
Università
della
Svizzera
italiana

Software
Institute

ON THE USAGE OF UML DIAGRAMS
IN OPEN SOURCE PROJECTS

Joseph Romeo

Sept 2023

Supervised by
Prof. Dr. Michele Lanza

Co-Supervised by
Dr. Csaba Nagy

Marco Raglianti

iii

Abstract

Every software project requires some form of documentation. Documentation increases the maintainability,
comprehensibility, and evolvability of software systems. One important form of documentation is UML
diagrams. They help developers comprehend software systems to better evolve and maintain them. They
also help developers communicate design ideas and elicit collaboration and discussion.

Although the importance of good diagrams has been shown to have a positive impact on software
projects, it is often an afterthought. In the context of open source projects, where communication and
collaboration happen asynchronously, good diagrams can be especially valuable. When conversations
happen over the span of days, weeks, or even months through issues and pull requests, UML diagrams
can offer a way to communicate design ideas in a clear and concise way. Why then is UML underutilized
in open source projects?

To shed light on this, we explore the usage of UML in open source repositories. We analyze the commit
histories of over 13,000 GitHub repositories to see what types of projects use UML diagrams, and which do
not. We explore the formats that UML diagrams are stored in, the tools that are used to create them, and
how the popularity of those formats and tools has changed over time. We look at the contributors who cre-
ate and maintain UML diagrams, and how they differ from other contributors. We do an in-depth analysis
of three open source projects, where we examine how UML diagrams are used within these projects, and
how that usage has changed over time. We pose the following research questions:

• RQ1. How widespread is the use of UML in open source projects?

• RQ2. What formats are UML diagrams found in?

• RQ3. Who is creating and maintaining UML design diagrams?

• RQ4. What types of projects are UML diagrams found in?

By examining these aspects of UML usage in open source projects, we gain insights into why UML is
underutilized in open source projects.

v

Dedicated to my wife, Nona Ebrahimi, for
all of the support she has given me on this

journey these past 2 years. . .

vii

Acknowledgements

A special thanks to my advisor, Prof. Dr. Michele Lanza, for your guidance, support, and vision throughout
this journey. Every meeting and conversation was a mix of learning and inspiration, and left me motivated
to tackle the next problem. Thank you for your constant guidance in helping me see the forest for the trees,
and to always pushing me to elevate my work, and never sell myself short. I will carry the knowledge and
skills I have gained working with you for the rest of my life.

A huge thank you to my co-advisors Dr. Csaba Nagy and Marco Raglianti for your endless dedication,
for the countless hours spent intensively reading the thesis, for the extremely detailed feedback, and for
the many discussions we had that helped shape this work. You helped guide what started as a mess of
thoughts with no clear organization into a document that I can be proud of.

Thank you to all of the professors of the MSDE program. The knowledge you have imparted has been
invaluable and my capabilities as a software developer and technical writer have exceeded any expecta-
tions I had when I started this program.

To my wife, Nona, thank you for all of your support these past 2 years. You supported me through the
countless late nights and long weekends spent studying. I could not have survived the last 2 years without
you.

To my parents, Joe and Lydia, thank you for your support and encouragement throughout my life. You
have always been there for me, told me to follow my dreams, and supported me in all that I do and have
done. You inspired my love of learning and taught me to never be afraid to try something new.

To my brother, TJ, to whom I have always looked up to, thank you for showing me the value of perse-
verance. You taught me that when things are challenging, and are not coming easy, you just have to work
harder.

ix

Contents

Abstract iii

Acknowledgements vii

1 Introduction 1
1.1 Contributions . 2

1.1.1 Tools . 2
Drifter . 2
AViz . 2
Author Merge Suggester Endpoint . 2

1.1.2 Approaches . 3
UML to Source Mapping . 3
Author Anti-Aliasing . 3
UML Extension Tagging . 3

1.1.3 Data . 3
UML Tools . 3

1.1.4 Example UML Diagrams . 3
1.1.5 Tagged UML Files . 3

1.2 Document Structure . 4
1.2.1 Chapter 2: Related Work . 4
1.2.2 Chapter 3: Approach . 4
1.2.3 Chapter 4: Implementation . 4
1.2.4 Chapter 5: Research Questions . 4
1.2.5 Chapter 6: Case Studies . 4
1.2.6 Conclusions . 4

2 State of the Art 5
2.1 UML Diagrams . 5

2.1.1 Defining UML . 5
2.1.2 The Usefulness of UML Diagrams . 6
2.1.3 UML Tools . 6
2.1.4 UML Diagram Extraction . 7

2.2 Software Traceability . 7
2.3 Architecture Erosion and Consistency . 8
2.4 Author Anti-Aliasing . 8
2.5 Conclusions . 9

3 Approach 11
3.1 Dataset . 12

3.1.1 Repository Selection Criteria . 12
3.1.2 Definitions . 12
3.1.3 Full Dataset Statistics . 12

x

3.1.4 UML Subset Statistics . 13
3.1.5 Summarizing the Dataset . 14

3.2 Extension Exploration . 14
3.2.1 Generating UML Extension Candidate List . 15

3.3 Extension Tagging . 17
3.4 Author Anti-Aliasing . 18

3.4.1 Model . 18
3.4.2 Process . 18
3.4.3 Definitions . 18
3.4.4 Evaluation . 19

False Positive Examples . 20
False Negative Examples . 21

3.4.5 Results . 21
3.5 Author Analysis . 22
3.6 UML to Source Mapping . 23

3.6.1 Definitions . 23
Coverage . 23
Method Coverage . 23
Attribute Coverage . 24

3.7 Summary . 24

4 Implementation 25
4.1 Definitions . 26
4.2 Gitt . 26
4.3 Parsers . 27

4.3.1 Java Parser . 27
4.3.2 UML Parser . 29

4.4 Analyzers . 31
4.4.1 ProjectTracer . 31
4.4.2 Project Analyzer . 31
4.4.3 Author Merge Suggestion Analyzer . 32

4.5 Databases . 33
4.6 CLI . 33

4.6.1 Cloning and Summarizing Repositories . 34
4.6.2 Author Analysis . 34
4.6.3 Diagram Generation . 34

4.7 Drifter . 35
4.7.1 Package Visualization . 35
4.7.2 Java to UML graph . 35
4.7.3 Coverage History . 36
4.7.4 File History . 37

4.8 Summary . 37

5 RQs 39
5.1 RQ1: How Widespread is the use of UML in Open Source Projects? 40

5.1.1 Definitions . 40
5.1.2 Evolution of UML use . 40
5.1.3 Popularity by Extension . 41
5.1.4 Conclusions . 44

5.2 RQ2: What Formats are UML Diagrams Found in? . 45

xi

5.2.1 Finding UML Diagrams in Candidate Extensions . 45
Step 1: Find Example or Counter-Example for each Extension 45
Step 2: Search Files in /uml/ Paths . 45
Step 3: Search File Names for Keywords . 46
Step 4: Manual Search . 46

5.2.2 Results . 47
5.2.3 Conclusions . 48

5.3 RQ3: Who is Creating and Maintaining UML Design Diagrams? 49
5.3.1 Definitions . 49
5.3.2 Methodology . 49
5.3.3 Contribution Period of UML Committers vs non-UML Committers 49
5.3.4 Number of UML Committers versus non-UML Committers 52
5.3.5 Number of Commits by UML Committers vs non-UML Committers 54
5.3.6 Are There Dedicated UML Diagrammers? . 55
5.3.7 Conclusions . 57

5.4 RQ4: What Types of Projects are UML Diagrams Found in? . 58
5.4.1 Methodology . 58
5.4.2 UML by Main Programming Language . 58

UML in non-OOP Languages – An Example . 59
5.4.3 UML by Activity and Community Size . 61
5.4.4 Conclusions . 61

5.5 RQ0: Why is UML Underutilized in Open Source Projects? . 62
5.6 Summary . 62

6 Case studies 63
6.1 Definitions . 63
6.2 Orekit: An Impressive Feat of Diagramming . 64

6.2.1 Method and Attribute Coverage . 67
6.2.2 UML to Java References Graph . 69
6.2.3 From the Beginning of Time . 73
6.2.4 Where is the UML used? . 73
6.2.5 UML Committers . 74
6.2.6 Conclusions . 75

6.3 Teammates: From PowerPoint to PlantUML . 76
6.3.1 A Blip in Time . 76
6.3.2 From PowerPoint to PlantUML . 76
6.3.3 UML Committers . 78
6.3.4 Conclusions . 79

6.4 Dataverse: PlantUML from the Start . 80
6.4.1 Designing Before Coding . 80
6.4.2 Documentation Website . 82
6.4.3 Authors . 83
6.4.4 Conclusions . 83

6.5 Summary . 84

7 Conclusion 85
7.1 Discussion . 85
7.2 Threats to Validity . 86
7.3 Future Work . 86
7.4 Epilogue . 87

xii

A UML Tools 89

B UML Examples 91

C UML Counter-Examples 95

D UML Extension Tagging 99
D.1 .argo and .zargo . 99
D.2 .asta . 99
D.3 .cmof . 99
D.4 .dia . 100
D.5 .diagram . 100
D.6 .ecore . 100
D.7 .gliffy . 100
D.8 .iuml, .puml, .plantuml, .platuml . 101
D.9 .mdj . 101
D.10 .mdzip . 101
D.11 .mmd . 101
D.12 .prj . 101
D.13 .pu . 102
D.14 .session . 102
D.15 .ucls . 102
D.16 .uml . 102
D.17 .umlclass and .umlprofile . 102
D.18 .ump . 103
D.19 .uxf . 103
D.20 .vpp . 103
D.21 .xmi . 103
D.22 .yuml . 103
D.23 .zuml . 104

E Queries 105
E.1 Extension Exploration . 105

Find all file extensions that contain string . 105
Find all file extensions found in /uml/ paths . 105
Find all repositories where extension exists . 105
Find all commits and files where extension exists for given repository 106
Find all commits and files in uml paths for given extension 106

E.2 Commit Exploration . 106
Retrieve commit extension statistics . 106

F Author Anti-Aliasing Algorithm Details 107
F.1 Names match . 107
F.2 Emails match . 108
F.3 Name matches email . 108

G List of UML Repositories 109

xiii

List of Figures

2.1 Simple class diagram . 6

3.1 General flow of the approach . 11
3.2 Number of active repositories by year . 12
3.3 Number of repositories by language . 13
3.4 Number of active UML repositories by year . 14
3.5 PostgresDB ER diagram . 15
3.6 Example of recursive merge suggestion . 18
3.7 Example of the author visualization tool . 19
3.8 Simple class name example . 23

4.1 Package diagram for Drifter, Harvest, and CLI tools . 25
4.2 Gitt package class diagram . 26
4.3 Java parser class diagram . 27
4.4 Class diagram for Java model . 28
4.5 Class diagram with various method parameter formats . 29
4.6 Class diagram for UML model . 30
4.7 ProjectTracer class diagram . 31
4.8 Persisted metrics class diagram . 31
4.9 Edge metrics class diagram . 32
4.10 Author merge suggester HTTP API . 32
4.11 Dbs class diagram . 33
4.12 Annotated package visualization . 35
4.13 Java to UML graph . 36
4.14 Coverage history graph – Release view . 36
4.15 File history for Instructor.java . 37

5.1 Number of repositories with UML . 40
5.2 Percentage of repositories with UML . 41
5.3 Number of repositories with UML extensions by year . 42
5.4 Average contribution periods boxplot of UML committers vs non-UML committers 50
5.5 Average contribution periods scatterplot of UML committers versus non-UML committers . 50
5.6 Number of UML committers versus non-UML committers . 52
5.7 Proportion of commits by UML committers versus non-UML committers 54
5.8 Average number of commits by UML committers versus non-UML committers 55
5.9 Number of repositories with UML by language . 58
5.10 Percentage of repositories with UML by language . 59
5.11 Class diagram from arm-software/arm-trusted-firmware . 60

6.1 Orekit release view coverage history . 64
6.2 Orekit package diagram from release 7.2 . 65
6.3 Evolution of Orekit Packages . 66

xiv

6.4 Orekit DSSTCentralBody file history . 67
6.5 Orekit time package simplified class diagram . 67
6.6 Orekit method coverage release 7.2 . 68
6.7 Orekit attribute coverage release 7.2 . 68
6.8 Orekit bodies package attribute coverage release 7.2 . 68
6.9 Orekit bodies package method coverage release 7.2 . 68
6.10 Orekit UML to Java references graph release 11.3.2 . 69
6.11 UnscentedKalmanEstimator diagram history . 70
6.12 MatricesHarvester class diagram coverage comparison . 70
6.13 MatricesHarvester diagram history . 71
6.15 Orekit coverage history commit view . 73
6.16 Evolution of UML tools in Orekit . 74
6.17 Comparison of author statistics . 74
6.18 Teammates release coverage history . 76
6.19 Teammates storage class diagram from PowerPoint . 77
6.20 Teammates storage class diagram from PlantUML . 77
6.21 Evolution of UML tools in Teammates . 78
6.22 Comparison of author statistics . 79
6.23 Dataverse commit coverage history . 80
6.24 Dataverse users and groups UML diagram - commit 06.12.2014 82
6.25 Comparison of author statistics . 83

xv

List of Tables

3.1 Definitions used in dataset section . 12
3.2 Repository statistics . 13
3.3 UML repository statistics . 14
3.4 Final UML extension candidates list . 16
3.5 Definitions for author anti-aliasing . 19
3.6 Author anti-aliasing evaluation . 20
3.7 Author anti-aliasing false positive example 0 . 20
3.8 Author anti-aliasing false positive example 1 . 20
3.9 Author anti-aliasing false negative example 0 . 21
3.10 Author anti-aliasing false negative example 1 . 21
3.11 Aliasing percentage . 21
3.12 Example of commit extension statistics for a single commit . 22
3.13 Definitions for UML to source mapping section . 23

4.1 Definitions for implementation chapter . 26

5.1 Definitions used in RQ1 . 40
5.2 Manually searched UML extensions . 46
5.3 Extensions with UML examples . 47
5.4 Definitions used in RQ3 . 49
5.5 Authors for rolisteam/rolisteam . 51
5.6 Top 5 authors by number of commits for alsa-project/alsa-lib 51
5.7 UML Committers for kubernetes-sigs/cluster-api . 53
5.8 Top 5 committers by number of commits for embox/embox . 54
5.9 Dedicated diagrammers . 56
5.10 Statistical significance of repository statistics of UML vs non-UML 61

6.1 Definitions used in case studies . 63
6.2 Orekit GitHub statistics . 64
6.3 Orekit release view statistics . 64
6.4 Orekit author statistics . 74
6.5 Teammates GitHub statistics . 76
6.6 Teammates author statistics . 78
6.7 UML Committers for Teammates . 79
6.8 Dataverse GitHub statistics . 80
6.9 Covered references for Dataverse over time . 81
6.10 Dataverse author statistics . 83

A.1 Popular UML tools and their supported file extensions . 90

B.1 Examples of UML diagrams for each extension . 93

C.1 Counter-Examples of UML diagrams for each extension . 97

xvi

G.1 List of 550 UML repositories used in the evaluation. 121

1

Chapter 1

Introduction

“Every adventure requires a first step.”

— Cheshire Cat

Andrew Watson said that the history of visual modeling can be divided cleanly into two eras, “Before
UML” and “After UML” [53]. The period “Before UML” was a time marked by division and strife. With the
introduction of Simula and Smalltalk in the 1960s and 1970s [11] the object-oriented paradigm was born.
With the advent of object-oriented ideas came many competing ideas for how code should be designed,
modeled and visualized. By the 1990s, hundreds of disparate approaches emerged to model object-oriented
software systems, resulting in a clash of ideas notable enough to earn the name “The Method Wars” [3].
This was a problem for both software developers and software managers. Software developers did not
want to waste time learning a new modeling language that would potentially be irrelevant at another
company or on another project. In the absence of standards, software managers were hesitant to invest in
modeling languages that might lack future support or have a limited pool of experienced developers in the
market.

Grady Booch, Jim Rumbaugh, and Ivar Jacobson, aka the “Three Amigos”, were creators of three pop-
ular object-oriented development approaches of their time [10, 23, 43]. They combined their efforts to
create a single, unified modeling language. “The Method Wars” were slowly put to rest when the Unified
Modeling Language (UML) was adopted as a standard by the Object Management Group (OMG) in 1997.
Thus began the era designated as “After UML”. Since becoming a standard, UML has grown in popular-
ity and is now one of the most prominent modeling languages used in software development. UML can
and has been used in a variety of ways, from automatic code generation for embedded systems to creat-
ing workflow diagrams for business process to designing, architecting and documenting software systems
[17, 22, 25, 35, 39]. In this thesis, we focus on the latter case of UML usage in designing and documenting
software systems.

Documentation in all forms is often perceived as tedious, time-consuming, expensive, and no fun to
create and maintain [2, 27, 40]. As such, the efficacy of such documentation has often been called into
question, especially with the agile movement and the phrase “Working software over comprehensive doc-
umentation” [18]. Still, even on agile teams, more than half of developers find documentation important
or very important, but feel too little is available [51]. Research continues to show time and again that good,
high-quality documentation can be a huge benefit to the success of a software project [16, 31, 52]. This
notion is especially true when it comes to UML diagrams and documentation based on visual modeling
languages. Software design diagrams have been shown to promote better active discussion, both in ho-
mogeneous and cross-functional teams [24]. Developers can achieve better functional correctness when
making changes with accurate and up-to-date design diagrams [6, 16].

Unfortunately, even given the vast amounts of research showing the benefits of good, quality design
documentation, and the standardization of UML, the low quality of documentation in software projects is
still a major problem. It is still perceived as one of the leading contributors to the high cost of software
maintenance [50].

2 Chapter 1. Introduction

Given the importance of documentation, and the benefits of UML diagrams, we want to understand
how UML is being used in open source repositories. We examine the extent to which UML is employed
in open source projects, and what types of projects tend to incorporate UML. We also study which UML
diagram formats are most popular, and how that popularity has changed over time. In addition, we explore
which characteristics set apart contributors who actively create and maintain UML diagrams from those
who do not. In essence, we seek to find answers to these research questions:

• RQ1. How widespread is the use of UML in open source projects?

• RQ2. What formats are UML diagrams found in?

• RQ3. Who is creating and maintaining UML design diagrams?

• RQ4. What types of projects are UML diagrams found in?

In addition to these research questions, we also propose one additional research question:

• RQ0. Why is UML underutilized in open source projects?

By answering RQ1-RQ4, we look to provide insights into why UML is not more prevalent in open source
projects. After exploring these questions, we look at real world examples of UML usage in open source
projects.

1.1 Contributions

To support this thesis, we developed tools, approaches, and curated data. In this section we present those
contributions, along with the sections where they are discussed in detail.

1.1.1 Tools

Drifter

We developed Drifter, a web application made to explore the evolution of open source projects and their
usage of UML diagrams. It allows visualizing the connections between UML diagrams and the source code
they describe, how detailed those diagrams are, and how those connections change over time. The tool can
be seen at https://drifter.si.usi.ch/, and its features are described in Section 4.7. The power of Drifter
can be seen in the case studies in Chapter 6, where we explore the usage of UML in real world open source
projects.

AViz

The next tool we developed is called AViz (Author Visualizer), a web-application created to visualize com-
mit authors and their aliases. Properly identifying authors in git repositories can be difficult because of
the ability to change author names and emails at any point. Authors often commit under multiple aliases.
AViz gives the ability to visualize this information, along with the ability to manual clean author data for a
git repository. The tool can be accessed at https://drifter.si.usi.ch/aviz.

Author Merge Suggester Endpoint

Given the problem that anti-aliasing can cause, we also developed an HTTP end-point, that given a list
of authors with name and email, will suggest which authors are likely to be the same person. The end-
point can be accessed at https://drifter.si.usi.ch/api/authors/suggest-merge and the request and
response schema are described in Section 4.4.3.

https://drifter.si.usi.ch/
https://drifter.si.usi.ch/aviz
https://drifter.si.usi.ch/api/authors/suggest-merge

1.1. Contributions 3

1.1.2 Approaches

UML to Source Mapping

We developed an approach to make connections between entities from UML diagrams and entities from
source code. By making these connections, we can see how much of a software system is covered by UML
diagrams, and how that coverage changes over time. This approach supports the visualizations used in
Drifter. The approach is described in Section 3.6.

Author Anti-Aliasing

To support AViz, the merge suggestion end-point, and answering the research questions, we developed
an approach for performing author anti-aliasing that is tuned to GitHub repositories. The approach is
described in Section 3.4.

UML Extension Tagging

We also developed an approach for tagging UML diagrams in numerous formats. We tag 9875 UML di-
agrams with 28 different extensions across 550 GitHub repositories. The approach for performing this
tagging is described at a high level in Section 3.3 and in detail in Appendix D.

1.1.3 Data

UML Tools

In our exploration of UML usage, we curated a list of 30 popular UML tools and the file extensions that
they work with. The list includes the file formats that they can import and export, and also the project file
formats that they use. This list can be found in Appendix A.

1.1.4 Example UML Diagrams

We collected examples of UML diagrams in various formats. While exploring which file formats UML
diagrams are found in, we collected examples of UML diagrams in those formats. The list includes the
file format, the repository name, the commit hash, and the file path of the UML diagrams. This list can
be found in Appendix B. In addition to examples, we also collected counter-examples of files that are not
UML diagrams. This counter-examples list is provided in the same format as the examples list, and can be
found in Appendix C.

1.1.5 Tagged UML Files

The CSV containing the repository name and file name of the 9875 UML diagrams we tagged is avail-
able at https://gitlab.reveal.si.usi.ch/students/2022/romeo-joseph/drifter/-/blob/main/data/
authors.csv. The full archive of tagged UML files is available upon request, but the list of repositories and
UML extensions found in them is available in Appendix G.

https://gitlab.reveal.si.usi.ch/students/2022/romeo-joseph/drifter/-/blob/main/data/authors.csv
https://gitlab.reveal.si.usi.ch/students/2022/romeo-joseph/drifter/-/blob/main/data/authors.csv

4 Chapter 1. Introduction

1.2 Document Structure

In this section we give an overview of the structure of this document, and a short description of the contents
of each chapter.

1.2.1 Chapter 2: Related Work

In Chapter 2, we look at the related work regarding UML in software development. We give an overview of
the history of UML, and the motivating forces behind its creation. We look at what a UML diagram is, why
it is useful, and the tools that are available to create them. After exploring UML, we look at related work
in software traceability and architecture erosion and consistency. Finally, we look at research on author
anti-aliasing in the context of software repositories.

1.2.2 Chapter 3: Approach

In Chapter 3 we look at the approach we take to answer our research questions and perform case studies.
We share the repository selection criteria, and statistics about the repositories we analyze. We present the
methods we use to build the dataset, tag UML diagrams, perform author anti-aliasing, and map UML
diagrams to source code.

1.2.3 Chapter 4: Implementation

In Chapter 4 we look at the architecture of the tools developed to support the approach. We explore the
Java and UML parsers, and the source code and UML diagram analyzers that support the visualizations in
Drifter. We look at the schema of the data we collect and analyze, and the database technologies we use to
store that data. In addition, we share how the CLI tools we developed can be run, and what their inputs
and outputs look like. We end the chapter by describing the visualizations in Drifter, and how they are
interpreted.

1.2.4 Chapter 5: Research Questions

In Chapter 5 we present the research questions. For each research question we present the data we col-
lected, the analysis we performed, and the findings we discovered.

1.2.5 Chapter 6: Case Studies

In Chapter 6 we present case studies on the usage of UML in open source projects. We look at three GitHub
repositories: cs-si/orekit, teammates/teammates, and iqss/dataverse. We explore how they use UML
diagrams, and how that usage changes over time.

1.2.6 Conclusions

In Chapter 7 we conclude the thesis with a discussion of the findings and their potential implications. We
also share the threats to validity, ideas for future work, and end with a brief discussion on the future of
UML.

5

Chapter 2

Related Work

"It is indeed a desirable thing to be well-descended, but
the glory belongs to our ancestors."

— Lucius Mestrius Plutarchus

Software documentation is an important part of software development that can improve the quality of a
software product [27]. Research continues to show the vast benefits and importance of documentation
[16, 31, 51, 52]. Software traceability is another hallmark of high-quality software systems [13]. While
software traceability looks to create links between natural language documentation and source code, we
borrow ideas to make similar links between UML diagrams and source code. Architecture consistency
is yet another important quality of software systems. Consistency checks often use software architecture
recovery techniques to recover architecture from source code [4]. We leverage ideas from these techniques
to recover design from source code, and compare the recovered design to the linked design documentation.
Identifying authors and all of their aliases in version control systems can be difficult due to the ease in
which authors can commit under multiple names and emails [9, 19, 29].

2.1 UML Diagrams

As hardware capabilities increased through the 1950s and 60s, the potential for what software could be used
to do also increased. The increasing possibilities lead to software becoming more and more complex. By
the late 1960s, the high complexity of software caused many projects and companies to fail, and lead to the
coining of the term “software crisis” [54]. This motivated efforts throughout the 1970s and 80s to develop
approaches to tame this high complexity. Among these efforts were dozens of competing object-oriented
methods and modeling languages [3]. Object-oriented modeling languages were difficult to adopt because
there were many competing ideas and no standardization. To combat this issue, Jim Rumbaugh, Ivar
Jacobson, and Grady Booch (the Three Amigos) banded together to create UML. UML 1.1 was proposed
to the Object Management Group (OMG) in 1997 and was adopted as a standard that same year. The
UML specification has evolved throughout the years and is now on version 2.5.1.1 Since the specification’s
inception in the 1990s, it has continually gained popularity and is now the de facto modeling language
standard [21].

2.1.1 Defining UML

What UML is exactly and how it should be used changes depending on who is asked. To some, UML
should be used to comprehensively model a system so the model can be used to generate code, and in
some cases, be executed directly [44, 48]. To others, it is a tool to communicate conceptual ideas with stake-
holders, and elicit collaborative discussions [41]. In all of these cases, it is a notation to describe a system’s
structure and behavior in a precise way. Figure 2.1 shows an example of a simple UML class diagram (the

1https://www.omg.org/spec/UML

https://www.omg.org/spec/UML

6 Chapter 2. State of the Art

most used UML diagram type [28]). In this diagram we see an interface Shape which is realized (imple-
mented) by the classes Circle, Rectangle, and Triangle. We also see a drawing is a composition of shapes
that can be rendered.

Shape

render(): void

Triangle Rectangle Circle

Drawing
1..*

1

FIGURE 2.1: Simple class diagram

Although there are 13 other types of UML diagrams, we can see the purpose and power of UML in this
simple example. Each of the elements in this diagram has a precise meaning. The dotted line with the
arrowhead indicates a realization relationship (which can be achieved in Java for example using the imple-
ments keyword). The diamond with the filled in arrowhead indicates a composition relationship, which
tells us the drawing is composed of shapes, and shapes cannot exist without the drawing.

2.1.2 The Usefulness of UML Diagrams

UML diagrams are often used to aid in program comprehension tasks. They can help a developer better
create and retain a mental model of the software system. Given the popularity of UML and the continued
high cost of software maintenance, the efficacy of using UML diagrams as a program comprehension aid
has been studied extensively [6, 16, 20, 45, 46, 47]. Surprisingly, the results of these studies are mixed.

Arisholm et al. found that the use of UML diagrams does help with the correctness and design quality of
software maintenance tasks, but also increases the time needed to complete those tasks [16]. The additional
time needed to use the diagrams is likely worth the cost as it is estimated that over $500 billion USD
was spent on finding and fixing bugs in the U.S. alone in 2020 [30]. Given the cost and time needed
for bug finding and fixing, a small increase in time to complete a task is worth the cost if it means better
functional correctness and fewer bugs. Although the previous study found UML diagrams to be beneficial,
Scanniello et al. and Gravino et al. instead found using UML diagrams could actually decrease program
comprehension and maintainability in certain situations [20, 45].

Through a series of 12 experiments, Scanniello et al. [46] found that for diagrams to be most useful, they
should be detailed, up-to-date, and closely related to the implementation. As part of our work we capture
how the usage of UML diagrams in a system changes over time, including how much of the system they
cover, and how detailed that coverage is.

2.1.3 UML Tools

There are a number of tools available to create UML diagrams. These tools support a range of capabilities,
from simple drawing, to the generation of code from UML models, to full fledged IDEs that support round-
trip engineering where changes in the model are reflected in the code and vice-versa [49]. Ozkaya identified
58 such tools used for UML. Ozkaya also identified which tools support code generation, and which tools
support the exporting of diagrams in image formats, XMI, and XML [38]. As part of our work, we tag
UML diagrams in open source repositories. Given this, in addition to image formats, XMI, and XML,
we are also interested in knowing the project formats each tool supports, and what defining characteristics
these formats have. We expand on Ozkaya’s work by identifying these additional formats, finding defining
characteristics that can be used for tagging, and also identifying new tools not present Ozkaya’s work.

2.2. Software Traceability 7

2.1.4 UML Diagram Extraction

UML diagrams come in both text and image formats. Karasneh and Chaudron [26] developed a tool called
Img2UML which can extract class models from UML diagrams. They were able to successfully detect the
rectangles that contained class entities 95% of the time, extract text from the enclosing rectangles correctly
92% of the time, and detect the correct relationships between classes 80% of the time.

Chen et al. [12] built on this work and developed a tool called ReSECDI. The motivation for developing
the tool was to improve relationship detection while also making the tool generalize better to more flavors
of UML class diagrams. They were able to detect relationships between classes with precision and recall
both above 90%. They also achieved moderately better results for detecting class entities.

We were able to get ReSECDI running, and verified the results of Chen et al. on the dataset they provide.
Unfortunately, we found it did not generalize well with our own dataset. In a sample from our dataset,
we found that the tool struggles with diagrams that have certain styling, including the default styling for
diagrams created by PlantUML. Given that the tool did not apply well to our dataset, we made the decision
to focus our work on diagrams in text-based formats.

2.2 Software Traceability

Software Traceability is an important quality of software systems [13]. Gotel et al. defines requirement
traceability as "the ability to describe and follow the life of a requirement, in both a forwards and backwards direction
(i.e., from its origins, through its development and specification to its subsequent deployment and use, and through
all periods of on-going refinement and iteration in any of these phases)". The Center of Excellence for Software
Systems Traceability (CoEST) extends this definition from the traceability of requirements to encompass the
multi-directional traceability centered around diverse artifacts.2 These diverse artifacts include (among
many others) requirements documents, design documents, source code, bug reports, and test cases [7].
Software traceability is essential for safety-critical systems where it is important to be able to trace each
requirement to its corresponding implementation [37].

Manual creation of traceability links between documentation and source code is untenable in large-
scale projects, so many automated techniques for traceability have been developed [5, 7, 33, 34]. Antoniol
et al. developed a tool that uses Information Retrieval (IR) methods to recover links between free text and
source code [5]. The method has two inputs: a set of documents (textual artifacts in natural language) and
a query generated from source code (i.e., class, attribute, method, and parameter names). The approach is
predicated on the fact that developers use meaningful names, and so the constituent parts of a source code
entity can be found in the documentation. They achieved high recall close to 100%, but very low precision
of 13%.

To improve on the low precision of IR traceability approaches, Lin et al. proposed a deep learning
approach leveraging BERT techniques [33]. In their approach, they only looked at the top 3 documents
returned by a query, so they did not report a recall metric. They did however report a precision of over
90% when considering the top 3 documents, where precision, in this case, means the number of queries
that returned a relevant document in the top 3 divided by the total number of queries.

Although software traceability techniques are aimed at natural language documentation, we use similar
ideas (i.e., developers use meaningful names) to link source code to design documentation. We restrict our
inputs to UML diagrams, which provide a more formal, non-ambiguous way to retrieve information about
the system. By making links between the UML diagrams and the source code, we determine which parts
of the system are covered by UML. The deep learning approaches used by Lin et al. could be useful for
future work to expand from UML diagrams to also consider natural language documentation.

2CoEST: http://www.coest.org/

http://www.coest.org/

8 Chapter 2. State of the Art

2.3 Architecture Erosion and Consistency

As software systems evolve and grow in size and complexity, they often naturally diverge from their in-
tended architecture. Many studies have described this phenomenon as architecture erosion [4, 8, 32]. This
often-cited definition is at odds with the actual metrics used to detect it. Baabad et al. performed a system-
atic mapping study of 43 papers and found nearly 100 different metrics used to detect architecture erosion
[8]. In each case, the metrics were computed only on the implemented architecture. Given the metrics
used to describe architecture erosion, it would be better defined as the deterioration of the implemented
architecture.

The idea of keeping the implemented architecture consistent with the intended architecture is better
described under the term architecture consistency. Architecture consistency aims to align the architecture
and implementation of the system [4, 42]. Many architecture consistency approaches use software architec-
ture recovery techniques [4]. Ducasse et Pollet identified 3 main flavors of software architecture recovery:
bottom-up, top-down, or a combination of both [15]. One of the most cited software architecture recovery
techniques is a top-down approach called the reflexion model that was developed by Murphy et al. [36].
In the reflexion model, an architect creates a high-level architecture view of a system of interest. Next, a
source model (i.e., inheritance hierarchy) is extracted from the source code, and then mapped by the ar-
chitect to the high-level view. The mapping is then automatically checked for consistency. Although this
process yields good results for architecture recovery, it is a very manual and time-consuming process. We
do, however, leverage ideas from the reflexion model to recover the design of a system from the source
code. Since design is lower level, and more closely represented in the source code, we avoid the manual
parts of the reflexion model technique, which involve mapping the low-level design to the high-level ar-
chitectural views. In our work, we extract a source model similarly to the reflexion model technique, and
also a diagram model from the diagrams.

2.4 Author Anti-Aliasing

Mining data from version control systems such as git is subject to the problem of author aliasing [19].
Identifying the true identity of an author can be difficult because authors can commit under multiple aliases
(names and emails). Bird et al. developed an algorithm, which given a list of identities (name, email pairs),
identifies identities that should be merged [9]. The algorithm clusters identities based on three similarities:
name similarity, email similarity, and name-email similarity. When considering email, they extract the
email base (i.e., the part before the @ symbol), and do not consider the domain. The algorithm then takes
the max similarity score among the three similarities and merges identities with a score above a specified
threshold.

Kouters et al. evaluated the algorithm of Bird et al. and found it is sensitive to name ordering (i.e., first
name, last name vs. last name, first name), as well as email prefixes with common first names [29]. Gote
et al. expand on this work by accounting for the ordering of names, and also considering the possibility of
usernames in the email base (i.e., Joseph Romeo → jromeo@gmail.com). They calculate similarity metrics
against the full name, combinations of the first, penultimate, and last names, the email bases, and combi-
nations of the email bases against first and last names. To avoid the problem of common names present in
the algorithm of Bird et al., they take the average of the top two similarity scores as the comparison against
the threshold versus the max score. In the case where full names are identical, full emails are identical, or
both first and last name appear in the email base, they consider an identity match regardless of the average
similarity score. In both the work of Bird et al. and Gote et al., preprocessing is done on name and email.
Gote et al. convert non-ASCII characters to their closest ASCII counterpart, use all lower case, replace
delimiting punctuation with spaces, and remove non-alphabetical characters (except the @ symbol), and
remove common strings from names.

2.5. Conclusions 9

We expand on the work of Gote et al. by tuning the algorithm to GitHub repositories, and also taking
into account names in the domain of email addresses. To tune to GitHub repositories, we eliminated names
and emails we found were extremely common in our dataset. We do not consider matching the following
names: unknown, anonymous, anon, and none. We do not consider emails containing the words unknown,
anonymous, devnull, noreply, none@none, and root@localhost. In addition, we consider names in the domain
of email addresses for those who host their own email accounts (i.e., mail@jromeo.com). When extracting
the email for comparison, we extract the domain instead of the base if the first or last name appears in the
domain.

2.5 Conclusions

In our work, we look to make links between UML diagrams and source code. Software traceability instead
looks to make links between natural language documentation and source code. Although software trace-
ability techniques are aimed at natural language documentation, we use similar ideas to link source code
to design documentation, which can be used to determine which parts of the implementation are covered
by UML diarams, and how detailed that coverage is.

Architecture consistency is the idea that the intended architecture of a system should be consistent with
the implemented architecture. An architecture consistency check is often done with the help of a software
architecture recovery technique called reflexion models. Although reflexion model is aimed at recovering
the implemented architecture of a system, we can use similar ideas to recover the implemented design
instead. Since design is lower level, and more closely represented in the source code, we can avoid the
manual, time-consuming parts of the reflexion model technique.

UML diagrams also come in both text and image formats, and there are a number of tools available to
create UML diagrams. Where previous work has looked at whether these tools support code generation,
XMI, and XML, we look to expand this by also looking at the project formats each tool supports, and what
defining characteristics each format has. We focus on textual formats over image formats because we found
the tools developed to extract information from image based UML diagrams did not generalize well to our
dataset.

11

Chapter 3

Approach

"Success is a journey, not a destination. The doing is
often more important than the outcome."

— Arthur Ashe

In this chapter, we discuss the approach we take to answer our research questions and perform the case
studies mentioned in Chapter 1. We can see the general flow of the approach in Figure 3.1. In the first step,
we create our dataset, which involves choosing the repositories that we will analyze, cloning them, and
summarizing information from those repositories in a DB to be used in later steps. In the next step, we
explore UML file extensions and diagramming tools, and tag all the UML files we can find in our dataset.
With the tagged UML files, we answer RQ1: how widespread is the use of UML in open source projects,
RQ2: what formats are UML diagrams found in, and RQ4: what types of projects are UML diagrams
found in, which are discussed in Chapter 5. For step three, we perform git commit author anti-aliasing
on repositories with at least one tagged UML file. Given the cleaned author data and the tagged UML
files, we analyze the authors and their commits to answer RQ3: who is creating and maintaining UML
design diagrams, which is also discussed in Chapter 5. Finally, to perform the case studies in Chapter 6,
we developed a tool called Drifter to visualize the usage of UML in open source repositories. The tool
is described in Section 4.7, but here we describe the approach used to make connections between UML
diagrams and source code that are leveraged by Drifter.

GitHub

Dataset
Creation

Repo information

Raw repos

Extension
Exploration

UML Extension
Tagging

Tagged
Files List

Author
Anti-Aliasing

Repo information+

Author
Analysis

UML to Source
Mapping

RQ1, RQ2, RQ4
(Chapter 5)

RQ3
(Chapter 5)

Case Studies
(Chapter 6)Drifter

FIGURE 3.1: General flow of the approach

12 Chapter 3. Approach

3.1 Dataset

3.1.1 Repository Selection Criteria

We use the SEART GHS tool to gather a relevant set of GitHub projects [14]. We select projects with at least
2,000 commits to eliminate toy projects, which ideally leaves us with projects complex enough to warrant
the use of diagrams. We choose projects with at least 10 contributors to ensure the need for collaboration,
which increases the utility of diagrams. Last, we take projects with at least 100 stars to ensure the project
is considered useful by the open source community, and end up with 13,563 repositories (forks excluded).
Each of the 13,563 repositories were cloned over a 24-hour period on April 1st, 2023. These 13,563 repre-
sent the full dataset, but for most of the analysis performed in this thesis, we use only a subset of those
repositories. The subset is composed of the repositories that we found UML diagrams in, and consists of
550 repositories. Below we present both the full dataset and the subset containing UML.

3.1.2 Definitions

In Table 3.1 we present definitions that are useful throughout the dataset section.

Term Description

Active Repository A repository is considered active if it has at least 1 commit in a year (considering the
main branch of the repository).

TABLE 3.1: Definitions used in dataset section

3.1.3 Full Dataset Statistics

Figure 3.2 shows the number of active repositories by year. There are a number of repositories active before
GitHub was released in 2005 due to the migration from version control tools that existed before GitHub. We
also found inconsistent commit dates in a small number of repositories. This can be due to manual override
by the committer or discrepancies between the committer’s and the server’s machine clocks. Given that, we
filtered out commits after 04.01.2023, the date each repository was cloned, as they should not be possible.

2000 2004 2008 2012 2016 2020
Year

0

2,000

4,000

6,000

8,000

10,000

12,000

Nu
m

be
r o

f a
ct

iv
e

re
po

s

Gi
t R

el
ea

se
d

Gi
tH

ub
 R

el
ea

se
d

FIGURE 3.2: Number of active repositories by year

3.1. Dataset 13

Table 3.2 shows general repository statistics which come from the SEART GHS tool. We can see that we
have a good mix of projects from moderately popular (100 stars) to extremely popular (321,889 stars), and
from moderately sized (2,000 commits) to massive (841,401 commits). We also share Figure 3.3 which
shows the number of repositories by main language.

Metric Min Median Max Mean Stddev

Stars 100 706 321,889 3,221 8,941
Forks 0 210 91,233 737 2,529
Watchers 0 51 8,428 124 294
Commits 2,000 4,161 841,401 9,457 25,949
Contributors 10 63 12,921 112 235
Issues 0 456 117,484 1,082 2,461

TABLE 3.2: Repository statistics

0 250 500 750 1000 1250 1500 1750 2000
Number of Repositories

Python
C++

JavaScript
Java

C
TypeScript

PHP
Go
C#

Ruby
Rust
Shell

Kotlin
Swift

Objective-C
Dart
Elixir

Groovy
Nix

Smalltalk

M
ai

n
Pr

og
ra

m
m

in
g

La
ng

ua
ge

2030
1913

1717
1700

1329
1026

813
806

648
444

358
244

211
112

82
52

31
29

10
8

FIGURE 3.3: Number of repositories by language

3.1.4 UML Subset Statistics

Figure 3.4 shows the number of UML repositories active by year. This includes all activity, and not just
activity to UML diagrams. The first commit to one of the UML repositories was in 1994, but we show data
here and throughout the thesis starting from 2000. The year 2000 marks the first year a commit was made
to UML in our dataset. In Table 3.3 we show general statistics for the UML repositories. In Section 5.4
we compare these repository statistics against the full dataset to see if there are any statistically significant
differences.

14 Chapter 3. Approach

2000 2004 2008 2012 2016 2020
Year

0

100

200

300

400

500

Nu
m

be
r o

f a
ct

iv
e

re
po

s

Gi
t R

el
ea

se
d

Gi
tH

ub
 R

el
ea

se
d

FIGURE 3.4: Number of active UML repositories by year

Metric Min Median Max Mean Stddev

Stars 100 535 79,954 2,443 6,980
Forks 11 216 50,497 762 2,788
Watchers 6 51 3,832 122 276
Commits 2,001 6,821 156,849 14,305 20,300
Contributors 10 62 441 102 99
Issues 0 519 27,767 1,308 2,712

TABLE 3.3: UML repository statistics

3.1.5 Summarizing the Dataset

To explore the extensions in the dataset, and discover which are used for UML, we require a quick way to
explore the dataset. Given the large number of repositories, and with that, the huge number of files that
come with them, running file searches using find and grep is not feasible. Instead, while cloning each repos-
itory, we also gathered additional information about them and stored it in a PostgresDB. The repositories,
file_extensions, and file_paths tables shown in Figure 3.5 are all filled during the cloning step and used
extensively in the extensions exploration step. We also filled in the releases table during the cloning step.
The Drifter tool uses releases from GitHub to select specific versions of a given repository for exploration.
GitHub releases can be deleted or modified, and new releases can be added. To avoid inconsistencies
between our cloned repository dataset and GitHub, we collected the releases from GitHub upfront. The
remaining tables in the ER diagram are filled during the anti-aliasing and author analysis steps.

3.2 Extension Exploration

To answer RQ2: what formats are UML diagrams found in, we take a two-step approach. In the first step
we generate a candidate list of UML extensions. In the second step, we search our repository dataset for ex-
amples of these extensions. We discuss here the first step of generating a candidate list of UML extensions.
Exploring that list and determining which extensions are used for UML is covered in Section 5.2.

3.2. Extension Exploration 15

SEART GHS
File Summarization

GitHub

Author Anti-Aliasing

Author Analysis

FIGURE 3.5: PostgresDB ER diagram

3.2.1 Generating UML Extension Candidate List

To generate a list of candidate UML extensions we followed a three-step approach. In Step 1, we googled
the top UML diagramming tools and identified 30 popular tools used to create UML diagrams. To deter-
mine which file extensions each tool works with, we downloaded and installed them. We checked their
import, export, and save functionalities to gather the list of extensions that each tool works with. There
were a small number of tools that we were not able to successfully install and run, marked with asterisks
in Table A.1 in Appendix A. For those we relied on the documentation or YouTube videos of the tools in
action to determine which file extensions the given tools work with. The list of importable and exportable
extensions for each of these popular UML diagramming tools can be found in Table A.1.

In Step 2, we searched for all extensions with UML in the name which show up in at least two reposi-
tories.1 In the final step, we searched for any file paths with UML in the name.2 After generating this list,
we removed any extensions that we found no examples of in our dataset,3 along with any extensions that
seemed unlikely to be UML extensions (e.g., .java, .jar, .am). Putting all of these extensions together, we
generated the list of candidate UML extensions seen in Table 3.4.

1See query Find all file extensions that contain string in Appendix E
2See query Find all file extensions found in /uml/ paths in Appendix E
3Verfieid using query Find all repositories where extension exists in Appendix E

16 Chapter 3. Approach

Extension Repo Count Classification Extension Repo Count Classification

.md 13,238 ú .emf 45 ú

.txt 12,442 ú .ecore 42 ú U

.png 11,916 ú .mmd 38 ú U

.html 10,400 ú .session 36 ú U

.xml 8,958 ú .ucls 33 ú U

.svg 8,446 ú .vpp 32 ú U

.jpg 7,268 ú .zargo 32 ú U

.gif 6,432 ú .uxf 31 ú U

.pdf 3,852 ú .diagram 30 ú U

.rst 3,541 ú .pu 20 ú U

.patch 3,335 .mdj 18 ú U

.csv 3,127 .vacuumlo 12

.bmp 1,759 ú .eap 11 ú

.jpeg 1,598 ú .umlaut 10

.swf 1,030 .argo 9 ú U

.rtf 965 .umlclass 9 ú U

.xpm 640 ú .vdx 9 ú

.xlsx 625 .pgml 8

.eps 610 .zuml 7 ú U

.tiff 551 .asta 6 ú U

.docx 521 ú .iuml 5 ú U

.ps 460 ú .mdzip 5 ú U

.dia 417 ú U .vsdm 5 ú

.pptx 378 ú .yuml 5 ú U

.graffle 373 ú .mdr 4

.prj 206 ú U .unt 4 ú

.drawio 191 ú .edx 3

.vsd 174 ú .gxml 2

.ppt 167 ú .platuml 2 ú U

.puml 165 ú U .umlprofile 2 ú U

.uml 111 ú U .ump 2 ú U

.xmi 110 ú U .cmof 1 ú U

.pbm 109 .eddx 1

.vsdx 80 ú .vssm 1

.wmf 71 ú .vssx 1

.gliffy 59 ú U .vstm 1

.plantuml 48 ú U .vstx 1

TABLE 3.4: Final candidates list (ú UML Extension, U Tagged UML Extension)

3.3. Extension Tagging 17

3.3 Extension Tagging

To answer RQ1: how widespread is the use of UML in open source projects, and RQ2: what formats
are UML diagrams found in, we first need to know which files in our dataset are UML diagrams. We
cannot make a decision on what is a UML diagram based solely on the file extension, as many extensions
are used for both UML and non-UML purposes (e.g., .png, .svg, .drawio, .graffle). To tag UML files in
our dataset, we start with the list of all extensions we discovered were used in UML diagrams during the
extensions exploration step. We then eliminated extensions that are too generic (e.g., .html, .md) or are used
for document formats and image formats which we do not have the capability of processing automatically.
Table 3.4 shows the entire candidate list of extensions, with the extensions that we tagged marked with the
U icon, and the extensions we did not tag, but found were used as a UML diagram format marked with
the ú icon. To tag the files, we first gathered all files in our dataset for each extension, and each repository
by unique file name. We end up with a file directory structure as seen below.

|-- example-owner0
| |-- example-repo0
| | |-- example1.uml
| | |-- example2.uml
| |-- example-repo1
| | |-- somedoc.uml
|-- example-owner1

|-- example-repo0
|-- main.uml

This file directory structure has two main implications. One, we grab every file throughout the history of
the repository with the given file extension, but we take only the first version of it. We make the assumption
that if a file is a UML diagram at some point in its history, it is always a UML diagram. The second is that
we do not take into account the file path of the file. We make the assumption that if a file with the same
name in another path is a UML diagram, then the file in the current path is also a UML diagram. Once
the files are gathered, we tag each extension type using regular expressions. For most of the files the regex
was applied directly, but there are three special cases. Some extensions are gzip compressed files, so we
first decompress them before applying the regex. In other cases they are zipped up directories with a full
project in them, so we unzip them before applying regex to the files inside. Lastly, some extensions are
SQLite databases, so we run queries on the database and apply the regex to the results. This process is
described for each extension in detail in Appendix D.

18 Chapter 3. Approach

3.4 Author Anti-Aliasing

Before we can answer RQ3, who is creating and maintaining UML design diagrams, we need to be able to
identify the authors of the diagrams. This poses a problem when working with git repositories as authors
often go under many aliases throughout the life of a project. A person may have their git username and
email set up differently on a home computer versus on a work computer, for instance. They may have
switched personal emails overtime, or decided to commit with their github username. For whatever reason
a user might have multiple aliases, git commit data can be very noisy when trying to identify commit
authors. To address this issue we performed author anti-aliasing on the commit data.

3.4.1 Model

If we refer back to the ER diagram in Figure 3.5 and focus on the authors_raw, authors_cleaned, and
commits tables, we can get an idea of what the final output of the author anti-aliasing is. The authors in the
authors_raw table are taken directly from the git commit data. We group those by name and email. Each
raw author has at most 1 "cleaned" author, and a "cleaned" author in the authors_cleaned table can have
many raw authors. Each raw author also has an associated set of commits in the commits table. To find all
commits for a cleaned author, we can aggregate all the commits for each raw author associated with the
cleaned author. A raw author with no associated cleaned author is an author we found no aliases for.

3.4.2 Process

To perform author anti-aliasing, we follow three main checks to determine whether an author is an alias of
another author. The checks are: name match, email match, and email-name match. If any of these checks
are positive then we have an alias. The details of these three checks can be found in Appendix F. These
three checks are then run recursively for a given author. That is, after getting a set of aliases for an author,
we then check each of those aliases for new aliases. An example of this can be seen in Figure 3.6 which was
taken from h2oai/h2o-2. The authors in red are merged on the first pass of the algorithm by name. The
author in green is merged on the second pass of the algorithm because the email matches the second red
author. The author in purple is merged on the third pass of the algorithm because the name matches the
author in green.

FIGURE 3.6: Example of recursive merge suggestion

3.4.3 Definitions

We developed a frontend visualization tool to view the results of the author anti-aliasing. The tool can
be accessed at https://drifter.si.usi.ch/aviz. We used the tool to aid in evaluating the efficacy of

https://drifter.si.usi.ch/aviz

3.4. Author Anti-Aliasing 19

the results, which can be seen below in the evaluation section. Here we use a snapshot from the tool in
Figure 3.7 to define terms used in the evaluation and results, and also throughout the rest of this thesis.

Term Description

Raw Author An author taken directly from the git commit data, grouped by unique names and emails.

Clean Author An author that represents an aggregation of raw authors who are aliases of each other.
These are identified in the graphic by the drop-down arrow on the right, which shows the
author has associated aliases.

Alias A raw author we determine is the same as another raw author.

Real Author An author we determine as a true representative of an author in the git repository. These
are either raw authors who have no aliases, or clean authors which aggregate a set of
aliases.

Aliasing Percentage The percentage of aliases to raw authors (RawAuthors−RealAuthors
RawAuthors ∗ 100).

TABLE 3.5: Definitions for author anti-aliasing

Raw Authors / Real Authors

Raw Authors / Aliases

Clean Authors / Real Authors

FIGURE 3.7: Example of the author visualization tool

3.4.4 Evaluation

To evaluate the efficacy of the author merging, we took a random sample of 10 repositories. We took the
random sample from the repositories that we tagged at least 1 UML file in, rather than the entire set of
repositories, because we only ran author merging on the repositories for which we analyzed authors. For
each repository in the random sample, we sought to find the number of false positives and false negatives
in the author merging. We define a false positive as an author who was merged to another author but
should not have been. We define a false negative as an author who should have been merged to another
author but was not. To find false positives and false negatives, we used the tool shown in Figure 3.7 to
explore the sampled repositories.

Note that since we lack a ground truth for the author merging, we mark false positives and false neg-
atives according to our own best judgement. Also, checking the false positives, in general, is easier than
the false negatives. For the false positives, we can look at the authors who were merged and see if they
should have been merged. For false negatives, we have to take into account every author in the repository

20 Chapter 3. Approach

to determine if we missed any. The larger the repository, the more difficult it becomes to check for false
negatives. Table 3.6 shows the summary of the evaluation.

Repo Name
Raw

Authors
Real

Authors
Aliasing

Percentage Aliases
Clean

Authors FP FN

controlsystemstudio/cs-studio 201 116 42.3% 128 43 0 5
ehcache/ehcache3 104 66 36.5% 67 29 0 4
opentripplanner/opentripplanner 279 179 35.8% 156 56 2 2
opendds/opendds 134 88 34.3% 73 27 0 1
arm-software/arm-trusted-firmware 623 455 27.0% 186 83 2 0
brightid/brightid 61 45 26.2% 23 7 0 1
kubernetes/enhancements 675 507 24.9% 294 126 5 4
rptools/maptool 87 58 33.3% 46 20 0 2
owncast/owncast 138 125 9.4% 22 9 0 3
nuitka/nuitka 140 131 6.4% 18 9 0 0

TABLE 3.6: Author anti-aliasing evaluation (FP=False Positive, FN=False Negative)

False Positive Examples

Here we show two examples of false positives in Tables 3.7 and 3.8. In the first, the two authors with the
name Thomas Gran are joined correctly, but grant-humphries is incorrectly joined. The bolded parts in the
name Thomas Gran and the email grant-humphries@gmail.com trigger a username match (done as part of
email-name check). In this case, one username we consider for Thomas Gran is grant, which shows up in
grant-humphries@gmail.com. We see a similar false positive on the right, with Bo-Chen Chen matching
chenbaozi@phytium.com.cn. All false positives we found were triggered by the same matching rule.

Name Email

Thomas Gran tgr@capraconsulting.no
Thomas Gran t2gran@gmail.com
grant-humphries � grant.humphries@gmail.com

TABLE 3.7: False positive example: opentripplanner/opentripplanner (� false positive)

Name Email

Rex-BC Chen rex-bc.chen@mediatek.corp-partner.google.com
Rex-BC Chen rex-bc.chen@mediatek.com
Bo-Chen Chen rex-bc.chen@mediatek.com
Chen Baozi � chenbaozi@phytium.com.cn

TABLE 3.8: False positive example: arm-software/arm-trusted-firmware (� false positive)

The second example we show as a false positive, Chen Baozi, highlights one of the difficulties of marking
false positives and false negatives without a ground truth. There is some ambiguity as to whether Chen

3.4. Author Anti-Aliasing 21

Baozi is an alias of Bo-Chen Chen and Rex-BC Chen. Maybe BC in BC Chen stands for Baozi Chen. In these
cases we use our best judgement for the marking of false positives and false negatives.

False Negative Examples

Tables 3.9 and 3.10 show examples of false negatives.

Name Email

xichen ztyaner11@gmail.com
ztyaner11 ztyaner11@gmail.com
Xihui ztyaner11@gmail.com
xihui ztyaner11@gmail.com
Xihui Chen E chenx1@ornl.gov

TABLE 3.9: False negative example: arm-software/arm-trusted-firmware (E false negative)

Name Email

tnakamoto devnull@localhost
Takashi Nakamoto (Cosylab) takashi.nakamoto@cosylab.com
Takashi Nakamoto takashi.nakamoto@cosylab.com
tnakamoto tnakamoto@JCSL_WS001
Takashi Nakaomoto devnull@localhost
nakamoto E devnull@localhost

TABLE 3.10: False negative example: controlsystemstudio/cs-studio (E false negative)

3.4.5 Results

Now that we have seen an evaluation of the author anti-aliasing, let us take a look at some raw numbers
coming from this process. Table 3.11 shows statistics on the author aliasing percentage. With a median of
28.08%, we can see that in over half of the repositories, at least 1 of 4 authors are aliases. We found only 4
repositories which have an aliasing percentage of 0%. We also found some extreme cases where the aliasing
percentage is as high as 66.42%, meaning nearly 2 out of 3 authors is an alias. Even the median case of 1
of 4 authors being an alias could significantly skew our analysis, and shows the importance of performing
author anti-aliasing.

Repo Count Median Min Max Mean Std Dev

550 28.08% 0.00% 66.42% 28.71% 12.61%

TABLE 3.11: Aliasing percentage RawAuthors−RealAuthors
RawAuthors ∗ 100

22 Chapter 3. Approach

3.5 Author Analysis

If we refer back to the ER diagram in Figure 3.5, we can see the output of the author analysis step are
the commits and commit_extension_stats tables. Given the input of the tagged UML file list, we gather
commit extension statistics for each commit in the repositories in our dataset. An example output of a
query to these tables can be seen in Table 3.12.4

Repo Name Commit Hash Extension Category Count

cs-si/orekit c3465033... .puml uml 5
cs-si/orekit c3465033... .java code 119
cs-si/orekit c3465033... .md other 1

TABLE 3.12: Example of commit extension statistics for a single commit

The above table shows a commit where 119 .java files were touched, 5 .puml files were touched, and
1 .md file was touched. We can see the output of UML tagging in the Category column, which shows
that the .puml file is a UML file type. With the four tables authors_cleaned, authors_raw, commits, and
commit_extension_stats, we generate the graphs in Section 5.3 for RQ3: Who is creating and maintaining
UML design diagrams.

4See query Find all repositories where extension exists in Appendix E

3.6. UML to Source Mapping 23

3.6 UML to Source Mapping

Drifter is a tool we developed which provides visualizations that help explore a repositories’ usage of
UML over time. It is used in Chapter 6 where we share case studies of the usage of UML in GitHub
repositories. The visualizations are presented in Section 4.7. Here we present the metrics we use to generate
the visualizations and the approach behind calculating those metrics.

3.6.1 Definitions

In Table 3.13, we provide a few useful definitions that will be helpful throughout this section.

Term Description

Java Reference A Java class, interface, or enum.

UML Reference A class, interface, or enum in a UML diagram.

Reference A Java or UML reference.

TABLE 3.13: Definitions for UML to source mapping section

Coverage

One of the main goals is to capture how well a repository is covered by UML diagrams. To do this we
developed the coverage percentage metric. Before understanding what coverage percentage is, we first
need to understand what a covered Java reference is. We say a Java reference is covered by a UML diagram
if it is referenced by at least one diagram. To determine if a Java reference is referenced by a diagram we
compare the fully qualified name of the Java reference from the source code to the fully qualified name of
the Java reference from the diagram. In the example in Figure 3.8, the Java reference in both the PlantUML
example and Java example would have a fully qualified name of org.some.pkg.Example.

package org.some.pkg {
class Example

}

LISTING 3.1: Example puml file

package org.some.pkg;
public class Example {
}

LISTING 3.2: Example Java file

FIGURE 3.8: Simple class name example

We do not require an exact match of the fully qualified name to consider a Java reference covered by
a diagram. Instead, we check that the package structure is accurate, but not necessarily complete. For
example, given the Java reference in Figure 3.8, we would accept some.pkg.Example, org.pkg.Example,
and org.some.pkg.Example as valid matches, but not pkg.some.Example.

Method Coverage

Aside from the relationship hierarchy, one of the main aspects we hope to see in the UML class diagram are
the methods of the classes. Seeing the methods in the class diagram gives us an idea of what the behaviors
of the classes are. For that reason, we added the idea of method coverage. Method coverage starts first with
coverage. Once we have determined a Java reference is covered by a diagram, we then check if its methods
are also present in that diagram. We check specifically for methods marked in the source code with public,
protected, or package-private visibility, as these are the methods which give the most information about

24 Chapter 3. Approach

the capabilities of the class. Method coverage is the percentage of methods in the Java class covered in a
diagram. We consider 2 methods a match between the Java source code and a UML diagram if they are in
the same class and have the same name.

Java references may be covered by multiple diagrams, and with varying degrees of detail. For instance,
a class may show up in multiple class diagrams, in 1 where its full details are shown with all methods, and
in another just showing the class hierarchy in a high level package diagram. For this reason, we calculate
method coverage using three possible aggregations: average, minimum, and maximum. This would be the
method coverage percentage calculated over all of the diagrams.

Attribute Coverage

Public attributes are another aspect that can convey interesting information about a Java reference. We
added the idea of attribute coverage to our package visualization. Similarly to method coverage, we only
check for public, protected, and package-private attributes. We consider an attribute a match between the
Java source code and a UML diagram if the names of the attribute match. We have the same aggregations
available for attribute coverage as we do for method coverage.

3.7 Summary

In this chapter, we presented our dataset selection criteria and statistics about that dataset. We shared our
approach for exploring UML file extensions and tagging UML files in our dataset. We then looked at the
approach, evaluation, and results of author anti-aliasing on our dataset. Last, we presented the approach
used to make connections between UML diagrams and source code that are leveraged by Drifter. In the
next chapter, we present the implementation details of the tools that were developed to support answering
the research questions and to perform the case studies that come later.

25

Chapter 4

Implementation

"Whatever good things we build end up building us."
— Jim Rohn

In this chapter we look at the architecture of the tools built, which can be seen in Figure 4.1. Starting
from the left, we have Drifter, a frontend tool developed to visualize GitHub repositories and their usage
of UML. It also contains visualizations for viewing the results of the author anti-aliasing. The frontend
communicates with the backend through the API package using HTTP. The server package runs Flask, and
houses the server configuration and API endpoints used by the frontend.1 The parsers package contains
the code used for parsing Java and UML into usable entities for analysis. The analyzers package contains
the code which makes connections between Java and UML entities and calculates various metrics. It also
contains the author anti-aliasing code. The database package contains the code used to interact with the
PostgresDB and MongoDB databases. The Gitt package contains the code used to interact with locally
cloned git repositories and the GitHub API. Finally, the CLI package contains a suite of CLI tools that
are used to create, explore, and analyze the dataset. Each of these packages are discussed in detail in the
following sections.

Front End (Drifter) Back End (Harvest)

Visualizations

AuthorCleaner

API Server

Analyzers

Parsers Gitt

Databases

CLI

FIGURE 4.1: Package diagram for Drifter, Harvest, and CLI tools

1Flask, a popular web framework for python: https://flask.palletsprojects.com/en/2.3.x/

https://flask.palletsprojects.com/en/2.3.x/

26 Chapter 4. Implementation

4.1 Definitions

In Table 4.1, we provide definitions of terms and metrics used throughout this chapter. The full details on
the calculations of the metrics below can be found in Chapter 3.

Term Description

Java Reference A Java class, interface, or enum.

Coverage The percentage of Java references that have a corresponding UML diagram.

Method Coverage For a given Java reference, the percentage of methods covered in a UML diagram. If a class
is represented in multiple diagrams, the percentage can be aggregated using min, max, and
average across all diagrams.

Attribute Coverage For a given Java reference, the percentage of attributes covered in a UML diagram. This
metric can be aggregated same as method coverage.

TABLE 4.1: Definitions for implementation chapter

4.2 Gitt

The gitt package contains classes which help interact with local git repositories and GitHub.2 The class
diagram for this package can be seen in Figure 4.2. The GitHub class is a wrapper around the PyGithub
library providing an additional polling interface to help deal with the GitHub API rate limits.3

FIGURE 4.2: Gitt package class diagram

The RepoCache class is the main entry for interacting with local git repositories. It is implemented as a
python context manager, providing a locking mechanism to ensure that only one thread is accessing the
repository at a time.4 The API allows repositories to be added to the cache (cloned if they do not already
exist), and then accessed by their name.

2The gitt package is named oddly so to avoid name collisions with the python git library.
3PyGithub library: https://github.com/PyGithub/PyGithub
4Python context manager tutorial: https://book.pythontips.com/en/latest/context_managers.html

https://github.com/PyGithub/PyGithub
https://book.pythontips.com/en/latest/context_managers.html

4.3. Parsers 27

The GitRepository class is returned by the RepoCache when a repository is accessed, and is also im-
plemented as a context manager. The context manager ensures that the repository is always left in a clean
state (no uncommitted changes, no untracked files, checked out to the main branch, etc.) when the context
is exited. The GitRepository class also hosts a number of methods for interacting with local repositories,
(e.g., getting every file name that has existed in the repository, getting all authors for the repository and the
commits they have created). The parsers package, server, and CLI tools all leverage GitHub, RepoCache,
and GitRepository for extracting information from GitHub repositories.

4.3 Parsers

To support calculating the various metrics (coverage, method coverage, etc.) discussed in Chapter 3, we
need a way to compare Java and UML entities. To do this, we parse Java and UML into models that can be
compared. In this section we look at the Java and UML parsers in detail.

4.3.1 Java Parser

In Figure 4.3 we see a class diagram showing the java parsers portion of the parsers package. Looking first
at the JavaParser class, we see the parse_project() method which takes Java source files and returns a
JavaProject. To parse Java, we leverage the javalang library to generate an AST that we then transform
into the JavaProject model seen in Figure 4.4.5 JavaProject represents our view of 1 commit for a Java
project. The JavaSnapshot wraps a JavaProject and is used to serialize and store a snapshot of the project
in a MongoDB database. We can also see a second snapshot class, JavaFileSnapshot, which stores another
view of the same data in the MongoDB database. These snapshots are saved in multiple views in a DB to
keep Drifter performant.

FIGURE 4.3: Java parser class diagram

Parsing a Java project can be an expensive operation. It is especially expensive because generating cov-
erage metrics over time requires parsing many commits. To help ease this burden, we developed the
JavaDiffParser. JavaDiffParser allows us to parse only the files that have changed between 2 commits,
given we have a JavaProject object for one of the 2 commits. This boosts the performance of our parsing
of a project because in many cases only a few files change between commits. Even more, those few file
changes may not be source code related.

5Javalang library: https://github.com/c2nes/javalang

https://github.com/c2nes/javalang

28 Chapter 4. Implementation

FIGURE 4.4: Class diagram for Java model

4.3. Parsers 29

4.3.2 UML Parser

UML parsing is challenging because there are many UML diagramming tools and formats. We decided to
focus on the PlantUML format because we find it is one of the most used formats in open source repositories
in recent years (see Figure 5.3). This poses a challenge though as there are no Python libraries (at time of
writing) for parsing PlantUML, and our backend is run as a Python Flask server. We did, however, find
a PlantUML parsing library written in NodeJS.6 To use this library, we developed a UML parsing service
in TypeScript running an Express server.7 The service provides an HTTP endpoint that takes a PlantUML
diagram as a string and returns a JSON object representing the diagram. For full details of the interaction
between Python and the PlantUML server see the source code.8 Here we focus on the output of the UML
parsing, and some of the difficult scenarios we handle.

Figure 4.6 shows the output of the UML parsing step. The model for a UML snapshot is similar to the
Java snapshot. Both have packages, classes, interfaces, enums, references, methods, fields, and arguments.
These similarities help when attempting to make connections between Java classes and their associated
class diagrams. Although the similarities are numerous, there are some subtle differences between the two
models. In the UML model a class diagram has many packages, whereas in the Java model a package has
many files. This matches what we expect, as a class diagram may document many packages and classes.
Similarly to the Java model, the UmlProjSnapshot and ClassDiagramSnapshot classes are used to store the
model in the MongoDB database.

Now that we have looked extensively at the UML model, let us look at some of the difficulties seen
in UML parsing that we do not have with Java parsing. Java has a precise grammar for methods and
attributes. UML, on the other hand, is much more flexible. In Figure 4.5 we see how flexible UML diagrams
can be. The type can be specified before or after the name. The type can be specified without the name, or
vice versa. The arguments may not have a type or name at all.

FIGURE 4.5: Class diagram with various method parameter formats

To partially address this issue we use the following rules (splitting arguments by commas):

1. If there are 2 words, we treat the first as the type and the second as the name.

2. If there are 2 words separated by a colon, we treat the first as the name and the second as a type.

3. If there is only 1 word and it starts with a lowercase and is not a primitive type, we treat it as a name
with type unknown.

4. If there is only 1 word, and it starts with a capital or is a primitive type, we treat it as a type with
name unknown.

5. If there are more than 2 words in the argument, we just return with type and name unknown.

We use similar rules for resolving class attribute names and types.
6NodeJS PlantUML Parser: https://github.com/Enteee/plantuml-parser
7ExpressJS: https://expressjs.com/
8https://gitlab.reveal.si.usi.ch/students/2022/romeo-joseph/drifter/ (backend/puml_parser, bakend/harvest/sr-

c/parsers)

https://github.com/Enteee/plantuml-parser
https://expressjs.com/
https://gitlab.reveal.si.usi.ch/students/2022/romeo-joseph/drifter/

30 Chapter 4. Implementation

FIGURE 4.6: Class diagram for UML model

4.4. Analyzers 31

4.4 Analyzers

The analyzer package contains a host of methods and classes to analyze various aspects of a GitHub
repository. The first to mention, ProjectTracer, is a class which given a snapshot of a UMLProject and
JavaProject, makes connections between references in the Java source to references in UML diagrams.
The next is the analyze() method in the project_analyzer.py file. Given a JavaProject, UMLProject, and the
traced connections between them, the analyze() method calculates the various coverage metrics. The last
analyzer to mention is the get_author_merge_suggestions() in the merge_suggester.py file, which aids in
performing the author anti-aliasing.

4.4.1 ProjectTracer

Figure 4.7 shows the class diagram for the ProjectTracer class. It is leveraged by project_analyzer.py to
retrieve the UML references for a given Java reference. The mapping between Java references and their
corresponding UML references are stored as Edges.

FIGURE 4.7: ProjectTracer class diagram

4.4.2 Project Analyzer

The analyze() method in project_analyzer.py is the main entry point for calculating various metrics. Fig-
ure 4.8 shows the metrics that we calculate which are persisted in a database. ProjectSnapshotMetrics
represents a snapshot of the metrics for a given commit. It contains the overall coverage percentage for
the commit, along with information about the number of references in the project. The analyze() method
leverages ProjectTracer to determine if a Java reference has an edge to a UmlRef. If it has an edge then
it is covered. These metrics are persisted in the database because we want to be able to visualize their
evolution. Although the metrics are quick to calculate for a single commit, it can be expensive to calculate
them for every commit in a large repository.

FIGURE 4.8: Persisted metrics class diagram

The next set of metrics we calculate on demand. Given a parsed JavaProject, UMLProject, and ProjectTracer,
we calculate additional metrics on each edge between a Java reference and a UML reference. These metrics
can be seen in the class diagram in Figure 4.9.

32 Chapter 4. Implementation

FIGURE 4.9: Edge metrics class diagram

4.4.3 Author Merge Suggestion Analyzer

The final analyzer we look at is the author merge suggester which is leveraged to perform anti-aliasing. We
cover the methodology for performing anti-aliasing in Section 3.4 and the full details of the algorithm in
Appendix F. Here we present the API endpoint for the author merge suggester. The endpoint is available at
https://drifter.si.usi.ch/api/authors/suggest-merge. It takes a JSON request as seen in Listing 4.1,
which is composed of a list of authors with their name, email, and a unique id. The JSON response can be
seen in Listing 4.2. The response is composed of a list of author merge suggestions.

{
"authors": [
{
"id": int,
"name": str,
"email": str

},
]

}

LISTING 4.1: JSON Request

{
"suggestions": [

{
"author": {

"name": str,
"email": str

},
"authors_to_merge": [

{
"id": int,
"name": str,
"email": str

},
]

}
]

}

LISTING 4.2: JSON Response

FIGURE 4.10: Author merge suggester HTTP API

https://drifter.si.usi.ch/api/authors/suggest-merge

4.5. Databases 33

4.5 Databases

The databases package contains the code used to interact with the PostgresDB and MongoDB databases.
As we can see from the class diagram in Figure 4.11 below, the way we interact with the databases is
different. In the MongoDB database, we have many functions to query the database. In the majority of the
functions, the queries are simple as the collections in MongoDB are directly mapped to python classes in the
code. Each of the classes in MongoDB are dataclasses, and we use the mashumaro dataclass serialization
library to serialize and deserialize the dataclasses into MongoDB documents.9 The schema of the data
saved in MongoDB are all the classes with snapshots that we have seen throughout this chapter, as seen in
Figures 4.4, 4.6, and 4.8.

FIGURE 4.11: Dbs class diagram

Instead for the Postgres database we use the SQLAlchemy ORM.10 The schema for this data can be found
in Figure 3.5, and is directly mapped to python classes. Access to data in the database is done by directly
accessing python objects within a SQLAlchemy session.

We chose to have two databases because the way we interact with the data is different. In the case of
the data in MongoDB, we are generally fetching and using the entire data we have for a given commit to
be visualized by Drifter: the parsed Java data, the parsed UML data, the project metrics, etc. Instead, for
the data in PostgresDB, we are generally fetching a small subset of the information about a repository at a
time to answer the various research questions we pose. MongoDB and PostgresDB lend themselves well
to these two disparate use cases.

4.6 CLI

We developed a suite of CLI tools to help us build, explore, and summarize the dataset, and generate
the graphs that are used throughout this thesis. They can be broken up into 3 main groups: cloning and
summarizing repositories, author analysis, and graph generation.

9Mashumaro serialization library: https://github.com/Fatal1ty/mashumaro
10SQLALchemy ORM: https://www.sqlalchemy.org/

https://github.com/Fatal1ty/mashumaro
https://www.sqlalchemy.org/

34 Chapter 4. Implementation

4.6.1 Cloning and Summarizing Repositories

The first set of CLI tools revolves around cloning and summarizing repositories. The whole process is
shown in Listing 4.3. The first step, download_trees, takes the results.json, which contains the list of
repositories we want to analyze (generated by SEART), and clones them to the repos directory. In ad-
dition, data about the file structure of each repository is stored in pickles in the trees directory. After
download_trees is run, we run add_releases, which adds release information from GitHub to the Post-
gresDB database. Finally, we run tree_stats, which stores information about the file structure and exten-
sions of each repository in the PostgresDB. At the end of this process, the tables in the File Summarization
and SEART GHS boxes in the ER diagram in Figure 3.5 are populated.

python -m src.cli.download_trees \
-r ~/workspace/drifter_data/repos \
-i ~/workspace/drifter_data/results.json \
-o ~/workspace/drifter_data/trees/

python -m src.cli.add_releases -r ~/workspace/drifter_data/repos
python -m src.cli.tree_stats -i ~/workspace/drifter_data/trees

LISTING 4.3: CLI tool for cloning and summarizing repositories

4.6.2 Author Analysis

The author analysis phase is split into 2 CLI tools. The first part, analyze_authors takes the list of UML
files tagged (as described in Section 3.3) and a list of repositories with UML diagrams. It performs author
anti-aliasing and gathers information about the authors and the commits they make, categorizing commit
information by type of commit (UML, other) based on the UML tagged list. Next, summarize_author_data
summarizes the author data from the database into a CSV file that is used by the diagram generator.

python -m src.cli.analyze_authors \
-rl repo_list.txt \
-tl ~/workspace/drifter_data/tagged_files.csv \
-o ~/workspace/drifter_data/analysis/author_analyze

python -m src.cli.summarize_author_data \
-rl ~/drifter_data/analysis/repo_list.txt \
-o ~/drifter_data/analysis/author_summary/ \
-c ~/drifter_data/analysis/author_summary/authors.csv

LISTING 4.4: Author analyzer

4.6.3 Diagram Generation

The graphs, plots, and many tables presented throughout this thesis are created by the diagram generator.
It uses the information in the PostgresDB along with the CSV generated by the author summarization
step. In addition to the authors CSV, it takes a CSV with the number of repositories by year. This CSV is
generated using the get_commit_dates script.

./get_commit_dates.sh

python -m src.cli.gen_diagrams \
-i ~/Downloads/author_summarizer_output/authors.csv \
-o ~/drifter_data/thesis_diagrams \
-rc ~/drifter_data/analysis/repo_count_by_year.csv

LISTING 4.5: Diagram generator

4.7. Drifter 35

4.7 Drifter

Drifter is a tool we developed to explore a repositories’ usage of UML over time. We use it in Chap-
ter 6 where we share case studies of the usage of UML in GitHub repositories. Drifter can be accessed at
https://drifter.si.usi.ch. The frontend is composed of a set of visualizations that help us explore a
given repository. In this section we present the visualizations that are used in the case studies and how to
interpret them.

4.7.1 Package Visualization

The first visualization we present is the Java package visualization. As a reminder, coverage is the per-
centage of Java references that have a corresponding UML diagram. We would like a way, given a commit
for a project, to be able to see how much coverage different Java packages have by UML diagrams, and if
certain packages have more coverage than others. Figure 4.12a shows an annotated version of the package
visualization. Each of the innermost circles represents a Java reference. Green references are covered and
white references are not covered. Each circle which contains another circle represents a package.

Uncovered Reference

Covered Reference

Outer Package
(org.orekit.forces)

Inner Package
(org.orekit.forces.maneuvers)

(A) Package visualization annotated - Overall coverage

0% Method Coverage

Uncovered Reference

> 0% Coverage
< 100% Coverage

100% Coverage

(B) Package visualization annotated - Method coverage

FIGURE 4.12: Annotated package visualization

In addition to seeing the overall coverage, we want to be able to see how detailed that coverage is. As
a reminder method coverage is the percentage of methods in a Java reference that are covered by UML
diagrams. Figure 4.12b shows an annotated version of the package visualization with method coverage
(aggregated by the average, min, or max percentage per diagram). White references still represent un-
covered references. Red circles represent references which have no methods covered by diagrams. Green
circles represent references which have all of their methods covered by diagrams. The shades in between
represent coverages between 0% and 100%. The same rules apply when visualizing attribute coverage.

4.7.2 Java to UML graph

The second visualization we present is the Java to UML graph. We want to visualize the relationship
between Java references and UML diagrams. We want to see how many diagrams a Java reference is refer-
enced by, and how many Java references a diagram references. We would also like to see which diagrams
are not referencing any Java references. To accomplish this, we used the graph shown in Figure 4.13. Blue
entities in the graph represent Java references, with circles representing classes, diamonds abstract classes,

https://drifter.si.usi.ch

36 Chapter 4. Implementation

triangles interfaces, and the y-shape enums. The edges between nodes show which UML diagrams Java
references are found in.

UML DiagramEnum

Interface

Abstract Class

UML Diagram and
Covered References

FIGURE 4.13: Java to UML graph

4.7.3 Coverage History

The Java package and Java to UML graph visualizations are useful for exploring a given commit of a repos-
itory, but we also would like a way to visualize the evolution of the repository. To do this, we developed
the coverage history visualization seen in Figure 4.14, which shows coverage percentage over time.

FIGURE 4.14: Coverage history graph – Release view

The above graph shows the coverage history in terms of releases. We choose releases as the unit of time
because releases give us an easy sampling point where the project should be in a good, stable, buildable,
and parsable state. This does potentially lose some interesting information though as not all projects have
releases from the beginning of their history, and others might not have them at all. For this reason, we also
offer a view of the coverage history in terms of commits. Parsing every single commit and attempting to
order the commit history is a difficult task due to the inherent non-linearity of Git commit histories. There
is also the problem that intermediate commits may not always leave the project in a good state. To give as
linear a history as possible, while also choosing commits where the project is in a good state, we used the
git log –topo-order –first-parent command to build the history. This puts commits in the order in
which they were made, rather than in date order, and also only follows the first parent of a merge commit.
This is a sample of the total commits, but still gives a more expansive view of the history versus the release
view.

4.8. Summary 37

4.7.4 File History

Another aspect we wanted to be able to visualize is how a Java reference’s coverage changes over time.
To do this we created the visualization seen in Figure 4.15. The figure shows an annotated and zoomed
in view of the file history for a Java file called Instructor.java. On the left at the top we see the Java source
file for which we want to view the coverage history of. Below the Java file are a series of UML diagrams
that have references to the Java file at some point. The line coming from the Java file shows whether or
not the Java file is covered by the diagram at that point in time. Green means the Java file is covered, and
red means it is not covered. The line coming from UML files shows whether or not that UML file provides
coverage for the Java file. The symbols show where the file has been added (squares), modified (circles), or
removed (diamonds).

In this history we see a Java file which has no coverage until the StorageClassDiagram.puml is added. At
some point this file is deleted and re-added (we restart the history of a file when it has been deleted). Even
later a file called Actors.puml is added which also provides coverage for the Java file.

Java Source File

UML Files

No coverage period

File Added

File Modified

File Deleted

FIGURE 4.15: File history for Instructor.java

4.8 Summary

In this chapter we looked in-depth at the architecture of the tools we developed. We looked at the Java and
UML parsers, and how we make connections between Java and UML references, and calculate coverage
metrics. We also looked at the databases we used to store data and the technologies used to interact with
them. We explored the CLI tools built to explore the dataset and generate the diagrams for this thesis. We
concluded with a tutorial on Drifter, and how to interpret the visualizations it provides. In the next chapter,
we present our analysis of the research questions posed at the beginning of this thesis.

39

Chapter 5

Research Questions

“Ask the right questions if you’re to find the right
answers.”

— Vanessa Redgrave

Given the importance of documentation and the benefits of UML diagrams, we want to understand how
UML is being used in open source repositories. Before investigating some repositories in-depth in the case
studies section, we want to get a general idea of how UML is being used. In this chapter we explore the
repositories in our dataset to answer the following research questions:

RQ1. How Widespread is the use of UML in Open Source Projects?
We look at the number and percentage of repositories that have UML diagrams over time. We also analyze
the formats that UML diagrams are stored in, and how the popularity of those formats changes over time.

RQ2. What Formats are UML Diagrams Found in?
We analyze the formats that UML diagrams are found in, and share the methodology we used to find them.
We provide a list of each format we found a UML diagram in, and also share which of those formats we
found were used solely for UML diagrams.

RQ3. Who is Creating and Maintaining UML Design Diagrams?
We examine the characteristics of authors who create and maintain UML diagrams, and how they compare
with those who do not. Analyzing the number of authors, the number of commits authors make, and the
number of days they have been on a project, we gain insights into the makeup of authors who create and
maintain UML diagrams. We also investigate whether those who create and maintain UML diagrams are
typically dedicated to that task, or whether they also usually contribute to source code.

RQ4. What Types of Projects are UML Diagrams Found in?
In the last research question, we look at the activity, community size, and main language of repositories
that have UML diagrams versus those that do not.

RQ0. Why is UML Underutilized in Open Source Projects?
Using the results gathered from the previous research questions, we look to provide insights into why the
use of UML is not more widespread in open source repositories.

40 Chapter 5. RQs

5.1 RQ1: How Widespread is the use of UML in Open Source Projects?

UML is often touted as the de facto standard for modeling software systems. It gives developers a common
language to communicate how a system is structured and what it does. It can greatly increase the usability
of a system for users, and the maintainability of a system by developers. Given the benefits, we wanted to
see how popular the usage of UML is in open source software. In this section we look at the evolution of
usage of UML along with the evolution of UML extension usage.

5.1.1 Definitions

Table 5.1 presents a few helpful definitions that will be used throughout this section.

Term Description

Active Repository A repository is considered active if it has at least 1 commit in a year (considering the
main branch of the repository).

TABLE 5.1: Definitions used in RQ1

5.1.2 Evolution of UML use

The usage of UML in our dataset is not widespread. Out of over 13,000 repositories, we found only 550
repositories (4.1% of our dataset) that contained at least 1 UML diagram at some point in their lifetime.
Still, we find it interesting to investigate whether the usage of UML diagrams is increasing or decreasing
over time. Figure 5.1 shows the number of repositories with UML diagrams and the number of repositories
actively making UML changes over time. Looking at Figure 5.1, we can see that the both the number of
repositories with UML diagrams and the number of repositories actively making UML changes has been
on an upward trend since 2000.

2000 2004 2008 2012 2016 2020
Year

0

50

100

150

200

250

300

Nu
m

be
r o

f r
ep

os
 a

ct
iv

el
y

wo
rk

in
g

wi
th

 U
M

L

Number of repos actively working with UML
Number of repos with UML

FIGURE 5.1: Number of repositories with UML

However, if we keep in mind that in our dataset the number of active repositories changes over time
(i.e., not all repositories were created and active in 2000), we see a different story. In Figure 5.2, the blue
line representing the percentage of repositories making UML changes climbs to a peak in 2006 then consis-
tently decreases until 2015, where after climbing back from a local minimum, finally reaches a steady state,

5.1. RQ1: How Widespread is the use of UML in Open Source Projects? 41

hovering around 1.0% of repositories. If we look to the overall percentage of repositories with UML (red
line), we see a similar trend, but we can see that the percentage of repositories with UML climbs starting
in 2017. The overall use hits a peak around 2006 and 2007, but in recent years is on the rise again. Even at
the peak of use, only 3.5% of repositories have UML and only 2.5% are actively updating UML diagrams.

2000 2004 2008 2012 2016 2020
Year

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

Pe
rc

en
ta

ge
 o

f r
ep

os
 w

or
ki

ng
 w

ith
 U

M
L

0

2000

4000

6000

8000

10000

12000

To
ta

l a
ct

iv
e

re
po

s

Percentage actively working with UML
Percentage with UML
Total active repos

FIGURE 5.2: Percentage of repositories with UML

5.1.3 Popularity by Extension

Figure 5.3 shows the evolution of UML extension usage by repositories. Each year, we plot the number of
repositories actively making changes to each UML extension. The red bars represent the top 5 extensions
found in the most repositories for that year (some years have less than 5 because there is a tie for 5th place
or there are less than 5 extensions). We see some interesting trends. .xmi, .zargo, .argo, and .pgml are the
only UML extensions used from 2000 to 2003. The .zargo, .argo, and .pgml extensions are all extensions
used by ArgoUML (a graphical UML modeling tool), and .xmi is a standard used by many graphical UML
modeling tools. 2004 to 2007 is still dominated by .xmi and .zargo, but .dia and .ecore start to make an
appearance. The .dia extension is used by Dia, a general purpose diagramming tool and .ecore is used by
the Eclipse Modeling Framework (EMF), a plugin for Eclipse that gives the ability to model graphically
and then generate code from those models. From 2008 to 2015, we see .xmi, .dia, .ecore remain popular
and .ucls, .uxf, and .uml start to become popular. The .uml extension contains many different types of
UML files, including Ecore/EMF files, XMI files and PlantUML files. The .ucls the extension is used by the
ObjectAid UML Explorer plugin for Eclipse. The .uxf extension is the UML eXchange Format (a standard
similar to XMI for exchanging diagrams but specifically for UML), but we see it is used only by UMLet,
a stand-alone UML modeling tool that also comes with a plugin for Eclipse. From 2016 to 2022 we start
to see the previously popular extensions be supplanted by .mmd, .plantuml, .puml, and in the last year
PlantUML and mermaid are the most used. The .mmd is extension is used by Mermaid and .plantuml and
.puml are the extensions used by PlantUML. PlantUML and Mermaid are two popular text based UML
modeling tools.

Given the above, we can see three main time periods. Early on, from 2000 to 2007 we see the usage of
graphical UML modeling tools and generic diagramming tools as the most popular. From 2008 to 2016,
Eclipse plugins take over as the most popular UML modeling tools. Finally, from 2016 to 2022, we see the
rise of text based UML modeling tools as the most popular.

It is interesting to note that although PlantUML did not see widespread use until 2016, it had its first
release well before that, in 2009. Mermaid was also released in 2014 before it started to see use in 2016 and
before it made it into the top 5 extensions in 2020. So what changed in 2016 that caused these tools to start

42 Chapter 5. RQs

.xmi
.dia

.zargo

.ecore
.ucls
.argo
.pgml

.umlclass
.zuml

.prj
.diagram

.uxf
.uml

.mmd
.plantuml

.puml

Ex
te

ns
io

n

2000 2001 2002 2003

.xmi
.dia

.zargo

.ecore
.ucls
.argo
.pgml

.umlclass
.zuml

.prj
.diagram

.uxf
.uml

.mmd
.plantuml

.puml

Ex
te

ns
io

n

2004 2005 2006 2007

.xmi
.dia

.zargo

.ecore
.ucls
.argo
.pgml

.umlclass
.zuml

.prj
.diagram

.uxf
.uml

.mmd
.plantuml

.puml

Ex
te

ns
io

n

2008 2009 2010 2011

.xmi
.dia

.zargo

.ecore
.ucls
.argo
.pgml

.umlclass
.zuml

.prj
.diagram

.uxf
.uml

.mmd
.plantuml

.puml

Ex
te

ns
io

n

2012 2013 2014 2015

.xmi
.dia

.zargo

.ecore
.ucls
.argo
.pgml

.umlclass
.zuml

.prj
.diagram

.uxf
.uml

.mmd
.plantuml

.puml

Ex
te

ns
io

n

2016 2017 2018

0 20 40 60
Number of Repos

2019

0 20 40 60
Number of Repos

.xmi
.dia

.zargo

.ecore
.ucls
.argo
.pgml

.umlclass
.zuml

.prj
.diagram

.uxf
.uml

.mmd
.plantuml

.puml

Ex
te

ns
io

n

2020

0 20 40 60
Number of Repos

2021

0 20 40 60
Number of Repos

2022

FIGURE 5.3: Number of repositories with UML extensions by year
(red are the top 5 extensions for that year – ties not marked)

5.1. RQ1: How Widespread is the use of UML in Open Source Projects? 43

seeing widespread use? One possible explanation is the release of Visual Studio Code (VScode) in 2015. It
is clear, given how popular Eclipse plugins are from 2008 to 2016, that developers like their UML modeling
tools to be integrated into their IDE. Since its release in 2016, VSCode has slowly become the most popular
IDE for developers.1 VSCode has extensions for visualizing UML diagrams for both PlantUML, and Mer-
maid. UMLet, which also remains popular from 2016 to 2022 also has a VSCode extension. As developers
started migrating from Eclipse to VSCode, projects would have to migrate to new UML modeling tools
that do not rely on Eclipse.

It is also interesting that from 2016 to 2022, we see a huge uptick in the overall number of repositories
actively working with UML, mainly due to the rise of PlantUML. This could be due to advantages that
text-based UML modeling tools offer. Compared to graphical UML modeling tools, it is arguably easier to
version control text-based UML diagrams. Text-based UML diagrams have meaningful diffs that can be
checked for correctness during code reviews. Although .xmi and .ecore are human-readable, if we look at
Listings 5.1 and 5.2, we can see that models represented in more recent text-based formats (e.g., PlantUML)
are simpler to read and would be easier to compare in a code review.

<ecore:EPackage xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore"

name="camel"
nsURI="http://camel.apache.org/routing/1.0" nsPrefix="camel">

<eClassifiers xsi:type="ecore:EClass" name="Routes">
<eStructuralFeatures xsi:type="ecore:EReference"

name="routes" upperBound="-1" eType="#//Route"
containment="true"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Route">
<eStructuralFeatures xsi:type="ecore:EAttribute" name="from"
eType="ecore:EDataType

http://www.eclipse.org/emf/2002/Ecore#//EString"/>
<eStructuralFeatures xsi:type="ecore:EReference"

name="processors" upperBound="-1"
eType="#//Processor" containment="true"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Processor"/>
<eClassifiers xsi:type="ecore:EClass" name="Send"

eSuperTypes="#//Processor">
<eStructuralFeatures xsi:type="ecore:EAttribute" name="uri"

eType="ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EString"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Process"

eSuperTypes="#//Processor">
<eStructuralFeatures xsi:type="ecore:EAttribute" name="type"

eType="ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EString"/>

</eClassifiers>
</ecore:EPackage>

LISTING 5.1: Example ecore package and class

package camel {
class Routes {
List<Route> routes

}

class Route {
String from
List<Processor> processors

}

class Processor { }

class Send {
String uri

}

class Process {
String type

}
}

Send --|> Processor
Process --|> Processor

LISTING 5.2:
Example puml
package and class

Another advantage of text-based UML modeling tools is their versatility. Both Mermaid and PlantUML
can be used within an IDE through plugins or as a stand-alone tool. They both also offer online editors so
new users can contribute without having to install anything. As their main mode for generating images of

1Stack overflow survey (Integrated development environment): https://survey.stackoverflow.co/2022

https://survey.stackoverflow.co/2022

44 Chapter 5. RQs

UML diagrams is through a command line interface, their generation can be easily automated. This last fact
is seen in Section 5.3 where we see iluwatar/java-design-patterns and kubernetes-sigs/cluster-api
generate UML diagrams from PlantUML text files and embed the generated images in Markdown files. We
see it again in all three case studies in Chapter 6.

Although anecdotal, we found Mermaid and PlantUML much lighter weight and easier to use than the
various graphical tools and Eclipse plugins. We even use PlantUML and Mermaid to generate the UML
diagrams used throughout this thesis. In the first case study with cs-si/orekit we found an example of a
project migrating from graphical editors, to an eclipse-based modeler, and finally landing on PlantUML in
the end for similar reasons (see Section 6.2 cs-si/orekit).

RQ1: How Widespread is the use of UML in Open Source Projects?

Finding 1: The use of UML in open source software is not widespread, with a peak of only 3.5% of
repositories having a UML diagram.

Finding 2: UML hit peak usage in 2007, but has been seeing a steady resurgence since 2016.

Finding 3: PlantUML has been the most popular UML diagramming tool since 2016, the same time
as the resurgence of UML started.

5.1.4 Conclusions

The use of UML in open source software is not widespread. Even at the peak usage of UML, we see only
3.5% of repositories have a UML diagram, and 2.5% actively work with a UML diagram. The difference
between the peak number of repositories with UML diagrams, and those actively working with UML
diagrams could mean a few things. First, UML diagrams can be useful even if they are not actively being
modified, especially if they document parts of the system that do not change often. There is a chance
that those who are not actively maintaining UML diagrams are still benefitting from diagrams that are
already created. It could also mean that there are diagrams which are not being actively maintained, and
are out-of-date and inaccurate.

Although the peak usage of UML was seen back in 2006 and 2007, we are seeing a steady increase in
the number of repositories with UML diagrams since 2016. We also see that this resurgence in UML usage
coincides with the rise of text-based modeling tools such as PlantUML and Mermaid.

5.2. RQ2: What Formats are UML Diagrams Found in? 45

5.2 RQ2: What Formats are UML Diagrams Found in?

What formats are UML diagrams found in? Unfortunately, it is almost impossible to exhaustively answer
this seemingly simple question. If we think about image files, we can see why this question is difficult
to answer. Although we are all familiar with .jpg, .png, .svg, .gif, .bmp, etc., there are many other image
formats, many being proprietary and tool specific such as .psd (Adobe Photoshop’s format). It would be
difficult to enumerate every single image format, and even if we did, it would change as a new tool comes
out with its own image format. The same is true for UML diagrams. Although there is a UML standard,
the standard specifies a modeling language and not how that language should be realized.2

The UML standard does not say that UML diagrams must be realized through text or image files in a
certain format. The lack of a standard means that UML diagrams can be found in a potentially limitless
number of formats, some potentially proprietary, and many of which may not be specifically for UML
diagrams (e.g., .png, .xml, .drawio). There is a standard which can be used for exchanging UML models
between tools called XMI.3 However, XMI is not the most popular format for UML diagrams in GitHub
repositories. We can also see from Table A.1 which shows the most popular UML tools and their associated
extensions, XMI is supported only by a subset of them. Even popular tools like PlantUML list only beta
support for XMI export, and no options for XMI import.4

Although we cannot answer RQ2 in an exhaustive way, we can find a lower bound on the total possible
UML formats. In this section we present the formats we found in our dataset (see Section 3.2 for the
approach).

5.2.1 Finding UML Diagrams in Candidate Extensions

Starting from the candidate extension list in Table 3.4, we set out to answer the following questions for each
extension in the list:

1. Are there examples of the extension being used as a UML diagram in the dataset?

2. Is the extension specific to UML diagrams?

To answer these questions, we attempted to find an example and a counter-example for each file extension.
If we can find an example, then it is a valid UML extension, and if we find a counter-example it is not UML
specific. All examples and counter-examples can be found in Appendix B and Appendix C respectively.
We used a 4-step approach to find those examples and counter-examples as shown below.

Step 1: Find Example or Counter-Example for each Extension

To start our search, we look at the candidate extensions and get one file for each extension. To obtain these
files, we query the PostgresDB for the repository, commit hash, and file path of a file given an extension.5

We then retrieve the file from GitHub and inspect it to see if it is a UML diagram (note we can grab the file
from our dataset if the GitHub repository has since been deleted). This process leaves us with at least one
example or counter-example for each extension.

Step 2: Search Files in /uml/ Paths

After finding examples and counter-examples in the first step, we are left with the more challenging cases.
There are over 12,000 repositories which have at least one .txt file, and likely only a small percentage of

2https://www.omg.org/spec/UML/2.5.1/About-UML
3https://www.omg.org/spec/XMI/2.5.1/About-XMI/
4https://plantuml.com/xmi
5See queries Find all repositories where extension exists and Find all commits and files where extension exists in Appendix E

https://www.omg.org/spec/UML/2.5.1/About-UML
https://www.omg.org/spec/XMI/2.5.1/About-XMI/
https://plantuml.com/xmi

46 Chapter 5. RQs

these repositories contain UML diagrams. In the first step we found a counter-example for .txt. Now we
must search all of the repositories with .txt to see if we can find an example of a UML file. This is true for
all of the extensions, although not all are as ubiquitous as .txt. To avoid needing to search through every
repository in the dataset for examples and counter-examples, we use a variety of techniques. The first of
these techniques is given an extension, we find the repository, commit hash, and file path of all files with
that extension that are in path that contain the string /uml/.6 As in step one, we retrieve the file and inspect
it to see if it is a UML diagram or not.

Step 3: Search File Names for Keywords

The next technique we use to find examples for extensions is to search for keywords in the file names.
We gather files for each extension we still need to find examples for using the file gathering tool. After
gathering files for each extension, we search for the following keywords (case insensitive) in the file names:
architecture, uml, diagram, sequence, class, usecase, state, activity, component, deployment, object,
communication, composite, interaction, timing, collaboration, package, profile, and timing, to find
files that are likely UML candidates. This keyword list is comprised of the names of the 14 UML diagram
types. We then inspect these files to see if they are UML diagrams or not.

Step 4: Manual Search

The above techniques found examples and counter-examples for most extensions. For the extensions that it
was insufficient for, we have one last technique for finding examples, and another one for finding counter-
examples. For counter-examples, we used the UML extension tagging discussed in Section 3.3. If every
file was tagged as UML by our process, then we treat it as a UML specific extension and found no counter-
examples. For those extensions that were not tagged as UML, any file that was not tagged as UML is a
valid counter-example. For finding examples, we manually searched the dataset. For the extensions that
were too numerous to exhaustively search, we take a statistically significant subsample (confidence level
= 90%, margin of error = 5%) of repositories and search all files with the given extension in that subset for
UML examples. The extensions that we had to manually search can be seen in Table 5.2.

Extension Repo Count Sampled Extension Repo Count Sampled

.csv 3,127 249 .vacuumlo 12 12

.swf 1,030 215 .umlaut 10 10

.rtf 965 212 .edx 3 3

.xlsx 625 189 .mdr 4 4

.eps ú 610 188 .gxml 2 2

.tiff 551 183 .eddx 1 1

.docx ú 521 179 .vssm 1 1

.ps ú 460 171 .vssx 1 1

.vsd ú 174 106 .vstm 1 1

.ppt ú 167 104 .vstx 1 1

.pbm 109 109

TABLE 5.2: Manually searched extensions (ú UML example found)

6See query Find all commits and files in uml paths for given extension in Appendix E

5.2. RQ2: What Formats are UML Diagrams Found in? 47

5.2.2 Results

Table 5.3 shows the extensions we found can contain UML diagrams. Those that are UML specific (every
file with that extension was tagged), are marked with a ¥. It is interesting to see that the .uml, .puml,
and .plantuml extensions are not UML specific. Although PlantUML is a popular tool for creating UML
diagrams, it can also be used to create other types of diagrams (e.g., gannt charts, c4 diagrams). We also
find the .uml extension is used for User Mode Linux (UML) kernel configuration files.

Extension Repo Count UML Specific Extension Repo Count UML Specific

.md 13,238 .plantuml 48

.txt 12,442 .emf 45

.png 11,916 .ecore 42 ¥

.html 10,400 .mmd 38

.xml 8,958 .session 36

.svg 8,446 .ucls 33 ¥

.jpg 7,268 .vpp 32

.gif 6,432 .zargo 32 ¥

.pdf 3,852 .uxf 31 ¥

.rst 3,541 .diagram 30

.bmp 1,759 .pu 20

.jpeg 1,598 .mdj 18 ¥

.xpm 640 .eap 11

.docx 521 .argo 9

.ps 460 .umlclass 9

.dia 417 .vdx 9

.pptx 378 .pgml 8 ¥

.graffle 373 .zuml 7 ¥

.prj 206 .asta 6 ¥

.drawio 191 .iuml 5 ¥

.vsd 174 .mdzip 5 ¥

.ppt 167 .vsdm 5

.puml 165 .yuml 5 ¥

.uml 111 .unt 4

.xmi 110 .platuml 2 ¥

.vsdx 80 .umlprofile 2 ¥

.wmf 71 .ump 2 ¥

.gliffy 59 .cmof 1 ¥

TABLE 5.3: Extensions with UML examples (Repo count is number of repositories extension
is found in, not how many it is a UML extension in)

48 Chapter 5. RQs

RQ2: What Formats are UML Diagrams Found in?

Finding 1: UML diagrams can be found in numerous formats. We found examples of diagrams in 56
different extensions.

Finding 2: A majority of extensions UML diagrams are found in are not used specifically for UML.

5.2.3 Conclusions

Table 5.3 shows the formats we found UML diagrams in. This outlines one of the challenges of analyzing
the usage of UML diagrams. UML diagrams come in many formats, and are created using numerous tools.
Although there is a standard format for exchanging UML models between tools (XMI), we can see from
the table that it is not the most popularly used format.

5.3. RQ3: Who is Creating and Maintaining UML Design Diagrams? 49

5.3 RQ3: Who is Creating and Maintaining UML Design Diagrams?

It is important to understand the attributes of contributors who create and maintain UML diagrams to
get a sense of how UML is used in open source projects. We would like to see if there are differences
between contributors who create and maintain UML diagrams and those who do not. We look at the
various attributes of contributors to see if there are any common attributes for contributors who create and
maintain UML diagrams. We also look to see if there are any contributors who manage UML diagrams but
do not contribute to source code.

5.3.1 Definitions

Here we present a few useful definitions that will be helpful throughout this section.

Term Description

Contribution Period The period of time between the first commit and the last commit of a contributor.

Non-UML Committer Contributors to repositories who have never created or modified a UML diagram.

UML Committer A UML committer is a contributor who has created or modified at least one UML
diagram in a repository. They may or may not have also contributed to other file types.

Dedicated Diagrammer A UML committer who has never contributed to source code (but may have contributed
to other file types).

TABLE 5.4: Definitions used in RQ3

5.3.2 Methodology

Discriminating between UML diagrams and other files exclusively based on file extension is difficult (see
Section 5.2). To distinguish between UML committers and non-UML committers, we use the tagged UML
diagrams from Section 3.3. We consider UML diagrams in formats that we tagged (e.g., .argo, .uml, .plan-
tuml, .xmi). As the tagged UML diagrams are a subset of the total UML diagrams in our dataset, the num-
bers reported here are a lower bound for the total number of UML committers in our dataset. Given the
tagged UML diagrams and the history of contributors and their commits to the repositories in our dataset,
we analyze attributes of the commit authors to assess who is and who is not managing UML diagrams.

5.3.3 Contribution Period of UML Committers vs non-UML Committers

The first contributor attribute we look at is the average contribution period. Figure 5.4 shows three box
plots with the distribution of average contribution period per repository of UML committers and non-
UML committers. The top is the distribution with no filtering, the middle is the distribution with filtering
out contributors with less than 2 commits, and the bottom is the distribution with filtering out contributors
with less than 10 commits. We can see between the three, the UML committer box plots are relatively
unaffected by filtering compared to the non-UML committer box plots. The median contribution period
of the non-UML committer box plots moves from 0 days with no filtering to 801 days when filtering out
contributors with less than 10 commits. This huge move is due to the large number of contributors who
have only committed a few times. In the remaining analysis in this section, we show the results after
filtering out contributors with less than 10 commits.

When we consider only contributors with at least 10 commits, the median contribution period of UML
committers is 1,735 days versus 801 days for non-UML committers. We confirmed that the difference
between contribution periods is statistically significant using the Mann-Whitney U test. The test returned
a p-value of 4.52e-58, signifying a statistically significant difference between the two groups. We also

50 Chapter 5. RQs

calculated the effect size using Cliff’s delta, and got a value of 0.56, signifying the difference in contribution
period between UML committers and non-UML committers is large.

0 2,000 4,000 6,000

UML Committer

non-UML Committer

0 2,000 4,000 6,000

UML Committer

non-UML Committer

0 2,000 4,000 6,000
Average contribution period (in days)

UML Committer

non-UML Committer

FIGURE 5.4: [
Average contribution periods of UML committers vs non-UML committers]Average contribution periods

of UML committers vs non-UML committers (top: all contributors, middle: contributors with at least 2
commits, bottom: contributors with at least 10 commits)

In Figure 5.5, we see a scatter plot of the same average contribution as shown in the previous box plots.
The y-axis is the average contribution period of UML committers and the x-axis is the average contribution
period of non-UML committers. Each point represents a git repository, and any point above the red line
is a repository where the average contribution period of the authors of UML commits is greater than the
average contribution period of the other authors.

0 500 1,000 1,500 2,000 2,500 3,000 3,500
Average contribution period

 of non-UML committers (in days)

0

2,000

4,000

6,000

8,000

Av
er

ag
e

co
nt

rib
ut

io
n

pe
rio

d
 o

f U
M

L
co

m
m

itt
er

s (
in

 d
ay

s) alsa-project/alsa-lib

rolisteam/rolisteam

Slope = 1

FIGURE 5.5: Average contribution periods of UML committers versus non-UML committers

5.3. RQ3: Who is Creating and Maintaining UML Design Diagrams? 51

As we can see, in a majority of cases, the average contribution period of UML committers is greater than
the average contribution period of other authors. This suggests that the average UML committer is around
longer in repositories than the average non-UML committer.

We marked two outlier repositories in red in the scatter plot. The first we look at is the repository
with the lowest average contribution period of non-UML committers while still having a high average
contribution period of UML committers, rolisteam/rolisteam. The authors for rolisteam/rolisteam
can be seen in Table 5.5, with the UML committers marked with the ú icon. We can see the repository
has essentially a single maintainer, Renaud Guezennec. The majority of the remaining contributors had all
of their commits on the same day (author contribution period of 0). In this repository, the main maintainer
is the only person who has created or modified any UML diagrams, which explains the high average
contribution period of UML committers and the low average contribution period of non-UML committers.

Author Name Contribution Period Number of Commits

Renaud Guezennec ú 2,682 5,558
Vladar4 56 2
Etienne 8 3
Tyler Schmidt 8 3
Tomaz Canabrava 5 35
Milan Irigoyen 3 4
Paul Brown 0 4
Gissu 0 5
Ben Cooksley 0 4
Yann Escarbassiere 0 3
Patrick José Pereira 0 3
Grégoire Barbier 0 1
IBPX 0 1

TABLE 5.5: Authors for rolisteam/rolisteam (ú UML Committers)

The next we look at is the repository with the highest average contribution period of UML committers,
alsa-project/alsa-lib. Table 5.6 shows the top 5 authors by number of commits for this repository.

Author Name Contribution Period Number of Commits

Jaroslav Kysela ú 8,962 1,967
Takashi Iwai 8,027 925
Clemens Ladisch 4,764 126
Takashi Sakamoto 2,870 151
Abramo Bagnara 1,227 355

TABLE 5.6: Top 5 authors by number of commits for alsa-project/alsa-lib (ú UML Com-
mitters)

The project is similar to rolisteam/rolisteam since only 1 contributor has created or modified any UML
diagrams, but in this case there are many other contributors who have been active for a significant amount

52 Chapter 5. RQs

of time and made a significant number of commits. The box plots and scatter plots show that UML com-
mitters tend to be among the longer-standing members of their respective projects in contrast to non-UML
committers.

5.3.4 Number of UML Committers versus non-UML Committers

We would like to see whether in most cases where UML is used, a majority of contributors are UML com-
mitters, or if only a small subset of contributors are UML committers. To do this we look at the number
of UML committers versus non-UML committers in the scatter plot in Figure 5.6. In almost every single
case, the number of non-UML committers is higher than the number of UML committers (any reposito-
ries under the red line). To confirm there was a statistically significant difference between the number
of UML committers and non-UML committers, we used the Mann-Whitney U test. The test returned a
p-value of 8.84e-160, signifying a statistically significant difference between the two groups. We also cal-
culated the effect size using Cliff’s delta, and got a value of -0.93, signifying the difference in number
of UML committers and non-UML committers is large. Given that UML committers are almost always
vastly outnumbered by non-UML committers, we were interested in exploring a few repositories where
the number of UML committers is greater or close to the number of non-UML committers. We highlight
iluwatar/java-design-patterns, umple/umple, and kubernetes-sigs/cluster-api for this reason. We
also highlight embox/embox to explore a typical case.

0 100 101 102

Number of non-UML committers (log scale)

0

10

20

30

40

50

60

Nu
m

be
r o

f U
M

L
co

m
m

itt
er

s

embox/embox

iluwatar/java-design-patterns
kubernetes-sigs/cluster-api

umple/umple Slope = 1

FIGURE 5.6: Number of UML committers versus non-UML committers

If we take a deeper look at each marked repository, we can see why they have a relatively high number of
UML committers. The iluwatar/java-design-patterns project is an educational repository used to teach
Java design patterns. Every design pattern follows the same template: a Java example, a UML diagram,
and a readme with a description of the pattern and the UML diagram embedded. Given that every design
pattern has an associated UML diagram, it makes sense that any author who wants to add or update a
design pattern must also do the same for a corresponding UML diagram. Another interesting project is
umple/umple. It is the repository for the Umple model-oriented programming language.7 Since it is a
model-oriented programming language, every source file is essentially a UML diagram.

We highlight another interesting project, kubernetes-sigs/cluster-api.8 This project houses a set of
APIs for managing Kubernetes clusters, and they keep an up-to-date Markdown book which documents

7https://cruise.umple.org/umple/
8https://github.com/kubernetes-sigs/cluster-api

https://cruise.umple.org/umple/
https://github.com/kubernetes-sigs/cluster-api

5.3. RQ3: Who is Creating and Maintaining UML Design Diagrams? 53

the APIs and how they can be used, extended and how new APIs can be implemented.9 It also contains
proposals for new features and enhancements to the APIs. Both the documentation and proposals contain
a wealth of UML diagrams to support the text. If we look at the authors who are UML committers in
Table 5.7, we can see that the diagramming work is spread out among many contributors. Fei Yang, for in-
stance, picks up a GitHub issue to create documentation that is listed as a "good first issue", which includes
generating diagrams for the documentation.10 pablochacin put together a proposal for a feature he wanted
to see, which involved UML diagrams of the feature.11 We see the diagramming and documentation work
in this repository is spread among both the low contribution developers and high contribution developers.

Author Name Number of Commits Number of Commits to UML

Vince Prignano 609 3
Stefan Bueringer 484 3
fabriziopandini 440 1
killianmuldoon 256 1
Chuck Ha 129 2
Yuvaraj Kakaraparthi 117 1
Jason DeTiberus 105 1
Oscar Utbult 97 4
Warren Fernandes 85 2
Cecile Robert-Michon 81 2
Naadir Jeewa 70 1
Andy Goldstein 60 3
Joel Speed 49 2
Alberto García Lamela 43 1
Carlos Panato 36 1
Sagar Muchhal 31 1
Daniel Lipovetsky 29 2
Matt Boersma 23 1
Prankul 22 1
Kazuki Suda 18 2
Zhecheng Li 17 2
Juan-Lee Pang 6 1
pablochacin 4 1
Yassine TIJANI 4 1
Anusha Ramineni 3 1
Moshe Immerman 2 1
relyt0925 1 1
Fei Yang 1 1

TABLE 5.7: UML Committers for kubernetes-sigs/cluster-api

9Kubernetes Markdown Book - https://cluster-api.sigs.k8s.io/
10https://github.com/kubernetes-sigs/cluster-api/issues/5475
11https://github.com/kubernetes-sigs/cluster-api/issues/833

https://cluster-api.sigs.k8s.io/
https://github.com/kubernetes-sigs/cluster-api/issues/5475
https://github.com/kubernetes-sigs/cluster-api/issues/833

54 Chapter 5. RQs

We highlight the above repositories because they are in stark contrast with the typical repository in our
dataset. Most repositories have a small number of UML committers compared to non-UML committers.
We highlight one typical case, embox/embox. This repository has 154 total authors, and only 2 of them have
actively worked on UML diagrams. If we look at the top 5 authors by number of commits in Table 5.8,
we see both UML committers are within the top 5 by number of commits. This is more in line with what
we saw when looking at alsa-project/alsa-lib and rolisteam/rolisteam in the previous analysis of
contribution period. This brings us to our next analysis, number of commits by UML committers versus
non-UML committers.

Author Name Number of Commits Number of Commits to UML

Anton Bondarev 5,581 0
Anton Kozlov ú 3,154 28
Alex Kalmuk 2,811 0
Denis Deryugin 2,584 0
Eldar Abusalimov ú 2,252 41

TABLE 5.8: Top 5 committers by number of commits for embox/embox (ú UML Committers)

5.3.5 Number of Commits by UML Committers vs non-UML Committers

We wanted to see whether UML committers make more contributions to projects versus non-UML com-
mitters. We hypothesized that UML committers are more likely to be main contributors than those who
are not for a host of reasons: They are more familiar with the project and so more capable of making dia-
grams, they want developers to be able to easily contribute so they provide diagrams that help onboard,
they want users to use their project and diagrams can be a helpful tool to convey how it works. In the
previous section, we highlighted a case where main contributors were not the main UML diagrammers
(kubernetes-sigs/cluster-api) and one where they were (embox/embox). We highlighted specifically
what looked like outliers in the dataset in the previous section, so here we look to see if there is a general
trend between number of commits by UML committers versus non-UML committers. In Figure 5.7 we
see the distribution of proportion of commits made by UML committers versus non-UML committers by
repository.

0 5 10 15 20 25 30
Commit proportion

(commits by UML committers / commits by non-UML committers)

FIGURE 5.7: Proportion of commits by UML committers versus non-UML committers

From this plot, we can see in the median case, UML committers make 5 times more commits than non-UML
committers. To confirm there is a statistically significant difference between number of commits made by
UML committers vs non-UML committers, we used the Mann-Whitney U test. The test returned a p-value
of 1.64e-86, signifying a statistically significant difference between the two groups. We also calculated
the effect size using Cliff’s delta, and got a value of 0.69, signifying the difference in number of commits
between UML committers and non-UML committers is large. Note that we show the boxplot without
outliers to focus on the general trend, but we see repositories where the UML committers make as much as

5.3. RQ3: Who is Creating and Maintaining UML Design Diagrams? 55

534 times more commits than non-UML committers. The repositories that make up these high proportions
are similar to rolisteam/rolisteam, where there is 1 contributor who makes up the majority of commits
and is a UML-committer.
To get a better idea of how many repositories have UML committers committing more than other commit-
ters, we can look at Figure 5.8. The y-axis is the average number of commits by UML committers and the
x-axis is the average number of commits by non-UML committers. This scatter plot and the box plot before
shows that in most cases, UML committers make more commits than non-UML committers.

0 250 500 750 1,000 1,250 1,500 1,750
Average number of commits

by non-UML committers

0
100

101

102

103

104

Av
er

ag
e

nu
m

be
r o

f c
om

m
its

by

 U
M

L
co

m
m

itt
er

s

Slope = 1

FIGURE 5.8: Average number of commits by UML committers versus non-UML committers

5.3.6 Are There Dedicated UML Diagrammers?

The last question we look to answer in this section is whether there are often dedicated UML diagrammers
(those who modify UML diagrams but do not modify source code). We start from a list of UML committers
who did not modify any source code files (see Table 5.9). We filter out those with less than 10 commits so
that we only see authors who are more than just one-time contributors. The table shows the 14 repositories
we found. The short answer is that there are almost never dedicated UML diagrammers (only 2.5% of
repositories have authors who modify UML diagrams without modifying source code).

Nevertheless, we took a deeper look at the data. First, we see some interesting repositories. The
repositories marked in bold are repositories that contain little to no source code. w3f/polkadot-spec is
a specification repository, progit/progit is a book, edmcount/fibo holds a specification for an ontology,
and kubernetes/enhancements, hyperledger/aries-rfcs, and openshift/enhancements are repositories
used to discuss enhancements or features for other repositories. The wix/detox repository is a source code
repository but at closer look to the author who modified only UML diagrams, it was a bot account created
solely for publishing documentation, so it is not a real UML committer.

One example we see of someone who commits to UML diagrams and not source code in a repository
with source code is Daria Lavrenova in the adorsys/xs2a repository. Her entire commit history is related
to documentation and roadmap planning. Her GitHub profile shows she is a program manager (PM), and
based on her commit history, looks like she is doing program management work for adorsys/xs2a. Olga
Levandovska of adorsys/xs2a also has a similar commit history to Daria Lavrenova, and also has PM listed in
her GitHub profile, so we can assume she is also doing program management work for adorsys/xs2a. Dora
Nziali of adrosys/open-banking-gateway also has a similar commit history to Daria and Olga, but does not
have any reference to PM activities in her GitHub profile. Still, given the similarity in commit history, it

56 Chapter 5. RQs

looks like adorsys has program managers who are dedicated to updating roadmaps and documentation
which includes UML diagrams.

We can say that in our dataset there are only a few cases where there are those dedicated to UML dia-
gramming without also contributing to source code, which indicates that it is rare in open source projects.

Repository Name Author Name Number of commits

w3f/polkadot-spec Fabio Lama 1378
wix/detox wixmobile 343
progit/progit Igor Murzov 156
programmevitam/vitam Clemence Boyer 64
edmcouncil/fibo Mike Bennett 85
kubernetes/enhancements Patrick Ohly 61
hyperledger/aries-rfcs Brent 52
adorsys/xs2a Daria Lavrenova 50
hyperledger/aries-rfcs ashcherbakov 41
hyperledger/aries-rfcs Vinomaster 32
programmevitam/vitam edith 32
distribution/distribution Mary Anthony 29
deegree/deegree3 Danilo Bretschneider 26
progit/progit Anthony Gaudino 24
apache/isis Alexander Schwartz 21
uportal-project/uportal Christian Cousquer 21
openshift/enhancements Enxebre 17
adorsys/open-banking-gateway Dora Nziali 16
adorsys/xs2a Olga Levandovska 16
distribution/distribution John Mulhausen 15

TABLE 5.9: Dedicated diagrammers

RQ3: Who is Creating and Maintaining UML Design Diagrams?

Finding 1: There is a large and statistically significant difference between the average contribution
periods of UML committers versus non-UML committers.

Finding 2: There is a large and statistically significant difference between the average number of
UML committers versus non-UML committers.

Finding 3: There is a large and statistically significant difference between the number of commits
UML committers make versus non-UML committers.

Finding 4: It is rare to have someone committing to UML who is not also working on source code.

5.3. RQ3: Who is Creating and Maintaining UML Design Diagrams? 57

5.3.7 Conclusions

We found a large and statistically significant difference between the contribution periods of UML commit-
ters versus non-UML committers. In the median case, UML committers have a contribution period of more
than double non-UML committers, at 1,735 days versus 801 days for non-UML committers. This implies
that the average UML committer sticks around a project longer than the average non-UML committer. This
may be true for a variety of reasons. One reason is that those who stick around longer are likely core de-
velopers who understand the system and are better able to create UML diagrams than casual contributors.
Another potential reason is that documentation is generally not a fun task, so those who are around a
project for a long time and committed to its success are more likely to do documentation work even if it
is not fun. Lastly, those who are around a project for a long time have more opportunity to work on UML
diagrams.

We also found a large and statistically significant difference between the number of UML committers
versus non-UML committers. UML committers are usually vastly outnumbered by non-UML committers.
In our dataset, we see an average of 41.76 non-UML committers per repository, versus an average of only
2.54 UML committers per repository. This implies that UML committers are usually a small subset of the
total contributors to a project. We also found a large and statistically significant difference between the
number of commits made by UML committers versus non-UML committers. In the median case, UML
committers make 5 times more commits than non-UML committers.

The fact that UML committers are usually a small subset of the total contributors and also generally
make more commits than non-UML committers likely points to the fact that UML committers are generally
core developers for a project. Last, we found that UML committers are almost always also involved in the
development of source code in a project as well. We found only 12 repositories where there was a UML
committer who did not also contribute to source code.

58 Chapter 5. RQs

5.4 RQ4: What Types of Projects are UML Diagrams Found in?

In this section we explore the characteristics of repositories with UML diagrams, and compare them to
repositories without UML diagrams. We examine the effect of programming language, amount of activ-
ity, and community size on the likelihood of a repository having UML diagrams. We also look at some
examples of OOP centric UML diagrams, and how they can be warped to fit in non-OOP languages

5.4.1 Methodology

In this section, when we discuss which projects have UML diagrams, we refer to repositories which have
had at least one UML diagram in their history. We consider diagrams which were tagged during the UML
extension tagging process described in Section 3.3. The repository statistics (e.g., main language, number
of commits) are those from SEART GHS.

5.4.2 UML by Main Programming Language

The discussion on which programming language is best is a long-standing one which often sparks passion-
ate debates. Frameworks, tooling, and even philosophies are built around the choice of a programming
language. It stands to reason then that the choice of programming language might also have an effect on
the choice of modeling language. To explore this, we can start by looking at Figure 5.9 which shows the
number of repositories with UML by main language (Nix, Smalltalk, and Elixir are excluded as there were
no repositories with UML in those languages). We see Java, C++, and Python in the top spots for total
number of repositories with UML.

0 25 50 75 100 125 150 175 200
Number of Repositories with UML

Java
C++

Python
C

JavaScript
Go

PHP
TypeScript

C#
Rust
Ruby
Kotlin

Objective-C
Shell
Dart

Groovy
Swift

M
ai

n
Pr

og
ra

m
m

in
g

La
ng

ua
ge

204
88

56
38

33
32

25
22

17
11

9
5

3
3
2
1
1

FIGURE 5.9: Number of repositories with UML by language

Given our dataset is not evenly distributed amongst the programming languages, we also look at the
percentage of repositories with UML by language (Figure 5.10). We still see Java and C++ in first and
second respectively, but Python is replaced by Go (with Python moving to 10th on the list). From both
of these figures, we can see the choice of programming language does have an effect on how likely a
repository is to have UML. Mainly, Java repositories are much more likely to have UML than repositories
in other languages, where the percentage of Java repositories with UML is more than double C++ which has
the second highest percentage. After Java, only a few percentage points separate the remaining languages,
and we find it difficult to identify distinguishing characteristics of languages which are more likely to have
UML diagrams. Java and C++ which support class based OOP are in the top spots, but are followed by Go

5.4. RQ4: What Types of Projects are UML Diagrams Found in? 59

at number three which does not have classes. We also find Kotlin, another language which supports class
based OOP near the bottom of the list. Also, given UML was built to support OOP methodologies, it is
interesting to find C which is not an OOP language above Python, C#, and Kotlin which do support OOP.

0 2 4 6 8 10 12
Percentage of Repositories with UML

Java
C++

Go
Dart

Objective-C
Groovy

PHP
Rust

C
Python

C#
Kotlin

TypeScript
Ruby

JavaScript
Shell
Swift

M
ai

n
Pr

og
ra

m
m

in
g

La
ng

ua
ge

12.00%
4.60%

3.97%
3.85%

3.66%
3.45%

3.08%
3.07%

2.86%
2.76%

2.62%
2.37%

2.14%
2.03%

1.92%
1.23%

0.89%

FIGURE 5.10: Percentage of repositories with UML by language

UML in non-OOP Languages – An Example

UML was born out of the need to standardize the many object-oriented approaches that existed before
UML. Although originally intended for OOP, many UML diagrams lend themselves well to non-OOP
languages. Use case diagrams for instance are often used to model at a high level how users can interact
with a system, and are not always tied to the underlying objects in the system. State machine diagrams
are another example of a diagram which can be easily used outside of the OOP paradigm. Some diagram
types are truly tailored to OOP though, such as class diagrams which are used to model the structure of
classes and their relationships with other classes. We explore the dataset to see if there are instances of class
diagrams in repositories in non-OOP languages.

Figure 5.11 shows a class diagram we found in the arm-software/arm-trusted-firmware repository.
The arm-software/arm-trusted-firmware repository contains a reference firmware implementation for
Arm architecture, and as such is written mainly in C. We see the use of interfaces, classes, packages, and
inheritance in the diagram, concepts that do not usually exist in C. Given that, we want to see what each
of these concepts means in the context of this repository, and if each concept consistently means the same
thing.

First we look at what classes represent in this class diagram. We found it had 3 different meanings:
a C file, a C struct, and a C macro. The C files are arm_io_storage, io_driver, and io_storage. For
these files, class attributes are a mix of global variables (accessible everywhere) and static global variables
(accessible only in the file) and class operations are functions. We found plat_io_policy is a C struct
used in an interesting way. The struct defines a set of attributes and function pointers that should ex-
ist. The arm_io_storage file then contains an array of policies which can be indexed using the macros
FIP_IMAGE_ID, BL2_IMAGE_ID, etc. In this way plat_io_policy functions similar to an interface in Java,
where the attributes and methods that need to be implemented are defined, and may be better represented
as an interface in the class diagram.

60 Chapter 5. RQs

arm_io_storage

I O

plat_io_policy

dev_handle : uintptr_t*
image_spec : uintptr_t

check() : fctptr

FIP_IMAGE_ID

memmap_dev_handle
f ip_block_spec

open_memmap()

BL2_IMAGE_ID

f ip_dev_handle
bl2_uuid_spec

open_f ip()

xxx_IMAGE_ID

f ip_dev_handle
xxx_uuid_spec

open_f ip()

arm_io_storage

fip_dev_con : io_dev_connector_t*
f ip_dev_handle : uintptr_t
memmap_dev_con : io_dev_connector_t*
memmap_dev_handle : uintptr_t

f ip_block_spec : io_block_spec_t

policies : plat_io_policy[1..*]

open_f ip()
open_memmap()

arm_io_setup()
plat_get_image_source()

io_storage

io_dev_open()
io_dev_init ()
io_dev_close()

io_open()
io_seek()
io_size()
io_read()
io_write()
io_close()

io_register_device()

synchronous operat ions

io_driver

io_ent ity_t
io_dev_info_t

dev_open()
io_dev_connector_t interface

type()
open()
seek()
size()
read()
write()
close()
dev_init ()
dev_close()

io_register_device()

io_dev_funcs_t interface

1..*

FIGURE 5.11: Class diagram from arm-software/arm-trusted-firmware

Next we look at what the interface in this class diagram represents. The io_driver is a header file which
contains a set of functions that must be implemented for a device driver to be valid. This set of func-
tions is provided by the io_dev_funcs_t structure. Finally, we look at the packages arm_io_storage and
IO package in the class diagram. In this case IO has meaning as there is a folder named io containing
the files shown in the class diagram. The arm_io_storage package has less of a clear meaning. We find
that the xxx_IMAGE_ID are defined in the file /include/export/common/tbbr/tbbr_img_def_exp.h, but
arm_io_storage and plat_io_policy are defined across dozens of files with the naming pattern /plat
/<platform>/common/<platform>_io_storage.c.

Given this really odd example, does the use of a class diagram make sense in a non-OOP context? One
of the main benefits of UML is that it provides a standard way to communicate how a system is structured
and behaves in a precise way, so a developer can understand the system without having to resort to read-
ing the code. A lot of that is lost here in this example. It was not immediately clear without exploring the
code what a class represents, and even after exploring, we found the meaning of a class was not consis-
tent. Even given these shortcomings, the use of a class diagram in this context is not completely without
merit. The diagram guided us through exploring the repository, and the use of inheritance, interfaces, and
associations helped us understand the intention of the code, even if it was not implemented in a strictly
object-oriented way. Given that, the flexible use of UML class diagrams here looks beneficial, but does lose
clarity compared to being used in an object-oriented context.

5.4. RQ4: What Types of Projects are UML Diagrams Found in? 61

5.4.3 UML by Activity and Community Size

Given UML diagrams are used as a tool to describe various aspects of a system, we hypothesized that
repositories with lots of activity and large communities would be more likely to have UML diagrams. We
analyzed the values of 10 repository attributes with and without UML diagrams (Table 5.10). Five of them
had a statistically significant difference, but only number of commits has a non-negligible effect size.

Mann Whitney U Cliff’s Delta

Attribute p-value Statistically Significant Effect Size Interpretation

commits <.0001 ¥ 0.295 small
total pull requests <.0001 ¥ 0.130 negligible
open pull requests <.0001 ¥ 0.136 negligible
stargazers <.0001 ¥ -0.101 negligible
open issues <.005 ¥ 0.072 negligible
forks 0.931
contributors 0.929
releases 0.763
watchers 0.565
total issues 0.744

TABLE 5.10: Statistical significance of repository statistics of UML vs non-UML

RQ4: What Types of Projects are UML Diagrams Found in?

Finding 1: Java is the most likely programming language to use UML, with 12% of repositories seeing
UML usage at some point in their history.

Finding 2: There is a small but statistically significant difference between the number of commits a
repository has made for repositories with UML vs those without (with UML having more).

Finding 2: Outside of number of commits, there is little difference in activity and community size
between repositories with UML and those without.

5.4.4 Conclusions

We found that the choice of programming language does have an effect on how likely a repository is to
have UML. Java sees nearly 12% of repositories with UML at some point, whereas Swift sees less than
1% of repositories with UML. Although we see a clear difference in the likelihood of a repository having
UML by language, we do not see a pattern in the types of languages which are more likely to have UML
diagrams. In the future, it would be interesting to look at the types of diagrams used by each language.

We also found there are little differences in amount of activity and community size of UML versus non-
UML repositories. Although we found a small difference in the number of commits, the difference is not
large enough to support our hypothesis that repositories with lots of activity and large communities would
be more likely to have UML diagrams.

62 Chapter 5. RQs

5.5 RQ0: Why is UML Underutilized in Open Source Projects?

In this section we look at the results from the previous research questions and provide insights into why
UML is being underutilized in open source projects. First, we confirm that it is underutilized. We see only
4.1% of repositories in our dataset have ever used UML diagrams.

One reason why the usage of UML is so low could be due to the numerous tools that can be used
to generate UML diagrams. In RQ2, we identified 30 different tools that can be used to generate UML
diagrams. Although XMI is supposed to provide a standard exchange format for UML diagrams, we
found many tools do not support it. Even when XMI is supported, we found that the XMI files generated
by different tools are not always compatible with each other. This means if a developer wants to contribute
to the UML diagrams of a project, they may have to set up and learn a new tool. Given documentation is
already perceived as a chore by many developers, having a difficult barrier to entry may be enough to turn
away developers.

In RQ3, we identified that UML committers are typically a small fraction of the total contributors to a
project. This could have a few implications. The small percentage of UML committers could be due to the
reasons mentioned above – that there are many tools, and many have a steep learning curve. If it is not
quick to set up and use the diagramming tool of choice, it may only be worth it for those who are truly
invested in a project to learn. The recent uptick in the use of lighter weight UML diagramming tools seen
in RQ1 may be due to the smaller barrier to entry for casual contributors.

Another contributing factor to the modest percentage of UML committers might lie in the fact that only
a small portion of contributors are knowledgeable enough to create relevant UML diagrams. Agrawal
et al. found while studying open source projects from GitHub, that over 77% of projects exhibit the “Hero
pattern”, the pattern that 20% of the total contributors complete 80% of the contributions [1]. If we distill
this further, to have an individual who will create UML diagrams, that individual must not only belong
to this 20% who are deeply versed in the project, but must also have proficiency in UML, recognize the
utility of UML diagrams, and must be motivated enough to create them. With each of these successive
requirements, the pool of potential UML contributors narrows further and further.

5.6 Summary

In this chapter we looked at a zoomed out view of UML usage in open source repositories. We looked at the
numerous formats that UML diagrams are stored in and how the popularity of these formats has changed
over time, with PlantUML being the most popular format in recent years. We have seen that authors who
contribute to UML diagrams are generally a small minority of the total project members, and they also tend
to be the most active and long-standing members. We also saw that Java projects are the most likely to use
UML diagrams.

In the next chapter we take a zoomed in look at 3 repositories to see how UML is used in practice. Given
Java is the most likely to have UML diagrams, and PlantUML is the most popular format in recent years,
we look at Java repositories with PlantUML diagrams. We explore the usage of UML in these repositories,
and how the diagrams evolve with the code.

63

Chapter 6

Case Studies

In this chapter we look at examples of the usage of UML in open source repositories. Using Drifter (https:
//drifter.si.usi.ch/), we explore how the repositories use UML diagrams, and how that usage changes
over time. We look at three case studies:

1. Orekit, a low-level space dynamics library.

2. Teammates, a web-based student peer evaluation system.

3. Dataverse, a software platform for sharing, finding, citing, and preserving research data.

6.1 Definitions

There are many definitions that were introduced throughout the thesis so far. Table 6.1 provides a recap of
the important ones that will be used in the case studies.

Term Description

Contribution Period The period of time between the first commit and the last commit of a contributor.

Non-UML Committer Contributors to repositories who have never created or modified a UML diagram.

UML Committer A UML committer is a contributor who has created or modified at least one UML diagram
in a repository. They may or may not have also contributed to other file types.

Raw Author An author taken directly from the git commit data, grouped by unique names and emails.

Alias A raw author we determine is the same as another raw author.

Clean Author An author that represents an aggregation of raw authors who are aliases of each other.

Real Author An author we determine as a true representative of an author in the git repository. These
are either raw authors who have no aliases, or clean authors which aggregate a set of
aliases.

Java Reference A Java class, interface, or enum.

Coverage The percentage of Java references that have a corresponding UML diagram.

Method Coverage For a given Java reference, the percentage of methods covered in a UML diagram. If a class
is represented in multiple diagrams, the percentage can be aggregated using min, max, and
average across all diagrams.

Attribute Coverage For a given Java reference, the percentage of attributes covered in a UML diagram. This
metric can be aggregated same as method coverage.

TABLE 6.1: Definitions used in case studies

https://drifter.si.usi.ch/
https://drifter.si.usi.ch/

64 Chapter 6. Case studies

6.2 Orekit: An Impressive Feat of Diagramming

The first project we examine is Orekit,1 a low-level space dynamics library written in Java. It has been
used by many governmental agencies, including but not limited to the U.S. Naval Research Laboratory,
the Swedish Space Corporation, and the European Space Agency.2 Given the gravity of precision required
in the space industry, we expect they launch well documented and maintained releases. We selected this
project because it had just that – some of the most comprehensive PlantUML diagrams when it comes to
low-level detail in our dataset. At the time of building our dataset, Orekit had the GitHub stats shown in
Table 6.2.

Created Stars Forks Watchers Releases

2014-08-11 126 68 19 24

TABLE 6.2: Orekit GitHub statistics

It is still an active project and has commits all the way until the day we froze our dataset, 04.01.2023. To
get an idea of how active the UML diagramming is, we can take a look at the release view coverage history
shown in Figure 6.1. At first glance, we might only notice that the overall coverage percentage is going
down over time. If we take a closer look though, we see that the number of references goes from 300 to
over 1000, more than tripling, but the coverage percentage only drops 10%.

FIGURE 6.1: Orekit release view coverage history

If we take a look at Table 6.3 which shows the first and last releases, we can see that the number of references
(classes, interfaces, enums) covered more than doubles from the first release to the last release.

Release version Release date References Covered references Diagrams

7.2 2016-04-05 396 145 26
11.3 2022-10-18 1344 304 55

TABLE 6.3: Orekit release view statistics

Let us take a look at the package diagram from the first release seen in Figure 6.2. As a reminder, inner most
circles are Java references, green represents covered references, white represents uncovered references, and
circles containing other circles are packages. We highlight a few packages in red that appear to be well

1https://github.com/cs-si/orekit
2Orekit, who is using it: https://www.orekit.org/

https://github.com/cs-si/orekit
https://www.orekit.org/

6.2. Orekit: An Impressive Feat of Diagramming 65

covered in the first release. We wanted to see if a package that is already well covered would remain well
covered in future releases. We chose one small package (org.orekit.propagation.integration), one
medium-sized package (org.orekit.propagation.semianalytical.dsst.forces), and one large package
(org.orekit.time), whose histories can be seen in Figures 6.3a, 6.3b, and 6.3c respectively. We show only
snapshots where the package changed in some way.

FIGURE 6.2: Orekit package diagram from release 7.2

In general, the number of references increases, but the number of references covered either stays the same,
or in some cases, goes down. In the forces package history Figure 6.3b, we can see one of the few
cases where the number of references decreases. We can see the history of the reference which was re-
moved, DSSTCentralBody, in Figure 6.4 (see Section 3.6 for description of diagram). This shows that the
DSSTCentralBody was deleted, and then subsequently, the diagram was updated. Manual inspection con-
firms that the diagram was updated correctly to remove the reference to DSSTCentralBody.

We did a similar investigation to see why there was the big drop in covered references in the time
package between the first two changes, where the number of covered references goes from 23 to 17. We
found the references GMSTScale, GPSScale, QZSSScale, TCBScale, TCGScale, TDBScale were in java code
and covered by time-class-diagram.puml in the first release, but were not in a diagram in the second
release. In Figure 6.5, we see time-class-diagram.puml before and after the references were removed.
The top diagram is from the first release (7.2) where the references existed, and the bottom is from the
release where the coverage went down (8.0). These are abbreviated versions of the full class diagrams. We
took the original PlantUML diagram source34 and removed entities unrelated to the missing references. In
the top diagram, there is an interface called TimeScale which is implemented by more than 10 classes. In
the bottom diagram, many of the scales are purposely omitted to make the diagram more readable. Even
though this change causes the coverage to go down, the diagram looks more organized and readable after
the change. This highlights a few interesting points. The first is that a more detailed diagram is not always
necessarily a better diagram. The second is that these diagrams do not look like they are auto-generated.
The third is that they are likely being used by somebody as they took the time to update an old diagram to
be more usable.

3Release 7.2: https://github.com/cs-si/orekit/blob/46abd9/src/design/time-class-diagram.puml
4Release 8.0: https://github.com/cs-si/orekit/blob/16e633/src/design/time-class-diagram.puml

https://github.com/cs-si/orekit/blob/46abd9/src/design/time-class-diagram.puml
https://github.com/cs-si/orekit/blob/16e633/src/design/time-class-diagram.puml

66 Chapter 6. Case studies

References 9
Covered 9

References 8
Covered 8

References 22
Covered 8

(A) Orekit forces package history

References 5
Covered 4

References 10
Covered 4

References 12
Covered 4

References 13
Covered 4

References 14
Covered 4

References 16
Covered 4

(B) Orekit integration package history

References 31
Covered 23

References 30
Covered 17

References 38
Covered 14

References 46
Covered 17

References 41
Covered 20

References 42
Covered 20

References 47
Covered 21

References 48
Covered 21

(C) Orekit time package history

FIGURE 6.3: Evolution of Orekit Packages

6.2. Orekit: An Impressive Feat of Diagramming 67

FIGURE 6.4: Orekit DSSTCentralBody file history

FIGURE 6.5: Orekit time package simplified class diagram
(top release 7.2, bottom release 8.0)

6.2.1 Method and Attribute Coverage

So far we have looked at the overall coverage of Java references, but we have not looked at the detailedness
of that coverage. We show two metrics for diagram detailedness: method coverage and attribute coverage.
At first glance it looks like attribute coverage is much higher than method coverage. We also get more
shades of coverage for methods versus attributes.

To explore this phenomenon, we highlight GeodeticPoint in the attribute coverage diagram in Fig-
ure 6.8 and the method coverage diagram in Figure 6.9. If we look at the attribute coverage diagram and
Listing 6.1 which covers it, we see that the diagram does not contain any attributes for GeodeticPoint, but
the attribute coverage is green (100%). If we take a closer look at the source code, we see that GeodeticPoint
has no public attributes.

68 Chapter 6. Case studies

FIGURE 6.6: Orekit method
coverage release 7.2

FIGURE 6.7: Orekit attribute
coverage release 7.2

FIGURE 6.8: Orekit bod-
ies package attribute cover-

age release 7.2

FIGURE 6.9: Orekit bodies
package method coverage re-

lease 7.2

package org.orekit #ECEBD8 {
package bodies #DDEBD8 {
...
class GeodeticPoint {
+double getLatitude()
+double getLongitude()
+double getAltitude()
+Vector3D getZenith()
+Vector3D getNadir()
+Vector3D getNorth()
+Vector3D getSouth()
+Vector3D getEast()
+Vector3D getWest()

}
...

}
}

LISTING 6.1: Abbreviated
bodyshape-class-diagram.puml

from release 7.2

We find that many of the references with 100% attribute coverage are similar cases, where the reference
has no public attributes. As expected, most references have at least one public method, and only a small
percentage of those methods look to be covered in the average case. For the 4 Java references that show
100% method coverage in Figure 6.6, we find they are all interfaces. When exploring the coverage graph
we found this is a trend. Nearly every single reference that has 100% method coverage is an interface. It
looks like special care is taken to document the methods of interfaces, which makes sense given that an
interfaces main purpose is to define the contract (in the form of methods) that implementing classes must
follow.

6.2. Orekit: An Impressive Feat of Diagramming 69

6.2.2 UML to Java References Graph

If we turn our attention now to a snapshot of the UML to Java references graph for release 11.3.2 in Fig-
ure 6.10, we see a graph with lots of connections in the center, and many unconnected components on the
periphery. Even in this very well documented system we still see a lot of references with no documenta-
tion. In the graph we highlight a few interesting cases. In release 11.3.2, the latest release at the time of
cloning, we see that out of the 55 diagrams, only 3 have no connections to any Java references.

UML Diagram
Interface

FIGURE 6.10: Orekit UML to Java references graph release 11.3.2

The first unconnected diagram we look at is called top-packages.puml. As the name might suggest it
is a package diagram, so it does not cover any classes. We can see a small extract of the contents of
top-packages.puml in Listing 6.2.

package org.orekit #ECEBD8 {...
package forces #DDEBD8 { }
package propagation #DDEBD8 { }
package estimation #DDEBD8 { }

estimation --> propagation
propagation --> attitudes
propagation --> forces

70 Chapter 6. Case studies

...}

LISTING 6.2: top-packages.puml

The next unconnected diagram we look at is called unscented-kalman-filter-diagram.puml whose rele-
vant content can be seen in Listing 6.3. When searching the package diagram, we find the three classes mod-
eled in the puml diagram in the project, but the package for the class is org.orekit.estimation.sequential.
The diagram has an incorrect package name, unscented, so our rules do not pick it up as a covered class.

package org.orekit #ECEBD8 {
package estimation.sequential.unscented #DDEBD8 {
class UnscentedKalmanEstimator { }
class UnscentedKalmanEstimatorBuilder { }
class UnscentedKalmanModel { }

}
}

LISTING 6.3: unscented-kalman-filter-diagram.puml

If we look at the file history for the UnscentedKalmanEstimator, we see that both the diagram and class
were added at the same time, but the diagram is always out of sync with the class (red line).

FIGURE 6.11: UnscentedKalmanEstimator diagram history

The last unconnected diagram we look at is called dsst-partial-derivatives-class-diagram.puml and
its relevant content can be seen in Listing 6.4. This diagram is similar to the previous one. We again do not
mark the classes as covered by this diagram because the package is modeled incorrectly. There is another
class diagram which does model the package correctly and it is shown in Listing 6.5.

package org.orekit #ECEBD8 {
interface Propagator { }
interface MatricesHarvester { }

}

LISTING (6.4) dsst-partial-derivatives-class-diagram.puml

package org.orekit.propagation #ECEBD8 {
interface Propagator { }
interface MatricesHarvester { }

}

LISTING (6.5) partial-derivatives-class-diagram.puml

FIGURE 6.12: MatricesHarvester class diagram coverage comparison

This can be seen in the file history for the MatricesHarvester class in Figure 6.13. After being added to
source, the MatricesHarvester class was was immediately added to and covered by partial-derivatives-
class-diagram.puml. The dsst-partial-derivatives-class-diagram.puml diagram is never fixed to re-
flect the correct package name.

6.2. Orekit: An Impressive Feat of Diagramming 71

FIGURE 6.13: MatricesHarvester diagram history

The next odd diagram we highlight is field.puml, which is the highlighted diagram with only 1 connected
reference (interface in this case). In the most recent release of Orekit, the average number of Java references
covered per diagram is 11.08. We wanted to know why this diagram, with only 1 reference, was created and
if it is actually useful. A snippet of the diagram can be seen in Listing 6.6. The diagram shows interaction
with an external library, Hipparchus.5 Although the class diagram does show a some classes, we only see
one connected reference because we do not take into consideration external libraries.

package org.hipparchus #ECEBD8 {
interface "FieldElement<T>" as FieldElement_T_ { }
interface "CalculusFieldElement<T>" as CalculusFieldElement_T_ { }

}

package org.orekit.propagation #ECEBD8 {
interface "FieldPropagator<T>" as FieldPropagator_T_ { }
CalculusFieldElement_T_ <-- FieldPropagator_T_

}

LISTING 6.6: field.puml

The final reference we would like to highlight from Figure 6.10 is the Propagator interface in the center that
has connections to 15 diagrams. On average in release 11.3.2 of Orekit, the average reference is connected
to 2.12 diagrams. This number drops to 1.72 references per diagram if we exclude interfaces. Although
interfaces in general are more connected in the Orekit diagrams, this interface is still an exceptional case.
We found it connected to 6 sequence diagrams and 9 class diagrams. When exploring the diagrams, we
can see the interface is described with varying degrees of detail. If we look at Figure 6.14a, the main class
diagram for Propagator, we see it covers all of the methods. The sample-class-diagram.puml shown in
Figure 6.14b instead shows just a few methods that are relevant for the interaction between Propagator
and the other classes and interfaces.

5https://hipparchus.org/

https://hipparchus.org/

72 Chapter 6. Case studies

(A) propagation-class-diagram.puml

(B) sampling-class-diagram.puml

6.2. Orekit: An Impressive Feat of Diagramming 73

6.2.3 From the Beginning of Time

So far we have seen what the history of Orekit looks like from the release point of view. Their first GitHub
release version was in 2017, but the history traces all the way back to 2003, before both GitHub and Git
existed. To get a better look at the evolution of the system, we can examine the commit history shown
in Figure 6.15. Although it is still an incomplete history as we lose commits when trying to linearize the
history, we see some interesting stories missing from the release view. First there is what appears to be 0
coverage up until 2012.

FIGURE 6.15: Orekit coverage history commit view

A deeper analysis shows an evolution in the way diagrams are created and maintained. We see the first
diagram committed on 2008-06-25.6 It is committed as a PNG and there is no supporting file committed
along with it. A month later, supporting files for the images were committed7 in .odg (OpenDocument
Graphic) format. In 2010, new diagrams8 were added with the .di2 extension, whose source comes from
Papyrus.9 Finally, in 2012 a migration from .di2 to .puml occured,10 and the project has been actively using
.puml (PlantUML) since. We can see this evolution in Figure 6.16, which shows the number of commits
per UML extension by year. From 2012 on, after the switch to PlantUML, there is much more activity
in diagramming overall. This is likely because the Orekit developers found it was easier to maintain the
diagrams with PlantUML versus with Papyrus or in ODG format. We make this assertion based on the
comment of the commit containing the first PlantUML diagrams: “Updated design and documentation, with
new UML diagrams. For diagrams creation, we have switched to PlantUML, which can be directly integrated into
the maven build and eclipse and allow very simple diagram creation and update without heavy tools.”

6.2.4 Where is the UML used?

So we have seen that the Orekit diagrams are fairly comprehensive and maintained, but where are these
diagrams being used? Do they only exist as text files for developers to look at, or are they being used in
some other way? We found all of the diagrams in the Orekit maven site documentation.11 The documen-
tation website contains a lot of information, among which is a description of the architecture and design.
The documentation contains the package diagram shown earlier in Listing 6.2 in the overview section, and
then each package has its own page. Each page contains the various UML diagrams for that package, along
with descriptions giving more details. We found this use of the diagrams very useful for understanding
the system, and the natural language and diagrams have good synergy.

6https://github.com/CS-SI/Orekit/blob/bb2d94c151/src/site/resources/images/attitudes.png
7https://github.com/CS-SI/Orekit/blob/a816c0be60/src/site/resources/images/attitudes.odg
8https://github.com/CS-SI/Orekit/blob/45133524d2/src/design/OrekitModel.di2
9https://eclipse.dev/papyrus/

10https://github.com/CS-SI/Orekit/tree/d310347ba7/src/design
11https://www.orekit.org/site-orekit-development/

https://github.com/CS-SI/Orekit/blob/bb2d94c151/src/site/resources/images/attitudes.png
https://github.com/CS-SI/Orekit/blob/a816c0be60/src/site/resources/images/attitudes.odg
https://github.com/CS-SI/Orekit/blob/45133524d2/src/design/OrekitModel.di2
https://eclipse.dev/papyrus/
https://github.com/CS-SI/Orekit/tree/d310347ba7/src/design
https://www.orekit.org/site-orekit-development/

74 Chapter 6. Case studies

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Year

0

20

40

60

80

Nu
m

be
r o

f C
om

m
its

.puml

.odg

.di2

FIGURE 6.16: Evolution of UML tools in Orekit

6.2.5 UML Committers

We have seen that new UML diagrams are still being created, and old maintained in the Orekit project.
Now we look to see if those who are maintaning the diagrams have the same attributes as discussed in
the research questions. We first start looking at some basic stats for authors in Table 6.4. As expected, the
number of people diagramming is much smaller than the total number of authors.

Raw Authors Authors Aliases Authors with Aliases UML Committers Non-UML Committers

120 81 63 24 6 75

TABLE 6.4: Orekit author statistics

Looking to Figures 6.17a and 6.17b, we see the contribution period and number of commits for the top 5
UML and non-UML committers. Just as we saw in the average case in Section 5.3, UML committers are
those who contribute the most to the project, and are among the oldest contributors.

UML Committer non-UML Committer
0

1000

2000

3000

4000

Nu
m

be
r o

f C
om

m
its

(A) Top 5 authors by number of commits - UML vs non-
UML committers

UML Committer non-UML Committer
0

2000

4000

6000

Au
th

or
 C

on
tri

bu
tio

n
Pe

rio
d

 (i
n

da
ys

)

(B) Top 5 authors by contribution period - UML vs non-
UML committers

FIGURE 6.17: Comparison of author statistics

6.2. Orekit: An Impressive Feat of Diagramming 75

6.2.6 Conclusions

In this case study we looked in-depth at the Orekit project and its usage of UML. We saw that Orekit
adopted UML early on in its project history, but the tools they used to create and maintain UML diagrams
changed over time. They started by storing diagrams in image format with no supporting diagram file,
then moved to ODG (OpenDocument Graphic) format, then to Papyrus, and finally to PlantUML. They
settled on PlantUML because it is lightweight, and easy to integrate into their build system and IDE of
choice. After migration to PlantUML, Orekit had huge uptick in the number of commits to UML diagrams.

At its peak, Orekit hits an impressive 50% of Java references covered by UML diagrams, and although
the coverage percentage drops to 23% in the latest release, the number of references covered more than
doubled from the first release. We found that the diagrams are being used alongside natural language
documentation on a documentation website. We wrapped up by seeing that the UML committers are
among the most active and longest-standing contributors to the project, following the trends we identified
in RQ3 (Section 5.3) when we looked at characteristics of UML committers. We now move on to our second
case study, Teammates, where we see a similar journey in finding the right UML tooling.

76 Chapter 6. Case studies

6.3 Teammates: From PowerPoint to PlantUML

The next repository we look at is Teammates.12 Teammates is a feedback management system for students
and teachers used by more than 800,000 users from over 1,110 universities around the world.13 It is imple-
mented as a web application and is used in universities to facilitate peer feedback. Some statistics for the
repository from GitHub are shown in Table 6.5.

Created Stars Forks Watchers Releases

2014-05-02 1298 2615 99 152

TABLE 6.5: Teammates GitHub statistics

6.3.1 A Blip in Time

Figure 6.18 shows the coverage history of the Teammates project. The x-axis shows the releases over time,
ordered by date. The decrease in number of references with the subsequent rebound around the V7.0-alpha
pre-release is a consequence of this date ordering. We can see the official release with the changes that
causes the decrease comes later, in release V7.0-beta and beyond. In contrast to Orekit in Section 6.2 where
the number of references consistently grew, the number of references for this project stays relatively flat
from the first release, and in the case of V7.0, the number of references decreases. Upon further inspection,
we see the drop in number of classes is a due to a refactor that moves from JSP (JavaServer Page)14 to
Angular,15 causing some Java code to move to Typescript.

V7.0-alpha
(migration to Angular)

V7.15
(migration to PlantUML)

V7.0-beta

FIGURE 6.18: Teammates release coverage history

6.3.2 From PowerPoint to PlantUML

If we turn our attention now to V7.15, we see that coverage percentage jumps from 0 to 6%. 6% is the
max coverage percentage this project reaches (although it is possible it reaches higher before migrating
to PlantUML), far from the 50% coverage percentage peak we saw in Orekit. We did however find that
similarly to Orekit, Teammates used a different tool for diagramming before migrating to PlantUML. In
this case, Teammates used PowerPoint to manage their diagram creation before moving to PlantUML.16

12Teammates GitHub: https://github.com/teammates/teammates
13Teammates about: https://teammatesv4.appspot.com/web/front/home
14https://en.wikipedia.org/wiki/Jakarta_Server_Pages
15https://angular.io/
16https://github.com/TEAMMATES/teammates/blob/e36c2fdf39/docs/images/packageDiagram.pptx

https://github.com/teammates/teammates
https://teammatesv4.appspot.com/web/front/home
https://en.wikipedia.org/wiki/Jakarta_Server_Pages
https://angular.io/
https://github.com/TEAMMATES/teammates/blob/e36c2fdf39/docs/images/packageDiagram.pptx

6.3. Teammates: From PowerPoint to PlantUML 77

We found a GitHub issue (Migrate design diagrams from Powerpoint to PlantUML #10623) was created
to migrate from PowerPoint to PlantUML in 2020.17 To summarize from the issue, Teammates wanted to
migrate to PlantUML for the following reasons: PlantUML is free, and usable without users needing to
install software (through the web interface), PlantUML diagrams are version control friendly, PlantUML
makes it easier to use UML notation consistently. These sentiments are similar to those found in Orekit,
and adds some evidence as to why PlantUML has become popular in recent years.

One sentiment mentioned in the GitHub issue that was not pointed out in Orekit is that PlantUML
makes it easier to use UML notation consistently. Figure 6.19 shows a class diagram from the Teammates
project created in PowerPoint, and Figure 6.20 shows the same class diagram created in PlantUML after
the migration. The diagram coming from PowerPoint has a few issues regarding UML notation. First, the
double lined arrows used here to represent associations are not standard UML. Second, the filled in arrow
head is also not used to define an association in standard UML. In the PlantUML version, we can see the
associations are represented in standard UML notation.

FIGURE 6.19: Teammates storage class diagram from PowerPoint

FeedbackResponseComment

FeedbackResponse CourseStudent

FeedbackQuestion

Course

Account

FeedbackSession

StudentProfile

Instructor

Associat ions are managed
using string references

1

2 *

1

*

*

*

1

0..1

FIGURE 6.20: Teammates storage class diagram from PlantUML

Given Orekit saw a rise in activity after the migration to PlantUML, we wanted to see if the same was true
for Teammates. Figure 6.21 shows the number of commits to diagrams in PowerPoint and PlantUML over

17https://github.com/TEAMMATES/teammates/issues/10623

https://github.com/TEAMMATES/teammates/issues/10623

78 Chapter 6. Case studies

time. For PowerPoint, we consider the diagrams which were eventually migrated to PlantUML, and not
every PowerPoint file as they have many PowerPoint documents not used for diagramming efforts. Unlike
Orekit, we do not see a big jump in the number of commits to UML diagrams after the migration.

2012 2013 2014 2015 2016 2017 2018 2020 2021 2022
Year

0

5

10

15

20

25

Nu
m

be
r o

f C
om

m
its

.puml

.pptx

FIGURE 6.21: Evolution of UML tools in Teammates

6.3.3 UML Committers

We now look at the composition of UML committers versus non-UML committers. Table 6.6 shows stats
based on the anti-aliasing and number of UML committers in the project. This data includes commits to
the PowerPoint files that were eventually migrated to PlantUML (even if they did not use proper UML
notation before the migration). We can see that UML committers are a tiny percentage (2%) of the total
committers.

Raw Authors Authors Aliases Authors with Aliases UML Committers Non-UML Committers

727 620 180 73 12 608

TABLE 6.6: Teammates author statistics

If we look now to Figure 6.22, we see the top 5 authors by number of commits and contribution period.
We can see that the top UML committers by number of commits are also the top 3 committers for the
repository. In general the UML committers look to be among the contributors with the most commits and
longest contribution periods. The 5th place UML committer by number of commits, however, looks to
have less commits than the 5th place non-UML committer, and there are still 7 more UML contributors to
account for.

Table 6.7 shows the 12 UML committers along with their number of total commits, commits to dia-
grams, and contribution periods. We can see that the top 2 UML committers are actually the top 2 com-
mitters for the repository in terms of contribution period and number of commits, and they handle the
majority of the design diagrams. The bottom three contributors in terms of commits, Tan Yi Guan, Hannah,
and Syasya Azman, helped migrate the diagrams from PowerPoint to PlantUML, and integrate PlantUML
into a tool chain to generate diagrams and place them in developer documentation. Like Orekit, the design
documentation can be found on a documentation website made for developers.18

18https://teammates.github.io/teammates/design.html

https://teammates.github.io/teammates/design.html

6.3. Teammates: From PowerPoint to PlantUML 79

UML Committer non-UML Committer
0

500

1000

1500

Nu
m

be
r o

f C
om

m
its

(A) Top 5 authors by number of commits - UML vs non-
UML committers

UML Committer non-UML Committer
0

1000

2000

3000

Au
th

or
 C

on
tri

bu
tio

n
Pe

rio
d

 (i
n

da
ys

)

(B) Top 5 authors by contribution period - UML vs non-
UML committers

FIGURE 6.22: Comparison of author statistics

Name Total Commits Commits to UML Contribution Period

Damith Rajapakse 1858 40 1856
Wilson Kurniawan 1639 12 2899
Kang Hong Jin 1381 1 900
Thyagesh Manikandan 882 3 1082
Kenny 168 5 250
Xiao Pu 106 1 1419
aldrianobaja.m@gmail.com 80 1 71
Samuel Fang 45 2 1907
Howard Liu 18 1 117
Tan Yi Guan 4 3 136
Hannah 2 1 4
Syasya Azman 1 2 0

TABLE 6.7: UML Committers for Teammates

6.3.4 Conclusions

In this section we looked at the Teammates project and its usage of UML. Like Orekit before, it also used
a different diagramming tool before migrating to PlantUML. We found the migration was done for similar
reasons to Orekit, but for the added reason that PlantUML makes it easier to use UML notation consis-
tently. Unlike Orekit, we did not see a big jump in the number of commits to UML diagrams after the
migration. Teammates also sees only a small percentage of committers contributing to UML diagrams,
with the top committers in the repository also being UML committers. Unlike Orekit, we did see some
casual contributors committing to UML diagrams, but the majority of diagramming is still done by the top
committers. Now that we have looked at two case studies, we move to the final case study, where we look
at the Dataverse project.

80 Chapter 6. Case studies

6.4 Dataverse: PlantUML from the Start

The final repository we look at is Dataverse.19 Dataverse is a software platform for sharing, finding, citing,
and preserving research data, and is managed by the Institute for Quantitative Social Science (IQSS) at
Harvard University. GitHub statistics for the repository are shown in Table 6.8.

Created Stars Forks Watchers Releases

2013-11-01 737 413 67 59

TABLE 6.8: Dataverse GitHub statistics

6.4.1 Designing Before Coding

Figure 6.23 shows the commit coverage history for Dataverse. The annotated points on the graph show
when the coverage percentage increases, which we will refer to as coverage events. The first commit to
the project was made on 11.01.2013, and the first coverage event happens 01.16.2014. In contrast to Orekit
and Teammates, Dataverse started using PlantUML as their first diagramming tool, so we can get a more
complete picture of how the UML diagrams evolve alongside of the project. From the figure, we can see
that coverage percentage hits a peak on 08.15.2014. From there, the coverage drops until 09.07.2014, where
we then see another spike in coverage percentage. After 09.07.2017, the coverage percentage slowly drops
over time because the system grows but the number of covered references stays the same.

Date
References
Covered

01.15.2014
69

0

Date
References
Covered

01.16.2014
69

2
Event 2

08.15.2014
277

36

Date
References
Covered

08.04.2014
252

2

Date
References
Covered

08.31.2017
624

26

Date
References
Covered

09.07.2017
644

37

Date
References
Covered

09.07.2017
837

37

Date
References
Covered

Event 0 Event 1

FIGURE 6.23: Dataverse commit coverage history

At each coverage event, we see that the number of references increases along with the number of covered
references, so it is not clear whether the events are focused on newly added parts of the system, or already
existing parts of the system. It is also unclear whether diagrams were created, and then source code was
added to cause the increase in coverage, or whether the source code was implemented, with diagrams
added later for documentation.

To disambiguate the two situations, we can refer to Table 6.9. The table shows how the covered refer-
ences change over time at coverage events. Each item in the table is a covered reference. The � symbol
signifies that an increase in coverage occurred because a change was made to the source code. The � sym-
bol signifies that an increase in coverage occurred because a change was made to a diagram. The F symbol
signifies that a decrease in coverage occurred because a change was made to the source code.

19https://github.com/iqss/dataverse

https://github.com/iqss/dataverse

6.4. Dataverse: PlantUML from the Start 81

Event 1 Event 2

08.15.2014 (� 25, � 9) 08.31.2017 (F 11) 09.07.2017 (� 5, � 6) 03.29.2023

AbstractCommand � AbstractCommand AbstractCommand AbstractCommand
AbstractGroup � F

AccessRequest � AccessRequest AccessRequest AccessRequest
AllUsers � AllUsers AllUsers AllUsers
ApiKey � F

AssignRoleCommand � AssignRoleCommand AssignRoleCommand AssignRoleCommand
AuthenitcatedUser � AuthenticatedUser AuthenticatedUser AuthenticatedUser
AuthenticatedUserLookup � AuthenticatedUserLookup AuthenticatedUserLookup AuthenticatedUserLookup
AuthenticatdUsers � AuthenticatedUsers AuthenticatedUsers AuthenticatedUsers
AuthenticationManager � F

AuthenticationProvider � AuthenticationProvider AuthenticationProvider AuthenticationProvider
Command � Command Command Command
CreateRoleCommand � CreateRoleCommand CreateRoleCommand CreateRoleCommand
DataFile DataFile DataFile DataFile

Dataset � Dataset
Dataverse Dataverse Dataverse Dataverse
DataverseRole � DataverseRole DataverseRole DataverseRole
DataverseUser � F

DvObject � DvObject DvObject DvObject
DvObjectContainer � DvObjectContainer

ExplicitGroup � ExplicitGroup ExplicitGroup ExplicitGroup
ExplicitGroupCreator � F

Failure � Failure
Group � Group Group Group
GroupCreator � F

GroupException � GroupException GroupException GroupException
GroupRow � F

GuestUser � GuestUser GuestUser GuestUser
IpGroup � IpGroup IpGroup IpGroup
LocalAuthenticationProvider � F

Pending � Pending
Permission � Permission Permission Permission

PublishDatasetCommand � PublishDatasetCommand
RoleAssignee � RoleAssignee RoleAssignee RoleAssignee
RoleAssigneeDisplayInfo � RoleAssigneeDisplayInfo RoleAssigneeDisplayInfo RoleAssigneeDisplayInfo
RoleAssignment � RoleAssignment RoleAssignment RoleAssignment
ShibAuthenticationProvider � ShibAuthenticationProvider ShibAuthenticationProvider ShibAuthenticationProvider
ShibGroup � ShibGroup ShibGroup ShibGroup
User � User User User
UserLister � F

UserRoleAssignments � F

Workflow � Workflow
WorkflowContext � WorkflowContext
WorkflowStep � WorkflowStep
WorkflowStepData � WorkflowStepData
WorkflowStepResult � WorkflowStepResult
WorkflowStepSPI � WorkflowStepSPI

TABLE 6.9: Covered references for Dataverse over time
(� diagram increases coverage, � source increases coverage, F source decreases coverage)

82 Chapter 6. Case studies

At Event 1 in Table 6.9, a majority of the increases in coverage are due to source code changes. This means
that the diagrams are not just being created to document already implemented source code, but is also
being used to help design the system. On 07.12.2014, a commit was made which added one of the UML
diagrams used for design work.20 A subset of the diagram can be seen in Figure 6.24. The classes marked
in red are ones that were never added to the source code. Almost a month later, on 08.04.2014, a commit
was made which implemented the classes found in the diagram.21 The commit shows, for example, that
Assignee was never implemented, and was instead implemented as RoleAssignee. The design diagram
was used in a flexible way, as a starting point, and the diagram in this case updated to reflect the changes
made to the source code. This is why we see a mix of diagrams increasing coverage, and source code
increasing coverage in Table 6.9.

assignees

Assignee

displayString()

User

locator:Str ing

LocalUser

id:Long
name:Str ing

GuestUser
RemoteUser

i d
origin:Data

ApiKey

key:String
t it le: String

Group

contains(a:Assignee)

ExplicitGroup

list : Assignee[]

add(a:Assignee)
remove(a:Assignee)

LogicalGroup

RegisteredUsers GuestUsers

Ex ternalGroup

«Contains»

10..*

FIGURE 6.24: Dataverse users and groups UML diagram - commit 06.12.2014

Referring back to the beginning of Event 2 in Table 6.9, we see many decreases in coverage due to source
changes. The references were removed from source code, but as of writing this thesis almost 6 years af-
ter the references were removed, they can still be found in diagrams in the repository.22 Sometimes the
diagrams are updated to reflect changes in the source code, and other times they are not.

6.4.2 Documentation Website

Like Orekit and Teammates, Dataverse also hosts a documentation website.23 The documentation web-
site is generated using Sphinx,24 and many of the UML diagrams can be found scattered throughout the
documentation.

20https://github.com/IQSS/dataverse/commit/36381f9427
21https://github.com/IQSS/dataverse/commit/936271ba52
22https://github.com/IQSS/dataverse/blob/5f7fd5b421/doc/Architecture/auth-classes.uml
23https://guides.dataverse.org/en/latest/developers/index.html
24https://www.sphinx-doc.org/en/master/usage/quickstart.html

https://github.com/IQSS/dataverse/commit/36381f9427
https://github.com/IQSS/dataverse/commit/936271ba52
https://github.com/IQSS/dataverse/blob/5f7fd5b421/doc/Architecture/auth-classes.uml
https://guides.dataverse.org/en/latest/developers/index.html
https://www.sphinx-doc.org/en/master/usage/quickstart.html

6.4. Dataverse: PlantUML from the Start 83

6.4.3 Authors

Table 6.10 shows author statistics for Dataverse. As in the other case studies, the number of UML commit-
ters is a small subset of the total number of committers.

Raw Authors Authors Aliases Authors with Aliases UML Committers Non-UML Committers

341 183 222 64 4 179

TABLE 6.10: Dataverse author statistics

Figure 6.25a shows the top 4 authors by number of commits (we choose 4 instead of 5 as there are only
4 UML committers). The top UML committer by number of commits is also the top committer overall in
terms of number of commits. The 2nd UML committer is still among the top contributors, but the 3rd
and 4th UML committers are not. A similar trend can be seen in the top 4 authors by contribution period,
although the difference is less pronounced.

UML Committer non-UML Committer
0

1000

2000

3000

Nu
m

be
r o

f C
om

m
its

(A) Top 4 authors by number of commits - UML vs non-
UML committers

UML Committer non-UML Committer
0

1000

2000

3000
Au

th
or

 C
on

tri
bu

tio
n

Pe
rio

d
 (i

n
da

ys
)

(B) Top 4 authors by contribution period - UML vs non-
UML committers

FIGURE 6.25: Comparison of author statistics

6.4.4 Conclusions

In this section, we looked at our final case study, Dataverse. Unlike Orekit and Teammates before, Data-
verse used PlantUML as their first UML diagramming tool We saw that Dataverse used UML diagrams to
design parts of the system before implementing them. During implementation, changes to the design were
made, and the diagrams were sometimes updated to reflect the changes. We found examples of diagrams
references to classes that had not existed for almost 6 years.

Like Orekit and Teammates, Dataverse also hosts a documentation website, where some of the UML
diagrams can be found alongside natural language documentation. We also saw that the number of UML
committers is a small subset of the total number of committers, and that the top UML committer is also the
top committer overall in terms of number of commits.

84 Chapter 6. Case studies

6.5 Summary

In this chapter, we presented case studies of the usage of UML in open source repositories. We started with
Orekit, which has an impressive amount of UML diagram coverage, and at one point in its history had 50%
of the system covered by UML diagrams. Even in the Orekit project, where great effort was put into the
diagramming (in the latest commit, 55 diagrams with over 304 references covered), parts of the diagrams do
not accurately reflect the code. Dataverse also has issues with diagrams that have out of date information,
with at least one diagram showing references that have been removed from the source code over 6 years
ago. Both Teammates and Orekit both migrated from other tools to PlantUML because it is a lightweight,
version control friendly tool that integrates well with their workflow. One downside of these tools is that
they do not support traceability and round-trip engineering by default like many traditional UML tools, so
greater care needs to be taken to ensure diagrams are up-to-date. This becomes a monumental task as the
size of the system grows.

For each system in our case study, the UML diagrams do not exist solely in the repository. Each system
has a documentation website which contains the UML diagrams. The diagrams compliment the natural
language documentation well, and are a valuable resource for understanding the architecture and design
of the systems.

In every case study, the top committer by contribution period, and the top committer by number of
commits are also UML committers. In general UML committers are among the most active and longest
standing contributors to their respective projects, but we did find some exceptions. UML committers are
also a small subset of the total number of contributors in each system.

In each case study, only subsets of the system are diagrammed. The coverage percentage also generally
hits a peak and then declines over time, either because the system is no longer being actively diagrammed,
or because the system is growing faster than it is diagrammed.

Now that we have answered the posed research questions, and explored the usage of UML in open
source repositories, we conclude the thesis with a discussion of the results, threats to validity, and future
work in the next chapter.

85

Chapter 7

Conclusion

"I may not have gone where I intended to go, but I think
I have ended up where I needed to be."

— Douglas Adams

7.1 Discussion

In this thesis we have looked at the usage of UML in open source repositories. We saw that the use of UML
in open source repositories is not widespread, with only 4.1% of repositories in our dataset containing UML
diagrams at some point in their history. We found that the popularity of UML peaked in 2007, and has not
reached the same level since. So why is the use of UML not more widespread in open source projects? We
believe this may be due to a number of factors.

The first is the learning curve associated with UML. UML is a large and complex specification, whose
latest version comes in the form of an over 700-page document.1 One of UML’s main benefits is its ability to
communicate design ideas between developers in a clear, concise, and non-ambiguous way. This benefit is
lost if developers do not have a good understanding of UML, and the misuse of UML can have a negative
impact on a project. The scope of UML has grown to be large and complex, and this complexity has made it
harder to understand and use the small subset of the specification that most developers use. Documenting
systems is already perceived as a chore by many developers, and adding the complexity of UML to the mix
may be enough to turn many developers away.

Another factor is that tooling for UML is often cumbersome and unintuitive to use. First, while explor-
ing the tooling available for creating and maintaining UML diagrams, we found many tools were difficult
to install. Many tools were not self-contained, and required the tracking down and installation of many
dependencies. Other tools only support Windows, and so required us to set up a Windows virtual machine
just to run them. Once they are running, many of them are overly complicated for the needs of the average
developer. These types of issues are not problems at large companies, where management can mandate
the use of specific tooling. If an open source project decides to use a tool that is difficult to install and use,
they may lose potential contributors.

Although we saw a decline in the use of UML in open source projects from 2007 to 2015, we have seen a
recent resurgence in the use of UML. This resurgence coincides with the fall in popularity of Eclipse plugins
for UML and the rise in popularity of text-based UML diagramming tools. Text-based UML diagramming
tools offer a lighter weight alternative to traditional UML diagramming tools that also lend themselves
well to version control. We found two examples in our case studies of projects that migrated from Eclipse
plugins and generic modeling tools to PlantUML. It could be that many developers who were turned away
by the complexity of traditional UML diagramming tools are now willing to try the lighter weight text-
based alternatives.

1https://www.omg.org/spec/UML/2.5.1/PDF

https://www.omg.org/spec/UML/2.5.1/PDF

86 Chapter 7. Conclusion

The last potential factor that may have caused the decline in UML usage is the rise of agile development
methodologies. The agile manifesto was published in 2001, and called for working software over compre-
hensive documentation. An overall shift towards less documentation may have led to a decline in the use
of UML. Although developers may have been quick to jettison documentation, recent research has shown
that a majority of agile practitioners still find documentation important, but that there is not enough of it
[51].

7.2 Threats to Validity

As part of our data collection, we looked at a subset of the total GitHub repositories. We use the GitHub
search API for dataset collection, which analyzes 1.25 million repositories of the 100+ million public repos-
itories on GitHub. We added additional constraints to filter out repositories with less than 100 stars, 2000
commits, and 10 contributors. The exclusion of smaller repositories with smaller communities may hide
an interesting population of repositories that use (or do not use) UML.

In addition, we only considered UML diagrams in formats that we could identify and tag. In the context
of how popular UML is and the types of projects its found in, the inclusion of additional formats we were
not able to tag may have an effect on the final outcome.

When deciding whether a repository is active, and whether a commit was made to UML or not, we
did not filter out bot accounts, commits that only update copyright years, and whitespace formatting only
commits. These types of commits are common in open source repositories, and may have an effect on the
final numbers.

7.3 Future Work

Here we discuss some potential avenues for future work that can build on the work presented in this thesis.

1. Tagging more UML formats: We were able to tag UML files in a number of textual formats. We did
not tag UML files in image formats (e.g.,.png, .jpg, .svg), or in Markdown files (e.g.,.md, .rst). Chen
et al. [12] found that 74% of UML diagrams in GitHub projects are stored in image formats, versus
26% in text-based. They likely under-counted text-based formats as they considered only .xmi and
.uml extension, and we have identified many others, but it still shows that many UML diagrams
come in image based formats. We also found examples of UML diagrams in Markdown files and
xml files, but did not tag them. Given the popularity of MermaidJS and PlantUML as text based
UML diagramming tools, and their ability to be embedded and rendered in Markdown files, it seems
likely that there are many UML diagrams to be tagged in Markdown files.

2. Tagging diagram types: Adding the type of diagram to the tagged UML files would allow for some
interesting analysis. For example, we looked at UML diagrams by programming language, and found
a significant number of C repositories with UML diagrams. We suspect that the usage of class dia-
grams is much lower in C than in Java or C++ for instance. Tagging diagram types would allow for
these types of comparisons.

3. Support more Programming Languages: In our case studies, we looked only at Java projects as
our tooling was built around Java. Extending support to more languages would allow for a more
complete picture of UML usage in open source projects. It would also allow for the ability to see how
UML is used in projects that use multiple languages.

4. Support more UML Diagram Types: We focused on class and sequence diagrams in PlantUML.
There are many other tools for creating UML diagrams, and many other types of UML diagrams.

7.4. Epilogue 87

Expanding to support more diagram types and tools would allow for the inclusion of more projects
in our analysis.

5. Mining Coverage: We used Drifter to visualize the coverage of UML diagrams in some projects.
Expanding this to run on a larger set of projects would allow for some interesting analysis. Looking
at how coverage changes over time

6. Natural Language Documentation: The most ubiquitous form of documentation we found while
exploring the various repositories in our dataset were natural language ones in Markdown. Even
the UML diagrams are often found in Markdown files alongside natural language. Applying the
visualizations for UML diagrams could be interesting, especially for the Java2UML graph, which
would show links between Markdown files and Java references.

7. Relaxing Coverage Constraints: In our coverage analysis, we used strict constraints when making
connections between UML diagrams and source code. We did minimal string preprocessing, and
we required package structures to be accurate. Relaxing these constraints would allow for more
connections to be made, and being able to compare the relaxed versus strict constraints would unveil
inaccuracies in diagrams.

7.4 Epilogue

We have taken both a broad and deep look at the usage of UML in open source repositories. Although UML
is not widely used, and the usage has generally declined over the years, we have seen a recent resurgence
in the use of UML. Will this resurgence continue into the future, or will it be short-lived? The future of
UML in open source projects is uncertain, but what is certain is that it faces an uphill battle.

With the advent of lighter weight, version control friendly UML diagramming tools, we believe UML
has become more accessible. These tools also come with challenges, both new and old. Like many tools
before PlantUML, it does not readily support traceability and round-trip engineering. We have seen that
even projects with active diagramming practices have inaccuracies, which can diminish the effectiveness
of UML diagrams.

Another challenge that is new to diagramming tools like PlantUML is the limitations in layout. Plan-
tUML works great for small diagrams, but those who have worked with PlantUML likely know the strug-
gle of making moderately sized diagrams look good. After spending hours toiling away to make a diagram
look perfect, adding 1 component can cause the whole layout to tangle into an unreadable mess. These
types of issues can cause developers to spurn UML, and choose simpler forms of documentation.

It will be interesting to see if despite the current issues with tools like PlantUML, if the use of UML
usage in open source continues to trend upwards, and if the current limitations will be fixed.

89

90 Appendix A. UML Tools

Appendix A

UML Tools

Tool Importable Extensions Exportable Extensions
ArgoUML .argo, .zargo .argo, .zargo, .pgml, .xmi, .png, .gif,

.svg, .ps, .eps
Astah .asta .asta, .png, .jpg, .rtf, .html
Bouml .prj, .xmi .prj, .diagram, .html, .svg, .xmi
Cacoo .png, .svg, .pdf, .ps, .ppt
ConceptDraw .cddz, .vsd, .vsdx, .vdx, .png, .jpg .swf, .png, .jpeg, .gif, .bmp, .tiff, .pdf,

.svg, .pptx
Creately .png, .svg, .jpeg, .csv, .pdf .png, .svg, .jpeg, .csv, .pdf
Dia* .dia .dia, .svg
DrawIO .drawio .xml, .png, .svg, .html
EdrawMax .vdx, .vsd, .vsdx, .vsdm, .svg, .eddx,

.edx
.eddx, .pdf, .png, .jpg, .vsdx, .html,
.docx, .xlsx, .pptx, .svg, .tiff, .pbm, .ps,
.eps

EnterpriseArchitect .qea, .qeax, .feap, .xml, .xmi, .eap,
.eapx, .eadb, .csv, .rtf, .pdf, .html

.qea, .qeax, .feap, .xml, .xmi, .eap,

.eapx, .eadb, .csv, .rtf, .pdf, .html
GenMyModel .xmi .svg, .png, .jpg, .xmi, .docx, .pdf
Gleek.io .png, .svg, .pdf
Gliffy .gliffy .png, .jpg, .svg, .gliffy
Lucidchart .graffle, .graffle.zip, .vdx, .vsd, .vsdx,

.vsdm, .gxml, .gliffy, .xml, .drawio
.pdf, .png, .jpeg, .svg, .csv, .vsdx., .vdx

MagicDraw* .mdr, .mdzip .mdr, .mdzip, .xmi, .xml, .ecore, .cmof,
.emof

Mermaid .mmd
Microsoft Visio .vsdx, .vsdm, .vssx, .vssm, .vstx, .vstm .vsdx, .vsdm, .vssx, .vssm, .vstx, .vstm,

.pdf, .svg, .png, .emf
ModelIO* .xmi, .uml .svg, .png, .gif, .jpeg, .xmi, .uml
Moqups .png, .pdf, .html
PlantUML .png, .svg, .eps, .pdf, .vdx, .xmi
Software Ideas Modeler* .simp .simp, .jpg, .png, .gif, .bmp, .tiff, .svg,

.wmf, .emf, .pdf, .xmi
StarUML .mdj, .mfj, .uml, .xmi .mdj, .mfj, .png, .jpg, .svg, .html, .uml,

.xmi
TextUML .tuml
Umbrello* .xmi .xmi, .png, .jpg, .svg, .pdf
UML Designer .uml .uml
UMLetino .uxf .uxf, .pdf, .png
Umple .ump .ump, .tuml, .yuml, .svg, .xmi
Visual Paradigm .vpp .png, .html
Yuml .yuml .yuml, .png, .svg, .jpg, .pdf

TABLE A.1: Popular UML tools and their supported file extensions (* indicates tool was not
successfully installed and run, extensions come from documentation)

91

92 Appendix B. UML Examples

Appendix B

UML Examples

Extension Repo Name Commit
Hash

File Path

.argo apache/commons-
math

05195b77ca src/mantissa/src/org/spaceroots/mantissa/linalg/de-
sign/linalg.argo

.asta opendds/opendds 4eac1ec78e docs/design/UML/OpenDDS_UML_sketches.asta

.bmp orbiternassp/NASSP 6ae708ff94 TVD2MXF/TVD2MXF/lib/SimMetricsv1.5/ SimMetric-
s/SimilarityClasses/edit%20distance/Edit%20Distance.bmp

.cmof bpmn-io/bpmn-js b7733572a0 resources/bpmn/cmof/BPMN20.cmof

.dia adoptium/temurin 8b5106821a docs/images/sequence.dia

.diagram eclipse/sumo 61b58fbf78 docs/modules/sumo/128048.diagram

.docx gbif/ipt 7e0b210c8b gbif-ipt-docs/downloads/ipt-architecture_1.1.docx

.drawio apache/camel-k 2903656f49 docs/diagrams-source/camel-k-state-machine-build.drawio

.eap cqframework/clini-
cal
_quality_language

f1865e8e02 Src/cql-lm/uml/elm.eap

.ecore b2ihealthcare/snow-
owl

bd6b51ebdc snomed/-
com.b2international.snowowl.snomed.etl/model/generated/Etl.core

.emf sommer/veins 135d963b30 doc/interfaces/PhyLayer/tex/images/emf/modelling/Air-
Frame_members.emf

.eps cpc/openasip 33e56b42f9 tce/doc/specs/design/UniversalMachine/eps/classdia-
gram.eps

.gif apache/commons-
dbcp

eac7b3de69 src/site/resources/images/uml/ConnectionFactory.gif

.gliffy akeneo/pim-
communit

09bf43ee51 src/Oro/Bundle/DataGridBundle/Resources/doc/backend/
diagrams/datagrid_base_uml.gliffy

.graffle cashmusic/platform 4f1191a7f8 vendor/swiftmailer/swiftmailer/doc/uml/Encoders.graffle

.html sgothel/jogl 6e54fba3bb doc/uml/html/index.html

.iuml chef/automate 1ca3deb611 dev-docs/diagrams/authz-sequence.iuml

.jpeg iluwatar/java-
design-patterns

8524c75ba6 double-checked-locking/etc/ double_checked_locking.jpeg

.jpg iluwatar/java-
design-patterns

932836f68b servant/src/etc/mediator.jpg

.json ls1intum/artemis 9dc0d4fca5 src/test/resources/de/tum/in/www1/artemis/service/-
compass/umlmodel/deployment/deploymentModel2.json

.md aelfproject/aelf ba3daca8a3 dev/docs/development/main-sequence.md

.mdj btccom/btcpool-
abandoned

249df9d268 docs/Eth/uml.mdj

.mdzip jsettlers/settlers-
remake

41caf8362d doc/uml/networklib.mdzip

.mmd apache/arrow dd52b384cb docs/source/format/FlightSql/CommandPrepared-
StatementQuery.mmd

.odg cs-si/orekit 321233898f src/site/resources/images/antenna-frames.odg

.pdf nasa/fprime 053fe23ada docs/Architecture/FPrimeSoftwareArchitecture.pdf

Appendix B. UML Examples 93

.plantuml apache/syncope 4814ebf2b8 src/main/asciidoc/images/sra-request.plantuml

.platuml kubernetes-sigs/cluster-
api

7303333fa3 docs/proposals/images/cluster-spec-
crds/figure2.platuml

.png nasa/fprime a2744296b7 docs/Architecture/ComponentTree.png

.ppt docgroup/ace_tao fd904693d4 DAnCE/docs/OMG-DnC-Tutorial.ppt

.pptx nasa/fprime 053fe23ada docs/Architecture/FPrimeSoftwareArchitecture.pptx

.prj eclipse/sumo 61b58fbf78 docs/modules/sumo/sumo.prj

.ps siconos/siconos 50e2df5543 Docs/Dev/Kernel_DDD/figure/
class_diag_DDD_DS_XML.ps

.pu mudita/muditaos e433e8dd03 module-cellular/modem/doc/scripts/
class_channel.pu

.puml cs-si/orekit 5ef673c5da src/site/resources/images/attitude-class-
diagram.puml

.rst bareos/bareos f4826a68ff docs/manuals/source/DeveloperGuide/jobexec.rst

.session sgothel/jogl fa00349682 doc/uml/jogl/69.session

.svg adoptium/temurin-build 8b5106821a docs/images/sequence.svg

.txt storaged-project/udisks 05caa69296 doc/uml/classes.txt

.ucls apache/cloudstack 893a88d225 engine/storage/storage.ucls

.uml opendds/opendds 4eac1ec78e docs/design/UML/history/DDS.uml

.umlclass activiti/activiti d571cbc794 modules/activiti-
engine/doc/persistence.model.umlclass

.umlprofile opendds/opendds 27ad9eab0f tools/modeling/plugin-
s/org.opendds.modeling.resources/profiles/
OpenDDS.umlprofile

.ump umple/umple e492ca969d Umplificator/UmplifiedProjects/weka-umplified-
0/src-umple/FastVector.ump

.unt opendds/opendds 4eac1ec78e docs/design/UML/history/Analysis.unt

.uxf armmbed/mbed-os c2d849133f features/storage/FEA-
TURE_STORAGE/cfstore/doc/design/umlet/
configuartion_store_hld.uxf

.vdx resiprocate/resiprocate 9e3b6b6b2b resip/dum/doc/dum-fsms1.vdx

.vpp alexo/wro4j ce7993a1d4 wro4j-examples/wro4j-
demo/doc/WebResourceOptimizer.vpp

.vsd eclipse-aspectj/aspectj 329a415e48 docs/developer/compiler-weaver/dev-guide-
diagrams.vsd

.vsdm azuread/microsoft-
authentication-library-for-
js

fca271e588 extensions/docs/diagrams/visio/msal-node-
extensions-persistence.vsdm

.vsdx azure/iotedge 1a35477d74 doc/resources/EdgeHubDiagrams.vsdx

.wmf activeloopai/deeplake 674196a82c deeplake/tests/dummy_data/images/crown.wmf

.xmi kdd/calligra 723cc438e5 kexi/migration/xbase/doc/design.xmi

.xml iluwatar/java-design-
patterns

932836f68b servant/src/etc/mediator.xml

.xpm gnome/dia 1707d4d23e objects/UML/umlclass.xpm

.yuml kratosmultiphysics/kratos 2eb0483902 applications/ShapeOptimizationApplication/optimiza-
tion_process.yuml

.zargo alexo/wro4j ce7993a1d4 wro4j-examples/wro4j-demo/doc/Diagram.zargo

.zuml apache/openoffice cdf0e10c4e main/svx/doc/UML/-
grid_control_implementation.zuml

TABLE B.1: Examples of UML diagrams for each extension
https://github.com/<repo_name>/tree/<commit_hash>/<file_path>

https://github.com/<repo_name>/tree/<commit_hash>/<file_path>

95

96 Appendix C. UML Counter-Examples

Appendix C

UML Counter-Examples

Extension Repo Name Commit
Hash

File Path

.argo ALIGN-
analoglayout/ALIGN-
public

db92f3903a Cktgen/Argo/route.argo

.bmp andreikop/enki d573cda3c4 win/portrait-logo.bmp

.diagram arvidn/libtorrent 9a31c45d3c docs/img/read_disk_buffers.diagram

.drawio snailclimb/javaguide 3e8b402cc7 docs/high-performance/images/message-
queue/message-queue-pub-sub-model.drawio

.eap FreeRADIUS/
freeradius-server

f1ee539f43 share/dictionary/freeradius/dic-
tionary.freeradius.internal.eap

.eddx rdkmaster/jigsaw fbaa40ea14 docs/implement-sudoku-puzzle-with-table-and-its-render-
system/event-graph.eddx

.edx kissyteam/kissy 9831969f64 src/dom/sub-modules/selector/docs/linkedlist.edx

.emf apache/openoffice 863a930eea main/extras/source/gallery/diagrams/Section-Pasters02-
Blue.emf

.gif 3liz/lizmap-web-
client

f7d333c7ce lizmap/www/assets/css/images/download_layer.gif

.gliffy GoogleContainerTool-
s/skaffold

d5db3264d4 docs-v2/diagrams/skaffold.gliffy

.graffle actor-
framework/actor-
framework

6c08fe2dec doc/graffle/mailbox.graffle

.html qt/qtwebengine 8787c53297 examples/webenginewidgets/printme/data/in-
dex.html#L4

.jpeg RestComm/Restcomm-
Connect

c67f142339 restcomm/restcomm.docs/sources-
asciidoc/src/main/asciidoc/tutorials/images/ussdpull.jpeg

.jpg 1024pix/pix aafb074d8f orga/public/coming-soon.jpg

.md AElfProject/AElf ba3daca8a3 README.md

.mdr Gwion/Gwion 382f82d117 docs/02_Reference/00_Types/03_Typedefs.mdr

.mmd github-
linguist/linguist

916bd8f3df samples/Mermaid/gitgraph.mmd

.patch coolsnowwolf/lede 404209f6c4 target/linux/uml/patches-5.4/102-pseudo-random-
mac.patch

.pbm a1ive/grub d52357bd38 grub-core/bits-
deps/python/Lib/test/imghdrdata/python.pbm

.pdf 0LNetworkCommuni-
ty/libra

b0ce13c7d6 documentation/contributing/individual-cla.pdf

.plantuml testingisdocument-
ing/znai

afff408226 znai-docs/znai/visuals/gantt.plantuml

.png benawad/dogehouse 794eba762f kibbeh/src/img/dogehouse.png

Appendix C. UML Counter-Examples 97

.pptx apache/poi 5c29cfc058 test-data/slideshow/2411-Performance_Up.pptx

.prj 3liz/lizmap-
web-client

f7d333c7ce extra-modules/lizmapdemo/qgis-
projects/demoqgis_intranet/data/VilleMTP_MTP_FilaireVoies_2011.prj

.pu ax-
molengine/ax-
mol

062b510c38 tests/cpp-tests/Content/Particle3D/scripts/UVAnimation.pu

.puml apache/finer-
act

40eb547a5c fineract-doc/src/docs/en/diagrams/release-schedule.puml

.rst apache/arrow caa94a446a docs/source/format/ADBC.rst

.session FreeR-
TOS/FreeR-
TOS

0d95aca202 FreeRTOS/Demo/T-
HEAD_CB2201_CDK/RTOSDemo_CDK/.cdk/RTOSDemo_CDK.session

.svg benawad/do-
gehouse

794eba762f .redesign-assets/dogehouse_logo.svg

.txt storaged-
project/udisks

c640ad72a2 modules/lsm/TEST_NOTE_lsm.txt

.uml van-
hoefm/fragat-
tacks

abf9b9bd8b tests/hwsim/vm/kernel-config.uml

.umlaut DragonFlyBS-
D/DragonFly-
BSD

d83cfc8d85 share/me/test/test.umlaut

.ump ufoaiorg/u-
foai

d9aa2b00ab base/maps/construction.ump

.unt ProteoWiz-
ard/pwiz

bc8a3ada92 pwiz_tools/Bumbershoot/bumberdash/Tests/Data/BrukerTest.d/Sample_1-
A%2C1_01_985.unt

.vacuumlo postgres/-
postgres

6e414a171e contrib/vacuumlo/README.vacuumlo

.vdx angular/an-
gular.js

7e5a12e2c1 images/docs/Diagrams.vdx

.vpp istoreos/is-
toreos

e106f25ee7 target/linux/omap35xx/gumstix/defconfig.vpp

.vsdm apache/tika 48132cfcd7 tika-parsers/tika-parsers-standard/tika-parsers-standard-
modules/tika-parser-microsoft-module/src/test/resources/test-
documents/testVISIO.vsdm

.vsdx an-
dreikop/enki

d573cda3c4 tests/test_plugins/preview_sync_source_above_target.vsdx

.vssm apache/tika 48132cfcd7 tika-parsers/tika-parsers-standard/tika-parsers-standard-
modules/tika-parser-microsoft-module/src/test/resources/test-
documents/testVISIO.vssm

.vssx apache/tika 48132cfcd7 tika-parsers/tika-parsers-standard/tika-parsers-standard-
modules/tika-parser-microsoft-module/src/test/resources/test-
documents/testVISIO.vssx

.vstm apache/tika 48132cfcd7 tika-parsers/tika-parsers-standard/tika-parsers-standard-
modules/tika-parser-microsoft-module/src/test/resources/test-
documents/testVISIO.vstm

.vstx apache/tika 48132cfcd7 tika-parsers/tika-parsers-standard/tika-parsers-standard-
modules/tika-parser-microsoft-module/src/test/resources/test-
documents/testVISIO.vstx

.xmi act-
boy168/YDWE

90f0a56f5a ThirdParty/RadGameTools/MSS/6.1a/Examples/media/demo.xmi

.xml benawad/do-
gehouse

794eba762f pilaf/android/app/src/main/res/values/colors.xml

.xpm BestIm-
ageView-
er/geeqie

5a961050ab src/icons/gq-marker.xpm

TABLE C.1: Counter-Examples of UML diagrams for each extension
https://github.com/<repo_name>/tree/<commit_hash>/<file_path>

https://github.com/<repo_name>/tree/<commit_hash>/<file_path>

99

Appendix D

UML Extension Tagging

In this appendix we provide a brief description of each of the UML extensions we tagged, and the method
we used to tag them. There are three main types of files we tagged: text files, zip folder, and gzip files. For
text files, we used regex to search for characteristics of the file that would indicate it was a UML diagram.
For gzip we unzipped the file and then used regex to search for characteristics. For zip files, we unzipped
the folder, and searched the files for discernible charcteristics. For some file types we were not able to find
any discerning characteristics, but the number of files was few. In those cases we manually tagged the files.

D.1 .argo and .zargo

.argo and .zargo are the two extensions we see used for the ArgoUML 1 diagramming tool. .argo is an XML
file that contains various pointers to the PGML and XMI files that make up the project. Since ArgoUML is
a UML specific diagramming tool, we tagged all .argo file containing the “<argo>” tag as a UML diagram.
The .zargo file extension instead is a zip archive containing the .xmi, .argo and .pgml files that contain all
of the diagram information. For .zargo files, we tagged all zips that contained .argo, .xmi and .pgml files.

D.2 .asta

.asta is an extension used by another UML specific diagramming tool called AstaUML 2. It is a zip file that
unzips into a java serialization data object. In the end, there were only a few files to check, so instead of
deserializing the data object and looking for characteristics, we manaully opened each in asta to ensure it
whereas a proper project file. Each file was, so we tagged all .asta files as UML diagrams.

D.3 .cmof

The .cmof extension is based on the MOF standard, which is a metamodel used to describe other meta-
models.3 It is used to describe the UML metamodel, and has a subset of the notations used in UML. For
that reason we considered each .cmof file to be a UML diagram and tagged them as such. For the same
reason as .asta above, there were only four total CMOF files, so we checked them manually to ensure they
were all the same format.

1https://argouml-tigris-org.github.io/tigris/argouml/
2https://astah.net/products/astah-uml/
3https://www.omg.org/spec/MOF/

https://argouml-tigris-org.github.io/tigris/argouml/
https://astah.net/products/astah-uml/
https://www.omg.org/spec/MOF/

100 Appendix D. UML Extension Tagging

D.4 .dia

The .dia extension is used by the Dia 4 diagramming tool. Unlike AstaUML and ArgoUML it is not UML
specific, and can be used for other types of diagramming. We found .dia extensions with diagrams saved in
2 ways, as an XML file and as a gzipped XML file. To tag each .dia file, we checked if it was a gzip file, and
if it was then we unzipped it. After unzipping, the checks are the same for both the XML and unzipped
XML files. We search the XML file using the following regex to determine if it is a UML diagram or not.

"UML[[:space:]-]*\(Class|Note|Dependency|Realizes|Generalization|
Association|Implements|Constraint|SmallPackage|LargePackage|
Actor|Usecase|Lifeline|Object|Message|Component|Component Feature|
Node|Classicon|State Term|State|Activity|Branch|Fork|Transition\)"

This covers the parts of the UML diagram that we saw when creating an example UML diagram in Dia.
Below is an example from one of the files in our dataset that the regex finds.

<dia:object type="UML - Class" version="0" id="O0">
<dia:attribute name="obj_pos"> <dia:point val="49.6866,16.777"/> </dia:attribute>
<dia:attribute name="name"> <dia:string>#TestCase#</dia:string> </dia:attribute>

</dia:object>

D.5 .diagram

The .diagram extension is used by a few different tools. A majority of the files we found with the .diagram
extension were a companion to the .prj file used by the BOUML5 diagramming tool. To tag the BOUML
files, we used the regex below.

"classcanvas|classinstance|activitynodecanvas"

D.6 .ecore

The .ecore extension is used by the Eclipse Modeling Framework (EMF) 6. It uses a subset of the UML
notation to allow for the generation of code from UML models. To tag .ecore files, we used the following
regex.

"EClass|EPackage"

D.7 .gliffy

Gliffy7 is a general purpose diagramming tool that can be used to create UML diagrams. Although it
is capable of making UML diagrams outside of class diagrams, we found in the cases where it used UML
entities in other diagrams (like a UML actor for instance), it was used within a diagram that was not a UML
diagram. Those with class entities were consistently UML diagrams following proper notation. Given that,
to tag .gliffy files, we used the following regex.

"com\.gliffy\.shape\.uml\.uml_v1\.default\.(class|simple_class|package)"
4https://wiki.gnome.org/Apps/Dia
5http://bouml.fr/
6https://www.eclipse.org/modeling/emf/
7https://www.gliffy.com/

https://wiki.gnome.org/Apps/Dia
http://bouml.fr/
https://www.eclipse.org/modeling/emf/
https://www.gliffy.com/

D.8. .iuml, .puml, .plantuml, .platuml 101

D.8 .iuml, .puml, .plantuml, .platuml

The .iuml extension is used by PlantUML. In our dataset, we see it is typically used for as an include file for
diagram styling, actors for various use cases, re-usable classes and sequences, etc.. Given that, we tag the
.iuml files the same as we tag the .puml, .plantuml, and .platuml files. For the tagging criteria, we skipped
the types of diagrams that PlantUML supports that are not UML diagrams that we found in our dataset,
including archimate and c4 diagrams, gannt charts, mind maps, network diagrams, and wireframes. We
do tag files that are purely for styling as changes in the styling would still update their respective UML
diagram. Tagging these we use a different method than in the previous cases where we looked using
inclusive regexes. In the case of the .iuml, .puml, .plantuml and .platuml extensions, we did not find any
files that were not PlantUML files, so the following regex we use to tag them is an exclusive regex.

"@(startgantt|startmindmap|startsalt)|nwdiag|include.*c4|c4-plantuml"

D.9 .mdj

The .mdj extension is a json file used by the StarUML8 diagramming tool to store UML model data. We
searched for files to tag using the following regex.

"UMLModel"

D.10 .mdzip

The .mdzip extension is a zip file used by the MagicDraw9 diagramming tool which zips up the content of
an mdxml file. The mdxml file is actually an xml file supporting the xmi standard. To tag .mdzip files, we
unzip them and use the following regex to check if it is a valid magicdraw file.

"uml:Class"

D.11 .mmd

Mermaid10 is another diagramming tool similar to PlantUML that can be used to generate diagrams from
text. Rendering mermaid graphs is supported in many flavors of markdown, including GitHub, which
means mermaid diagrams in READMEs are directly rendered when viewing on GitHub. The extension
used for Mermaid files is .mmd. Mermaid supports 3 types of diagrams: sequence diagrams, class dia-
grams, and state machine diagrams. In mermaid, the type of diagram is specified before the rest of the
markdown. We search using the following regex to tag mermaid files (noting that zenuml and sequence-
Diagram are 2 different syntaxes for sequence diagrams in mermaid).

"sequenceDiagram|classDiagram|stateDiagram"

D.12 .prj

The .prj extension is a very generic extension and used in a variety of ways. Since we found this extension
in a folder with UML, and found that it was BOUML file, we searched for the characteristics found in

8http://staruml.io/
9https://www.nomagic.com/products/magicdraw

10https://mermaid.js.org/

http://staruml.io/
https://www.nomagic.com/products/magicdraw
https://mermaid.js.org/

102 Appendix D. UML Extension Tagging

BOUML project files. To tag .prj files, we found BOUML files have a comment at the top for the start of the
settings for the project. We use the following regex to tag using this settings comment.

"// class settings"

D.13 .pu

We found the .pu extension used for two different purposes. A bit more than half of the files were files used
as a scripting tool for 3D graphics. The rest were plantuml files. Given that, we use the same exclusive regex
mentioned in the .iuml section above, but we also add an explicit check for the @startuml tag.

D.14 .session

As you might expect, we found files with the .session extension are typically used for session information
for a variety of cases (gnome sessions, db sessions, etc.). The BOUML tool uses the .session extension as
another companion file to the .prj file, along with the .diagram extension mentioned earlier. To tag BOUML
.session files we use the following regex.

"(class|sequence)diagram"

D.15 .ucls

This was one of our UML specific tags, and is created and used by a tool called UML ObjectAid Explorer,
an eclipse plugin for creating UML diagrams. It is a diagram in XML format, and we were able to use the
below regex to tag it. This regex tagged all files in our dataset with the .ucls extension.

"<class-diagram"

D.16 .uml

We found the .uml extension was used by a variety of UML tools. The main 3 UML formats with the .uml
extension in the dataset are PlantUML, XMI, and XML. We first eliminated PlantUML files that were not
UML diagrams using the same exclusion regex mentioned in the .iuml, .puml, .plantuml, and .platuml
section above. After excluding any non UML PlantUML files, we then tagged the remaining .uml files as
UML diagrams using the following regex.

"uml:model\|uml:package\|uml:profile\|umlproject\|
schemas.microsoft.com/dsltools/UmlModelLibrary\|<Category>Methods</Category>\
|<Category>Fields</Category>\|<ID>java</ID>\
|skinparam\|participant\|type\s*=\s*[\"']umlclass\w*[\"']"

D.17 .umlclass and .umlprofile

The UML class files represented XML files implementing Eclipse UML 2 11. The UML profile files provide
style for the same UML class files. The following regex was used to tag these files.

"type\s*=\s*[\"'](umlclass|umlprofile)[\"']"
11https://projects.eclipse.org/projects/modeling.mdt.uml2

https://projects.eclipse.org/projects/modeling.mdt.uml2

D.18. .ump 103

D.18 .ump

The .ump extension is mainly used by the Umple model-based programming language.12 We also found it
as an extension used for storing video game maps. We did not find any distinguishable characteristics, but
we found only 2 projects with the .ump extension. One was the Umple project itself, and the other was a
video game project. We tagged all files with the .ump extension as UML diagrams.

D.19 .uxf

The .uxf extension is used by the UMLet13 tool which can be used as a standalone tool, an eclipse plugin or
a vscode plugin to model UML diagrams. The diagram data is stored in xml format. The following regex
was used to tag these files.

"program="umlet"\|program="umletino"\|umlet_diagram"

D.20 .vpp

The .vpp extension is used by the Visual Paradigm14 tool which is used for enterprise architecture model-
ing, including many features beyond just UML diagramming. We found this extension in two main for-
mats, ZIP and SQLLite. For zip we unzipped the folder and used the following regex to see if it contained
any of the supported UML diagram types.

"ClassDiagram|ComponentDiagram|InteractionDiagram|UseCaseDiagram"

For SQLite, we ran the following query, and applied the regex above to the results.

sqlite3 $file "SELECT * FROM DIAGRAM"

D.21 .xmi

XMI is a standard for exchanging model data between tools. It is not specific to UML diagrams, but is often
used for this case. To find the XMI files that were UML related, we looked for the UML standard reference
in the XMI header, looked for a reference to a uml tag, or looked to see if the metamodel being described
had the name UML. We used the following regex to tag these files.

"org\.omg\/standards\/uml|schema.omg.org/spec/uml|
<uml:(model|class|attribute|namespace|interface|method)|
<xmi\.metamodel.*name\s*=\s*['\"]UML['\"]"

D.22 .yuml

We did not find any discernible characteristics for the .yuml extension. There are only 10 files in our dataset
with the .yuml extension, so we tagged them manually.

12https://www.umple.org/
13https://www.umlet.com/
14https://www.visual-paradigm.com/

https://www.umple.org/
https://www.umlet.com/
https://www.visual-paradigm.com/

104 Appendix D. UML Extension Tagging

D.23 .zuml

The .zuml extension is is used for zipped UML project files. Each zip contained a .project file, and an .xmi
file written out from Netbeans XMI writer15. We used the following regex on the unzipped .xmi file.

"UML:GraphNode"

15

105

Appendix E

Queries

E.1 Extension Exploration

Find all file extensions that contain string

SELECT extension, COUNT(*) AS extension_count
FROM file_extensions
WHERE extension ILIKE '%<string>h%'
GROUP BY extension
HAVING COUNT(*) > 1;

Output: A list of all file extensions that contain the specified string and the number of repositories that
contain each extension.

Find all file extensions found in /uml/ paths

Notes: This is a fairly long running command and takes about 20 minutes to run on the server we are
using. It is still much faster than trying to grep for the same data.

SELECT LOWER(SUBSTRING(path FROM '\.([^.]+)$')) AS extension,
COUNT(DISTINCT repo_id) AS repo_count
FROM file_paths WHERE path ILIKE '%/uml/%'
GROUP BY LOWER(SUBSTRING(path FROM '\.([^.]+)$'))
HAVING COUNT(DISTINCT repo_id) > 1;

Output: A list of all file extensions found in /uml/ paths and the number of repositories that contain files
with that extension.

Find all repositories where extension exists

SELECT r.name, LOWER(fe.extension)
FROM repositories AS r
JOIN file_extensions AS fe
ON r.id = fe.repo_id
WHERE LOWER(fe.extension)
IN ('.<ext>')

Output: A list of repositories that the extension exists in.

106 Appendix E. Queries

Find all commits and files where extension exists for given repository

SELECT fp.path, fp.commit_hash FROM file_paths AS fp
JOIN repositories AS r ON r.id = fp.repo_id
WHERE r.name = '<repo_name>' AND fp.path ILIKE '%.<extension_name>';

Output: A list of file paths and commit hashes for files with given extension.

Find all commits and files in uml paths for given extension

SELECT r.name, fp.path FROM repositories AS r
JOIN file_paths AS fp
ON fp.repo_id = r.id
WHERE fp.path ILIKE '%/uml%/%.<ext>';

Output: A list of file paths and commit hashes for files with given extension.

E.2 Commit Exploration

Retrieve commit extension statistics

SELECT r.name AS repo_name, c.commit_hash, ces.name, ces.category, ces.count
FROM commits c
JOIN commit_extension_stats ces ON c.id = ces.commit_id
JOIN repositories r ON c.repo_id = r.id
WHERE r.name = '<repo_name>' and c.commit_hash = '<commit_hash>';

Output: A list of extensions, their categories, and number of files touched in commit.

107

Appendix F

Author Anti-Aliasing Algorithm Details

F.1 Names match

Algorithm 1: names_match(author_a, author_b)
Data: author_a, author_b
Result: Whether names match

/* Check author has a name, and is not unknown, anonymous, anon, none */
1 if not has_valid_name(author_a) or not has_valid_name(author_b) then
2 return False;
3 end

4 name_a, name_b← split(author_a, author_b); // Split into first and last name
/* remove punctuation, accents, and emojis. all lower case, convert to utf-8 */

5 name_a, name_b← normalize(name_a, name_b);

/* Check if names match, or if names match but first and last names are swapped */
6 if name_a.last is not None and name_b.last is not None then
7 if (name_a.first == name_b.first and name_a.last == name_b.last)
8 or (name_a.first == name_b.last and name_a.last == name_b.first) then
9 return True;

10 end
11 end

/* Repeat next check swapping name_a and name_b */
12 if name_a.last is not None and name_b.last is None then
13 if is_squished_name(name_a, name_b.first) or is_user_name(name_a, name_b) then
14 return True
15 end
16 end

/* If neither has last name, check for first name match, eliminating short names */
17 if name_a.last is None and name_b.last is None and len(name_a.first) > 6 and len(name_b.first) > 6 then
18 if name_a.first == name_b.first then
19 return True;
20 end
21 end
22 return False;

108 Appendix F. Author Anti-Aliasing Algorithm Details

F.2 Emails match

Algorithm 2: emails_match(author_a, author_b)
Data: author_a, author_b
Result: Whether emails match

1 if not has_valid_email(author_a) or not has_valid_email(author_b) then
2 return False;
3 end

4 if author_a.email == author_b.email then
5 return True;
6 end

7 username_a← extract_username(author_a);
8 username_b← extract_username(author_b);
9 if len(username_a) > 4 and len(username_b) > 4 and username_b == username_a then

10 return True;
11 end
12 return False;

F.3 Name matches email

Algorithm 3: name_matches_email(author_a, author_b)
Data: author_a, author_b
Result: Whether name matches email

1 name_a← split(author_a); // Split into first and last name
2 name_a← normalize(author_a); // remove punctuation, accents, etc.
3 email_b← normalize(author_b); // remove punctuation, accents, etc.

4 if name.first in email and name.last in email then
5 return True;
6 end

7 potential_users← ["{name.first[0]}{name.last}", "{name.last[0]}{name.first}"];
8 if any(username in email for username in potential_usernames) then
9 return True;

10 end

11 return False;

109

Appendix G

List of UML Repositories

Repository UML Extension List

0xd34df00d/leechcraft {.yuml}
1024pix/pix {.puml}
18f/tock {.puml}
389ds/389-ds-base {.dia}
4minitz/4minitz {.puml}
accord-net/framework {.uml}
activiti/activiti {.umlclass, .uml}
adorsys/open-banking-gateway {.puml}
adorsys/xs2a {.puml}
aelfproject/aelf {.puml}
agoric/agoric-sdk {.puml}
aidenlab/juicebox {.uml}
akeneo/pim-community-dev {.gliffy}
alexo/wro4j {.zargo, .vpp}
alphagov/whitehall {.puml}
alsa-project/alsa-lib {.puml}
altinity/clickhouse-operator {.xmi}
andbible/and-bible {.puml}
angular/angular {.puml}
anotheria/moskito {.uml}
aosp-mirror/platform_system_core {.dia}
apache/apex-core {.uml}
apache/arrow {.mmd}
apache/atlas {.uml}
apache/attic-apex-core {.uml}
apache/attic-apex-malhar {.uml, .zargo}
apache/camel {.ecore}
apache/camel-spring-boot {.ecore}
apache/celix {.pu, .puml}
apache/cloudstack {.ucls}
apache/commons-math {.pgml, .xmi, .puml, .argo}
apache/fineract {.puml}

110 Appendix G. List of UML Repositories

apache/gobblin {.ucls}
apache/incubator-gobblin {.ucls}
apache/incubator-streampipes {.ucls}
apache/isis {.ucls, .uxf, .puml, .dia}
apache/jackrabbit {.uxf}
apache/jackrabbit-oak {.uml, .uxf, .puml}
apache/james-project {.uml}
apache/lucene {.uml, .uxf, .puml}
apache/lucene-solr {.uml, .uxf, .puml}
apache/netbeans {.pgml, .zargo, .dia, .argo, .xmi}
apache/openoffice {.zuml, .xmi}
apache/poi {.pgml, .zargo, .xmi, .argo}
apache/solr {.uml, .uxf, .puml}
apache/syncope {.plantuml}
apache/trafficserver {.plantuml, .uml}
apache/velocity-engine {.pgml, .xmi, .argo}
arangodb/arangodb {.zargo}
arcemu/arcemu {.uml}
arm-software/arm-trusted-firmware {.puml, .dia}
armmbed/mbed-os {.uxf}
asynkron/protoactor-go {.puml}
atk4/atk4 {.xmi}
audiveris/audiveris {.uxf}
aurelia/aurelia {.mmd}
automattic/simplenote-android {.umlclass, .uml}
automattic/wp-calypso {.puml}
autotest/autotest {.xmi}
aws/amazon-freertos {.pu}
aws/eks-anywhere {.plantuml, .uml, .puml}
awslabs/djl {.puml}
azure/azure-iot-sdk-csharp {.puml}
azure/iotedge {.plantuml}
b2ihealthcare/snow-owl {.ecore}
ballerina-platform/ballerina-lang {.plantuml}
bareos/bareos {.plantuml, .xmi, .puml}
bentoboxworld/bentobox {.puml}
betonquest/betonquest {.puml}
betterthantomorrow/calva {.plantuml}
bh107/bohrium {.dia}
biolink/biolink-model {.yuml}
bmwcarit/joynr {.uxf, .puml}
bndtools/bnd {.ecore}
bonigarcia/webdrivermanager {.ucls}
boost-ext/di {.uml}
bpmn-io/bpmn-js {.cmof}

Appendix G. List of UML Repositories 111

brightid/brightid {.mmd}
broadleafcommerce/broadleafcommerce {.umlclass, .uml}
btccom/btcpool-abandoned {.mdj}
build-trust/ockam {.mmd, .puml}
bundy-dns/bundy {.dia}
burtonator/polar-bookshelf {.puml}
c3nav/c3nav {.puml}
caliopen/caliopen {.uml, .puml}
camunda/camunda-bpm-platform {.umlclass, .uml}
carrot2/carrot2 {.zargo}
catmaid/catmaid {.dia}
cdapio/cdap {.ucls}
cdk/cdk {.pgml, .xmi, .argo}
cellularprivacy/android-imsi-catcher-detector {.uml}
cgal/cgal {.mdj}
chainsql/chainsqld {.uml, .pu, .puml}
chamilo/chamilo-lms {.dia}
chef/automate {.iuml, .puml}
chef/chef-workstation {.puml}
cloudsimplus/cloudsimplus {.mdj}
clougence/hasor {.ucls}
clrfund/monorepo {.mmd}
cocoalumberjack/cocoalumberjack {.mdj}
code-dot-org/code-dot-org {.puml}
comit-network/comit-rs {.puml}
comit-network/xmr-btc-swap {.puml}
common-workflow-language/cwltool {.dia}
conda/conda {.puml}
consulo/consulo {.uml}
contiv/vpp {.puml}
controlsystemstudio/cs-studio {.umlclass, .ucls, .zargo, .uml}
coreboot/coreboot {.plantuml}
coreemu/core {.plantuml}
corfudb/corfudb {.puml}
cosmicpython/book {.puml}
cosmos/cosmos-sdk {.puml}
counterfactual/monorepo {.mmd}
cpc/openasip {.xmi, .dia}
cqframework/clinical_quality_language {.xmi}
cs-si/orekit {.uml, .puml}
cyberbotics/webots {.dia}
d-ronin/dronin {.dia}
dayatang/dddlib {.uml}
dcs4cop/xcube {.puml}
de-labtory/it-chain {.mdj}

112 Appendix G. List of UML Repositories

deegree/deegree3 {.yuml}
deepjavalibrary/djl {.puml}
deeppavlov/deeppavlov {.uml}
demoiselle/framework {.ucls}
dgtal-team/dgtal {.dia}
diracgrid/dirac {.uml}
distributedcollective/sovryn-smart-contracts {.puml}
dlsc-software-consulting-gmbh/workbenchfx {.asta}
docgroup/ace_tao {.uml}
doctrine/annotations {.xmi, .dia}
doctrine/common {.xmi, .dia}
doctrine/dbal {.xmi}
doctrine/orm {.xmi}
dolibarr/dolibarr {.uml, .dia}
duniter/duniter {.pu}
eclipse-archived/smarthome {.ucls}
eclipse-cdt/cdt {.ecore}
eclipse-iceoryx/iceoryx {.puml}
eclipse/birt {.ecore}
eclipse/buildship {.ecore}
eclipse/capella {.ecore}
eclipse/gef {.ucls, .uml, .ecore}
eclipse/jetty.project {.puml}
eclipse/org.aspectj {.zargo}
eclipse/sumo {.zuml, .prj, .diagram, .uxf}
eclipse/vorto {.ecore}
eclipse/xacc {.plantuml, .uml}
eclipse/xtext-core {.ecore}
edgetx/edgetx {.dia}
edmcouncil/fibo {.mdzip}
egroupware/egroupware {.zargo}
ehcache/ehcache3 {.puml}
ehsan/ogre {.prj, .session, .diagram}
elastic/cloud-on-k8s {.puml}
elastic/rally {.puml}
elektrainitiative/libelektra {.mmd, .xmi}
embox/embox {.ecore}
enalean/tuleap {.zargo}
enmasseproject/enmasse {.puml}
enthought/mayavi {.xmi}
eprosima/fast-dds {.plantuml}
erlang/erlide_eclipse {.uxf}
estatio/estatio {.ucls, .uml}
eugenp/tutorials {.puml}
exelearning/iteexe {.xmi}

Appendix G. List of UML Repositories 113

ezsystems/ezpublish-legacy {.xmi}
f4exb/sdrangel {.mdj}
featureide/featureide {.zargo, .ecore}
fedict/eid-mw {.uml, .puml}
fenics/dolfinx {.dia}
finmath/finmath-lib {.ucls}
finos/waltz {.puml}
firewalld/firewalld {.dia}
flowable/flowable-engine {.umlclass, .uml}
flutter/packages {.puml}
fonttools/fonttools {.puml}
forgeessentials/forgeessentials {.uxf}
freecad/freecad {.uml}
freeseer/freeseer {.dia}
freesurfer/freesurfer {.xmi}
freeyourgadget/gadgetbridge {.xmi}
friendupcloud/friendup {.dia}
galoymoney/galoy {.iuml}
gama-platform/gama {.uml, .ecore}
gamefoundry/bsf {.uml}
gaphor/gaphor {.xmi}
garux/netradiant-custom {.pgml, .zargo, .xmi, .argo}
geonetwork/core-geonetwork {.uml}
geosx/geos {.mmd, .plantuml}
geotools/geotools {.ucls, .ecore}
github/linguist {.mmd, .iuml, .puml}
gluufederation/oxauth {.vpp}
gnome/pygobject {.dia}
godlikepanos/anki-3d-engine {.xmi}
googlefonts/glyphslib {.uml}
googleforgames/agones {.puml}
gradle/gradle {.puml}
gradle/kotlin-dsl-samples {.puml}
grafana/loki {.plantuml}
guardianproject/chatsecureandroid {.ucls}
gunet/openeclass {.plantuml}
h2oai/h2o-2 {.uml}
habitat-sh/habitat {.iuml}
halestudio/hale {.uml, .xmi}
halo-dev/halo {.puml}
hapifhir/hapi-fhir {.puml}
hashicorp/consul {.mmd}
hawkular/hawkular-metrics {.uml}
hdfgroup/hdf5 {.plantuml}
helidon-io/helidon {.uml}

114 Appendix G. List of UML Repositories

heremaps/gluecodium {.dia}
hibernate/hibernate-orm {.zargo}
hibernate/hibernate-search {.dia}
highperformancecoder/minsky {.xmi}
hipparchus-math/hipparchus {.pgml, .xmi, .puml, .argo}
hpi-information-systems/metanome {.ucls, .uml}
htmlunit/htmlunit {.uxf}
hurence/logisland {.plantuml, .mdj}
hyperledger-archives/composer {.uml}
hyperledger-labs/blockchain-carbon-accounting {.puml}
hyperledger/aries-cloudagent-python {.uml, .puml}
hyperledger/aries-rfcs {.puml}
hyperledger/cacti {.puml}
hyperledger/indy-node {.puml}
hyperledger/indy-plenum {.puml}
hyperledger/indy-sdk {.puml}
hzi-braunschweig/sormas-project {.ucls}
ibinti/bugvm {.uml}
idempiere/idempiere {.ecore}
igvteam/igv {.uml}
iluwatar/java-design-patterns {.ucls, .puml}
imglib/imglib2 {.dia}
inception-project/inception {.ucls}
indeedeng/proctor {.puml}
infinitimeorg/infinitime {.puml}
input-output-hk/daedalus {.uml}
insolar/insolar {.uml}
instructure/canvas-lms {.plantuml}
intermine/intermine {.zargo, .xmi}
internetarchive/heritrix3 {.zargo}
inveniosoftware/invenio {.plantuml}
iotaledger/wasp {.mdzip, .uxf, .puml}
iqss/dataverse {.uml, .puml}
isc-projects/kea {.uml, .dia}
ivmartel/dwv {.puml}
jabref/jabref {.uml}
jamesagnew/hapi-fhir {.puml}
java110/microcommunity {.puml}
javalite/javalite {.uxf}
javaparser/javaparser {.puml}
jenetics/jenetics {.uml, .xmi}
jenkinsci/warnings-ng-plugin {.puml}
jetbrains/intellij-sdk-docs {.puml}
jgcri/gcam-core {.zuml, .zargo, .xmi}
jiangwenyuan/nuster {.dia}

Appendix G. List of UML Repositories 115

jmetal/jmetal {.ucls}
jmri/jmri {.puml}
jplag/jplag {.ecore}
jsettlers/settlers-remake {.mdzip, .zargo}
jumpmind/symmetric-ds {.dia}
kaltura/mwembed {.puml}
kbengine/kbengine {.dia}
kde/amarok {.xmi}
kde/calligra {.xmi}
kde/kdevelop {.xmi}
kde/krita {.xmi}
kde/marble {.uml, .xmi}
kedro-org/kedro {.puml}
kerbalism/kerbalism {.plantuml}
kermitt2/grobid {.zargo}
khronosgroup/gltf-blender-io {.uxf}
kiegroup/jbpm {.uml, .ecore}
kiegroup/jbpm-designer {.uml}
kiegroup/kie-tools {.ecore}
kiegroup/kogito-runtimes {.uml, .dia, .ecore}
kiegroup/optaplanner {.asta, .dia}
knowagelabs/knowage-server {.ecore}
koding/koding {.uml}
kratosmultiphysics/kratos {.yuml}
kubernetes-sigs/cluster-api {.plantuml, .platuml, .puml}
kubernetes-sigs/cluster-api-provider-aws {.plantuml, .platuml}
kubernetes-sigs/cluster-api-provider-azure {.plantuml}
kubernetes/enhancements {.puml}
kubernetes/test-infra {.mmd}
kubevirt/kubevirt {.plantuml}
kulshekhar/ts-jest {.puml}
lf-lang/lingua-franca {.ecore}
librepilot/librepilot {.dia}
libreplan/libreplan {.xmi}
libretime/libretime {.zuml}
liferay/liferay-docs {.xmi}
ligato/vpp-agent {.puml}
linutronix/elbe {.dia}
locationtech/udig-platform {.ucls, .ecore}
logisim-evolution/logisim-evolution {.ecore}
ls1intum/artemis {.puml}
manoelcampos/cloudsim-plus {.mdj}
manoelcampos/cloudsimplus {.mdj}
mantidproject/mantid {.uxf, .puml}
maplibre/maplibre-gl-js {.plantuml}

116 Appendix G. List of UML Repositories

mathics3/mathics-core {.dia}
matsim-org/matsim-libs {.ucls}
mbeddr/mbeddr.core {.puml, .ecore}
mercedes-benz/sechub {.plantuml, .puml}
mermaid-js/mermaid {.mmd}
microsoft/appcenter-sdk-dotnet {.uml}
microsoft/mwt-ds {.uml}
microsoft/vscode-dev-containers {.plantuml}
mimblewimble/grin {.puml}
minvws/nl-covid19-notification-app-ios {.mdj}
mitk/mitk {.xmi}
mixcore/mix.core {.mmd}
mlreef/mlreef {.uml, .puml}
mne-tools/mne-cpp {.mdj}
modeshape/modeshape {.ecore}
mongodb/mongo-java-driver {.uml}
mozilla/fx-private-relay {.mmd}
mudita/muditaos {.uml, .mdj, .puml, .pu}
mulesoft/mule {.ecore}
mullvad/mullvadvpn-app {.puml}
mupen64plus-ae/mupen64plus-ae {.ucls}
myrobotlab/myrobotlab {.ucls, .uml}
named-data/ndn-cxx {.vpp}
nasa/europa {.dia}
nasa/fprime {.mdzip, .puml}
near/nearcore {.puml}
neo4j/neo4j {.ucls}
neorazorx/facturascripts {.mdj}
nest/nest-simulator {.uxf}
netdata/netdata {.puml}
netflix/genie {.ucls}
netty/netty {.uml}
neuralensemble/python-neo {.dia}
nextcloud/deck {.yuml}
nfs-ganesha/nfs-ganesha {.dia}
nhibernate/nhibernate-core {.zargo}
nightingale-media-player/nightingale-hacking {.uml}
nihlus/remora.discord {.puml}
nitorcreations/nflow {.plantuml}
noear/solon {.puml}
noobaa/noobaa-core {.puml}
nosqlbench/nosqlbench {.puml}
nrel/energyplus {.plantuml}
nrfconnect/sdk-nrf {.uml}
nuitka/nuitka {.plantuml}

Appendix G. List of UML Repositories 117

nuxeo/nuxeo {.puml}
objectcomputing/opendds {.asta, .ecore, .uml, .umlprofile, .dia, .xmi}
ockam-network/ockam {.mmd, .puml}
odamex/odamex {.asta}
odoo/documentation {.dia}
odpi/egeria {.puml}
ofs/opae-sdk {.mmd}
ogrecave/ogre {.puml, .prj, .session, .diagram}
ogrecave/ogre-next {.prj, .session, .diagram}
omegat-org/omegat {.vpp}
omnetpp/omnetpp {.ecore}
onebusaway/onebusaway-iphone {.mdj}
onlyliuxin/coding2017 {.gliffy}
ontop/ontop {.ucls}
opae/opae-sdk {.mmd}
openapitools/openapi-generator {.plantuml}
openconnect/ocserv {.dia}
opendatacube/datacube-core {.plantuml, .puml}
opendds/opendds {.asta, .ecore, .uml, .umlprofile, .dia, .xmi}
openems/openems {.mmd}
openhab/openhab-addons {.mdj}
openhab/openhab1-addons {.ecore}
openl-tablets/openl-tablets {.pgml, .zargo, .ecore, .argo, .xmi}
openmdao/openmdao-framework {.dia}
opennebula/one {.xmi}
openolat/openolat {.uml, .zargo}
openrocket/openrocket {.umlclass, .uml, .uxf}
opensearch-project/opensearch-dashboards {.puml}
openshift/enhancements {.plantuml}
opensourcebim/bimserver {.umlclass, .uml, .ecore}
openssl/openssl {.plantuml}
openstack/tacker {.pu}
opensuse/libzypp {.zargo, .dia}
openthread/openthread {.uml}
opentripplanner/opentripplanner {.uxf}
openturns/openturns {.xmi}
opm/resinsight {.plantuml}
oracle/helidon {.uml}
orangehrm/orangehrm {.xmi}
oroinc/platform {.gliffy}
os-guild/tweek {.puml}
osgeo/grass {.dia}
osgeo/proj {.xmi}
osm-search/nominatim {.plantuml}
otsaloma/gaupol {.dia}

118 Appendix G. List of UML Repositories

owncast/owncast {.plantuml}
owtf/owtf {.plantuml}
pagopa/io-app {.puml}
pbiggar/phc {.zargo}
pcsx2/pcsx2 {.puml}
pdal/pdal {.uml}
pdepend/pdepend {.zargo}
pentaho/mondrian {.zargo}
pentaho/pentaho-kettle {.uxf}
photoprism/photoprism {.mmd}
phpdocumentor/phpdocumentor {.puml}
pietermartin/sqlg {.uml}
pimcore/pimcore {.uml}
pingcap/tiflow {.puml}
pixelated/pixelated-user-agent {.puml}
pjsip/pjproject {.dia}
powershell/powershell {.puml}
pretix/pretix {.puml}
progit/progit {.dia}
programmevitam/vitam {.dia}
projectcontour/contour {.uml}
provenance-emu/provenance {.mdj}
publicmapping/districtbuilder-classic {.dia}
pulumi/pulumi {.uml}
puppetlabs/puppet {.ecore}
pycqa/pylint {.mmd, .puml}
pyglet/pyglet {.dia}
pythonarcade/arcade {.puml}
pytorch/serve {.puml}
qcodes/qcodes {.puml}
qgis/qgis {.xmi}
qmcpack/qmcpack {.xmi}
qos-ch/logback {.uml}
ranger/ranger {.prj, .session, .diagram}
rbfx/rbfx {.dia}
rdflib/rdflib {.plantuml}
rdkmaster/jigsaw {.eddx}
realm/realm-dotnet {.uml}
remkop/picocli {.uxf}
remora/remora.discord {.puml}
restcomm/restcomm-connect {.puml, .dia}
restcomm/sip-servlets {.plantuml, .uml}
restlet/restlet-framework-java {.uml, .ecore}
revive-adserver/revive-adserver {.zuml, .xmi}
rexray/rexray {.puml}

Appendix G. List of UML Repositories 119

riot-os/riot {.puml}
ripple/rippled {.uml, .pu, .puml}
ripple/xrpl-dev-portal {.uxf}
rolisteam/rolisteam {.puml}
ros-planning/moveit {.uxf}
ros-planning/moveit2 {.uxf}
ros-planning/navigation2 {.pu}
rose-compiler/rose {.zargo}
rpm-software-management/libdnf {.uxf}
rptools/maptool {.puml}
rstudio/rstudio {.puml}
samsung/gearvrf {.puml}
sap/cloud-security-xsuaa-integration {.puml}
sarl/sarl {.asta, .ecore}
savoirfairelinux/jami-client-android {.dia}
savoirfairelinux/jami-daemon {.xmi, .dia}
savoirfairelinux/ring-client-android {.dia}
savoirfairelinux/ring-daemon {.xmi}
scada-lts/scada-lts {.puml}
sdwebimage/sdwebimage {.mdj}
seccubus/seccubus {.uml}
securecodebox/securecodebox {.uxf, .puml}
segs/segs {.vpp}
servicetitan/stl.fusion {.mmd}
sfttech/openage {.uxf}
sgothel/jogl {.prj, .session, .diagram}
shopware/platform {.puml}
siconos/siconos {.xmi}
simgrid/simgrid {.uml, .zargo}
simpletest/simpletest {.dia}
skycoin/skycoin {.puml}
slicer/slicer {.xmi}
slicer/slicergitsvnarchive {.vpp, .xmi}
smallrye/smallrye-mutiny {.puml}
snyk/driftctl {.puml}
sofa-framework/sofa {.prj, .session, .diagram}
soluto/tweek {.puml}
sourcefabric/airtime {.zuml}
sourcefabric/newscoop {.xmi, .dia}
sphinx-doc/sphinx {.puml}
starviewer-medical/starviewer {.xmi}
storj/storj {.plantuml}
supertux/supertux {.dia}
symfony/symfony {.puml}
syndesisio/syndesis {.plantuml}

120 Appendix G. List of UML Repositories

talend/tdi-studio-se {.ecore}
talend/ui {.puml}
teammates/teammates {.puml}
testingisdocumenting/znai {.mmd, .plantuml}
theforeman/foreman {.mmd}
thesandboxgame/sandbox-smart-contracts {.mmd, .puml}
thirdweb-dev/typescript-sdk {.mdj}
thsmi/sieve {.dia}
thymeleaf/thymeleaf {.zargo}
tng/archunit {.puml}
tony19/logback-android {.uml}
tribe29/checkmk {.uml, .iuml, .puml}
triplea-game/triplea {.puml}
twisted/twisted {.dia}
ufoai/ufoai {.zargo}
ultimaker/uranium {.xmi}
ultimate-pa/ultimate {.ucls}
ultrastar-deluxe/play {.plantuml}
umlet/umlet {.uxf}
umple/umple {.ucls, .ump, .uxf, .ecore, .uml, .xmi}
ungleich/cdist {.dia}
unidata/netcdf-java {.mdzip}
uninett/nav {.dia}
uportal-project/uportal {.mmd}
urho3d/urho3d {.dia}
usethesource/rascal {.zargo}
ushahidi/platform {.uml}
uwescience/myria {.uml}
uyuni-project/uyuni {.dia}
valora-inc/wallet {.plantuml}
vcmi/vcmi {.prj, .diagram}
vectordotdev/vector {.pu}
vendure-ecommerce/vendure {.puml}
veracruz-project/veracruz {.puml}
videojs/http-streaming {.plantuml, .puml}
viking-gps/viking {.dia}
vnpy/vnpy {.puml}
vocadb/vocadb {.dia}
volttron/volttron {.puml}
vprover/vampire {.xmi}
vsrinivas/fuchsia {.dia}
w3f/polkadot-spec {.puml}
wala/wala {.ecore}
wargus/stratagus {.xmi}
wazuh/wazuh {.plantuml, .puml}

Appendix G. List of UML Repositories 121

webanno/webanno {.ucls}
werf/werf {.puml}
wesnoth/wesnoth {.xmi, .ecore}
wicketstuff/core {.uml}
wikieducationfoundation/wikiedudashboard {.zargo}
wix/detox {.mmd, .uml}
worldbrain/memex {.puml}
wro4j/wro4j {.zargo, .vpp}
wurstscript/wurstscript {.ecore}
wwbn/avideo {.plantuml}
xfce-mirror/thunar {.xmi}
xrplf/rippled {.uml, .pu, .puml}
xrplf/xrpl-dev-portal {.uxf}
yakindu/statecharts {.umlclass, .uml, .ecore}
yamcs/yamcs {.dia}
yubico/java-webauthn-server {.plantuml}
yuliskov/smarttubelegacy {.uml}
yuliskov/smartyoutubetv {.uml}
zanata/zanata-platform {.zuml}
zetaops/ulakbus {.puml}
zim-desktop-wiki/zim-desktop-wiki {.puml}
zom/zom-android-xmpp {.ucls}
zycgit/hasor {.ucls}

TABLE G.1: List of 550 UML repositories used in the evaluation.

123

Bibliography

[1] A. Agrawal, A. Rahman, R. Krishna, A. Sobran, and T. Menzies. We don’t need another hero? the im-
pact of "heroes" on software development. In Proceedings of the 40th International Conference on Software
Engineering: Software Engineering in Practice, ICSE-SEIP ’18, page 245–253, New York, NY, USA, 2018.
Association for Computing Machinery.

[2] A. Aimar. Introduction to software documentation. Technical report, CERN, 1998.

[3] S. S. Alhir. UML in a nutshell: a desktop quick reference. " O’Reilly Media, Inc.", 1998.

[4] N. Ali, S. Baker, R. O’Crowley, S. Herold, and J. Buckley. Architecture consistency: State of the practice,
challenges and requirements. Empirical Software Engineering, 23(1):224–258, 2018.

[5] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. Recovering traceability links between
code and documentation. IEEE Transactions on Software Engineering, 28(10):970–983, 2002.

[6] E. Arisholm, L. C. Briand, S. E. Hove, and Y. Labiche. The impact of UML documentation on software
maintenance: An experimental evaluation. IEEE Transactions on Software Engineering, 32(6):365–381,
2006.

[7] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor. Software traceability with topic modeling. In
Proceedings of the 32nd International Conference on Software Engineering, volume 1, pages 95–104. IEEE,
2010.

[8] A. Baabad, H. B. Zulzalil, S. Hassan, and S. B. Baharom. Characterizing the architectural erosion
metrics: A systematic mapping study. IEEE Access, 10:22915–22940, 2022.

[9] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan. Mining email social networks. In
Proceedings of the 2006 International Workshop on Mining Software Repositories, MSR ’06, page 137–143,
New York, NY, USA, 2006. Association for Computing Machinery.

[10] G. Booch. Object-Oriented Analysis and Design with Applications (2nd Ed.). Benjamin-Cummings Pub-
lishing Co., Inc., USA, 1993.

[11] L. F. Capretz. A brief history of the object-oriented approach. SIGSOFT Softw. Eng. Notes, 28(2):6, mar
2003.

[12] F. Chen, L. Zhang, X. Lian, and N. Niu. Automatically recognizing the semantic elements from UML
class diagram images. Journal of Systems and Software, 193:111431, 2022.

[13] J. Cleland-Huang, O. C. Z. Gotel, J. Huffman Hayes, P. Mäder, and A. Zisman. Software traceability:
Trends and future directions. In Proceedings of the Future of Software Engineering, page 55–69. Associa-
tion for Computing Machinery, 2014.

[14] O. Dabic, E. Aghajani, and G. Bavota. Sampling projects in github for MSR studies. In Proceedings of
the International Conference on Mining Software Repositories, MSR 2021, pages 560–564. IEEE, 2021.

124 BIBLIOGRAPHY

[15] S. Ducasse and D. Pollet. Software architecture reconstruction: A process-oriented taxonomy. IEEE
Transactions on Software Engineering, 35(4):573–591, 2009.

[16] W. J. Dzidek, E. Arisholm, and L. C. Briand. A realistic empirical evaluation of the costs and benefits
of UML in software maintenance. IEEE Transactions on Software Engineering, 34(3):407–432, 2008.

[17] A. M. Fernández-Sáez, D. Caivano, M. Genero, and M. R. Chaudron. On the use of UML documenta-
tion in software maintenance: Results from a survey in industry. In Proceedings of the 18th International
Conference on Model Driven Engineering Languages and Systems (MODELS), pages 292–301. IEEE, 2015.

[18] M. Fowler, J. Highsmith, et al. The agile manifesto. Software development, 9(8):28–35, 2001.

[19] M. Goeminne and T. Mens. A comparison of identity merge algorithms for software repositories. Sci-
ence of Computer Programming, 78(8):971–986, 2013. Special section on software evolution, adaptability,
and maintenance & Special section on the Brazilian Symposium on Programming Languages.

[20] C. Gravino, G. Scanniello, and G. Tortora. Source-code comprehension tasks supported by UML
design models: Results from a controlled experiment and a differentiated replication. Journal of Visual
Languages and Computing, 28:23–38, 2015.

[21] I. Hadar and O. Hazzan. On the contribution of UML diagrams to software system comprehension.
Journal of Object Technology, 3(1):143–156, 2004.

[22] P. Hruby. Specification of workflow management systems with uml. In Proceedings of the OOPSLA
Workshop on Implementation and Application of Object-oriented Workflow Management Systems, volume 2,
1998.

[23] I. Jacobson. Object-oriented software engineering: a use case driven approach. Pearson Education India,
1993.

[24] R. Jolak, M. Savary-Leblanc, M. Dalibor, J. Vincur, R. Hebig, X. L. Pallec, M. Chaudron, S. Gérard,
I. Polasek, and A. Wortmann. The influence of software design representation on the design commu-
nication of teams with diverse personalities. In Proceedings of the 25th International Conference on Model
Driven Engineering Languages and Systems, pages 255–265, 2022.

[25] A. Kalnins and V. Vitolins. Use of UML and model transformations for workflow process definitions.
arXiv preprint cs/0607044, 2006.

[26] B. Karasneh and M. R. Chaudron. Img2uml: A system for extracting UML models from images. In
Proceedings of the 39th Euromicro Conference on Software Engineering and Advanced Applications, pages
134–137, 2013.

[27] N. J. Kipyegen and W. P. K. Korir. Importance of software documentation. International Journal of
Computer Science Issues (IJCSI), 10(5):223–228, 09 2013.

[28] H. Koç, A. M. Erdoğan, Y. Barjakly, and S. Peker. UML diagrams in software engineering research:
a systematic literature review. In Proceedings of the 7th International Managment Information Systems
Conference, volume 74, page 13. MDPI, 2021.

[29] E. Kouters, B. Vasilescu, A. Serebrenik, and M. G. Van Den Brand. Who’s who in gnome: Using lsa to
merge software repository identities. In Proceedings of the 28th IEEE International Conference on Software
Maintenance (ICSM), pages 592–595. IEEE, 2012.

[30] H. Krasner. The cost of poor software quality in the us. Consortium for Information and Software Quality,
2020.

BIBLIOGRAPHY 125

[31] T. C. Lethbridge, J. Singer, and A. Forward. How software engineers use documentation: The state of
the practice. IEEE software, 20(6):35–39, 2003.

[32] R. Li, P. Liang, M. Soliman, and P. Avgeriou. Understanding architecture erosion: The practitioners’
perceptive. In Proceedings of the IEEE/ACM 29th International Conference on Program Comprehension
(ICPC), pages 311–322, 2021.

[33] J. Lin, Y. Liu, Q. Zeng, M. Jiang, and J. Cleland-Huang. Traceability transformed: Generating more ac-
curate links with pre-trained bert models. In Proceedings of the 43rd International Conference on Software
Engineering (ICSE), pages 324–335. IEEE, 2021.

[34] A. Mahmoud, N. Niu, and S. Xu. A semantic relatedness approach for traceability link recovery. In
Proceedings of the 20th IEEE International Conference on Program Comprehension (ICPC), pages 183–192,
2012.

[35] T. G. Moreira, M. A. Wehrmeister, C. E. Pereira, J.-F. Petin, and E. Levrat. Automatic code genera-
tion for embedded systems: From UML specifications to vhdl code. In Proceedings of the 8th IEEE
International Conference on Industrial Informatics, pages 1085–1090. IEEE, 2010.

[36] G. C. Murphy, D. Notkin, and K. Sullivan. Software reflexion models: Bridging the gap between
source and high-level models. In Proceedings of the 3rd ACM SIGSOFT symposium on Foundations of
software engineering, pages 18–28, 1995.

[37] P. Mäder, P. L. Jones, Y. Zhang, and J. Cleland-Huang. Strategic traceability for safety-critical projects.
IEEE software, 30(3):58–66, 2013.

[38] M. Ozkaya. Are the UML modelling tools powerful enough for practitioners? a literature review. IET
Software, 13(5):338–354, 2019.

[39] M. Ozkaya and F. Erata. A survey on the practical use of UML for different software architecture
viewpoints. Information and Software Technology, 121:106275, 2020.

[40] D. L. Parnas. Precise documentation: The key to better software. In The Future of Software Engineering,
pages 125–148. Springer, 2011.

[41] M. Petre. UML in practice. In Proceedings of the 35th International Conference on Software Engineering
(ICSE), pages 722–731, 2013.

[42] J. Rosik, A. Le Gear, J. Buckley, M. A. Babar, and D. Connolly. Assessing architectural drift in commer-
cial software development: a case study. Software: Practice and Experience, 41(1):63–86, 2011.

[43] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. E. Lorensen, et al. Object-oriented modeling and
design, volume 199. Prentice-hall Englewood Cliffs, NJ, 1991.

[44] B. Rumpe. Executable modeling with UML. a vision or a nightmare? arXiv preprint arXiv:1409.6597,
2014.

[45] G. Scanniello, C. Gravino, M. Genero, J. A. Cruz-Lemus, and G. Tortora. On the impact of UML
analysis models on source-code comprehensibility and modifiability. ACM Trans. Softw. Eng. Methodol.,
23(2), apr 2014.

[46] G. Scanniello, C. Gravino, M. Genero, J. A. Cruz-Lemus, G. Tortora, M. Risi, and G. Dodero. Do
software models based on the UML aid in source-code comprehensibility? aggregating evidence from
12 controlled experiments. Empirical software engineering, 23(5):2695–2733, 2018.

126 BIBLIOGRAPHY

[47] G. Scanniello, C. Gravino, and G. Tortora. Investigating the role of UML in the software modeling
and maintenance-a preliminary industrial survey. In International Conference on Enterprise Information
Systems, volume 2, pages 141–148. SCITEPRESS, 2010.

[48] B. Selic. UML 2: A model-driven development tool. IBM Systems Journal, 45(3):607–620, 2006.

[49] H. H. Smith. On tool selection for illustrating the use of UML in system development. J. Comput. Sci.
Coll., 19(5):53–63, may 2004.

[50] M. Sousa and H. Moreira. A survey on the software maintenance process. In Proceedings of the Inter-
national Conference on Software Maintenance (Cat. No. 98CB36272), pages 265–274, 1998.

[51] C. J. Stettina and W. Heijstek. Necessary and neglected? an empirical study of internal documentation
in agile software development teams. In Proceedings of the 29th ACM International Conference on Design
of Communication, SIGDOC ’11, page 159–166, New York, NY, USA, 2011. Association for Computing
Machinery.

[52] E. Tryggeseth. Report from an experiment: Impact of documentation on maintenance. Empirical
Software Engineering, 2(2):201–207, 1997.

[53] A. Watson. Visual modelling: past, present and future. White paper UML Resource Page, 28, 2008.

[54] N. Wirth. A brief history of software engineering. IEEE Annals of the History of Computing, 30(3):32–39,
2008.

	Abstract
	Acknowledgements
	Introduction
	Contributions
	Tools
	Drifter
	AViz
	Author Merge Suggester Endpoint

	Approaches
	UML to Source Mapping
	Author Anti-Aliasing
	UML Extension Tagging

	Data
	UML Tools

	Example UML Diagrams
	Tagged UML Files

	Document Structure
	Chapter 2: Related Work
	Chapter 3: Approach
	Chapter 4: Implementation
	Chapter 5: Research Questions
	Chapter 6: Case Studies
	Conclusions

	State of the Art
	UML Diagrams
	Defining UML
	The Usefulness of UML Diagrams
	UML Tools
	UML Diagram Extraction

	Software Traceability
	Architecture Erosion and Consistency
	Author Anti-Aliasing
	Conclusions

	Approach
	Dataset
	Repository Selection Criteria
	Definitions
	Full Dataset Statistics
	UML Subset Statistics
	Summarizing the Dataset

	Extension Exploration
	Generating UML Extension Candidate List

	Extension Tagging
	Author Anti-Aliasing
	Model
	Process
	Definitions
	Evaluation
	False Positive Examples
	False Negative Examples

	Results

	Author Analysis
	UML to Source Mapping
	Definitions
	Coverage
	Method Coverage
	Attribute Coverage

	Summary

	Implementation
	Definitions
	Gitt
	Parsers
	Java Parser
	UML Parser

	Analyzers
	ProjectTracer
	Project Analyzer
	Author Merge Suggestion Analyzer

	Databases
	CLI
	Cloning and Summarizing Repositories
	Author Analysis
	Diagram Generation

	Drifter
	Package Visualization
	Java to UML graph
	Coverage History
	File History

	Summary

	RQs
	RQ1: How Widespread is the use of UML in Open Source Projects?
	Definitions
	Evolution of UML use
	Popularity by Extension
	Conclusions

	RQ2: What Formats are UML Diagrams Found in?
	Finding UML Diagrams in Candidate Extensions
	Step 1: Find Example or Counter-Example for each Extension
	Step 2: Search Files in /uml/ Paths
	Step 3: Search File Names for Keywords
	Step 4: Manual Search

	Results
	Conclusions

	RQ3: Who is Creating and Maintaining UML Design Diagrams?
	Definitions
	Methodology
	Contribution Period of UML Committers vs non-UML Committers
	Number of UML Committers versus non-UML Committers
	Number of Commits by UML Committers vs non-UML Committers
	Are There Dedicated UML Diagrammers?
	Conclusions

	RQ4: What Types of Projects are UML Diagrams Found in?
	Methodology
	UML by Main Programming Language
	UML in non-OOP Languages – An Example

	UML by Activity and Community Size
	Conclusions

	RQ0: Why is UML Underutilized in Open Source Projects?
	Summary

	Case studies
	Definitions
	Orekit: An Impressive Feat of Diagramming
	Method and Attribute Coverage
	UML to Java References Graph
	From the Beginning of Time
	Where is the UML used?
	UML Committers
	Conclusions

	Teammates: From PowerPoint to PlantUML
	A Blip in Time
	From PowerPoint to PlantUML
	UML Committers
	Conclusions

	Dataverse: PlantUML from the Start
	Designing Before Coding
	Documentation Website
	Authors
	Conclusions

	Summary

	Conclusion
	Discussion
	Threats to Validity
	Future Work
	Epilogue

	UML Tools
	UML Examples
	UML Counter-Examples
	UML Extension Tagging
	.argo and .zargo
	.asta
	.cmof
	.dia
	.diagram
	.ecore
	.gliffy
	.iuml, .puml, .plantuml, .platuml
	.mdj
	.mdzip
	.mmd
	.prj
	.pu
	.session
	.ucls
	.uml
	.umlclass and .umlprofile
	.ump
	.uxf
	.vpp
	.xmi
	.yuml
	.zuml

	Queries
	Extension Exploration
	Find all file extensions that contain string
	Find all file extensions found in /uml/ paths
	Find all repositories where extension exists
	Find all commits and files where extension exists for given repository
	Find all commits and files in uml paths for given extension

	Commit Exploration
	Retrieve commit extension statistics

	Author Anti-Aliasing Algorithm Details
	Names match
	Emails match
	Name matches email

	List of UML Repositories

