
●

●

●
●

●
●

●
●
●
●●●●

●
●
●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●
●●●●

●●

●
●●
●

●

●
●

●

●

●●

●

●

●
●

●●

●

●
●

●●

●

●

●
●●●

●

●

●●
●

●

●

●●

●

●

●●●●●

●
●●●

●

●
●
●

●

●
●

●●
●

●

●

●●
●●

●

●

●●●●

●

●
●●

●●●
●
●

●
●●

●

●

●

●

●

●
●●

●

●
●

●

●

●●●

●

●●

●●●

●●

●

●

●

●●

●

●
●●

●●
●●●

●
●

●●●●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●●

●

●

●

●●

●●
●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●
●

●

●●●●●
●
●●

●

●●

●
●

●

●

●●●
●

●
●

●

●

●
●●●
●

●●
●

●●

●

●

●●

●

●

●
●●

●

●
●

●
●

●

●

●●●●
●

●

●●

●●

●●
●

●●

●

●

●●
●
●

●

●●

●

●

●●

●

●
●●

●●●●●
●

●

●
●

●
●
●

●●

●

●●●

●●
●

●

●
●●
●●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●●

●●●

●●

●

●●

●

●

●

●●
●●●●

●●●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●●●

●●

●

●●

●
●

●

●●

●

●

●
●

●

●

●

●●

●

●

●
●
●
●

●●

●●●

●

●
●

●

●
●●●

●

●
●
●●

●●●●●
●●

●

●
●●

●
●
●

●●

●

●●
●●●

●
●●

●

●●
●

●

●●

●●

●
●
●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●
●●●
●

●

●●
●●●

●

●
●

●
●

●

●

●●●●
●
●●
●

●
●●

●

●

●●

●

●●

●
●
●

●

●

●

●●

●

●

●

●

●
●

●●●●
●●
●●●

●

●●

●●

●
●●●

●

●●
●

●●

●

●

●

●

●

●●
●●●

●

●●●

●

●
●
●●●●

●

●●
●●●●

low medium−low medium−high high

0
50

00
10

00
0

15
00

0
20

00
0

Developer Experience

Av
er

ag
e

C
lo

si
ng

 T
im

e
of

 P
R

● ● ● ●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●●●●●

●

●
●

●

●
●

●

●●

●
●●

●●

●

●

●

●

●●

●

●●

●

●

●●

●●

●

●

●

●●●●●

●

●●

●

●●

●●

●●
●●

●

●

●

●

●●●●
●

●

●●
●

●●●

●
●

●

●

●

●●

●●

●

●●●●

●

●●

●

●

●

●

●

●●●●●●●

●●

●

●

●
●
●

●

●

●

●●●
●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●

●●

●
●
●
●

●

●

●

●

●

●

●

●●●●●

●●●

●

●

●

●

●

●●●

●

●

●●
●

●●
●

●●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●
●

●

●

●●

●

●●●●●

●

●

●●●

●

●●

●
●

●

●
●●
●●

●

●

●●

●●

●
●

●●

●
●

●

●

●

●

●●●●

●

●

●●
●●●

●

●●

●

●

●

●

●●●●●

●●●●
●●●●●●●●

●

●●

●●●

●

●

●●

●
●
●

●●●

●

●

●●

●

●

●

●●
●

●
●
●
●●●●●●
●

●
●

●●

●

●

●●●

●

●●
●

●

●
●

●

●
●
●●

●●

●●●

●

●

●

●

●●

●

●
●●●

●

●

●

●

●●●
●

●

●
●

●●
●

●●

●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●●
●

●●
●

●

●

●

●

●●●

●

●
●

●●

●

●●●

●●●

●●

●●●

●

●

●

●

●

●●
●●●

●●●

●

●

●

●
●

●●●

●●

●
●●●●

●

●●●

●●

●

●

●

●
●●●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●●●●

●

●

●●●

●

●

●

●
●●

●
●

●

●

●●●

●

●

●●●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●●
●●
●

●

●

●●●●●●●●
●●

●

●

●●

●
●

●

●

●●

●●●

●
●

●●●

●

●

●
●●

●

●●

●

●

●
●●

●

●●●●
●●
●●

●
●

●

●

●

●

●
●●●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●●

●

●●

●

●
●●●

●

●●

●●

●●●●

●●●
●●

●

●

●●●●

●●●

●

●
●

●

●

●●

●
●

●

●●●●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●●
●
●

●

●

●

●
●

●

●

●
●

●●●●●
●●●●

●
●●●●●●

●●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●●
●
●

●

●

●

●●

●●

●●●
●
●

●●●●●

●●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●●
●●

●

●

●

●●

●

●

●●●●

●●

●●

●●
●●

●
●●●

●

●●

●

●

●●●●●●●

●

●

●
●●●●

●

●

●

●
●●
●

●●

●●
●
●
●

●
●
●

●●●●●●●●●

●

●

●

●
●

●

●●
●●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●
●

●

●●●

●

●●

●

●●●

●●

●
●
●

●●
●

●

●●

●

●
●●
●

●

●

●●●●

●

●●●

●

●

●

●●

●
●●

●

●

●●

●●●

●

●

●

●

●
●

●●

●

●●

●

●●●

●

●●

●

●

●
●
●●●

●
●

●●

●
●●●

●

●
●

●

●●●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●
●

●●

●

●●●●

●
●●

●
●

●

●●

●

●

●●

●

●

●

●●●

●

●●

●

●

●●●

●

●

●●

●
●●

●

●

●●

●●

●
●

●●

●●

●

●

●
●

●

●

●

●

●

●

●●●●
●●●
●

●●

●

●

●

●●

●

●

●

●
●
●●

●

●
●

●

●
●●●
●

●●

●●●
●

●●●

●

●

●●

●

●●●●●●

●

●●
●

●

●

●●

●●

●●●

●

●●●
●●

●

●
●

●

●
●

●●●

●

●●●●●●●●

●

●

●

●
●

●

●

●

●

●

●●

●●
●

●●

●

●

●●●●●●
●●●●●●
●●

●
●●●

●

●

●

●
●

●●

●

●

●
●

●

●

●
●●
●

●

●

●

●

●
●

●●
●●

●

●●●

●

●

●
●

●●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●●

●●

●

●

●●●
●
●

●●●●●●

●

●●●

●

●

●
●●

●●

●

●

●

●

●

●

●

●●●

●
●●

●

●

●

●

●
●
●

●

●

●

●●●●
●

●●

●

●

●●

●

●

●

●●

●
●
●
●

●

●
●
●●
●

●
●

●

●

●●●

●●
●

●●
●

●

●●●

●●

●
●

●

●●
●

●

●●●

●
●●

●

●●
●

●●●●●

●●●●

●
●●●

●

●
●

●●●●●
●●●

●

●●●●

●

●●

●
●●●

●
●

●

●

●●

●

●

●●●

●
●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●●●●●

●

●

●●

●●

●
●●●

●●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●●

●●

●
●

●●
●●

●●●●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●●●●
●
●●
●

●

●●

●
●

●●●

●●●

●●

●

●
●●

●

●

●●●●

●

●

●●●
●●

●
●

●●●

●

●●

●

●

●●

●

●●●

●

●

●●●●
●

●●●

●●

●

●●

●

●●

●●●
●●●

●
●●●

●●●●●●

●
●●●●

●

●●●

●
●●

●

●

●●●●

●

●

●
●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●●

●●

●●

●

●●

●

●●

●

●

●●●

●

low medium−low medium−high high

0
50

00
10

00
0

15
00

0
20

00
0

Developer Experience

Av
er

ag
e

C
lo

si
ng

 T
im

e
of

 P
R

●
● ● ●

Cross-project Single-project

low med-low med-high high

Knowledge group (by past reviewed PRs submitted)

low med-low med-high high

20
k

15
k

10
k

5k
0

Ac
ce

pt
ed

 P
R

s
Cl

os
in

g
Ti

m
e

●

●●
●

●●
●

●

●

●

●

●

●
●

●

●●●●

●

●

●
●

●
●

●

●

●●

●

●●●●
●●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●●
●

●●●

●●

●

●

●●

●
●●●

●●

●
●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●
●●
●

●

●

●

●

●
●

●●

●●

●

●●●●

●

●

●●●

●

●

●●

●

●
●

●●●

●●

●

●

●

●●●●

●●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●●

●
●

●

●●●

●●

●
●

●

●

●

●
●

●●●
●

●

●
●
●●
●

●●
●●●
●●

●●

●

●
●

●

●

●

●
●●

●

●

●

●

●●
●

●●●●

●●●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●●●●
●

●

●
●●●●

●

●
●●

●●●

●●

●

●

●●
●

●

●
●●

●

●●●●●●

●

●

●

●

●

●

●●

●●●●●

●
●

●

●
●
●
●

●

●
●

●

●
●

●

●
●

●

●

●●●●

●●
●

●

●●●

●

●

●
●
●

●

●

●
●●

●

●

●
●

●●

●●●

●

●

●●●●●

●

●

●
●

●●●

●

●
●●●

●

●

●

●

●●●●

●

●●

●

●

●

●
●
●

●

●

●
●

●

●

●●

●●

●●

●●
●

●

●
●●●

●
●●

●
●

●●
●

●

●●

●●

●

●

●
●
●●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●●●

●

●
●

●

●

●

●●●
●●

●

●

●

●

●

●

●

●●
●●

●

●

●
●

●
●

●

●

●●

●●
●●

●

●

●

●

●

●

●●●

●

●●●
●●
●

●
●

●●●

●●
●

●

●
●●
●

●

●

●●
●●
●
●

●●

●

●
●

●

●

●●

●

●
●
●

●●

●

●

●

●●
●●●●

●

●
●●●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●●

●
●

●

●
●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●●●
●●

●

●
●

●

●
●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●
●

●●

●●
●

●

●●

●●

●

●●

●●●

●
●

●

●●

●●●

●●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●●●
●
●●
●

●
●●

●

●

●

●

●

●●

●

●●

●
●
●

●

●

●

●
●●●●

●
●●●
●●
●●●

●

●

●●

●●

●
●●●

●

●●
●

●●

●
●●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●●
●●

●●●●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●●●
●

●

●
●
●

●
●●

●

●

●
●●

●

●

●●

●

●●

●●

●

●

●●

●

●
●

●

●

●

●

●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●
●●

●●●●●
●

●

●●

●
●

●
●
●

●●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●●
●

●
●
●
●

●

●

●

●

●●

●●

●

●

●●

●●
●

●

●

●

●

●●

●

●

●
●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●
●
●

●●

●●●

●

●●

●
●
●

●
●

●

●
●●●

●

●
●
●●

●

●

●
●●

●

●
●●

●

●

●
●

●
●

●

●

●

●●
●●●

●
●

●●

●

●

●●●

●
●

●●
●●●
●

●

●

●

●

●●

●

●

●

●

●●●●●

●●

●

●
●

●
●

●
●

●

●

●

●

●●

●●

●●

●●

●

●
●●
●●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●●

●●

●

●

●
●●●
●

●

●●
●●
●●●

●●

●

●
●

●
●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●●

●

●
●
●
●
●

●

●●

●

●●

●
●

●●●●●●

●●

●
●

●●

●
●
●

●●

●

●

low medium−low medium−high high

0
50

00
10

00
0

15
00

0
20

00
0

Developer Experience

Av
er

ag
e

C
lo

si
ng

 T
im

e
of

 P
R

● ●
●

●

●
●●●●

●

●

●

●

●●●●●

●●●●

●

●

●●●

●

●
●

●

●

●●

●●

●
●

●

●

●●●

●

●

●

●
●

●●

●●

●

●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●●

●

●●●●

●●

●

●

●

●●

●●●

●

●
●
●●
●
●●●

●

●

●●●
●

●

●

●
●

●●●

●

●

●

●

●●●
●

●

●●

●

●

●

●

●

●
●●●

●●●

●

●

●

●●

●

●

●●
●

●●
●

●

●

●
●●●●

●

●
●●

●

●

●●●●●

●

●●●●●●●

●●●

●

●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●●●
●●

●●

●●●

●

●
●

●

●

●

●

●●●●

●
●●
●●

●●
●●●●

●●●●
●●●

●●●

●

●●
●

●●

●
●

●●

●

●

●

●

●
●

●

●●

●●●
●

●

●●

●●●

●

●●●●●●
●●●●●●
●●
●

●

●

●

●

●

●●●
●

●

●●

●●

●●
●●

●

●

●

●

●
●

●

●●

●●
●

●

●

●

●●
●●
●●●

●

●●●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●●
●

●

●●

●

●

●
●●

●

●●●

●●

●

●●●

●

●

●●

●

●
●●

●

●

●●

●●●

●

●

●

●
●●●

●●

●

●

●
●
●
●

●●●●●●●

●●●●

●
●●●

●

●

●●●●●●●●
●●

●

●

●●

●

●●

●

●

●●
●

●

●

●
●

●

●●
●
●

●

●

●
●

●●

●

●●●●●

●

●●

●●
●

●

●●

●

●

●

●

●●

●

●●

●

●

●●●

●

●

●

●
●

●●

●
●●

●
●●

●

●

●

●

●●●●

●●●

●
●

●●

●●

●●

●

●

●
●●●

●
●●
●●●

●●

●
●

●

●

●●

●
●

●●●●

●●
●●

●●

●

●

●

●

●

●

●●

●●
●

●

●
●

●●●

●●

●

●
●

●

●
●

●

●●●

●●

●
●

●●
●●

●●●

●●●

●●

●

●
●

●●●●●

●
●
●●●●

●●

●●●●

●●

●

●

●

●

●

●
●

●
●
●
●
●●

●

●

●

●●

●

●●
●

●●

●

●

●●

●
●

●●●

●

●●●

●●

●

●

●

●

●

●

●
●●●

●

●●
●●

●

●

●
●

●

●

●

●
●

●
●

●●
●●

●●●

●

●●

●

●

●
●

●●
●
●
●

●●●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●●

●●●

●
●●
●●

●●

●●

●●
●●●●

●

●

●

●●●

●
●

●

●

●

●

●●●

●●

●

●
●●●

●

●

●

●

●

●

●●●●

●●
●

●

●

●

●

●●

●
●
●

●
●

●

●
●
●●
●

●
●

●

●

●●●

●●
●

●●
●

●

●●●

●
●●
●

●

●

●●

●

●

●●●●●

●
●●

●

●
●●

●●

●

●

●●●●

●

●●

●

●

●
●●●

●
●

●

●

●
●

●

●●●

●●
●

●

●

●●

●

●

●
●●

●

●
●
●
●

●●

●

●
●●

●●●●●

●

●

●●

●

●

●

●

●

●

●●

●●
●●

●●●
●●

●●

●

●

●

●

●

●

●

●
●
●●

●

●

●
●●●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●●●●

●
●

●

●

●

●●●●●●●●●●

●

●

●

●
●●

●●
●

●●●

●●●●●●

●

●●

●●

●

●●●●
●
●●
●

●
●●

●
●

●
●●

●
●

●

●
●

●●

●●

●
●●

●

●

●●●●●
●●

●●●●●

●
●

●●●

●

●●●
●
●
●●

●

●

●
●

●●
●●

●

●●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●

●

●

●●●●
●

●

●●

●●

●

●

●●●
●
●

●●

●
●

●

●●

●●

●●

●

●●

●

●●

●

●

●●●

●

●

●
●
●

●

●
●

●

●
●
●

●●
●

●●

●

●

●●

●●●

●●

●

●●●

●●

●

●

●

●
●
●●●●●

●

●
●

●
●

●
●

●

●●●●●●●

●●

●

●

●●

●
●●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●●●●
●

●

●●
●

●

●

●●●
●

●

●

●

●●
●●

●●●●

●●

●
●
●

●

●

●

●

●

●●

●
●

●

●●●

●

●

●●
●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●

●

●
●

●●●●●●
●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●
●

●
●

●

●

●●

●
●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●
●

●

●

●●
●

●

●

●
●
●
●●

●

●
●

●
●

●

●

●
●
●●●●

●●●

●

●

●

●●

●

●

●

●

●●

●●

●●

●●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●●
●●

●

●

●

●●●

●

●

●
●
●

●●

●●

●

●●●
●

●

●●

●●●
●

●●●●●●

●●●●
●●

●
●●

●
●●
●

●

●●

●

●●

●

●

●

●●●

●
●●●

●●

●

●

●

●

●

●

●●●

●
●●

●

●●

●

●
●
●
●

●

●

●●
●
●

●●●

●

●●

●●●●

●●●

●
●●

●
●●

●
●

●●●

●

●

●

●●

●●●

●

●●

●

●●

●

●

●●

●

●●●

●●●

●

●

●

●

●●

●●

●

●

●●
●

●

●

●
●
●●

●

●

●

●●●

●●

●

●●

●●

●

●●

●●●
●●

●

●

●

●

●

●

●●●

●●●●●●

●

●

●

●

●●●●

●

●●●

●
●●

●

●
●●
●●●●

●

●

●
●●
●

●

●

●

●

●

●

●●●●

●

●
●

●●●

●●●

●

●
●
●●●●

●

●

●

●

●

●

●●●●●●

low medium−low medium−high high

0
50

00
10

00
0

15
00

0
20

00
0

Developer Experience

Av
er

ag
e

C
lo

si
ng

 T
im

e
of

 P
R

●
● ●

●

Cross-project Single-project

low med-low med-high high

Knowledge group (by commits performed in the past)

low med-low med-high high

(a) (b)

(c) (d)
20

k
15

k
10

k
5k

0

Ac
ce

pt
ed

 P
R

s
Cl

os
in

g
Ti

m
e

20
k

15
k

10
k

5k
0

Ac
ce

pt
ed

 P
R

s
Cl

os
in

g
Ti

m
e

20
k

15
k

10
k

5k
0

Ac
ce

pt
ed

 P
R

s
Cl

os
in

g
Ti

m
e

Figure E.2. Closing time (in minutes) for PRs submitted by developers.

Looking at the results of the statistical tests, we can also observe that none of the per-
formed comparisons have at least a small effect size (see Table E.2).

Concerning our “control variable,” meaning the number of commits, we achieved a slight
different result: significant differences (with at least a small effect size) can be observed
between the knowledge groups (see Table E.3). However, this only holds: 1) in the cross-
project scenario (no such differences are observed in the single-project setting), and 2) when
comparing the low group with the top two groups (i.e., medium-high and high), as well as
comparing medium-low and high. Actually, the effect of the experience acquired through
commits over time seems to have an imperceptibly higher impact on the acceptance rate of
future PRs as compared to the experience gained through past PRs (compare top and bottom
part of Fig. E.1).

To summarize, we do not observe any apparent positive impact of the past reviewed PRs
submitted by a developer on the likelihood that her future PRs will be accepted (contra-
dicting some previous findings in the literature, e.g., [CSM19, RR14, SdLJMP15a, TDH14]).
Note, however, that we adopted a completely different experimental design, and we only

158 Knowledge Transfer in Modern Code Review

●●

●

●●

●

●●

●●

●●●●●

●●●

●●

●●●

●

●●●

●

●

●

●●

●

●●

●

●

●●●●●

●

●

●●●●

●●●

●

●●●●●

●

●

●●

●

●

●

●●●●●●

●

●

●

●

●

●●●

●●

●

●●●

●●●

●

●

●●●

●●

●

●●

●

●

●

●●●●

●

●

●

●●

●

●●●

●

●

●●●●

●

●●●●●

●●

●

●●

●●

●

●●●●

●

●

●●●

●

●

●

●●●

●

●●●

●

●

●

●●

●

●

●●

●●

●

●●●●●●●●●●

●

●

●

●●●●

●●

●●

●●●●●

●

●●

●●

●

●

●●●●

●●●

●

●●

●●

●●●●●●

● ●

●

●●●

●

●●●●●●

●

●

●●

●●

●

●●

●

●●●●

●●●

●●●●●

●●

●●

●●

●●●●

●●●●

●●

●

●●●●

●●●●●●●●●

●

●

●

●

●●

●

●

●●

●●●●●●

●●

●●

●●

●

●

●●●

●

●●●

●

●

●●

●

low medium−low medium−high high

0
1

2
3

4
5

Developer Experience

Av
er

ag
e

C
om

m
en

ts
 R

ec
ei

ve
d

●
● ● ●

●

●

●●●●●

●●

●

●

●

●

●●

●

●

●●

●●●●

●●●●●●

●

●●

●●

●

●●●

●●

●

●

●●

●

●●

●

●●

●

●

●●●

●●●

●

●●●

●●●●

●

●●●●

●●

●

●●●

●●

●●

●●

●●●●●●●

●●●

●●

●

●●●●●

●

●

●●●●

●●

●

●●●●●

●●

●

●●●●

●●●●

●●●●

●●

●

●●●●●

●●

●●●●●●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●●

●●

●

●●

●

●●

●

●●●

●

●●●

●

●

●●●●●●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●●

●●●

●

●●●

●

●

●

●●●

●

●●●

●

●●

●●●●

●●●

●

●

●●●●

●

●●●●

●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●●

●●●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●●●●

●

●

●

●

●●

●●

●

●●

●

●●

●

●●

●

●

●●

●

●

●

●●

●●

●●●●●

●

●

●

●●●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●●●

●●●

●●

●

●●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●●●●

●●

●●●

low medium−low medium−high high

0
1

2
3

4
5

Developer Experience

Av
er

ag
e

C
om

m
en

ts
 R

ec
ei

ve
d

●
●

●

●

Cross-project Single-project

low med-low med-high high

Knowledge group (by past reviewed PRs submitted)

low med-low med-high high

5
4

3
2

1
0

G
en

er
al

 C
om

m
en

ts
 R

ec
ei

ve
d

5
4

3
2

1
0

G
en

er
al

 C
om

m
en

ts
 R

ec
ei

ve
d

●

●●●

●

●●●●●●

●

●

●●

●●

●

●●●

●●

●●●●●

●●●●

●

●●●

●

●●●●

●●

●

●

●●●

●

●●●

●●

●●●

●●●●●●●●

●●●●●●●●

●

●

●

●

●

●

●

●●●●●●●

●●

●

●

●

●

●●●●●

●

●

●●●

●●●

●

●●

●●

●●

●

●●

●

●

●

●

●

●●●●●

●

●●

●● ●

●

●

●

●●●●●●

●

●●●●●

●

●●

●

●●●●●

●●●

●●●●

●●●

●●

●

●

●

●

●

●

●●●●●

●●

●

●

●●

●●

●●●●●

●●●

●

●

●

●

●

●●●

●

●

●

●

●●

●●●●●●

●●

●●

●●

●

●

●●●●●

●

●

●●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●●

●

●●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●●

●●

●

●●●●

●

●

●

●

●

●

●

●●

●●●

●●

●

●

●

●●●●

●●

●●

●

●

●●

●●

●●

●

●●●

●●●●

●●●

●

●

●

●

●

●

●●

●●●

●

●●●

●●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●●

●

●●●

●

●

●

●●

●

●●

●

●●●●

●

●●

●

●●●

●

●

low medium−low medium−high high

0
1

2
3

4
5

Developer Experience

Av
er

ag
e

C
om

m
en

ts
 R

ec
ei

ve
d

●

●
●

●

●● ●

●●

●

●

●

●●●●●●●●●●

●

●

●

●

●

●

●●●●●●●

●●

●●●

●●●

●

●

●●

●

●●

●

●

●●

●

●

●●

●●●●●

●●●●

●●●

●

●●●●

●●

●

●●

●●●●●●

●●

●●

●

●

●

●●

●●●

●

●

●

●

●

●●●

●●●●

●

●

●●●●

●●

●●

●●●

●●●●●●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●●●

●●●

●●

●

●

●●

●

●●

●●●●

●●

●

●

●

●●

●●●●●

●

●●●●

●●●●

●●

●●●●●

●●●

●

●●

●●●

●●

●

●

●

●

●

●

●

●●

●●●

●●

●

●●●

●

●

●●

●

●

●

●●●

●●●●

●

●●

●

●

●●

●●

●●

●●●

●

●●●

●●●●

●

●

●●●●

●

●

●●

●

●

●●●●

●

●●

●

●●

●

●●●●

●●

●

●●●●

●●●●

●●●

●●●

●

●●●●●

low medium−low medium−high high

0
1

2
3

4
5

Developer Experience

Av
er

ag
e

C
om

m
en

ts
 R

ec
ei

ve
d

●
● ●

●

Cross-project Single-project

low med-low med-high high

Knowledge group (by commits performed in the past)

low med-low med-high high

5
4

3
2

1
0

G
en

er
al

 C
om

m
en

ts
 R

ec
ei

ve
d

5
4

3
2

1
0

G
en

er
al

 C
om

m
en

ts
 R

ec
ei

ve
d

(a) (b)

(c) (d)

Figure E.3. Number of general comments for PRs submitted by developers.

considered past reviewed PRs as independent variable.
Instead, developers are more likely to improve their PR acceptance along with the in-

crease of their committing experience (as observed through the commits-based analysis).

E.4.2 Accepted PRs Closing Time

As for the accepted PR closing time, the top part of Fig. E.2 is also quite flat, for both cross-
and single-project scenarios. This finding is also supported by the results of the statistical
analysis, reporting negligible effect sizes for all performed comparisons.

Such a result was quite surprising for us, since we expected that the higher the knowledge
acquired by developers through PRs, the lower the closing time of their accepted PRs. While
we do not have any empirical evidence to explain the lack of such a trend, one possibility is
that more experienced developers are responsible for more complex PRs, that require longer
reviewing time thus “nullifying” the advantage brought by the acquired knowledge. Such a
finding would be in line with what discussed by Zeller in his book Why Programs Fail [Zel09],
in which the author reports that Erich Gamma, the master developer of Eclipse, was the

E.4 Results 159

●●

●●

●

●●

●

●●●

●

●

●●●

●●●

●●

●

●●

●

●

●●

●

●

●●●●●

●

●

●●●

●●

●

●

●●

●

●●

●●●

●

●●●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●●●●●

●

●●●

●

●

●●●

●●

●

●●●●●

●

●●

●

●●●●

●●●●

●

●●

● ●●●●●

●●

●

●

●●●

●

●●

●

●

●●●

●●●●

●●

●●●

●

●

●

●●

●●

●●●●

●

●

●

●

●●●●

●●●●●

●

●

●●●

●

●●

●●

●

●●●

●

●●●

●

●●

●

●

●

●●●●

●●

●

●

●

●

●

●

low medium−low medium−high high

0
1

2
3

4
5

Developer Experience

Av
er

ag
e

C
od

e
C

om
m

en
ts

 R
ec

ei
ve

d

●
●

● ●

●●●●●●●●

●●●●●

●

●●●●

●●●●

●

●

●

●

●●●

●●●●

●

●●

●●●●

●●

●●●

●

●●

●●●●●●●

●

●

●●●●●

●

●

●

●●●●●

●

●●●●

●

●●

●

●

●●

●

●●

●

●●●●●●●

●

●●●●

●●

●

●

●

●

●●

●

●

●

●

●

●●

low medium−low medium−high high

0
1

2
3

4
5

Developer Experience

Av
er

ag
e

C
od

e
C

om
m

en
ts

 R
ec

ei
ve

d

● ● ●
●

Cross-project Single-project

low med-low med-high high

Knowledge group (by past reviewed PRs submitted)

low med-low med-high high

5
4

3
2

1
0

Co
de

 C
om

m
en

ts
 R

ec
ei

ve
d

5
4

3
2

1
0

Co
de

 C
om

m
en

ts
 R

ec
ei

ve
d

●●●

●●

●●●

●

●

●●●●●

●

●●●●●

●●

●

●

●●●

●

●●

●

●●●

●●●

●

●

●

●

●●

●

●●●

●

●

●

●●

●

●●●●●

●

●●

●●●

●●

●●

●

●●

●●

●●●●

●

●

●●●

●

●

●

●

●

●●●●

●●

●●●

●

●

●●●●

●●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●●

●

●●●

●●

●

●●●

●●

●

●●

●●●●●●

●●

●

low medium−low medium−high high

0
1

2
3

4
5

Developer Experience

Av
er

ag
e

C
od

e
C

om
m

en
ts

 R
ec

ei
ve

d

● ●
●

●

●●●●

●

●

●●●●●

●●●

●

●●

●

●

●

●●

●

●●●●●●

●●

●●

●●●●●

●●

●

●

●●●●

●

●

●●●●●

●

●

●

●●●

●

●

●●●●●

●

●●●

●●

●●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●●

●

●●

●

●●●●

●

●●

●●

●

●

●●

●●

●

●

●●●●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●●

●●

●●

●

●

●

●●

●●●

●●●

●●

●

●●

●

●●

●

●

●●●●

●●●

●

●

●

low medium−low medium−high high

0
1

2
3

4
5

Developer Experience

Av
er

ag
e

C
od

e
C

om
m

en
ts

 R
ec

ei
ve

d

●
● ●

●

Cross-project Single-project

low med-low med-high high

Knowledge group (by commits performed in the past)

low med-low med-high high

5
4

3
2

1
0

Co
de

 C
om

m
en

ts
 R

ec
ei

ve
d

5
4

3
2

1
0

Co
de

 C
om

m
en

ts
 R

ec
ei

ve
d

(a) (b)

(c) (d)

Figure E.4. Number of source code comments for PRs submitted by developers.

second most defect-prone Eclipse developer. The explanation for such a finding was indeed
that more experienced developers tend to perform more complex and critical tasks [Zel09].

When performing the same analysis for the past commits independent variable (bottom
part of Fig. E.2), we observe a slight decrease of reviewing time when moving from the
low toward the high group in the cross-project scenario, with the statistical tests reporting a
significant difference with a non-negligible effect size only when comparing the low and the
high groups (see Table E.3).

E.4.3 Comments Posted in PRs

We discuss together our findings for both the number of general comments (Fig. E.3) and
source code comments (Fig. E.4) posted in the PRs submitted by different groups of develop-
ers. We first focus on the top part of both figures (i.e., results related to the past reviewed
PRs).

These two figures together tell an interesting story. While developers who acquired more
knowledge over time receive more general comments (possibly indicating the higher com-

160 Knowledge Transfer in Modern Code Review

Table E.2. Cross-project scenario - Knowledge groups created by past PRs: Results of the Mann-
Whitney test (adj. p-value) and Cliff’s Delta (d). We only report results of comparisons that are: (i)
statistically significant and (ii) have at least a small effect size.

Test Adj. p-value d

Acceptance Rate
No significant differences with at least small d

Accepted PR Closing Time
No significant differences with at least small d

General Comments Received
low vs medium-high <0.01 -0.15 (Small)
low vs high <0.01 -0.27 (Small)
medium-low vs high <0.01 -0.19 (Small)

Source Code Comments Received
No significant differences with at least small d

Sentiment Analysis on General Comments: SENTISTRENGTH-SE
No significant differences with at least small d

Sentiment Analysis on General Comments: SENTI4SD
No significant differences with at least small d

Sentiment Analysis on Code Comments: SENTISTRENGTH-SE
No significant differences with at least small d

Sentiment Analysis on Code Comments: SENTI4SD
No significant differences with at least small d

plexity of the changes they implement), the number of source code comments, meaning spe-
cific recommendations on how to improve the code, does not increase with the increase of
the knowledge. This means that, despite the PRs submitted by developers who performed a
higher number of reviewed PRs in the past are discussed more, they do not receive a higher
number of comments for source code. This is also confirmed by the statistical tests for the
cross-project scenario (see Table E.2), with: 1) significant differences observed for the num-
ber of general comments received in the low and medium-low groups when compared with
the high group, as well as in the low group when compared with the medium-low group, and
2) no differences found for what concerns the number of received code comments among
the different groups. When looking at the commits-based analysis (bottom part of Figures
E.3 and E.4), significant differences with a small effect size can be observed regarding the
number of general comments received when comparing the high group to all other groups
(see Table E.4) in single-project scenario. Meanwhile, similar differences can also be found
when comparing the source code comments received between the low group and the high
group in cross-project scenario.

E.4 Results 161

Table E.3. Cross-project scenario - Knowledge groups created by past commits: Results of Mann-
Whitney test (adj. p-value) and Cliff’s Delta (d). We only report results of comparisons that are (i)
statistically significant, and (ii) have at least a small effect size.

Test Adj. p-value d

Acceptance Rate
low vs medium-low <0.01 -0.16 (Small)
low vs medium-high <0.01 -0.16 (Small)
low vs high <0.01 -0.21 (Small)

Accepted PR Closing Time
low vs high <0.01 0.17 (Small)

General Comments Received
No significant differences with at least small d

Source Code Comments Received
low vs high <0.01 0.16 (Small)

Sentiment Analysis on General Comments: SENTISTRENGTH-SE
low vs high SSE <0.01 0.16 (Small)

Sentiment Analysis on General Comments: SENTI4SD
low vs high 4SD <0.01 0.17 (Small)

Sentiment Analysis on Code Comments: SENTISTRENGTH-SE
No significant differences with at least small d

Sentiment Analysis on Code Comments: SENTI4SD
No significant differences with at least small d

Overall, the comments posted during the PRs reviewing process seem to be the only
dependent variable in our study for which we observed some possible positive influence of
the knowledge acquired in the code review process. Indeed, while PRs submitted by more
experienced developers (in terms of reviewed PRs they submitted in the past) are more
discussed, they do not receive more requests for code changes. Such an effect is also visible
when using the past commits as independent variable in single-project setting.

E.4.4 Sentiment Polarity of Comments

As far as the Sentiment Polarity is concerned, we do not show any box plot for space reason
(they are available in our replication package [CLB+]). However, the results of the statistical
tests are reported in the Tables E.2 (cross-project, past PRs), E.3 (cross-project, past com-
mits), and E.4 (local-project, past commits). As previously said, no results are reported for
the local-project scenario when using past PRs due to the non-significant p-values and/or
negligible d effect size achieved in all comparisons.

162 Knowledge Transfer in Modern Code Review

Table E.4. Single-project scenario - Knowledge groups created by past commits: Results of Mann-
Whitney test (adj. p-value) and Cliff’s Delta (d). We only report results of comparisons that are (i)
statistical significant, and (ii) have at least a small effect size.

Test Adj. p-value d

Acceptance Rate
No significant differences with at least small d

Accepted PR Closing Time
No significant differences with at least small d

General Comments Received
low vs high <0.01 0.31 (Small)
medium-low vs high <0.01 0.21 (Small)
medium-high vs high <0.01 0.16 (Small)

Source Code Comments Received
No significant differences with at least small d

Sentiment Analysis on General Comments: SENTISTRENGTH-SE
No significant differences with at least small d

Sentiment Analysis on General Comments: SENTI4SD
No significant differences with at least small d

Sentiment Analysis on Code Comments: SENTISTRENGTH-SE
No significant differences with at least small d

Sentiment Analysis on Code Comments: SENTI4SD
No significant differences with at least small d

We found that neither positive nor negative polarities in the source code discussions pre-
vail in both the cross and single-project studies. Such an outcome is plausible due to the fact
that code review discussions mostly concern topics like (i) defect detecting, (ii) reviewer as-
signing, (iii) contribution encouraging, and so on [LYY+17]. Second, only the comparison of
sentiment polarity in general comments between the low group and the high group provides
a significant result (i.e., the two extremes, with “newcomers” and very experienced devel-
opers). In this case, we found that the sentiment polarity is generally higher in discussions
related to PRs opened by developers in the low group in the cross-project scenario. This may
be due to the fact that reviewers tend to be more positive with newcomers to not discourage
them in contributing again in the future. Note that the findings related to the sentiment
polarity of comments are confirmed by both sentiment analysis tools used in our study.

E.4.5 Answering our Research Question

Our study led to what we can define a negative result. For most of the analyzed dependent
variables we did not find any strong impact of the knowledge transfer in the code review pro-

E.5 Threats to Validity 163

cess on the quality of the contributions submitted by developers in open source projects. In
particular, for the PRs acceptance rate, we did not observe positive effects in the cross-project
scenario when using past PRs as a proxy for knowledge transfer. Instead, an increase of ex-
perience over time might be more important for the improvement of the PRs acceptance rate,
as demonstrated by the obtained results when using past commits as independent variable.

For the closing time of accepted PRs, most of the times we found no impact of the knowl-
edge acquired in past PRs. As said, this may be due to the fact that more experienced de-
velopers tend to submit more complex PRs that, in some way, nullify the shorter reviewing
time they would benefit of otherwise. Additional investigations are needed to understand
the reasons behind such a result.

The comments posted in PRs are the only dependent variables for which we observed some
influence of the knowledge acquired in past reviewed PRs. Indeed, while the PRs submitted
by developers in the high group are generally more discussed, they receive a similar amount
of recommendations for improving the contributed code, indicating a higher quality of the
submitted PR. Also, such a phenomenon was not observable when using commits as inde-
pendent variable in the cross-project scenario. Finally, no major differences were observed
in the polarity of sentiments for comments posted in PRs submitted by developers having
different levels of knowledge as assessed by both past PRs and past commits.

Overall, our findings failed to provide some quantitative evidence about the benefits
brought by a code review process in improving developers’ skills over time. The reasons
behind such a result certainly deserve additional investigation, since knowledge transfer is
one of the main motivations for modern code review. We believe that different experiments,
using different experimental designs (e.g., different dependent and independent variables)
are needed to corroborate or contradict our findings.

E.5 Threats to Validity

To comprehend the strengths and limitations of our study, the threats that could affect the
results and their generalization are presented and discussed here. Despite our efforts to
mitigate as many threats to validity as possible, some are still unavoidable.

Threats to construct validity concern the relation between the theory and the observation,
and in this work are mainly due to the measurements we performed:

The way in which we measured knowledge transfer in code review. There are no accepted
metrics to quantitatively assess the notion of knowledge transfer, especially in a context,
such as that of mining software repositories, in which there is no direct access to the studied
developers. We assumed that the number of past reviewed PRs, that have been submitted by
a developer, represent a good proxy of the knowledge transfer that developer has benefited
of. To at least mitigate the threat represented by such an assumption, we only considered
past PRs that actually received at least one comment by a peer developer. This should at least
ensure that a review process was actually carried out for the considered PRs. These measures
may not precisely capture the knowledge transfer process given its complex nature. Based on
our study (design and outcomes), additional investigations are needed to understand which
quantitative proxies can best quantify the knowledge gained during code review process.

164 Knowledge Transfer in Modern Code Review

The measures used to assess the quality of contributions over time. We adopt a number
of indicators that should reasonably be related to the quality of the contributions submitted
by a developer via PRs. For example, we assumed that a higher acceptance rate of the
submitted PRs is related to higher quality contributions. While such assumption might look
reasonable, there might be corner cases in which they do not hold, e.g., PRs accepted despite
the fact that they provide a sub-optimal solution, maybe due to the need for fixing, at least
partially, a blocking bug. Also, one of our measures (i.e., closing time of accepted PRs) is
based on time-related aspects that, when mined from software repositories, can bring noise
to the performed measurements. Indeed, there is no guarantee that a review process started
right after the PR submission. Thus, longer/shorter reviewing times might be due to factors
completely unrelated to the quality/complexity of the submitted contribution.

The approach for mapping GitHub user names to commit author names. There is still a
possibility that some developers might use identities we did not discover, or intentionally
hide their identities when authoring commits. However, by iterative linking process and
manual inspection, we believe the impact has been limited to the possible minimum.

The sentiment polarity assessment provided by sentiment analysis tools. Previous studies
showed that state-of-the-art sentiment analysis tools provide poor performance when used
in context different from the ones they have been designed for [LZB+18]. Both tools we
adopted [IZ18b, CLMN18] have been designed to work on software-related data. However,
they have been experimented on different datasets as compared to the one used in this
chapter and, as a consequence, their performance on the PR comments can be different
from the one reported in the original papers.

Threats to internal validity concern external factors we did not consider that could affect
the variables and the relations being investigated. The differences observed between the
groups of developers we created may be due to several confounding factors (e.g., developers
performing more PRs acquire more skills over time not due to the code review process, but
thanks to the accumulated experience). For this reason, we also replicated our analyses by
using the number of past commits to split the developers into “knowledge groups”. This
helped, for example, to provide a better interpretation of the results achieved for the PRs
acceptance rate independent variable.

Threats to conclusion validity concern the relation between the treatment and the out-
come. Wherever necessary, we used suitable statistical inferences to support our conclusions:
we used the Mann-Whitney test (with adjusted p-values due to multiple comparisons) and
Cliff’s d effect size.

Threats to external validity concern the generalizability of our findings. We tried to
achieve high generalizability by considering the complete contribution history of 728 de-
velopers, for a total of 32,062 PRs spanning 4,981 repositories. Also, we did not apply any
filter related to the programming language, since all the steps of our study are language-
independent.

E.6 Conclusions 165

E.6 Conclusions

We presented a quantitative study to investigate knowledge transfer in code review. Our
results were mostly negative: we were not able to capture the positive role played by code
review in knowledge transfer among developers, as was previously suggested in the literature
[BB13]. This came to us as a surprise, as we were confident to see at least significant traces
of the knowledge transfer, because despite not supporting the findings of Bacchelli and Bird
[BB13] given our results, we actually are convinced that their claims are correct. This raises
a number of questions that we have addressed in part throughout the latter part of the
chapter, where we conjecture possible fallacies in our experiment design and notable threats
to validity that are difficult to fully address, especially those regarding the measures we used
to quantify the impact of knowledge transfer.

We stress the fact that our findings do not contradict previous qualitative results re-
ported in the literature, but rather call for additional investigations aimed at understanding
how (and if) we can actually capture the knowledge transfer in code review in a quantitative
way. Therefore, our main direction for future work includes additional studies investigating
the same research questions with a different experimental design. Specifically, we will inves-
tigate which measures can be used as a precise proxy to represent the knowledge transfer,
in both quantitative and qualitative way.

The data used in our study is publicly available [CLB+].

166 Knowledge Transfer in Modern Code Review

F
Datasets

During our studies, we have manually created multiple datasets. We present these datasets
here, such that researchers can use them to either tune their own approaches, or validate rele-
vant techniques. All the datasets can be found at https://github.com/bin-lin/datasets.

F.1 Sentiment Polarity Analysis in Software Engineering Contexts

F.1.1 Dataset of Mobile App Reviews

This dataset contains 341 sentiment-annotated sentences from app reviews. The app reviews
were originally collected by Villarroel et al. [VBR+16]. We manually labeled the sentiment of
each review. Three scores are used to represent the sentiment: 1 for positive, 0 for neutral,
and -1 for negative. The dataset contains 130 positive, 25 neutral, and 186 negative reviews.
The dataset can be found in the “Sentiment/AppReviews” folder.

F.1.2 Dataset of Stack Overflow Discussions

This dataset contains 1,500 sentences extracted from Stack Overflow discussions and 20k
intermediate nodes composing these sentences. All of them are sentiment-annotated. For
the 1,500 sentences, three scores are used to represent the sentiment: 1 for positive, 0 for
neutral, and -1 for negative. For the intermediate nodes, we present them in the Penn Tree
Bank (PTB) format, which can be directly used by STANFORD CORENLP: 4 represents positive,
3 slightly positive, 2 neutral, 1 slightly negative, and 0 negative. The dataset can be found
in the “Sentiment/StackOverflow” folder.

167

https://github.com/bin-lin/datasets

168 Datasets

F.2 Mining Opinions from Q&A Sites to Support Software Design De-
cisions

F.2.1 Dataset of API-Related Opinions

This dataset contains 1,662 sentences extracted from Stack Overflow discussions. Each sen-
tence is annotated with the sentiment polarity and its corresponding quality aspects. The
dataset can be found in the “POME/API” folder.

F.2.2 Dataset of pome and Opiner

This dataset contains 205 sentences extracted by POME and 208 sentences extracted by
OPINER. They are annotated in the same way as the “dataset of API-related opinions”. Ad-
ditionally, this dataset also include the original prediction results of POME and OPINER. The
dataset can be found in the “POME/Tools” folder.

F.3 On The Quality of Identifiers in Test Code

This dataset contains 283 identifiers extracted from test code and 47 identifiers extracted
from production code. Each identifier is annotated with its location in the project files, good
attributes of the naming, bad attributes of the naming, proposals for a new name, and other
remarks. The dataset can be found in the “TestID” folder.

Bibliography

[AAP+18] Giuliano Antoniol, Kamel Ayari, Massimiliano Di Penta, Foutse Khomh, and
Yann-Gaël Guéhéneuc. Is it a bug or an enhancement?: a text-based approach
to classify change requests. In Proceedings of the 28th Annual International
Conference on Computer Science and Software Engineering (CASCON 2018),
pages 2–16. ACM, 2018.

[AARS20] Md. Ahasanuzzaman, Muhammad Asaduzzaman, Chanchal K. Roy, and
Kevin A. Schneider. CAPS: a supervised technique for classifying stack
overflow posts concerning API issues. Empirical Software Engineering,
25(2):1493–1532, 2020.

[AAT+12] Surafel Lemma Abebe, Venera Arnaoudova, Paolo Tonella, Giuliano Antoniol,
and Yann-Gaël Guéhéneuc. Can lexicon bad smells improve fault prediction?
In Proceedings of the 19th Working Conference on Reverse Engineering (WCRE
2012), pages 235–244. IEEE Computer Society, 2012.

[ABBS14] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles A. Sutton. Learn-
ing natural coding conventions. In Proceedings of the 22nd ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering (FSE 2014),
pages 281–293. ACM, 2014.

[ABBS15] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles A. Sutton. Sug-
gesting accurate method and class names. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2015), pages
38–49. ACM, 2015.

[ABIR17] Toufique Ahmed, Amiangshu Bosu, Anindya Iqbal, and Shahram Rahimi. Sen-
ticr: a customized sentiment analysis tool for code review interactions. In
Proceedings of the 32nd IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE 2017), pages 106–111. IEEE Computer Society, 2017.

[AEO+10] Venera Arnaoudova, Laleh Mousavi Eshkevari, Rocco Oliveto, Yann-Gaël
Guéhéneuc, and Giuliano Antoniol. Physical and conceptual identifier dis-
persion: Measures and relation to fault proneness. In Proceedings of the 26th
IEEE International Conference on Software Maintenance (ICSM 2010), pages
1–5. IEEE Computer Society, 2010.

[AHK18] Ryo Arima, Yoshiki Higo, and Shinji Kusumoto. Toward refactoring evalua-
tion with code naturalness. In Proceedings of the 26th Conference on Program
Comprehension (ICPC 2018), pages 316–319. ACM, 2018.

169

170 Bibliography

[AHTM09] Surafel Lemma Abebe, Sonia Haiduc, Paolo Tonella, and Andrian Marcus.
Lexicon bad smells in software. In Proceedings of the 16th Working Conference
on Reverse Engineering (WCRE 2009), pages 95–99. IEEE Computer Society,
2009.

[AKU+19] Ikram El Asri, Noureddine Kerzazi, Gias Uddin, Foutse Khomh, and Mo-
hammed Amine Janati Idrissi. An empirical study of sentiments in code re-
views. Information and Software Technology, 114:37–54, 2019.

[ANVZ14] Dimitrios Athanasiou, Ariadi Nugroho, Joost Visser, and Andy Zaidman. Test
code quality and its relation to issue handling performance. IEEE Transactions
on Software Engineering, 40(11):1100–1125, 2014.

[APA16] Venera Arnaoudova, Massimiliano Di Penta, and Giuliano Antoniol. Linguistic
antipatterns: what they are and how developers perceive them. Empirical
Software Engineering, 21(1):104–158, 2016.

[AS14] Miltiadis Allamanis and Charles A. Sutton. Mining idioms from source code.
In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering (FSE 2014), pages 472–483. ACM, 2014.

[Ato20] Issa Atoum. A novel framework for measuring software quality-in-use based
on semantic similarity and sentiment analysis of software reviews. Journal of
King Saud University - Computer and Information Sciences, 32(1):113 – 125,
2020.

[Bak95] Brenda S. Baker. On finding duplication and near-duplication in large soft-
ware systems. In Proceedings of the 2nd Working Conference on Reverse Engi-
neering (WCRE 1995), pages 86–95. IEEE Computer Society, 1995.

[BB13] Alberto Bacchelli and Christian Bird. Expectations, outcomes, and challenges
of modern code review. In Proceedings of the 35th International Conference on
Software Engineering (ICSE 2013), pages 712–721. IEEE Computer Society,
2013.

[BBD+14] Earl T. Barr, Yuriy Brun, Premkumar T. Devanbu, Mark Harman, and Federica
Sarro. The plastic surgery hypothesis. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE
2014), pages 306–317. ACM, 2014.

[BBZJ14] Moritz Beller, Alberto Bacchelli, Andy Zaidman, and Elmar Jürgens. Modern
code reviews in open-source projects: which problems do they fix? In Pro-
ceedings of the 11th Working Conference on Mining Software Repositories (MSR
2014), pages 202–211. ACM, 2014.

Bibliography 171

[BD08] Finn Olav Bjørnson and Torgeir Dingsøyr. Knowledge management in soft-
ware engineering: A systematic review of studied concepts, findings and re-
search methods used. Information and Software Technology, 50(11):1055–
1068, 2008.

[BDL+13] Dave W. Binkley, Marcia Davis, Dawn J. Lawrie, Jonathan I. Maletic, Christo-
pher Morrell, and Bonita Sharif. The impact of identifier style on effort and
comprehension. Empirical Software Engineering, 18(2):219–276, 2013.

[BG13] Mario Bernhart and Thomas Grechenig. On the understanding of programs
with continuous code reviews. In Proceedings of the IEEE 21st International
Conference on Program Comprehension (ICPC 2013), pages 192–198. IEEE
Computer Society, 2013.

[BGB15] Amiangshu Bosu, Michaela Greiler, and Christian Bird. Characteristics of use-
ful code reviews: An empirical study at microsoft. In Proceedings of the 12th
IEEE/ACM Working Conference on Mining Software Repositories (MSR 2015),
pages 146–156. IEEE Computer Society, 2015.

[BGP+19] Moritz Beller, Georgios Gousios, Annibale Panichella, Sebastian Proksch, Sven
Amann, and Andy Zaidman. Developer testing in the IDE: patterns, beliefs,
and behavior. IEEE Transactions on Software Engineering, 45(3):261–284,
2019.

[BGPZ15] Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman.
When, how, and why developers (do not) test in their ides. In Proceedings
of the 10th Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ES-
EC/FSE 2015), pages 179–190. ACM, 2015.

[BGV92] Bernhard E. Boser, Isabelle Guyon, and Vladimir Vapnik. A training algorithm
for optimal margin classifiers. In David Haussler, editor, Proceedings of the
5th Annual ACM Conference on Computational Learning Theory (COLT 1992),
pages 144–152. ACM, 1992.

[BHL11] David W. Binkley, Matthew Hearn, and Dawn J. Lawrie. Improving identifier
informativeness using part of speech information. In Proceedings of the 8th In-
ternational Working Conference on Mining Software Repositories (MSR 2011),
pages 203–206. ACM, 2011.

[BKHG13] Olga Baysal, Oleksii Kononenko, Reid Holmes, and Michael W. Godfrey. The
influence of non-technical factors on code review. In Proceedings of the 20th
Working Conference on Reverse Engineering (WCRE 2013), pages 122–131.
IEEE Computer Society, 2013.

[BLNS16] Tobias Baum, Olga Liskin, Kai Niklas, and Kurt Schneider. A faceted classifica-
tion scheme for change-based industrial code review processes. In Proceedings

172 Bibliography

of the 2016 IEEE International Conference on Software Quality, Reliability and
Security (QRS 2016), pages 74–85. IEEE, 2016.

[BMD+00] Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno Laguë, and
Kostas Kontogiannis. Advanced clone-analysis to support object-oriented sys-
tem refactoring. In Proceedings of the Seventh Working Conference on Reverse
Engineering (WCRE 2000), pages 98–107. IEEE Computer Society, 2000.

[BMG10] Mario Bernhart, Andreas Mauczka, and Thomas Grechenig. Adopting code
reviews for agile software development. In Proceedings of the 2010 Agile Con-
ference (AGILE 2010), pages 44–47. IEEE Computer Society, 2010.

[BMM09] Marcel Bruch, Martin Monperrus, and Mira Mezini. Learning from examples
to improve code completion systems. In Proceedings of the 7th joint meeting of
the European Software Engineering Conference and the ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering (ESEC/FSE 2009),
pages 213–222. ACM, 2009.

[BMO13] Linda Barros, Pilar Rodríguez Marín, and Alvaro Ortigosa. Automatic classifi-
cation of literature pieces by emotion detection: A study on quevedo’s poetry.
In Proceedings of the 2013 Humaine Association Conference on Affective Com-
puting and Intelligent Interaction (ACII 2013), pages 141–146. IEEE Computer
Society, 2013.

[BQO+15] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and
Dave W. Binkley. Are test smells really harmful? an empirical study. Em-
pirical Software Engineering, 20(4):1052–1094, 2015.

[BR15] Gabriele Bavota and Barbara Russo. Four eyes are better than two: On the
impact of code reviews on software quality. In Proceedings of the 2015 IEEE In-
ternational Conference on Software Maintenance and Evolution (ICSME 2015),
pages 81–90. IEEE Computer Society, 2015.

[BTZ07] Steven Burrows, Seyed MM Tahaghoghi, and Justin Zobel. Efficient plagia-
rism detection for large code repositories. Software-Practice and Experience,
37(2):151–176, 2007.

[But09] Simon Butler. The effect of identifier naming on source code readability and
quality. In Proceedings of the Joint 12th European Software Engineering Con-
ference and 17th ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE 2009), pages 33–34. ACM, 2009.

[BWY15] Simon Butler, Michel Wermelinger, and Yijun Yu. A survey of the forms of java
reference names. In Proceedings of the 2015 IEEE 23rd International Confer-
ence on Program Comprehension (ICPC 2015), pages 196–206. IEEE Computer
Society, 2015.

Bibliography 173

[BWYS09] Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. Relating iden-
tifier naming flaws and code quality: An empirical study. In Proceedings of the
16th Working Conference on Reverse Engineering (WCRE 2009), pages 31–35.
IEEE Computer Society, 2009.

[BWYS10] Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. Exploring the
influence of identifier names on code quality: An empirical study. In Proceed-
ings of the 14th European Conference on Software Maintenance and Reengineer-
ing (CSMR 2010), pages 156–165. IEEE Computer Society, 2010.

[CBHK02] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip
Kegelmeyer. Smote: synthetic minority over-sampling technique. Journal
of artificial intelligence research, pages 321–357, 2002.

[CCL+19] Zhenpeng Chen, Yanbin Cao, Xuan Lu, Qiaozhu Mei, and Xuanzhe Liu. Senti-
moji: an emoji-powered learning approach for sentiment analysis in software
engineering. In Proceedings of the ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE 2019), pages 841–852. ACM, 2019.

[CDL+16] Steve Counsell, Giuseppe Destefanis, Xiaohui Liu, Sigrid Eldh, Andreas Er-
medahl, and Kenneth Andersson. Comparing test and production code quality
in a large commercial multicore system. In Proceedings of the 42th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA 2016),
pages 86–91. IEEE Computer Society, 2016.

[CDM13] Michael L. Collard, Michael John Decker, and Jonathan I. Maletic. srcml: An
infrastructure for the exploration, analysis, and manipulation of source code:
A tool demonstration. In Proceedings of the 2013 IEEE International Confer-
ence on Software Maintenance (ICSM 2013), pages 516–519. IEEE Computer
Society, 2013.

[CdS19] Jonathan Cheruvelil and Bruno C. da Silva. Developers’ sentiment and issue
reopening. In Proceedings of the 4th International Workshop on Emotion Aware-
ness in Software Engineering (SEmotion 2019), pages 29–33. IEEE / ACM,
2019.

[CG96] Stanley F. Chen and Joshua Goodman. An empirical study of smoothing tech-
niques for language modeling. In Proceedings of the 34th Annual Meeting
of the Association for Computational Linguistics (ACL 1996), pages 310–318.
Morgan Kaufmann Publishers / ACL, 1996.

[CGC10] Agustin Casamayor, Daniela Godoy, and Marcelo R. Campo. Identification
of non-functional requirements in textual specifications: A semi-supervised
learning approach. Information and Software Technology, 52(4):436–445,
2010.

174 Bibliography

[CGP07] Filippo Corbo, Concettina Del Grosso, and Massimiliano Di Penta. Smart for-
matter: Learning coding style from existing source code. In Proceedings of the
23rd IEEE International Conference on Software Maintenance (ICSM 2007),
pages 525–526. IEEE Computer Society, 2007.

[CGT15] Jacek Czerwonka, Michaela Greiler, and Jack Tilford. Code reviews do not
find bugs. how the current code review best practice slows us down. In Pro-
ceedings of the 37th IEEE/ACM International Conference on Software Engineer-
ing (ICSE 2015), pages 27–28. IEEE Computer Society, 2015.

[CHA14] Joshua Charles Campbell, Abram Hindle, and José Nelson Amaral. Syntax
errors just aren’t natural: improving error reporting with language models.
In Proceedings of the 11th Working Conference on Mining Software Repositories
(MSR 2014), pages 252–261. ACM, 2014.

[CLB+] Maria Caulo, Bin Lin, Gabriele Bavota, Giuseppe Scanniello, and Michele
Lanza. Replication package of the study “knowledge transfer in modern code
review”. https://tinyurl.com/wn9my8f.

[CLB+20] Maria Caulo, Bin Lin, Gabriele Bavota, Giuseppe Scanniello, and Michele
Lanza. Knowledge transfer in modern code review. In Proceedings of the 28th
International Conference on Program Comprehension (ICPC 2020), accepted,
2020.

[CLH+14] Ning Chen, Jialiu Lin, Steven C. H. Hoi, Xiaokui Xiao, and Boshen Zhang.
AR-miner: Mining informative reviews for developers from mobile app mar-
ketplace. In Proceedings of the 36th International Conference on Software En-
gineering (ICSE 2014), pages 767–778, 2014.

[CLMN18] Fabio Calefato, Filippo Lanubile, Federico Maiorano, and Nicole Novielli. Sen-
timent polarity detection for software development. Empirical Software Engi-
neering, 23(3):1352–1382, 2018.

[CLN17] Fabio Calefato, Filippo Lanubile, and Nicole Novielli. Emotxt: A toolkit for
emotion recognition from text. In Proceedings of the 7th International Confer-
ence on Affective Computing and Intelligent Interaction Workshops and Demos
(ACII 2017), pages 79–80. IEEE Computer Society, 2017.

[CMF18] Maëlick Claes, Mika Mäntylä, and Umar Farooq. On the use of emoticons
in open source software development. In Proceedings of the 12th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM 2018), pages 50:1–50:4. ACM, 2018.

[CMM12] Anna Corazza, Sergio Di Martino, and Valerio Maggio. LINSEN: an efficient
approach to split identifiers and expand abbreviations. In Proceedings of the
28th IEEE International Conference on Software Maintenance (ICSM 2012),
pages 233–242. IEEE Computer Society, 2012.

https://tinyurl.com/wn9my8f

Bibliography 175

[Coh92] Jacob Cohen. A power primer. Psychological bulletin, 112(1):155, 1992.

[Coh13] Jacob Cohen. Statistical power analysis for the behavioral sciences. Routledge,
2013.

[Con99] William J. Conover. Practical nonparametric statistics. 1999.

[CS07] Jack G. Conrad and Frank Schilder. Opinion mining in legal blogs. In Pro-
ceedings of the 11th International Conference on Artificial Intelligence and Law
(ICAIL 2007), pages 231–236. ACM, 2007.

[CSM19] Di Chen, Kathryn T. Stolee, and Tim Menzies. Replication can improve prior
results: a github study of pull request acceptance. In Yann-Gaël Guéhéneuc,
Foutse Khomh, and Federica Sarro, editors, Proceedings of the 27th Interna-
tional Conference on Program Comprehension (ICPC 2019), pages 179–190.
IEEE / ACM, 2019.

[CSPG17] Adelina Ciurumelea, Andreas Schaufelbühl, Sebastiano Panichella, and Har-
ald C. Gall. Analyzing reviews and code of mobile apps for better release
planning. In Proceedings of the IEEE 24th International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER 2017), pages 91–102.
IEEE Computer Society, 2017.

[CT00] Bruno Caprile and Paolo Tonella. Restructuring program identifier names.
In Proceedings of the 2000 International Conference on Software Maintenance
(ICSM 2000), pages 97–107. IEEE Computer Society, 2000.

[CT17] Brock Angus Campbell and Christoph Treude. NLP2Code: Code snippet con-
tent assist via natural language tasks. In Proceedings of the 33rd IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME 2017),
pages 628–632, 2017.

[CW13] Laura V. Galvis Carreño and Kristina Winbladh. Analysis of user comments:
an approach for software requirements evolution. In Proceedings of the 35th
International Conference on Software Engineering (ICSE 2013), pages 582–
591. IEEE Computer Society, 2013.

[DH09] Lipika Dey and S. K. Mirajul Haque. Opinion mining from noisy text data.
International Journal on Document Analysis and Recognition, 12(3):205–226,
2009.

[DLP03] Kushal Dave, Steve Lawrence, and David M. Pennock. Mining the peanut
gallery: opinion extraction and semantic classification of product reviews. In
Proceedings of the Twelfth International World Wide Web Conference (WWW
2003), pages 519–528. ACM, 2003.

[DMBK01] Arie Deursen, Leon M.F. Moonen, A. Bergh, and Gerard Kok. Refactoring test
code. Technical report, Amsterdam, The Netherlands, The Netherlands, 2001.

176 Bibliography

[DOB+18] Giuseppe Destefanis, Marco Ortu, David Bowes, Michele Marchesi, and
Roberto Tonelli. On measuring affects of github issues’ commenters. In Pro-
ceedings of the 3rd International Workshop on Emotion Awareness in Software
Engineering (SEmotion 2018), pages 14–19. ACM, 2018.

[DP06] Florian Deissenboeck and Markus Pizka. Concise and consistent naming. Soft-
ware Quality Journal, 14(3):261–282, 2006.

[DRD99] Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. A language inde-
pendent approach for detecting duplicated code. In Proceedings of the 1999
International Conference on Software Maintenance (ICSM 1999), pages 109–
118. IEEE Computer Society, 1999.

[DRF17] Ermira Daka, José Miguel Rojas, and Gordon Fraser. Generating unit tests
with descriptive names or: would you name your children thing1 and thing2?
In Proceedings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA 2017), pages 57–67. ACM, 2017.

[DSJ+13] Cristian Danescu-Niculescu-Mizil, Moritz Sudhof, Dan Jurafsky, Jure
Leskovec, and Christopher Potts. A computational approach to politeness
with application to social factors. In Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics (ACL 2013), pages 250–259.
The Association for Computer Linguistics, 2013.

[DY13] Rahim Dehkharghani and Cemal Yilmaz. Automatically identifying a soft-
ware product’s quality attributes through sentiment analysis of tweets. In
Proceedings of the 1st International Workshop on Natural Language Analysis in
Software Engineering (NaturaLiSE 2013), pages 25–30, 2013.

[EH04] M Awad Elias and M Ghaziri Hassan. Knowledge management, 2004.

[EHPV09] Eric Enslen, Emily Hill, Lori L. Pollock, and K. Vijay-Shanker. Mining source
code to automatically split identifiers for software analysis. In Proceedings
of the 6th International Working Conference on Mining Software Repositories
(MSR 2009), pages 71–80. IEEE Computer Society, 2009.

[FA11] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation
for object-oriented software. In Tibor Gyimóthy and Andreas Zeller, editors,
Proceedings of the 19th ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering and 13th European Software Engineering Conference (SIG-
SOFT/FSE 2011), pages 416–419. ACM, 2011.

[FGR+18] Alessio Ferrari, Gloria Gori, Benedetta Rosadini, Iacopo Trotta, Stefano
Bacherini, Alessandro Fantechi, and Stefania Gnesi. Detecting requirements
defects with NLP patterns: an industrial experience in the railway domain.
Empirical Software Engineering, 23(6):3684–3733, 2018.

Bibliography 177

[Fie13] Andy Field. Discovering statistics using IBM SPSS statistics. Sage, 2013.

[Fis22] R.A. Fisher. On the interpretation of χ2 from contingency tables, and the
calculation of p. Journal of the Royal Statistical Society, 85(1):87–92, 1922.

[FLL+13] Bin Fu, Jialiu Lin, Lei Li, Christos Faloutsos, Jason I. Hong, and Norman M.
Sadeh. Why people hate your app: making sense of user feedback in a mobile
app store. In Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 2013), pages 1276–1284. ACM,
2013.

[FM13] Asger Feldthaus and Anders Møller. Semi-automatic rename refactoring for
javascript. In Proceedings of the 2013 ACM SIGPLAN International Conference
on Object Oriented Programming Systems Languages & Applications (OOPSLA
2013), pages 323–338. ACM, 2013.

[FMAA18] Sarah Fakhoury, Yuzhan Ma, Venera Arnaoudova, and Olusola O. Adesope.
The effect of poor source code lexicon and readability on developers’ cogni-
tive load. In Foutse Khomh, Chanchal K. Roy, and Janet Siegmund, editors,
Proceedings of the 26th Conference on Program Comprehension (ICPC 2018),
pages 286–296. ACM, 2018.

[FMS+17] Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad Rahwan, and Sune
Lehmann. Using millions of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sarcasm. In Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing (EMNLP
2017), pages 1615–1625. Association for Computational Linguistics, 2017.

[GAB15] Emitza Guzman, Omar Aly, and Bernd Bruegge. Retrieving diverse opinions
from app reviews. In Proceedings of the 2015 ACM/IEEE International Sympo-
sium on Empirical Software Engineering and Measurement (ESEM 2015), pages
21–30. IEEE Computer Society, 2015.

[GAL14] Emitza Guzman, David Azócar, and Yang Li. Sentiment analysis of commit
comments in github: an empirical study. In Proceedings of the 11th Work-
ing Conference on Mining Software Repositories (MSR 2014), pages 352–355.
ACM, 2014.

[GAS17] Emitza Guzman, Rana Alkadhi, and Norbert Seyff. An exploratory study
of twitter messages about software applications. Requirements Engineering,
22(3):387–412, 2017.

[GB13] Emitza Guzman and Bernd Bruegge. Towards emotional awareness in soft-
ware development teams. In Proceedings of the Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE 2013), pages 671–674.
ACM, 2013.

178 Bibliography

[GK05] Robert J Grissom and John J Kim. Effect sizes for research: A broad practical
approach. Lawrence Erlbaum Associates Publishers, 2005.

[GK15] Xiaodong Gu and Sunghun Kim. "what parts of your apps are loved by users?".
In Proceedings of the 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2015), pages 760–770. IEEE Computer Society,
2015.

[GM14] Emitza Guzman and Walid Maalej. How do users like this feature? A fine
grained sentiment analysis of app reviews. In Proceedings of the IEEE 22nd
International Requirements Engineering Conference (RE 2014), pages 153–162.
IEEE Computer Society, 2014.

[GMBV12] Michael Goul, Olivera Marjanovic, Susan Baxley, and Karen Vizecky. Man-
aging the enterprise business intelligence app store: Sentiment analysis sup-
ported requirements engineering. In Proceedings of the 45th Hawaii Inter-
national International Conference on Systems Science (HICSS-45 2012), pages
4168–4177. IEEE Computer Society, 2012.

[GMPV13] Samir Gupta, Sana Malik, Lori L. Pollock, and K. Vijay-Shanker. Part-of-speech
tagging of program identifiers for improved text-based software engineering
tools. In Proceedings of the IEEE 21st International Conference on Program
Comprehension (ICPC 2013), pages 3–12. IEEE Computer Society, 2013.

[GPAG13] Latifa Guerrouj, Massimiliano Di Penta, Giuliano Antoniol, and Yann-Gaël
Guéhéneuc. TIDIER: an identifier splitting approach using speech recognition
techniques. Journal of Software: Evolution and Process, 25(6):575–599, 2013.

[GS10] Mark Gabel and Zhendong Su. A study of the uniqueness of source code. In
Proceedings of the 18th ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE 2010), pages 147–156. ACM, 2010.

[GS17] Anjali Goyal and Neetu Sardana. Nrfixer: Sentiment based model for pre-
dicting the fixability of non-reproducible bugs. e-Informatica, 11(1):103–116,
2017.

[GSGO18] Giovanni Grano, Simone Scalabrino, Harald C. Gall, and Rocco Oliveto. An
empirical investigation on the readability of manual and generated test cases.
In Proceedings of the 26th Conference on Program Comprehension (ICPC 2018),
pages 348–351. ACM, 2018.

[GZS13] David García, Marcelo Serrano Zanetti, and Frank Schweitzer. The role of
emotions in contributors activity: A case study on the GENTOO community.
In Proceedings of the 2013 International Conference on Cloud and Green Com-
puting (CGC 2013), pages 410–417. IEEE Computer Society, 2013.

Bibliography 179

[HBL+14] Emily Hill, David W. Binkley, Dawn J. Lawrie, Lori L. Pollock, and K. Vijay-
Shanker. An empirical study of identifier splitting techniques. Empirical Soft-
ware Engineering, 19(6):1754–1780, 2014.

[HBS+12] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar T.
Devanbu. On the naturalness of software. In Proceedings of the 34th Interna-
tional Conference on Software Engineering (ICSE 2012), pages 837–847. IEEE
Computer Society, 2012.

[HCC17] Ya-Han Hu, Yen-Liang Chen, and Hui-Ling Chou. Opinion mining from online
hotel reviews - A text summarization approach. Information Processing and
Management, 53(2):436–449, 2017.

[HCX+18] Yi Huang, Chunyang Chen, Zhenchang Xing, Tian Lin, and Yang Liu. Tell
them apart: distilling technology differences from crowd-scale comparison
discussions. In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering (ASE 2018), pages 214–224. ACM, 2018.

[HFB+08] Emily Hill, Zachary P. Fry, Haley Boyd, Giriprasad Sridhara, Yana Novikova,
Lori L. Pollock, and K. Vijay-Shanker. AMAP: automatically mining abbre-
viation expansions in programs to enhance software maintenance tools. In
Proceedings of the 2008 International Working Conference on Mining Software
Repositories (MSR 2008), pages 79–88. ACM, 2008.

[HG14] Clayton J. Hutto and Eric Gilbert. VADER: A parsimonious rule-based model
for sentiment analysis of social media text. In Proceedings of the 8th Inter-
national Conference on Weblogs and Social Media (ICWSM 2014). The AAAI
Press, 2014.

[HL04] Minqing Hu and Bing Liu. Mining and summarizing customer reviews. In
Proceedings of the 10th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (SIGKDD 2004), pages 168–177. ACM, 2004.

[HM96] Martin Hitz and Behzad Montazeri. Chidamber and kemerer’s metrics suite: A
measurement theory perspective. IEEE Transactions on Software Engineering,
22(4):267–271, 1996.

[HØ09a] Einar W. Høst and Bjarte M. Østvold. Debugging method names. In Proceed-
ings of the 23rd European Conference on Object-Oriented Programming (ECOOP
2009), volume 5653 of Lecture Notes in Computer Science, pages 294–317.
Springer, 2009.

[HØ09b] Einar W. Høst and Bjarte M. Østvold. Software language engineering. chapter
The Java Programmer’s Phrase Book, pages 322–341. Springer-Verlag, Berlin,
Heidelberg, 2009.

[Hol79] Sture Holm. A simple sequentially rejective multiple test procedure. Scandi-
navian journal of statistics, pages 65–70, 1979.

180 Bibliography

[HSH17] Johannes Hofmeister, Janet Siegmund, and Daniel V. Holt. Shorter identifier
names take longer to comprehend. In Proceedings of the IEEE 24th Interna-
tional Conference on Software Analysis, Evolution and Reengineering (SANER
2017), pages 217–227. IEEE Computer Society, 2017.

[IAZ19] Md Rakibul Islam, Md Kauser Ahmmed, and Minhaz F. Zibran. Marvalous:
machine learning based detection of emotions in the valence-arousal space in
software engineering text. In Proceedings of the 34th ACM/SIGAPP Symposium
on Applied Computing (SAC 2019), pages 1786–1793. ACM, 2019.

[IH13] Claudia Iacob and Rachel Harrison. Retrieving and analyzing mobile apps
feature requests from online reviews. In Proceedings of the 10th Working Con-
ference on Mining Software Repositories (MSR 2013), pages 41–44. IEEE Com-
puter Society, 2013.

[IMGM18] Nasif Imtiaz, Justin Middleton, Peter Girouard, and Emerson R. Murphy-Hill.
Sentiment and politeness analysis tools on developer discussions are unreli-
able, but so are people. In Proceedings of the 3rd International Workshop on
Emotion Awareness in Software Engineering (SEmotion 2018), pages 55–61.
ACM, 2018.

[IZ17] Md Rakibul Islam and Minhaz F. Zibran. Leveraging automated sentiment
analysis in software engineering. In Proceedings of the 14th International Con-
ference on Mining Software Repositories (MSR 2017), pages 203–214. IEEE
Computer Society, 2017.

[IZ18a] Md Rakibul Islam and Minhaz F. Zibran. DEVA: sensing emotions in the va-
lence arousal space in software engineering text. In Proceedings of the 33rd An-
nual ACM Symposium on Applied Computing (SAC 2018), pages 1536–1543.
ACM, 2018.

[IZ18b] Md Rakibul Islam and Minhaz F. Zibran. Sentistrength-se: Exploiting domain
specificity for improved sentiment analysis in software engineering text. Jour-
nal of Systems and Software, 145:125–146, 2018.

[JH07] Patricia Jablonski and Daqing Hou. Cren: a tool for tracking copy-and-paste
code clones and renaming identifiers consistently in the IDE. In Proceedings
of the 2007 OOPSLA workshop on Eclipse Technology eXchange (ETX 2007),
pages 16–20. ACM, 2007.

[JSDS17] Robbert Jongeling, Proshanta Sarkar, Subhajit Datta, and Alexander Sere-
brenik. On negative results when using sentiment analysis tools for soft-
ware engineering research. Empirical Software Engineering, 22(5):2543–
2584, 2017.

[KBLN04] Miryung Kim, Lawrence D. Bergman, Tessa A. Lau, and David Notkin. An
ethnographic study of copy and paste programming practices in OOPL. In

Bibliography 181

Proceedings of the 2004 International Symposium on Empirical Software Engi-
neering (ISESE 2004), pages 83–92. IEEE Computer Society, 2004.

[KG04] Cory Kapser and Michael W. Godfrey. Aiding comprehension of cloning
through categorization. In Proceedings of the 7th International Workshop on
Principles of Software Evolution (IWPSE 2004), pages 85–94. IEEE Computer
Society, 2004.

[KG06a] Cory Kapser and Michael W. Godfrey. "cloning considered harmful" considered
harmful. In Proceedings of the 13th Working Conference on Reverse Engineering
(WCRE 2006), pages 19–28. IEEE Computer Society, 2006.

[KG06b] Cory Kapser and Michael W. Godfrey. Supporting the analysis of clones in
software systems. Journal of Software Maintenance, 18(2):61–82, 2006.

[KK16] Suntae Kim and Dongsun Kim. Automatic identifier inconsistency detection
using code dictionary. Empirical Software Engineering, 21(2):565–604, 2016.

[KM17] Zijad Kurtanovic and Walid Maalej. Automatically classifying functional and
non-functional requirements using supervised machine learning. In Proceed-
ings of the 25th IEEE International Requirements Engineering Conference (RE
2017), pages 490–495. IEEE Computer Society, 2017.

[KP09] Chris F. Kemerer and Mark C. Paulk. The impact of design and code reviews
on software quality: An empirical study based on PSP data. IEEE Transactions
on Software Engineering, 35(4):534–550, 2009.

[KRB+18] Oleksii Kononenko, Tresa Rose, Olga Baysal, Michael W. Godfrey, Dennis
Theisen, and Bart de Water. Studying pull request merges: a case study of
shopify’s active merchant. In Proceedings of the 40th International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP), pages
124–133. ACM, 2018.

[KXLW19] Javed Ali Khan, Yuchen Xie, Lin Liu, and Lijie Wen. Analysis of requirements-
related arguments in user forums. In Proceedings of the 27th IEEE International
Requirements Engineering Conference (RE 2019), pages 63–74. IEEE, 2019.

[LA19] Marc J. Lanovaz and Bram Adams. Comparing the communication tone and
responses of users and developers in two R mailing lists: Measuring positive
and negative emails. IEEE Software, 36(5):46–50, 2019.

[LB11] Dawn J. Lawrie and David W. Binkley. Expanding identifiers to normalize
source code vocabulary. In Proceedings of the IEEE 27th International Confer-
ence on Software Maintenance (ICSM 2011), pages 113–122. IEEE Computer
Society, 2011.

182 Bibliography

[LFB07a] Dawn J. Lawrie, Henry Feild, and David W. Binkley. An empirical study of rules
for well-formed identifiers. Journal of Software Maintenance, 19(4):205–229,
2007.

[LFB07b] Dawn J. Lawrie, Henry Feild, and David W. Binkley. Quantifying identifier
quality: an analysis of trends. Empirical Software Engineering, 12(4):359–
388, 2007.

[Liu11] Bing Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data.
Second Edition. Data-Centric Systems and Applications. Springer, 2011.

[Liu15] Bing Liu. Sentiment Analysis - Mining Opinions, Sentiments, and Emotions.
Cambridge University Press, 2015.

[LLLL19] Yuzhou Liu, Lei Liu, Huaxiao Liu, and Suji Li. Information recommendation
based on domain knowledge in app descriptions for improving the quality of
requirements. IEEE Access, 7:9501–9514, 2019.

[LLMZ06] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. Cp-miner: Find-
ing copy-paste and related bugs in large-scale software code. IEEE Transac-
tions on Software Engineering, 32(3):176–192, 2006.

[LLY+18] Xueqing Liu, Yue Leng, Wei Yang, Chengxiang Zhai, and Tao Xie. Mining
android app descriptions for permission requirements recommendation. In
Proceedings of the 26th IEEE International Requirements Engineering Conference
(RE 2018), pages 147–158. IEEE Computer Society, 2018.

[LMFB06] Dawn J. Lawrie, Christopher Morrell, Henry Feild, and David W. Binkley.
What’s in a name? A study of identifiers. In Proceedings of the 14th Interna-
tional Conference on Program Comprehension (ICPC 2006), pages 3–12. IEEE
Computer Society, 2006.

[LNB+] Bin Lin, Csaba Nagy, Gabriele Bavota, Andrian Marcus, and Michele Lanza.
Replication package of the study “on the quality of identifiers in test code”.
https://identifierquality.bitbucket.io.

[LNB+19] Bin Lin, Csaba Nagy, Gabriele Bavota, Andrian Marcus, and Michele Lanza.
On the quality of identifiers in test code. In Proceedings of the 19th Interna-
tional Working Conference on Source Code Analysis and Manipulation (SCAM
2019), pages 204–215. IEEE, 2019.

[LNBL19] Bin Lin, Csaba Nagy, Gabriele Bavota, and Michele Lanza. On the impact
of refactoring operations on code naturalness. In Proceedings of the 26th
IEEE International Conference on Software Analysis, Evolution and Reengineer-
ing (SANER 2019), pages 594–598. IEEE, 2019.

https://identifierquality.bitbucket.io

Bibliography 183

[LPM+] Bin Lin, Luca Ponzanelli, Andrea Mocci, Gabriele Bavota, and Michele Lanza.
Replication package of the study “on the uniqueness of code redundancies”.
https://icpc-redundancy.github.io/icpc-2017.zip.

[LPM+17] Bin Lin, Luca Ponzanelli, Andrea Mocci, Gabriele Bavota, and Michele Lanza.
On the uniqueness of code redundancies. In Proceedings of the 25th Interna-
tional Conference on Program Comprehension (ICPC 2017), pages 121–131.
IEEE Computer Society, 2017.

[LSM+] Bin Lin, Simone Scalabrino, Andrea Mocci, Rocco Oliveto, Gabriele Bavota,
and Michele Lanza. Replication package of the study “investigating the use of
code analysis and NLP to promote a consistent usage of identifiers”. https:
//scam-identifier.github.io/replication.zip.

[LSM+17] Bin Lin, Simone Scalabrino, Andrea Mocci, Rocco Oliveto, Gabriele Bavota,
and Michele Lanza. Investigating the use of code analysis and NLP to promote
a consistent usage of identifiers. In Proceedings of the 17th IEEE International
Working Conference on Source Code Analysis and Manipulation (SCAM 2017),
pages 81–90. IEEE Computer Society, 2017.

[LYY+17] Zhixing Li, Yue Yu, Gang Yin, Tao Wang, and Huaimin Wang. What are they
talking about? analyzing code reviews in pull-based development model.
Journal of Computer Science and Technology, 32(6):1060–1075, 2017.

[LZB+a] Bin Lin, Fiorella Zampetti, Gabriele Bavota, Massimiliano Di Penta, and
Michele Lanza. Replication package of the study “pattern-based mining of
opinions in q&a websites”. https://pome-repo.github.io/.

[LZB+b] Bin Lin, Fiorella Zampetti, Gabriele Bavota, Massimiliano Di Penta, Michele
Lanza, and Rocco Oliveto. Replication package of the study “sentiment analy-
sis for software engineering: how far can we go?”. https://sentiment-se.
github.io/replication.zip.

[LZB+18] Bin Lin, Fiorella Zampetti, Gabriele Bavota, Massimiliano Di Penta, Michele
Lanza, and Rocco Oliveto. Sentiment analysis for software engineering: how
far can we go? In Proceedings of the 40th International Conference on Software
Engineering (ICSE 2018), pages 94–104. ACM, 2018.

[LZB+19] Bin Lin, Fiorella Zampetti, Gabriele Bavota, Massimiliano Di Penta, and
Michele Lanza. Pattern-based mining of opinions in q&a websites. In Pro-
ceedings of the 41st International Conference on Software Engineering (ICSE
2019), pages 548–559. IEEE / ACM, 2019.

[LZO+18] Bin Lin, Fiorella Zampetti, Rocco Oliveto, Massimiliano Di Penta, Michele
Lanza, and Gabriele Bavota. Two datasets for sentiment analysis in software

https://icpc-redundancy.github.io/icpc-2017.zip
https://scam-identifier.github.io/replication.zip
https://scam-identifier.github.io/replication.zip
https://pome-repo.github.io/
https://sentiment-se.github.io/replication.zip
https://sentiment-se.github.io/replication.zip

184 Bibliography

engineering. In Proceedings of the 2018 IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME 2018), page 712. IEEE Computer
Society, 2018.

[mav] Apache Maven Central Repository. http://central.maven.org/maven2/

maven/. last access 24.08.2018.

[MCP+09] Alessandro Murgia, Giulio Concas, Sandro Pinna, Roberto Tonelli, and Ivana
Turnu. Empirical study of software quality evolution in open source projects
using agile practices. In Proceedings of the 1st International Symposium on
Emerging Trends in Software Metrics (ETSM 2009), pages 11–22, 2009.

[MKAH14] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. The
impact of code review coverage and code review participation on software
quality: a case study of the qt, vtk, and ITK projects. In Proceedings of the
11th Working Conference on Mining Software Repositories (MSR 2014), pages
192–201. ACM, 2014.

[MKNS16] Walid Maalej, Zijad Kurtanovic, Hadeer Nabil, and Christoph Stanik. On the
automatic classification of app reviews. Requirements Engineering, 21(3):311–
331, 2016.

[ML09] Mika Mäntylä and Casper Lassenius. What types of defects are really discov-
ered in code reviews? IEEE Transactions on Software Engineering, 35(3):430–
448, 2009.

[MMK15] Rodrigo Morales, Shane McIntosh, and Foutse Khomh. Do code review prac-
tices impact design quality? A case study of the qt, vtk, and ITK projects.
In Proceedings of the 22nd IEEE International Conference on Software Analysis,
Evolution, and Reengineering (SANER 2015), pages 171–180. IEEE Computer
Society, 2015.

[Moc07] Audris Mockus. Large-scale code reuse in open source software. In Proceedings
of the 1st International Workshop on Emerging Trends in FLOSS Research and
Development (FLOSS 2007), pages 7–7. IEEE, 2007.

[Mot10] Harvey Motulsky. Intuitive biostatistics: a non-mathematical guide to statistical
thinking. Oxford University Press, 2010.

[MPB12] Emerson R. Murphy-Hill, Chris Parnin, and Andrew P. Black. How we refactor,
and how we know it. IEEE Transactions on Software Engineering, 38(1):5–18,
2012.

[MSB+14] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel,
Steven Bethard, and David McClosky. The stanford corenlp natural language
processing toolkit. In Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (ACL 2014), pages 55–60. The Association for
Computer Linguistics, 2014.

http://central.maven.org/maven2/maven/
http://central.maven.org/maven2/maven/

Bibliography 185

[MT04] Rada Mihalcea and Paul Tarau. Textrank: Bringing order into text. In Pro-
ceedings of the 2004 Conference on Empirical Methods in Natural Language
Processing (EMNLP 2004), pages 404–411. ACL, 2004.

[MTAO14] Alessandro Murgia, Parastou Tourani, Bram Adams, and Marco Ortu. Do
developers feel emotions? an exploratory analysis of emotions in software
artifacts. In Proceedings of the 11th Working Conference on Mining Software
Repositories (MSR 2014), pages 262–271. ACM, 2014.

[NCL15] Nicole Novielli, Fabio Calefato, and Filippo Lanubile. The challenges of sen-
timent detection in the social programmer ecosystem. In Proceedings of the
7th International Workshop on Social Software Engineering (SSE 2015), pages
33–40. ACM, 2015.

[NNN+12] Anh Tuan Nguyen, Tung Thanh Nguyen, Hoan Anh Nguyen, Ahmed Tamrawi,
Hung Viet Nguyen, Jafar M. Al-Kofahi, and Tien N. Nguyen. Graph-based
pattern-oriented, context-sensitive source code completion. In Proceedings of
the 34th International Conference on Software Engineering (ICSE 2012), pages
69–79. IEEE Computer Society, 2012.

[NNN16] Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N. Nguyen. A large-scale
study on repetitiveness, containment, and composability of routines in open-
source projects. In Proceedings of the 13th International Conference on Mining
Software Repositories (MSR 2016), pages 362–373. ACM, 2016.

[NNNN13] Tung Thanh Nguyen, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N.
Nguyen. A statistical semantic language model for source code. In Proceed-
ings of the Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ES-
EC/FSE 2013), pages 532–542. ACM, 2013.

[NY03] Tetsuya Nasukawa and Jeonghee Yi. Sentiment analysis: capturing favorabil-
ity using natural language processing. In John H. Gennari, Bruce W. Porter,
and Yolanda Gil, editors, Proceedings of the 2nd International Conference on
Knowledge Capture (K-CAP 2003), pages 70–77. ACM, 2003.

[OAD+15] Marco Ortu, Bram Adams, Giuseppe Destefanis, Parastou Tourani, Michele
Marchesi, and Roberto Tonelli. Are bullies more productive? empirical study
of affectiveness vs. issue fixing time. In Proceedings of the 12th IEEE/ACM
Working Conference on Mining Software Repositories (MSR 2015), pages 303–
313. IEEE Computer Society, 2015.

[OMD+16] Marco Ortu, Alessandro Murgia, Giuseppe Destefanis, Parastou Tourani,
Roberto Tonelli, Michele Marchesi, and Bram Adams. The emotional side
of software developers in JIRA. In Proceedings of the 13th International Con-
ference on Mining Software Repositories (MSR 2016), pages 480–483. ACM,
2016.

186 Bibliography

[OMT19] Marco Ortu, Michele Marchesi, and Roberto Tonelli. Empirical analysis of af-
fect of merged issues on github. In Proceedings of the 4th International Work-
shop on Emotion Awareness in Software Engineering (SEmotion 2019), pages
46–48. IEEE / ACM, 2019.

[Opp92] A. N. Oppenheim. Questionnaire Design, Interviewing and Attitude Measure-
ment. Pinter Publishers, 1992.

[Par13] Terence Parr. The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.

[PBL13] Luca Ponzanelli, Alberto Bacchelli, and Michele Lanza. Leveraging crowd
knowledge for software comprehension and development. In Proceedings
of the 17th European Conference on Software Maintenance and Reengineering
(CSMR 2013), pages 57–66. IEEE, 2013.

[PBS19] Rajshakhar Paul, Amiangshu Bosu, and Kazi Zakia Sultana. Expressions of
sentiments during code reviews: Male vs. female. In 26th IEEE International
Conference on Software Analysis, Evolution and Reengineering, SANER 2019,
Hangzhou, China, February 24-27, 2019, pages 26–37. IEEE, 2019.

[PH14] Ferran Pla and Lluís F. Hurtado. Political tendency identification in twit-
ter using sentiment analysis techniques. In Proceedings of the 25th Interna-
tional Conference on Computational Linguistics (COLING 2014), pages 183–
192. ACL, 2014.

[PL07] Bo Pang and Lillian Lee. Opinion mining and sentiment analysis. Foundations
and Trends in Information Retrieval, 2(1-2):1–135, 2007.

[PLV02] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up? senti-
ment classification using machine learning techniques. In Proceedings of the
2002 Conference on Empirical Methods in Natural Language Processing (EMNLP
2002), pages 79–86. Association for Computational Linguistics, July 2002.

[PM18] Panthip Pooput and Pornsiri Muenchaisri. Finding impact factors for rejection
of pull requests on github. In Proceedings of the VII International Conference on
Network, Communication and Computing (ICNCC 2018), pages 70–76. ACM,
2018.

[PP11] Marco Pennacchiotti and Ana-Maria Popescu. Democrats, republicans and
starbucks afficionados: user classification in twitter. In Proceedings of the
17th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD 2011), pages 430–438. ACM, 2011.

[PPZ+16] Fabio Palomba, Annibale Panichella, Andy Zaidman, Rocco Oliveto, and An-
drea De Lucia. Automatic test case generation: what if test code quality mat-
ters? In Proceedings of the 25th International Symposium on Software Testing
and Analysis (ISSTA 2016), pages 130–141. ACM, 2016.

Bibliography 187

[PSG+15] Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado Aaron Vis-
aggio, Gerardo Canfora, and Harald C. Gall. How can I improve my app?
Classifying user reviews for software maintenance and evolution. In Proceed-
ings of the 2015 IEEE International Conference on Software Maintenance and
Evolution (ICSME 2015), pages 281–290. IEEE Computer Society, 2015.

[PSG+16] Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado Aaron Vis-
aggio, Gerardo Canfora, and Harald C. Gall. Ardoc: app reviews development
oriented classifier. In Proceedings of the 24th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering (FSE 2016), pages 1023–1027.
ACM, 2016.

[PVG+11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake VanderPlas, Alexandre Passos, David Courna-
peau, Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. Scikit-
learn: Machine learning in python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[PVH+11] Lori L. Pollock, K. Vijay-Shanker, Emily Hill, Giriprasad Sridhara, and David C.
Shepherd. Natural language-based software analyses and tools for software
maintenance. In Software Engineering - International Summer Schools, ISSSE
2009-2011, Salerno, Italy. Revised Tutorial Lectures, volume 7171 of Lecture
Notes in Computer Science, pages 94–125. Springer, 2011.

[PVS14] Daniel Pletea, Bogdan Vasilescu, and Alexander Serebrenik. Security and
emotion: sentiment analysis of security discussions on github. In Proceedings
of the 11th Working Conference on Mining Software Repositories (MSR 2014),
pages 348–351. ACM, 2014.

[RAC+15] Gabriele Ranco, Darko Aleksovski, Guido Caldarelli, Miha Grčar, and Igor
Mozetič. The effects of twitter sentiment on stock price returns. PloS one,
10(9), 2015.

[RC08] Chanchal Kumar Roy and James R. Cordy. An empirical study of function
clones in open source software. In Proceedings of the 15th Working Conference
on Reverse Engineering (WCRE 2008), pages 81–90. IEEE Computer Society,
2008.

[RCK09] Chanchal Kumar Roy, James R. Cordy, and Rainer Koschke. Comparison and
evaluation of code clone detection techniques and tools: A qualitative ap-
proach. Science of Computer Programming, 74(7):470–495, 2009.

[Rei07] Steven P. Reiss. Automatic code stylizing. In Proceedings of the 22nd IEEE/ACM
International Conference on Automated Software Engineering (ASE 2007),
pages 74–83. ACM, 2007.

188 Bibliography

[RGS08] Peter C. Rigby, Daniel M. Germán, and Margaret-Anne D. Storey. Open source
software peer review practices: a case study of the apache server. In Proceed-
ings of the 30th International Conference on Software Engineering (ICSE 2008),
pages 541–550. ACM, 2008.

[RHG+16] Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto
Bacchelli, and Premkumar T. Devanbu. On the "naturalness" of buggy code.
In Proceedings of the 38th International Conference on Software Engineering
(ICSE 2016), pages 428–439. ACM, 2016.

[RR13] Peter C. Rigby and Martin P. Robillard. Discovering essential code elements in
informal documentation. In Proceedings of the 35th International Conference
on Software Engineering (ICSE 2013), pages 832–841. IEEE Computer Society,
2013.

[RR14] Mohammad Masudur Rahman and Chanchal K. Roy. An insight into the pull
requests of github. In Proceedings of the 11th Working Conference on Mining
Software Repositories (MSR 2014), pages 364–367. ACM, 2014.

[RRK15] Mohammad Masudur Rahman, Chanchal K. Roy, and Iman Keivanloo. Rec-
ommending insightful comments for source code using crowdsourced knowl-
edge. In Proceedings of the 15th IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM 2015), pages 81–90. IEEE
Computer Society, 2015.

[RS11] Peter C. Rigby and Margaret-Anne D. Storey. Understanding broadcast based
peer review on open source software projects. In Proceedings of the 33rd
International Conference on Software Engineering (ICSE 2011), pages 541–
550. ACM, 2011.

[RUY+19] Waheed Yousuf Ramay, Qasim Umer, Xu-Cheng Yin, Chao Zhu, and Inam Il-
lahi. Deep neural network-based severity prediction of bug reports. IEEE
Access, 7:46846–46857, 2019.

[RVY14] Veselin Raychev, Martin T. Vechev, and Eran Yahav. Code completion with
statistical language models. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2014), pages 419–
428. ACM, 2014.

[SBR+19] Simone Scalabrino, Gabriele Bavota, Barbara Russo, Massimiliano Di Penta,
and Rocco Oliveto. Listening to the crowd for the release planning of mobile
apps. IEEE Transactions on Software Engineering, 45(1):68–86, 2019.

[SBS19] Jingyi Shen, Olga Baysal, and M. Omair Shafiq. Evaluating the performance
of machine learning sentiment analysis algorithms in software engineering. In
2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf

Bibliography 189

on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Com-
puting, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CB-
DCom/CyberSciTech 2019), pages 1023–1030. IEEE, 2019.

[SCC+17] Ranjan Satapathy, Iti Chaturvedi, Erik Cambria, Shirley S Ho, and Jin Cheon
Na. Subjectivity detection in nuclear energy tweets. Computación y Sistemas,
21(4):657–664, 2017.

[SCON18] Mateus F. Santos, Josemar Alves Caetano, Johnatan Oliveira, and Humberto
T. Marques Neto. Analyzing the impact of feedback in github on the software
developer’s mood. In Proceedings of the 30th International Conference on Soft-
ware Engineering and Knowledge Engineering (SEKE 2018), pages 445–444.
KSI Research Inc. and Knowledge Systems Institute Graduate School, 2018.

[SdLJMP15a] Daricélio Moreira Soares, Manoel Limeira de Lima Júnior, Leonardo Murta,
and Alexandre Plastino. Acceptance factors of pull requests in open-source
projects. In Proceedings of the 30th Annual ACM Symposium on Applied Com-
puting (SAC 2015), pages 1541–1546. ACM, 2015.

[SdLJMP15b] Daricélio Moreira Soares, Manoel Limeira de Lima Júnior, Leonardo Murta,
and Alexandre Plastino. Rejection factors of pull requests filed by core team
developers in software projects with high acceptance rates. In Proceedings of
the 14th IEEE International Conference on Machine Learning and Applications
(ICMLA 2015), pages 960–965. IEEE, 2015.

[SIH14] Siddharth Subramanian, Laura Inozemtseva, and Reid Holmes. Live API doc-
umentation. In Proceedings of the 36th International Conference on Software
Engineering (ICSE 2014), pages 643–652. ACM, 2014.

[SK03] Ramanath Subramanyam and Mayuram S. Krishnan. Empirical analysis of
CK metrics for object-oriented design complexity: Implications for software
defects. IEEE Transactions on Software Engineering, 29(4):297–310, 2003.

[SLS16] Vinayak Sinha, Alina Lazar, and Bonita Sharif. Analyzing developer sentiment
in commit logs. In Proceedings of the 13th International Conference on Mining
Software Repositories (MSR 2016), pages 520–523. ACM, 2016.

[spa] Spacy. https://spacy.io.

[SPW+13] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Man-
ning, Andrew Y. Ng, and Christopher Potts. Recursive deep models for se-
mantic compositionality over a sentiment treebank. In Proceedings of the
2013 Conference on Empirical Methods in Natural Language Processing (EMNLP
2013), pages 1631–1642. ACL, 2013.

https://spacy.io

190 Bibliography

[SPZ+18] Davide Spadini, Fabio Palomba, Andy Zaidman, Magiel Bruntink, and Alberto
Bacchelli. On the relation of test smells to software code quality. In Proceed-
ings of the 2018 IEEE International Conference on Software Maintenance and
Evolution (ICSME 2018), pages 1–12. IEEE Computer Society, 2018.

[SS17a] Navdeep Singh and Paramvir Singh. How do code refactoring activities im-
pact software developers’ sentiments? - an empirical investigation into github
commits. In Jian Lv, He Jason Zhang, Mike Hinchey, and Xiao Liu, editors,
Proceedings of the 24th Asia-Pacific Software Engineering Conference (APSEC
2017), pages 648–653. IEEE Computer Society, 2017.

[SS17b] Rodrigo R. G. Souza and Bruno Silva. Sentiment analysis of travis CI builds.
In Proceedings of the 14th International Conference on Mining Software Repos-
itories (MSR 2017), pages 459–462. IEEE Computer Society, 2017.

[SSP19] Faiz Ali Shah, Kairit Sirts, and Dietmar Pfahl. Using app reviews for compet-
itive analysis: tool support. In Proceedings of the 3rd ACM SIGSOFT Interna-
tional Workshop on App Market Analytics (WAMA 2019), pages 40–46. ACM,
2019.

[SSPV15] Ryan Serva, Zachary R. Senzer, Lori L. Pollock, and K. Vijay-Shanker. Au-
tomatically mining negative code examples from software developer Q & A
forums. In Proceedings of the 30th IEEE/ACM International Conference on Au-
tomated Software Engineering Workshops (ASE Workshops 2015), pages 115–
122. IEEE Computer Society, 2015.

[SVT16] Marcelino Campos Oliveira Silva, Marco Tulio Valente, and Ricardo Terra.
Does technical debt lead to the rejection of pull requests? In Proceedings of
the XII Brazilian Symposium on Information Systems: Information Systems in
the Cloud Computing Era-Volume 1 (SBSI 2016), pages 248–254, 2016.

[TBP+10] Mike Thelwall, Kevan Buckley, Georgios Paltoglou, Di Cai, and Arvid Kappas.
Sentiment strength detection in short informal text. Journal of the Association
for Information Science and Technology, 61(12):2544–2558, 2010.

[TDH14] Jason Tsay, Laura Dabbish, and James D. Herbsleb. Influence of social and
technical factors for evaluating contribution in github. In Proceedings of the
36th International Conference on Software Engineering (ICSE 2014), pages
356–366. ACM, 2014.

[TJA14] Parastou Tourani, Yujuan Jiang, and Bram Adams. Monitoring sentiment in
open source mailing lists: exploratory study on the apache ecosystem. In
Proceedings of the 24th Annual International Conference on Computer Science
and Software Engineering (CASCON 2014), pages 34–44. IBM / ACM, 2014.

Bibliography 191

[TME+18] Nikolaos Tsantalis, Matin Mansouri, Laleh Mousavi Eshkevari, Davood Mazi-
nanian, and Danny Dig. Accurate and efficient refactoring detection in com-
mit history. In Proceedings of the 40th International Conference on Software
Engineering (ICSE 2018), pages 483–494. ACM, 2018.

[TPB+16] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta,
Rocco Oliveto, Andrea De Lucia, and Denys Poshyvanyk. An empirical inves-
tigation into the nature of test smells. In Proceedings of the 31st IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE 2016), pages
4–15. ACM, 2016.

[TR10] Andreas Thies and Christian Roth. Recommending rename refactorings. In
Proceedings of the 2nd International Workshop on Recommendation Systems for
Software Engineering (RSSE 2010), pages 1–5. ACM, 2010.

[TR16] Christoph Treude and Martin P. Robillard. Augmenting API documentation
with insights from stack overflow. In Proceedings of the 38th International
Conference on Software Engineering (ICSE 2016), pages 392–403. ACM, 2016.

[TSD14] Zhaopeng Tu, Zhendong Su, and Premkumar T. Devanbu. On the localness of
software. In Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE 2014), pages 269–280. ACM,
2014.

[Tuk77] John W. Tukey. Exploratory data analysis. Addison-Wesley series in behavioral
science: quantitative methods. Addison-Wesley, 1977.

[Tur02] Peter D. Turney. Thumbs up or thumbs down? semantic orientation applied
to unsupervised classification of reviews. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics (ACL 2002), pages
417–424. ACL, 2002.

[UK] Gias Uddin and Foutse Khomh. The opiner tool. goo.gl/2EnL78.

[UK17a] Gias Uddin and Foutse Khomh. Automatic summarization of API reviews.
In Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE 2017), pages 159–170. IEEE Computer Society,
2017.

[UK17b] Gias Uddin and Foutse Khomh. Mining API aspects in API reviews. Technical
report, 2017.

[UK17c] Gias Uddin and Foutse Khomh. Opiner: an opinion search and summarization
engine for apis. In Proceedings of the 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE 2017), pages 978–983. IEEE Com-
puter Society, 2017.

goo.gl/2EnL78

192 Bibliography

[UK19] Gias Uddin and Foutse Khomh. Automatic mining of opinions expressed about
apis in stack overflow. IEEE Transactions on Software Engineering, Early Ac-
cess, 2019.

[ULS18] Qasim Umer, Hui Liu, and Yasir Sultan. Emotion based automated priority
prediction for bug reports. IEEE Access, 6:35743–35752, 2018.

[VBR+16] Lorenzo Villarroel, Gabriele Bavota, Barbara Russo, Rocco Oliveto, and Mas-
similiano Di Penta. Release planning of mobile apps based on user reviews.
In Proceedings of the 38th International Conference on Software Engineering
(ICSE 2016), pages 14–24. ACM, 2016.

[Wan10] Wei Wang. Sentiment analysis of online product reviews with semi-supervised
topic sentiment mixture model. In Proceedings of the 7th International Con-
ference on Fuzzy Systems and Knowledge Discovery (FSKD 2010), pages 2385–
2389. IEEE, 2010.

[Wer18] Karl Werder. The evolution of emotional displays in open source software
development teams: an individual growth curve analysis. In Proceedings of
the 3rd International Workshop on Emotion Awareness in Software Engineering
(SEmotion 2018), pages 1–6. ACM, 2018.

[WHGW17] Wentao Wang, Nesrin Hussein, Arushi Gupta, and Yinglin Wang. A regression
model based approach for identifying security requirements in open source
software development. In Proceedings of the IEEE 25th International Require-
ments Engineering Conference Workshops (RE 2017 Workshops), pages 443–
446. IEEE Computer Society, 2017.

[Wil45] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics
bulletin, 1(6):80–83, 1945.

[WND08] Peter Weißgerber, Daniel Neu, and Stephan Diehl. Small patches get in! In
Proceedings of the 2008 International Working Conference on Mining Software
Repositories (MSR 2008), pages 67–76. ACM, 2008.

[WPWZ19] Shaohua Wang, NhatHai Phan, Yan Wang, and Yong Zhao. Extracting API
tips from developer question and answer websites. In Proceedings of the 16th
International Conference on Mining Software Repositories (MSR 2019), pages
321–332. IEEE / ACM, 2019.

[WYT13] Edmund Wong, Jinqiu Yang, and Lin Tan. Autocomment: Mining question
and answer sites for automatic comment generation. In Proceedings of the
2013 28th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE 2013), pages 562–567. IEEE, 2013.

[YZL18] Geunseok Yang, Tao Zhang, and Byungjeong Lee. An emotion similarity based
severity prediction of software bugs: A case study of open source projects.
IEICE Transactions, 101-D(8):2015–2026, 2018.

Bibliography 193

[Zel09] Andreas Zeller. Why Programs Fail - A Guide to Systematic Debugging, 2nd
Edition. Academic Press, 2009.

[ZH13] Yingying Zhang and Daqing Hou. Extracting problematic API features from
forum discussions. In Proceedings of the IEEE 21st International Conference on
Program Comprehension (ICPC 2013), pages 142–151. IEEE Computer Soci-
ety, 2013.

[ZRvDD11] Andy Zaidman, Bart Van Rompaey, Arie van Deursen, and Serge Demeyer.
Studying the co-evolution of production and test code in open source and
industrial developer test processes through repository mining. Empirical Soft-
ware Engineering, 16(3):325–364, 2011.

194 Bibliography

	Contents
	List of Figures
	List of Tables
	Introduction
	Thesis Statement
	Research Contributions
	Performance Examination of Opinion Mining Techniques
	Approach for Mining Opinions from Online Discussions

	Outline

	State of the Art
	Opinion Mining in a Nutshell
	Opinion Mining Techniques for SE
	The Perils of Using Opinion Mining Techniques Out-Of-The-Box
	Customizing Opinion Mining Techniques for SE Tasks

	Applications of Opinion Mining in SE
	Opinion Mining to Support Software Requirements Engineering
	Opinion Mining to Support Software Design and Implementation
	Opinion Mining to Support Software Maintenance and Evolution
	Opinion Mining and Human Aspects of Software Development

	Discussion

	Sentiment Polarity Analysis in Software Engineering Contexts
	Customizing The State-Of-The-Art Sentiment Analysis Tool
	Mining Opinions in SE Datasets

	Negative Results of Customization
	Evaluating Sentiment Polarity Analysis for SE
	Research Questions and Context
	Data Collection and Analysis
	Results

	Threats to Validity
	Lessons Learned
	Conclusion

	Mining Opinions from Q&A Sites to Support Software Design Decisions
	Rationale-Based Software API Recommender: A Proposal
	Motivation
	System Architecture
	Opiner: The Most Relevant and the State-Of-The-Art Tool

	POME: Pattern-based Opinion MinEr
	API Miner
	Fine-Grained Linker
	Aspect Classifier
	Polarity Analyzer
	POME in Action

	Evaluating the Performance of POME
	Research Questions
	Context Selection & Data Collection
	Data Analysis

	Results Discussion
	Threats to Validity
	Conclusion

	Conclusions and Future Work
	Limitations
	Customization of Stanford CoreNLP
	Performance Improvement of pome
	Various Available Data Online
	Opinion Mining in Different Software Development Activities

	Future Work
	Improvement of Opinion Mining Techniques
	Support for Different Software Development Activities

	Closing Words

	Appendices

