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Abstract

Software development has become more and more pervasive, with influence in almost every
human activity. To be able to fit in so many different scenarios and constantly implement new
features, software developers adopted methodologies with tight development cycles, sometimes
with more than one release per day. With the constant growth of modern software projects and
the consequent expansion of development teams, understanding all the components of a system
becomes a task too big to handle.

In this context understanding the cause of an error or identifying its source is not an easy task,
and correcting the erroneous behavior can lead to unexpected downtime of vital services. Being
able to keep track of software defects, usually referred to as bugs, is crucial in the development of
a project and in containing maintenance costs. For this purpose, the correctness and completeness
of the information available has a great impact on the time required to understand and solve a
problem.

In this thesis we present an overview of the current techniques commonly used to report
software defects. We show why we believe that the state of the art needs to be improved, and
present a set of approaches and tools to collect data from software failures, model it, and turn it
into actionable knowledge. Our goal is to show that data generated from errors can have a great
impact on daily software development, and how it can be employed to augment the development
environment to assist software engineers to build and maintain software systems.
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Introduction

Everybody uses software. It may be the control system for a production environment of a large
factory, a Customer Relationship Management system, a social network, an application on a
smartphone, or a website to book a flight.

Regardless of its use, software plays a central role in modern society: It is used in almost every
human activity to automate trivial tasks and to simplify complex ones. Its usage became massively
pervasive, to the point that virtually any structured activity and process relies on software to
regulate its workflow, minimize errors, and reduce costs. Moreover, the surge of popularity of
mobile computing pushed even further the momentum of this scenario, bringing the influence of
software into every aspect of our lives.

As a consequence, development teams are required to write code and push new features at a
sustained pace, producing changes in the codebase that cause a system to constantly change and
evolve its behavior, sometimes more than once a day. Often changes are performed by different
developers, or even by different teams working on different parts of the system: Therefore, it
quickly becomes impossible for a single person to have comprehension of the whole system. It is
easy to understand how a software system can gradually start to resemble an unknown black box,
rather than an organized entity composed of deterministic processes.

To complicate things even further, it is often not sufficient to have a deep knowledge of the
whole set of components that form a system to predict its final behavior. Given the large number
of requirements that modern software systems have to satisfy, it is usually necessary to rely on
external libraries to provide the desired features. Using external code is a good practice, as it
allows for reuse and reduces the probability of a bug being present in a library used by more
people. However, these benefits come at the cost of yielding control of the system to external code,
leading to the consequence that, if an error arises from a library, it becomes virtually impossible
to track down its origin unless through debugging the library itself.

The main focus during a development cycle is writing new code to develop new features:
However, in such a complex and ever-changing scenario, a huge part of the resources put in
a project are spent in maintenance and debugging [Cor89, FH82, ZSG79, MML15]. We can
break down the constituent components of maintenance in: finding and collecting problems,
understanding them, locating the source of the error, and fixing the issue. Each one of these
phases comes with its own set of problems and complexities.

In such a scenario, one would imagine that the efforts for assisting developers would focus on
refined tools to navigate, understand, and inspect the code. While this is partly true, many of the
modern editors and IDEs put the biggest accent on how developers write code, leaving program
comprehension as a secondary task, despite it being intrinsically more complicated.

1



2 Introduction

1.1 Dealing With Software

It is easy to sense why understanding software is hard: Reading code means reading text containing
structured information, in a language that does not follow the same logic of natural language.
To understand a fragment of code, a developer has to mentally parse a source file, identify and
extract the necessary information, and build a mental model of the intended behavior of the
software [VMV95]. The same process happens when printing log messages to expose the state of
the system: Log messages embody fragments of information that the developer has to fit into her
mental model, and use it to reverse engineer the source of an error by trial and error.

To ease this process, both researchers and industry practitioners built a plethora of tools, like
debuggers and code inspectors, to allow developers to run a program in a controlled environment
while checking the internal status of its variables. Other tools, like code browsers, support fast
linking between the entities in the code, while loggers allow to print and store useful runtime
information. Finally, test suites allow to define a set of expected behaviors, and to constantly
check if any of these rules are satisfied.

All these tools however do not change the fundamental way we interact with the code:
Eventually, the developer needs to read the code, and therefore undergo the process of building
its mental model. The main cause for this is because all these tools rely on the same, strong,
underlying assumption: Source code is text, therefore the tools we are using to interact with it are
shaped around text editing tools. This assumption reflects the way we use to store our programs,
i.e., plain-text files containing the declaration of our models.

In this thesis we propose a different approach for thinking about runtime errors and software
defects. The data generated from runtime errors contains large amounts of information that is
usually ignored, or stored in a textual format, that loses its original relations with the entities
of the system. We propose to promote this class of data —such as bug reports and log files—
to full-fledged entities and store them using objects, in order to maintain the relation with the
original entities living in the system. The effect of treating entities such as bug reports or log files
as first-class citizens of the development cycle, is that it enables us to deal with objects instead of
plain text. This, in turn, provides the language to turn the data into information in the correct
context. Such a tight integration allows us to enrich the tools we use to develop a system and
creates a feedback loop with the developer that gives her a broader view on the evolution of a
system.

We believe that discarding this data, usually considered as a disposable byproduct of the
development process, wastes the enormous potential of an important data source. We want to
leverage the usefulness of this data and turn it into actionable information that can effectively
impact the development process and reduce maintenance costs.

1.2 Thesis Statement

The goal of our dissertation is to rethink how we deal we bug reports: We seek to increase the
reliability of the data they contain and reduce the time required to read and understand them.
We want to lay the foundations for a new generation of issue tracking systems, that leverages the
power of the community and implements automated approaches to provide relevant information
to developers [ZPB+10] and alleviate the problem of noise (i.e., duplicate or abandoned bug
reports) inside existing issue trackers [WZX+08].
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We formulate our thesis as follows:

Reifying bug reports, promoting them to first-class citizens of the development process,
enables a conversation with a software system that reduces debugging time and enables
automated and reliable usage analyses.

We analyze existing bug repositories to understand the kind of data that is collected and
how developers exploit this information to fix software defects. We implement and test a set of
exploratory tools to investigate the usage of bug reports in existing open source projects, and we
design our process to collect data in a structured and reliable way.

1.3 Validation

Redesigning the concept of bug tracking is a task that encompasses a number of different sub-
problems. Many of these problems come from the specifics of each development community and
arise from the way developers approach their work.

Given the large number of variables in play, we feel that a canonical approach of selecting
an idea, conducting a controlled experiment, and produce a conclusion would not be the best
approach to narrate the problem we are studying. Instead, since we had the opportunity to
propose our work to the PHARO community, collect data from their day-to-day development
work, and given the practical nature of the problem we considered, we decided to embrace a
tool-driven approach and seek for the feedback of developers. We believe that conducting a
full-blown evaluation process on a new issue tracking system would have been an impossible
task, as its effects would begin to be observable only after years from its adoption. Therefore we
decided to present a set of exploratory studies using the fresh development data we collected,
and evaluate our approaches based on the feedback from developers.



4 Introduction

1.4 Roadmap

This dissertation is structured in the following chapters and with the following contributions:

Chapter 2 presents the history and evolution of tracking bugs, the current trends and best
practices.

Chapter 3 proposes a visual approach to explore the content of existing issue trackers, showing
how a simple textual representation sometimes hides useful information in a bug database.
We present IN*BUG, a tool for visually inspecting the contents of existing bug repositories,
find hidden properties, and recurring patterns. [DSL13, DSL14, DS14].

Chapter 4 presents our approach for runtime errors retrieval, where we collect stack traces
generated by the community during the development process to learn about the life of a
system. We implemented our approach into ShoreLine, a platform that we deployed for the
collection and reporting of runtime errors [DSML15].

Chapter 5 extends our stack traces collection approach, to log entities in a reified fashion and
to capture the information implicitly stored in the relation among the objects. We extend
ShoreLine to allow the reified collection of runtime data and allow a better representation
of the status of a system during a failure [DSCM+17]

Chapter 6 shows how we can employ the data we collect to build tools that combine hetero-
geneous data sources for browsing the evolution of a system from different perspectives.
We show BLEND, a tool that merges different data sources to browse the evolution of
PHARO [DSMML15].

Chapter 7 discusses the general model used by issue trackers and how it falls short in helping
users when they have an issue to report. We present a survey we performed to investigate
what users deem easy to provide in a bug report. We distill a meta-model for a minimal
bug report, establishing a basic layer of core features. We propose an improved model to
represent and store a bug report and the related data without losing information about its
context. [DSML16].

Chapter 8 considers the problem of the engagement of developers during a tedious activity such
as reporting and fixing bugs. We discuss how we can improve the user experience inside an
issue tracking system by employing gamification [DSMLM17].

Chapter 9 concludes our work by summarizing the proposed approaches and how these can
show the direction for the development of integrated issue tracking systems with smarter
and deeper bug reports.

Appendix A presents a brief background on PHARO, the main platform that we targeted to
develop and test our approaches and tools.

Appendix B presents a list of the publications produced during our work.
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The birth of computer programming brought along the phenomenon of failures and errors. Since
the beginning of the history of computer programming, developers needed a procedure to track
and describe the appearance, impact, and resolution of the errors encountered during the evolution
of a system. Figure 2.1 shows what the folklore considers to be the first bug report, written by
Grace Hopper.1 From that handwritten paper note to present days, issue trackers evolved and
adapted to reflect the different development practices introduced during the years. This led to a
well established de facto model of a bug report.

Figure 2.1. This piece of paper is considered to be the first "bug" report. It was written by Grace Hopper
when she was working on the Mark II computer, to document the find of a moth that caused a malfunction
in the system.

1http://ei.cs.vt.edu/~history/Hopper.Danis.html

5
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Figure 2.2. An old Bugzilla submission form

Correctness is arguably an essential property for a computer program to work. However, it is
nearly impossible to determine whether a non-trivial program is really correct: the huge amount
of different variables and environments that a program usually gets exposed to makes predicting
all the potentially harmful situations an unmanageable task. Even if we could determine the
absolute correctness of a program in a given moment in time, this does not guarantee that it will
keep behaving correctly in the future: There are a number of external factors that influence the
execution of a program that can trigger problems that could not be observed before. Such external
factors could for example include changes in the underlying technology, like the operating system,
or different usage conditions like a change of the input format. For this reason —since we cannot
get rid of bugs— dealing efficiently with defects is a crucial aspect in the success of a software
system.

In this chapter we illustrate the state of the art in issue tracking, providing an overview on the
current tools and practices and the approaches they propose, to identify the useful elements in
issue tracking.

2.1 Issue Tracking Systems

In 1998, the Mozilla Foundation released the first version of BUGZILLA, which would soon become
the reference issue tracking system. During the years different alternative tools emerged, providing
their own set of customizations and personalizations. In this section we present four platforms,
selected by importance and overall adoption, showing their salient features: BUGZILLA, JIRA, the
GITHUB issue tracker and FOGBUGZ.
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Figure 2.3. GitHub bug report submission form.

Bugzilla

BUGZILLA2 is one of the oldest and most popular issue tracking systems, that inspired many
existing issue trackers. Developed by the Mozilla Foundation, it is used by several open source
projects, as well as industrial customers. BUGZILLA allows its users to obtain a great level of detail
in specifying an issue at the price of a complex interface. Figure 2.2 shows the interface that
BUGZILLA used to have in one of its previous versions.

Jira

JIRA3 by Atlassian is one of the most famous commercial issue trackers, used by Twitter, Linkedin,
and Ebay. It provides a polished interface and strong integration with the tools developed by the
company. It uses a model similar to BUGZILLA.

GitHub

GITHUB4 is a popular Git repository hosting service, used to develop several popular open source
projects, that offers a simple issue tracker. The submission form depicted in Figure 2.3 shows that
GITHUB adopts a simplified model of a bug report, reducing but offers a strong integration with
the versioned source code, by linking issues with specific commits.

FogBugz

FOGBUGZ5 is an issue tracker developed by FogCreek. It uses a bug model similar to the one of
BUGZILLA, slightly more polished and user-friendly, due to its clean user interface and advanced
filtering capabilities. It poses a strong accent on customization, by letting users define custom
filters and views.

2https://www.bugzilla.org
3https://www.atlassian.com/software/jira
4https://www.github.com
5https://www.fogcreek.com/fogbugz

https://www.bugzilla.org
https://www.atlassian.com/software/jira
https://www.github.com
https://www.fogcreek.com/fogbugz
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Together with these platforms, the open source and commercial scenes provide other popular
solutions, like Redmine6 or Trac.7 It is however interesting to observe that, while these systems
propose different degrees of integration with the tools in their ecosystem (e.g., the versioning
system), the fundamental approach they adopt follows the same paradigm made popular by
BUGZILLA: a textual description with additional customizable metadata. Further improvements to
issue trackers, and the research around them, are built on top of this paradigm. In the following
sections, we present the efforts of researchers to improve issue trackers and the model of a bug
report in support of the bug fixing activity.

2.2 Visualizing Bug Reports

Many researchers showed how using data generated during the programming activity can provide
valuable information about the evolution of a project. For example, Bacchelli et al. proposed an
Eclipse plugin to integrate email communication in the IDE [BLH11]. They showed that having
the email data produced during the development of a software system at one’s disposal helps
supporting program comprehension tasks, such as finding entry points in a system and recovering
additional documentation. Another example has been given by Zimmermann et al., who applied
data mining techniques on version histories to detect changes and build prediction models to
suggest future changes to developers [ZWDZ04].

2.2.1 Visualizations of an Issue Tracker

Just having the raw data, however, is often not enough: to turn it into actionable knowledge it is
important to build tools to make use of this information. Reading a bug report is a difficult step
in the debugging process: Browsing the large amount of information and deciding whether how
much to rely on the data reported by the users, consumes a substantial amount of developers’ time.
To alleviate this burden, researchers devised a number of approaches based on the visualization
of the data inside issue trackers. For example, D’Ambros et al. performed an analysis of the
BUGZILLA bug repository: They summarized the diagram of the state transitions of a report and
proposed a set of visualizations to support the analysis of a bug database at different levels of
granularity. Their approach allows the user to navigate the history of a single issue tracker and
inspect selected parts of the system with customized filters and a synthesized state transitions
diagram of a report [DLP07]. They built visualizations to support the analysis of a bug database
at different levels of granularity, depicing bug reports as independent entities. Their approach
allows users to browse the history of an issue tracker and inspect parts of the system with custom
filters. Knab et al. proposed visualizations to ease the understanding of the data in an issue
tracker and find hidden patterns [KFGP09, KPG10]. Hora et al. proposed a visual exploration of
the bug repository, creating interactive maps of the bugs in a system. To link bug reports to other
software artifacts they argue the need for considering bugs as first class entities [HAD+12].

2.2.2 Visual Storytelling

Even with the means to efficiently inspect single bug reports, getting a big picture of the data
contained in an issue tracker, and how it relates to the system, is often a completely different

6https://redmine.org/
7http://trac.edgewall.org/

https://redmine.org/
http://trac.edgewall.org/
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task, as the data has to be interpreted at a different level. To effectively present and understand
such an amount of data, many researchers and practitioners adopt a Visual Storytelling approach.
The ability of contextualizing the information in a story that explains the meaning of the data is
becoming more and more central to the skills required for data scientists [SH10].

Among the different visualizations that researchers used to represent a software system, the city
metaphor has proven to be effective in giving a high level picture of a group of entities, allowing
the user to navigate, zoom and inspect the various components and refine the view [WLR11].
This approach has been adopted in different scenarios, depicting different kinds of information
pertaining to several steps of the development activity, such as changes in the system, the defects
involving different components in the system, issues in quality checking rules or the exceptions in
the system [PBG03].

Other visualization approaches tried to focus on the evolution of software systems, specifically
the version repositories, the dependencies or the structures. For example, Fischer et al. [FG06]
proposed EVOGRAPH, an approach based on data extracted from a system release history, that
visualizes the evolution of structural dependencies through 2D visual representations. Girba et
al. [GLD05] focused on the visualization of the evolution of class hierarchies, correlating the
history of classes and their relationships, e.g., inheritance. The approach by Voinea et al. [VT06]
uses a combination of color and texture to represent as many attributes as possible to display
information extracted from software configuration management systems. Another important
approach is the one by Ratzinger et al. [RFG05], that represents systems as nested, zoomable
graphs.

2.3 Bug Reports

Dealing with bug reports is a non-trivial task, that poses a number of communication problems
among users and developers. Such a large, noisy, and sometimes redundant corpus of information,
impacts the debugging time and the maintenance costs. To minimize this impact, researchers
focused on improving several aspects of this process. In this section we present the efforts in
automating the essential aspects of dealing with bug reports, such as its quality, its relevance, and
predictions about the future behavior of the system.

2.3.1 Quality of a Bug Report

The reliability and completeness of bug reports is crucial to quickly solve a defect. Bissyande
et al. showed that most reporters that contribute to a project are not developers [BLJ+13],
posing a problem on the quality of the data. To understand how developers perceive the quality
of a bug report, researchers conducted a survey, asking which elements help understanding
a problem. They found that stack traces are the most useful item and often contribute to a
faster resolution of a defect, suggesting that they should be collected and included in issue
trackers [ZPB+10, BJS+07, SBP10]. Even when reliable, though, the amount of information in
an issue tracker can hide the relevant information: To alleviate the information overload, Sun
devised a technique to detect bug reports without useful information [Sun11]. Besides incorrect
information, bug repositories often contain duplicate entries for the same defect. However,
developers do not consider this harmful, but instead find the additional information useful to
better understand the problem [BPZK08].

Managing a large bug repository is often a burden that adds a new layer of complexity on
top of the bug fixing problem. To alleviate this burden, researchers proposed to use automated
approaches [Wei06]. For example, Anvik et al. observed that large open source projects are often
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overwhelmed by the rate of new bug reports and proposed a machine learning based approach to
to aid bug triaging decisions [AHM06], the process of selecting the right person to take care of an
issue.

Guo et al. conducted a study to predict what impacts the resolution time of MS Windows bug
reports [GZNM10], finding that a high number of reassignment of a report usually increases the
issue lifetime, and that the reputation of the submitter also impacts the fixing time. Given the
expensive nature of the bug fixing activity, a number of approaches exist to estimate the cost of a
bug fix in person-hours [WPZZ07], predict bug fixing time [GPG10], locate features from bug
reports [DRGP13], and perform traceability linking [BTW+13].

2.3.2 Bug Prediction

Solving defects does not represent the end of life of the information inside issue trackers: Yin
et al. show the danger of hidden complexity behind a bug report, finding that 4.8% to 24.4%
of sampled fixes for post-release bugs introduced new defects [YYZ+11]. They also noted that
“Developers and reviewers for incorrect fixes usually do not have enough knowledge about the
involved code”, and that “27% of the incorrect fixes are made by developers who have never
touched the source code files associated with the fix”. Once a bug report gets closed, the data
inside issue trackers can still contain valuable information, and has been exploited to predict the
evolution of the code. D’Ambros et al. presented several approaches devised by researchers to
predict future defects [DLR12]. For example, Zimmermann et al. proposed an approach based on
network analysis on dependency graphs among components, to allow managers to identify central
program units that are more likely to face defects [ZN08]. Kim et al. suggested that defects tend
to show in places previously affected by other defects, proposing a caching method to prioritize
the elements in the code to inspect [KZWJZ07]. It is the source code that contains the defects,
but these defects are introduced through changes: As such, Hassan et al. proposed metrics for
bug prediction that consider the changes in the code, rather than the code itself [Has09]. Despite
the efforts in improving the accuracy of the bug predicton approaches, Bhattacharya and Neamtiu
showed the low correlation of current prediction techniques and underlined the need to find
additional features to increase the confidence of the time estimates [BN11].

2.3.3 Bug Reports and Social Interactions

One of the core aspects of an issue tracker is that it collects social interactions in a community:
Users can give feedback to the developers and obtain information on the system. Breu et al.
analyzed a sample of 600 bug reports, finding that interacting with developers helps solving an
issue faster [BPSZ10]. Zhou and Mockus showed that users involved in the development activity,
like bug reporting and participating in the community, are more likely to become stable, long-
term contributors [ZM15]. Therefore, improving issue trackers to foster the relations between
developers and users could result in faster resolution of defects.

2.4 Data Collection

As we already mentioned, bug fixing is well known to be a tedious activity, and identifying the
source of a problem—even with a bug report—represents a non trivial task. Reproducing and
understanding the error is usually cumbersome, as the developer does not have access to the
original environment where the error occurred. As a consequence, she cannot fully rely on the
information in the report, as it might contain incomplete, or even incorrect information.



2.4 Data Collection 11

2.4.1 Collecting Runtime Errors

To ease the process of resolving defects, researchers have devised a number of approaches to
complement the information reported by the user with additional information, for example by
automatically collecting data about the environment where the error occurred. Zimmermann et al.
showed that the bug reports containing stack traces improve the general quality of the report, and
result in a faster resolution of the report [ZPB+10]. Schröter et al. provided empirical evidence
analyzing the Eclipse project that the use of stack traces in defect resolution provides value in the
debugging activity, and suggested that software projects should provide means to include them in
defect reporting [SBP10].

The idea of collecting runtime exceptions to analyze software errors has been adopted by
different authors in different contexts. Glerum et al. used an automated approach to collect errors
generated and submitted by WER, the Windows Error Reporting tool. They analyzed data collected
from users of Microsoft’s operating systems worldwide: In their approach approach they grouped
the reports into buckets by looking for specific properties of the trace, and used this information
to prioritize debugging and build a knowledge base where system administrators could check
common problems of the system [GKG+09]. Inspired by this work, Han Shi et al. applied the same
principle to performance debugging [HDG+12]: They proposed an approach called STACKMINE,
designed to detect and report highly impacting performance bugs and address defects that cause
long delays in the user experience. We believe that a similar approach to the one that they applied
to an operating system, can be a valuable support for developers in building a programming
environment. Mozilla adopts a similar approach to collect stack traces and runtime execution for
debugging purposes [McL04].

The information of stack traces contained in bug reports represents a valuable support in
debugging: as such, many researchers devised different methods to aid bug fixing and management
of reports using stack traces. These works provided evidence that stack traces are a useful tool
and a precious source of information [DR13, WKZ13, BMRC05, WPZZ07]: they provide precise
information that are generally more reliable and useful than the descriptions produced by the
submitter of the reports [KMC06]. Brodie et al. proposed an automated approach to group similar
bug reports using stack trace [BMRC05]. Moreno et al. applied Text Retrieval techniques to
compute similarity between bug reports using the stack traces contained in the report description,
focusing on reducing the overhead to analyze large amounts of data [MTMS14]. Again, this was
done in a localized post mortem way.

Managing bug reports is expensive and represents an open problem: Many studies proposed
approaches to automatically manage them, by finding the right developer to fix the defect, predict
the cost of fixing a bug and reduce maintenance costs [MKN09, AHM06, ŚZZ05, DLR10, LVZ10].

2.4.2 Errors as First-Class Citizens

Several tools in both academic and industrial contexts use the vast amount of data generated
during the development and debugging process to enable a number of different analyses. However,
any analysis of such kind sooner or later has to deal with the fact that the data collected is not
in its original form: It is a representation of the original entities, serialized in a textual format.
This, however, gives birth to a number of problems, as de-serializing is prone to interpretation
and correctness errors, for example due to bad formatting. In this section we present an overview
of the efforts to alleviate this class of issues.
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2.4.3 Aiding Bug Fixing

The first major development activity that benefits from accessing clean runtime data is bug fixing.
The purpose of the research in this area is to support and automate the identification of the
portions of code that contain an error, thus alleviating the developer from the burden of walking
through the whole execution path to localize the cause of a bug.

Several approaches use techniques to gather system information and detect errors in an
automated fashion. For example, researchers collected large volumes of stack traces to identify
patterns in the errors of a system, to assist the early detection of new problems or regressions, and
to build a knowledge base of common problems [HDG+12, AADS+07]. The already mentioned
survey performed by Zimmermann et al. finds that one of the biggest problems comes from the
reliability of the reported data [ZPB+10], hinting at the need for an automated approach that
collects meaningful data. Cleaning the data in log files is also an issue when inspecting the data,
or while performing analyses. For example, Aye proposed a preprocessing stage to overcome the
problem of huge log files in web applications, with the purpose of cleaning the data to allow a
subsequent mining step [Aye11]. In the attempt of reducing the effort in crash debugging Soltani
et al. devised EvoCrash, an approach to reproduce a reliable environment describing the context
of a failure using genetic algorithms [SPvD17].

2.4.4 Aiding System Comprehension

Researchers used the massive amount of data produced by the execution of a system to create a view
of the system at a global level, to detect hidden interactions or unexpected patterns and give an
overview of the system, resulting in a large number of different studies and approaches [CZVD+09].
For example, Koike proposed a tool to visualize log files of the Snort8 intrusion detector and
assist system administrators to identify intrusion attempts in a system [KO04]. Moreta and
Telea visualized log files using hierarchical clustering to uncover patterns of interest, with the
purpose of monitoring dynamic allocation of memory and support the analysis of software
repositories [MT07]. Orso et al. proposed a tool to monitor the logs of deployed software
by means of visualizations generated by data mining techniques applied on runtime execution
data [OJH03]. De Pauw et al. built a tool to visualize the execution of Java programs, with the
purpose of aiding the developer to understand the execution of the program and identify problems
like performance bugs [DPJM+02].

Finally, researchers also tried approaches to improve the textual representation of software
artifacts by augmenting their description with a markup language [Bad00, MCM02].

2.5 Engaging Developers and Users

Despite all the tools that researchers and practitioners produced, fixing bugs remains a tedious
activity. To support developers deal with an issue, there have been a few efforts in introducing
gamification —the use of game elements in a non gaming context— into software engineering.
Passos et al. [PMNC11] proposed to gamify the phases of software lifecycle by splitting the whole
process into tasks, and setting achievements for their completion. While this is an interesting
approach, it is essentially a pointsification, and as such puts too much emphasis on the rewards, thus
being ineffective on the long run. Singer and Schneider performed a study on the gamification
of commit messages [SS12]: they managed to influence the workflow of the students in the
experiment, improving the workflow. They however received both positive and negative comments.

8https://www.snort.org/

https://www.snort.org/
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Dubois and Tamburelli [DT13] pointed out that software projects often produce mediocre quality
artifacts, do not respect the terms for milestones, or exceed the financial budget. They claimed
that gamification could represent a solution to the issue, but only outlined a possible approach
to gamification based on the three steps analysis, integration, and evaluation. Probably still
being in the inception phase they did not provide concrete suggestions or a systematic set of
recommendations.

2.6 Outline

In this chapter we have presented the efforts of practitioners and developers to support the
activities of tracking and solving bugs. We believe that these efforts represent the desire of
building smarter issue tracking system, that integrate with the IDE and interact with the existing
development tools to reduce the time that developers spend dealing with boring and repetitive
tasks. In the following, we present our contributions with respect to the state of the art.

Visualizations and analyses

The approaches that we saw focus on retrospective analyses. We believe that while conceptually
interesting, there is little practical utility in daily development, since after all the goal of an issue
tracking system is not to look at defects, but to actually fix them. This implies that even the
most elaborated techniques are of limited actionability, since the bug fixing process takes place in
a different space, namely the integrated development environment (IDE). We believe that the
use for a visualization is not to simply display the data, but to establish a first-class link to the
development environment.

In Chapter 3 we present IN*BUG, our tool for browsing issue trackers in a visual fashion,
highlighting properties that are normally hidden when using plain text.

Collecting Runtime Data

We saw different approaches for program comprehension, focused on describing source code, that
are still relevant to support bug fixing, as they explicitly render the properties that are hidden in
the textual form of the source code.

In Chapter 4 we present our approach to data collection. In this context, we think that
associating new stack traces to existing bug reports could provide immediate feedback to the
users of the system and to assist development and bug fixing in a live fashion. In Chapter 5 we
then propose a tool for collecting domain-specific data about failures in a system, to enable a
reliable and conversational data source.

Visual Storytelling

Researchers presented several approaches to effectively visualize data about a single aspect that
impacts or involves a system. However, these approaches fall short in correlating this information
with knowledge coming from diverse data sources and impacting diverse concerns. Such additional
information could effectively integrate the existing data to uncover further relations between the
elements of the system. We think that an approach that considers more than one kind of data
and presents the information in a unified, uniform view, normalizing and balancing each source,
could provide a greater value in understanding a software project and the activities happening in
its ecosystem.
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In Chapter 6 we present a case study of visualizing and combining multiple data sources
about a software system. From this visualization we are able to learn interesting stories about the
evolution of the system.

Modes for Bug Reports

We saw that different bug tracking systems propose different strategies to describe a bug report.
In Chapter 7 we investigate what developers believe to be difficult to provide when writing a
bug report, to deepen our understanding of the problem of data reliability inside issue tracking
systems. We then examine the data contained inside big issue tracking systems and try to define
the minimal model to describe a software error.

Gamification

The engagement of users is a problem that is bringing more and more people interested in the use
of gamification applied to software engineering. In Chapter 8 we present a framework to support
developers during the design of a gamification engine applied to their systems and communities,
highlighting the perils that an inconsiderate use of points and badges can bring.
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Visual Analytics of Bug Repositories

Bug tracking systems are used to track and store the defects reported during the life of software
projects. The underlying repositories represent a valuable source of information used for example
for defect prediction and program comprehension [SFM99]. However, as we mentioned in
Chapter 1, bug tracking systems store and present the actual bugs essentially in textual form, which
is not only cumbersome to navigate, but also flattens the information, hindering the understanding
of the intricate and multifaceted pieces of information that revolve around software bugs. We
begin our journey towards an improved representation for a bug report by analyzing existing bug
repositories, to investigate where the information that they contain can actually be leveraged to
improve the knowledge that we have on the system.

In this chapter we present IN*BUG, a web-based visual analytics platform to navigate and
inspect bug repositories. IN*BUG provides several interactive views to understand detailed
information about the bugs and the people that report them.

Structure of the Chapter

Section 3.1 introduces the issues of dealing with data in issue trackers. Section 3.2 presents in
detail the views that compose IN*BUG. Section 3.4 concludes the chapter summarizing what we
learned visualizing issue tracking systems.

15



16 Visual Analytics of Bug Repositories

3.1 Accessing Bug Repositories

Due to the complexity and size of non-trivial software projects, the development of a system is
always accompanied by software defects, or bugs. To manage these defects, modern software
projects use bug tracking systems (also known as bug trackers or issue trackers), such as Jira or
Bugzilla. With bug trackers, end users and developers can report bugs they encountered while
using the system, usually by means of custom web interfaces, where one can enter details about
a specific bug, creating a so-called bug report. A typical bug report, such as the one depicted in
Figure 3.1, contains information about (1) the title and id of the bug, (2) the user who reported
the bug and the people involved in its history, (3) its current status, (4) its opening and closing
date, (5) its last modification date, (6) the project to which the bug report pertains, (7) events
(such as changes of the people assigned to the bug report, etc.) during the life cycle of the bug,
etc. The example bug report depicted in Figure 3.1 is from a specific bug tracker, FogBugz 1, but
it does not differ significantly from the reports recorded with other bug trackers.
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1

4

6

7

Figure 3.1. Example bug report in the FogBugz bug tracking system.

Various researchers have mined and used the information stored by bug trackers to perform
several types of analyses, such as identifying duplicate bug reports [WZX+08], measuring the
quality of a report [ZPB+10], predicting future defects [DLR12], performing traceability link-
ing [BTW+13], locating features [DRGP13], ameliorating bug triaging decisions [AHM06], etc.
The actual goal however is to ease the life of developers in the handling of bug reports, as part of
the development process.

One problem is that bug reports are disconnected from the software system they pertain to,
and it is up to the developers to restore the link between a bug report and the relevant components

1http://www.fogcreek.com/fogbugz/

http://www.fogcreek.com/fogbugz/
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Figure 3.2. Main user interface of In*Bug

of a system. Another problem is that bug reports, such as the one depicted in Figure 3.1, are
displayed on individual web pages that list their properties, making them cumbersome to handle
and making it also difficult to obtain a “big picture” of the existing open bug reports and how
they affect the system they pertain to. Moreover, this information is stored and presented as text,
which makes it hard to understand the properties of a bug report.

We present IN*BUG, a web-based bug analytics platform, that eases the inspection, navigation,
and comprehension of bug repositories, mostly by means of interactive visualizations. IN*BUG

provides an entry-level big picture overview to browse the content of a repository, and a detailed,
complementary, interactive, and finer-grained view to understand detailed information about the
bugs and the people that report them.

Other researchers have produced custom visualization of bugs such as D’Ambros et al., who
proposed visualizations that tried to depict the complex information revolving around bugs, which
are de facto independent entities when it comes to program comprehension, and not mere side
effects of the evolutionary process that software systems are subjected to [DL07, DLP07]. While
D’Ambros et al. only created standalone and static depictions of information taken from BugZilla,
our goal with IN*BUG is to depict live data from a bug tracker, namely FogBugz, as it is the issue
tracking system used by the PHARO community. The goal of IN*BUG is to offer a complementary
view to inspect and analyze information pertaining to bugs reported in the context of the many
projects that make up a software ecosystem. We built IN*BUG around the issue tracking system of
the PHARO open-source community.

We now present the features of IN*BUG, discuss its current implementation, and illustrate its
usage.
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3.2 In*Bug in Detail

In this section we present the interface of IN*BUG, detailing its panels and how we used the data
in the issue tracking system to build the visualizations.

3.2.1 Main view

Figure 3.2 depicts the main user interface, composed of the following panels:
Bug lifetime panel (1). This view depicts the bug reports contained in the bug repository,

showing their duration (as a horizontal stacked bar chart) and status (using different colors, listed
in Table 3.1).

Table 3.1. Bug report event color codes

Active orange Work Needed red
Closed gray Resolved dark gray
Working On blue On Hold cyan
Unknown light grey Selected yellow

In Figure 3.2 one specific bug (marked as A) is under focus. The vertical line to the right
indicates the current date, making it also clear whether a bug report is still active or not (if it is,
it will touch that line). This view also helps the developer to evaluate the complexity of a bug
report by summarizing the events that occurred during its lifetime.

Project selection panel (2)

In this panel the user can pick the projects whose bugs she is interested in. All projects are shown
as a tag cloud, where the tag size indicates the number of bugs reported for the project, also
indicated with numbers between parentheses close to the name of the projects.

Details panel (3)

This panel provides all the information reported about the bug report under focus in the bug
lifetime panel: It presents both the metadata and the list of events that happened during the
lifetime of a bug, including description and date of each event. The metadata is presented as
extracted from the bug repository, e.g., the opening date, the status, the last modification date,
etc.

Filter and options panel (4)

This panel allows the user to sort and filter bugs. The three default sorting criteria order the
issues by project, opening date, or date in which the bug has been resolved. The filter field offers
the possibility to enter either regular expressions or pieces of Smalltalk code as queries, allowing
the users to submit custom made queries to filter bugs.

3.2.2 Details of a bug

This view (see Figure 3.3) presents a detailed representation of a specific bug report. Each section
provides a description of the elements that compose a bug report.
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Figure 3.3. In*Bug details page showing the properties of a bug report

Bug Report Metadata (1)

The first panel summarizes the important metadata of the bug report: the id, the last modification,
the current status, the opening date and possible closing date, the project and the target milestone
for the issue resolution.

Users List (2)

This panel gives an overview of the people involved in the evolution of the bug. In particular, the
list displays the information of each user that performed an action on the issue, that was stored as
an event. The details include the picture of the user, the user name and the user’s email address2,
to contact the people working on an issue.

Bug Report Life Visualization (3)

This panel shows a visualization of the life of a bug report during time. The left border represents
the date the issue was opened, the right border represents the moment the bug was closed, or
the current date if the bug report is still active. The (A) section proposes the same visualization
of the list view in the main view (3.2.1), emphasizing the status changes during time. The (B)
section shows a line diagram where the height represents the criticality of the status (i.e., fixed is
the lowest and active is the hightest) and highlighting each event with a circle.

2We obfuscated the email addresses in the figure for privacy reasons.
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Figure 3.4. List of events in a bug report

Event Interactive View (4)

This is a list of all the events that compose a bug report. It shows the metadata of the event and
whether it is an automatic event or an event generated by a user. It also detects and highlights
the patches of code submitted to the tracker for the issue resolution, and provides a link to
download and inspect the patch. The user can click on an event to highlight it both in the events
list and in the bug report lifetime visualization. Figure 3.4 shows an example of the event list,
where we can observe the three types of events: (A) shows a comment by a user; (B) shows a
submitted patch. The upper left icon offers a link to the repository page of the patch; (C) indicates
events automatically generated from bots in the tracker. Inspired by more semantically rich and
elaborated views, such as the storylines by Ogawa et al. [OM10] or Kuhn and Stocker’s storytelling
timelines [KS12], the left border of each event is colored according to the status of the event, to
help the user to keep track of the evolution of the bug while inspecting the list of events.

3.2.3 Implementation & Current Dataset

IN*BUG is a web application built on top of the PHARO environment. It uses the SEASIDE web
framework [DRSZ10] to provide the data stored in a MongoDB database and implements a RESTful
API to communicate with the client. The client interface is implemented in JavaScript using the
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Figure 3.5. The interactions of In*Bug with the FogBugz and SmalltalkHub services

data manipulation and visualization library D3.js.3

IN*BUG is built to visualize the FOGBUGZ repository of the Pharo ecosystem. In Table 3.2 we
provide a summary of the data we investigated.

Table 3.2. Summary data of the Pharo bug tracker

Number of projects 46
Number of bug reports 8,666
Number of open bug reports 613
Total number of events 79,437
Average events per issue 9

IN*BUG also provides links to patches on SmalltalkHub, a source code repository to store
versioned Smalltalk code. In Figure 3.5 we can see how these three services interact.

The bug reports data is imported from FogBugz and stored in the MongoDB repository. The
web application then loads the data and presents it in the list view of the main interface. The
details of a single report are presented in the details view, where the user can follow a link that
leads to a patch submitted to SmalltalkHub.

3.3 More Than Meets the Eye

While developing IN*BUG we verified that providing a visual feedback using data that is usually
consumed through plain text is an effective method to observe and investigate properties that
would normally be hard to isolate. For example, in Figure 3.2 we can easily separate the bug
reports that are older from the newer ones, observe the amount of activity happening on an
issue, spot cases where a bug report was reopened several times, or identify abandoned reports.
The experience of serving textual data using a visual representation convinced us that a textual
representation we employ in issue tracking systems is limiting the amount of information that a
user can absorb.

3http://d3js.org/

http://d3js.org/
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3.4 Outline

In this chapter we presented IN*BUG, a web-based visual analytics platform to explore the content
of a bug repository. IN*BUG allows to get a complete overview of a whole repository, as well as
detailed and meaningful information on a single bug report, either through visualizations that
allow to interact with the data, or with the query engine embedded in IN*BUG that allows the
user to submit queries and dialog directly with the bug reports.

Since we designed IN*BUG as a tool for practical development, we focused on the Pharo
platform and we targeted its community. However, the approach of IN*BUG is general and
therefore it can be applied to any bug tracking system.

We saw that existing bug repositories contain information that can be highlighted using means
other than plain text: This is a first important step in promoting bug reports as independent entities.
The underlying information we display, however, is still in textual form, with the consequence that
we have to rely on the expertise of the user to obtain useful information. We therefore decided to
tackle the problem of the reliability of the data by means of automatic data collection during a
software failure. In the next chapter we present our approach to crowd-driven data collection:
We collect and investigate a large amount of stack traces generated during development activities,
to provide automated and reliable feedback to users and developers.
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CrowdStacking Traces to
Aid Problem Detection

During software development, exceptions are by no means exceptional: Programmers repeatedly
try and test their code to ensure that it works as expected. While doing so, runtime exceptions
are raised, pointing out various issues, such as inappropriate usage of an API, convoluted code,
as well as defects. Such failures result in stack traces, lists composed of the sequence of method
invocations that led to the interruption of the program. Stack traces are useful to debug source
code, and if shared also enhance the quality of bug reports. However, they are handled manually
and individually, stored in a bug report as a copy-and-paste chunk of text that complicates the
automatic processing of the information and raises questions about their reliability.

In the previous chapter we saw how treating bug reports as flat entities can hide properties
that would be useful in the development process. In this chapter we argue that stack traces can
be leveraged automatically and collectively to enable what we call crowdstacking, the automated
collection of stack traces on the scale of a whole development community. We present our
crowdstacking approach, supported by SHORELINE REPORTER, a tool which seamlessly collects
stack traces during program development and execution and stores them on a central repository.
We illustrate how thousands of stack traces stemming from the IDEs of several developers can
be leveraged to identify common hot spots in the code that are involved in failures, using this
knowledge to retrieve relevant and related bug reports and to provide an effective, instant context
of the problem to the developer.

Structure of the Chapter

Section 4.1 outlines the elements involved in collecting runtime information about software errors.
Section 4.2 illustrates the nature of stack traces and describes the data generated during the
development process. Section 4.3 introduces SHORELINE REPORTER and the methodology we
used to collect stack traces, as well as the process to link them to relevant bug reports. Section 4.4
evaluates our approach. Section 4.5 discusses our results and presents the possible extensions to
our approach. Section 4.6 concludes the chapter.

23
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4.1 Collecting Runtime Errors

Software development is an iterative refinement process: developers write code and then test
it to increase their confidence that the program behaves as desired. This continuous process of
running small, localized tests generates many errors that developers exploit to locate and correct
the defects in the code. Some paradigms, like Test Driven Development [Bec02], adopt an inverse
point of view: Developers define tests first, and then write the code that complies with the tests
until they all pass. As a consequence, this process results in an even larger number of runtime
exceptions, each of which may contain useful information about the context of failures.

The knowledge enclosed in such exceptions potentially provides useful insights that can be
exploited to better understand the underlying system, its functioning, and its quality. For example,
the number and the nature of errors related to the incorrect use of an API is correlated with the
difficulty to approach it for a beginner, can suggest a lack of documentation, or a bad architectural
design. Information from exceptions can also be exploited to get a deeper understanding of the
runtime behavior of a complex fragment of code, and it is crucial to identify possible defects
hidden in the program.

Programming environments generally deal with exceptions by means of stack traces, a textual
description that depicts the execution of the steps that led to the error. In object-oriented
programming languages this is the sequence of method invocations that led to the exception.

The information in a stack trace is useful to understand where the failure originated and which
entities of the system are involved. Research has shown that it is also valuable to determine the
cause of a defect: Including a stack trace in a bug report increases its quality by providing reliable
and relevant information. Indeed, researchers showed that bug reports containing stack traces are
closed sooner than bug reports containing only a generic description of the error [ZPB+10, SBP10].
However, a stack trace is generally checked manually by a developer to spot and fix single defects
and its usefulness terminates once the bug gets resolved. As a result, a considerable amount
of information is discarded and the knowledge it contains is lost. Researchers already used
automated approaches to collect generated stack traces and identify bugs and performance
issues [GKG+09, HDG+12]. However, these approaches remain post mortem, and largely focus
on the properties of a running system by recording the behavior of users of operating systems.

We believe that the knowledge contained in stack traces should not be limited to the mere
fixing of a single case, and that its use can be extended and in a live fashion by automatically and
collectively gathering this information, using it to provide instant feedback to the developer. By
establishing such a tight cycle between a failure and the feedback, we want to enable what we call
crowdstacking, a collective process that involves a whole development community in gathering
information automatically collected from stack traces, to boost the debugging process.

We present SHORELINE REPORTER,1 a tool implementing crowdstacking by seamlessly and
silently collecting stack traces from development sessions, and storing them on a shared, central
repository. We used the collected data to perform various analyses, such as identifying the entities
that are more prone to be involved in a failure, and searching and retrieving relevant knowledge
already present in the community ecosystem. This additional information can be used to prompt
a developer during the development process, for example by recommending a set of bug reports
contained in the bug tracker that are related to the current exception, thus providing a more
complete picture of the context of the error.

1http://shoreline.inf.usi.ch

http://shoreline.inf.usi.ch


4.2 On the Nature of Stack Traces 25

4.2 On the Nature of Stack Traces

Exceptions are a common mechanism in modern programming languages to represent errors and
signal unexpected behavior in general; they are the standard error management technique in
any modern object-oriented programming language. When they are left unmanaged, and thus
they remain uncaught, exceptions ultimately result in the interruption of the executed program.
Normally, an error message gets printed together with a stack trace, which represents the status
of the dynamic call stack when the uncaught exception was thrown. Essentially, it represents a
summary of the path that the program followed through the code, showing the entities that were
involved before the failure. We collected large volumes of data from development sessions of
users of PHARO. In Section 4.3 we detail the approach we used to collect the stack trace data in
the PHARO system.

Anatomy of a Stack Trace

In PHARO, a stack trace is a list of pairs Class>>selector, where Class is the name of the class
containing the method, and selector is the name of the method invoked. Figure 4.1 shows a
concrete example of a stack trace that we collected with our tool.

PluggableButtonMorph(Morph)>>handleKeyDown:
KeyboardEvent>>sentTo:
PluggableButtonMorph(Morph)>>handleEvent:
PluggableButtonMorph(Morph)>>handleFocusEvent:
[ 
ActiveHand := self.
ActiveEvent := anEvent.
result := focusHolder handleFocusEvent: (anEvent 
transformedBy: (focusHolder transformedFrom: self)) ] in 
HandMorph>>sendFocusEvent:to:clear:
BlockClosure>>on:do:
WorldMorph(PasteUpMorph)>>becomeActiveDuring:
HandMorph>>sendFocusEvent:to:clear:
HandMorph>>sendEvent:focus:clear:
HandMorph>>sendKeyboardEvent:
HandMorph>>handleEvent:
HandMorph>>processEvents
[ :h | 
ActiveHand := h.
h processEvents.
ActiveHand := nil ] in WorldState>>doOneCycleNowFor:
Array(SequenceableCollection)>>do:
WorldState>>handsDo:
WorldState>>doOneCycleNowFor:
WorldState>>doOneCycleFor:
WorldMorph>>doOneCycle
[ 
World doOneCycle.
Processor yield.
false ] in MorphicUIManager>>spawnNewProcess
[ 
self value.
Processor terminateActive ] in BlockClosure>>newProcess

Figure 4.1. Example of a stack trace collected from a runtime exception. The most recent call is at the
top, the oldest call is at the bottom. The snippets of code inside blocks are highlighted in blue.

As we can see from the listing, the stack trace occasionally contains small snippets of code
included in blocks (between square brackets, highlighted in blue). This happens when a method
executes a block. Since in Smalltalk a block is equivalent to a closure, it represents a pluggable
behavior that can change the flow of the program and, as such, it is reported into the stack trace.
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Some class names are complemented with the name of a superclass between parenthesis.
This happens when the called method is not defined in the class itself, but it has been inherited
from the specified superclass. This notation maintains the link between the class involved in the
exception and its superclass: It is important to keep track of this information, since the cause
of an error can be rooted in the superclass chain and suggest a possible defect in the original
method, as well as being a consequence of the interaction with the code of the subclass.

Stack traces and dynamic typing

An interesting property of PHARO comes from its dynamic nature: the whole system is polymorphic,
and polymorphism is obtained through the so-called duck typing [CRJ12]: every object can be
used in place of other objects, as long as it is able to respond to the same messages. This entails
that—as in other dynamic programming languages—there is no static type system and, as such, no
static type checking: every type error happens at runtime, resulting in a Message Not Understood
kind of exception. This peculiarity is important when considering the nature of exceptions in
PHARO, because the vast majority of the exceptions is caused in this context: In our dataset an
exception is thrown as a result of a message not understood in more than 72% of the cases.
Among those cases, 68% are generated from a message sent to UndefinedObject. These are the
equivalent of a NullPointerException in Java.

Figure 4.2. Distribution of the stack traces on the Pharo system using a city like visualization, where
each building is a class. Pharo is composed of 14,045 classes distributed among 557 packages. We
highlight the system with data from 7,532 stack traces that we collected. The height and the color of
each building is determined by the number of traces the class appears in, while classes that are not
involved in an exception are collapsed and depicted in gray. The gray squares enclosing the buildings
represent the package containing the classes.
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4.2.1 Interpreting Stacktraces

The amount of information represented by type errors is ambivalent: On the one hand, it may be
an effect of trivial errors from the user, such as typos, and may represent noise among the useful
exceptions. On the other hand, it contains a large amount of usage knowledge: being able to
discriminate the actual failures from the occasional use errors can aid the early identification of
defects and speed up debugging. Also, what at first may look as a “false positive”, can still be
of great help in understanding how users and developers operate the system. A recurrent and
consistent misuse of a method of an API may represent a flaw in the design of the public interface
of a library. The maintainer of the library can then determine how to refactor the interface to
improve the documentation. Moreover, using further data collected after the changes, she would
also be able to measure the impact of her intervention on the workflow of the developers.

Another usage example can employ data showing a frequent pattern inside core classes of the
system to identify the nodes in the system that manage the largest part of the computation. By
identifying these spots, a developer could be able to prioritize her development activity and to
perform targeted optimization.

So far we have considered the horizontal dimension of stack traces, that is, we considered the
information of a group of traces based on their occurrence. However, an interesting property that
we should also consider is represented by the vertical dimension of a stack trace. Since the order
of the elements inside the trace is determined by the call sequence, the depth of a class can give
us a hint of the role of the class in the computation: classes near the top of the trace provide an
overview of the context where the exception originated, and can therefore be used to provide
immediate feedback on the nature of the error and help debugging. Instead, classes towards the
mid part and the bottom of the trace are more related to the mechanics of the system and could
be usefully aggregated to identify anomalies in the core parts of the system.

Figure 4.2 shows the impact that runtime exceptions have on the PHARO system, adopting a
city visualization [WLR11]. We aggregated the stack traces in one set of stack calls and counted
the number of times a class would appear in a stack trace. Each class is depicted as a building,
where the height and the color represent how often the class is involved in an exception: the more
the class appears in a stack trace, the more the color tends to red and the higher the building.
Classes that are not touched by any stack trace are depicted in gray and collapsed. From this
figure we can see how the number of classes involved in exceptions is much lower than the total
number of classes in the system, therefore suggesting some hot spots in the system that could be
investigated for further development activities.

4.2.2 A Practical Use Case

To be able to deal with a potentially large volume of information, we need an effective approach
to classify the stack traces. In Section 4.3 we present an approach based on clustering stack traces
by similarity, and then stratifying horizontally the clusters using the number of members in each
cluster to represent the frequency of the similar exceptions.

The most immediate advantage of using clustered stack traces is to leverage them for bug
fixing. We developed an approach to analyze the contents of a stack trace and use the mined
information to retrieve bug reports from the PHARO bug tracker that discuss the classes and
methods in the trace. For example, by retrieving the reports related to the trace in Figure 4.1,
which involves key events, we can find the bug report #12973, that discusses an issue related to
keyboard shortcuts. By further reading the report, we can learn about the nature of the issue, and
by checking the last events we can learn about the current status of the defect. In this case, we
can see that the issue has already been resolved, a patch has been committed and is waiting to be
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integrated. Thus, we can ignore the problem, knowing that it will be solved soon. Moreover, by
checking future stack traces, we are able to determine if the problem has been completely solved
or if it may appear again in some particular, missed corner cases.

Overall, by being able to access bug reports related to an exception while she is experiencing
it, a developer can get an overview of a problem sooner and cut the overhead time spent searching
for relevant information, thus supporting a more efficient debugging process. In the next section
we show how to match bug reports and stack traces.

4.3 CrowdStacking Traces

Stack traces are a frequent and recurrent side product of the daily workflow of developers. Such
data represent a significant amount of information that is usually not collected and thus lost.
To benefit from this data we built SHORELINE REPORTER, a tool to intercept exceptions, the
corresponding generated stack traces, collect the resulting data and submit it to a central server.

4.3.1 Data Collection

SHORELINE REPORTER is a plugin designed and built to integrate seamlessly into the PHARO

development environment. We wanted to collect unbiased and uniform data, so we paid particular
attention in building a tool that could be unobtrusive and that required minimal interaction with
the user. For this purpose, SHORELINE REPORTER is highly configurable through a dedicated
settings menu, and can work in two different main modes: an interactive mode, and a shadow
mode.

Interactive Mode

It is designed to allow the developer to keep full control of her data and decide which are the
traces to submit and which ones to discard. Figure 4.3 shows the main elements of the interactive
user interface.

SHORELINE REPORTER activates when the user runs code that triggers an exception A©. The
PHARO IDE generally pops up a pre-debug window B©, that illustrates a preview of the exception
and the options that she can undertake. Here SHORELINE REPORTER shows up, proposing a Report
button that allows the user to send the trace to the ShoreLine server. If she chooses to do so, she
is presented with a window C© that allows her to review the data that is being submitted to verify
that it does not leak undesired information. Once the user presses the Send button, the reporter
serializes the stack trace and submits it.

Shadow Mode

By acting on the system configuration, the user can reduce the level of interaction with the tool
at the point of making it become completely transparent: She can decide to submit every stack
trace without confirmation and also disable the intermediate check for the data she is sending. In
short, SHORELINE REPORTER can become completely silent and gather all the stack traces from
each exception. This is particularly important to avoid continuous prompts to the user asking for
a confirmation and allow SHORELINE REPORTER to gather a significant number of stack traces
without breaking the workflow of the developer.
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A

B

C

Figure 4.3. The interactive interface of ShoreLine Reporter

4.3.2 Data Representation

In PHARO, everything is modeled as an object. As such, a stack trace is a complex object containing
a reference to the debugger, the full context of the exception and the sequence of method calls that
constitutes the trace. However, to value privacy and to avoid our tool from being intrusive, we
decided to serialize the whole stack trace as a list of strings, each one containing just the signature
of methods, formatted as ClassName>>methodSelector. Thus, we discard all the elements that
contain private data, such as the contents of instance variables. Encoding a stack trace using
strings also guarantees compatibility and portability of the collected data, even when imported
from different versions of PHARO.

Besides collecting the stack traces, we also added to the report additional metadata to allow a
better categorization of the error. We collect the name of the author, which is the tag she uses
to sign her commits, the date of the exception and the version of the PHARO build for which the
exception happened. The version of the build can be useful to analyze the evolution of the system
while it is developed. The PHARO development cycle is structured in two main branches: a stable
version and a development version. In the PHARO community, the development version is actively
developed and constantly improved by a large number of users and developers, and exception
data from developed software can provide insights about the evolution of the system over time,
as well as help spotting defects as soon as they arise, ultimately reducing the time required to fix
a new defect after it is introduced.

4.3.3 Analysis on the Collected Data

We collected stack traces during a time period of five months, from June to November 2014.
Table 4.1 shows a summary of the data we collected during that time span.
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Table 4.1. Summary of the stack traces collected from June to November 2014

# of stack traces 7,532
# of lines in all stack traces 252,668
# of developers 8
average lines of a stack trace 34
size of the shortest stack trace 1
size of the longest stack trace 314

We visualized the data to highlight the parts of the PHARO system that were involved in the
collected exceptions: Figure 4.4 shows a city visualization of the stack trace data mapped on the
whole PHARO system. Using the same convention used in Figure 4.2, each building represents
a class and each square enclosing a building is a package. Each building is composed of blocks,
each one representing a method. The color of each method is determined by the number of times
a method appears in a stack trace: it tends to red when the number is higher and to blue when the
number is lower. Methods, classes and packages that do not appear in a stack trace are collapsed
and depicted in gray.

Figure 4.4. Distribution of the stack traces on the methods of Pharo using a city like visualization, where
each building is a class composed by blocks representing methods. All the classes contain 112,558
methods, the color of each building is determined by the number of traces the class appears in, while the
packages, classes and methods that are not involved in an exception are collapsed and depicted in gray.

The figure suggests that only a small part of the system is actually involved in the collected
exceptions, and the vast majority of methods and classes is not impacted by them. By knowing
these methods that work as entry points to the classes, a developer can view the impact that
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Table 4.2. The 10 most called methods in the collected stack traces.

Class>>Method Occurrences
BlockClosure>>on:do: 9,265
UndefinedObject>>doesNotUnderstand: 8,549
BlockClosure>>cull:cull: 6,268
Message>>sentTo: 4,980
PragmaMenuBuilder>>collectRegistrations 4,776
WorldState»doOneCycleNowFor: 4,714
BlockClosure»on:fork: 4,554
Array»do: 4,497
BlockClosure»ensure: 4,495
BlockClosure»cull: 3,642

each class and method have in case of failures: This information can be useful in having a first
prioritization to decide which methods she has to inspect first to search for a bug.

Table 4.2 shows a summary of the most active methods in all the stack traces. As expected,
the most recurrent exceptions are related to some core elements of the language: BlockClosure is
a core element used when passing code as argument, while UndefinedObject»doesNotUnderstand:
and Message»sentTo: are part of the message sending infrastructure that is the foundation of
Smalltalk. Despite being expected, the fact that the most common exceptions involve the dynamic
nature of the language shows how the freedom provided by the absence of static type checking
comes with the price of incurring in runtime exceptions even for experienced programmers.

Once verified that the most recurring exceptions are caused by common usage patterns of
the language, we can consider these elements as outliers for the specific purpose of this work:
The information they carry can still be useful in identifying other issues like API usage problems,
but it is likely negligible to be connected to bug reports. Moreover, methods that appear in very
few stack traces are also outliers, since there is an intrinsic lack of confidence that they can be
significant to represent any pattern in the system.

4.3.4 Extracting Information

We saw that many stack traces are channelled mainly through few crucial points in the system.
To inspect whether it was possible to group them, we applied a clustering approach to detect the
stack traces that could be generated by similar errors. Clustering stack traces can give us the
advantage of reducing the number of elements that we have to inspect to determine whether a
given error is caused by a defect, by bad usage or simply by a behavior of the developer (e.g., in
the case of Test Driven Development). Inspired by a technique used in information retrieval, we
mapped our stack traces to a vector space model [SWY75]. A vector space model is a data structure
to index documents and perform efficient comparisons between each document. In information
retrieval it is built by splitting a document in a sequence of terms, and turning the document in a
vector counting the number of occurrences of each word in the document. We build our vector
space model by building a vector for each stack trace: we use the pair ClassName>>MethodName
to identify the features (the terms) of the vector. We collected all the features in a dictionary and
used it to build each vector, where the components of the vector contain the number of times that
a method invocation appears in the stack trace.
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For example, consider the two stack traces containing the method calls:

Trace 1
UndefinedObject>>DoIt
BlockClosure>>valueAfterWaiting:
BlockClosure>>newProcess

Trace 2
TabManager>>setTabContentFrom:
Tab>>retrieveMorph:
BlockClosure>>newProcess

We collect all the terms and build a dictionary composed of the features:

Dictionary
BlockClosure>>newProcess
BlockClosure>>valueAfterWaiting:
Tab>>retrieveMorph:
TabManager>>setTabContentFrom:
UndefinedObject>>DoIt

Using the dictionary we can then build the vectors for the two stack traces:

Trace 1 〈1,1, 0,0, 1〉
Trace 2 〈1,0, 1,1, 0〉

Once we have our vector space model, we can define the distance between each stack trace.
For this, we need to define a similarity measure, that indicates how two stack traces are different
according to our metrics. Having a vector space model allows us to calculate distances by means of
the cosine similarity, which for two vectors can be calculated from the definition of the Euclidean
dot product, that is:

cosθ =
A · B
‖A‖‖B‖

In the case of documents, where the vectors have all positive components, the similarity ranges
from 0 to 1. In the previous example, the distance for the two vectors representing Trace 1 and
Trace 2 is 0.58. Using the cosine similarity we calculated the first nearest neighbor for each stack
trace. With this data we were able to construct a visualization to understand the topology of the
stack traces in our vector space model.

Figure 4.5 shows a force graph where each dot is a stack trace and every edge represents the
connection between each trace and its nearest neighbor.

The figure shows evidence that there are groups of related stack traces, gathered around a
pivotal point. In particular, few large groups gather the majority of stack traces, and the remaining
form smaller groups. To represent each cluster, we chose the medoids [KR87]. A medoid is the
element of the dataset that is nearest to the centroid of the cluster. The advantage of using
medoids instead of centroids is that they are an element of the dataset, and thus they represent a
stack trace that actually occurred. Moreover, centroids tend to be much more sparse that medoids,
thus being more suitable for efficient computation of operations between vectors. We considered
the medoids as archetypes, that represent the summary of each cluster. The number of incoming
edges represents the measure of the popularity of the archetype and, as such, of the whole group.

From Table 4.3 we can see that the largest groups of stack traces are generated by exceptions
related to the dynamic nature of the language, and as such probably caused by the style of
programming of the developer. We still believe that this information can provide deep knowledge
over the status of the system, but we think that their analysis represents a different set of problems
that could be tackled with statistical analysis of big volume of stack traces during the evolution
of the system. Therefore, at this stage we removed the most popular groups, and focused our
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Figure 4.5. Force graph representing the stack traces and their neighbors. Each dot is a trace, each
edge connects a stack trace with its nearest neighbor.

inspection on the traces positioned in the central part of the ranking. We used these samples to
determine a possible correlation with existing defects.

We mined the PHARO bug tracker to collect the bug reports produced during the development
of the platform. To focus our research on actual and relevant problems, but without risk of losing
valid examples, we considered the reports opened between January and November 2014.

We extracted 1,910 bug reports, with 17,747 different events, including comments, patches
and changes of status. During this period, 1,591 reports have been closed or are waiting for
integration, and 319 are still active.

We then extracted from each archetype of stack trace a list of methods invocation. We used
this list to search through the data extracted from the bug tracker using a full text search of the
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Table 4.3. Summary of the most popular stack traces, with the popularity metrics.

Archetype (first line) Popularity
UndefinedObject»doesNotUnderstand: 1,585
UndefinedObject»doesNotUnderstand: 647
UndefinedObject»DoIt 619
UndefinedObject»doesNotUnderstand: 428
UndefinedObject»doesNotUnderstand: 427
RGFactory»doesNotUnderstand: 363
BlockClosure»doesNotUnderstand: 127
UndefinedObject»doesNotUnderstand: 111
SystemDictionary»errorKeyNotFound: 71
MouseWheelEvent»doesNotUnderstand: 69
UndefinedObject»doesNotUnderstand: 57
NBGLFrameBuffer»error: 41
RTDraggable»initializeElement: 29
UndefinedObject»DoIt 29
UndefinedObject»DoIt 28

pair ClassName>>MethodName into the contents of each comment that compose a bug report.
After this operation, we obtained a list of the bug reports that are associated to each method
invocation. Not every bug report can have the same relation with the stack trace, therefore
we applied a heuristic approach to define a ranking to sort the reports in order of likelihood of
relevance.

We discussed earlier how the lines of a stack trace that are closer to the top are more likely
to be related to the current error, while the lines closer to the bottom are more likely to touch
the core parts of the system and thus more generic. We leveraged this principle to give a higher
ranking to the reports retrieved using lines closer to the top of the stack trace and lower ranking to
those retrieved by lines close to the bottom. In the scenario of a context-aware tool that suggests
interesting reports to developers while they encounter exceptions, we observed that the interesting
bug reports are likely to be in the first three positions. After these, the link between a stack trace
and the information in a bug report quickly becomes too general and likely related to internal
mechanics of the system.

4.4 Preliminary Results

We obtained a list of bug reports connected to each archetype stack trace, that we called topic. We
performed a qualitative analysis on the topics to determine if the retrieved reports could actually
provide valuable information about the nature of the exception. We removed from the list the
topics triggered by a doesNotUnderstand: and UndefinedObject, because they are mostly generic
and less likely to contain specific bug reports in the tracker. After the filtering, we reduced the
list to 629 elements. We then eliminated the elements with the lowest popularity, to exclude
the groups that had not enough components to be significant. We set the threshold to be the
0.5% of the maximum popularity, which gave us a list of 23 elements, with a significantly diverse
popularity ranging from 1,585 to 9.

We manually inspected the bug reports related to each topic, to determine if they contained
information relevant to original exception that would therefore be useful in supporting the
development and debugging process. Of the 23 topics, 15 of them had no bug reports connected
in the top of the trace and had only reports in the bottom, related to generic mechanics of the
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system, unrelated to the specific exception.
The fact that some stack traces had no connected bug reports could have different meaning,

and may carry interesting information that may be used in the debugging activity:

1. It may represent an exception that occurs in code that is specific to the project of a developer
and therefore not discussed in the system bug tracker;

2. It may be due to a misuse of an API that leads to type errors;

3. It may be caused by a new defect, not yet reported.

Each of the three cases can represent an interesting scenario that can be addressed with a
different practical action.

In case (1) the information about runtime error of a developer’s code can be of interest for
the developer itself and, if collected for further usage during debugging, it can be used to signal
possible defects in the code and prioritize the classes and methods to inspect.

Case (2) can take place when many developers use the same API in an incorrect way. Such a
case may suggest an area of code or a class interface that requires refactoring.

Case (3) is the most interesting for the developers of the system: It means that the system
is raising a lot of exceptions in an area of code that is not known yet for having unexpected
behaviors. This could—by definition—represent a new defect, not yet known to the community, or
not precisely defined. In this case, grouping the stack traces and highlighting them as a problem
to investigate, may provide a valuable support for the community, for example by proposing to
automatically open a new bug report containing the collected data to start the debugging activity
when the popularity of the group reaches a critical mass, and help to severely cut down the latency
between the introduction of a defect and its resolution.

For the remaining 8 stack traces we found related bug reports in the bug tracker. After
assigning every report a priority depending on the distance of the top of the stack, we inspected
them in order of priority. We observed that, given the structure of the stack trace, only the bug
reports in the first two or three lines of the trace are relevant to define the context of the precise
problem: the trace of calls then quickly dives into the system core classes becoming thus too
generic to pertain to specific scenarios. We found the information of the reports to be relevant to
the debugging activity, or to get information on the status of the malfunction: Either the identified
reports were addressing the specific issue raised by the stack trace, or were not depicting the
same specific context of the exception, but still discussing a related problem.

We now present two example bug reports and show how they are relevant in understanding
an exception during development.
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Figure 4.6. The bug report 12973, related to the stack trace depicted in Figure 4.1. We can see the
metadata (A), the initial description that opened the bug report (B), the discussion that followed (C), the
submission of a slice and its validation (D), and the bug resolution (E).



4.5 Discussion 37

Example 1

In Section 4.2 we already presented the stack trace shown in Figure 4.1. The example is particularly
interesting because it shows a practical use case for a user or a developer that encounters the
exception while she is writing code. Figure 4.6 shows the bug report retrieved for this stack
trace. As the report shows, there is a known error caused by a defect in the system, and the
community is already working to address it. In particular, since the stack trace that we considered
was generated on date 7/7/2014, the user encountered the problem before its resolution and, at
the time, the report was stuck in a low priority status. This information could have been exploited
by a developer to report more precise information or to ask for an increase of the priority for a
quicker defect resolution, while a user encountering the exception could know that there is work
in progress, or if there is an estimated time to have an updated and fixed version.

By continuing to read the report, we can see that the problem has been further investigated,
and that a slice (a piece of submitted code, that in PHARO works in a similar way of a patch) has
been proposed and is being tested on the continuous integration server of the project. Finally we
can see that the report was closed, the fix was accepted and it is waiting to be integrated in a
later version.

Other than simply useful, this information can improve awareness among developers. For ex-
ample, by depicting a lively and active community, it may disseminate and reward the contributions
targeted at improving the general quality of the whole system.

Example 2

Another example is represented by the stack trace starting with:

SmalllintManifestChecker>>runRules:onPackage:withoutTestCase:
RBPackageEnvironment>>classesDo:
Set>>do:
RBPackageEnvironment>>classesDo:
Set>>do:
RBPackageEnvironment>>classesDo:
SmalllintManifestChecker>>runRules:onPackage:withoutTestCase:
CriticBrowser>>reapplyRule:

The lines containing CriticBrowser>>reapplyRule: are related to bug report 14230. On closer
inspection we can see that the bug report contains only three comments, but the last one points
to report 110473, where a long discussion (40 comments) is ongoing regarding the relation of
the method in the stack trace and the application of rules for the CriticBrowser. At the end of the
discussion the report gets closed, but as a result of the fix, another bug report is issued to address
further weird behavior of the CodeCriticBrowser. To add even more correlation to the trace and
the report, we noticed that the author of the stack trace is active in the discussion of the report,
and actively contributed to its resolution. This reinforces our belief that providing a bug report
context when a user encounters an exception can provide great value in debugging software.

4.5 Discussion

We discussed our approach and its preliminary results in investigating the stack trace data that we
collected. We now take a critical stance towards our approach, discussing the data, the approach
itself and the actual impact that it can have on a development community.
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4.5.1 The Data

During this experiment we collected novel data generated from actual daily development activity.
The biggest threat that we see in our work is given by the nature of our dataset. Despite having a
considerable amount of stack traces, the fact that they were produced by just eight developers
may introduce hidden patterns caused by the specific style of programming of each developer,
or by the codebase the developers were working on during the experiment. This could lead to a
latent bias in our results, that may prove to be too tailored for our users. We are expanding the
number of developers using SHORELINE REPORTER, and we will therefore be able to verify the
generality and scalability of our approach.

Despite this threat, we believe that the data we collected contains valuable and unexploited
information, that can lead to the discovery of hidden patterns in developers’ activity. Analyzing
this information can produce knowledge that can be helpful in supporting the developers during
the bug fixing activities, and can support the work of the community.

4.5.2 The Approach

We designed our approach to find immediate use of the stack traces, and confirm that the data
we collected contained information that was both significant and interpretable. However, there
are many improvements that can be done to refine the way that we process stack traces and link
them with bug reports.

One can argue that the use of clustering is not really necessary in finding a correlation between
a stack trace and a report, and that a simple direct search of the elements of a stack trace is
sufficient to find the relevant matches. However, we believe that the use of clustering carries
some advantages that can be valuable in building a tool to provide feedback on actual data.

Generalization

First of all, the use of clustering allows to identify, group and “average” similar stack traces, having
the effect of making the whole process more robust and noise resistant by considering only the
most popular stack trace in the group. In this way, even changes in the system that would generate
different, but still similar stack traces would have no immediate negative impact in the search
result.

Scalability

Even more important, the use of clustering brings the crucial advantage of drastically reducing
the size of the problem. While this is not an impossible problem to overcome with the size of
the dataset that we considered, in a real world scenario with thousands of developer constantly
providing stack traces from errors, the volume of the data would quickly become impossible to
process. As such, building clusters that can be used as index and provide a quick lookup for the
existing categories of stack traces is a necessary step in building a tool that provides real-time
feedback to the user in an acceptable time.

Metrics

The final advantage of building clusters is that it eases further analysis on the dataset. Clustering
provides an immediate measure of the popularity of the cluster, it can help in profiling the types of
errors on the system during time and ease further investigation on specific groups of stack traces,
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allowing deeper inspection of other unexpected behaviors on the system, such as the distribution
of Message Not Understood or the distribution of the invoked classes and methods. To develop
this approach, we used a very simple, yet effective clustering method based on the connected
components of the graph formed by the nearest neighbor. Despite its simplicity, this method
already provided useful results in identifying the main groups of stack traces in the dataset, as
shown in Figure 4.5. The approach can be further refined with more specific algorithms, such as
k-means [M+67] or k-medoids [KR87, PJ09], which could provide more precise results. However,
the cost for such improvement could be represented by a drop of performance, since these
algorithms are computationally expensive. Therefore, the nearest-neighbor clustering represents
a good tradeoff between results and efficiency. Also, the problem of a clustering algorithm such
as k-means, is that it requires to determine a priori the number of clusters to separate our dataset,
but in the context of stack traces this information is indeed impossible from the beginning, and it
can invalidate the notion of similarity, degrading the approach. Instead, our approach allows a to
define a partition without previous knowledge, and that can be easily an quickly adapted as the
number of instances increases, and different classes of exceptions and stack traces are discovered.

4.5.3 Applicability of the Method

We think that the ability to immediately link stack traces to bug reports can be effectively exploited
to provide on-line help to a developer. We foresee additional benefits that require additional
investigation and tool support. Our approach provides quick evidence of the problems in a system
and helps finding the immediate context of the error: Therefore, it can be exploited to speed the
debugging process, or it can provide information on the current status of a bug in the system.
Moreover, since the information presented to the developer depends on the context she is working
on, it may also work as additional documentation, and support the understanding of some parts
of the code which are poorly documented.

Besides the pragmatic aspects of assisting developers, we think that having a way to access live
information on the status of the system may result in a more integrated and open development
process. A normal user can be reassured by knowing that the core development team is already
dealing with a problem, while other developers may be encouraged to step in and help the
resolution of the defect, either by providing additional information or by actually start working
on the defect. In an open source project, this set of conditions could bolster the interactions
among the community members, focus the attention to current problems and reinforce the whole
community.

4.5.4 Next Steps

We see this work as first step towards a new way of dealing with information from error contexts.
Current debugging workflows include a number of time consuming activities that could be
automated, to reduce the time spent on fixing problems, speed up the development, and foster
the improvement of the software project. The approach that we presented in this chapter is only
one of the many possible ways that we see possible to adopt in employing this data: leveraging
this information can lead to a number of tools that can deeply impact the way communities and
developers deal with debugging.

• Context aware debugging: as we suggested during the chapter, we want to extend SHORELINE

REPORTER to propose the possible bug reports to the developer whenever he triggers an
exception, to provide a quicker access to the information needed to deal with the problem.
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• Bug triaging: Having access to stack trace information can help identifying the types of
defects that caused an exception, thus easing the process of triaging the bug [AHM06]. Also,
we can use the data submitted by each user to create and update profiles of the developers
and determine their area of expertise in a quick and reliable way.

There still is a significant amount of data that we did not consider during our analysis. The
information regarding the dynamic nature of the language can still be exploited to get insights on
the internals of the system.

• System core exceptions: We mainly focused on the top part of the trace, because it contains
the part of information closer to the user. The bottom of the stack, which involves the
deeper parts of the system, can be used to find bugs hidden in the core classes of the system.

• Stack trace patterns: We saw from Figure 4.2 and Figure 4.4 that many stack traces actually
touch only a small part of the system. This is an interesting behavior that we want to
investigate further, by looking for patterns in the call stack and detect how to deal with “hot
areas” of the system.

• Optimization: Knowing the main areas of the system that are executed during an exception
can also show the frequency of execution during the daily activity of the users. This
information can be combined with code profiling techniques to determine where and how
to perform optimizations on the existing code, and improve execution performances.

We envision a future where debugging, but also development activities are supported by
means of context-aware tools that use automatically extracted information produced by a whole
development community, to aid the tasks of developers and support debugging, with the support
of the whole community.

4.6 Outline

Fixing defects is an expensive, tedious and time consuming activity: It costs money in industry
and it consumes contributors’ time—and energy—in open source communities. The debugging
process requires to deeply understand the system, and to gather information to shed light on the
nature of the defect. As a result, the debugging process has the side effect of producing a lot of
information describing the context of the error. This information is however usually discarded
after solving the problem.

We presented SHORELINE REPORTER, a tool that seamlessly integrates into the PHARO system
to collect stack traces produced during the arise of runtime executions in the system. The goal of
SHORELINE REPORTER is to collect and store information, and reuse it to extract deeper knowledge
of the underlying code, assist and boost the whole debugging process. Given the volume of
the data produced by the collection approach, it is crucial to have a way to browse the stored
information in an efficient and useful way, that allows fast access to the obtained knowledge. We
presented a study on the data we collected, proposing an approach to group the stack traces into
clusters and use those clusters to retrieve useful information for the developers. We generated
the clusters by stack traces similarity, and selected the medoid of each group to represent the
archetype of the collection: Each archetype represents a different type of error that happens in
the system. We calculated the popularity of each group, that is determined by the number of
stack traces that it contains, and used this metric to rank the clusters.
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We showed a possible application to exploit the data contained in stack traces by mining the
PHARO bug tracker to retrieve the bug reports associated with each archetype of stack trace. We
found a connection with bug reports related to the exception and we showed that the information
can be used to aid the debugging activity. In the cases where the clusters do not have a clear
connection with existing bug reports, the system should highlight the anomaly and propose to
open a bug report displaying the information gathered until then.

We have seen how the automatic collection of stack trace generated during a failure can
complement the information contained in a bug report with knowledge about the system, to
support a number of different debugging and development tasks. However, we are still collecting
data that we flatten into a textual format. While the automation process helps increasing the
reliability of the information that we provide to developers, we are still forced to turn to text
mining techniques to extract the knowledge from the raw data. In the next chapter we further
push our approach, and generalize it to enable the collection of arbitrary, domain specific data.
By collecting data that has a shape, instead of plaintext, we can finally promote a bug report to
an independent entity with its own structure and language.
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Reified Collection of Runtime Errors

Software development involves iterations of writing, running, testing, and debugging code. When
fixing a defect, developers construct a mental model of the system that explains the defect and
eventually identify its cause. However, filtering complete, coherent, and reliable information
from a running system is not an easy task: Using a simple approach, like generic logging, is often
ineffective because it deconstructs and flattens the state into textual data, thus requiring ad-hoc
understanding and processing. On the other hand, collecting structured information in form of
objects to observe and understand a precise property of the system requires specialized ad-hoc
code, decoupled from the system’s domain, and is usually not reusable.

In Chapter 4 we saw that collecting stack traces can teach us stories about a system that
we hardly would have noted otherwise. We were, however, still using a textual representation
that limited the descriptive power of our model. In this chapter we generalize the approach by
presenting a domain-specific data collection framework that enables the developers to extract
selected information about a system, and store them as entities. The developer is able to take
a snapshot of all the information deemed relevant about a piece of code by writing few lines
of code, thus enabling structured and effective logging and reporting of errors. We detail our
framework in the context of a bug reporting platform, and illustrate how such an approach can
be used to create in-depth and reliable domain-specific bug reports.

Structure of the Chapter

Section 5.2 describes the approach from a conceptual point of view together with its requirements,
while Section 5.3 illustrates the architecture and implementation of the proposed approach. In
Section 5.4 we assess the technique through three stories that illustrate how our approach can
support development and debugging. Section 5.5 discusses the generalizability of our approach
how it could be extended. Finally, Section 5.6 concludes the chapter and outlines directions for
future work.
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5.1 The Tools We Use To Develop

Computer systems have become pervasive in many human activities. The high penetration of
machine-controlled devices, that have to deal with an increasing number of different tasks, led
to an increase in the complexity of the involved software. This phenomenon turned modern
software development into a multifaceted activity, where a one-developer team is no longer a
viable option: Building software is above all a collaboration and communication activity. Writing
code is only a small part of the process: Several phases such as design, testing, and maintenance,
play a fundamental role in the success of a project. In fact, maintenance often represents a
significative percentage of a developer’s time: Researchers showed that the effort put in reading
and understanding code outweighs the effort needed to write it [Cor89, FH82, ZSG79, MML15].
In such a scenario, one would imagine that the effort for providing means to aid developers
would focus on refined tools to navigate, understand, and inspect the code. While this is partly
true, many of the modern editors and IDEs put the biggest accent on how developers write code,
leaving program comprehension as a secondary task.

The Curse of Text

It is easy to see why understanding software is hard: Reading code requires reading text that
contains structured information in a language that does not follow the same logic of natural
language [SFM99]. To understand a fragment of code, a developer has to mentally parse a source
file, identify and extract the necessary information, and build a mental model of the (intended)
behavior of the software. The same process happens when printing log messages to expose the
state of the system: Log messages embody fragments of information that the developer has to fit
into her mental model, and use it to reverse engineer the source of an error by trial and error.

To ease this process, both researchers and industry built a plethora of tools like debuggers and
code inspectors, that allow developers to run a program in a controlled environment, and to check
the internal status of its variables. Other tools, like code browsers, support fast linking between
the entities in the code, while loggers allow to print and store useful runtime information. Finally,
test suites allow to define a set of expected behaviors, and to constantly check if any of these rules
is satisfied.

All these tools however do not change the fundamental way we interact with the code:
Eventually, the developer needs to read the code, and therefore undergo the process of building
its mental model. This is because all these tools rely on the same, strong, underlying assumption:
Source code is text, therefore the tools we are using to interact with it are shaped around text
editing tools. This assumption reflects the way we use to store our programs, i.e., plain-text files
containing the declaration of our models.

We propose a novel approach for runtime data collection: We advocate the use of objects to
store information about an exception, in order to preserve the multidimensional nature of the
information and leverage the implicit properties —like the interactions among entities— that
can be obtained by the data structure. By describing errors as first-class citizens of a system,
and using a storage format that does not flatten the information, we can reify logs and leverage
their expressive power to support a number of development activities, such as reproducibility
of the error and automated generation of bug reports. A structured data source allows to build
specialized tools to browse the data in an incremental fashion and discover its implicit structure.
Collecting structured data also enables the use of automated analysis, mitigating the need of
a data cleaning phase usually necessary when dealing with unstructured or semi-structured
data [BDSDL12]. It can also be stored and sent for debugging purposes, thus creating bug reports
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with a much higher level of detail and reliability than simple plain text.

5.2 A Domain-Specific Reporting Engine

In this section we outline our approach for collecting information about runtime errors. We
explain the benefits of collecting this runtime data and show how and why development can
benefit from modeling this information. The final goal is to integrate the resulting framework
into a modern development environment, therefore enabling a smoother access to debugging
information and increase the descriptive power of a bug report, to provide the groundwork for
building interactive tools that present the data in a meaningful context.

5.2.1 Who Needs Models?

The purpose of a programming language is to equip the developers with the means to communicate,
both to a machine and to other people, the intended behavior of a program. Therefore, we can
view a program as the crossroads between the high level intent of the developer and the machine
language that details the steps needed to accomplish it.

Clinging to the idea of a language that feels natural to describe algorithms, developers kept
using the tools used for text editing to also manage source code. The large number of specialized
tools that usually enrich the development experience in a text editor never evolved beyond its
underlying representation, making writing source code mainly a string manipulation process.
Using the widely understood format of plain text has numerous advantages, but it has one major
drawback: It employs a flat format do describe structured data, thus losing track of several
properties that have to be inferred. It is easy, by manipulating text, to observe the state of one or
more entities: It becomes much harder, however, to describe how these entities are connected
and interact. I other words, we can see where the data is but we cannot tell how it flows in our
system. This means that the information carried by the structure of the objects in a system is
lost or hard to observe. To rebuild the complete information that is hidden in the underlying
implicit structure one has to rely to approximated approaches, for example by parsing the text to
extrapolate the entities. Paraphrasing the allegory of the Cave of Plato, we are trying to learn
the behavior of the entities in our system by looking at the shadows they project on the wall,
represented by the textual representations [Plabc].

While the goal of this work is not to criticize how we represent source code, it still helps us to
comprehend how a developer perceives software development, since the very beginning of her
training. Unsurprisingly, if we think about source code in terms of text, the natural consequence is
to treat as text also the product of the execution of such code. As a result, the majority of logging
and bug reporting systems collect messages as lines of text, stored in a text file.

We can improve the way we deal with the information produced by a software system by
employing a different approach, that captures the runtime data preserving its structure (e.g., the
structure of the involved objects at runtime) and enables fine grained analyses. Changing the
representation we use for bug reports means rethinking the underlying model, in particular with
a structure able to capture the connected essence of the entities of a system.

To overcome the difficulties of dealing with plain text to analyze programs, researchers tried
to employ different models to represent source code, like SRCML [MCM02] or JAVAML [Bad00].

In a similar fashion, the Smalltalk programming language proposes a system to store and
access its source code that differs significantly from the usual text file approach. Smalltalk proposes
an approach where the whole system is contained in a single file named image. This file contains
a serialized version of the core system, its libraries, its IDE and tools, the code that the user writes
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inside the system, and the entire execution state composed of the existing objects when the image
is saved. Therefore, the user does not write a program through a normal text editor, but uses the
internal browser of the system to navigate its code, and can use inspectors to examine objects
at any time. Using this approach allows Smalltalk to achieve full liveliness, as the whole system
(both the source code and the runtime) can be manipulated programmatically. Inspired by the
Smalltalk image example, there is no reason that prevents us to apply this approach to runtime
generated data, to increase the capabilities of the development environment.

5.2.2 Design of the Framework

We want to devise an approach for recording the behavior of an executing program in a structured
and customizable way, thus creating a powerful logging system that can talk with objects to extract
specific and structured information.

To extend the behavior of the logging system, the first step is to define a model to describe the
data we want to observe and collect. The goal of this model is to reify debug messages and store
them to obtain a level of detail as near as possible to the original objects they are derived from, and
to preserve all the information that describes the actual running system. We are reproducing the
persistent capabilities of the PHARO image for a smaller subset of entities, without the overhead
of saving and serializing the entire system every time an exception occurs.

Shape of the model

The state of a running system is normally a significantly complex entity, with several possible com-
binations of its variables: Providing a description that is both complete and easily understandable
is not an easy task.

Usually, during a debugging session, the easiest approach to quickly understand an unexpected
behavior is to verify the state of a program by retrieving data about one or more objects at runtime.
Developers usually perform this operation by either printing a log message, or by using an object
inspector.

In both cases there is a fundamental problem: To isolate the error, the developer has to (1)
identify an unexpected behavior, (2) select a set of properties to observe, (3) change the program
to output these properties, and (4) correct the program accordingly. Using this process implies
that every change requires a new run of the system.

While this would not pose any hard consequence in trivial development scenarios, it might
become a problem if the flow of the program is not fully deterministic, like in case of concurrency,
or if it relies on user input. Unfortunately, these cases are also the hardest to identify and correct,
which would therefore require the most support by the debugging tools. For example, in the case
of a multithreaded application, different runs would result in different internal states: An error in
the execution logic, like an unprotected access to a resource, would make an error to appear only
under certain conditions, resulting in what is called a Heisenbug [GT05].

Another issue comes with the necessity of understanding and correcting the problems expe-
rienced by the users of a program. Understanding the condition under which a specific error
occurred, and reproducing it for fixing, is one of the hardest things in the debugging process, that
consumes a considerable amount of time. Since the developers do not have access to the original
environment where the error originally occurred, they have to infer it from the description of the
user, or from the textual logs generated by the system, if any. Users, however, cannot be expected
to have the necessary technical background to effectively report a bug, which leads to a problem
in the reliability of the information that they report to the developers [ZPB+10].
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Our goal is to have an explicit, flexible, and specific out-of-the-box model that allows developers
to observe the state of the system quickly, reliably, and with the lowest effort. The cognitive
cost for building a mental model of a system takes a significant toll on the energy of developers.
This method however brings a constant cost inside the iterative process of understanding-and-
correcting code, as building a mental model is a task that must be performed every time, and
does not scale. As such, we want to remove this cost.

We set the guidelines for designing such a framework for reified data collection as:

1. whenever possible, we collect the original entity that is involved in the event that we are
observing;

2. when collecting the whole entity is not possible, we create and store a simpler representation;

3. we want our framework to be easily extendable and customizable;

4. we should not collect data we are not interested in;

5. we should be careful in handling possibly sensitive data.

The guideline (1) defines the main scaffolding of our approach: We are interested in collecting
information from an entity in the system. Therefore, there is no need to prematurely flatten the
information that the entity conveys: We rather store the whole entity, and delay its serialization,
waiting for future instructions on how to use the information.

There are, however, some cases where the whole entity is not suitable for reporting the
information. This is especially true with entities that might change their status for external causes,
or entities that might expire, for example in the case of database connections, or short lived
sessions in a multiuser system.

In some other cases, we might not want our collection to expose sensitive data, like passwords
or private source code, as detailed in guideline (5). In this case, we apply guideline (2): if it
does not make sense to collect a piece of information, we anticipate the simplification process to
create a safe copy of the original entity, and collect the cleaned version. Of course, this is strictly
connected to the application domain, and it is not possible to generalize to all the possible cases
where we do not want to collect specific data. Guideline (3) specifies that, to be effective, our
framework must allow easy customization of its details.

As an example, consider the case where we want to monitor, from a logging perspective, the
errors that users get while accessing a resource. Usually, we would add a command to write a
text line into a log file, to store the user and the action. The more information we want to extract,
the more text we have to print, with the effect of cluttering the log file. Using the approach we
defined, we can set up a rule that activates when the system generates an error that involves the
user, and store the entity of the user (guideline 1). In this way, we can directly access the actual
entity related to the user, query it about its associated session, and the information about the
action that the user was trying to perform. We can also avoid to collect data that we do not want
to share, like the password (guideline 2).

This allows us to have a conversation with the entities we are dealing with, rather that
collecting some passive text, thus enabling the development and customization of interactive
tools that empower the user with the ability of browsing the entities related to the error, and get
a quicker and more reliable grasp of the status of the system during an error.
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Collectors

We need a strategy to let the user of our framework describe its own custom data collection, to
implement the flexibility required by our approach (guideline 3).

To address this aspect, we define the concept of collectors: Small entities that describe how
and when to observe a part of the system. A collector has three main purposes:

1. define how to collect some data;

2. define when to collect some data;

3. describe itself.

The main purpose of the collector is to define the data of interest: It must describe what to
select and what to discard. For example, going back to the logging example, the system will pass
some context to the collector, that will copy the user entity and remove the sensitive data, like
the password, or mask the username, if the purpose of the collection is to be sent remotely and
published in a bug report.

Defining when to collect the data is the other crucial aspect of the framework. We are defining
an approach that customizes the data need for certain types of data, therefore defining a domain-
specific data collection. Collecting data pertaining to a user is meaningless if we are dealing with
an error generated for example from a string. That is why each collector has to know when to
activate itself: the system passes the context of the error to the collector, which checks its internal
activation rule to decide whether to trigger the collection or not.

Finally, in a scenario where several collectors are involved and activated automatically de-
pending on the entities involved with the error, we need a description to tag the collected data
and present it to the user in an informative manner.

By employing the mechanics of the collectors we can build a data collection framework that is
fully customizable and that collects first-class, reified entities, to enable a domain-specific system
monitoring framework. Such a framework can be employed to replace normal logging messages
with a detailed snapshot of the state of a program, that can be then browsed with interactive tools,
or that can be employed to collect failure data an pack it for remotely reporting an unexpected
behavior. This remote reporting mechanism can be the first step towards a smarter bug reporting
system, that allows a deep inspection of the state of a system, while preserving the privacy of its
users. Being able to define the context of the error is crucial for the success of the whole approach,
as we can only operate on the data we can manipulate.

5.3 Implementing The Framework

We now present the implementation details of the framework for the Smalltalk programming
language, while in Section 5.6 we will also discuss the challenges of generalizing such an approach
to other programming languages.

In implementing our framework, we need to consider a number of aspects pertaining to the
control of the system, first of all the ability to directly catch errors and manipulate its context to
extract the relevant data in a usable state. Accomplishing such a task is strongly dependent on
the programming language of choice with the result that the amount of technical details that can
be considered is humongous, and out of the scope of this work. We implemented and test the
effective feasibility of our approach using PHARO. The fact that the whole system is described
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Figure 5.1. The workflow to collect data using collectors, showing the architecture of ShoreLine

using objects enables us to easily inspect faulty states of the system by interacting through the
Context object, and simplifies the reification process of the interesting entities.

While the use of PHARO enables full flexibility and control over the execution of a program, one
may wonder whether this hinders the applicability of the approach to more general examples. We
believe that this does not affect the possibility to implement an analogous framework for a different
programming language. Section 5.6 contains a deeper discussion about the generalizability of
our approach.

5.3.1 Implementation Details

The abstractions in the PHARO environment concern the whole runtime of the system, allowing to
inspect and manipulate it by querying objects. The main benefit of PHARO is that we can freeze
the execution of a program, and easily access the whole system status at the moment of the
interruption.

The principal element we are interested in is the THISCONTEXT variable. This special variable
stores an instance of CONTEXT, an object that mimics the behavior of an activation record that
contains all the information about the current execution of the program, such as the list of the
variables in the scope, the method that is currently executing, the class that owns the method, the
program counter of the line of code we are executing, and other information useful in describing
the running session.

Implementing Collectors

We designed our framework around the idea of collectors. In Section 5.2.2 we defined a collector
as an entity that knows how and when to collect data, and that provides a description for this
data. By following the object-oriented nature of PHARO we can implement a collector as a class.
While having a class for each collector might seem overkill, that might eventually bloat the system
rather than supporting maintenance, it has the advantage of providing full control to the user
of our framework, granting the flexibility to select the data she wants to observe. The whole
strategy can be encapsulated in a single class, thus decoupling the collector from the source code
it is observing and providing a behavior that can be plugged and un-plugged seamlessly.

We define the class DATACOLLECTOR, that defines the template for implementing a collector. A
user can create a new collector by subclassing this class, and implementing four methods that
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define its behavior:

#tag — the name of the method, used to reference the collected data by means of an automated
approach;

#description — a short description of the data collected by the class, displayed to the user when
presenting the data or when asking for permission to send the data to the issue tracking
system;

#when: — an expression that evaluates the state of the system to decide whether or not the
collector is interested in observing the current context;

#initializeFrom: — the main method that implements the strategy for extracting the data.

Both the #when: and #initializeFrom: method receive an object of type CONTEXT as parameter,
that contains the references to the current execution environment with all the variable in scope
and the invocation stack. While the #when: method determines if the context is interesting and
needs to be collected, it is its responsibility of #initializeFrom: to construct what needs to be
collected, e.g., an object representing an abstraction of the system state.

In Section 5.4 we show three use cases for a collector, with an example implementation that
presents the source code for implementing a strategy.

Triggering the Collection

The collection approach needs an entry point that signals the system that we might want to record
the current context and extract the status of an application. We decided to trigger the collection
in two cases: For the handling of errors, or arbitrarily triggered by the user. The former is invoked
automatically whenever an unhandled exception occurs, while the latter needs to be explicitly
invoked using the SHORELINE public APIs.

Figure 5.1 shows a diagram of the flow of the data from the collection to its usage.
The collectors evaluate whether they should activate, and potentially perform the data collec-

tion. Once the collection is complete, the framework composes a REPORT object and announces its
creation using BEACON,1 an announcement-based (i.e., publish/subscribe) logging framework for
PHARO. BEACON broadcasts messages to the system to inform the interested tools of the presence
of a report.

By collecting complex entities in the form of objects, rather that text, our approach allows
to initiate a conversation with the system and a systematic and progressive exploration of the
errors, rather than just providing a partial report of the exception. This enables us to observe the
properties of the objects and deal with them in a customized way.

5.3.2 Using the Data

Once a report is broadcast, every subscribed tool will receive the data. This behavior is intended
to further improve the customizability of the framework, allowing the developer of a system to
refine their tools to quickly inspect the data collected about their code, as proposed by guideline
(3).

The two applications proposed by default by our approach consist of a local data browser, and
a customized reporter. If a user is interested in browsing the data locally, for example during the

1www.smalltalkhub.com/#!/$\sim$Pharo/Beacon

www.smalltalkhub.com/#!/$\sim $Pharo/Beacon
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development phase of a project, she can inspect the contents of the report objects. Moreover, she
can exploit the tools provided by the PHARO ecosystem, like the Glamour Toolkit [GBC+13] to
create custom visualizations of the data to support the browsing session.

On the other hand, if the user of the system is not the developer of the original code, the system
can serialize the report and send it to the issue tracker with a comment of the user explaining how
she encountered the error. Figure 5.2 shows the interface for submitting a report: to protect the
privacy of the users, as described by guideline (5), a user can read the description of the collected
data and decide whether she wants to send it or to exclude it from the report.

Figure 5.2. The reporting window for ShoreLine, where the user can select the data that she wishes to
report and add a description

In the next section we show how to implement a collector to solve common development
problems.

5.4 The Framework at Work

In this section we show how to employ our framework to support debugging and program
maintenance. We present three scenarios and show how to collect domain-specific information
from different environments. We show how accessing specific information can support developers
in quickly understanding the cause of a defect and the behavior of a piece of code.

In Section 5.4.1 we present an in-depth case study together with a possible implementation
showing how our approach can support debugging errors in applications using the Announcer
framework, a messaging framework that reduces coupling but that might introduce non deter-
ministic behavior; In Section 5.4.2 we outline how to collect data when running a test suite;
Section 5.4.3 presents a brief discussion on how using SHORELINE can benefit debugging third
party libraries in the context of complex entities.

5.4.1 The Announcer Story

The continuous evolution of the requirements of a software system results in a codebase that grows
constantly, both in size and complexity. To tame this problem, developers design software systems
using a modular architecture, where large tasks are split into smaller functionalities, so that
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complex operations can be managed by composition of small entities, with a defined operational
context and limited to few specific responsibilities. In such a scenario, dispatching messages is
fundamental to exchange information among the components and orchestrate the behavior of the
modular system. While the gained modularity is invaluable in developing, testing, and maintaining
a system, it comes at a cost: Integrating different modules can show errors generated by the
interaction between components and, depending on how the communication is performed, might
present non-deterministic behavior. Since the flow of the execution is distributed into different
locations, tracking the source of a defect can become a complicated and time consuming task. To
enable communication among system components, PHARO offers the Announcer framework: a
tool that implements an improved version of the Observer pattern and reduces coupling. When an
entity in the system wants to communicate a message to other entities, it instantiates an announcer.
The entities interested in receiving a notifications can then register to the relevant announcer,
specifying the type of events they want to observe. To broadcast a message, a component can
create a new announcement and send it to the announcer, that dispatches it to the subscribed
entities.

The strength of the Announcer framework is that announcements are treated as first class
entities: once it occurs, an event is represented by an object that can contain arbitrary data and
the subscribers that registered for that event can interact with it using its public interface. The use
of announcements to manage the communications between different applications has numerous
advantages, like loosing the coupling between the publisher of an event and its subscribers, and
is a recommended best practice in developing an application in PHARO.

However, as discussed earlier, fragmenting the control flow of the program into a set of disjoint
components carries the drawbacks of event-based programming with the consequence that finding
the right fragment of code that is responsible for an error becomes a convoluted process of
navigating through the callbacks to find the correct location in the system. This complicates the
debugging process, as understanding how an announcement propagates through the system and
affects its status, requires accessing information that is not usually accessible by simply inspecting
the stack trace generated by an exception. The problem with debugging an announcement is that
it follows a different logic than the usual sequential style of the rest of the system. Therefore,
while all the information necessary to understand an error is available during an exception, this
is usually not exposed by the tools used to catch and report the errors, like the system logger,
hence not exploitable to understand and fix the problem. In particular, to understand an error
generated during the broadcasting of an announcement it is not enough to observe the current
stack of method calls: As such a structure would only contain information about the subscriber
that generated the error, thus hiding the information about the behavior of the other subscribers.
While this might still be sufficient to support debugging of simple problems, it lacks all the
collateral information to create the big picture of the status of the announcer and its subscribers.

Usage of Announcements

Figure 5.3 shows a bug report submitted to the PHARO issue tracker, describing a problem with a
tool where selecting an item from a menu would trigger the opening of two duplicate windows,
instead of one.

During the discussion it becomes soon clear that the incident is compatible with the case of
an entity registered twice in the announcer responsible for opening the window. The debugging
process consists in hunting down the entity that contains the double registration and removing
one of the two snippets of code that perform the subscription. While this case is not directly a
consequence of an exception, it shows how debugging the behavior of code using announcements
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Figure 5.3. A bug report describing a duplicated behavior caused by an entity being registered twice to
an announcer

can be tricky, and that further support from the development tools would probably be preferred.
We therefore conducted a brief experiment to investigate how common are problems involving
announcements in the exceptions that developers usually trigger while writing code.

For this purpose, we inspected the data collected through SHORELINE, the tool we presented
in Chapter 4 to intercept stack traces from development exceptions and report them to a central
server to support debugging [DSML15]. We considered the stack traces collected from 10 June
2014 to 28 February 2017. Table 5.1 shows a summary of the collected data.

The collecting tool can be set to submit every exception automatically, or to ask the developer
whether she wants to explicitly submit it. The stack traces collected come from exceptions gener-
ated by users of the PHARO platform from their daily development activities. We collected 41,129
stack traces from 257 different developers, on a time period of almost three years. We queried
the collected data looking for references to AnnouncementSubscription, the class responsible to
dispatch the announcement to the registered entities, and we found that 4,840 stack trace contain
at least one reference to this class.



54 Reified Collection of Runtime Errors

Table 5.1. Summary of the collected stack trace data

Oldest stack trace 10 June 2014
Newest stack trace 28 February 2017
# of days 994
# of developers 257
average # of traces per day ∼41
# of stack traces 41,129
# of traces involving announcements 4,840
% of traces involving announcements ∼12%

Such a result means that almost 12% of the exceptions that were collected by our tool as a
result of a system exception, involved the usage of the Announcement framework. While this
result does not imply that the framework is directly responsible or involved with the error, it
shows that more than one exception in ten has in its source a relation with an announcement.
This hints that the scenario is frequent enough to require a dedicated support by the debugging
tools, not only to correct errors, but also to help understanding the status of the system during its
execution.

Implementation of the collector

Our goal is to use a model able to collect and present domain-specific information about the
message dispatching. We can use this information to refine the inspection tools used to investigate
the system, or to create bug reports capable of representing the exception with further details
that are not representable using the stack trace generated by the exception.

We can accomplish the task using a custom extension of SHORELINE to collect runtime data
that describes the environment of an announcement. To implement the collector we need to
define the strategies for its activation and to describe the data extraction. There are two main
scenarios that can lead to errors using an announcer: Figure 5.3 showed how an entity being
registered twice to an announcer can lead to weird bugs, while the potentially non-deterministic
nature of an announcer, given by the fact that messages are dispatched in no specific order, can
cause bugs that are hard to reproduce. We therefore decide to observe four features: (1) the
subscribers of the announcer listening for the specific announcement, (2) the announcement being
dispatched, (3) the subscriber that generated the exception, and (4) the list of subscribers that
already received the announcement compared to the list of subscribers that did not receive it yet.
Figure 5.4 shows the implementation of AnnouncerCollector the class responsible for gathering
data about an announcement.

The methods #tag and #description, from the class side of AnnouncerCollector describe the
collector, for indexing and user interaction purposes. The method #when: checks the current
context object and verifies if there is a reference to a ANNOUNCEMENTSUBSCRIPTION object in the
first 10 lines of the method invocation stack, to ensure that announcements are involved in the
exceptions in the immediate surroundings of the current context. The other three methods are
invoked during the initialization of the collector, once the #when: returned a positive response:
#initializeAnnouncementFrom: extracts the information of the announcement that triggered the
broadcasting process, together with possible data that it was supposed to deliver; #initialize-
SubscribersFrom: extracts all the entities registered to the announcer, regardless of the kind of
announcement they are listening to; #initializeInterestedSubscribersFrom: extracts the distribution
list of the announcer. Since this data is collected during the execution time, this list contains the
order in which this announcement is being distributed. Moreover, the method also extracts the
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AnnouncerCollector class>>
tag

^ #'story-announcer-collector'

AnnouncerCollector class>>
description

^ 'Story Announcer collector'

AnnouncerCollector>>
initializeAnnouncementFrom: aContext

announcement := aContext stack second arguments first

AnnouncerCollector>>
initializeSubscribersFrom: aContext

| announcer |
announcer := (aContext stack detect: [ :e | 

e receiver class = AnnouncementSubscription ])
receiver announcer.

subscribers := announcer subscriptions subscriptions
collect: #subscriber

AnnouncerCollector>>
initializeInterestedSubscribersFrom: aContext

| arguments |
arguments := (aContext stack detect: [ :e | e method =

(SubscriptionRegistry>>#deliver:to:startingAt:) ])
outerContext arguments.

interestedSubscribers := arguments at: 2.
index := arguments at: 3

AnnouncerCollector>>
when: aContext

| stackSelectSize |
stackSelectSize := aContext stack size min: 10.
^ (aContext stack first: stackSelectSize) anySatisfy: [ :e |

e receiver class = AnnouncementSubscription ]

Figure 5.4. The Smalltalk code implementing the extraction strategies for the Announcer collector

index of the current entity: In this way the developer can access the list of the entities that already
received the announcement and the one of the entities that did not receive the message, thus
easing the detection of possible conflicts between different subscribers.

The data collected by the Announcer collector provides a detailed picture of the status of
a program, in an environment where it is usually hard to understand what causes the code
to fail, thus giving the developer an immediate overview on the dispatching of the messages.
Moreover, the data collected are still first-class entities of the system, that can be further queried
to extract data: this process allows to retain the maximum amount of information for the longest
time needed, so that it can be inspected during an exception or flattened into a textual format
for the submission to an issue tracking system. If the system allows it, the entities can also be
serialized and sent to the issue tracker, so that the maintainers of a software can navigate the
errors generated by the users with a much higher degree of flexibility and introspection on the
data than just plain text log files.

Stepping aside from the specific case of the announcer, this example shows how our framework
can help developers to easily extend the behavior of the logging mechanism to collect domain-
specific data that pertains to the software they develop. By distributing a software together with
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some custom collectors, a developer can effortlessly select the exceptions that are caused by her
software, collect relevant data —with the consent of the user— and browse it to debug the error.

5.4.2 The Testing Story

Bug fixing is an essential part of software development: Therefore, part of the development
effort consists in ensuring that a piece of code behaves in the intended way as the codebase
changes. The main tool for this purpose is represented by unit and integration tests, that help the
developers to immediately spot unexpected behaviors and locate the responsible components.
The use of test cases plays a central role in developing software, especially since the advent of
agile techniques like Test Driven Development (TDD) and continuous integration [BBVB+01]. The
former expects the developer to write a test mapping the expected outcome before writing the
code to perform the task, while the latter consists in automating the testing process by integrating
it in the development workflow.

We analyze the possible role of our approach based on collectors within the combination of
these two specific contexts. While in the case of TDD the developer has immediate access to the
error and its context, running a test suite to check the whole codebase can generate errors that
are complex to frame in the correct context. Moreover, in the case of continuous integration,
where the tests do not run on the machine of the developer but are executed on a remote server,
developers only have access to the output of the tests, which usually consist of textual reports.
This happens for example if a project adopts a continuous integration service like Travis CI,2 that
performs a full run of the tests every time the project is updated, and then sends a report of the
outcome to the developers.

When a test fails, however, the trace of the error is flooded into the log messages generated
during the build process, requiring time to identify and filter the relevant information. Once a
developer finds information about the failed test, she has to read the text output to understand
what was the possible cause of the failure, return to her development environment, reproduce
the failed case, locate the source of the defect and fix it. This process might still be lightweight
in the case of simple defects in small projects with one developer, but as the organization of the
project grows in complexity, reproducing and locating the issue can become a burden that costs a
significant amount of time. We can improve this scenario by introducing SHORELINE collectors.
By writing a dedicated class, developers are able to extract the specific information they are
interested in about a failing test. Writing a collector for a test case is simple: Smalltalk uses the
testing suite called SUnit [Bec94], where each test class is a subclass of TestCase. We can therefore
define the #when: method to activate the collector if there is an instance of such class in the
invocation stack of the exception. We can then write the extraction strategies to gather the status
of the part of the system that is subject of the testing, or simply extract the whole context storing
all the objects in the stack.

Using collectors, our framework allows developers to generate automatic reports that can
be sent and managed in an automated fashion, guaranteeing the reliability and quality of the
data. This data can then be serialized using a framework like STON,3 so that a developer can still
access the parts of the objects involved with the exception. The use of objects allows to directly
communicate with the status, without having to revert to text mining techniques to infer the
involved entities from textual logs.

For example, when a test fails, SUNIT generates an ASSERTIONFAILURE exception. Catching
this exception allows to access the context of the test, containing the erroneous result and the local

2https://travis-ci.org/
3https://github.com/svenvc/ston

https://travis-ci.org/
https://github.com/svenvc/ston
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variables, especially the class that is object of the test. By serializing and sending this information,
we can collect and group this data from all the failed tests to generate a report containing all the
objects in a wrong state, and navigate it to identify the cause for the failing tests.

Sometimes, however, observing just the tested object is not enough: The cause of the failure
might be hidden in the underlying system, or the object would reference volatile resources, like
database connections or remote sockets. In this case we can adopt a different approach and
offer a default option to cover the most difficult cases. Leveraging the Smalltalk approach of the
image, that can be frozen and saved in a particular state and later reopened with the exact same
state, we can write a collector that, when an exception occurs, saves the image and sends it to a
central server with a report containing metadata about the exception. Using this approach, when
a build fails to pass the tests, the developer can browse the repository of images, download the
relevant one and open it on its local machine. The concept is similar to using Docker4 to deploy
applications, where the system runs in an isolated controlled environment, independent from the
host operating system.

Either using the automatic report generated by the failing tests, or downloading directly the
image containing the error, developers can observe details of the system at the moment of the
failure, thus shortening the time required to gather information to reproduce the error.

5.4.3 Debugging Third Party Libraries

The last example on the usage of the framework shows how a developer of a third party library
can benefit from implementing a collector observing for specific data about her project. In the
Smalltalk ecosystem, Roassal5 is a large visualization engine widely adopted in the SmallTalk
community, made to “visualize and interact with arbitrary data, defined in terms of objects
and their relationships” [ABC+13]. Roassal codebase consists of more than 800 classes and
almost 6,000 methods, and is constantly evolving and improving using the feedback of the
community. Maintaining such a large project is a complicated task, as tracing and addressing the
errors experienced by the users can become like hitting a moving target, especially since Roassal
integrates with other tools and because the community is usually split among stable, legacy, and
development releases.

Understanding what triggered an error and rebuilding the environment to reproduce it can
become quite painful, as the developers need information that might not be easy to provide. Using
a coarse-grained approach as the one we described in Section 5.4.2 would not fit this scenario,
as asking the user to submit the whole image would generate a lot of traffic that would be hard
to manage, without considering that the image could contain sensitive data, like private source
code, that a user might not want to share.

The maintainers of Roassal can improve this situation by observing data specifically related to
the model of the engine. By detecting either when an exception occurs involving an object that is
a subclass of RTObject, or by checking if it happens in the context of a builder —a Roassal object
responsible for generating a visualization from a collection of data—, a collector can determine if
there is some information about Roassal available, that can be collected and reported.

By collecting domain-specific information, the maintainers can get a much more detailed
picture of the error, and restrict the possible causes to the ones compatible with the collected data
without the need to access the actual data of the user. For example, by knowing the number of
nodes that a visualization is rendering, one could tell if the error is due to a memory problem, or if
the visualization has scalability issues. Instead, knowing the settings that were used to configure

4https://www.docker.com/
5http://agilevisualization.com/

https://www.docker.com/
http://agilevisualization.com/
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a builder can tell if there is a bug in the builder’s code, or if the public API is poorly designed
and therefore often misused by the users. Finally, knowing the kind of data that a visualization
received can help in finding if there is a bug in managing objects of different (specific) types.

By shipping their own collectors for observing their code, developers can support debugging
in the context of the project, therefore reducing the time required to understand an error and
lowering the cost for maintenance.

5.5 Discussion

In this section we discuss how our approach can be generalized to work with other programming
languages, and how we think it could be further improved.

Generalizability of the approach

As we explained in Chapter A, we developed our approach using PHARO. The strong reflection
capabilities of the platform allowed us to inspect the whole status of the system, retrieving valuable
information about the whole execution context of the software.

Given these premises, one might wonder (1) why should this approach be relevant in the
PHARO ecosystem, and (2) if it is still relevant outside PHARO, when trying to apply it to other
programming languages.

To answer question (1), this framework comes after a long collaboration with the PHARO

community, to understand the types of errors that users get during the use and the development of
the platform. As we discussed through the chapter, the data collection mechanism can be integrated
with the issue tracking system of a project, allowing the developers of a project to integrate
SHORELINE in their workflow, supporting debugging and maintenance tasks. About question
(2), we believe that it is possible to implement such an approach also in other programming
languages. The PHARO system makes the perfect candidate to test such a framework, easing the
implementation process by providing the APIs to talk with the system and the tools to navigate
the collected data, but the use cases we have shown in Section 5.4 can be implemented with any
language with reflective capabilities.

There is also an interesting aspect to consider pertaining to how we used a collector in
Section 5.4.2 to save and submit the whole PHARO image. Given the current interest in DevOps
technologies like Docker6, it is possible to execute an application in a Docker container, stop it
and save its status during an exception, and submit the image of the application to a remote
server. Analyzing the stored data would not be simple, as there is a lack of tools to access the
state of applications in these circumstances, but our approach could be an interesting match for
these similar scenarios.

5.5.1 Next Steps

Building collectors to observe specific parts of the system can improve the workflow of debuggers,
and reduce maintenance costs. The regular collection of domain-specific data can provide statistics
on the frequency of errors in selected parts of the system, and hint how the users use a software,
hence helping developers not only to debug a system, but also to optimize the existing code and
improve the API.

6https://www.docker.com/

https://www.docker.com/
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We envision a future where development activities are supported by the system using the
language of the system, not resolving to flat and bloated chunks of plain text that represent the
side effects of the code, but rather first-class entities that narrate the exact status of a program.
Starting a conversation with the entities we can develop a paradigm of programming that focuses
on the models and their interactions, rather than manipulating strings, and achieve a programming
environment that is really live and responsive.

5.6 Outline

We presented an approach to define ad-hoc collection of runtime data to support debugging. By
extending our framework, a developer can define a custom strategy to gather domain-specific
knowledge that follows the model of the application she wants to observe. By preserving the
structured, object-oriented nature of the collected data, rather than serializing the information
to text, we are able to query the state of a program and observe it by filtering the data we
are interested in, resulting in both more expressive and less bloated reports. Such capabilities
of observing a system enable to create flexible inspection tools, that are able to get a deeper
representation of the execution context of a piece of software.

By giving the possibility to report and collect specific information from the system, SHORELINE

offers data that is more reliable than a stack trace submitted by a user, and allows to deal with the
collected data in an automated fashion, giving the possibility to programmatically perform tasks
that would otherwise consume time of the developers and weight on the cost of maintenance.
Moreover, providing a defined structure for execution data, our framework allows us to perform a
number of analyses without having to resort to information retrieval and text mining techniques
to clean the data, but enables us to talk directly with the collected entities that map the original
data.

Finally, dealing with data that is not flattened allows to perform a progressive inspection of a
report, enabling the discoverability of complex data and structuring the debugging session as a
browsing process to select the data needed by the developer fixing a bug.

In this chapter we put in place a platform to collect detailed domain-specific information
about components of a system. At last, our model is no longer text-based, but represents entities
using objects. As a result, we can start a conversation with the system and define a language
that allows us to integrate this information with the development tools and to create smarter and
conversational environments. In the next chapter we present a use case where we employ the
information collected about a system in a tool for browsing the history and the evolution of a
software system.
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Multi-concern Visualization of
Large Software Systems

While constructing and evolving software systems, developers generate directly and indirectly a
large amount of data of diverse nature, such as source code changes, bug tracking information,
IDE interactions, stack traces, etc. Often these diverse data sources are processed and visualized
in isolation, leading to a partial view of systems.

In the previous chapters we saw that we can collect data from runtime errors and use this
data to get insights into the development process. In this chapter we present a blended approach
to visualize several data sources. We combine these “ingredients” at once, to give as complete an
answer as possible to the question “What happened to the system in the last few days?”. The goal is
to enable a quick and comprehensive assessment of what happened to a software system in any
given time frame.

Structure of the Chapter

In Section 6.2 we describe the ingredients of our blended visualization, which is presented
in Section 6.3. In Section 6.4 we use the visualization to tell interesting evolutionary stories.
Section 6.5 discusses possible extension to our approach. Finally, Section 6.6 summarizes and
concludes the chapters.

61
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6.1 Exploring a System

Software development involves a variety of activities carried out with a number of tools, compo-
nents and environments, that relate to many different aspects of a system. The increasing size
of software projects, the increasing popularity [GZSVD15] of distributed development platforms
like GitHub1, and the amount of tools and frameworks available for every language, turned a
significant part of modern software development into an integration process, where the developer
can define a behavior by orchestrating and specializing library components and third-party entities.
This has turned the engineering of any software system into an information-heavy process, which
is ultimately distilled into (hopefully functional) source code. The vast majority of the corollary
information (such as discussions, design decisions, email communication between developers, bug
reports, etc.) is either discarded or ignored. This is in part due to its often only semi-structured
nature, where structured fragments are interleaved with natural language. The mining of such
unstructured data has become a research field of its own in the past few years, creating also a
workshop of its own [BA10].

When it comes to the understanding of any system, the natural focus is the source code, and
indeed it –and the overarching structure and architecture– has been the primary subject of study
of program comprehension research. In the context of software visualization many approaches
have been developed to visualize the (evolving) structure of software systems, which range from
static visualizations to historical or dynamic ones. What strikes in this context is that many
approaches consider only single concerns, such as the architecture, the structure, the evolution,
the relationships, etc., but there is little in terms of visualizing multiple concerns at once.

We present here an approach to visualize multiple concerns concurrently. The concerns we
tackle are interaction data, failure information, and evolution. Interaction data stems from how
developers interact with the integrated development environment (IDE) while developing and
maintaining a system. In essence, it provides evidence of where and how people have been
active while developing [MML15]. Failure information is generated each time the debugger is
triggered because an exception has been raised. In our previous work we have shown that such
data can be leveraged to understand where the particularly tricky spots in a software system
are located [DSML15]. Both interaction data and failure data are more fine-grained than their
respective counterparts, namely versioning information and bug reports. We complement these
two types of data with a third one, the evolution of the system.

Although we focus on these types of information, our approach can be extended to feature
any kind of information artifact related to a large software system under development. In essence,
our goal is to answer one of the most often asked questions raised by developers and managers
alike, namely “what happened to our system recently”? [SMDV08]

We present a visual approach to blend development data originating from different sources,
e.g., by different tools that record and persist code changes, interaction data and stack traces. We
propose an interactive map that summarizes the relevant events that involved the system in a given
period of time, using the city metaphor to represent a software system [WL07], and coloring each
entity according to the combination of data gathered around it. We allow to explore the evolution
of the system by navigating the information during time, and refining the search of interesting
events to specific moments. We then present some stories obtained through our visualization that
illustrate interesting properties of an existing software project and its community.

The contributions we present in this chapter are:

• A novel approach to visualize multiple concerns concurrently in large scale software systems.

1https://github.com

https://github.com
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• The supporting tool infrastructure to mine and integrate the data stemming from various
sources of information.

• Initial anecdotal evidence that our approach indeed allows us to discover and investigate
facts that would otherwise remain hidden in the literal “sea of data” that surrounds any
large and long-lived software system.

6.2 The Ingredients

In this section we briefly describe the three main ingredients together with the tools that enable
the data collection process.

To get a tractable subset of meaningful data, we decided to focus on a timespan ranging
from January 1st 2015 to May 1st 2015. In this section we present the context of our analysis,
then we briefly describe the three main ingredients together with the tools that enable the data
collection process. Our visualization presents a composition of different information, obtained by
blending together different data sources and enabling visual analytics from heterogeneous and
multidimensional perspectives. In the rest of the section we describe the three main ingredients
together with the tools that enable the data collection process. For further details about the
PHARO platform see Appendix A.

6.2.1 Source Code Changes

A typical metric that is often considered in evaluating the growth and evolution of a system is
the number of changes that it goes through during its development. In the case of PHARO, the
whole system is self-contained and distributed as an image, a single file that works as a virtual
environment where new code is installed inside the default system. The PHARO system is released
once a year, and during this period it goes through an intense phase of improvement, debugging
and polishing. The test and release process is managed by a continuous integration server,2 that
stores the previous builds of the system. In our analyses we modeled and extracted all the source
code changes between subsequent releases of the PHARO system.

Retrieving the different version

We focused on the release of PHARO 4, which just finished its release cycle. We downloaded all
the development versions from the file server,3 that we also used to retrieve the exact release
date of each version. The full cycle of development images ranges from version 40,000 to the
image 40, 613, from May 26th 2014 to May, 5th 2015. The last release in date May 1th 2015 was
version 40, 611.

Extracting a system model

We extracted from each image a model representation of the system. Such a model is composed of
the names of all packages, classes, instance and class methods, and instance and class attributes.

2https://ci.inria.fr/pharo/
3http://files.pharo.org/image/40

https://ci.inria.fr/pharo/
http://files.pharo.org/image/40
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Generating an incremental change model

We leveraged each system model to obtain an incremental diff model that describes each change.
We considered as change a variation in the names of the collected entities. Since we had no
way to precisely determine when an entity was renamed, we considered every event in terms of
creation and deletion. Table 6.1 summarizes the available source code changes data.

PHARO, the target IDE of our study, is an open-source system maintained by an active com-
munity. During its evolution it undergoes a series of minor and major releases, managed by a
continuous integration server4. In our analyses we modeled and extracted all the source code
changes between subsequent releases of the system. Table 6.1 summarizes the available source
code changes data.

Table 6.1. Source Code Changes

Metric Value
Number of considered versions 611
Number of changes 4,928
Average changes per version 8
Max number of changes per version 527
Min number of changes per version 0

6.2.2 ShoreLine Reporter and Stack Traces

A consistent part of the time spent by developers consists in finding and solving defects. The
debugging activity involves tests to reproduce a problem or verify that a defect has been solved.
This process generates many stack traces, that contain valuable information about the failures
in a system. Such information is normally used by a developer to identify a faulty status in her
program. Moreover, if collected and stacked together, stack traces can also give a hint of what
parts of the system are the most active, or which ones are causing more troubles. To exploit this
source of information, we developed SHORELINE REPORTER [DSML15], a platform to collect and
store stack traces generated by the whole PHARO community. The data we collect contains the
signature of every method invocation, to keep track of each entity involved in the failure, though
excluding the method parameters, to avoid privacy issues for the single developer.

In enabling the reporter, each developer can decide to inspect each stack trace and choose the
ones to submit, or enable the automatic reporting feature and submit all the traces produced by
its activity. While this option produces many duplicates and non relevant data, it is still interesting
to see where the activity of the developers focuses during different periods of time. The collected
data can then be used to aid the debugging activity, for example detecting if a large volume of new
stack traces coming from different developers involve a specific class, or by looking for existing
bug reports in the bug tracker to provide a contextual help when a user encounters an exception
and ease the understanding of a piece of code. The presence of many different stack traces for a
specific component might also suggest that an API has a problematic design, and that the users
struggle in understanding its usage, thus highlighting the need for documentation or refactoring.

Table 6.2 summarizes the collected and available data for stack traces.

4https://ci.inria.fr/pharo/

https://ci.inria.fr/pharo/
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Table 6.2. Stack Traces Data

Metric Value
Number of traces 14884
Number of submitters 43
Total number of stack trace lines 714,420
Average stack trace size (in lines) 48
Longest stack trace 1,086
Shortest stack trace 1

6.2.3 DFlow and IDE Interaction Data

During the process of software construction and evolution, supported by integrated development
environments (IDEs), developers generate a large amount of data known as “IDE Interaction
data” [KM05, MKF06]. Examples of such data include i) IDE meta events, like adding a method to
a class, saving some edited code, or inspecting a variable in the debugger, ii) UI events, like moving
a window or a tab in the IDE, or resizing them, and low-level events, like keystrokes, mouse clicks,
drags and simple movements.

Since current IDEs do not record these data, we used the data collected by Minelli et al. who
developed DFLOW, a silent interaction profiler for the PHARO IDE [MML15]. DFLOW records 32
different types of events at different levels of abstraction. For this work we only focused on a
subset of meta events that involve code entities. Some meta events have an associated program
entity: A browse event, for example, where the user opens a new code browser, can be performed
on a method or on a class. For this work we aggregated all meta events to the class-level: An
event performed on method foo of class Bar counts as an event involving directly the class Bar.
In total we have ca. 239,000 interaction data events covering a timespan of 4 months (i.e., from
January to April 2015).

The IDE interactions impact 2,988 different classes, of which 965 are part of the standard
PHARO distribution. The remaining 2,023 classes are user defined classes that are outside the
scope of our study. Out of the 32 types of meta events recorded with DFLOW [MML15], only 13
types of events appear in the dataset. This is because some of the recorded meta events do not
carry any information related to program entities. For example, the meta event that represents
the opening of a Finder, a user interface used in PHARO to search for pieces of code, has no
associated program entity. Table 6.3 summarizes the dataset and provides additional details.

Table 6.3. IDE Interaction Data

Metric Value
Number of Interaction Events 238,741
Number of Developers 18
Number of Interested Classes (in the Paro distribution) 2,988 (965)
Number of Different Event Types (total) 13 (32)

6.2.4 Blended, Not Stirred

Our goal is to develop a visualization approach which can represent diverse data sources, such as
the ones we just presented. The approach is not geared towards the specific types of sources, and
also not limited to depicting just those, but is in principle extensible to feature any number and
any data source.
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6.3 Visualization Principles
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Figure 6.1. The Blended City – visualization principles and proportions

Section 6.2 introduced the three “ingredients” of the visualization: source code changes,
stack traces, and IDE interaction data. Until now these diverse data sources are processed and
visualized in isolation, leading to an incomplete view of the system. Our goal is to visualize all
these ingredient to enable a quick and comprehensive assessment of what happened to a software
system in a given time frame. To do so, we propose the “Blended City”, a visualization that uses the
City Metaphor to depict all the ingredients of a software system. Wettel and Lanza initially used
this metaphor in CodeCity, a tool that depicts software systems as cities [WL07]. In addition to
the structural source code information presented by CodeCity, our Blended City uses a mixture
of colors to depict different aspects of the software system itself. Figure 6.1 shows an example of
our visualization.

6.3.1 In Practice

Figure 6.1 shows the tool that we implemented to visualize the Blended City. It is composed of
four main parts: A status bar to display additional information on the selected entity (Fig. 6.1.A),
a toolbar to customize the visualization (Fig. 6.1.B), the view canvas (Fig. 6.1.C), and a timeline
slider (Fig. 6.1.D). With the timeline slider the user chooses the visualized data timespan. The
width (i.e., granularity) of this slider can be adapted using the dropdown menu on the right part
of the toolbar. In the example of Figure 6.1 the user selected one month of data, starting from
March 1st. The toolbar (Fig. 6.1.B) also features a text-input and a set of sliders. The former
enables simple queries to highlight particular packages in the system while the latter let the user
choose the visual weight of each of the three ingredients of our visualization. These weights affect
the intensity of the color associated to each of the ingredients. In the example of Figure 6.1, all the
sliders are at 100%, thus all the ingredients have the same importance. Figure 6.2, instead, shows
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Figure 6.2. The same view depicted in Figure 6.1 with the following weights: 0% source code changes,
100% stack traces, and 50% interaction data

the data presented in Figure 6.1 giving high importance to stack traces (100%), little importance
on interaction data (50%), and no importance to source code changes.

In addition to changing the weights of the three components and the granularity of the
visualized timespan, the view also features standard interactions such as panning and rotation in
the 3D space. Moreover, the user can click on an entity and get additional information on the
status bar. In Figure 6.1 the user selected the class DiffMorph and the tool shows that this class
has 15 attributes and 91 methods (see Figure 6.1.A). Selected entities are colored with a bright
green.

6.3.2 The City Metaphor: Layout and Metrics

In the city metaphor every district of the city is a package and the buildings, contained inside the
districts, represent the classes [WL07]. The view uses a rectangle-packing algorithm to create the
layout and it is polymetric, i.e., each dimension of the visual entity is proportional to a particular
metric of the program entity being represented [LD03]. Since the visualization is 3D, classes are
cuboids and have 3 dimensions that correspond to three metrics. Our visualization, similar to the
original CodeCity, uses the same metric for both width and depth and a different measure for
the height. In particular, we use number of attributes (i.e., NOA) for both width and depth of a
class and number of methods (i.e., NOM) for the height of the cuboid representing a class. The
magnification in Figure 6.1 exemplifies these mappings.

6.3.3 Color Harmonies and Blends

Our Blended City presents different types of data, from structural properties of source code to
stack traces and interaction data. Structural source code relationships (i.e., nesting of the package
and software metrics) are the foundations for the layout while colors present the remaining
information.
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We use a triadic color scheme made of primary colors to present this information: Yellow for
source code changes, red for stack traces, and blue for interaction data. Figure 6.3 shows a the
color wheel with an emphasis on the triadic color scheme, where colors are evenly spaced around
the color wheel.

Primary
Colors

(Color Triad)

Yellow

RedBlue

Figure 6.3. Color wheel and triadic color scheme

This offers strong visual contrast while retaining balance, and color richness. Using colors
equally spaced around the color wheel facilitate the addition of extra sources of information, i.e.,
when we need to display n sources of information, we can create a new color harmony composed
of n colors evenly spaced around the color wheel.

Color Blends

The three primary colors can only depict entities which are affected by a single of the three infor-
mation sources. However, in a given timespan a class might be affected by both IDE interactions
and stack traces, for example when a developer is adding new functionalities to a class and testing
them. To depict this information, we use linear color blends between the different sources of
information. A class with both IDE interactions and stack traces is depicted in purple, the linear
blend between the color of IDE interactions (i.e., blue) and stack traces (i.e., red). Figure 6.4
shows examples of the different linear color blends on the triadic color scheme adopted by our
visualization. In this work we only considered the linear blending of colors. It is part of our future
work the investigation of different techniques to combine the colors, i.e., color-weaving.

Aging Mechanism

When the user selects a timespan to visualize, the tool pre-loads and displays also the data
happening in the immediately preceding interval (of the same length). This enables the user to
draw conclusions from the visualization having also in mind what happened immediately before.
To show this data, the tool uses an aging mechanism that linearly reduces the color saturation as
the age of the datapoint grows, i.e., the older the more intense fading towards the default color
of nodes (i.e., gray). Figure 6.5 shows how colors fade with such mechanism in a timeline.

In the “present” interval (i.e., the one selected by the user), colors are at their default saturation.
In the “past” interval, instead, the color saturation fades. At the end of this interval, the nodes
have the default color, i.e., light gray.
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Figure 6.5. Aging process: example in the timeline

6.3.4 Under the Hood

The tool deals with a large volume of entries coming from heterogeneous data sources. To
conveniently manage them we standardized their format, using different data pre-processors, and
store them in a central place. We use MongoDB5 databases to conveniently store the data.

When the user selects a timespan to visualize (Fig. 6.7.1), the tool loads the data through
optimized MongoDB queries (Fig. 6.7.2) and builds the blended model of the data (Fig. 6.7.3).
Later it computes the city layout, applies the blended color scheme, and presents the view to the
user (Fig. 6.7.4). The user can then use the toolbar to refine the visualization (Fig. 6.7.5).

6.4 Telling Evolutionary Stories

This section presents four stories, supported by our blended view, that narrate the evolution of
the PHARO system.

5http://mongodb.org/

http://mongodb.org/
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Figure 6.6. View of the city with all the activities

6.4.1 Those Awkward Neighbors

By selecting the full available timespan of the data we obtain a visualization that displays all the
activities that involved the PHARO system over a period of five months. This enables to obtain a
comprehensive view of the system evolution and derive long-term considerations and properties.
Figure 6.6 shows the overall view of the available data. One interesting example is represented
by what we call the awkward neighbors, i.e., big but silent packages that have little or no activity.

In the lower part of Figure 6.6, we can spot two big packages that contain entities that are
mostly colored with grey, meaning that they had almost no activity in the whole timeframe.
Moreover, they present almost no change in the entities they are composed of, and since the color
of the changes is blended, those are all antecedent to the selected start date. This means that in
the last release they have been mostly ignored. These two districts are the packages Graphics-Files
and Compiler, whose details are shown in Figure 6.8.

A further investigation of the package Graphics-Files reveals that it contains 10 classes. These
classes are dedicated to exporting graphics and writing them in different file formats. Since PHARO

stores the dates of the changes of a method, we can determine when the changes took place. We
can see that there are three main batches of changes: A small update in 2014, regarding a small
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Figure 6.8. Details of the packages Graphics-Files and Compiler

refactoring of an error message, one in 2001 and one in 1997. This is interesting, because it
indicates that the package has been part of the system for a long time, it had little changes and
is by now a solid foundation of the system. Similarly, the package Compiler contains 46 classes,
and apart from some recent modification in 2013 to the structure of the compiler, many of the
methods are unmodified since 2006, 2003, or 1998.

One might wonder how it is possible that some parts are older than the PHARO project itself.
The reason is that PHARO was born as a fork of the SQUEAK project6, which in turn is a re-
implementation of the original SMALLTALK-80 system, which was evolved from the SMALLTALK-72
system. This means that some of the methods and classes in these packages might very well be
40+ years old.

6http://www.squeak.org

http://www.squeak.org
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6.4.2 Market Districts

While examining some of the packages with the most activities, we found districts with many
interactions from all three data sources, and we call them market districts. Figure 6.9 shows an
example of market districts corresponding to the packages of Spec and Morphic. Morphic is the
core graphic library of PHARO, while Spec is a framework to build user interfaces, built on top of
Morphic.

Figure 6.9. Spec and Morphic market districts

Many classes are involved in exceptions, they were recently changed or they were subject to
developer interactions. This reveals a long known problem in the community, that is, the fact that
the code of Morphic is old and has been ported through various platforms. The case of Spec is
similar: since Spec is a framework built on top of Morphic, it shares its weakness and part of its
complexities.

Differently from the awkward neighbors (shown in Figure 6.8), the market districts for Morphic
and Spec are not settled and solid: Instead, they are often causes of bugs and issues. The view
also shows that many classes that act as entry points received frequent developer interactions,
meaning that they likely have an unclear public interface.

Moreover, we can see that the Morphic packages are still frequently changed, showing that the
community is constantly trying to fix the codebase. Finally, the high number of classes involved in
the stack traces suggests that the code modification, together with the difficulty of understanding
the API, is likely a cause of many programming errors. In particular, there are some hotspots, i.e.,
packages where classes are mostly colored in red only. These classes are involved in failures, but
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they are rarely modified or involved in interaction data.
These theses are confirmed by the fact that the community is trying to replace the code of

Morphic with a new, polished and easy-to-use replacement called Bloc, to address issues that we
can be spot in Figure 6.9. However, as the complexity of the picture suggests, replacing this code
is not an easy task, and has been work-in-progress for more than a year now.

Figure 6.10. Changes in the Pharo system

6.4.3 New in Town

During the development of PHARO 4, many classes got updated and some new components were
added. We want to analyze the progressive introduction of these changes, and how they impacted
the system after the integration. We then use the sliders in Fig. 6.1.B to remove all the data
sources, except for the changes. Figure 6.10 shows in full yellow the entities touched by a change
in the last five months, and in blended yellow the changes in the previous five months. We can
verify that there are elements that remained untouched, while some others were subject to intense
development.

By moving the slider we can select a timespan to restrict the changes to a given moment of
the story of the components and inspect the status of the system during time. We can notice that
from a certain point on there was the appearance of packages related to the GT-Tools, a set of
tools to improve the interaction with the objects in the system. By restricting the timespan to
the beginning of January (i.e., the first appearance of activities), to determine the moment of
integration.

Figure 6.11 visualizes the blended city for the GT-Tools packages. Some classes are involved
in all three data sources, i.e., they are colored in dark brown. This can be explained by the fact
that the first phases of integration usually require adaptation, refinement, and debugging, thus
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Figure 6.11. The changes of GT-Tools packages

generating (other than changes) frequent exceptions and developer interactions.
The other interesting observation that we can derive from the visualization is that the classes

involved in user activities are also the biggest. This can be explained by considering that those
classes act as main entry points to the package, a starting point for developers who want to use or
inspect the code.

6.4.4 The Purple Buildings

A benefit of our blended city approach is that a data source can be removed to spot behaviors that
are independent from it. Figure 6.12 shows the blended city for PHARO with only stack traces and
developer interactions. While the stories we presented so far try to consider the code entities at a
package level, the blended city without changes reveals the interesting role of some classes.

Scattered across the system, there are some big and medium classes colored of purple without
apparent correlation with the color of its neighbors. By inspecting their names, we find examples
like DateAndTime, Float, Job, SmalltalkImage, Socket, SocketStream, SystemWindow, TestRunner,
and many others related to rendering of graphics, that we covered in the previous stories. These
classes are not problematic per se, but represent an interesting area of the system that we could
define as Advanced APIs. These classes appear in many stack traces and in many development
interactions, an information that suggests that they occour near the source of the exceptions,
when these exceptions are not directly generated from them. This context could signify that the
user is trying to understand a class that has a name suggesting a behavior, but that she needs
some further understanding to learn how to use the objects of the class by trying the various
methods.

The use of this information could be used by the maintainer of the system to prioritize the
areas of that could need more public documentation, to ease the learning process of those entities
and their API.

Note that the same information, blended with the addition of code changes and applied to
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Figure 6.12. A view of the system highlighting stack traces and developer interactions only

classes that are not part of the core system, could signify that a developer is applying a Test Driven
Development approach, by implementing incomplete methods and completing them whenever the
system tries to execute a method that is not yet implemented, a common practice in the Smalltalk
community [BDN+09].

6.5 Discussion

Developing our approach we became aware of many details that are hard to grasp in terms of
how the users interact with the code entities. We believe that an important next step for this
analysis would be to improve the system by providing updated information on fresh data mined
in real-time.

Our visualization considers activity data, but maps this information on the static entities of
the system. However, in Object Oriented Programming, the main focus lays on how these entities
communicate among them, rather that how these objects are structured internally. We think
that this approach could be further improved by also considering the interactions caused by the
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messages sent as a result of the interactions.
Finally, from the user stories we saw how to retrieve information about the evolution of the

system by looking at the way users interact with it. We think that a similar approach of combining
data can be effectively put into use when analyzing old code, to understand and maintain legacy
systems and support software archaeology [HT02].

6.6 Outline

Software visualization and analysis usually focus on giving a detailed representation of a single
aspect of the examined entities. We presented an approach where we visualize data from three
different data sources and contexts, blending them to produce multi-dimensional information
about a system, its code and how developers interact with it. We considered a combination of
system changes during the development phase of a system, the interaction data generated by
users and the stack traces of the exceptions triggered during the daily usage of the platform.

We presented a tool that visualizes our blended information on a city view of PHARO, a dynamic,
flexible and active programming ecosystem. We showed how our tool allows to select different
timespans and weigh the diverse components, to enable a fine grained inspection of each entity
during its recent evolution. We think that our approach has a real potential to be successfully
applied in a development context to allow for multi-dimensional incremental and interactive
analysis of a system, supporting a deeper understanding of the code entities by highlighting the
synergies among its recorded activities, and the relations and interesting behaviors otherwise
hidden or harder to detect. We illustrated four stories where we extract and analyze some real-
world issues by looking at the blending of the data and identifying some existing problems, or
finding suggestions for problems that could be addressed by the maintainers of the platform to
improve the system. We believe that the knowledge highlighted by our approach can help in
presenting and tackling existing problems and provide a deeper understanding of a system.

In the last chapters we saw how we can collect information about the errors on a system
and exploit this data to support debugging, understand how a system is used, and navigate its
evolution. In this chapter we presented a use case were we combined the data we collected
together with additional data sources, to create a wide-ranging representation of the history
of a system. By using our tool, a developer can improve her comprehension of a system and
understand how a system is used by its users. We saw that we can collect and store data in an
effective way and with a powerful representation. However, being able to collect any kind of
data does not tell us what we should collect. In other words, we still have to understand how to
improve the representation of a bug report. In the next chapter we investigate the data contained
in several in issue tracking systems, and how it impacts the resolution of a defect. By looking at
this data, we try to distill the model for a minimal bug report.



777777777777777777777
What Makes a Satisficing Bug Report?

To ensure quality of software systems, developers use bug reports to track defects. It is in the
interest of users and developers that bug reports provide the necessary information to ease the
fixing process. Past research found that users do not provide the information that developers deem
ideally useful to fix a bug [ZPB+10]. This raises an interesting question: What is the satisficing1

information to speed up the bug fixing process?
We conducted an observational study on the relation between provided report information

and its lifetime, considering more than 650,000 reports from open-source systems using popular
bug trackers. We distilled a meta-model for a minimal bug report, establishing a basic layer of
core features. We found that few fields influence the resolution time and that customized fields
have little impact on it. We performed a survey to investigate what users deem easy to provide in
a bug report.

Structure of the Chapter

In Section 7.1 we discuss what we should expect from a bug report. Section 7.2 presents our
research method and introduces our research questions, that we answer in Section 7.3. In
Section 7.4 we discuss the meaning of our findings and how our work can be extended, while in
Section 7.5 we summarize and conclude the chapter.

1Satisficing is a neologism coined by Simon [Sim57, Sim01] combining the verbs to satisfy and to suffice, and it is
used to describe a solution that is roughly satisfactory and meets some criteria of sufficiency and is better than an
optimal solution that would be too complex or would imply too strong constraints.

77
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7.1 Good Bug Reports vs. Real Bug Reports

When users file a bug report for a software project, their main hope is that developers will fix it
quickly, to minimize its impact. But what information should they provide to make this happen?
There is a stark mismatch between what developers perceive as optimally useful in this respect (i.e.,
steps to reproduce, stack traces, and test cases) and what users are effectively able, or sometimes
just willing to provide, when filing a bug report [ZPB+10].

Bug tracking systems and software projects should define a reasonable common ground for
information to be provided in bug reports, so that it is not too demanding for users, yet provides
enough information to developers. Nevertheless, considering what popular issue trackers and
projects (e.g., Bugzilla, JIRA, FogBugz, and the issue tracker provided with GitHub) demand from
users, we see that it is quite diverse and specialized. In particular, each bug tracking system
provides a core set of common fields, which are often complemented with additional fields. Such
fields may reflect requirements for specific domains, or represent additional data customizable by
project owners.

For example, the commercial issue tracker JIRA defines several fields that describe in detail
aspects pertaining to the time management of issues, while the GitHub issue tracker provides
a minimal (and sometimes criticized2) model that, together with the integration with the Git
versioning system, conceives a bug report as a conversation among developers, fostering the
philosophy of collaborative development proposed by GitHub [TBLJ13].

Overall, there is currently no consensus among software projects and creators of bug reporting
systems on essential mandatory fields to be filled by users in each report, optional fields that
give useful additional information, and free space for users willing to provide more detailed
descriptions.

Our vision is to define the minimum set of information needed to describe a software defect,
to clarify what should be required by each bug reporting system. In this chapter, we make a step
in this direction: We investigate what makes a satisficing bug report. We move from defining a
good or more precisely an optimal bug report and adopt a more pragmatic view on what users
should provide.

We conduct our investigation in three steps: (1) We investigate what users and developers
perceive as difficult in writing a report, by means of an online questionnaire; (2) we investigate
the usage and evolution of issue tracker data, by means of a large-scale quantitative analysis of
the status changes in submitted bug reports and the impact that customized fields have on the
resolution of a defect; (3) we study which fields developers use to describe defects, by means of a
further quantitative analysis on the lifetime of reports in relation to the evolution of report’s state
and its completeness in its core and customized fields.

Our results show that providing more specific fields in a report relates to the fixing time: In
particular, the bug reports with longer descriptions tend to be solved quicker. While this might be
intuitive, issue trackers still do not emphasize this aspect during the submission of a new bug
report, putting the accent on the customization capabilities of the platform. At the same time,
the project-specific bug report fields have little impact to the fixing time. This chapter provides
insights on the current issue tracking practices and defines guidelines in building the foundations
for a new model of an issue tracking system.

2https://github.com/dear-github/dear-github

https://github.com/dear-github/dear-github
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The contributions presented in this chapter are:

◦ A survey that identifies the components of a bug report considered difficult to provide by users
(Section 7.2.2).

◦ A dataset of 650,000 bug reports, collected from the issue trackers of BUGZILLA and JIRA
(Section 7.2.3).

◦ The model for a minimal bug report, that puts the emphasis on the shared components of a
bug report (Section 7.3)

◦ An analysis of the usage of the fields in an issue tracker, from active open source projects
(Section 7.3).

Reflection

To understand the essential traits of bug reports, we analyze how the data included in bug reports
influences their lifetime. We next analyze the features of a set of bug reporting systems, to distill
a model of common/specific fields for their bug reports. This model serves as a basis for further
empirical analysis, to determine how these commonalities and customizations influence the life
of the reports.

7.2 Research Method

To determine what makes a satisficing bug report, we first need a way to rate the quality of a
bug report, then we can conduct quantitative analysis to determine which features relate with
higher quality. Measuring the quality of bug reports is hard to do in an automated and unbiased
way. For this reason, researchers proposed different metrics to measure it [HW07], all with their
limitations, but reasonable enough to be realistic. In this work, we decide to consider the lifetime
of a bug report (i.e., the time between the opening and resolution of a defect) as a viable proxy
for its quality rating, as the time spent dealing fixing software defects is crucial in reducing the
time the system contains a problem. Limitations of this proxy metric include the fact that the
trivial bugs, or the non-issues, are the ones that require less time to fix, and that the severity can
also have a not negligible impact on how quickly developers decide to fix a problem. Nevertheless,
the information shared in the bug report has to be satisficing enough to let developers understand
whether it is a trivial fix, an urgent matter, or something that can wait longer. For this reason, we
find lifetime of a bug report a useful approximation in aggregate statistical analyses to provide a
high-level view over bug repositories.

We investigate how users and developers use issue tracking systems and the impact that
the provided information has on the lifetime of a bug report. According to Zimmermann et al.
the information provided by submitters of bug reports can be partial or incorrect [ZPB+10]. To
understand what is reasonable for a user to provide in a report, we conducted a survey asking
developers what they think are the difficult elements to provide. We then focus on two of the
main components that compose a bug report: (1) its state and (2) the core and optional attributes,
to understand how the provided data is used.
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7.2.1 Research Questions

When collecting information about software defects, it is important to know when the submitted
data is reliable and accurate. Our goal is to investigate what users can easily provide and what is
harder to obtain; we structure our investigation into the following question:

RQ1. What are the elements that are perceived as difficult to provide when reporting a
defect?

To understand the relationship between what is described in a bug report and its lifetime, we
have to consider the different kind of data that reports can provide. This is not trivial, because
different platforms offer different fields to provide information, with different meaning and values.
As a first step for our quantitative evaluation, we investigate how to define a meta-model to
comprehensively describe information stored across different issue reporting systems:

RQ2. What is a comprehensive unified meta-model for describing data from different bug
tracking systems?

After having defined the meta-model, we can quantitatively investigate several aspects of
reports related to their lifetime and evolution. During development, a bug report changes its
state, sometimes several times, ideally converging to a closed state. The changes in the state of a
report are important to understand its evolution [DLP07]. We are interested in considering the
evolution of the states and see whether the aggregate of these changes can provide knowledge on
the inner logic of an issue tracker. This leads to the following question:

RQ3. What are the most frequent states and state transitions in bug reports?

Together with a state, a bug report comes with a set of attributes that describe the properties
of a report. These attributes can also be defined by the users, to create project-specific customized
fields. We investigate the completeness of core and custom fields with respect to the lifetime of a
bug, considering the following research question:

RQ4. Does the completeness of standard and project-specific attributes in a bug report relate
to its lifetime?

To answer our questions, we both run a survey (Section 7.2.2) and we collect, model, and
analyze a large dataset of bug reports from open source projects (Section 7.2.3).

7.2.2 Online Questionnaire

Zimmerman et al. asked users and developers what they think are the useful elements in a bug
report and how hard it is, in their opinion, to provide those elements [ZPB+10]. We proposed
a similar questionnaire to the Pharo open source community to further understand what it is
reasonable to expect from users submitting a bug report. The questionnaire is composed of two
parts: (1) We collect demographic information inquiring about expertise with programming
and with submitting, handling, and fixing bug reports; and (2) we collect information about
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Table 7.1. Expertise of the participants of the survey (average)

Activity Average
Experience with Object Oriented programming languages 1.5
Knowledge of Pharo 1.3
Have often bug reports assigned −0.4
Often handle bug reports 0.6
Often participate in discussion in bug reports 0.3
Often submit bug reports 0.7

Table 7.2. Overview of the projects in the dataset

Issues
Project First Last Count Age (days) Frequency

A
pa

ch
e

Cassandra Mar 7, 2009 Jul 8, 2015 9,723 2,314 5h 42m
Hadoop Jul 24, 2005 Jul 8, 2015 10,191 3,635 8h 33m
Lucene Oct 9, 2001 Jul 8, 2015 6,641 5,019 18h 8m
Maven Nov 20, 2002 Jul 23, 2015 4,663 4,628 23h 49m
Mahout Jan 30, 2008 Jun 25, 2015 1,752 2,702 37h 6m
Pig Nov 2, 2007 Jul 7, 2015 767 2,804 87h 44m
Sorl Jan 25, 2006 Jul 8, 2015 7,728 3,451 10h 43m
Zookeeper Jun 6, 2008 Jul 3, 2015 2,207 2,582 28h 4m

M
oz

ill
a

Air Mozilla Apr 14, 2009 Jun 16, 2015 509 2,254 106h 16m
Bugzilla Apr 15, 1998 Jul 27, 2015 19,395 6,312 7h48m
Core Mar 28, 1997 Jul 17, 2015 292,358 6,684 33m
Firefox Jul 30, 1999 Jul 8, 2015 155,078 5,821 54m
Firefox for Android Sep 11, 2008 Jul 28, 2015 18,906 2,510 19m
SeaMonkey Nov 10, 1995 Jul 27, 2015 92,757 7,198 1h 51m
Thunderbird Jan 2, 2000 Jul 8, 2015 42,247 5,666 3h13m

respondents’ perception of how difficult it is to provide different kinds of information when
submitting a bug report. All the questions are formulated as statements (e.g., “It is easy to provide
a description of the failure”) and the respondents have to declare their agreement using a 5-level
Likert-type scale. We map the results into an integer scale from −2 (i.e., “strongly disagree”) to 2
(i.e., “strongly agree”).

We advertised the survey through the development mailing list of Pharo and we received a
total of 22 complete responses. Table 7.1 summarizes the respondents’ expertise. The respondents
are experienced with object-oriented programming and with the Pharo IDE. While they have
experience in submitting and handling bug reports, their experience is lower in participating
in discussions about bug reports and much lower in having reports assigned to them. For this
reason, we deem the respondents’ sample to be in line with the aim of our survey. In fact, we are
especially interested in knowing the point of view of submitters of bug reports, rather than the
view of the developers that “consume” these reports [ZPB+10].

7.2.3 Data Collection

To understand what users and developers collect and provide in bug reports, we mined the
contents of the issue trackers of several software projects. To collect real development data for our
study, we consider the Apache Foundation and the Mozilla Foundation: Both platforms contain
a considerable number of popular and active open source projects, with years of development
history. Moreover, both platforms host several projects tracked on public, dedicated bug trackers:



82 What Makes a Satisficing Bug Report?

Mozilla uses BUGZILLA, Apache uses JIRA. They offer a public REST API to access their repositories
in JSON format, allowing for a clean and reliable data collection.

We built a downloader and an importer to collect the data, serialize the contents of each
report, and store the polished data in a POSTGRESQL database. Table 7.2 describes our dataset.

The dataset contains more than 650,000 bug reports, 15% of which were still open during the
data collection phase. Table 7.3 shows an aggregated summary of the dataset we collected. Each
bug tracker has a different set of bug report states.

Table 7.3. Contents of the dataset

Apache Mozilla Total
Open issues 7,545 91,336 98,881
Closed issues 36,127 529,914 566,041
Total Issues 43,672 621,250 664,922

Table 7.4 details them, for each tracker, with the counts of the bug reports for each state at
the moment of the download.

Table 7.4. Different states of bug reports in Bugzilla and JIRA, with the count of the reports currently in
each state and the total sum of all the times a bug report reached a state.

Tracker State Current Total
JIRA Closed 21,847 22,460

Resolved 14,280 33,386
Open 6,736 43,203
Patch Available 471 18,944
Reopened 235 3,042
In Progress 84 2,175
Awaiting Feedback 14 15
Testing 4 86
Ready to Commit 1 3

Bugzilla RESOLVED 391,919 579,488
VERIFIED 136,783 143,082
NEW 65,816 353,264
UNCONFIRMED 19,821 297,319
ASSIGNED 3,701 129,057
REOPENED 1,998 32,745
CLOSED 1,212 1,537

7.2.4 Data Analysis Techniques

The large volume of data we collected enables us to explore the usage of issue trackers and to
investigate the common practices of bug tracking. Understanding these aspects can help us to
answer our questions and verify whether the usage of the properties of a tracker influences the
life of a report.

To investigate our research questions, we adopt the following approach. To answer RQ3, we
build a transition diagram of all the state changes for each issue tracker, to highlight the common
patterns in the growth of a report, and we weight the nodes and edges of the diagram with the
values from the dataset. To answer RQ4, we build a machine-learning-based prediction model to
verify how completeness of fields of a bug report relates to its lifetime.
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Figure 7.1. Survey results: The higher the values, the easier it is to provide the corresponding information,
according to the respondents’ perception.

7.3 Results

The data we collected allowed us to reply to the research questions in Section 7.2.1. We review
them in order.

RQ1: What are the elements that are perceived as difficult to provide while reporting a
defect?

We asked respondents how easy it is to provide 13 different elements in a report, using a 5-level
Likert scale from −2 (“strongly disagree”) to 2 (“strongly agree”). Figure 7.1 shows a summary
of their answers, sorted by increasing difficulty as reported by the respondents. The majority of
the users does not find excessively hard to provide most of the elements. This is due to the fact
that the Pharo community is composed of experienced programmers. Interestingly, finding the
assignee is not considered excessively difficult: Again, this can relate to the community experience,
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that has a strong core of well-known developers that work as hub when dealing with defects. The
elements considered to be harder to provide are the entity (e.g., class, file) that likely contains the
defect, the steps to reproduce the failure, and a test case showing the defect.

Conclusion

Figure 7.1 shows that some elements are perceived as more difficult to provide when submitting
a bug report. There is a set of easier elements, like screenshots, descriptions of the failure, stack
traces, and the details of the operating system and hardware. Those elements are useful in
identifying the defect, but are less effective than other elements we identified to support its
resolution.
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Figure 7.2. Conceptual diagram of the model of a new bug report

RQ2: What is a comprehensive unified meta-model for describing data from different
bug tracking systems?

To devise a unified meta-model for the data we collected from the different issue trackers, we
extract the model for each separate platform by reverse engineering the data and by using the
documentation for the various trackers. We identify the entities that compose a bug report, the
fields composing it, and the relation between the various entities. We intersect the list of each
bug report and select the most common ones, to summarize the salient traits of a bug report.
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Anatomy of a Report

Issue trackers are platform independent: They share a flexible common core structure to meet all
the possible requirements of a software system’s development process. A bug report is then built
around a text description of an issue, where the user can specify the steps to reproduce the issue
or include snippets of code that exemplify the context where the issue may happen.

The text description is complemented by additional metadata, used to improve the report
and to track the evolution of the bug, and it can also contain attachments, like stack traces and
patches. While the description of the issue and the possibility to attach files is common to all
issue trackers, the metadata used to integrate the description differ in each platform. We can
classify these attributes in three layers:

◦ Common: metadata in every report in each platform, i.e., the core set of attributes that describes
a bug report.

◦ Platform specific: metadata that are used throughout a single platform.

◦ Project specific: custom metadata set by the users, used in a single project.

The Model

From the list of entities in a tracker and their list of metadata, we built a model to access the data.
Given our focus, we present a view of the model from the submitter’s point of view. Figure 7.2
shows the conceptual diagram of the unified model for a typical bug tracking system with the
frequencies of use for the common fields and trimmed of the post-report information.

◦ Issue: The main entity representing a bug report, with the text description and the metadata
provided by the user.

◦ Comment: User-provided additional information on a report.

◦ Edit: A change in the existing report. It can group several changes.

◦ AttributeEdit: A change to a single element: It contains the modified attribute, the added, and
removed text.

◦ Link: The relation (if any) to another report. A link maps the connection and defines the type
of relation (e.g., parent or duplicate).

◦ Project: The project the issue tracker refers to (e.g., Firefox).

◦ Product: A single instance of an issue tracking platform (e.g., Bugzilla or JIRA).

◦ Component: The area of the code affected by the defect.

◦ Versions: The software version(s) where the bug was observed.

◦ Milestone: The software version(s) targeted for a fix, for planning purposes.

There are additional attributes that are not present in every platform. To map these specific
elements, there are entities that derive from ISSUE (e.g., BUGZILLA_ISSUE).

These entities contain the fields other_fields and custom_fields. These are two dictionary
fields that collect all the fields that are not represented in each model, in an unstructured fashion.
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Figure 7.3. Transition graph of all the states in JIRA

The field other_fields contains the information from a specific bug tracker, shared in all the
projects in that database (like the field alias in BUGZILLA). The field custom_fields contains
non standard attributes that are customized by the maintainer of each project. For example,
the attribute cf_status_firefox41, of the project FIREFOX in BUGZILLA. Some fields may seem
redundant: For example, the field updated_at of ISSUE could be derived by the information
contained it the EDITs; we tolerate a small degree of duplication of the data, in exchange for
flexibility and completeness with different bug reporting systems.

RQ3: What are the recurrent states and transitions in reports?

We tracked the evolution of bug reports using the state attribute, which is an enumeration from a
set of predefined states. Table 7.4 shows the states used in the two bug trackers we consider. Each
platform proposes different conventions to map the state of a report. Often, different projects use
the same states in a different context and a different distribution, e.g., bug reports in JIRA converge
toward the CLOSED state, while in BUGZILLA they converge toward a state called RESOLVED. We
analyze the state changes by building a transition graph, with an approach similar to the one used
by D’Ambros et al. [DLP07].

Figure 7.3 and Figure 7.4 show the transition diagrams for JIRA and BUGZILLA obtained by
the collected data.

In the diagrams each node is a state, where the area grows with the number of reports that
traverse that state, as presented in Table 7.4. Each arc between two states indicates a transition



7.3 Results 87

from one state to another and its width represents the total number of transitions. The diagram
excludes all edges that make up less than 1% of all the transitions. Given Figure 7.3 and Figure 7.4
we can classify the states in three groups:

◦ Active states: The first group contains the most active states (i.e., touched by the majority of
bug reports), that are often involved in loops between them.

◦ Intermediate states: These states (e.g., TESTING, IN PROGRESS, REOPENED) indicate states where
an action is taking place or expected (e.g., a patch is waiting for review or the continuous
integration server is running the tests).

◦ Unused states: Some states are rarely used: AWAITING FEEDBACK and READY TO COMMIT. They
represent some corner cases that detail extremely specific aspects of the fixing activity. Their
very low usage may hint at a little interest in tracking these aspects in this way.

The analysis highlights that some projects do adopt customized states to track the intermediate
aspects of their projects’ workflow, but they tend to be not used in practice.

Conclusion. The analysis on the usage of the states in Section 7.3 seems to suggest that:

◦ A simple model with a few states, as the one described by D’Ambros et al. [DLP07], satisfies
the need of tracking the state of an issue;

◦ Adding customized values to describe additional specific and intermediate steps in the fixing
process is not working to track a better evolution of the state of a report.

The latter aspect is strengthened by the fact that JIRA offers less states than BUGZILLA, but
these additional states are rarely used in practice.

RQ4: Does the completeness of standard and project-specific attributes in a bug report
relate to its lifetime?

To investigate the impact that the fields have on solving a defect, we considered the lifetime
(defined as the time to the final fix) of the closed reports.

In addition to its standard set of attributes, each issue tracker we consider allows projects to
define additional fields to customize the structure of a bug report. In our study, we group all the
attributes in three layers:

◦ Core Fields: The fields that are common to all projects and all the issue trackers. They map the
essential information to describe a software defect;

◦ Tracker-Specific Fields: The fields that are shared among all the projects in an issue tracker, but
are not present in all the platforms;

◦ Project-Specific Fields: The fields that are customized by the user and appear only in a single
project.

Each project in our dataset specifies its own set of custom fields. We also investigate whether
these fields have a measurable impact on the lifetime of a bug report.

Table 7.5 shows a count of project-specific attributes in our dataset, including the average
and maximum lifetimes of the corresponding bug reports, reported in days.

We now explore the relationship between the various attributes adopted by the different
platforms and projects we considered and the effectiveness of a bug report, measured as its
lifetime.
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Preparing the data

To interact with the dataset, we created a vector space model to allow us to test statistical and
machine learning approaches. Predicting the exact lifetime of a report would be unpractical
and unnecessary: a timeframe for the resolution would provide a useful, human-understandable
measure, while allowing more accurate predictions. To introduce such a degree of tolerance, we
divide the reports into buckets according to their lifetime.

Using bucketing we can deal with discrete values and adopt a classification approach, as
opposed to a regression to predict a continuous variable. We split the lifetime space into four
buckets: less than one day, less than one week, less than one month, and more than one month.
We chose these intervals because they reflect humane time periods and they describe increasing
timespans, reflecting that the longer a bug report stays open, the less relevant its exact resolution
time becomes. After bucketing the issues, we model each report as a vector of booleans (each
field maps an attribute of the report and its value is 1 iff the user filled it) and associate it with its
classification into a bucket of lifetime, which we can feed to different prediction algorithms.

Principal Component Analysis

To understand the relation between the completeness of a bug report and the fixing time of a
defect, we want to inspect how much each field contributes to the lifetime of a bug report.

For this purpose, we use Principal Component Analysis (PCA) [AW10] to extract the variance
between the different fields. PCA is a statistical procedure that aims to extract only the salient
features from a data table. PCA transforms the existing data into variables called principal
components, which are described as a linear combination of the existing features. The other
features are then projected on the principal components.
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Table 7.5. Number of custom fields per project

Project # of fields Avg. lifetime (d) Max lifetime (d)
Air Mozilla 5 154 1,004
Bugzilla 5 343 5,650
Core 142 227 5,936
Firefox 112 235 5,314
Firefox for Android 89 76 2,176
SeaMonkey 90 278 5,437
Thunderbird 74 259 5,451
Cassandra 11 61 1,728
Hadoop 13 172 3,012
Lucene 13 182 3,787
Mahout 11 94 1,235
Maven 9 402 3,443
Pig 11 72 2,149
Sorl 7 148 2,858
Zookeeper 12 158 2,108

The components extracted by PCA represent the eigenvectors of the covariance matrix. In-
ternally, PCA implements a single value decomposition to extract the scores of the factors. The
number of components to extract is an open problem, but generally, when solving a correlation
problem, PCA keeps the components that have an eigenvalue above the average.

We use PCA to determine which combination of fields carries the most information with
respect to the lifetime of a defect, by observing which elements are selected to compose the
principal components. To interpret the results and obtain a general set of fields that influence the
lifetime of a bug report, we consider the core fields of the projects. This operation gives us the
important fields that impact the lifetime of a bug report.

After running PCA, we obtain a set of new components that can be used to map the dataset.
We are not interested in the new features per-se, but — since the features of the dataset are the
fields of the bug reports — we investigate which original features were selected to describe the
components.

We then inspect how the components are calculated, obtaining the following selected fields:

◦ assignee_id: the person the bug report is assigned to;

◦ creator_id: the person that submitted the bug report;

◦ description: the number of words in the description of a bug report;

◦ duedate: if the bug report has a due date;

◦ reporter_id: the person that initially reported the defect (can be different than the creator)

◦ summary: the number of words in the summary of the bug report.

These fields were extracted by the algorithm as the most relevant in impacting the lifetime of
a bug report. Although they do not represent the whole amount of information that is needed to
describe a software defect, the fact that they were selected by PCA indicates that their contribution
in determining the lifetime of a report is significant. It follows that users and developers should
take these elements into account when submitting a bug report and the issue tracker should
ensure that these fields are exploited accordingly.
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Predicting the Lifetime of a Defect

We studied the core fields that are the most relevant in impacting the lifetime. Now we investigate
how the lifetime gets influenced by the different fields defined by each project. For such an
analysis PCA is not suited, as the data is too sparse and the features would be discarded in the
process. We therefore adopt a machine learning approach to estimate an approximate lifetime of
a bug report given its “completeness,” i.e., the number of completed fields when submitted.

We verify the impact on the prediction of the different levels of attributes using various machine
learning algorithms on our model, by employing the SCIKIT-LEARN analysis tools [PVG+11]. In
particular, we used Naïve Bayes [Mit97], Decision Trees [Mit97], AdaBoost [Bis06], and Random
Forest [BS01] and validated our approach using k-fold cross-validation. We balance the training
dataset to get homogeneous buckets containing 50,000 bug reports each, to prevent the different
distribution of the sets to give a bias towards the biggest buckets [BPM04]. In this context, a
random classifier would correctly classify 0.25 of the instances, so a classifier is better than random
if it achieves a higher proportion.

Table 7.6 shows the prediction results: Each column represent a classifier, while each row
represents each layer of attributes we add to the model.

Table 7.6. Prediction results: Proportion of bug reports classified in the correct time bucket, with increment
over random classification (25% correctly classified bug reports).

NB DT AdaBoost RF
Common 0.27 (+0.02) 0.27 (+0.02) 0.27 (+0.02) 0.27 (+0.02)
+ words 0.28 (+0.03) 0.28 (+0.03) 0.29 (+0.04) 0.28 (+0.03)
+ tracker 0.36 (+0.11) 0.36 (+0.11) 0.42 (+0.17) 0.36 (+0.11)
+ project 0.37 (+0.12) 0.36 (+0.11) 0.42 (+0.17) 0.37 (+0.12)

In the first round we use the common attributes displayed in Figure 7.2; in the second, we add
the number of words that compose the summary and the description of the report; in the third,
we add the tracker features, i.e., the attributes that appear in some issue trackers; in the last, we
add the project features, i.e., the non standard attributes that are customized by the users of the
platform. We follow this order to increasingly add the more and more specific fields and evaluate
the impact that the different customizations have on the overall model. We can see from Table 7.6
that the best results are achieved by AdaBoost [Bis06] using the tracker-specific fields, with an
overall accuracy of 0.42. Differently from the shared and tracker-specific fields, the project-fields
may vary over time. They are, in fact, constantly added: Firefox, for example, adds a new custom
field specific for each release, which happens once every 6 weeks. This mutability can raise the
question whether the contribution of these fields is diluted in such a long timespan. To mitigate
this effect, we recompute our experiments on the subset of bug reports collected in the timeframe
that starts exactly one year before the dataset collection. The new dataset is composed of 31,472
bug reports. Table 7.7 shows the results of our second batch of experiments.

Table 7.7. Prediction results for bug reports of last year.

NB DT AdaBoost RF
Common 0.27 (+0.02) 0.28 (+0.03) 0.28 (+0.03) 0.28 (+0.03)
+ words 0.30 (+0.05) 0.30 (+0.05) 0.33 (+0.08) 0.30 (+0.05)
+ tracker 0.34 (+0.09) 0.37 (+0.12) 0.46 (+0.21) 0.39 (+0.14)
+ project 0.35 (+0.10) 0.39 (+0.14) 0.46 (+0.21) 0.42 (+0.17)

Indeed, the results on the most recent dataset do not differ significantly from the results based
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on much longer timespans.

7.4 Discussion

From our study using PCA, we observe that there exists a set of core elements of a bug report that
impact and influence its lifetime. Comparing these result with the perceived difficulty presented
in RQ1, we see that some of these elements, like a description of the problem, the screenshot or
the stack trace, compose the description field that we saw impacting the resolution time. Another
relevant element is the assignee of the report, but users find it hard to provide it. Interestingly,
the elements that are the most useful in the resolution of a software defect are also harder to
provide. From the experience studying the various issue trackers and their user interfaces, we
believe that a user submitting a bug report should be offered a clean interface, that minimizes
the amount of required information, highlights the most effective elements, and progressively
requires the harder or less relevant ones. It is interesting to see how the recent issue tracker
provided by GITHUB follows the same approach by providing a simple and clean interface. The
AdaBoost machine learning model achieves the best results, yet it can only predict the lifetime of
a limited number of bug reports. The increment over a random classifier prediction is particularly
small for the common attributes. This can be explained by the terse nature of the core model.
Moreover, the tracker fields improve prediction, showing a relation between more detailed bug
reports and bug lifetime.

After calculating the lifetime of each bug report in the tracker, we compare data from the
two considered platforms. By analyzing the average lifetime of the bug reports in each platform
we note that they have a longer lifespan on BUGZILLA than on JIRA, with an average fixing time
of 239 and 166 days, respectively. Even if the longer life of BUGZILLA projects may explain this
phenomenon, we measure a gap between the lifetime of the reports in the two platforms (109
days for BUGZILLA and 93 days for JIRA), even when we restrict ourselves to consider reports
submitted after 2009 (i.e., when all the projects were active). There is an interesting, unexplained
substantial difference in the way bug reports are processed in the two platforms. Studies can be
designed and carried out to determine whether and how the bug reporting system itself leads to
this behavior or there is a possibly unconscious self-selection of projects in using one or the other
system. Concerning project-specific attributes, from the results of the test, depicted in Table 7.6
and Table 7.7, it emerges that they have the least weight in predicting the lifetime of a report.
This suggests that they are not related to the fixing time. This may be a hint that these fields
probably track collateral aspects of the evolution of a report that are not related to how quick a
bug will be solved.

Last, we examine which fields impact the prediction the most: They are the number of words
of the description and the summary, suggesting that an accurate description of the problem is
important to engage the developers. The fields that connect the issue with other reports are
also relevant, for example the dependent issues, as well as the fact that a bug report is already
assigned at the time of submission.

7.4.1 Threats to Validity

Dealing with large amounts of data can pose some problems in creating an abstraction sufficiently
broad to comprise all the aspects of the data, but still specific enough to capture its details. We
spent a considerable amount of time dealing with the representation of the data, extracting its
features and cleaning the unneeded parts. In particular, we carefully excluded from our prediction
model all the fields that could yield a-posteriori information on the lifetime of a report. In a large
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dataset it is hard, however, to guarantee the complete soundness of the whole corpus, that could
contain hidden relations between some attributes.

There is the concern that the lifetime of a bug report, that we used as a measure of quality of
a bug report, is not relevant for our task. However, this metric proved to be an interesting open
problem in the field and it represents an interesting heuristic in determining the effectiveness of a
report.

7.4.2 Next Steps

By the usage that we observed in our dataset, we gather that developers tend to use simple models
in describing software defects. Even when provided with customization means, the additional
information did not show a correlation with the lifetime of a report. Modern issue trackers like
JIRA and BUGZILLA are complex interfaces over a set of tables in a relational database and the need
for additional features over time makes those platforms grow over time, progressively turning
them into inflexible colossi.

GitHub adopts the opposite approach, by providing a minimal structure of a bug report that is
mostly a note attached to a commit or a piece of code. This interesting approach, however, lacks
the descriptive power of the other two platforms. The need for a simpler model is hinted by the
choices of the development team of BUGZILLA that on version 5.0, released in July 2015, proposes
a simplified interface that asks the user for a summary and a description of the problem, polished
of all the additional information.

We believe that the future of issue tracking systems lies in flexible structures that can dynami-
cally adapt to different aspects of the development activity.

7.5 Outline

We conducted an investigation to identify the features that are relevant to obtain a satisficing bug
report. In doing so, we provided the following contributions:

1. An overview of the perceived difficulty of submitting elements of a bug report for users;

2. A meta-model for bug reports that represents both the common and specific elements
available in reports of different issue trackers;

3. A publicly available dataset of more than 650,000 bug reports, modeled according to our
meta-model;

4. An analysis of the contents of the issue trackers, to identify features that are related to
reports’ lifecycle;

5. Evidence that increasing the number of fields provided when submitting a bug report has
little relation on shortening the lifetime of a bug.

This chapter concludes our discussion about collecting information about bugs. We proposed
different approaches to support developers in their bug fixing activity. We used automation
to collect reliable data, we built visualizations to provide effective access to the data, and we
discussed how we can improve the model of a bug report. We are still left, however, with the
issue that bug fixing is intrinsically a boring and tedious activity. In the next chapter we try to
mitigate this problem by exploring the field of gamification, investigating whether its use can help
developers and communities in processing the large amount of unstructured information that
populates issue tracking systems.
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How to Gamify Software Engineering

All our efforts up to this moment were aimed at reducing the time spent dealing with bug reports
by providing tools to access the data in a faster way than just plaintext. Providing faster and
smarter tools solves the problem of reducing maintenance costs, but does little to improve the
fundamental issue of engaging developers and contributors. Software development, like any
prolonged and intellectually demanding activity, can negatively affect the motivation of developers.
This is especially true in specific areas of software engineering, such as requirements engineering,
test-driven development, bug reporting and fixing, where the creative aspects of programming
fall short. The developers’ engagement might progressively degrade, potentially impacting their
work’s quality.

Gamification, the use of game elements and game design techniques in non-game contexts, is
hailed as a means to boost the motivation of people for a wide range of rote activities. Indeed,
well-designed games deeply involve gamers in a positive loop of production, feedback, and reward,
eliciting desirable feelings like happiness and collaboration.

The question we investigate is how the seemingly frivolous context of games and gamification
can be ported to the technically challenging and sober domain of software engineering. Our
investigation starts with a review of the state of the art of gamification, supported by a motivating
scenario to expose how gamification elements can be integrated in software engineering. We
provide a set of basic building blocks to apply gamification techniques, present a conceptual
framework to do so, illustrated in two usage contexts, and critically discuss our findings.

Structure of the Chapter

In Section 8.1 we provide an in-depth introduction to gamification, while in Section 8.2 we present
its principles. In Section 8.3 we discuss the applicability of gamification principles in a software
engineering context, while in Section 8.4 we introduce a framework for applying gamification to
a software project.

In Section 8.5 we propose some guidelines to evaluate the effectiveness of a gamified system,
while in Section 8.6 we discuss the possible improvements of our work. Finally, in Section 8.7,
we summarize and conclude the chapter.

93
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8.1 The Rise of Gamification

Games have been a fundamental part of human civilization for thousands of years. In 440 BC
Herodotus wrote about the Kingdom of Lydia in Asia Minor, where 3 millennia before his time
the Lydians invented several games, such as the dice and the ball, to overcome an 18 year long
famine. They would engage in games one day so entirely as not to feel any craving for food, and
the next day to eat and abstain from games [HerBC]. While it is unclear whether the story is true,
its moral truths reveal the essence of games, which is not escapism, but rather a purposeful and
helpful activity to cope with the sometimes adverse or boring reality, which McGonigal goes even
as far as to call it a “broken reality” [McG11].

Gamification is defined by Werbach and Hunter as “The use of game elements and game-design
techniques in non-game contexts” [WH12]. The concept, not to be mistaken with Game Theory,
was pioneered in the 1980s by Richard Bartle, the inventor of the first MUD (Multi-User Dungeon)
game, who defined gamification as “turning something not a game into a game” [Bar03].

But, what is a game? According to McGonigal [McG11] all games share four defining traits: a
goal, rules, a feedback system, and voluntary participation. The goal gives a sense of purpose. The
rules unleash creativity and foster strategic thinking. The feedback system provides motivation.
The voluntary participation makes the experience safe and pleasurable. Suits sums it up with
“playing a game is the voluntary attempt to overcome unnecessary obstacles” [Sui05].

McGonigal provides several examples of contexts where the performance of subjects has been
boosted through gamification [McG11]. The contexts range from house holding chores to physical
exercise. While this may seem remote from the software engineering domain, Werbach and Hunter
provide an illuminating example closer to our discipline: Microsoft’s testing team in charge of the
multi-language aspect of Windows 7 invented the Language Quality Game, recruiting thousands
of participants who reviewed over half a million dialog boxes, logging 6,700 bug reports, resulting
in hundreds of fixes [WH12]. Another example is StackOverflow, a popular Q&A website, where
asking and answering technical questions is rewarded with points and badges. There is evidence
that this gamification mechanism is in part responsible for StackOverflow’s success [VFS13].

Lured by this success, one could be tempted to spread a gamification layer on any kind of
software engineering activity. The questions we answer in this chapter is not only how such a
thing can be done in a systematic way, but also whether and when this can lead to a desirable
outcome, i.e., higher motivation in developers and increased productivity. First, let us make
a small digression in the realm of psychology. Behaviorism is an approach to psychology that
combines elements of philosophy, methodology, and theory. Its tenet, expressed in the writings of
Skinner [Ski78], is that psychology should concern itself with the observable behavior of people
and animals, not with unobservable events that take place in their minds. Skinner was a firm
believer of the idea that human free will is an illusion and that any human action is the result of
the consequences of that same action: If the consequences are bad, there is a high chance that
the action is not repeated; however if the consequences are good, the actions that led to it will be
reinforced. Put simply, this is the approach “if you do this, you’ll get that”.

Gamification is related to behaviorism, as it is built on the concept of rewards (points, badges,
etc.) for specific actions. However, contrary to the intuition of many, there is substantial evidence
that behaviorism does not work: Kohn describes several experiments (for diverse contexts, such as
losing weight, quitting smoking, etc.) which revealed that “token programs show behavior change
only while contingent token reinforcement is being delivered. Removal of token reinforcement
results in a return to baseline performance” [Koh93]. In essence: When the goodies stop, people
go back to acting the way they did before. Other studies done in schools and work places even
brought forth evidence that subjects who were rewarded for doing certain things were performing



8.1 The Rise of Gamification 95

poorer than subjects who did not receive rewards.
A popular, almost archetypal example of a supposed failure of gamification is the recent

removal of the badges and points from the localized search and discovery app Fourquare1. While
Foursquare’s gamification layer has probably been the cause of its initial growth and success,
it was so emphasized that users ended up considering Foursquare just as a game, and not as a
business application. FourSquare’s CEO declared that gamification was phased out because of a
perception problem of the real purpose of the app itself2.

How can the success stories mentioned previously be explained, then? Is gamification a lost
cause? We believe the answer is no, for a number of reasons.

First, gamification is only partially connected to behaviorism. A key point is that games
represent voluntary efforts of the subjects to do something, while behaviorism was conceived as a
way to (sometimes forcefully) influence the behavior.

Second, “simple” behaviorism is built on fairly tight feedback loops (do this and you get
that), while well implemented gamification, such as the one in StackOverflow, has a much longer
running time. Moreover, taking StackOverflow as an example, the presence of an Avatar who is
being assigned rewards represents a key ingredient of successful gamification, as we will later see.

Third, and most important, the rewards that come out of successful gamification are not of
a venal nature, but according to McGonigal they fall into four categories, that in conjunction
represent “the foundation for optimal human experience [..], they’re the most powerful motivations
we have other than our basic human needs (food, safety, and sex)” [McG11]. These four categories
are satisfying work, the experience/hope of being successful, a social connection, and a deeper
meaning. We will discuss these aspects in the coming sections.

Summing it up, gamification is not about rewarding people with trinkets and tokens, it is
about enriching their activities with “gameful” aspects. As this represents a fairly novel field,
we have performed an in-depth investigation of the topic [Mas14], which we distill here into a
systematic approach for the gamification of software engineering.

With this chapter we make the following contributions:

• An in-depth discussion of the principles, promises, and perils of gamification (Section 8.2).

• A conceptual framework with which one can gamify software engineering activities (Sec-
tion 8.4).

• A set of reusable building blocks that serve as a foundation for our gamification framework
(Section 8.4.1).

• An illustration, through several concrete examples and scenarios, of how our gamification
framework can be used for the gamification of diverse software engineering activities
(Section 8.4.2 and Section 8.4.3).

• A critical discussion about our findings and a roadmap for future work in this area (Sec-
tion 8.7).

1https://foursquare.com
2See http://www.gamification.co/2013/03/15/the-removal-of-foursquare-gamification/. Interestingly, the phasing

out backfired, leading to a sensible reduction of the user base growth.

https://foursquare.com
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8.2 Games and Gamification

First, we discuss the principles of game design (Section 8.2.1) and gamification (Section 8.2.2).
This will help us to understand how the obtained background can be leveraged to apply gamifica-
tion in software engineering.

8.2.1 Why Do We Play Games

The idea that games can be adapted to positively influence tasks and activities in other domains is
older than the term gamification, which only gained popularity in the recent years.

In 1980, Malone [Mal80] studied what makes computer games captivating to extract the
features that can be used to support teaching. He considered two types of motivation: extrinsic
motivation, triggered by means of a reward, and intrinsic motivation, triggered by the satisfaction
of performing an action. Malone identified three main elements that influence the engagement in
a game:

(a) Challenge introduces uncertainty through hidden information, randomness, cognitive limita-
tion of players, and variable difficulty. Self-contained and small goals are better than long
term ones at sustaining performance and interest in an activity.

(b) Fantasy refers to the mental images of things and situations out of the actual experience of
the player. Malone discerns two types of fantasies: Extrinsic fantasies that depend weakly on
the skills used in a game, and intrinsic fantasies that the player feels while using a particular
skill in the game.

(c) Curiosity arises from incomplete or contradictory knowledge. Sensory curiosity regards
the attraction toward changes in the environment, while cognitive curiosity concerns the
expectation of reaching a higher level of cognitive structures.

Building on Malone’s work, Gee [Gee03] identified 36 learning principles crucial in video
games and learning contexts, which we present in summarized form to identify the salient traits:

• Learning Process: the learner creates a mental model of the domain, and probes it to test
her knowledge. The cycle of creating hypotheses and testing them is a crucial element of
games and learning processes, and is present in humans already at the infancy stage.

• Sources of Knowledge: Learners acquire knowledge through several modalities includ-
ing images, words, sounds, symbols, interactions, abstractions, etc. All this leads to an
enrichment of the person playing.

• Path to Competence: Learners reach some achievements for which they receive intrinsic
rewards, which also works as feedback. The learning process is performed slightly outside
the comfort zone of the learner, so that the learner perceives the activity as “challenging but
not unfeasible”. This connects to the concept of “Flow”, defined by Csikszentmihalyi [Csi90]
as the mental state of operation in which a person performing an activity is fully immersed
in a feeling of energized focus, full involvement, and enjoyment in the process of the activity.

• Safe Environment: The environment where leaners operate is designed to keep low risks
for each action, to allow exploring without facing serious consequences. In essence, dying in
a game is not a bad thing, because it usually leads to learning. Moreover, the environment
is disclosed gradually, to let the learner discover new parts of the subject domain, thus also
feeding curiosity.
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• Learning Progress: The process of learning begins with a simplified image of the real
domain. What the apprentice learns in earlier steps leads to abstractions of the concept that
she can use again in similar situations. Learners build their knowledge “bottom-up”, starting
from basic skills, and making up hypotheses when a more complex case shows up, exploiting
what they previously found. This feeds again curiosity and reinforces self-confidence.

In “Reality is Broken” [McG11] McGonigal suggests that the use of game elements can help
making daily life and reality more interesting and engaging. She defines games as a combination
of a goal, rules, feedback and voluntary participation; this makes games perfect environments
to (im)prove our own capabilities. Pushing our skills to their limit, and then some more, means
“producing hard work”, and provide a sense of achievement that is the exact opposite of depression.
The immersion created from voluntary work can improve the mood for hours or days, “because
when the source of positive emotion is yourself, it is renewable” [McG11]. McGonigal identifies
four crucial elements that should be craved to achieve happiness: satisfying work, hope of being
successful, social connection, and meaning. The use of games elicit positive participation towards
a common interest, thus helping the development of communities. To improve the engagement
in reality, she proposes a sustainable engagement economy built around intrinsic rewards. She
defines collaboration as the sum of three types of concerted effort: cooperation (acting voluntarily
toward a common goal), coordination (synchronising activities and resources), and co-creation
(producing a result together).

Massively multi-player online games are illuminating embodiments of this concept: Even
when competing for resources, the players constantly collaborate in the definition of the game
world. McGonigal also proposes the idea that different affinity groups can collaborate and give
value to the different qualities of each community, to create a superstructure that is able to solve
problems that each single group would not be able to tackle. “A superstructure brings together two
or more different communities that do not already work together. A superstructure is designed
to help solve a big, complex problem that no single existing organization can solve alone. A
superstructure harnesses the unique resources, skills, and activities of each of its subgroups.
Everyone contributes something different, and together they create a solution” [McG11].

In essence, games enrich gamers and provoke positive emotion, which, if leveraged, help to
structure experience and provide a powerful tool for inspiring participation and motiving hard
work.

8.2.2 Gamification: Principles, Promises & Perils

Werbach and Hunter summarized the positive effects of a well designed gamification system
as [WH12]: i) Inherent relatedness, i.e., being part of something bigger than ourselves; ii) Rewards
for doing good, i.e., doing activities that are self-rewarding; iii) Behaviour change, i.e., getting
people doing something that they did not use to do or they did not engage in, changing their
habits.

According to Huizinga [Hui71], there is a virtual line that separates the game world from
the real world. When a person is in this magic circle, the game rules matter over the rules of the
real world. The purpose of gamification is to put the user in the magic circle, emphasizing the
attitudes of voluntariness, learning, problem solving and exploration.

The most common form of feedback used in games is the PLB Triad, where PLB stands for Points-
Badges-Leaderboards. Points, Badges, and Leaderboards are also widely used in gamification
systems, because they appear to work moderately well as extrinsic motivators. To introduce a
gamification layer on a real or virtual system, the first step is to understand whether there are the
right assumptions to make it successful, which Werbach and Hunter [WH12] identified as:
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• Motivation: Where to derive value from to encourage a certain behaviour?

• Meaningful Choices: Are the target activities sufficiently interesting?

• Structure: Can the desired behaviors be modeled through algorithms?

• Potential Conflicts: Does the game avoid tension with other motivational structures?

This schema must be considered in every phase of the gamification of a system, and used
to verify the ideas that survive the review process. Depending on which game dynamics and
techniques the game designers exploit, a gamified system takes a particular shape, often in the
following forms:

• Inducement Prizes: They define a competitive game environment concretized into a contest
to motivate efficiency, creativity, and flexibility. Prizes can assume several forms, where the
PLB Triad is most frequent.

• Collective Action: This is a collaborative game context where people come together and
accomplish a task. The main requirement is that the tasks can be split up to exploit “crowd
sourcing”.

• Virtual Economies: Small, complete and structured economies that arise in virtual worlds.
A well-known example comes from loyalty programs (like the ones of supermarket chains).
The risk of crossing the line between virtual and real economies is often underestimated.

Adopting a gamification system means modifying the behavior of people and influencing
their routine, which, as we have seen in the introduction might actually backfire. As such, it
represents a delicate matter that may negatively impact well functioning parts of the system. Put
simply: Adding a reward to a boring task may help to motivate the user, but will not turn it into
an engaging activity.

Similarly, gamifying an already interesting activity may move the focus from the activity itself
to the reward system. For example, Grant and Betts [GB13] carried out a study on the behavior
of Stack Overflow users, and showed that many new users work intensively to acquire the easiest
badges as quickly as possible, with increased user activity immediately before the awarding of a
badge and a strong activity decrease in the period afterwards.

In general, gamification succeeds at the workplace only when it is well designed and the
employees truly consent to it. Also, it was discovered that the most reliable predictor of consent
to Gamification comes from the fact that employees are used to play games in their free time or
not: A person used to gameplay has less difficulties in embracing the experience of the game,
catching its rules, and engaging it [MR13].

Alfie Kohn raised serious concerns about the use of reward systems and virtual economies in
education and the workplace [Koh93]. He argues that rewarding a certain behavior educates the
user towards obtaining the specific reward, hiding the actual goal of the task. It is also possible that
the users perceives the rewards as a controlling mechanism, thus generating repulsion instead of
engagement. While this is a crucial aspect to consider, we believe it is still possible to successfully
use gamification to improve a system. If we consider the StackOverflow example, the points
obtained by answering a question are used to build a reputation system that is used through
the platform to identify experts. At the same time, the points awarded are subject to a quality
review from the users, who concur in the evolution and the quality of the platform. As such, if
gamification is used to enrich existing interactions, rather than to force users to perform boring
actions, it can be a valuable tool in growing a successful community.
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The last set of perils we discuss are of a legal and moral nature, but not necessarily connected
to the professional world. First, there is the question of privacy, as gamified systems and contexts
can be misused to collect a vast amount of information about the players. Second, as stated by
Bogost3 in an essay entitled “Exploitationware”, gamification might induce people to do things
that are not really in their interest, i.e., proposing to “replace real incentives with fictional ones.
Real incentives come at a cost but provide value for both parties based on a relationship of trust.
By contrast, pretended incentives reduce or eliminate costs, but in so doing they strip away both
value and trust.” Third, gamified systems can be easily tweaked to implement deceptive marketing
and advertising. Last, but not least, since players spend vast amounts of time and effort in building
up their avatars/personas, they conceptually “own” them, which in turn might lead to unforeseen
issues about property and ownership. This constitutes a new area of law, further complicated by
its borderless nature.

Overall, gamification is a double-edged sword, but it is a rising phenomenon, which must be
better understood to leverage its great potential.

8.3 Gamifying Software Engineering: (Not) An Easy Game?

We use a concrete running example to explain why gamifying software engineering areas is far
from trivial. The running example is the one of bugs, in terms of reporting, tracking, and fixing
them. Bug tracking systems (also known as issue trackers) are being used to store and manage
bug reports since decades now. In short, developers and users use them to report new bugs they
encountered, by providing data about the encountered bug, the situation in which it came up, etc.
They report those bugs using web-based systems, such as Bugzilla and Jira. Developers then take
up the bug report, try to understand it also by reconstructing the context, and then provide fixes
and patches that hopefully correct the reported bug. Despite their many benefits, modern bug
trackers are far from perfect, and suffer from redundant reports, incorrect data, and in general a
poor quality of the bug reports, as pointed out by a number of researchers [BBA+09, ZPB+10].
Moreover, open source communities suffer from lack of participation by the users in this context.
For example, at the time of writing, the Mozilla Firefox4 bug tracker contains ca. 20,000 open
bug reports of which over 90% have not been assigned to anyone.

Enter gamification. How can it be used to ameliorate the situation, and can it be used to
increase participation from the community as well as lead to higher quality reports?

A seemingly simple approach is to spread over bug trackers a layer of points and badges, and
every week post leaderboards with the most active reporters and fixers. We believe that such
an endeavour would at the beginning be successful, and probably there would be an increased
participation of people. However, soon enough what gamers call “pointsification” would kick in,
which is the focus of players on the rewards (the points, the badges) and not on the actual (technical
and intellectual) achievement that led to the rewards. Put simply, soon enough there would be
users who would start reporting non-existent bugs just to notch up their leaderboard ranking.
This would lead to a situation, similar to the one observed in StackOverflow by Grant and Betts,
where people would stop reporting/fixing certain bugs as soon as they obtain the corresponding
achievement. The pun being intended, it would be “game over” for such a gamification approach.

The real goal of gamification has to be a different one, namely to improve the organization of
the community, by helping and stimulating experts, by highlighting important bug reports, by
making visible important achievements such as the closing of a difficult bug report, and in general

3See http://www.gamasutra.com/view/feature/134735/persuasive_games_exploitationware.php
4https://bugzilla.mozilla.org/

http://www.gamasutra.com/view/feature/134735/persuasive_games_exploitationware.php
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by fostering and maintaining motivation over a longer period of time.
We need an approach which supports what McGonigal [McG11] identified as the 4 key aspects

of gamification: Satisfying work, the experience/hope of being successful, a social connection, and a
deeper meaning. Next, we present our framework for the gamification of software engineering,
which we distilled from a vast literature review [Mas14]. Due to space constraints we discuss and
present only the salient underlying theory.

8.4 Software Engineering Gamification Framework

Our framework is an extension of Taje’s layered approach to game design5. Taje lists six layers,
from lowest to higest, named Token, Properties, Dynamics, Goal, Meta, and Psycho. Game design
elements can be mapped into the six layers and interact with each other by means of interactions.
Our goal is not to describe Taje’s approach here, but to describe our framework. The reason is
that Taje’s approach targets game design in general, while our framework targets gamification
and in particular software engineering gamification. In essence, Taje’s layers are a subset of the
components of our framework.

Activity
Role & ID

Description

Building Blocks

Analysis
Rationale

Emotional Goal

Implementation
Actors

Dynamics

Meta

Hazards

Testing
Target

Methodology

Expected Results

Actual Results

Figure 8.1. Gamification Activity Template

Our framework is based on the concept of Activity (depicted in Figure 8.1), which is composed
of Analysis, Implementation, and Testing. Each activity pertains to a specific user type (role),
present in gamification systems, which can be i) Observer, who acts in read-only mode and does
not contribute anything new, ii) Writer, who only interacts by modifying existing contents and
iii) Solver, who accomplishes the objectives of the gamification system. People interacting with a
gamification system dynamically switch between these roles.

An Activity consists of an ID formed by the initial letter of the role plus an incremental number
(e.g., the first activity listed in Writer has the ID “W1”), a brief description, and a list of pertinent

5http://www.gamecareerguide.com/features/355/gameplay_deconstruction_elements_.php

http://www.gamecareerguide.com/features/355/gameplay_deconstruction_elements_.php
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gamification building blocks (which we describe later). Each activity is structured in the following
way:

1. Analysis: Each activity within the gamification environment must come with an easily
understandable rationale to connect to the global objectives of the environment, and the
emotional goal we want to achieve in the people. Without this analysis step, a gamification
effort risks turning into a random set of arbitrary decisions.

2. Implementation: To implement an activity the actors must be known and we need to
understand which gamification dynamics they will be involved in, which represent the
tactics to engage people in a specific activity. This is instantiated with game components
we call meta, following Taje’s nomenclature. Last, one must ponder the hazards that can
arise from a game structure (algorithmic issues, misbehavior, hardware requirements, etc.).

3. Testing: The last component is devoted to testing the activities, where it must be understood
which entities are the target of the testing, which methodology can be used to perform the
testing, and lastly, which the expected results and the actual results, to facilitate an iterative
approach to the development of a gamification environment.

This description of the framework is given from a conceptual point of view, obtained through
several iterations and pilot tests we do not describe due to space constraints. Before we can
provide concrete examples of how the framework is to be used, we need one last missing and
fundamental piece: Each activity hinges on one or more building blocks, which also denote the
particular categories of gamification it belongs to.

8.4.1 Gamification Building Blocks

The ten building blocks we present here have been identified during the construction of several
software engineering gamification environments we have constructed, and which we briefly
present in a later section. We do not claim the list of building blocks is exhaustive, but after
constructing the aforementioned gamification environments we did not see other building blocks
emerge from our efforts. The building blocks are denoted by a series of aspects recurrent in
the literature: According to Werbach and Hunter players go through a journey, progressing
through an environment, first by “on-boarding”, then by “scaffolding”, and later by achieving
“mastery” [WH12]. Adopting Lazzaro’s “keys to emotions” [Laz04], good emotions triggered by
solving puzzles, accepting challenges, and designing strategies are elicited by hard fun. Moreover,
the people factor, which stems from socializing and working with people and giving/receiving
gratitude is fundamental in community-based gamification environments. Embracing Seligman’s
concept of resource building [SC00], it is beneficial to provide some form of avatar of the player
which matures and grows as the gamification environment is being explored. This in turn is tied
to the concept of “leveling up” described by McGonigal [McG11].

Before coming to the ten building blocks, one further consideration: As opposed to existing
gamification environments, one which is tailored for software engineering must include the
possibility of dynamically adapting itself. Since software systems are developed for very long
periods of time, even decades, an environment should feature the possibility of removing existing
rewards and adding new ones as the environment is being used.
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Portal

When users cross the boundaries of the gamified platform, they register a profile and
provide information that describes them to the virtual community. Despite being
a trivial operation, it has a relevant feature: It is the very first action that users

accomplish in entering the new world, and should be acknowledged with a reward. Example: Bob
registers to the Bug Tracker and receives a “Welcome” badge.

Production

After registering, users must become immediately productive in the environment,
because delays in starting using the platform may result in a drop of interest and
cause users to quit. We split this block into three sub-blocks, according to the ways
in which users have the possibility to produce content and receive rewards.

• Symbiosis: performing an activity that directly or indirectly helps someone else’s activity
or state. Acting well in favour of others benefits both parties. Example: Bob provides useful
comments to a bug being handled by someone else.

• Narcissus6: doing something to self-improve one’s position in the community. This action
helps users to understand the structure and mechanisms of the community. Example: Bob
provides his first bug fix.

• Hive: proposing an idea to improve the platform and community life. Example: Bob
proposes to introduce a “Bug of the day” notification mechanism.

Bravery

In the production process, users may attempt hard tasks. The more skilled they
become, the more confidently they will attempt to achieve bigger goals. Such bravery
leads to important achievements and should be equally rewarded. Example: Bob fixes
an old bug that made many people despair and is awarded by the community with an

“Unstoppable” badge.

Scrum

In Rugby, Scrum is a way of restarting the game: Players bind together in order to
make the other team collapse and take possession of the ball. The key is to rely on the
strengths of everyone. Cooperating, collaborating, sharing useful tools, competing

against, socializing with other community members is intrinsically motivating. The system should
reward and promote teamwork. Example: Bob spends time assigning bug reports to users that he
knows to be expert in the area, or tagging easy bugs for newbies.
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Chameleon

While gaining skills and experience, the user may do something unique, spectacular, or
never tried before. The environment should react by introducing a new achievement
and release an ad-hoc reward, which becomes part of the gamification library of the
system and achievable by other users. Conversely, if a specific reward has never been

reached by any user for a long time, the reason might be its impracticability; the system should
dynamically remove such an achievement from the library. We affiliate such a dynamism with the
ability of chameleons to change their own skin colour according to the surrounding environment.
Example: Bob closes five bug reports with a single fix. The system administrators create a special
“Epic” badge, and add it to the possible badges users can achieve.

Thunderbolt

When users become experts, with many obtained rewards, they might fall into a state
of boredom. The result is decreased motivation and productivity. To awake them from
inactivity, the system should hit them like a thunderbolt with an announcement and
direct them toward a new challenge, such as a one-week long quest where contestants

can be awarded custom prizes. This should spur many users to participate. Example: Bob has not
participated in any bug fixing activity for the last month. He and similar users are notified about
a complex bug and a bounty for fixing that bug.

Phasing

Users may perform actions in the virtual world that, in reality, produce a permanent
impact on the surrounding. Phasing suggests to mutate the environment according
to the progression of each user’s expertise. Two users, at different stages of their
progression see different representative phases of the same scenario and can interact

with it in different ways. Example: Bob tags bugs that are old and inactive, but still interesting.
The administrator then creates a new section highlighting such bugs, and acknowledges the
contribution of Bob.

Beautification

Appearance, even if only virtual, is important to many. The users’ avatars change
appearance over time and become more appealing as they progress in the environment.
In the opposite case of inactivity, the appearance of the avatars starts to slowly degrade.
Example: As Bob becomes an expert bug fixer, his avatar (for example depicted as

a warrior) is decorated with better clothes and weapons. After a period of inactivity due to his
(real) holidays, Bob’s avatar is depicted out of shape and with a broken sword.

Champagne

Since achievements inside the magic world are important to users, they want to
celebrate their success not only within the virtual world, but also in the real one.
Example: Bob is looking for a new job and on his curriculum puts a link to his profile
in the bug tracker, as proof of his expertise7.
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Ascension

A game usually has an end. It is intrinsically rewarding and fulfilling to see the words
The end on a screen, even though the actual satisfaction comes by what was done along
the way. This building block does not come with a reward, as otherwise inactivity

might set in. If users collected vast amount of rewards and participated in the community, they
should be rewarded in the real world as well. Example: Bob has been a productive bug hunter
for many years, and is rewarded by the environment admins by being invited to become also an
admin.

Putting everything together. In the following we provide two concrete examples of gamification
environments we have been developing.

8.4.2 Example I: The Myth and De-Bug

The objective is to develop a gamification system for a bug tracking system. Fixing a bug is like
struggling against a monster that threatens a village. This image inspired the overall theme of
ancient Greece, full of heroes, gods, legends, and epic battles with mythological beasts. We set
the following goals for a gamification system in bug reporting:

(1) improve the quality of bug reports: we want to stimulate users to include meaningful informa-
tion. Zimmermann et al. showed that some elements are crucial to ease the fixing process,
such as stack traces [ZPB+10].

(2) stimulate the participation of the community: we want to create a friendly environment for
newbies and with engaging activities for experts.

(3) ease the fixing process: we want to reduce the time spent dealing with cumbersome information,
to allow developers to spend their time in fixing the defects. We want to encourage users
to deal with unsorted data in the tracker, like assigning bug reports to the appropriate user,
closing duplicate reports, or highlighting important bugs.

The Myth and De-bug reflects the journey of a player that begins with the on-boarding phase,
continues with some scaffolding, and terminates with mastery. We produced a large set of activities,
such as the one in Figure 8.2.

We present a selected list of the activities that we designed: the goal is to clarify that creating
activities is a lengthy process which must be done in an iterative way.

As the player signs up for the game, she enters the magic world of ancient Greece and
receives her first reward, the Newbie badge and a small amount of drachmas (the
ancient Greek currency), with which the player can buy her avatar some equipment.

The game awards different amounts of Drachmas according to the difficulty of the accomplished
task. This first operation is trivially easy (just registering and give some personal information for
the user profile), but it has a special feature: It is the first action that the user does to get into the
platform and the first active contact with the community. Moreover, receiving immediately an
unexpected reward works as a bait for the new player who is motivated to add another prize to
her collection as soon as possible.
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Activity
Role & ID S4

Description Re-opening a closed bug

Building Blocks Bravery, Scrum, Champagne

Analysis
Rationale A bug that was not solved properly has been re-opened because it needs additional 

work

Emotional Goal Re-opening a closed bug is a brave feat. If someone closed thought to have solved it 
and did not, probably that bug is hard.

Implementation
Actors The system and the community

Dynamics Recognizing that a bug is still unsolved is already an important point that needs a 
reward. Additional rewards come from being able to actually solve it.

Meta As the user re-opens the bug, she earns 10 Drachmas and the event is published on 
the homepage of the platform. If the user also expresses the interest in trying to solve 
the bug:!
1. The system sends the bug report to 10 expert users (having more than 150 
accumulated Drachmas) and asks to estimate a time in days needed to solve it 
(considering not more than 3-4 hours of work per day). !
2. The least and highest returned values are removed, and the system computes the 
average of the other eight values. This averaged value is communicated to the user so 
that he knows that the community expects her to solve the bug in that number of days.!
3. When she solves the bug, her "Heracles" badge assumes a colour computed as the 
mathematical function of how many days totally other past programmers worked on that 
and how long it has been closed. Moreover, if she managed to solve it within the 
estimated time, she earns 50 Drachmas. If she employs 1 week more, she earns 40 
Drachmas, and so on. !
4. The user can share her success on her favourite social network. !
After the 5th week beyond the estimated time, the user gets no Drachmas and her 
badge remains white. At that time, she must declare to the community whether she 
gives up, or wants to assign the bug to another user, or wants to ask an extension of 
the available time. If she decides for the last option, she needs to publish on the bug 
report exactly what she did and what she thinks should be still done to solve it. The 
evaluation with the 10 expert users is done again and the user now has that time to 
solve the bug. The user can ask consecutively an extension up to 3 times, then she 
must give up or assign it to another programmer.

Hazards The bug was solved and should not have been re-opened in the first place. An expert 
user should check first whether re-opening is the right thing to do.

Testing
Target Average Time period to fix re-opened bug before gamification, and after the introduction 

of the gamification layer.

Methodology Compute the respective averages times and see whether the time decreases after 
gamification.

Expected Results Average time to fix re-opened bugs has decreased.

Actual Results to be determined

Figure 8.2. Concrete Gamification Activity

The second unexpected reward is quite easy to acquire too: Becoming conscious of
the rules holding in the world of Ancient Greece, the player earns the Briefed badge.
She does so by going through a tutorial which explains the bug tracker and the rules

of the game.
The system assists the player along the whole path to mastery: It directly furnishes to the user

practical tasks that she can afford with her current skills. While writing a bug report, the system
supports the player by using mandatory box fields asking for specific information or suggesting
where to look to find it. It helps reporters to not forget essential information and provides some
scaffolding to boost a player to mastery. Motivation is a precious good that some techniques are
able to elicit, but at the same time can be shut down easily. A single apparently insignificant
demonstration of disapproval from some other member of the community can hurt a newbie. The
Myth and De-Bug avoids such an effect by impeding questions and answers with scores smaller
than 0 and avoiding the so-called “Dislike” system.

A point of strength of this gamification layer is that everyone, from the new user up
to administrator, has the chance to propose improvements for the environment. The
player whose proposal for an extension of the environment has been accepted by the
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community, gains the Phidias badge.
An open problem of gamification communities (for example Stack Overflow), is keep-
ing the motivation of users high or to recover it when it naturally decreases [GB13].
We designed badges that level up proportionally with the amount of work performed,

e.g., Tomb Raider is a badge achievable when a developer explores old posted reports, finds
something interesting, and sets the status of the report back to active.

Heracles8 is a badge of the same nature of Tomb Raider, but is awarded for closing
re-opened bugs.

Our environment also deals with the issue of balance. If a gamification layer is too
linear in terms of dispensing mere (and in a way meaningless) points, the danger of pointsification
comes up: Users start to hunt for points by performing meaningless and contradictory actions,
such as re-opening bugs that do not need to be reopened. The building block Scrum is crucial in
this case, which means to rely on the community, for example by setting time limits for specific
activities.

Also, our environment does not make large use of leaderboards because they are gamification
elements that, in a number of cases, may demotivate players. We designed the leaderboard
“Twenty Top Hoplites of The Week” by relying on the fact that having a considerably high work
rate is an occasional ability. Since a developer cannot be constantly productive, the leaderboard
thus becomes dynamic.

When users are on the leaderboards for an extended period of time, they gain the
Achilles9 badge and an amount of bonus Drachmas to refurbish the avatar.

To foster epicness, one of the traits identified by McGonigal as instrumental to
gamification, our environment provides a number of places where players can acknowledge the
feats of other players. This happens for instance when a developer closes a difficult bug, or
the community reaches a landmark (e.g., closing the 1000th bug) collaborating as a team. The
environment also features specific leaderboards, in the form of halls of fame, where important
contributors are acknowledged or where productive former newbies are entered into the category
“The New Greek Legends”.

The Myth and De-bug is an instance of inducement prizes: Its goals are efficiency, development
of creativity, and stimulating collaboration among the community even while competing. It is
also “cheap” because it only involves virtual goods, and pays a deep attention to balancing issues.
We just described a possible instantiation of this gamification system. We could take exactly the
same framework, substitute the name of the badges and imprint the game toward modern heroes
(Spider Man, Batman, Superman, etc). They are just fancy names, and we can use the fantasy we
like to shape the same gamification dynamics.

8.4.3 Example II: The Empire of Gemstones

The first example was developed in the context of a novel bug tracker we are implement-
ing [DSL14]. We also devised a number of other software engineering gamification environments,
which led to the distillation of the building blocks discussed previously. We now present another
case study of a gamification layer for a software engineering context: Modern Code Reviews. Due

8Heracles was the greatest hero in Greek mythology. He had incredible courage, physical strength and ingenuity.
Among the many ventures attributed to him, he defeated the Hydra monster, a sea serpent with nine heads. Every
time someone cut one away, it grew anew. This is a conceptual parallelism with what happens with closed bugs that
are reopened.

9We choose for this badge the figure of Achilles, the king of the Myrmidons, son of Zeus and Thesis. The parallelism
with the badge comes from the fact that his most common epithet in Homeric works is “swift-footed” because Achilles
was known to be very fast at running.
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to space limitations we do not present the solution at the same level of detail as the previous
example, but focus here mostly on a concept that was only sketched in the previous section:
leveling up.

Code reviews are a software engineering practice that consists in manually reviewing source
code written by other people, to verify and improve the quality of the code. While the effective-
ness of this method has been proven during the years [SS08], this practice is often considered
expensive, cumbersome, and, as such, difficult to adopt. Bacchelli and Bird proposed Modern
Code Reviews [BB13], a code review approach that is informal, tool based, and performed on a
frequent basis. They developed CodeFlow, a tool where the user can annotate the source code and
interact with other users with a chat. A developer that wants to propose his code for review has to
create a package with the changes, write a brief description and submit it to the CodeFlow service.

The area of code reviews still has many open questions, but the CodeFlow platform represents
the ideal environment to develop a gamification layer to stimulate the amount of motivation
necessary to turn code reviews into a habit.

In the context of a code review tool that we were building in the research group, we designed
a gamification environment named The Empire of Gemstones, to exploit the parallelism between
collecting gemstones and improving the quality of the code. We employ gems as a virtual currency
to reward positive feedback while using proposed solutions. The number and the type of gems
compose a reputation system based on noble titles, used by the system to rank users, which also
facilitates the finding of experts in specific areas.

It has been shown that teams use code reviews for the following purposes: (1) finding
defects in the code; (2) improving the code; (3) finding better implementations; (4) transferring
knowledge in the group; (5) increasing the team awareness and transparency; and (6) sharing
code ownership [BB13, BBZJ14]. Given the strong implicit collaborative nature of code review
tools, we pose a strong accent on blocks that expect interaction with other users, like Scrum
and Champagne. However, also the motivation of single users can be catalyzed, for example by
rewarding quality code, thus suggesting the use of Bravery and Thunderbolt blocks.

In parallel with a set of badges devised with a similar procedure to the one used to build
The Myth and De-Bug, we introduce a “leveling” mechanism to provide users with a feeling
of progression and growth while reviewing the code: Leveling is one of the main drivers of
gamification systems, as it fosters positive competition among the players.

By reviewing other’s code, a user gets a gem. The kind of gem depends on the number, size
and difficulty of the reviews. Each gem has a different value according to its rarity, as we see in
Table 8.1.

Table 8.1. Points acquired per 1 gemstone.

Gemstone Points
Emerald 10
Sapphire 9
Tanzanite 8
Aquamarine 7
Ruby 6
Jade 5
Citrine 4
Topaz 3
Amethyst 2
Quartz 1

For example, a reviewer may check some code that includes changes for fifty lines of code
over five different files, for which she receives a Jade. Another user reviews three small changes,
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Table 8.2. Required number and type of gemstones to obtain noble title.

Noble Titles
Family Prince Duke Marquis Count Viscount Baron Knight
Emerald 27 21 16 12 9 6 3
Sapphire 34 27 21 16 12 8 4
Tanzanite 41 33 26 20 15 10 5
Aquamarine 48 39 31 24 18 12 6
Ruby 55 45 36 28 21 14 7
Jade 62 51 41 32 24 16 8
Citrine 69 57 46 36 27 18 9
Topaz 76 63 51 40 30 20 10
Amethyst 83 69 56 44 33 22 11
Quartz 90 75 61 48 36 24 12

each one involving only one file, and she receives three Quartz. Reviews that spot bugs, that
propose a better implementation of the reviewed code (goals 1, 2 and 3) get higher value gems,
but since reviewing code also means knowledge transfer (goal 4 and 5), users get a reward even
if the review causes no changes.

Submitting code for review implies willingness to collaborate and accept critics, an not being
protective of her code (goal 6). We decided however not to assign gems depending on the outcome
of the review to the submitter, to avoid pointsification and because that would suggest an idea of
code reviews begin judgmental, which in the long run would discourage a user from submitting
his code for review. A submitter can however still receive badges for particular behaviors, like
the Collector badge for users that submit regularly their code, or the Houskeeper for users that
submit large numbers of reviews in a short time.

By collecting gems, a user can grow his estate and obtain noble titles which reflect the expertise
level in the community, as depicted in Table 8.2. For example, a new user in the team is reviewing
many small changes to understand the project he is working on. He then collects many Quartz,
slowly being promoted to Knight after 12 reviews, and Baron after 24.

The avatar of the player in this environment is then also depicted in a gameful way, such as a
house which gets more beautiful as the player obtains more gems. In the code review tool, these
avatars could then be shown to other reviewers when they log into the tool.

As we anticipated, the leveling mechanism is useful in stimulating positive competition among
team members. Given the context of code reviews, which by definition happen inside the same
team, company or community, we believe that the level system is particularly effective in leveraging
the interpersonal bonds and endorse motivation in improving the quality of the code.

8.5 Evaluating Gamified Systems

Once a system is gamified, we need to be able to measure the impact of the gamification, and how
much it contributed to reach the business objectives. It is crucial not to confuse business objectives
with game objectives: with the coexistence of “serious” and “fun” layers, it is easy to exchange
the goals of the two aspects, thus misjudging the effects.

In building our framework, we included a testing section, whose purpose is to design, together
with an activity, the conditions to establish how successful the game elements applied to each
single activity are. But, a system is more than the mere sum of all its parts: As such, testing all
the single elements does not imply the success of the whole gamification system, exactly as in
software development we need integration tests.
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We propose five methods to assess the general performance of the gamification on top of a
software engineering context: success metrics, analytics, conflicts, jen ratio and survey. The first
three focus on technical aspects to consider the business objectives, while the last two consider
emotional aspects. Due to their subjective nature, we cannot get a precise measure of emotional
response of the users and compare the obtained values in a consistent way. The relative metrics
have then to consider the imprecise nature of the data they deal with.

Success Metrics

The first approach is to define a set of goals at design time, and verify them after the system has
been in production for a while. We recommend to make a list of the goals of the gamification
system, define success metrics (number of new users in the last month, average activity increase
per user, etc.) tailored to specific activities and verifiable with usage data. A long enough
timeframe must be used to perceive a noticeable change: People’s habits take a while to deal with
novelties. A significative amount of data must be collected before and after the introduction of
the gamification layer to enable before/after testing.

Analytics

A useful metric is represented by the measure of users interacting with the enviroment: Daily
Active Users (DAU) is the number of unique users that interact with the software tool during a day,
while Monthly Active Users (MAU) is the average number of unique users that interacted with the
software tool in the previous 30 days. By computing the ratio DAU

MAU we have the trend of usage
of the software tool in a given moment. The result of such a ratio goes from 0 to 1: It is close
to 1 when the tool is engaging, and it is close to 0 when its popularity is decreasing. DAU

MAU is a
relevant parameter to keep under observation because, if it increases the number of active users
is growing; if it decreases they are decreasing.

Conflicts

Some gamification elements can create conflicts with existing elements on the system. Listing and
prioritizing the conflicts, also by listening to the users through forums and mailing list, is helpful.
If a conflict persists, the involved gamification elements should be pulled out of the environment,
as user dissatisfaction can be harmful to the whole community.

Jen Ratio

Establish two sets of interactions in the user community: positive interactions (e.g., virtual gifts,
acknowledgements), and negative interactions (e.g., misbehaviours, rude comments). Compute
the Jen Ratio: total positive interactions among users over the total negative interactions, in
a given period of time and context. The outcome is between 0 and 1. The jen ratio assesses
how positive the attitude of the users is: the closer to 1, the better the social well-being of the
community.

Survey

Selected users, of all expertise levels, should be periodically surveyed, where key questions should
not only regard technical aspects, but also emotional aspects.
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Beyond the use of these metrics, it is important to perform an evaluation on the effective gain of
the system, to quantify how the use of gamification impacted the activity of the users and if it
brought actual benefits. For example, in a bug tracking system we can measure the number of
bug reports opened and closed every day, the average duration of a bug report and the number of
bug reports that a user examines. However, it is clear that such metrics are domain specific, and
have to be calibrated for each different gamification context.

8.6 Discussion

In this section we propose our reflections on the lesson we learned developing our work. We then
discuss how we think our work can be improved.

8.6.1 Reflections

The examples in Section 8.4 hint at a fact that should not be disregarded about gamification: To
create such environments is a far from trivial endeavor. The reasoning that goes into creating
thematic environments, the way that leveling is handled, how and when awards and badges should
be assigned, is a strongly iterative process. One might be tempted to bypass such a labor-intensive
work by using the simplest solution, which is to award points and to base the leveling on such
points. However, apart from the danger of pointsification, there is another risk, which we define
as “stalling”: If the gamification layer is not constantly revisited, maintained, and evolved, it risks
to quickly become obsolete, and therefore will not only be ignored by the users, but it might even
cause decreased participation. Last, there is also the issue of adoption: Since many software
engineering activities are done with tools that come from vendors or open-source communities,
one would have to convince those to introduce the gamification layer on top of their tools. It is
doubtful that this would happen if there is no substantial evidence that the gamification layer
actually works, which brings us back to the concern of evaluating such environments.

8.6.2 Next Steps

We composed the gamification layers presented in this chapter as part of the process to understand
the basic concepts of gamification and practically see what is meaningful or what should be
highlighted as dangerous. The main result of our work were the gamification framework and
the ten essential building blocks to use as a reference in building the system, but the presented
scenarios are actual software engineering problems currently investigated by researchers.

The focus of our work revolves around the activities performed by the users. However, further
insights can come from considering the different types of users in a community, to avoid the
negative effect of marginalizing some users. For example, Vasilescu et al. studied the difference
between men and women in approaching—and leaving—a community [VCS12], while Koivisto
et al. showed how the ease of use of gamification tends to decline with age [KH14].

8.7 Outline

We presented a critical overview on the relevant literature on gamification, and proposed a
framework to support the design of a gamification layer to support software engineering tasks.
We showed how to implement practical actions to successfully gamify a system, and we distilled
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ten essential building blocks that represent basic elements to be considered when designing
gamification activities. We then discussed two example software gamification environments
highlighting a number of challenges. Last, we outlined a proposed procedure to evaluate a
gamified system.

Our hope is that integrating gamification elements in software engineering will allow devel-
opers to build tools where the potential of gamification is leveraged to foster collaboration and
contributions by the community. In that sense: The game has just started.
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Conclusion

Software development produces large amounts of raw data pertaining to the evolution of a system.
The majority of this data is dismissed as a byproduct of the development process and lost. Even
when fragments of this data are saved and used, they are flattened in textual format, complicating
automated analyses and reducing its reliability. We are convinced that such data is an invaluable
asset in supporting developers, to understand both how a system works and how users interact
with it. We think that it can become the central component in the design of the next generation
of issue tracking systems.

We introduced our work by showing an overview of the efforts by researchers and practitioners
to improve the organization and fruition of bug reports. We presented a set of approaches and
tools to propose an improved style for collecting bug reports. We implemented our core idea of
automatic and reified data collection in SHORELINE, a platform to record runtime exceptions and
to gather domain-specific information about specific parts of the system. We developed our tools
in PHARO, a dynamic language with a tightly integrated IDE and a strong community. The use of
PHARO helped us prototype our tools and quickly test different ideas, allowing us to easily access
all the details of the system. Interacting with the PHARO community allowed us to get feedback
on the tools we deployed, and to perform qualitative studies to get a preliminary evaluation on
our approaches.

The data we collected showed us that failure data can be exploited to support program
comprehension, debugging, and optimization of existing systems. This in turn can help reduce
the time spent on maintenance, thus containing development costs.

9.1 Visualization of Bug Data

During the preliminary phase of our work we performed a visual inspection of existing bug
repositories, looking for patterns and hidden properties that could help accessing the stored
information. Later on, we employed again visualizations to navigate the data we collected. We
believe that, given the amount of data generated during development, visualizations are an
effective means to summarize the activity on a project and provide a selective and layered point
of view on specific aspects of the system.

9.1.1 Reading Between the Lines

In Chapter 3, we presented IN*BUG, a web platform to visually inspect the contents of existing
issue tracking systems. We ascertained that bug reports contain information that is not properly
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conveyed with a mere textual representation. We exploited the structured parts of a bug report
(e.g., its metadata) to build a view of the life and evolution of a bug report, highlighting its lifetime
and the events of which it is composed. We were able to spot interesting cases of bug reports,
like stale bugs that are opened but did not receive any recent activity, or bug reports reopened
multiple times. This result suggested us that there is room for improvement in accessing the
information that we store about software defects.

9.1.2 Narrating the Evolution of a System

In Chapter 6 we presented BLEND, a tool to display and merge multiple data sources about a system.
We used the city metaphor [WLR11] to depict the entities in the PHARO system and their properties.
We used the stack traces collected with SHORELINE, our tool to collect information about runtime
errors, we extracted the changes in the PHARO system during one year of development, and we
integrated the user interaction data dataset provided by Minelli et al. [Min17]. We then colored
each entity combining different colors to represent the data collected about that entity. From the
resulting visualization we could navigate the evolution of the system from a historical perspective,
and tell stories about development that can help development decisions or highlight the need for
maintenance.

9.2 Collecting Failure Information

The second step in our work consisted in augmenting the reliability of bug reports by augmenting
them with automatically collecting failure data.

9.2.1 Collecting Stack Traces

In Chapter 4 we presented our crowdstacking approach: the collection of stack traces from
the community to spot recurring errors and understand the usage of a system. We introduced
SHORELINE REPORTER, our tool for implementing this approach in the PHARO system, and analyzed
the 7, 532 stack traces that we collected between June and November 2014. We used the data we
collected to show the activity of the users on the system, thus showing the components that can
be optimized or the ones that need improvement. We then searched the issue tracking system
of PHARO looking for references to the entities in the stack traces. We found that for some stack
traces we were able to find an existing bug report. We believe that the approach of automatically
providing contextual feedback when an error occurs can greatly improve the experience of the
user on a software system and save time.

9.2.2 Reifying Bug Reports

In Chapter 5 we extended the approach presented in Chapter 4 by allowing developers to collect
not only stack traces, but also domain specific information about a software component. By
employing collectors, a developer can specify when an error is interesting to collect and specify
the rules to collect it. Collecting the information in its object form, rather that flattening it into
a textual representation, allows us to start a conversation with the system that can unveil the
hidden properties among the entities in the software.
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9.3 Modeling an Issue Tracking System

In the final part of our dissertation we discussed how to improve the experience of users and
developers in the issue tracking system. We observed the problem from two different points of
view: how to model a bug report to ease the life of reporting users, and how to engage users and
developers in participating in the debugging activity.

9.3.1 The Model of a Bug Report

In Chapter 7 we explored the usage of existing issue tracking systems for projects from the Apache
and Mozilla foundations. We conducted a survey to understand what users perceive as difficult
to provide when submitting a bug report. We then showed that an increasing number of fields
in a bug report has little relation with the lifetime of a bug report. We believe that this study
suggests us that a redesign of an issue tracking system should start from simplifying the existing
one, rather than adding more textual information.

9.3.2 Gamification

In Chapter 8 we explored the possibility of boosting user engagement when using an issue tracking
system by means of gamification, the use of game elements in non-gaming contexts. We presented
an overview on the history of gamification and its evolution over time. We proposed a framework
for systematically gamifying software engineering, posing particular care in highlighting the
pitfalls that must be avoided when dealing with gamification. We think that gamification can
become a valuable tool, if used to highlight and improve the interactions already existing on a
community and not to enforce a specific behavior. It can support the management of software
projects, help welcoming new users, and motivating the expert ones.

9.4 Limitations and Future Work

We believe that developing our research project we only scratched the surface of the possible
improvements that we can apply to current development methodologies. We provide an overview
of the directions that we would like to further investigate, while also discussing the limitation of
the approaches we employed.

User Interface

We used the data we collected to generate knowledge on the system. We did not, however, consider
the process from a user interface perspective. We are aware that presenting the information to
the user in a meaningful and non-intrusive fashion is as crucial as providing correct information:
We therefore think that investigating how to display such contextual information to the user is a
crucial aspect that should be tackled.

Evaluation

Given the size of the task that we considered, we were able to evaluate our approaches in small
contexts, mostly from a tool-driven, qualitative point of view. We believe that a full evaluation of
a new issue tracking system, if possible, would require years to complete. Still, a deeper study
of the interaction of the various improvement of the development process could shed light on
further directions in rethinking issue tracking systems.
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Privacy

During our research project we collected a large amount of stack traces from developers performing
real development tasks. We were careful in allowing our users to avoid submitting sensible
information, but we believe that further efforts in this direction could ease the adoption of
such tools and allow the collection of more useful data while safeguarding the privacy and the
intellectual property of developers.

Integration With the System

Data collection alone is not enough to provide a smoother development experience. By having
access to structured data, we can integrate such information with development tools, for example
by recreating the context where a bug occurred with a single click on a website.

9.5 Closing Words

In this dissertation we showed that data generated during software failures carries useful infor-
mation in understanding and improving a system. We argued that this information should not
be discarded, but rather promoted to first-class citizen in the development process by treating it
with customized representation, rather that using plain text. This would allow the creation of
contextual tools such as visual browsers, recommender systems, or automated build systems. To
support software development further, however, it is essential that development tools (i.e., the
IDE) integrates such data to create a holistic experience.

We see our thesis as a first step in rethinking the idea of bug report, to build smarter issue
tracking systems that support development in a deeper and integrated fashion.
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Pharo

In this chapter we briefly present an overview of the technologies that we used to develop our
tools and test our approaches.

A.1 Smalltalk in the 21st Century

The majority of the tools presented in this dissertation are developed using PHARO [BDN+09].
PHARO is am object-oriented, Smalltalk inspired programming environment, composed of the
PHARO programming language, an integrated development environment and a set of libraries
covering the common needs for the daily programming tasks.

While such a choice might at first seem extreme and anachronistic, it carries a number of
advantages and features especially useful when prototyping an idea or a tool. Pharo inherits a
number of powerful properties from its Smalltalk origins, that can support our task of implementing
the data collection framework. In particular, PHARO is a live programming environment, with full
reflectivity capabilities, and a control over the whole system that allows to access and manipulate
programmatically the complete state of the program. By exploiting the characteristics of the
platform, we were able to analyze and access programs as they were running and easily collect
runtime data, without having to fight the system to extract the data.

In retrospective, we judge that using Pharo in our work and exploiting its abstractions over
the entities of the system resulted in a technical advantage that alleviated us from the burden of
fully instrument a virtual machine to reproduce and study the defective environment.

A.1.1 Runtime Errors in Pharo

An interesting property of Pharo comes from its dynamic nature: the whole system is polymorphic.
This polymorphism is obtained through the so-called duck typing [CRJ12]: every object can be
used in place of other objects, as long as it is able to respond to the same messages. This entails
that—as in other dynamic programming languages—there is no static type system and, as such, no
static type checking: every type error happens at runtime, resulting in a Message Not Understood
kind of exception. This peculiarity is important when considering the nature of runtime errors in
Pharo, because the vast majority of the exceptions is caused in this context: In Chapter 4 we show
how we collected a dataset of development problems, where in more than 72% of the cases an
exception is caused by a message not understood. Among those cases, 68% are generated from a
message sent to UndefinedObject. These are the equivalent of a NullPointerException in Java.
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A.2 The Pharo Community

Apart from a rich software collection, the PHARO ecosystem is composed of a vibrant and active
community1 that includes about 2,000 developers both from academia and industry. The commu-
nity actively participates in the development of the system by building tools to improve the user
experience, submitting bug reports and proposing patches to solve defects.

Such a small and active community was invaluable when deploying our tools and collecting
real data from daily development.

1http://pharo.org/community

http://pharo.org/community
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