
Understanding the NPM Dependencies Ecosystem
of a Project Using Virtual Reality
David Moreno-Lumbreras†, Jesús M. González-Barahona†, Michele Lanza∤

†EIF @ Universidad Rey Juan Carlos – Fuenlabrada, Spain ∤REVEAL @ Software Institute – USI, Lugano, Switzerland

Abstract—Modern JavaScript development relies heavily on
using Node Package Manager (NPM) modules. These modules are
related by dependency relationships, possibly requiring dozens
or hundreds of modules to build a complete JavaScript web ap-
plication. Studying dependencies, in terms of their sustainability,
vulnerability, size, defects, etc., is fundamental for the deployment
and maintenance of JavaScript web applications.

We use a 3D metaphor based on presenting dependencies as
an “elevated city”, mapping both dependency relationships and
characteristics of interest of each module. We developed a VR
(virtual reality) scene representing the dependencies of several
web applications using the elevated city metaphor, and exposed
industrial experts to it to check its suitability. They explored a
medium-sized project, with more than 200 dependencies, sharing
their insights.

The results highlight different aspects of our approach and
how the combination of metrics helps experts to obtain insights
from the ecosystem. The feedback shows the usefulness of
the visualization to check and explore several aspects of the
dependencies of an application, helping to identify problems
related to maintainability, license usage, or vulnerabilities, and
to design strategies to address them.

Index Terms—virtual reality, elevated city, software visualiza-
tion, ecosystem, npm dependencies

I. INTRODUCTION

Software systems are usually composed of collections of in-
terdependent software modules, with some studies estimating
that up to 80% of the code in current software applications
comes from libraries and frameworks [1]. Understanding the
dependencies among the modules is important for the devel-
opment and maintenance of those systems. The increasing
popularity of FOSS (free, open-source software) components
in these systems led to the appearance of software registries.
In the case of web development, the Node Package Manager
(NPM) registry has become the main mechanism for sharing
modules [2].

The structure of dependencies among modules (packages) in
NPM is a network that has been shown to grow with time [3],
with many of them (for example, frameworks) having several
dozens of direct dependencies. This situation is attributed to
the lack of standard libraries in JavaScript implementations
(such as NodeJS), which has fostered a culture of reusing large
quantities of packages for web development. Because of the
sheer quantity of dependencies, and the length of the chains
of dependencies, understanding the relationships between all
modules needed by an application is difficult and complex.

Visualizing software dependencies can provide a powerful
way to understand and manage the complexity of modern

software systems [4]. While text or table formats may be
useful for presenting information in a concise and structured
manner, they lack the ability to convey the nuanced rela-
tionships between different components of the ecosystem. In
contrast, visual representations of software dependencies allow
developers to see the entire ecosystem at once in a way that
is intuitive and easy to grasp. By seeing the ecosystem in this
way, practitioners can quickly identify areas of the ecosystem
that are particularly sensitive to change, and make informed
decisions about how to modify the ecosystem without intro-
ducing unintended consequences. Visualizations of software
dependencies also provide a shared language that allows
developers to communicate complex ideas and collaborate
effectively, fostering a culture of innovation and continuous
improvement. In short, visualizing software dependencies is
an essential tool for modern software development, enabling
developers to build better, more reliable ecosystems that meet
the needs of today’s rapidly evolving technological landscape.

The tree structure [5] is a commonly used way to visualize
software dependencies, where modules are arranged in a
hierarchical tree according to their dependencies. This helps
developers identify design issues and make informed decisions
about modifying their systems. However, as systems become
more complex, alternative visualizations such as Treemaps
or Dependency Structure Matrices may be better suited. On
the other hand, graph or network visualizations are powerful
techniques for representing software dependencies [6], where
nodes represent modules and edges represent the dependen-
cies between them. These visualizations enable developers to
identify high coupling and the flow of information. Graphs are
especially useful for large systems to highlight potential issues.
However, understanding and navigating these visualizations
can be challenging, and it is important to design them carefully
to fit the needs and expertise of the users.

We address the problem of understanding dependencies
by using an “elevated city” metaphor in virtual reality. The
elevated city is derived from the CodeCity metaphor [7]. It
represents software modules as buildings of a city, with their
features mapped to characteristics of the buildings, or to their
relative location. Each building corresponds to a module, and
a neighborhood of buildings corresponds to all modules that
are dependencies of the same module.

Each neighborhood is elevated with respect to the building
on which it depends. This elevation, therefore, represents the
level of dependency, with more elevated neighborhoods rep-



resenting deeper dependencies. The viewer can map different
metrics of activity, size, type of license, and vulnerabilities to
features of the buildings, thus obtaining different views of the
modules. We have built this visualization, reusing the freely
accessible BabiaXR framework [8], for several applications
built from NPM modules, focusing on the identification of
groups of modules with vulnerabilities, maintenance problems,
license compatibility, and issues related to module size (which
has an impact on load-time), and possible solutions to them.

The paper is organized as follows. We begin by presenting
the results of previous field studies that motivated our approach
and the development of the elevated city metaphor. Then, we
describe BabiaXR and the elevated city for visualizing NPM
dependencies, including the metrics, interactions, and layout.
We then illustrate four use cases, followed by the description
of an experiment that we ran with industry experts. We
conclude with a discussion of our findings and the envisioned
future work.

II. RELATED WORK

Dependency Analysis. Dependencies ecosystems and their
vulnerabilities have been studied extensively [9]–[12]. In the
case of the NPM network, Hejderup et al. [13] report that one-
third of the NPM packages use dependencies with at least one
vulnerability. Abdalkareem et al. [9] conducted an empirical
analysis in the PyPi network of Python, finding that the num-
ber of vulnerabilities increases over time. Vulnerabilities with
the number of dependencies are related: Lauinger et al. [14]
studied that relation with JavaScript open source projects,
and Williams et al. [1] reported that 26% of open source
Maven packages have known vulnerabilities. Zapata et al. [15]
studied the impact of a vulnerability in the ws package on 60
JavaScript projects, finding that up to 73.3% of the dependent
applications are safe from the vulnerability. Zerouali et al. [16]
reported that outdated NPM packages increase the risk of
potential vulnerabilities.

Virtual Reality. VR has been shown to facilitate discovery
in domains where space plays an important role, for example in
the field of brain tumors [17], perception of shapes and forms
[18], paleontology [19], caves [20], and magnetic resonance
imaging [21]. Data visualization in virtual reality allows the
use of multidimensionality for abstract analysis, and even more
so for large data sets. Regarding VR and immersive data
visualizations, there is extensive prior work on the use of VR
[22], [23] for visualizing scientific data coming from various
domains [24]–[27].

Bryson [28] highlighted the possibilities offered by VR
for interaction with complex phenomena and their data vi-
sualization. The standard way to visualize is 2D space, data
visualizations in 3D (and VR) have been introduced only
slowly. Munzner [29] and Few [30] warned of unjustified
3D usage. At the same time, researchers are arguing for
the benefits of 3D and VR for data visualization. Some
examples are: Batch et al. [31] focused on the spatial use,
Jacob et al. [32] focused on the embodiment of interfaces,
Rosenbaum et al. [33] focused on abstract involvement, and

Garcı́a-Hernández et al. [34] in the aerospace engineering
field. Regarding the city metaphor visualization, the idea
comes from Munro et al. [35] and one of its greatest exponents
was CodeCity, proposed by Wettel et al. [7]. The city metaphor
visualization was fully explored in VR: CityVR [36] is an
example. We also conducted an experiment for comparing this
visualization between the on-screen and VR version [37].

In the use of the city metaphor for visualizing software
dependencies, Kobayashi et al. [38] presented an approach
based on the city metaphor for representing software architec-
tures and showing the inner dependencies between packages
as lines between buildings. Some years after, Yano et al. [39]
continued the work and they described an approach based on
the city metaphor and some case studies to calculate indexes to
represent the characteristics of software by their dependencies.
The approach called IslandViz [40] also explored the visualiza-
tion of software architectures as islands, including the package
dependencies shown relationships between islands, and arrows
for representing the dependencies hierarchy.

Apart from the approaches described in this section, to our
knowledge, there is still no investigation of the visualization
of dependencies using the city metaphor in virtual reality
mixing metrics about community, vulnerability, employment,
and metrics about the size or number of lines of the code.

III. THE ELEVATED CITY

In this section, we describe our implementation of the
elevated city within the BabiaXR visualization framework.

A. BabiaXR in a Nutshell

BabiaXR1 is a toolset for extended reality (including both
AR and VR) data visualization in web browsers. It facilitates
the definition of data visualization scenes by automating
and generalizing the most common tasks. It is based on
A-Frame2, a JavaScript framework to build 3D, augmented
reality (AR), and VR scenes in the browser. A-Frame extends
HTML with new entities to build 3D scenes as if they were
HTML documents, using techniques common to any front-end
web developer. It also leverages WebGL to run on AR and
VR devices. A-Frame is built on top of Three.js,3 which uses
the WebGL API available in modern web browsers.

BabiaXR extends A-Frame by providing components for
creating a data visualization 3D scene that can be presented
in immersive virtual reality or in augmented reality when
run on a corresponding device (headset, AR glasses). It also
includes components to assist in data retrieval and processing
(data filtering, mapping of fields to visualization features, etc),
and to simplify the production of scenes suitable for use in
experiments with human subjects. Scenes built with BabiaXR
can be displayed on-screen, or in VR/AR devices.

1BabiaXR source code: https://gitlab.com/babiaxr/
aframe-babia-components

2A-Frame: https://aframe.io
3Three.js: https://threejs.org

https://gitlab.com/babiaxr/aframe-babia-components
https://gitlab.com/babiaxr/aframe-babia-components
https://aframe.io
https://threejs.org


B. Visualization of Dependencies

The elevated city component of BabiaXR visualizes the
dependencies of an application, specifically the dependencies
of JavaScript applications using NPM packages, including all
transitive dependencies.

Layout

The city is composed of buildings and districts/quarters. A
building represents a package, so it corresponds to a NPM
package which is a transitive dependency of the application.
Each quarter is represented by a platform including buildings
for all direct dependencies of a package. The level of the
quarter corresponds to a dependency level, higher as depen-
dencies are deeper (see Figure 1). Buildings on the first level
are the direct dependencies found in the package.json file of
the project.

Fig. 1: Example of a NodeJS project with six levels of
dependencies.

Each level has a color gradient from dark green to light
green as the levels increase, to ease the identification of depen-
dencies levels. The vertical width of the platforms representing
quarters is always the same. If a building lies on a quarter, its
base starts from the platform meaning that the package is a
dependency of the building below the quarter (See Figure 2).

(a) First level quarter. (b) Third level quarter.

Fig. 2: Examples of buildings belonging to a quarter: buildings
in a red dashed square belong to the quarter with a base in
brown/yellow.

When a building, because of its outgoing dependencies
“generates” a quarter, the quarter base is below it, and the
building “goes through” its base. If the building is not tall
enough to go through the base of its quarter, a line from the
top of the building to its base is shown. Therefore, if a building
does not go through a quarter or does not have a line above
it, the package has no dependencies.

(a) Package (in a red dashed rectangle) tall enough to go through
the quarter it originates (in blue).

(b) Short buildings with yellow lines above them, linking to the
quarter they originate.

Fig. 3: Examples of buildings that are the origin of quarters.

Figure 3 shows two examples of a package going through
a quarter base, and packages that are not tall enough to go
through a quarter. Only a single building can be the origin of
a quarter, so it is not possible to have two buildings that go
through the same quarter.



Metrics

Three metrics can be mapped onto a building height, area,
and color.

• The metric mapped to height is always age days: the age
of a package (in days).

• There are three metrics that can be mapped to the area:
– loc/age: lines of code of the package divided by the

package age (in days).
– size/age: package size (in bytes) divided by package

age (in days).
– ncommits/age: number of commits of the package

git repository divided by the age of the package (in
days).

All of these metrics are divided by age so that the volume
of the building represents a meaningful metric: lines of
code, size, or number of commits.

• There are several metrics that can be mapped to color. If
the metric is categorical, each value will have a defined
color. If the metric is numeric, the color of the building
will follow a continuous palette from blue to red. The user
can select any of these metrics for color in real-time:

– license (categorical): license of the package.
– timesInstalled (numeric): how many times a pack-

age is installed. For NPM dependencies, if the
same package is pulled as a dependency in several
versions, each of these versions will be installed.
Therefore, this metric is also the number of different
versions of the package in the transitive list of
dependencies.

– timesAppear (numeric): how many times a package
appears as a dependency, regardless of the version.
This is also the number of buildings that can be found
in the whole city for that package.

– last act days (numeric): the number of days since
the last commit in the repository of a package.

– ncommits ly (numeric): the number of commits
during the last year in a package repository.

– ncommiters ly (numeric): the number of different
committers during the last year in a package repos-
itory.

– nvuln (numeric): the number of vulnerabilities of a
package.

– nissues ratio (numeric): the number of issues closed
divided by the total number of issues in the reposi-
tory of a package.

Interactions

While immersed in VR or AR, the user sees a panel with
selectors for data sources, metrics for the base and color of the
buildings, and for representing them solid, transparent, or as
wireframe (see Figure 4). This panel can be hidden by pressing
the middle button of the controller. For selecting in the panel,
the user can “fire” with the raycaster of the right controller on
its selectors.

Fig. 4: User interface on the left controller.

There are cases when a package is a direct dependency of
more than one other package. These “repeated” packages can
be shown as transparent buildings and/or as wireframes, as
shown in Figure 5. This option can be activated/deactivated
using the first row called Attributes of the user interface.

(a) Repeated buildings as transparent.

(b) Repeated buildings represented as wireframes.

Fig. 5: Examples of the transparency and wireframe for
highlighting repeated packages of one of them.

By default, these options make transparent or wireframe
all repeated buildings. For finding the repeated packages of a
specific building, the user can point, or “fire”, on a building:
its repeated buildings will be highlighted in white. Figure 6
shows this behavior. If a quarter is “fired at”, a transparent gray
box appears to highlight it, with a panel in black showing the
path of its dependency level.



Fig. 6: One package and its replicas in white color when
pointed/fired.

Close to the city, there is a panel with a summary of the
metrics, and if the color metric is categoric, close to it, there
will be another panel with the defined color and its values. On
top of it, as shown in Figure 7, there is a button for closing
all the legends opened in the city, with the goal of cleaning it
if many are opened.

Fig. 7: Metrics information panel.

C. Views

Depending on which metrics are mapped to the colors of
buildings in the elevated city, we can identify four “views”:

License. With license selected as a metric for colors, each
building has a color determined by its license. On the right side
of the scene, there is a color legend with the different licenses
found in the packages. In this view, the user can easily check
for, for example, the most used licenses in the project, or if a
certain branch of dependencies has non-compatible licenses.

Replication. This view includes mapping either timesIn-
stalled or timesAppear metrics to colors. Having the same
package in several versions among the installed dependencies
is usually a bad smell that may cause problems. Mapping
timesInstalled to colors makes it easy to spot those packages,
and in which parts of the dependency tree they are (when com-
bined with the wireframe and transparency features). Mapping
timesAppear to colors helps to quickly spot packages that are

pulled in the installation because they are dependencies of
many other dependencies.

Activity. This view includes mapping last act days, ncom-
mits ly or ncommiters ly to colors. It aims to help in the
analysis of how active is the development of the packages so
that it is easy to locate which packages, or which parts of the
dependency tree, may be no longer maintained, or have a very
low maintenance activity. A healthy absolute activity (be it the
number of days since the last activity, or commits or active
committers during the last year) may be different for packages
of different sizes. But viewing these metrics in combination
with the size of the package will help to spot likely abandoned
packages, or those likely to be under-maintained.

Vulnerabilities. This view includes mapping nvuln and nis-
sues ratio to colors. nvuln shows the number of vulnerabilities
in the package (extracted with npm audit). It, therefore, helps
to find which packages, or which branches in the dependency
tree may be vulnerable to security issues. nissues ratio shows
the ratio of closed issues to the total number of issues in the
package repository. Problems, improvements, or questions are
usually tracked via issues [41]–[43], which are closed when
solved. So, the fraction of closed issues is an indicator of how
problems are being dealt with in a package, helping to find
likely problematic dependencies.

The selected metrics in the approach are essential for
managing projects and ensuring that they are secure, reliable,
and compliant with legal requirements. The license view can
help to identify the different licenses used in the project,
which is crucial in ensuring compliance and avoiding legal
issues. The replication view can help to identify potential
problems caused by multiple versions of the same package
and dependencies, while the activity view can help to identify
which packages or branches in the dependency tree may be
under-maintained or abandoned. Finally, the vulnerabilities
view can help to identify packages or branches that may
be vulnerable to security issues by tracking the number of
vulnerabilities and the ratio of closed issues to total issues in
the package repository. To summarize, the selected metrics
could provide valuable information to developers, project
managers, and legal teams, helping them to manage open-
source projects effectively and avoid potential problems.

IV. USE CASES

To check the usability of the elevated city metaphor, we
produced four scenarios (same setup, with data from four
different applications), to better understand and refine the
metaphor ourselves. We then run a qualitative experiment with
practitioners, using two of those scenarios.

A. Scenarios

We selected four FOSS projects, with a very different num-
ber of dependencies. Table I shows the main characteristics
of those projects. Figure 8 shows the complete scenes of the
elevated cities for the project with the least dependencies
(SortingHat UI) and with the most dependencies (GitHub
Desktop) among them.



TABLE I: Projects used for the scenes, including a brief de-
scription of them, and the total number of their dependencies.

Project Description Depen-
dencies

GitHub Desktop Open source Electron-based
GitHub app. It is written in
TypeScript and uses React.

2391

Portainer Lightweight service delivery plat-
form for containerized applications
that can be used to manage Docker,
Swarm, Kubernetes, and ACI envi-
ronments.

780

PM2 Production process manager for
Node.js applications with a built-
in load balancer.

244

SortingHat UI User interface for the SortingHat
application

97

(a) SortingHat UI

(b) GitHub Desktop

Fig. 8: Pictures of two scenes with the elevated cities for
SortingHat UI (left) and GitHub Desktop (right).

More details about the data retrieval for producing these
scenes, guidelines for how to replicate them, and the code
to visualize the scenes themselves (ready to load in a web
browser if served by an HTTP server) are in the replication
package, see Section VIII.

V. EXPERTS FEEDBACK

We tested the elevated cities visualization with four in-
dustrial practitioners, with the aim of receiving qualitative
feedback, to learn to which extent it is useful in real-world
situations related to software development. For that, we used
two of the scenes we developed. The process followed with
each subject is as follows.

Training. We started by asking subjects about their ex-
perience in VR, along with some demographic questions.
Then, they run the “First steps” Meta Quest 2 tutorial, to
become used to the controllers and experience immersion.
Next, subjects were guided through the experiment scene,
to become familiar with movement and interaction. In the
scene, we presented the elevated city of the program with the
lowest number of dependencies: SortingHat UI, whose data is
shown in Table I. Subjects were guided through each of the
visualization features, the user interface for changing metrics,
and each of the available views described in Section III.

Experiment

The experiment starts when the project in the scene is
changed to the medium-sized one, PM2. Subjects are now
left to interact freely with the visualization using all four
views while providing their feedback in an open conversation.
Meanwhile, their voice and their view in VR are recorded,
using the facilities of the headset, so that we could later play
both, to obtain more detailed information.

After this, some specific questions about the tool were asked
to each subject:

• Which view (or combination of views) do you find most
useful?

• Which metrics do you find most useful?
• Which parts/features of the metaphor did you find more

useful?
• Do you use any other tool for analyzing dependencies?
• Would you change/improve something about the tool?
• Do you have any other comments?

A. Results

We interviewed four subjects from two different companies
with strong relationships with software development. Two
of the subjects had more than 10 years of experience in
programming, the other two had 7 to 10 years of experience.
All of them had previous experience with VR and only two
of them have previous experience with the NPM ecosystem.

License View

All participants unanimously agreed that it is easy to
identify the predominant license in the software ecosystem.
One participant noted that this was particularly helpful for
open-source projects, as it allowed them to quickly identify
any sub-dependencies that had licenses that did not fit with
their project policy. This feedback highlights the importance of
understanding and managing software licenses in open-source
projects, which can be a complex and time-consuming task.
The license view of the visualization approach provided a



quick and easy way for developers to gain insight into the
licenses of the software dependencies they were using. In
addition, the license view could be used to identify potential
legal issues that could arise from using certain software
dependencies. For example, if a sub-dependency had a license
that was incompatible with the main project license, it could
lead to legal conflicts down the line. By using the license view
to identify and address these issues early on, developers can
ensure that their software projects remain legally compliant
and avoid potential legal liabilities.

Overall, the feedback on the license view suggests that
it is a valuable view for managing software licenses and
ensuring compliance with project policies. By providing
a clear and intuitive visualization of software licenses,
the approach can help developers make informed deci-
sions about which dependencies to use and ensure that
their software projects remain legally compliant.

Replication View

All participants used the replication view to check how often
a package was installed more than once and to see if the size
of the building had a direct relationship with the replication of
packages. One participant highlighted the importance of cor-
relating the installed times of an application with the number
of commits as a combination of community and popularity.
They suggested that the replication view could be used to
identify popular packages that are actively maintained and
have a strong community, which could indicate their reliability
and potential for future development. The participants agreed
that using the metric that shows how many times a package
appears in the application gives useful information about
the most used dependencies, identifying core dependencies.
This information can be used to make informed decisions
about which dependencies to prioritize for maintenance and
to identify any potential issues with the core dependencies
of a software project. In addition, participants also noted that
the replication view could be useful for identifying potential
performance issues that could arise from the replication of
certain packages. For example, if a package is replicated
multiple times, it could lead to increased memory usage and
slower performance. By using the replication view to identify
and address these issues early on, developers can ensure that
their software projects remain performant and efficient.

Overall, the feedback on the replication view suggests
that it is a valuable view for identifying popular and
core dependencies, as well as potential performance
issues. By providing a clear and intuitive visualization
of package replication, the approach can help developers
make informed decisions about which dependencies to
prioritize for maintenance and ensure that their software
projects remain performant and efficient.

Activity View

The activity view was used for correlating information about
big packages, in terms of size, with the community behind
them and to identify packages that appeared to be abandoned.
One of the subjects, while looking for abandoned packages,
noticed that those which are not in the first level of the
dependency tree posed a different kind of problem because the
application developer has little control over them. This high-
lights the importance of understanding the complete depen-
dency tree and identifying potential issues in sub-dependencies
that could impact the overall stability and performance of the
software project. Another participant noticed that by corre-
lating the number of commits with the last activity metrics,
some packages that seemed abandoned could in fact be mature
software not needing further development. This suggests that
the activity view can help developers make informed decisions
about which packages to prioritize for maintenance, as well as
to identify any potential issues with mature packages that may
not require further development. Participants also noted that
the activity view could be used to identify packages that are
actively maintained and have a strong community behind them.
By identifying these packages, developers can make informed
decisions about which dependencies to use and can ensure that
their software projects remain reliable and up-to-date.

Overall, the feedback on the activity view suggests that
it is a valuable tool for identifying potential issues with
sub-dependencies and for making informed decisions
about which packages to prioritize for maintenance. By
providing a clear and intuitive visualization of package
activity, the approach can help developers ensure that
their software projects remain stable, reliable, and up-to-
date.

Vulnerabilities View

Participants also discussed the importance of this view in
the context of security. One participant noted that the visu-
alization helped them quickly identify packages with known
vulnerabilities, allowing them to proactively take measures to
mitigate potential security risks. They also found it helpful
for tracking the status of vulnerability fixes and monitoring
any new vulnerabilities that may arise in the future. The
vulnerabilities view was also used in combination with other
views. For instance, participants combined this view with the
replication view to identify if packages with vulnerabilities
were installed more than once, indicating a higher potential
for risk. They also used it in conjunction with the activity view
to check if packages with vulnerabilities had low maintenance
activity, indicating a potential for security issues in the future.
Moreover, the participants found the ratio of issues metric
particularly useful in this view. They used it to gain insights
into how responsive a package’s development community
was in addressing security issues. This information, combined
with the vulnerabilities and activity metrics, provided a more
comprehensive understanding of a package’s overall security
and maintenance status.



Overall, the vulnerabilities view proved to be a critical
tool for ensuring the security and stability of software
ecosystems. By providing an easy-to-use and interactive
interface, it allowed developers to quickly identify and
address potential security vulnerabilities and monitor the
status of fixes. Combining this view with other visual-
izations offered additional insights into the ecosystem’s
health and provided a more complete picture of potential
risks and issues.

Combining the Views

Participants also explored ways to combine different views
in order to retrieve more information about the software
ecosystem. One popular combination was the replication view
and the vulnerabilities view. By cross-referencing these two
views, participants were able to check whether a package that
was installed more than once had any known vulnerabilities.
The replication and vulnerabilities views were also combined
with the activity view to check for maintenance problems
in packages that appeared frequently and had vulnerabilities.
Participants used metrics such as the number of commits, the
number of committers, and the issues ratio to determine if
these packages were being actively maintained or if they had
been abandoned. All of the participants used this combination
of views, indicating that it was a valuable way to gain a
deeper understanding of the software ecosystem. The ability
to combine different views allowed participants to identify
potential issues in the software system that might have been
missed by using only one view.

These results highlight the importance of providing a
flexible and customizable visualization approach that
allows developers to combine different views to suit
their needs. By providing multiple views and metrics,
developers can gain a more comprehensive understanding
of their software dependencies and identify potential
issues before they become major problems.

During the evaluation of the software dependency visualiza-
tion approach, participants made several comments on aspects
of the approach beyond the color views. One participant
expressed surprise at the high number of tall buildings in
the visualization, which indicated the presence of old depen-
dencies that might be of interest for further exploration. This
observation suggests that the approach can be useful in identi-
fying areas of a software system that may need refactoring
or updating. Another aspect of the approach that received
positive feedback was the transparency and wireframe features
for highlighting unique packages. All participants found these
features helpful, although they had different preferences for
how they used them. Two participants consistently used the
transparency feature in all their responses, while the other half
preferred the wireframe feature. Interestingly, both participants
who used the wireframe feature noted that they preferred to
keep unique packages solid, as this information was more
important to them than whether a package was repeated. These

comments demonstrate that different developers may have
different preferences for visualizing software dependencies
and that providing a range of visualization options can be
beneficial. The transparency and wireframe features allowed
participants to quickly and easily identify unique packages
in the system, which helped them to understand the overall
structure of the software system. The comments also suggest
that developers may be interested in exploring the history and
evolution of software dependencies over time, which could be
an interesting avenue for future research.

Overall, the feedback from the evaluation of the de-
pendencies ecosystem visualization approach indicates
that it is a promising tool for analyzing and managing
software dependencies and that there is potential for
further development and refinement of the approach to
meet the specific needs and preferences of different
developers.

VI. THREATS TO VALIDITY

Internal threats to validity refer to the potential issues that
could occur within the study itself, such as flaws in the study
design or errors in the data collection process. Some possible
internal threats to validity for the initial study are:

• Selection bias: The participants could not be randomly
selected, and the sample may not be representative of the
larger population, which could affect the generalizability
of the results. To mitigate this threat, we interviewed
four practitioners from two different companies, holding
different positions.

• Experimenter bias: The experimenter may unconsciously
influence the participants or the study outcomes, which
could lead to biased results. To mitigate this threat, the ex-
perimenter was not involved in conducting the study, only
present to troubleshoot technical issues with the device.
In addition, in the training, the experimenter followed
the same steps with the four participants, avoiding bias
in previous learning.

• Training bias: Some participants could be more experi-
enced with the projects or have familiarity with BabiaXR,
then they may perform better on the exploration, and
this could potentially confound the results. In this study,
none of the participants had previous experience with
BabiaXR and this visualization, so the training was the
same for all of them, carried out in the same way. In
addition, in the case of having experience with the project
represented, none of the participants had knowledge about
the ecosystem of project dependencies, so this threat is
mitigated.

External threats to validity refer to issues that could affect
the generalizability of the study results to other populations
or settings. Some possible external threats to validity for the
initial study are:

• Generalizability: The results of the study may not be
applicable to other populations or settings, as the sample



may not be representative of the larger population or the
study setting may not be typical. To mitigate this threat,
we have developed the tool in the web environment, being
a universal environment and replicable with any device
that understands the WebXR standards. In addition, the
only requirement to participate is basic notions of the
dependency ecosystem, so the range of the population
that can participate is wide.

• History: The results of the study may be influenced by
external events that occur during the study period, such
as changes in the software development process or the
availability of new tools or resources. We mitigated this
threat by conducting the study in a period in which
BabiaXR did not undergo any changes, and the data of
the selected projects did not change during the study.

• Maturation: The participants may change over time dur-
ing the study period, which could affect their responses
or behavior and thus affect the study outcomes. The
study lasted the same length of time for each participant,
their answers being free and without having to define
anything other than the information that was found in
their exploration, if the participant reflected changes in
their answers, these are also reflected in the results,
mitigating this threat.

VII. DISCUSSION

NPM offers default statistics displayed in plain text or
tables on project dependencies, but our approach uses visual
representation through artifacts and geometric aspects. While
tables and textual analysis may provide statistical insights
about dependencies, they are limited in their ability to convey
the multidimensionality and complexity of the data. Visual
representations, on the other hand, offer a more intuitive
way to understand the relationships and dependencies among
variables. By enabling users to manipulate and interact with
the data in a virtual environment, they can gain a deeper
understanding of the patterns and trends within the data.
Additionally, visual representations can help to identify out-
liers, anomalies, and correlations that may not be immediately
apparent through textual/tabular analysis. Therefore, we be-
lieve that while tables and textual analysis may be useful for
presenting basic statistics, they cannot replace the benefits of
visual representations for dependency analysis.

Our approach following the metaphor of the elevated city
has proven to be useful for industry experts: they managed to
extract useful information from it. Focusing on the color of
the buildings, and using different views, users access varied
and interrelated information about different types of metrics.

In the final feedback survey, we asked participants for the
views they found most useful. Three of them agreed that the
activity view is important to know if a package is well main-
tained or if there is a strong community behind it. Combining
this with vulnerabilities and package size, problems related to
the overall size and vulnerabilities of the application can be
dealt with. One participant commented that the license view
is very interesting for open-source projects since it gives an

overview not only of the different licenses but it points out
where licensing problems may be, and how spread they are
among dependencies.

Regarding metrics, participants emphasized the vulnera-
bility metrics: the closed issues ratio and the number of
vulnerabilities. This appears to be due to the fact that when
developing a project in JavaScript, vulnerabilities are reported
by NPM, but just showing in which packages they were found.
Among activity metrics, days since the last commit and the
number of commits during the last year were highlighted by
participants. The number of times a package is installed was
also highlighted by one participant, since installing a package
more than once, apart from taking up more physical disk space,
can cause other problems.

When asked about key elements of the elevated city in
general, participants agreed that changing the view and the
color metric in a simple and lively manner was fundamental
to detect useful information and correlate it quickly. This was
from the beginning an objective of our approach: to be able
to quickly visualize information derived from the activity,
licenses, vulnerabilities, and replicas in a dependency tree or a
part of it. The levels of the neighborhoods to differentiate the
different levels of dependencies were also identified as very
useful parts by the participants. This is the main difference
with the traditional code city. We modified the layout of the
city so that these neighborhoods are better identified with the
height and with a simple glance you can see the deepest level
of dependencies of an application. In addition, when immersed
in VR, this observation is even easier, since the participant can
observe at eye level the maximum level of dependencies and
can use movements such as bending down to find information
between levels. This behavior was used by several participants
during the experiment.

Only one participant had used a comparable tool to visualize
the dependencies of an application. However, that tool only
provides the dependencies size using a treemap layout, and
only for a specific JavaScript technology (bundles generated
with webpack), not on any NPM dependency.

We also asked subjects about possible improvements, gen-
eral comments, and other information that the participants
might have missed in the elevated city. This question raised
interesting issues, such as a feature to detect or isolate direct
dependencies, cascade evolution when updating a dependency
of the first levels, improving the color of the quarters, provid-
ing a new view for those packages that originate quarters, and
those which have no dependencies. We expect to have these
comments into account in future work.

Summarizing all the information retrieved in this initial
study, provided important insights into the tool’s potential for
managing dependencies ecosystems of projects. We aim for an
empirical study for further validation, but the initial feedback
from participants gave us an indication of the tool’s usefulness
and effectiveness. The study highlighted the importance of
selecting appropriate views and metrics, such as licenses,
replication, activity, and vulnerabilities, for managing the
dependencies of the projects. Additionally, it shed light on



usability, user-friendliness, and visual design aspects of the
tool, which can be used to enhance it further. The initial study
played a pivotal role in the early stages of understanding the
potential of the tool, making it an essential stepping stone
toward a more comprehensive empirical study.

VIII. CONCLUSIONS

In this paper, we presented the elevated city, an XR-based
approach, based on the city metaphor, for visualizing different
aspects of the dependencies of an application. We implemented
it for the dependencies of JavaScript applications, relying on
web browser technologies, making the approach universal and
accessible. The city represents packages as buildings and de-
pendency levels as floating quarters. The visualization includes
four views to analyze four different types of information: the
type of licenses of the packages, the replication of dependency
packages, the activity of the package repositories, and the
vulnerabilities found in packages. These views are used to
obtain insights about the ecosystem and to analyze and detect
issues.

We presented our implementation of the elevated city to
some practitioners. Results showed the usefulness of the ap-
proach in terms of analysis of licenses, community, vulnerabil-
ities, and use of the packages. The subsequent feedback helped
to identify the key points of our approach, as well as other
comments that we will take into account in the future. While
the initial feedback from participants on the tool is positive,
it is essential to conduct a more comprehensive study in the
future to validate its usefulness and effectiveness. A well-
designed empirical study with larger sample size and a proper
research method would provide more significant insights into
the strengths and limitations of the tool. It would also help
to identify any areas for improvement and to determine if the
selected metrics are adequate for managing the dependencies
ecosystem. Furthermore, an empirical study could provide
more reliable evidence of the usefulness of the tool and its
potential impact on managing projects.

Replication package. The data and the analysis obtained for
our experiment, including the material needed for replication,
are publicly available4.

REFERENCES

[1] J. Williams and A. Dabirsiaghi, “The unfortunate reality of insecure
libraries,” Asp. Secur. Inc, pp. 1–26, 2012.

[2] K. Chatzidimitriou, M. Papamichail, T. Diamantopoulos, M. Tsapanos,
and A. Symeonidis, “npm-miner: An infrastructure for measuring the
quality of the npm registry,” in 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR), 2018, pp. 42–45.

[3] E. Wittern, P. Suter, and S. Rajagopalan, “A look at the dynamics of the
javascript package ecosystem,” in Proceedings of the 13th International
Conference on Mining Software Repositories, 2016, pp. 351–361.

[4] R. Koschke, “Software visualization in software maintenance, reverse
engineering, and re-engineering: a research survey,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 15, no. 2, pp.
87–109, 2003.

[5] R. Falke, R. Klein, R. Koschke, and J. Quante, “The dominance tree in
visualizing software dependencies,” in 3rd IEEE International Workshop
on Visualizing Software for Understanding and Analysis, 2005, pp. 1–6.

4Replication Package: https://doi.org/10.5281/zenodo.7378331

[6] A. Bergel, S. Maass, S. Ducasse, and T. Girba, “A domain-specific
language for visualizing software dependencies as a graph,” in 2014
Second IEEE Working Conference on Software Visualization, 2014, pp.
45–49.

[7] R. Wettel and M. Lanza, “Visualizing software systems as cities,” in
2007 4th IEEE International Workshop on Visualizing Software for
Understanding and Analysis, 2007, pp. 92–99.

[8] D. Moreno-Lumbreras, J. M. Gonzalez-Barahona, and A. Villaverde,
“BabiaXR: Virtual reality software data visualizations for the web,”
in 2022 IEEE Conference on Virtual Reality and 3D User Interfaces
Abstracts and Workshops (VRW). IEEE, 2022, pp. 71–74.

[9] R. Abdalkareem, V. Oda, S. Mujahid, and E. Shihab, “On the impact
of using trivial packages: an empirical case study on npm and pypi,”
Empirical Software Engineering, vol. 25, no. 2, pp. 1168–1204, Mar
2020. [Online]. Available: https://doi.org/10.1007/s10664-019-09792-9

[10] A. Decan, T. Mens, and P. Grosjean, “An empirical comparison of
dependency network evolution in seven software packaging ecosystems,”
Empirical Software Engineering, vol. 24, no. 1, pp. 381–416, Feb 2019.
[Online]. Available: https://doi.org/10.1007/s10664-017-9589-y

[11] A. J. Jafari, D. E. Costa, R. Abdalkareem, E. Shihab, and N. Tsan-
talis, “Dependency smells in javascript projects,” IEEE Transactions on
Software Engineering, vol. 48, no. 10, pp. 3790–3807, 2022.

[12] R. Kikas, G. Gousios, M. Dumas, and D. Pfahl, “Structure and evolution
of package dependency networks,” in 2017 IEEE/ACM 14th Interna-
tional Conference on Mining Software Repositories (MSR), 2017, pp.
102–112.

[13] J. Hejderup, “In dependencies we trust: How vulnerable are dependen-
cies in software modules?” 2015.

[14] T. Lauinger, A. Chaabane, S. Arshad, W. Robertson, C. Wilson, and
E. Kirda, “Thou shalt not depend on me: Analysing the use of outdated
javascript libraries on the web,” arXiv preprint arXiv:1811.00918, 2018.

[15] R. Elizalde Zapata, R. G. Kula, B. Chinthanet, T. Ishio, K. Matsumoto,
and A. Ihara, “Towards smoother library migrations: A look at vulner-
able dependency migrations at function level for npm javascript pack-
ages,” in 2018 IEEE International Conference on Software Maintenance
and Evolution (ICSME), 2018, pp. 559–563.

[16] A. Zerouali, V. Cosentino, T. Mens, G. Robles, and J. M. Gonzalez-
Barahona, “On the impact of outdated and vulnerable javascript pack-
ages in docker images,” in 2019 IEEE 26th International Conference
on Software Analysis, Evolution and Reengineering (SANER), 2019, pp.
619–623.

[17] S. Zhang, C. Demiralp, D. Keefe, M. DaSilva, D. Laidlaw, B. Greenberg,
P. Basser, C. Pierpaoli, E. Chiocca, and T. Deisboeck, “An immersive
virtual environment for dt-mri volume visualization applications: a case
study,” in Proceedings Visualization, 2001. VIS ’01., 2001, pp. 437–584.

[18] C. Demiralp, C. Jackson, D. Karelitz, S. Zhang, and D. Laidlaw,
“Cave and fishtank virtual-reality displays: A qualitative and quantitative
comparison,” IEEE transactions on visualization and computer graphics,
vol. 12, pp. 323–30, 05 2006.

[19] B. Laha, D. Bowman, and J. Socha, “Effects of vr system fidelity on an-
alyzing isosurface visualization of volume datasets,” IEEE transactions
on visualization and computer graphics, vol. 20, pp. 513–22, 04 2014.

[20] E. D. Ragan, R. Kopper, P. Schuchardt, and D. A. Bowman, “Studying
the effects of stereo, head tracking, and field of regard on a small-
scale spatial judgment task,” IEEE Transactions on Visualization and
Computer Graphics, vol. 19, no. 5, pp. 886–896, 2013.

[21] J. J. Chen, H. Cai, A. P. Auchus, and D. H. Laidlaw, “Effects of stereo
and screen size on the legibility of three-dimensional streamtube visu-
alization,” IEEE Transactions on Visualization and Computer Graphics,
vol. 18, pp. 2130–2139, 2012.

[22] P. Milgram and F. Kishino, “A taxonomy of mixed reality visual
displays,” IEICE TRANSACTIONS on Information and Systems, vol. 77,
no. 12, pp. 1321–1329, 1994.

[23] R. Skarbez, M. Smith, and M. C. Whitton, “Revisiting milgram and
kishino’s reality-virtuality continuum,” Frontiers in Virtual Reality,
vol. 2, p. 647997, 2021.

[24] P. Kaiser, P. Vasak, F. Suorineni, and D. Thibodeau, “New dimensions
in seismic data interpretation with 3-d virtual reality visualisation for
burst-prone mines,” 01 2005, pp. 33–45.

[25] A. Anderson and Z. Weng, “Vrdd: applying virtual reality visualization
to protein docking and design,” Journal of Molecular Graphics and
Modelling, vol. 17, no. 3-4, pp. 180–186, 1999.

[26] S. Djorgovski, P. Hut, R. Knop, G. Longo, S. McMillan, E. Vesperini,
C. Donalek, M. Graham, A. Mahabal, F. Sauer et al., “The mica exper-

https://doi.org/10.5281/zenodo.7378331
https://doi.org/10.1007/s10664-019-09792-9
https://doi.org/10.1007/s10664-017-9589-y


iment: Astrophysics in virtual worlds,” arXiv preprint arXiv:1301.6808,
2013.

[27] Z. Ibrahim and A. G. Money, “Computer mediated reality technologies:
A conceptual framework and survey of the state of the art in healthcare
intervention systems,” Journal of biomedical informatics, vol. 90, p.
103102, 2019.

[28] S. Bryson, “Virtual reality in scientific visualization,” Communications
of the ACM, vol. 39, no. 5, pp. 62–71, 1996.

[29] T. Munzner, Visualization analysis and design. CRC press, 2014.
[30] S. Few, “Show me the numbers,” Analytics Pres, 2004.
[31] A. Batch, A. Cunningham, M. Cordeil, N. Elmqvist, T. Dwyer, B. H.

Thomas, and K. Marriott, “There is no spoon: Evaluating performance,
space use, and presence with expert domain users in immersive analyt-
ics,” IEEE transactions on visualization and computer graphics, vol. 26,
no. 1, pp. 536–546, 2019.

[32] R. J. Jacob, A. Girouard, L. M. Hirshfield, M. S. Horn, O. Shaer, E. T.
Solovey, and J. Zigelbaum, “Reality-based interaction: a framework for
post-wimp interfaces,” in Proceedings of the SIGCHI conference on
Human factors in computing systems, 2008, pp. 201–210.

[33] R. Rosenbaum, J. Bottleson, Z. Liu, and B. Hamann, “Involve me and i
will understand!–abstract data visualization in immersive environments,”
in International Symposium on Visual Computing. Springer, 2011, pp.
530–540.

[34] R. J. Garcı́a-Hernández, C. Anthes, M. Wiedemann, and D. Kran-
zlmüller, “Perspectives for using virtual reality to extend visual data
mining in information visualization,” in 2016 IEEE Aerospace Confer-
ence, 2016, pp. 1–11.

[35] C. Knight and M. Munro, “Comprehension with[in] virtual environment
visualisations,” in Proceedings Seventh International Workshop on Pro-
gram Comprehension, 1999, pp. 4–11.

[36] L. Merino, M. Ghafari, C. Anslow, and O. Nierstrasz, “CityVR: Gameful
software visualization,” in 2017 IEEE International Conference on
Software Maintenance and Evolution (ICSME), 2017, pp. 633–637.

[37] D. Moreno-Lumbreras, R. Minelli, A. Villaverde, J. M. Gonzalez-
Barahona, and M. Lanza, “Codecity: A comparison of on-screen
and virtual reality,” Information and Software Technology, vol. 153,
p. 107064, 2023. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0950584922001732

[38] K. Kobayashi, M. Kamimura, K. Yano, K. Kato, and A. Matsuo,
“Sarf map: Visualizing software architecture from feature and layer
viewpoints,” in 2013 21st International Conference on Program Com-
prehension (ICPC), 2013, pp. 43–52.

[39] K. Yano and A. Matsuo, “Data access visualization for legacy application
maintenance,” in 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER), 2017, pp. 546–550.

[40] M. Misiak, A. Schreiber, A. Fuhrmann, S. Zur, D. Seider, and L. Nafeie,
“IslandViz: A tool for visualizing modular software systems in virtual
reality,” in 2018 IEEE Working Conference on Software Visualization
(VISSOFT), 2018, pp. 112–116.

[41] O. Kononenko, T. Rose, O. Baysal, M. Godfrey, D. Theisen, and
B. De Water, “Studying pull request merges: a case study of shopify’s
active merchant,” in Proceedings of the 40th ICSE SEIP, 2018, pp. 124–
133.

[42] C. Maddila, C. Bansal, and N. Nagappan, “Predicting pull request com-
pletion time: a case study on large scale cloud services,” in Proceedings
of the 2019 27th ESEC/FSE, 2019, pp. 874–882.

[43] Y. Yu, H. Wang, V. Filkov, P. Devanbu, and B. Vasilescu, “Wait for
it: Determinants of pull request evaluation latency on github,” in 2015
IEEE/ACM 12th working conference on mining software repositories.
IEEE, 2015, pp. 367–371.

https://www.sciencedirect.com/science/article/pii/S0950584922001732
https://www.sciencedirect.com/science/article/pii/S0950584922001732

	Introduction
	Related Work
	The Elevated City
	BabiaXR in a Nutshell
	Visualization of Dependencies
	Views

	Use cases
	Scenarios

	Experts feedback
	Results

	Threats to Validity
	Discussion
	Conclusions
	References

