
Università
della
Svizzera
italiana

Software
Institute

MAPPING THE
DOCUMENTATION LANDSCAPE
OF OPEN SOURCE PROJECTS

Tommaso Rodolfo Masera

September 2023

Supervised by
Prof. Dr. Michele Lanza

Co-Supervised by
Dr. Csaba Nagy

Marco Raglianti

iii

Abstract

As software systems grow in complexity, they must be adapted to environmental changes to keep provid-
ing satisfactory results. The documentation of software systems is expected to receive the same treatment.
As this documentation grows, it constitutes an ever-changing, and increasingly complex documentation
landscape composed of diverse documentation sources.

We aim to investigate the evolution of documentation landscapes by examining the sources that com-
pose them. We mine the README files present in GitHub repositories which contain links referencing the
documentation sources employed by the respective projects.

We analyze 9,169 projects and present a taxonomy that describes the various types of documentation
sources. We develop RagnaDok, a tool to extract data and analyze the evolution of the documentation
landscape via the taxonomy that we define. We present an overview of the aggregate documentation
landscape across all projects. We finally present three case studies that demonstrate how our approach can
be effective when analyzing the documentation landscape of a project, but also its limitations.

v

To all who have supported me thus far

vii

Acknowledgements

First and foremost, I must thank my supervisor Prof. Dr. Michele Lanza. During the I time spent working
on my thesis, I got to see how much of an outstanding professor you are. Other than the veteran expertise
in research and the insights that you always had to offer, what was truly inspiring to me was your passion
towards teaching. I could feel that you really care to help others learn and I feel lucky that I got the
opportunity to learn from you. If teaching was an art (and, in my opinion, it can be), I’d say that you have
mastered it.

Secondly, I must extend my thanks to my co-supervisors, Dr. Csaba Nagy and Marco Raglianti. It’s
hard to overstate how grateful I am for your assistance through this work. It would not have been possible
without you. Your dedication and passion towards research should be an inspiration to all.

I must of course thank my family for their unconditional love and support. I would not be who I am
today if it wasn’t for my mother and father, Manuela and Luca. Truly, I could not have wished for better
parents. And to my brother, Pietro, I’m glad we spent our years doing a master and training together.

It’s hard to describe how thankful I am towards my dearest friend, Teodora. You have made each and
every step of the way feel much lighter, and every bad day much better. If I had the strength to get this far,
I owe it to you.

I want to thank my friends that have been by my side ever since my bachelor years here at USI. Claudio,
Joey, Andrea, Gianmarco, Federico, Ted, Jacob, Alessio, Joao, and many others. I would not be where I am
today without your constant help throughout my years here, from when I was just getting acquainted with
the field of informatics until today. I have learned so much from you, and I am glad you stuck around
during these years, it was a wild and fun ride.

ix

Contents

Abstract iii

Acknowledgements vii

1 Introduction 1
1.1 Thesis Contributions . 2
1.2 Document Structure . 2

2 State of the Art 5
2.1 Documentation . 5

2.1.1 Early Work . 5
2.1.2 The 90s and Early 2000s . 6
2.1.3 The Current Scenario . 6

2.2 Mining Software Repositories . 7
2.3 Conclusion . 8

3 Mapping the Documentation Landscape 9
3.1 Documentation Landscape . 9
3.2 Dataset Generation and Overview . 10

3.2.1 Sourcing and Retrieving the Data . 10
3.2.2 Evolutionary Modeling . 11

Building README Histories . 11
3.2.3 Piecing Histories Together . 12

Mimir: The Historian . 12
3.2.4 Documentation Source Identification . 13

Parsing the README . 13
History Chaining . 14
Manual Inspection . 18

3.3 Conclusion . 19

4 Taxonomy of Documentation Sources 21
4.1 Conflicts Between Categories . 21
4.2 Blog . 23

4.2.1 Medium . 23
4.2.2 Wordpress . 23
4.2.3 Custom Blog . 23

4.3 Forum . 24
4.3.1 Custom Forum . 24
4.3.2 GitHub Discussions . 24
4.3.3 StackOverflow . 24

4.4 Mailing List . 25
4.4.1 Custom Mailing List . 25

x

4.4.2 Google Groups . 25
4.4.3 Mailman . 25

4.5 Wiki . 26
4.5.1 Custom Wiki . 26
4.5.2 GitHub Wiki . 26
4.5.3 Wikipedia . 26

4.6 Document . 27
4.6.1 Multimedia Document . 27

Audio . 27
Image . 27
Video . 27

4.6.2 Textual Document . 28
Book . 28
Text File . 28

4.7 Homepage . 29
4.7.1 Homepage Detection . 29

Project Homepage . 29
Third-Party Project Homepage . 30
Specific Subsection . 30

4.8 Repository-Related . 31
4.8.1 Bug Tracker . 31

Bugzilla . 31
Jira . 32

4.8.2 Issue Tracker . 32
4.8.3 Pull Request . 32
4.8.4 Relative File . 32
4.8.5 Repository . 32

Bitbucket . 32
GitHub . 33
Launchpad . 33
SourceForge . 33
Weblate . 33

4.8.6 Source File . 33
4.9 Community Platform . 35

4.9.1 Custom Community Platform . 35
4.9.2 Instant Messaging . 35

Discord . 36
Gitter . 36
IRC . 36
Slack . 36
Telegram . 36

4.9.3 Media Sharing . 36
Imgur . 37
Vimeo . 37
YouTube . 37

4.9.4 Social Media . 37
Facebook . 37
Instagram . 37
TikTok . 38

xi

Twitter . 38
4.10 Conclusion . 38

5 RagnaDok Implementation 41
5.1 System Architecture . 41
5.2 Data and History Mining . 42

Using the Log . 42
Filtering Commits . 43
Building Histories . 43

5.2.1 Post-Mining Processing . 43
Finding Documentation Sources . 44
Rejected Sources Recovery . 44

5.2.2 History Chaining . 44
5.3 Visualization . 45

5.3.1 README History Visualization . 45
5.3.2 Documentation Landscape Visualization . 48

Documentation Landscape of a Project . 48
Aggregate Documentation Landscape . 49
Summary View . 50
Mining View . 50

5.4 Conclusions . 51

6 Analysis and Discussion 53
6.1 Dataset . 53

6.1.1 Quantitative Analysis . 53
Outlier Projects . 53

6.2 Documentation Landscape in the Wild . 54
6.2.1 Early Years . 55
6.2.2 Towards Modern Sources . 57
6.2.3 The Current Landscape . 57
6.2.4 Documentation Landscape of the Subcategories . 58

6.3 Conclusions . 59

7 Case Studies 61
7.1 An Explosion of Sources: scikit-learn . 61

7.1.1 Overview . 62
7.1.2 Beginnings . 62
7.1.3 Growth Over the Years . 65
7.1.4 Explosion of Sources . 66
7.1.5 Conclusion . 66

7.2 fish-shell/fish-shell: A Simple Landscape . 68
7.2.1 Overview and Evolution . 68
7.2.2 Conclusion . 69

7.3 GCC: Hidden Landscape . 71
7.3.1 Overview . 71
7.3.2 Initial State . 72
7.3.3 First Documentation Sources . 74
7.3.4 Modern Landscape . 76

7.4 Limitations . 78
7.4.1 Hic Sunt Leones . 78

xii

7.4.2 Threats to Validity . 79
7.5 Conclusions . 79

8 Conclusions 81
8.1 Contributions . 81
8.2 Future Work . 82
8.3 Final Words . 83

A SCC and CLOC Comparison 85

B Inconsistency from GitHub Search 87

xiii

List of Figures

1.1 Evolution of the Documentation Landscape of the scikit-learn Project 2

3.1 Metaphorical Documentation Landscape of a Project . 9
3.2 Evolutionary Model for README Files . 11
3.3 Evolutionary Model for Chained Histories . 13
3.4 Process to Detect Documentation Sources . 14
3.5 Chaining Criteria in Practice . 15

4.1 The Eight Top-Level Categories in the Taxonomy . 21
4.2 Taxonomy of the Blog Category . 23
4.3 Taxonomy of the Forum Category . 24
4.4 Taxonomy of the Mailing List Category . 25
4.5 Taxonomy of the Wiki Category . 26
4.6 Taxonomy of the Document Category . 27
4.7 Taxonomy of the Homepage Category . 29
4.8 Taxonomy of the Repository-Related Category . 31
4.9 Taxonomy of the Community Platform Category . 35
4.10 Taxonomy of the Documentation Landscape . 39

5.1 Architecture of RagnaDok . 41
5.2 Example Output of Custom Git Log . 42
5.3 Visualization for README histories . 45
5.4 View for a Specific README Version . 46
5.5 Documentation Landscape of the Elasticsearch Project . 48
5.6 Aggregate Documentation Landscape . 49
5.7 Summary View of the Mined Projects . 50
5.8 Mining View . 51

6.1 README History Outliers . 54
6.2 Presence in Projects of Top Level Categories of the Taxonomy Over Time 55
6.3 Aggregate Documentation Landscape between 2000 and 2015 56
6.4 Aggregate Documentation Landscape between 2015 and 2023 58
6.5 Documentation Landscape of Community Platforms and its Subcategories 59

7.1 Empty Documentation Landscape for Reference . 61
7.2 Documentation Landscape over Time of scikit-learn . 62
7.3 Initial Documentation Landscape of scikit-learn . 64
7.4 scikit-learn in 2011 After One Year . 65
7.5 Commit Referencing the Blog Entry . 65
7.6 scikit-learn in 2016 . 66
7.7 The Explosion of the Documentation Landscape . 67
7.8 Documentation Landscape over Time of Fish Shell without Recovered Sources 68

xiv

7.9 Fish Shell in 2012 when the First Sources Appeared . 69
7.10 Evolution of the Documentation Landscape of Fish Shell . 70
7.11 Documentation Landscape over Time of GCC . 71
7.12 Documentation Landscape over Time of GCC without Recovered Sources 72
7.13 SourceForge and Bugzilla Appearances in the Landscape of GCC 73
7.14 GCC in 1993 . 73
7.15 GCC in 1997 . 73
7.16 GCC in 1995 without Recovered Sources . 74
7.17 First Occurrence of a Mailing List in the Landscape . 75
7.18 SourceForge and Bugzilla Appearances in the Landscape of GCC 75
7.19 GCC in 1999 . 76
7.20 GCC in 2004 . 76
7.21 Wiki Appearance and Bugzilla Disappearance in the Landscape of GCC 77
7.22 Forum and Github Appearances in the Landscape of GCC . 78

xv

List of Tables

3.1 Initial Dataset for Repository Mining . 10

6.1 Repository and History Data . 53
6.2 Outlier Projects . 54
6.3 Status of the Aggregate Landscape in its First Five Years (2000-2003-2005) 56
6.4 Status of the Aggregate Landscape between 2009 and 2015 . 57
6.5 Status of the Aggregate Landscape between 2015 and 2023 . 57

7.1 Descriptive Statistics of scikit-learn . 62
7.2 Descriptive Statistics of fish-shell . 68
7.3 Descriptive Statistics of GCC . 71
7.4 Occurrences of README Extensions Across All README Histories 78

A.1 CLOC and SCC Output Comparison . 85

B.1 List of Projects Excluded from the Analysis . 87

1

Chapter 1

Introduction

Documentation plays a crucial role in software development. It goes beyond information contained within
the source code, encompassing design decisions and supplementary material that support the maintenance
and evolution of a software system.

Unfortunately, documentation is oftentimes undervalued as it does not impact the functioning of a
software system: Documentation is a non-executable artifact [47], meaning code will run regardless of how
well-documented it is. Consequently, documenting software can be perceived as needlessly expensive, as
the immediate benefits may seem low compared to the demanding and resource-consuming process of
creating documentation.

Even when documentation is present and maintained, numerous issues can arise. As discussed by
Aghajani et al., documentation can be incorrect and incomplete, meaning that developers may lose time
by following wrong (potentially unsafe) instructions and code examples, or fail to find what they need
because it was not documented altogether [1]. Furthermore, documentation can be poorly written and out-
dated, impacting its readability, usability, usefulness, and maintainability since a developer may struggle
to understand it, use it effectively or apply meaningful changes to it [1].

Because of these problems [1] and the lack of useful complementary information [46], a software system
that evolves needs to ensure that its documentation co-evolves with it.

When we refer to software documentation, we often imagine source code comments and technical man-
uals that describe how a system works, but, in reality, it comprises a much broader array of sources. These
documentation sources originate from diverse platforms with varying structures (e.g., a blog, a mailing
list, an instant messaging channel), collectively forming the documentation landscape of a software project
[41]. Raglianti has identified four major archetypes of the sources that revolve around a project maintained
over a versioning system: Code, Documents, Multimedia, and Community [41]. Within these archetypes,
he identified thirteen source types to be relevant. Leveraging this classification, we aim to develop a fine-
grained taxonomy to classify the documentation sources.

To better introduce the concept of documentation landscape, we present an interesting case that Raglianti
et al. found (Figure 1.1). This view presents the documentation sources that appeared in the main README
file of the scikit-learn1 project over time. We can observe how the documentation landscape of the scikit-
learn project is defined by its sources, and evolves over time. The project did not present many documen-
tation sources for a decade until a sudden and rapid growth in recent years. This is a single case study that
was examined in depth and is not representative of all projects. With our thesis, we want to delve deeper
into the documentation landscape of many open-source projects, develop a taxonomy of the documenta-
tion sources that compose it, and map the landscape to observe its evolution across single and multiple
projects. This research aims to identify documentation evolution patterns, potentially similar to the one
exhibited by the scikit-learn project.

1https://github.com/scikit-learn/scikit-learn

https://github.com/scikit-learn/scikit-learn

2 Chapter 1. Introduction

FIGURE 1.1: Evolution of the Documentation Landscape of the scikit-learn Project [43]

We have built RagnaDok, a tool that mine software repositories on GitHub data, reconstructs the his-
tory of their README files, and ultimately visualizes them to analyze the various landscapes that appear
across projects via the documentation sources of README files as they evolve over time. By analyzing
the evolution of README files and determining the documentation sources that they contain, we aim to
explore the documentation landscape and shed light on how documentation and its sources have evolved
in the last two decades.

1.1 Thesis Contributions

The main contributions of this thesis consist in:

1. A comprehensive taxonomy that describes the documentation sources that compose the documenta-
tion landscape.

2. An approach to mine, model and reconstruct the history of README files.

3. RagnaDok: a tool that implements our approach and taxonomy.

4. Visualizations of the evolution of README files and of the documentation landscape.

5. The resulting documentation landscape from 9,169 software systems.

6. Analysis on case studies that show the documentation landscape of open-source projects.

1.2 Document Structure

We organize the document as follows:

• In Chapter 2, we describe the state of the art with respect to the evolution of software and its docu-
mentation and repository mining.

• In Chapter 3, we describe our approach to create the documentation landscape via the taxonomy
that we employ to categorize the documentation sources. Additionally, we present the evolutionary
domain modeling to represent the evolution of README files in a repository.

• In Chapter 4, we present the taxonomy of the documentation landscape, to categorize the documen-
tation sources.

1.2. Document Structure 3

• In Chapter 5, we present RagnaDok, a supporting tool to implement our approach, extract data from
README files, analyze the data to extract documentation sources, and visualize the documentation
landscape.

• In Chapter 6, we present an overview of the aggregate documentation landscape that we derive from
all the projects in our dataset.

• In Chapter 7, we provide an analysis and insights over three case studies to show examples of the
documentation landscape of a project, the benefits, and the limitations of our approach.

• In Chapter 8, we summarize our contributions and present potential directions for future work.

5

Chapter 2

State of the Art

2.1 Documentation

Over the past fifty years, the generation of software documentation and software have evolved in tandem.
Numerous platforms and tools have emerged to aid developers in communication and, consequently, in
producing software documentation. For instance, many modern tools and platforms allow developers
to discuss code and provide code examples (e.g., forums [36], instant messaging platforms [10], mailing
lists [15]).

In the early days of software development, face-to-face interaction was predominant, as programs writ-
ten between the 1960s and the 1970s were relatively small and teams often worked in the same place [57].
However, with the advent of modern platforms (e.g., Discord) developers can now collaborate across the
globe, without ever even meeting one another in person.

2.1.1 Early Work

As early as 1976, Tausworthe considered documentation fundamental for the creation and maintenance of
quality software [59]. He defined a taxonomy of documentation levels to standardize the documentation
process, aiming to facilitate the generation of new documentation and reduce the time needed to review or
redesign software.

Seminal empirical studies conducted by Shneiderman et al. and Ramsey et al. on the utility of early
forms of documentation (i.e., flowcharts and program design language) played a critical role in shaping
documentation practices [54, 45]. Although no statistical difference was initially found between groups
that used flowcharts compared to groups that did not use any, program design languages were deemed to
offer a better aid to developers when compared to flowcharts [54, 45]. This research laid the foundation for
discussions on the effectiveness of various forms of documentation.

In the early 1980s, Sheppard et al. conducted an empirical study on the impact that documentation
has on software developers’ performance, highlighting the ongoing relevance of documentation already in
that era [52]. This research led to the development of innovative tools like Playback by Neal and Simons.
Playback was a tool to record user interactions (e.g., keystrokes). Developers would be told to solve specific
tasks given a piece of software and its documentation [33].

The advent of new technologies, such emails, marked the beginning of remote collaboration, overcom-
ing physical distance. These technologies paved the way to a new approach to software development.
With these, developers were able to contact each other remotely, but this could disrupt the workflow. For
instance, phone calls could be highly beneficial, as they allowed developers to discuss technical matters
remotely but they inevitably caused an interruption [57]. Emails already mitigated this by offering an
asynchronous way of communication that is less disruptive. The need for tools that would simplify remote
communication was rising.

6 Chapter 2. State of the Art

2.1.2 The 90s and Early 2000s

In 1995, Parnas and Madey advocated for a functional way to document software systems and design de-
cisions by conforming it to a formal mathematical standard to resemble the way engineering documents
were produced [35]. They stated that software documentation is not as clear or detailed as its engineering
counterpart; while the latter allows to calculate and derive results, the former limits itself to only offer
example usage scenarios and descriptions of what can be expected from the software or of appealing fea-
tures. Furthermore, they highlighted the issue of software documentation being considered a chore rather
than an essential task, inevitably resulting in outdated documents that do not reflect the current state of
the software. Software ageing further exacerbates these issues and plays a part in the way documenta-
tion is produced too. Parnas stated that software can age poorly. For instance, a piece of software that is
maintained by many developers via different approaches, slowly loses its original design. Because docu-
mentation is already neglected, these different changes become harder and more inconsistent as time goes
on [34]. Documentation was also deemed to be an “unattractive” research subject. Quoting from Parnas:

“Last year, I suggested to the leader of an Esprit project who was looking for a topic for a
conference, that he focus on documentation. His answer was that it would not be interesting.
I objected, saying that there were many interesting aspects to this topic. His response was
that the problem was not that the discussion wouldn’t be interesting, the topic wouldn’t sound
interesting and would not attract an audience [34].”

During the same period, developers began to adopt new tools to generate and share documentation.
Instant messaging platforms such as ICQ1 and IRC started to be used by developers for technical discus-
sions [17, 20, 57], although they were not adopted consistently across developer teams. Instant messaging
channels were not the only documentation sources to rise in the early 2000s. With the advent of the internet,
we can see websites such as blogs, forums and Q&A sites (such as StackOverflow2) slowly appear on the
web. Parnin et al. described that StackOverflow, in particular, introduced the concept of crowd-sourced
documentation. Documentation can emerge from both questions and answers that include discussions
and code examples regarding Application Programming Interfaces (APIs) [36]. Ponzanelli et al. developed
Prompter, an Eclipse IDE plugin, to aid developers by automatically retrieving relevant StackOverflow
posts given the code context in the IDE [38]. Treude and Robillard used machine learning techniques to
enhance API documentation via StackOverflow posts to offer further insights that were not contained in
the official documentation [60].

This era of software documentation culminates with social media (e.g., Facebook in 2004), giving people
new ways to communicate and collaborate. Developers began making use of social media to enhance
software development [4]. Storey et al. describe how social media is used by developers to stay informed,
to coordinate their work and to create informal documentation, further reinforcing the concept of crowd-
sourced documentation [56].

2.1.3 The Current Scenario

In the present day, we observe a large number of heterogeneous documentation sources that constitute the
documentation landscape of a project. As a practical example, we can take the scikit-learn3 repository on
GitHub. Its README file, prominently displayed on the main page of the repository, reports a section for
documentation and communication which includes various documentation sources.

Software developers now rely on a plethora of sources to maintain and produce documentation. These
include (but are not limited to) instant messaging platforms (e.g., Gitter [10], Discord [42], Slack [7]), mailing

1https://icq.com/
2https://stackoverflow.com/
3https://github.com/scikit-learn/scikit-learn

https://icq.com/
https://stackoverflow.com/
https://github.com/scikit-learn/scikit-learn

2.2. Mining Software Repositories 7

lists [15], crowd-sourced documentation from forums, Q&A sites (e.g., StackOverflow), social media (e.g.,
Twitter for commits4 linked on scikit-learn), multimedia (e.g., YouTube videos, podcasts), blogs and
external websites that do not adhere to any of the previous categories such as personal/company websites
that have a completely arbitrary structure (e.g., the scikit-learn website5). Mezouar et al. found that Twitter
could have helped developers with finding bugs several days prior to their discovery [32].

From this current situation, we can observe that the documentation sources present many different
attributes. One of these attributes is their persistency. For instance, instant messaging platforms tend to be
fast-paced and volatile compared to forums and mailing lists [41]. The high throughput of messages can
bury a topic of discussion and quickly shift the focus while a forum represents a more organized archive,
with threads that prevent discussions to completely trail off.

Documentation, now more than ever, takes a multi-faceted shape characterized by the variety of the
sources that are used to generate it. Crowd-sourced documentation has become commonplace, transform-
ing the documentation landscape of software projects into a complex ecosystem with diverse and hetero-
geneous components.

2.2 Mining Software Repositories

Like documentation, software versioning and maintenance has been a relevant subject all the way back to
the 1970s, with the first version control system (SCCS) in 1972 [48, 49]. Today, Git stands as the dominant
version control system, with platforms like GitHub serving as popular hubs for open-source projects. In
particular, GitHub’s popularity and easy-to-access nature make it a great resource to obtain a relevant
dataset for both our thesis and Mining Software Repositories (MSR) research.

While GitHub offers a wealth of data for research, it comes with its own challenges. Bird et al. high-
lighted the promises and perils that come with mining Git repositories [5]. Kalliamvakou et al., more
specifically, analyzed 434 GitHub repositories and found that most of them are not projects, have a low
number of commits, are personal (i.e., no collaboration), or are inactive [23].

Over the years, numerous approaches have been developed to aid MSR research in extracting useful
data from software repositories. Spadini et al. developed PyDriller, a Python framework for mining Git
repositories [55]. Salis and Spinellis created RepoFS, a tool to visualize a Git repository as a virtual user-
level file system [51]. Clem and Thomson applied static analysis to GitHub repositories to allow better
navigation and understandability of the code [8]. They allow users and developers alike to more easily
explore the information contained in a project.

Our thesis focuses on README files within software repositories. The official GitHub documentation6

specifies that a README file should typically include information about what the project does, why the
project is useful, how users can get started with the project, where users can get help with the project,
and who maintains and contributes to the project. GitHub README files have already been used to ex-
tract build commands [18] and software requirements [39]. In addition, READMEs allowed researches to
extract developer skills to recommend jobs to developers based on what projects they worked on [19] or,
conversely, to recommend potential employees to a company [14].

Lastly, Prana et al. have conducted a study over the content of README files to take a first look at what
the content of a README document is really like [40]. They provided a manual and extensive annotation
and classification of the sections that a README file can include, and they also designed a classifier to
automatically predict such categories of sections.

README files on software repositories can contain many useful insights, and that is why we choose
them as our target for data mining.

4https://twitter.com/sklearn_commits
5https://scikit-learn.org/stable/
6https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/

customizing-your-repository/about-readmes

https://twitter.com/sklearn_commits
https://scikit-learn.org/stable/
https://twitter.com/sklearn_commits
https://scikit-learn.org/stable/
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-readmes
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-readmes

8 Chapter 2. State of the Art

2.3 Conclusion

Software documentation has been an integral part of the software development landscape for decades.
From its early beginning in source code comments and face-to-face interactions to the complex, crowd-
sourced documentation landscape of today, it has continually evolved to meet the changing needs of de-
velopers.

Platforms like GitHub hold an abundance of data and present many challenges to be faced when trying
to analyze these data. Nevertheless, these platforms are a crucial avenue for research in the MSR field, so
crucial that much of the research has been dedicated to the development of specific tools to help explore
software repositories.

In our research, we focus on the pivotal role of README files within software repositories, aiming to
leverage their content for insights into documentation practices.

9

Chapter 3

Mapping the Documentation Landscape

In this chapter, we present our approach to gather and analyze data regarding the documentation sources
that make up the documentation landscape. We begin by defining what a documentation landscape is,
and we explain how we aim to extract the data necessary to represent the landscape in two main steps.
Firstly, we analyze how README files evolve over time in a project. Secondly, we explore the data from
the README to identify potential documentation sources in their content. These documentation sources
are then used to map the documentation landscape of the project.

3.1 Documentation Landscape

We define the documentation landscape of a project as the resulting composition of all its documenta-
tion sources. To better understand the documentation landscape, let us use a metaphor. A documenta-
tion source is a URL that references a location that provides complementary documentation regarding the
project (e.g., the project’s homepage, a wiki, a mailing list).

A documentation landscape of a project can be viewed as a house and its garden (Figure 3.1). The
house represents the project that was taken into consideration, while the flowers in the garden represent
each documentation source. Flower patches of similar flowers would then form a category of sources. The
documentation sources may also be external to the project, and may point to sources larger than the project
itself. These are not part of the garden per se, they are flowers that belong to other gardens that appear in
this project.

FIGURE 3.1: Metaphorical Documentation Landscape of a Project

10 Chapter 3. Mapping the Documentation Landscape

The state of a project’s garden depends heavily on the documentation sources that are present. A project
can go from a neatly ordered garden to a barren or overgrown garden of documentation sources.

3.2 Dataset Generation and Overview

Our initial entry point is a dataset acquired via GitHub Search [9]. We gather an initial total of 9,534 reposi-
tories with various filtering parameters (Table 3.1). We set a minimum threshold for commits, contributors
and stars. This allows us to gather repositories with a good amount of contributions and popularity, in-
dicating a reasonable size and relevance. In addition, we make sure to exclude forked projects, as these
would present duplicate landscapes. We vet the results from GitHub Search by removing duplicates, forks,
and projects that no longer exist. The final number of repositories that we obtain is 9,169. We get this lower
number of projects due to inconsistencies between GitHub Search and the GitHub API. The inconsistencies
can manifest when the database of GitHub Search is outdated or when an alias is used to call the GitHub
API. In the first case, it is possible that an outdated project has been deleted and, therefore, it cannot be
mined anymore. We encounter this case, for example, with the chinnkarahoi/jd_scripts project,1 which ap-
pears in the GitHub Search dataset, but is no longer accessible. In the second case, we find that multiple
aliases lead us to the same project, resulting in duplicates. These aliases can also lead to forked projects. In
our final dataset, we removed 23 projects that are no longer accessible and 8 projects which are forks (see
Appendix B). Finally, 3 projects fail to load due to problems with memory, and we also excluded them.

Repository # Commit # Contributor # Star # Forks Requested On
9,169 2,000+ 20+ 100+ Excluded 2022-11-10

TABLE 3.1: Initial Dataset for Repository Mining

We now retrieve the README files of these projects to extract the documentation sources that are
present in their content.

3.2.1 Sourcing and Retrieving the Data

We extract data from software repositories hosted on GitHub. These repositories are versioned using Git,2

a distributed version control system which we leverage to reconstruct the evolution of README files. Git
tracks the development history of a system via commits. Specifically, each commit keeps track of relevant
information about which files were affected by it, when it was made and who made the commit. Via
commits, it is possible to reconstruct snapshots of the system. The main actions that can be performed on
a file in a Git commit are:

• Addition: A new file is created and added to the Git repository for tracking.

• Deletion: A file is deleted and ceases to exist in the Git repository.

• Modification: An existing file is modified.

• Rename: An existing file is renamed without being moved to another path.

• Move: An existing file is moved to a different path. It has priority over a file rename in case the name
is also changed.

1https://github.com/chinnkarahoi/jd_scripts
2https://git-scm.com/

https://github.com/chinnkarahoi/jd_scripts
https://git-scm.com/

3.2. Dataset Generation and Overview 11

On top of commits, Git also relies on the concept of branches and tags. A tag is used to mark a specific
commit within the project. Typically tags are employed to mark a release version of a system. A branch in
a Git repository represents an alternate timeline of the project. Usually a project has a stable default branch
called master or main where all the features and changes are merged when ready. This default branch
is the “main timeline” of the project, the one that presents the fully functioning system. At any point in
time, another branch can be made, splitting from the main timeline and adding separate changes to the
project. This branch can then be merged back into the stable branch when it is ready. A typical use case for
branches involves a developer who needs to create a new feature for a system. They create a new branch,
commit their changes to introduce the new feature, and finally merge this branch with the stable branch.
Our analysis focuses on the main stable branch of each project that we examine.

Commits are the main medium that we use to extract the data as we can easily check the version of a
repository given a commit.

To be able to begin this extraction, we must model the evolution of a README file and build its history.

3.2.2 Evolutionary Modeling

We model the evolution of the README files within a repository by representing them via the following
two entities (Figure 3.2):

• Readme History: It contains an ordered list of Readme Version to temporally represent the file and
the path to the README file it refers to. It also contains data to know if this particular file was deleted
on a certain date or whether it was renamed from or to another filename.

• Readme Version: It contains all the relevant data of the README file such as the date and commit
hash of the version, the content of the file and its documentation sources contained within.

The notion of history is the main component of the model and, through each version that it contains, it
allows us to track the evolution of the file through time.

{ordered}

1 *

README Version

+ commit_ref: str
+ commit_date: Date
+ commit_author: str
+ commit_message: str
+ number_of_comments: int
+ filename: str
+ content: str
+ extension: str
+ potential_sources: List[PotentialDocumentationSource]
+ actual_sources: Set[DocumentationSource]
+ dead_sources: Set[DocumentationSource]
+ rejected_sources: Set[str]
+ recovered_sources: set[DocumentationSource]

README History

+ repo_url: string
+ filepath: string
+ versions: List[Readme Version]
+ renamed_from: string
+ renamed_to: string
+ deleted_on: Date

FIGURE 3.2: Evolutionary Model for README Files

Building README Histories

Using Git commits, we identify those that are relevant to us. A commit is relevant when it modifies any
README file in the repository. With these commits, we are able to build the README histories of the
project. In addition, we separately keep track of commits that involved the deletion or the rename of a
README file. We use these to be able to determine when a history ends and to simplify history chaining
(see Section 3.2.3).

12 Chapter 3. Mapping the Documentation Landscape

3.2.3 Piecing Histories Together

The model we just presented is enough to represent histories, but it is not complete for our purpose. Mining
data for README histories is not as straightforward as it may appear. For each unique README file, we
can get every version of such file and build its history. The path to the file is unique, but this same file
may be renamed, moved to a separate directory, or deleted altogether and recreated with the same name
later down the line with a completely different structure and meaning. Because of this, the same file can be
represented by multiple histories.

Git provides information about file renames. For example, if one file is moved or renamed without
changing its content and then committed, Git will see that as a rename. If this file is renamed or moved
and its content is changed significantly, in the same commit, Git will state that the old file was deleted and
that a new file was added while, in fact, this is the same file that had its content modified. Git does not
explicitly track commits, but tries to detect it. To ensure that the rename is detected, the file move must
be added to the Git index. The Git index is the staging area between the workspace and the repository,
where all changes can be set up and combined before committing them. If a developer fails to add this
move to the index prior to committing, the rename will not be detected. Given this limitation in tracking
file histories, we cannot solely rely on the renames provided by Git and we must implement our own way
to piece histories together: Mimir.

Mimir: The Historian

Git’s limitation in chaining histories and the need to manage the numerous histories that a repository can
have motivate the need for an entity to take the role of our historian: Mimir, named after the figure in Norse
mythology. The model in Figure 3.2 can thus be extended with the following new entities and relationships
(see Figure 3.3):

• Chained README History: It is the concatenation of the sub-histories that compose it, sorted by
version dates.

– subHistories: A chained README history contains all the histories that compose it as separate
entities, to keep them individually accessible.

– flattenedHistory: For continuity between the README versions contained within the sub-
histories of a chained README history, we flatten and sort the sub-histories into a single history.

• Mimir: It keeps track of all the README histories of a specific repository and processes the data to
chain together the histories. We tie each project that we mine to a Mimir. Each Mimir oversees the
histories of the project it is assigned to.

– histories: Each Mimir has access to all the histories of the project that it oversees.

• See the definition above for README History and README Version.

3.2. Dataset Generation and Overview 13

README Version
1 *

histories

Mimir

subHistories
README History

1

*

flattenedHistory

Chained
README History

1

1

1

*

FIGURE 3.3: Evolutionary Model for Chained Histories

When we chain histories, we are checking whether two (or more) separate histories represent the same
file. For instance, if README.txt is renamed to README.md at some point in time during the development,
we have two histories for these two names that, in reality, represent the same file. A file rename guarantees
that the same file is represented by multiple filenames and allows us to save expensive computations.

3.2.4 Documentation Source Identification

Our thesis is based on the assumption that, if a URL is important enough to exist in the README file of a
project, then it could (and should) point to a relevant documentation source. Despite this, not all URLs are
documentation sources (e.g., link to a logo image, a badge).

In addition, we must consider the status of a documentation source, which can be either live or dead.
We define a live source as a URL that points to a source that responds to a HEAD or GET request and that
could potentially be visited via a browser (e.g., a URL that points to https://example.com). A dead source
is instead a URL that does not respond to requests, the link is effectively dead in this case. The source is
indeed dead when its URL is broken, but there is a possibility that it used to work perfectly fine at the time
it was referenced.

Parsing the README

To identify the documentation sources contained within a README file, we rely on regular expressions
that identify patterns for URLs and non-URLs. The non-URLs in our case are e-mail addresses, IRC nodes
and filenames. These help us with finding what we consider a potential documentation source, which we
must verify to be legitimate (i.e., identify actual source, see Figure 3.4).

Regular expressions work well with our approach because we need to find these patterns in a large
number of README files and remain efficient despite their limits (they can capture parts of the README
content that are not documentation sources). Furthermore, the verification step allows us to find out
whether a documentation source is live or dead.

We also maintain a record of what we reject during the identification process. These rejected sources
are then re-examined to check if any source can be recovered. We apply this further step because some
documentation sources may be truncated URLs, or some non-URLs that we cannot ping for a result. For
instance, a README file may reference a source file without indicating its proper path. Such a source file
is a documentation source that we would fail to capture. The recovery step allows more room for error,
allowing us to find documentation sources that could be relevant and that remained undetected in the prior
identification step. Sources can remain undetected when we reject them, so we make a second pass on the

14 Chapter 3. Mapping the Documentation Landscape

rejected sources. Due to the potential noise that recovered sources can add to the analysis, we introduce
the option to exclude them. We will exclude them in our analysis, unless we specify otherwise.

FIGURE 3.4: Process to Detect Documentation Sources

History Chaining

With the data that we use to represent README files over time and their documentation sources, we move
onto the final step for processing our data: history chaining.

As we have previously mentioned, multiple histories may pertain to the same file that was renamed
over time and, in particular, Git itself is unable to keep track of some of these actions in specific situations
(e.g., if a file is renamed and heavily modified in the same commit, then the rename will be lost, the old
filename will be marked as deleted and the new filename will be marked as added). To address this issue
we propose the chaining process described in Algorithms 1 and 2. The chaining algorithm belongs to
Mimir.

The chaining algorithm is computationally expensive, as it iteratively chains pairs of histories, until no
more histories can be chained. In particular, to be able to compare histories and find out whether they
should be chained, we match every pair of histories that satisfies a specific criterion.

The first step to the algorithm involves using the renames that Git successfully identified. If a rename is
confirmed to have happened between two histories, then we can be sure that they represent the same file,
and we can chain these histories together.

We then identify four different criteria that represent the temporal relationship between two histories.
We exemplify them in Figure 3.5. A Chain Criterion can take one of the following values:

1. Perfect Match: When, given a pair of histories, a history ends on the exact same commit and date
where the other history begins. This is a specific case of overlap, and we choose to examine it sepa-
rately as an optimization. This is because perfect match in both date and commit hash with a history’s
end and another’s beginning may mean that the file was renamed and that Git did not detect it.

2. Separate: When there is no overlap between the two histories.

3. Contained: When one of two histories in a pair begins after and ends before the other respectively.

4. Overlapping: When one history ends after the other has begun, excluding the cases in which one of
the two histories is contained in the other.

3.2. Dataset Generation and Overview 15

History 1

History 2

History 1 History 2

History 1

History 2

Perfect Match

Separate

Contained

Overlapping

History 1

History 2

FIGURE 3.5: Chaining Criteria in Practice

Algorithm 1 Algorithm to Chain Histories
1: procedure CHAINHISTORIES
2: INPUT: histories
3: OUTPUT: chainedHistories
4: if repositoryPreviouslyMined then ▷ Use previously computed pairs if they exist
5: SimilarityPairs← readSimilarityPairs()
6: end if
7:
8: chainedHistories ← chainByRename() ▷ Use renames for first chains
9: criteria ← [Main Considered Criteria]

10:
11: while hasPendingChaining do
12: // ASSUME THIS IS THE LAST TIME WE CHAIN, BECOMES TRUE IF WE CHAIN
13: hasPendingChaining ← False
14: intermediateChainedHistories ← List()
15: for all criterion in criteria do ▷ Calculate and chain pairs for each main criterion
16: pairs ← historyPairs(chainedHistories, criterion)
17: chainPairs(pairs, intermediateChainedHistories)
18: end for
19: if not hasPendingChaining then ▷ No chain so far, try with overlapping criterion
20: pairs ← historyPairs(chainedHistories, ChainCriterion.OVERLAPPING)
21: chainPairs(pairs, intermediateChainedHistories)
22: end if
23: // ADD UNCHAINED HISTORIES TO INTERMEDIATE RESULT FOR NEXT ITERATION
24: refillResults(chainedHistories, intermediateChainedHistories)
25: chainedHistories = intermediateChainedHistories
26: end while
27: end procedure

16 Chapter 3. Mapping the Documentation Landscape

When we look for pairs that are eligible for chaining, we must note that we check overlapping pairs
only if no other criterion chained successfully. This is because, in the case of many histories that co-exist,
one history is likely to overlap with many other unrelated histories. We do this as an optimization as the
chaining algorithm is very expensive, and reducing the number of pairs that we compare is paramount.
We often encounter projects with a large number of separate README histories that have co-existed at
some point in time (e.g., the Arduino project3 by itself has 111 separate histories prior to chaining).

After obtaining the required pairs for each criterion, we compare the matching versions of the histories
(e.g., last version of the first history in the pair with the first version of the second history in the pair) and we
measure their similarity. using the common diff utility, as implemented in the difflib Python standard
library4. If the similarity ratio that we obtain is above a selected threshold, we chain the histories and we
create a chained history.

Once a history is chained, we move onto the next step of the chaining. We must now check for transitive
histories. Transitivity between a pair of chained histories manifests when each of the histories share a com-
mon sub-history. In this case, we can assume that both of these histories can be further chained together.
With transitivity, we can save time and resources during chaining.

For further clarification, Algorithm 2 contains the more relevant sub-functions used during the chain-
ing. The functions makeChainedHistories and chainTransitiveHistories are not included. They pro-
duce a chained README history in both cases, with the latter using the transitivity that we just defined to
generate the chained history.

3https://github.com/arduino/Arduino
4https://docs.python.org/3/library/difflib.html

https://github.com/arduino/Arduino
https://docs.python.org/3/library/difflib.html

3.2. Dataset Generation and Overview 17

Algorithm 2 Subprocedures for History Chaining (cont.)
1: procedure CHAINBYRENAME
2: result = EmptyList
3: for all history1, history2 in histories do
4: if history1 renamed from history2 or history1 renamed to history2 then
5: result.append(makeChainedHistory(history1, history2))
6: end if
7: end for
8: refillResults(histories, result)
9: end procedure

10:
11: procedure REFILLRESULTS(chainedHistories, intermediateChainedHistories)
12: INPUT: chainedHistories, intermediateChainedHistories
13: OUTPUT: union of chainedHistories and intermediateChainedHistories
14: result ← intermediateChainedHistories
15: for all history in chainedHistories do
16: found ← False
17: for all intermediate in intermediateChainedHistories do
18: if history = intermediate then
19: found = True
20: else if history is a chained history and intermediate is a normal history then
21: if intermediate in history.subHistories then
22: found ← True
23: break
24: end if
25: else if intermediate is a chained history and history is a normal history then
26: if history in intermediate.subHistories then
27: found ← True
28: break
29: end if
30: else if history and intermediate are both chained histories then
31: for all sub1, sub2 in history.histories, intermediate.histories do
32: if sub1 == sub2 then
33: found ← True
34: break
35: end if
36: end for
37: end if
38: if found then
39: break
40: end if
41: end for
42: if not found then
43: result.append(history)
44: end if
45: end for
46: return result
47: end procedure

18 Chapter 3. Mapping the Documentation Landscape

Subprocedures for History Chaining
48: procedure HISTORYPAIRS(histories, criterion)
49: INPUT: histories, criterion
50: OUTPUT: all history pairs that satisfy criterion
51: pairs ← List()
52: for all history1 in histories do
53: for all history2 in histories do
54: // DEPENDING ON THE CRITERION, CALL A DIFFERENT PAIR FUNCTION
55: if criterion = ChainCriterion.PERFECT_MATCH then
56: // RETURN A PAIR IF HISTORIES HAVE MATCHING DATES AND COMMIT HASHES
57: p ← perfectMatchPairs(history1, history2)
58: else if criterion = ChainCriterion.SEPARATE then
59: // RETURN A PAIR IF HISTORIES EXIST SEPARATELY NEVER OVERLAPPING
60: p ← separatePairs(history1, history2)
61: else if criterion = ChainCriterion.CONTAINED then
62: // RETURN A PAIR IF ONE HISTORY EXISTS ENTIRELY DURING THE OTHER
63: p ← containedPairs(history1, history2)
64: else if criterion = ChainCriterion.OVERLAPPING then
65: // RETURN A PAIR IF THE HISTORIES OVERLAP
66: p ← overlappingPairs(history1, history2)
67: end if
68: if p is not Null then
69: pairs.append(p)
70: end if
71: end for
72: end for
73: return pairs
74: end procedure
75:
76: procedure CHAINPAIRS(pairs, intermediateChainedHistories)
77: INPUT: pairs, intermediateChainedHistories
78: OUTPUT: nothing, updates intermediateChainedHistories
79: for all p in pairs do
80: if appendChainedHistory(p, intermediateChainedHistories) then
81: hasPendingChaining ← True
82: intermediateChainedHistories ← chainTransitiveHistories(intermediateChainedHistories)
83: end if
84: end for
85: end procedure
86:
87: procedure APPENDCHAINEDHISTORY(p, chainedHistories)
88: pair = ReadmeVersionPair.from(p)
89: if pair in similarityPairs then
90: similarity ← similarityPairs[pair]
91: else
92: similarity ← diffSimilarity(pair.first.content, pair.second.content)
93: similarityPairs[pair] ← similarity
94: end if
95: if similarity ≥ THRESHOLD then
96: chainedHistories.append(makeChainedHistory(p.first, p.second))
97: return True
98: end if
99: return False
100: end procedure

Manual Inspection

Our ultimate goal is to capture the documentation landscape via the sources that compose it. We achieve
this via the taxonomy that we develop (Chapter 4) iteratively via a manual inspection of the data.

This manual analysis is a fundamental step to define a comprehensive and complete taxonomy. We
develop the taxonomy starting from the archetypes and source types defined by Raglianti [41]. We started
with a sample set of 5 representative projects:

• scikit-learn/scikit-learn5

5https://github.com/scikit-learn/scikit-learn

https://github.com/scikit-learn/scikit-learn

3.3. Conclusion 19

• arduino/Arduino6

• exoplatform/platform7

• apache/tomcat8

• pmd/pmd9

We discussed the proposed categories and specifically focused on uncategorized cases. By focusing on
those cases that we failed to capture in the taxonomy, we are able to modify the taxonomy accordingly.

In each subsequent iteration of the taxonomy, we aim at fitting documentation sources in the current
taxonomy, and we have two cases. We either accommodate for everything in a satisfactory way, or we
identify new sources or better categories and must refine the taxonomy. After each step, we disambiguate
potential conflicts (e.g., a category is too broad, too specific, overlaps with another category). When the
conflicts are solved, the categories change accordingly. They can be split into multiple categories, merged
into broader categories, or new categories can appear or disappear altogether.

3.3 Conclusion

In this chapter we described our approach to model, extract, and examine evolutionary data for README
files and their documentation sources. We introduced the documentation landscape and the documenta-
tion sources that compose it. With our approach defined, we can develop our taxonomy that we present in
the next chapter.

6https://github.com/arduino/Arduino
7https://github.com/exoplatform/platform
8https://github.com/apache/tomcat
9https://github.com/pmd/pmd

https://github.com/arduino/Arduino
https://github.com/exoplatform/platform
https://github.com/apache/tomcat
https://github.com/pmd/pmd

21

Chapter 4

Taxonomy of Documentation Sources

In this chapter, we present our taxonomy to capture the documentation sources and define the documen-
tation landscape. We design the taxonomy as a hierarchy where the root node is the abstract concept of
Documentation Source.

To reach the version of the taxonomy that we present, we took existing documentation sources that we
detected and then we manually annotated the sources with categories from the taxonomy. We repeat this
process iteratively (see Section 3.2.4).

A common pattern in the taxonomy is that some subcategories tend to have specific names of platforms
(e.g., Wordpress) and a generic subcategory at the same level called Custom [Category Name] (e.g., Custom
Blog). This is because more widespread platforms are easily identifiable and can be more easily isolated
as a phenomenon, indicating a category (e.g., Wordpress). A less used, or project-specific platform (e.g., a
project’s blog) cannot be isolated as its own widespread medium and becomes a custom blog.

Under Documentation Source, we define eight top-level categories (Figure 4.1). We present the en-
tire taxonomy in Figure 4.10. Each leaf subcategory in the hierarchy has its own heuristic to determine
whether it belongs to that category. When a category is detected, its own supercategories can be dervied
by following the hierarchy upwards. In the following sections we define each top-level category and their
sub-categories. The detection methods can vary. Some are simpler, using only string matching while others
required more complex approaches such as regular expressions or partial string matching on specific parts
of the URL that points to a documentation source. Unless specified otherwise, we focus on the top level do-
main of the URL for the string matching (e.g., given https://example.com/examples/myCoolExample.html,
the top level domain is example.com).

Blog

2422

Forum

2747

Mailing List

2059

Wiki

4338

Document

5622

Homepage

8734

Repository
Related

8600

Community
Platform

3795

FIGURE 4.1: The Eight Top-Level Categories in the Taxonomy

In the following sections, we are going to define the categories and subcategories of the taxonomy.

4.1 Conflicts Between Categories

Due to the detection methods that we have chosen, the same documentation source can be detected by
multiple categories. To prevent inconsistencies, we develop priority rules between categories to solve the

22 Chapter 4. Taxonomy of Documentation Sources

conflicts. If more than one category detects the source, then the one with higher priority will be assigned to
the source. We prioritize categories in order as follows. For example, if a documentation source is detected
by Source File, Relative File and Homepage, we prioritize the detection of Source File as it is the highest in
the following priority list:

1. Source File

2. Document

3. Relative File

4. Blog

5. Forum

6. Mailing List

7. Community Platform

8. Wiki

9. Repository-Related

10. Homepage

11. Uncategorized

We keep track of some specific categories that cause conflicts while, if none of them successfully de-
tected the source, we mark the source as uncategorized. We also include categories that are not top-level.
We do this as they may conflict between each other due to similar nature (e.g., a source file referenced on
the project’s repository is both a relative file and a source file, and we wish to keep it as a source file).

4.2. Blog 23

4.2 Blog

A Blog, short for weblog, is an informational website that, typically, contains a series of posts in reverse
chronological order1. In particular, blogs tend to have a diary-like structure with their content.

The Blog category has three subcategories: Custom Blog, Wordpress and Medium (Figure 4.2).

Blog

MediumCustom Blog Wordpress

2721987 717

2422

FIGURE 4.2: Taxonomy of the Blog Category

4.2.1 Medium

A blog that is hosted under the Medium domain2. Medium is an American online publishing platform
developed by Evan Williams. It launched in August 2012, and is regularly regarded as a blog host3.

Detection Method: Contains the substring medium.

4.2.2 Wordpress

A blog that is hosted under the Wordpress domain4. WordPress is a web content management system. It
was originally created as a tool to publish blogs5.

Detection Method: Contains any of the following substrings: wordpress, wp.me, wp.com.

4.2.3 Custom Blog

A blog that is either self-hosted or that exists under its own specific domain that does not fall under any
other categories.

Detection Method: Contains the substring blog.

1https://en.wikipedia.org/wiki/Blog
2https://medium.com/
3https://en.wikipedia.org/wiki/Medium_(website)
4https://wordpress.com/
5https://en.wikipedia.org/wiki/WordPress

https://en.wikipedia.org/wiki/Blog
https://medium.com/
https://en.wikipedia.org/wiki/Medium_(website)
https://wordpress.com/
https://en.wikipedia.org/wiki/WordPress

24 Chapter 4. Taxonomy of Documentation Sources

4.3 Forum

A Forum is similar to community platforms in the way that most of the content is typically crowd-sourced,
with users being able to create a thread of discussion around a given topic. It distinguishes itself as its own
category due to the combination of crowd-sourced documentation and persistency of the documentation
that is generated. The threaded structure of a forum along with the fact that threads persist across years
are the key aspects of this category. We define three subcategories for Forum: Custom Forum, GitHub
Discussions, StackOverflow (Figure 4.3).

Forum

StackOverflowGitHub
DiscussionsCustom Forum

1704 588 1013

2747

FIGURE 4.3: Taxonomy of the Forum Category

4.3.1 Custom Forum

A Custom Forum is a forum that has its own structure and that cannot be grouped under a more widespread
forum platform.

Detection Method: Contains any of the following substrings: forum, discuss and does not satisfy GitHub
Discussions.

4.3.2 GitHub Discussions

GitHub Discussions is a collaborative communication forum for the community around an open source or
internal project6. We group here forums hosted on GitHub Discussions.

Detection Method: Contains github.com and dicussions.

4.3.3 StackOverflow

StackOverflow has a more Q&A approach to its threads, but it is still a forum. StackOverflow sources are
grouped here.

Detection Method: Contains the substring stackoverflow.

6https://docs.github.com/en/discussions

https://docs.github.com/en/discussions

4.4. Mailing List 25

4.4 Mailing List

A mailing list is a computer-based communication system that distributes emails to a predefined group
of recipients. It operates as a centralized platform, where messages submitted by authorized users are
replicated and delivered to each subscriber on the list. Its main aspect is a collaborative interaction leading
to persistent crowd-sourced documentation. Mailing List has three subcategories: Custom Mailing List,
Google Groups and Mailman (Figure 4.4).

Mailing List

MailmanGoogle GroupsCustom Mailing
List

1478 613 387

2059

FIGURE 4.4: Taxonomy of the Mailing List Category

4.4.1 Custom Mailing List

A source that references a mailing list that is not on any widespread mailing list platform.

Detection Method: Contains the substring any of [list, mailing, mail and does not satisfy Google
Groups or Mailman.

4.4.2 Google Groups

A source that references Google Groups7. Google Groups is a service from Google that provides discussion
groups for people sharing common interests8.

Detection Method: Contains the substring groups.google.

4.4.3 Mailman

A source that references Mailman9. Mailman is free software for managing electronic mail discussion and
e-newsletter lists10.

Detection Method: Contains the substring mailman.

7https://groups.google.com
8https://en.wikipedia.org/wiki/Google_Groups
9https://list.org/

10https://list.org/

https://groups.google.com
https://en.wikipedia.org/wiki/Google_Groups
https://list.org/
https://list.org/

26 Chapter 4. Taxonomy of Documentation Sources

4.5 Wiki

A Wiki is a website that allows collaborative modification of its content and structure directly from the web
browser. The key feature of wikis that distinguishes it from other sources is the ability for any user to edit
the content. Sometimes the user may be requested to identify themselves. This makes a wiki the product of
a collaborative effort from the community rather than a more authoritative source curated by few. Under
the Wiki category, we identify three subcategories: Custom Wiki, GitHub Wiki, Wikipedia (Figure 4.5).

Wiki

GitHub
WikiWikipediaCustom Wiki

2180 1746 2484

4338

FIGURE 4.5: Taxonomy of the Wiki Category

4.5.1 Custom Wiki

A source that references a wiki that is not on any widespread wiki platform.

Detection Method: Contains the substring wiki and does not satisfy Wikipedia or GitHub Wiki.

4.5.2 GitHub Wiki

A source that references a wiki on GitHub.

Detection Method: Contains both github.com and wiki.

4.5.3 Wikipedia

A source that references Wikipedia11. Wikipedia is a free-content online encyclopedia written and main-
tained by a community of volunteers12.

Detection Method: Contains the substring wikipedia.

11https://en.wikipedia.org/
12https://en.wikipedia.org/wiki/Wikipedia

https://en.wikipedia.org/
https://en.wikipedia.org/wiki/Wikipedia

4.6. Document 27

4.6 Document

With Document, we encapsulate files that are meant to be human-readable or human-understandable. This
ranges from simple text files to more complex formats such as specific markup files, PDFs, or multimedia
documents.

Document has two main subcategories: Textual Document and Multimedia Document (Figure 4.6).

Document

Multimedia
Document

Textual
Document

Text FileBook VideoImageAudio

707 5030 98 1391 718

18695158

5622

FIGURE 4.6: Taxonomy of the Document Category

4.6.1 Multimedia Document

A Multimedia Document involves typical multimedia such as audio files, images or videos. The category
has three children.

Audio

An audio file.

Detection Method: Ends with any of the following file extensions: mp3, wav, wma, aac, flac, alac,
ogg, aiff, dsd, pcm, aif, mp2, m4a, m4b, m4p, m4r, mid, midi, mka, mpa, ra, ram, tta, wv, wvp,
3gp, aa, aax, act, aifc, amr, ape, awb, dct, dss, dvf, gsm, iklax, ivs, m3u, m3u8, m4r, mmf,
mpc, msv, oga, opus, ra, rm, sln, vox, w64, wma, wv, xspf, 8svx

Image

An image file.

Detection Method: Ends with any of the following file extensions: png, jpg, jpeg, gif, bmp, svg,
tiff, tif, eps, raw, cr2, nef, orf, sr2, webp, heif, heic

Video

A video file or a link to a specific video on a platform.

Detection Method: The source must match detection for YouTube and must contain watch?v= as the video
format for YouTube videos, or it must match Vimeo and must contain a video ID according to the regular
expression d+, or it must end with any of the following file extensions: mp4, mov, avi, wmv, flv, mkv,
webm, m4v, mpeg, mpg.

28 Chapter 4. Taxonomy of Documentation Sources

4.6.2 Textual Document

As previously described, textual documents include text files with any degree of complexity to them, so
long as they are human-readable. We split a Textual Document in two main categories.

Book

A source that references a physical book. While a physical book cannot be directly accessed via a URL, a
website where a book can be purchased allows access to the book.

Detection Method: Ends with any of the following: [.epub, .mobi] or contains any of the following sub-
strings: amazon, barnesandnoble, kobo, goodreads, abebooks, bookdepository, booktopia, indiebound,
alibris, thriftbooks, booksamillion, bookshop, bookfinder, bookish, bookbub, bookriot, bookpage,
bookforum, bookreporter, bookbrowse.

Text File

A source that references a text file.

Detection Method: Does not contain any of the following words: index, home, main, default, welcome,
landing, start, base, front and ends with any of the following extensions: txt, md, rst, xml, json,
yaml, yml, csv, tsv, tex, rtf, doc, docx, odt, pdf, djvu, fb2, xps, cbz, cbr, cb7, cbt, cba,
chm, pdb, prc, azw, azw3, lit, ps, pml, htmlz, txtz, rtfz, pdfz. We exclude names that can ref-
erence the homepage of a website to avoid homepages that are not actually text files (e.g., index.html).

4.7. Homepage 29

4.7 Homepage

With Homepage we describe a documentation source that points to the home page of a project-related
website. In particular, we split Homepage between Project Homepage and Third-Party Project Homepage
(Figure 4.7). A Project Homepage and its third-party counterpart represent the same type of source in
terms of content and structure. The difference between one or the other is their relevance to the project
they are referenced by. As a practical example, the scikit-learn project referencing their own personal
website https://scikit-learn.org/ would fall into the Project Homepage category. If this same website
were referenced by another project that makes use of scikit-learn, this would fall under the Third-Party
Project Homepage category.

This category of the documentation landscape is characterized by the lack of crowd-sourced content.
A homepage is typically maintained and curated by its owners, while a user can only consult the source
without being able to participate in its generation.

Both subcategories of Homepage have a shared common child: the Specific Subsection category. We
specify this as the homepage of a website is not always directly referenced and, instead, the URL of the
project website points to a location at a deeper path. These are specific subsections under the homepage
domain.

Homepage

Third Party Project
Homepage

Project
Homepage

Specific
Subsection

8734

3275 5459

8734

FIGURE 4.7: Taxonomy of the Homepage Category

4.7.1 Homepage Detection

Detecting homepages requires more complex steps compared to other sources.

Project Homepage

Given the name of the GitHub project it belongs to in the form of <owner>/<name>, contains either <owner>
or <name>.

https://scikit-learn.org/

30 Chapter 4. Taxonomy of Documentation Sources

Third-Party Project Homepage

Given the name of the GitHub project it belongs to in the form of <owner>/<name>, contains neither of them
and contains any top-level domain from Internet Assigned Numbers Authority (IANA)13.

Specific Subsection

Specific Subsection is trickier to detect. First, we remove https:// or http:// from the URL if it exists.
Then, we identify three cases:

1. In this case, we have one or less occurrences of the / character. If there are no / characters in the
URL, then there is no deeper path that is referenced. A specific subsection must at least have one
occurrence of /, and the part after the first / must be non-empty. For instance:

• example.com: Not a specific subsection

• example.com/: Not a specific subsection

• example.com/<some content here>: Potential to be a specific subsection

2. In this case, we can have between one and two / characters in the URL, and the part following the
second occurrence of / must be empty. Here, we also take into consideration some common words
that can appear in the URL of a homepage: index, home, main, default, welcome, landing,
start, root, base, front. We do this because, at times, a homepage may take the following shape:
example.com/index.html/. While this has a deeper section, it indicates a homepage. Therefore, a
URL that has between one and two occurrences of the / character is a specific subsection if all of the
following conditions are satisfied:

• when there is only one occurrence of /, the part of the string following the / is non-empty (e.g.,
example.com/<some content here>)

• when there are two / characters, it ends with the second occurrence of /

• the content following the first occurrence of / does not contain any of the aforementioned
“homepage words”

3. In this case, we have more than two occurrences of / or the URL contains a # character. A large
number of slashes indicates a deeper path and the # character indicates a specific section referenced
typically in HTML or Markdown documents.

13https://data.iana.org/TLD/tlds-alpha-by-domain.txt

https://data.iana.org/TLD/tlds-alpha-by-domain.txt

4.8. Repository-Related 31

4.8 Repository-Related

Repository-Related is a category for documentation sources that document internal project aspects. It has
six subcategories: Bug Tracker, Issue Tracker, Pull Request, Relative File, Repository, Source File (Figure
4.8).

Repository
Related

Bug TrackerSource File

Repository

Issue Tracker

JiraBugzilla

SourceForge

GitHub

Bitbucket

Launchpad

GitHub
Issue Tracker

Pull Request

GitHub
Pull Request

Weblate

Relative File

8600

5635 420 3892 1231

197 231 3892 1231

51547996

81 1347

2337838

318

FIGURE 4.8: Taxonomy of the Repository-Related Category

4.8.1 Bug Tracker

A Bug Tracker is a tool that documents bugs by allowing developers to report them during the development
of a project. Because of this, it may be regarded as a less generic type of Issue Tracker, as it pre-dates issue
tracking systems. We identify two subcategories for it.

Bugzilla

A source that references Bugzilla14. Bugzilla is a web-based general-purpose bug tracking system and test-
ing tool15.

Detection Method: Contains the substring bugzilla.

14https://www.bugzilla.org/
15https://en.wikipedia.org/wiki/Bugzilla

https://www.bugzilla.org/
https://en.wikipedia.org/wiki/Bugzilla

32 Chapter 4. Taxonomy of Documentation Sources

Jira

A source that references Jira16. Jira is a proprietary issue tracking product developed by Atlassian that
allows bug tracking17.

Detection Method: Contains the substring jira.

4.8.2 Issue Tracker

An Issue Tracker is a tool that documents “issues”. Issues are typically opened by developers and users to
notify project maintainers of problems or bugs, to request features, and more useful project-specific aspects.
Under Issue Tracker, we specify the GitHub Issue Tracker as its only subcategory. We detect a GitHub Issue
Tracker documentation source if the URL contains both github.com and issues substrings.

4.8.3 Pull Request

From the GitHub documentation18 :

“Pull requests let you tell others about changes you’ve pushed to a branch in a repository on GitHub.
Once a pull request is opened, you can discuss and review the potential changes with collaborators and
add follow-up commits before your changes are merged into the base branch.”

Under Pull Request, we include only the subcategory of GitHub Pull Request, which documents the
contributions that are made by developers.

Detection Method: Contains both github.com and pull substrings.

4.8.4 Relative File

A Relative File is a type of file that is referenced via an existing relative path on the project repository that
we cannot identify to be a Source File or a Textual Document.

Detection Method: Contains substrings github and /blob/ and does not satisfy Source File or Textual
Document. We check for those substrings because a relative path in a README file is not a full URL (e.g.,
../../file.file). We must reconstruct this URL as GitHub represents specific files at specific commits,
and we check if this file exists in the reconstructed URL. We see this part in depth in Section 5.2.1.

4.8.5 Repository

A Repository is a documentation source that holds the source code of software projects. We identify five
subcategories of Repository with the following sources.

Bitbucket

A source that references Bitbucket19. Bitbucket is a Git-based source code repository hosting service owned
by Atlassian20.

16https://www.atlassian.com/software/jira
17https://en.wikipedia.org/wiki/Jira_(software)
18https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/

about-pull-requests
19https://bitbucket.org/product
20https://en.wikipedia.org/wiki/Bitbucket

https://www.atlassian.com/software/jira
https://en.wikipedia.org/wiki/Jira_(software)
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://bitbucket.org/product
https://en.wikipedia.org/wiki/Bitbucket

4.8. Repository-Related 33

Detection Method: Contains the substring bitbucket.

GitHub

A source that references the GitHub platform21. GitHub is a platform and cloud-based service for software
development and version control using Git22.

Detection Method: Contains the substring github.com and does not detect any of GitHub Discussions,
GitHub Wiki, Relative File.

Launchpad

A source that references Launchpad23. Launchpad is a web application and website that allows users to
develop and maintain software24.

Detection Method: Contains the substring launchpad.net.

SourceForge

A source that references SourceForge25. SourceForge is a web service that offers software consumers a cen-
tralized online location to control and manage open-source software projects26.

Detection Method: Contains the substring sourceforge.net.

Weblate

A source that references Weblate27. Weblate is an open source web-based translation tool with version con-
trol28.

Detection Method: Contains the substring weblate.org.

4.8.6 Source File

A Source File is a file that contains source code and it separates itself from a simple textual document.
Sometimes, when a project is in development, official documentation may not have been generated yet. In
this case, a source file may be referenced instead for further information regarding the project and some of
its features. An example of this is the javalang framework29on GitHub. Its README states the following:

For more detail on what node types are available, see the javalang/tree.py source file until the docu-
mentation is complete.

A source file that is referenced in a README file represents a documentation source that is strictly re-
lated to the repository30.

21https://github.com/
22https://en.wikipedia.org/wiki/GitHub
23https://launchpad.net/
24https://en.wikipedia.org/wiki/Launchpad_(website)
25https://sourceforge.net/
26https://en.wikipedia.org/wiki/SourceForge
27https://weblate.org/en-gb/
28https://en.wikipedia.org/wiki/Weblate
30https://github.com/c2nes/javalang

https://github.com/
https://en.wikipedia.org/wiki/GitHub
https://launchpad.net/
https://en.wikipedia.org/wiki/Launchpad_(website)
https://sourceforge.net/
https://en.wikipedia.org/wiki/SourceForge
https://weblate.org/en-gb/
https://en.wikipedia.org/wiki/Weblate
https://github.com/c2nes/javalang

34 Chapter 4. Taxonomy of Documentation Sources

Detection Method: Ends with any of [py, java, c, cpp, cs, js, ts, php, css, scss, less, xml,
json, yaml, cc, h, hpp, hxx, hh, yml, sh, bat, cmd, ps1, psm1, psd1, ps1xml, pssc, vbs, vba,
vb, bas, frm, cls, ctl, xsl, xslt, xsd, wsf, wsc, wsh, ini, inf, reg, cfg, config, conf, properties,
prop, props, sln, csproj, vbproj, vcxproj, vcproj, vcproj, xcodeproj, dproj, cbproj, pbxproj,
pbproj, xib, storyboard, plist, nib].

4.9. Community Platform 35

4.9 Community Platform

A Community Platform encompasses multiple platform types that share the way that documentation is
generated and consumed on them. Documentation generation and consumption on a community platform
tends to be strongly crowd-sourced and very volatile. The key point is that the user is the one who provides
documentation. We split Community Platform into four subcategories: Custom Community Platform,
Instant Messaging, Media Sharing, and Social Media (Figure 4.9).

Community
Platform

Instant
Messaging

Custom

Community Platform
Social MediaMedia Sharing

IRC

Gitter

Discord

Slack

Imgur VimeoYouTube

Twitter

Instagram

Facebook

TikTok

Telegram

3795

523 1271 1607

26 492 23 63 10

2102286 1506

914 228 266

464 829

FIGURE 4.9: Taxonomy of the Community Platform Category

4.9.1 Custom Community Platform

A Custom Community Platform is a platform that does not fall under any of the other subcategories that
still satisfies the requirements of a community platform. For instance, a project may have its own custom
community portal with its own login page that does not adhere to any other more widespread platform.

Detection Method: Contains the word community.

4.9.2 Instant Messaging

Instant Messaging is a form of online communication that offers real-time text transmission over the in-
ternet. The user of an instant messaging platform plays a crucial role in generating documentation that is
highly volatile.

Instant messaging provides a way to quickly ask and answer questions without any structure, and it
can switch from one topic to another in a matter of seconds. Furthermore, due to the structure of instant
messaging platforms (i.e., messages being sorted from most recent to oldest, only recent messages are easily
shown), newer discussions can bury old conversations.

An Instant Messaging platform has five subcategories: Discord, Gitter, IRC, Slack, and Telegram.

36 Chapter 4. Taxonomy of Documentation Sources

Discord

A source that references the Discord application31. Discord is an instant messaging and VoIP social plat-
form32.

Detection Method: Begins with any of [https://discord.gg, https://discord.com/invite] or con-
tains the word discord.

Gitter

A source that references the Gitter application33. Gitter is an open-source instant messaging and chat room
system for developers and users of GitLab and GitHub repositories34.

Detection Method: Begins with https://gitter.im or contains the word gitter.

IRC

A reference to an Internet Relay Chat (IRC) server or channel. IRC is a text-based chat system for instant
messaging35.

Detection Method: Contains any of the following whole words: irc, oftc, freenode.

Slack

A source that references the Slack application36. Slack is a cloud-based freemium cross-platform instant
messaging service created by Slack Technologies and currently owned by Salesforce37.

Detection Method: Contains the substring slack.

Telegram

A source that references the Telegram application38. Telegram Messenger is a globally accessible freemium,
cloud-based and centralized instant messaging (IM) service39.

Detection Method: Contains any of the following substrings: telegram, t.me.

4.9.3 Media Sharing

Media-sharing platforms are a place where a user mainly shares media such as videos or images. Crowd-
sourced documentation is prevalent in this category. We identify three subcategories: Imgur, Vimeo, and
YouTube.

31https://discord.com/
32https://en.wikipedia.org/wiki/Discord
33https://gitter.im/
34https://en.wikipedia.org/wiki/Gitter
35https://en.wikipedia.org/wiki/Internet_Relay_Chat
36https://slack.com/
37https://en.wikipedia.org/wiki/Slack_(software)
38https://telegram.org/
39https://en.wikipedia.org/wiki/Telegram_(software)

https://discord.com/
https://en.wikipedia.org/wiki/Discord
https://gitter.im/
https://en.wikipedia.org/wiki/Gitter
https://en.wikipedia.org/wiki/Internet_Relay_Chat
https://slack.com/
https://en.wikipedia.org/wiki/Slack_(software)
https://telegram.org/
https://en.wikipedia.org/wiki/Telegram_(software)

4.9. Community Platform 37

Imgur

A source that references Imgur40. Imgur is an American online image sharing and image hosting service41.

Detection Method: Contains the substring imgur.

Vimeo

A source that references Vimeo42. Vimeo, Inc. is an American video hosting, sharing, and services platform
provider43.

Detection Method: Contains the substring vimeo.

YouTube

A source that references YouTube44. YouTube is an American online video sharing and social media plat-
form45.

Detection Method: Contains any of the following substrings: youtube, youtu.be.

4.9.4 Social Media

Social media are websites and applications that enable users to create and share content of different types
(e.g., written posts, images, videos), or to participate in social networking with a community. The key
feature of social media is the ability to share content of various types with a large audience. This is in
contrast with other sources that are more focused either on the discussion aspect (e.g., Forum) or on specific
types of content (e.g., YouTube). Under Social Media, we define the four subcategories.

Facebook

A source that references Facebook46. Facebook is an online social media and social networking service47.

Detection Method: Remove https:// or http:// from the URL, take the top level domain of the URL.
Top level domain must contain the substring facebook.

Instagram

A source that references Instagram48. Instagram is a photo and video sharing social networking service49.

Detection Method: Contains the substring instagram.

40https://imgur.com/
41https://en.wikipedia.org/wiki/Imgur
42https://vimeo.com/
43https://en.wikipedia.org/wiki/Vimeo
44https://www.youtube.com/
45https://en.wikipedia.org/wiki/YouTube
46https://www.facebook.com/
47https://en.wikipedia.org/wiki/Facebook
48https://www.instagram.com/
49https://en.wikipedia.org/wiki/Instagram

https://imgur.com/
https://en.wikipedia.org/wiki/Imgur
https://vimeo.com/
https://en.wikipedia.org/wiki/Vimeo
https://www.youtube.com/
https://en.wikipedia.org/wiki/YouTube
https://www.facebook.com/
https://en.wikipedia.org/wiki/Facebook
https://www.instagram.com/
https://en.wikipedia.org/wiki/Instagram

38 Chapter 4. Taxonomy of Documentation Sources

TikTok

A source that references TikTok50. TikTok is a short-form video hosting service51.

Detection Method: Contains the substring tiktok.

Twitter

A source that references Twitter52. Twitter, currently rebranding to X, is an online social media and social
networking service53.

Detection Method: Contains the substring twitter.

4.10 Conclusion

In this chapter, we presented all the categories of our taxonomy (Figure 4.10). We aimed to keep the cate-
gories specific enough to be able to capture platforms that distinguish themselves in their attributes while
also keeping them as broad as possible. We tried to strike a balance between specific instances of platforms
(e.g., Discord) and general categories (e.g., Blog).

With the taxonomy defined, we see how it is implemented in RagnaDok to view the documentation
landscape of open-source projects and its evolution.

50https://www.tiktok.com/en/
51https://en.wikipedia.org/wiki/TikTok
52https://twitter.com/
53https://en.wikipedia.org/wiki/Twitter

https://www.tiktok.com/en/
https://en.wikipedia.org/wiki/TikTok
https://twitter.com/
https://en.wikipedia.org/wiki/Twitter

4.10. Conclusion 39

Bl
og

M
ed

iu
m

C
us

to
m

 B
lo

g

C
om

m
un

ity
Pl

at
fo

rm

In
st

an
t

M
es

sa
gi

ng

C
us

to
m

C
om

m
un

ity
 P

la
tfo

rm
So

ci
al

 M
ed

ia
M

ed
ia

 S
ha

rin
g

IR
C

G
itt

er

D
is

co
rd

Sl
ac

k

Im
gu

r
Vi

m
eo

Yo
uT

ub
e

Tw
itt

er

In
st

ag
ra

m

Fa
ce

bo
ok

Ti
kT

ok

D
oc

um
en

t

M
ul

tim
ed

ia
D

oc
um

en
t

Te
xt

ua
l

D
oc

um
en

t

Te
xt

 F
ile

Bo
ok

Vi
de

o
Im

ag
e

Au
di

o

Fo
ru

m

St
ac

kO
ve

rfl
ow

G
itH

ub
D

is
cu

ss
io

ns
C

us
to

m
 F

or
um

H
om

ep
ag

e

Th
ird

 P
ar

ty
 P

ro
je

ct
H

om
ep

ag
e

Pr
oj

ec
t

H
om

ep
ag

e

Sp
ec

ifi
c

Su
bs

ec
tio

n

M
ai

lin
g

Li
st

M
ai

lm
an

G
oo

gl
e

G
ro

up
s

W
ik

i

G
itH

ub
W

ik
i

W
ik

ip
ed

ia
C

us
to

m
 W

ik
i

R
ep

os
ito

ry
R

el
at

ed

Bu
g

Tr
ac

ke
r

So
ur

ce
 F

ile

R
ep

os
ito

ryIs
su

e
Tr

ac
ke

r

Ji
ra

Bu
gz

illa

So
ur

ce
Fo

rg
e

G
itH

ub

Bi
tb

uc
ke

t

La
un

ch
pa

d

G
itH

ub
Is

su
e

Tr
ac

ke
r

Pu
ll

R
eq

ue
st

G
itH

ub
Pu

ll
R

eq
ue

st

W
eb

la
te

W
or

dp
re

ss

Te
le

gr
am

R
el

at
iv

e
Fi

le

C
us

to
m

 M
ai

lin
g

Li
st

27
2

19
87

71
7

24
22

70
7

50
30

98
13

91
71

8

18
69

51
58

56
22

17
04

58
8

10
13

14
78

61
3

38
7

21
80

17
46

24
84

43
38

27
47

20
59

87
34

86
00

32
75

54
59

87
34

56
35

42
0

38
92

12
31

19
7

23
1

38
92

12
31

51
54

79
96

81
13

47

23
3

78
38

31
8

37
95

52
3

12
71

16
07

26
49

2
23

63
10

21
0

22
86

15
06

91
4

22
8

26
6

46
4

82
9

FIGURE 4.10: Taxonomy of the Documentation Landscape

41

Chapter 5

RagnaDok Implementation

In this chapter, we present the architecture and implementation of RagnaDok, a tool to visualize the docu-
mentation landscape based on the taxonomy presented in the previous chapter.

5.1 System Architecture

RagnaDok is a web-based application built using the React.js library for its frontend and Flask for its Python
backend. It is currently deployed at https://ragnadok.si.usi.ch/.

The system is split into two main parts (Figure 5.1), the backend and the frontend. It depends on GitHub
externally to mine data. The backend takes care of mining data, processing it and sending the results to the
frontend. The frontend requests the data from the backend and displays it in various visualizations.

Repositories
GitHub

Backend

Raw Data

Miner

Database

Processed Data

Mimir

Pickle Files

Frontend

Status/Summary

README View

Landscape View

Status

FIGURE 5.1: Architecture of RagnaDok

The mining process is split into two parts. Raw, unprocessed data is written to a SQLite database, which
is also used as a synchronizing point for the status of the mining. Then Mimir, the historian, receives the
raw data and processes it, writing it to a pickle file to store itself and all of its features in a binary file. The
pickle files are then unpickled when their specific repository is requested by the frontend and they supply
the requested data to its view.

https://ragnadok.si.usi.ch/

42 Chapter 5. RagnaDok Implementation

5.2 Data and History Mining

The main actions that Git tracks in a commit are: Add, Modify, Delete, Rename, Move (see Section 3.2.1).
The miner begins by acquiring the software repository that we wish to examine. To get access to the

repository we can choose to use the GitHub API or clone the repository on our machine. Between these
two approaches, we choose cloning the repository locally. This is because the GitHub API has a limit of
5000 requests per hour and our objective is to mine multiple repositories concurrently. In an exploratory
study of the thesis, we found that large projects could require a large number of requests by themselves
and this would not scale. With a fresh clone, we can extract information regarding all the actions that were
performed on all files without any requests at all.

Using the Log

Git maintains a log of the commits performed on a repository. We run the git log command with some
custom flags in order to have a formatted output of the information about commits that we can parse. The
flags that we employ are the following:

• -C [path]: takes a path argument and tells Git to use that path to run its commands. We pass the
absolute path to the cloned repository as the argument to ensure that the Git commands are executed
in the correct directory. This flag is actually a flag for the git command and not for the git log
command, so it must come before log.

• –name-status: displays the action performed on the files that were modified in a commit in the
form of a letter at the start of the line. For instance, we get A for additions and M for modifications.
With this option, renames are shown in the log with R[N] where [N] is a number between 0 and 100
representing the confidence that Git has that the file has been renamed rather than being a new file
altogether.

• –pretty=tformat:[format]: allows us to format other information in the commit as we prefer, such
as the date, the author, or the commit hash. The custom format that we pass in for our log is the fol-
lowing: "CommitHash:%H%nDate:%ad%nCommitAuthor:%an%nCommitMessage:%B" to display the hash
of the commit, its date and its message.

• –date=unix: With the –date=unix option, we format the date as a Unix timestamp. This is to avoid
inconsistencies that can happen due to time zones.

The output of this command may look like the following example:

CommitHash: 6eabfa27e7c380ed762f088092ee89d4bcc0b91a
Date: 1688314939
CommitAuthor: John Git
CommitMessage: add super cool feature

A NewFile.java
R100 old_file.txt new_file.txt
D deleted_file.py

FIGURE 5.2: Example Output of Custom Git Log

5.2. Data and History Mining 43

Filtering Commits

The custom formatted output of the git log command contains all files that have been affected by each
commit. We can now filter all the existing commits based on whether they modified a README file. To do
so, we need to define what classifies as a README file. We normalize the filename to lower case and use a
heuristic-based approach to filtering. A file is a README if:

• its filename contains one of the following substrings as whole words in its filename: readme, infotext,
read me, read.me, read_me, read-me. A whole word in our case is a substring that matches one of the
given substrings that is not bounded by any other alphabetical character. For example, this_is_a_-
readme.txt is considered as a README file because the substring readme is a whole word bounded
by underscore characters. Instead, ReadMessage will not be included as, while the substring readme
is present, it is not a whole word.

• its filename does not have any of the following extensions: .py, .java, .c, .cpp, .cc, .js, .jsx, .png,
.jpg, .jpeg, .gif, .svg, .ico, .ino. This is to avoid files that contain the substring, but that are not
text files, at least according to their extensions.

Heuristic based approaches to README identification have clear limitations. Although the case of
ThisIsAReadme.txt will not be captured by our heuristics, this should have a limited impact on our results.
From manual inspection, a typical README file does not have a very complicated or long name. In such
a case, we prefer to ignore complex filenames in favour of simpler and more accurate ones. When the
heuristic is satisfied for any single affected file in a commit, we mark this commit as a README commit
to check out during the next step of the mining. We always include the first and last commits made on a
repository regardless of their modified files as they represent the start and end of the repository.

Building Histories

With information on all the commits that are relevant to us, we can now begin to build the README
histories of the project. We perform a git checkout at each commit that we identify and we check all the
modified files. For each modified file, we check whether the heuristics for README files are satisfied. If
they are, we create a new README history (or we update a previously existing one), and we append to it
a new README version which contains all the relevant information for that README file and its commit.

For each commit, we use the scc1 command line tool to count the lines of comments in the reposi-
tory as source code comments could represent a type of documentation source. We compared scc to the
more known cloc2 with some performance tests (see Appendix A) and scc provided faster outputs with a
negligible impact in accuracy.

In addition, we separately keep track of commits that involved the deletion or the rename of a README
file. We use these to be able to determine when a history ends and to simplify history chaining (see Sec-
tion 3.2.3).

Once the raw unprocessed history data is mined, we store it into an SQLite database and prepare to
process it.

5.2.1 Post-Mining Processing

At this stage, the raw data has been saved to the database. We consider a project fully mined when its
data has also been processed. So, to follow up on and complete the mining, we call upon our historian,
Mimir. As described in Section 3.2.3, this class offers a number of features useful to process the data after
it is mined. In particular, it chains the histories together and, having control over all histories and versions
of a repository, it can use them to identify potential documentation sources and verify their status.

1https://github.com/boyter/scc
2https://github.com/AlDanial/cloc

https://github.com/boyter/scc
https://github.com/AlDanial/cloc

44 Chapter 5. RagnaDok Implementation

Finding Documentation Sources

We now want to find the documentation sources contained within the README versions that we have
mined. After identifying them, we want to confirm their status. The status of a documentation source can
be either live, dead, rejected or recovered. Where a live source represents an accessible URL, a dead source
is a URL that does not respond, a rejected source is something that we identified but that failed to respond
appropriately, and a recovered source is a rejected element that satisfied a broader recovery step.

With the access that Mimir has, it can process all versions across all histories. We now begin with
processing the content of each version to identify potential documentation sources contained within. We
achieve this by using different regular expressions to capture them. The focus is on capturing regular URLs,
URLs described with an HTML format (i.e., <a href="URL"), IRC nodes or channels, and email addresses.

We now further process these potential sources by going through each of them to see whether they are
live sources, dead sources, or even not sources at all. In this step, we reject a source typically because one of
the regular expressions could have over-captured parts of the content that do not provide any real source.

To control the status of the potential sources, we ping them. We do this first via a HEAD request as it
is lighter and faster. If this fails for any reason, we retry with a GET request. Pinging these documentation
sources is often not as straightforward. Sometimes URLs are left incomplete (e.g., example.com rather
than https://example.com) or they instead represent semantic relative paths within the README that
become URLs when displayed in a specific mark-up language such as Markdown or reStructuredText (e.g.,
./CONTRIBUTING.MD). Because of this, a GET request that fails does not mean that we should mark the
source as dead or rejected right away.

We retry making a request by appending http:// or https:// to the URL, or by reconstructing the
relative path via the commit hash. We can do this because GitHub has a clear URL pattern that we can use.
GitHub shows a file from a specific commit with the following pattern:

https://github.com/<PROJECT OWNER>/<PROJECT NAME>/blob/<COMMIT HASH>/<PATH TO FILE>

We have access to all the required information to reconstruct the relative path URL. When the response
status code is not a 404 Not Found, we can then say that the referenced file was a relative path in this
README at this point in time.

Should every attempt that we made fail, we mark the source as rejected.

Rejected Sources Recovery

After the pinging step, we make a second pass on the rejected source. Sometimes a source file is referenced
without the proper relative path, but it could still be a relevant documentation source. The same concept
is valid for other potential sources. We now check if we reject any source that is shaped like a source file or
a URL that has one of the top level domain endings taken from IANA.3

With this final step, a documentation can be either live, dead, rejected or recovered.

5.2.2 History Chaining

We now have all the data we need to represent README files over time along with the documentation
sources that they contain. The final step before the data is fully processed is history chaining. The chaining
follows the steps that we have taken in Section 3.2.3. When it is complete, the Mimir that oversees the
project is saved to a pickle file for re-use. In the case of projects with many histories, we postpone the
chaining as it is one of the most expensive steps of the mining.

3https://data.iana.org/TLD/tlds-alpha-by-domain.txt

https://data.iana.org/TLD/tlds-alpha-by-domain.txt

5.3. Visualization 45

5.3 Visualization

To explore the data that we mined and processed, we offer two different visualizations for README his-
tories and for the documentation landscape. The former being a polymetric view of the content and doc-
umentation sources present in README histories over time, while the latter offers project-specific and
aggregate views of the documentation landscape and the sources that compose it. A polymetric view is a
lightweight software visualization technique enriched with software metrics information [25]. In our case,
we enrich the view by adding metrics to the width and the height of rectangles.

5.3.1 README History Visualization

Given a GitHub project, we can visualize its histories, versions and documentation sources over time. It
allows us to observe the evolution of the README files of a project. We present our README history
visualization and highlight the main parts that compose it in Figure 5.3.

FIGURE 5.3: Visualization for README histories

These main components are:

1. Option Bar: It allows selection of repositories that have been analyzed and offers various options to
the visualization such as sorting the histories or visualizing chained histories instead.

2. View: The view produces an SVG view of the histories. The view encapsulates the entire lifespan
of a project by displaying each individual README version as a rectangle. The width and height of
each rectangle indicate its number of documentation sources and its number of lines respectively. To
be able to view smaller nodes with dimensions close to 0, we trade a more faithful view of the node
size by giving them a minimum and maximum dimension that they can reach. Each rectangle can be
hovered and selected to view insights about the version that it represents. Once selected, the view

46 Chapter 5. RagnaDok Implementation

that we see in point 4 can be seen for that specific version. Finally, on the bottom right corner, we
display useful data to know how long a project has existed and when it was last updated.

3. Repository CSV Button: This button allows to download the documentation sources that belong to
the latest version of the project. It calls a backend endpoint that we used to generate CSV files to
analyze for a manual annotation of the documentation sources, as mentioned in Section 3.2.4. The
manual annotation was an iterative and useful process to tweak the taxonomy of the documentation
landscape.

4. README Version Information: This side-tab displays information regarding the version that has
been selected and the first documentation sources that are present in the file. All the documentation
sources that we find in this version, along with the file content, can be seen by pressing the button at
the bottom.

Moving onto the version information tab, we can choose to view the content of the version and its
sources. This leads to the version view (Figure 5.4).

FIGURE 5.4: View for a Specific README Version

Here we can see its main components:

1. Utility Buttons: These buttons allow to view the README directly on GitHub and download an-
other annotation CSV respectively. Much like the previous CSV file, this too contains documentation
sources ready for manual annotation, with the only difference being that this isolates the version
rather than the entire project.

2. Documentation Source Tab: Here we display all the documentation sources that we identify within
this README version. They are separated by status as we described in Section 5.2.1, where “actual”
means live sources.

5.3. Visualization 47

3. Version Content: While we can view the content on GitHub via one of the utility buttons, we also
display the raw content of the README version directly on this page.

48 Chapter 5. RagnaDok Implementation

5.3.2 Documentation Landscape Visualization

To visualize the documentation landscape, we employ the taxonomy that we have defined in Chapter 4.
Each category of the taxonomy represents a documentation source type that we map onto the visualization.

We achieve this visualization via a customized treemap with a fixed layout. We visualize the docu-
mentation landscape of a single project and the aggregate landscape across all the projects that have been
mined and analyzed. They share the same layout with a few differences in the way their data is grouped
and displayed. These differences come mainly from the coloring and bucketing of the data. Data buck-
eting, also known as data binning, is a data pre-processing technique used to reduce the effects of minor
observation errors4. Data values that fall into a specific interval are replaced by a unique value that repre-
sents that interval. In our case, we keep the explicit interval and we bucket by color. We do this to capture
the frequency of a documentation source category more easily given a range and because relying solely on
opacity will yield possibly undistinguishable shades of colors for very similar values.

Documentation Landscape of a Project

For a single project, we visualize the landscape by counting the amount of documentation sources per
category. We change color and opacity based on how large this amount is and we bucket it into separate
ranges. Relying solely on color opacity to detect the presence of a documentation source can make it harder,
especially for values that are close to each other. Because of this, we use buckets with ranges that clearly
indicate how present a source is. The ranges are: 0, 1, 2 to 5, 6 to 10, 11 or more. We choose these ranges
as, first and foremost, they clearly outline whether a source is present or absent in a project. Secondly, we
choose 11 as the top bucket, as, beyond the intermediate ranges, the category is saturated. We present an
example visualization in Figure 5.5.

FIGURE 5.5: Documentation Landscape of the Elasticsearch Project

4https://en.wikipedia.org/wiki/Data_binning

https://en.wikipedia.org/wiki/Data_binning

5.3. Visualization 49

The view is split into two main parts:

• Option Bar: The option bar offers various settings for the visualization. It allows to choose the project
to visualize, or to visualize the aggregate landscape instead. It also allows to exclude recovered
documentation sources, which can be source of noise under some circumstances. On top of it, the
landscape can be viewed at any commit date that modified a README file in the repository. The
date can be picked from a list in the top-left corner, or it can be selected with a slider. The Play button
plays the evolution from start to finish with a short interval between each version.

• Landscape View: The landscape view displays the documentation landscape of the project that was
selected. It displays the custom treemap with a legend that explains the colors and the number of
documentation sources that we did not categorize within our taxonomy. A treemap is a space-filling
method of visualizing large hierarchical data sets [22]. In the example visualization (Figure 5.5), we
can see how the latest version of Elasticsearch5 that we have mined contains many documentation
sources in the GitHub, Source File, Relative File and Homepage categories. Other categories instead
show with a lower number of occurrences.

Aggregate Documentation Landscape

We visualize the aggregate documentation landscape by focusing on the overall presence of a documen-
tation source among all projects (Figure 5.6). We bucket the data differently compared to the previous
view and we skew this bucketing towards smaller percentages. We focus on capturing every 10-percentile
until 50%, after which the documentation is so popular we focus on capturing whether it surpasses larger
thresholds of 75% and 90%. Instead of using opacity, we use a white-to-black color scale to indicate absence
and presence of a category respectively.

FIGURE 5.6: Aggregate Documentation Landscape

5https://github.com/elastic/elasticsearch

https://github.com/elastic/elasticsearch

50 Chapter 5. RagnaDok Implementation

The view maintains the same aspect as the single documentation landscape view, it has a larger legend
for each bucket range along with the number of projects that existed at the time and the number of projects
in which our taxonomy fails to capture at least one documentation source. In addition, the option bar
allows to recompute an updated aggregate documentation landscape from the latest version of the data
in the system. Computing the entire aggregate landscape is expensive and, because it depends on many
projects, it tends to vary less over short time intervals. Because of these reasons, we choose to display the
aggregate landscape after the year 2000 and we compute it every trimester.

Summary View

We present a page to view the summary of the projects that we have mined and their current status, along
with other useful data (Figure 5.7). In addition, the toolbar at the top of the page allows to filter by project
name, source categories and by mining status. The display table can be sorted by any of the displayed
parameters.

FIGURE 5.7: Summary View of the Mined Projects

Mining View

Lastly, we present a page to mine projects directly from the UI (Figure 5.8). We used this to mine the
repositories in the thesis. The interface presents an option to mine a single project or mine multiple projects.
The option to mine multiple projects will be disabled as it is very resource consuming and we do not wish
for it to be abused. We also allow to chain the projects which histories we postponed during mining.

5.4. Conclusions 51

FIGURE 5.8: Mining View

5.4 Conclusions

In this chapter, we went over RagnaDok, the tool that implements our approach and taxonomy. We de-
scribed the way it mines and extracts data and the visualizations that it provides to map the documentation
landscape of a project. We can now discuss and analyze the data that we extracted via practical examples
of the aggregate documentation landscape and specific case studies.

53

Chapter 6

Analysis and Discussion

In this chapter, we provide an analysis over the data that we have mined and processed with RagnaDok,
our tool. We also present a number of case studies to look in-depth at the documentation landscapes of
specific projects to give examples of what the landscape can look like. In addition, we also analyse the
comprehensive documentation landscape that we extract from all the projects that we mined. Finally, we
describe the limitations and threats to the validity of our thesis.

6.1 Dataset

We now provide a quantitative and qualitative analysis of the data that we gathered through RagnaDok,
the tool that implements our approach.

6.1.1 Quantitative Analysis

We summarize general data regarding the projects that we mined and their histories (Table 6.1) across a
total number of 9,169 analyzed repositories.

Metric Total Sum Average Median Minimum Maximum
of Histories 808,291 88.10 16 1 52,889
of Sources 4,000,553 436.07 121 0 103,626
of Source Categories 178,017 19.40 18 0 53

TABLE 6.1: Repository and History Data

We can see how, despite the high average of 88.1 histories per repository, the median lies around 16.
This high discrepancy is due to some outliers that present an extremely high number of histories (Figure
6.1).

Outlier Projects

We find some outliers with a number of histories that range in the thousands, and, among these, we identify
three repositories that present an anomalous extreme number of histories (Table 6.2). These repositories do
not contain a single software systems that evolved over time. Instead, they contain a large amount of
aggregate information regarding a certain subjects.

54 Chapter 6. Analysis and Discussion

Project Name Number of Histories
demisto/content 13,986
doocs/leetcode 52,889
qmk/qmk_firmware 14,168

TABLE 6.2: Outlier Projects

The doocs/leetcode1 project is a repository that holds solutions in many programming languages to pro-
gramming problems from LeetCode2. Each of the solutions contains its own README file.

The demisto/content3 repository displays the following in its README:

“This repo contains content provided by Demisto to automate and orchestrate your Security
Operations. Here we will share our ever-growing list of playbooks, automation scripts, report
templates and other useful content.”

This project uses GitHub as storage for much more than a singular software system.
The qmk/qmk_firmware4 project might be the one that distinguishes itself among these three. The reposi-

tory revolves around a singular system: firmware for keyboards. The large number of histories is given by
the keyboards directory on the repository. It holds information on all the supported keyboards, each with
its own dedicated README file. Despite this difference among the projects, it becomes an outlier because
of the sheer number of README histories that it contains.

1

0

10000

20000

30000

40000

50000

Number of README histories per repository

(A) Boxplot of the Number of README Histories

1

100

101

102

103

104

Number of README histories per repository

(B) Boxplot of the Number of README Histories Scaled Loga-
rithmically

FIGURE 6.1: README History Outliers

6.2 Documentation Landscape in the Wild

In this section, we go over the evolution of the general documentation landscape that we get by aggregating
the data from the 9,169 repositories that we examined. We present the aggregate documentation landscape
starting from the year 2000. We do this because the aggregate documentation landscape is computationally
expensive to produce over the number of projects that we mined and because the number of existing

1https://github.com/doocs/leetcode
2https://leetcode.com/
3https://github.com/demisto/content
4https://github.com/qmk/qmk_firmware

https://github.com/doocs/leetcode
https://leetcode.com/
https://github.com/demisto/content
https://github.com/qmk/qmk_firmware

6.2. Documentation Landscape in the Wild 55

projects before the year 2000 is low, representing around 1% of the total projects. Because the landscape
is affected by multiple projects changing over time, we opt to take six-monthly snapshots as individual
changes to a single project are less likely to impact the landscape, while we can observe differences on a
longer period of time.

Our objective is to observe and understand what happened to the documentation sources over time,
and notice which sources are used across projects, and how their popularity and usage has changed across
two decades. We can already observe how the eight top level categories evolved over time (Figure 6.2).

20
00

-0
1

20
02

-0
7

20
05

-0
1

20
07

-0
7

20
10

-0
1

20
12

-0
7

20
15

-0
1

20
17

-0
7

20
20

-0
1

20
22

-0
7

20
23

-0
9

Date

0

2000

4000

6000

8000

Nu
m

be
r o

f P
ro

je
ct

s

Blog
Forum
Mailing List
Community Platform
Homepage
Wiki
Repository-Related
Document
Total Number of Projects

FIGURE 6.2: Presence in Projects of Top Level Categories of the Taxonomy Over Time

We can see that homepages and repository-related documentation sources follow the pattern of the
number of projects. Most of the projects reference a homepage, whether it is external or internal, as well
as some documentation source that is tightly related to the repository itself. We also see how many of
the categories that hold newer documentation sources (e.g., Community Platform) rise sharply in recent
years, as other categories are used in less and less projects (e.g., Mailing List). The full picture lets us see a
documentation landscape that has expanded for more than two decades and that might continue doing so.

6.2.1 Early Years

In this section, we see how the documentation landscape begins growing during its first five years into
the 2000s. With an increasing number of projects being created, the documentation landscape begins to
expand.

56 Chapter 6. Analysis and Discussion

Number of projects 147
Category Percentage
Blog 0.00%
Community Platform 0.00%
Document 22.45%
Forum 0.00%
Homepage 72.11%
Mailing List 10.20%
Repository-Related 62.59%
Wiki 0.00%
Uncategorized 27.89%

Number of projects 385
Category Percentage
Blog 0.26%
Community Platform 2.34%
Document 25.45%
Forum 3.38%
Homepage 76.36%
Mailing List 17.14%
Repository-Related 67.01%
Wiki 1.30%
Uncategorized 22.34%

Number of projects 591
Category Percentage
Blog 1.86%
Community Platform 2.88%
Document 26.90%
Forum 8.12%
Homepage 78.00%
Mailing List 18.27%
Repository-Related 69.88%
Wiki 6.94%
Uncategorized 22.00%

TABLE 6.3: Status of the Aggregate Landscape in its First Five Years (2000-2003-2005)

The starting point is at the beginning of 2000. Here, we can find that the most common categories are
files (textual and source) within the repository and homepages. The main platforms for communication
are mailing lists. (Figure 6.3a). GitHub seems to be present in the landscape at this point in time, but this is
due to a misclassification in a project, as GitHub did not exist yet at the time.

In 2003, we see that SourceForge joins homepages, documents and files as a widespread documentation
source, appearing in most of the projects. Mailing lists become more popular as Google Groups and Mail-
man are used. The first community platforms seem to appear along with the first blogs, forums, and wikis.
Bugzilla starts being referenced for bug tracking and reporting. We find Telegram in the documentation
landscape, but this is due to another misclassification.

In 2005, we find the first Wordpress and Wikipedia documentation sources in the landscape together
with Jira while most of the other sources remain stable or grow in usage.

(A) Aggregate Documentation Landscape in 2000 (B) Aggregate Documentation Landscape in 2003

(C) Aggregate Documentation Landscape in 2005 (D) Aggregate Documentation Landscape in 2009

(E) Aggregate Documentation Landscape in 2012 (F) Aggregate Documentation Landscape in 2015

FIGURE 6.3: Aggregate Documentation Landscape between 2000 and 2015

6.2. Documentation Landscape in the Wild 57

6.2.2 Towards Modern Sources

The documentation landscape continues growing steadily between 2005 and 2015. As the number of
projects increases, so does the number of sources and categories (Table 6.4). Some even start decreasing
in their usage, possibly being replaced by newer ones.

Number of projects 1460
Category Percentage
Blog 5.55%
Community Platform 4.11%
Document 28.56%
Forum 9.73%
Homepage 79.32%
Mailing List 22.95%
Repository-Related 66.10%
Wiki 25.34%
Uncategorized 21.64%

Number of projects 3339
Category Percentage
Blog 10.06%
Community Platform 11.14%
Document 27.85%
Forum 13.27%
Homepage 81.79%
Mailing List 23.84%
Repository-Related 74.39%
Wiki 36.12%
Uncategorized 22.34%

Number of projects 5434
Category Percentage
Blog 13.82%
Community Platform 17.11%
Document 35.48%
Forum 20.96%
Homepage 86.90%
Mailing List 21.75%
Repository-Related 80.05%
Wiki 41.90%
Uncategorized 29.67%

TABLE 6.4: Status of the Aggregate Landscape between 2009 and 2015

In 2009, we begin seeing social media and media-sharing websites on the rise, with YouTube, Twitter
and Facebook showing up. Repositories become more popular with Launchpad, Bitbucket, and GitHub
wikis starting to appear (Figure 6.3d). We also find another false positive for Slack, as it did not exist yet at
this time.

Moving forward to the latter half of 2012, we see how community platforms and media-sharing web-
sites start occupying more of the landscape. Google Groups follows along, and so does GitHub. Vimeo
and Imgur make an appearance together with Medium and StackOverflow. GitHub now appears in a
large percentage of all projects at this point in time, and some of them have a GitHub wiki and GitHub pull
requests. Discord is another false positive, as it did not exist in 2012.

Finally, in 2015, we see how social media becomes more relevant, with the addition of Instagram to
the landscape. While instant messaging remains stable, we see how now Slack, Gitter and Telegram do
exist in the landscape (on top of the false positives in past years). As GitHub takes over, we notice how
SourceForge has slightly decreased in usage. Blogs also become more popular. At this point in time we
also see how Bugzilla and Jira are steadily replaced by the GitHub issue tracking system which, among
other things, tracks bugs (Figure 6.3f).

6.2.3 The Current Landscape

We now move onto viewing the documentation landscape from 2015 to 2023, the time of writing of this
thesis. In this section, we see how some older documentation sources have declined and have been over-
taken by newer ones. The landscape is more stable at this point, only a few sources grow more popular
during the years, and the sample size increases to our total number (Table 6.5).

Number of projects 6363
Category Percentage
Blog 15.21%
Community Platform 21.00%
Document 40.74%
Forum 22.84%
Homepage 88.50%
Mailing List 21.69%
Repository-Related 82.92%
Wiki 43.20%
Uncategorized 34.10%

Number of projects 8430
Category Percentage
Blog 21.57%
Community Platform 32.66%
Document 52.55%
Forum 25.47%
Homepage 92.84%
Mailing List 21.17%
Repository-Related 89.68%
Wiki 45.65%
Uncategorized 45.73%

Number of projects 9169
Category Percentage
Blog 26.42%
Community Platform 41.39%
Document 61.32%
Forum 29.96%
Homepage 95.26%
Mailing List 22.46%
Repository-Related 93.79%
Wiki 47.31%
Uncategorized 51.83%

TABLE 6.5: Status of the Aggregate Landscape between 2015 and 2023

58 Chapter 6. Analysis and Discussion

We can see a sort of stability in the landscape now, most of the sources are well established and the
top level categories do not change too much, but we can see how many documentation sources are into
the process of being (or have been) replaced. For instance, we see how more than a third of the landscape
uses instant messaging platforms as tools. IRC makes up a very small percentage of this nowadays and
it is no longer the leading channel with Discord and Slack picking up the slack. We also see Bugzilla and
Jira disappear from the landscape. They are not fully gone, but they now exist in such a small fraction
that they end up represented as non-existent. Issue tracking from GitHub has replaced older bug trackers
for the most part, GitHub itself reigns supreme in the Repository category. Forums and wikis are the only
categories where GitHub coexists peacefully.

(A) Aggregate Documentation Landscape in 2016 (B) Aggregate Documentation Landscape in 2019

(C) Aggregate Documentation Landscape in 2023

FIGURE 6.4: Aggregate Documentation Landscape between 2015 and 2023

6.2.4 Documentation Landscape of the Subcategories

We also take a closer look at the landscape of some specific subcategories of the documentation landscape.
In this section, we present how social media, instant messaging, and community platforms evolve over
time (Figure 6.5). We can clearly see that Twitter is the favoured social media platform in open-source
projects, and the number of Twitter documentation sources that we see is also under-represented in our
dataset. We do not capture Twitter handles (e.g., @username), we only focus on the name of the platform,
so we can expect the number of Twitter documentation sources to be even greater (Figure 6.5b).

We also see that instant messaging platforms show a very interesting scenario. Older platforms like
IRC are in decline, while newer and more popular platforms like Discord and Slack have been on the rise
in recent years, quickly overtaking their competitors (Figure 6.5a).

6.3. Conclusions 59

Overall, we notice that instant messaging is the favoured community platform by developers, with
social media trailing behind Figure 6.5c). Custom platforms and media sharing platforms have been on the
rise, but they are not as popular as the former two. From this, we gather that software development has
shown a greater interest towards developing a community around the project to collaborate.

In addition, we can see how GitHub towers over other repository category. Since its appearance, it has
become more and more popular, leaving the other categories behind (Figure 6.5d).

20
00

-0
1

20
02

-0
7

20
05

-0
1

20
07

-0
7

20
10

-0
1

20
12

-0
7

20
15

-0
1

20
17

-0
7

20
20

-0
1

20
22

-0
7

20
23

-0
9

Date

0

200

400

600

800

Nu
m

be
r o

f P
ro

je
ct

s

IRC
Slack
Gitter
Discord
Telegram

(A) Documentation Landscape of Instant Messaging Platforms
20

00
-0

1

20
02

-0
7

20
05

-0
1

20
07

-0
7

20
10

-0
1

20
12

-0
7

20
15

-0
1

20
17

-0
7

20
20

-0
1

20
22

-0
7

20
23

-0
9

Date

0

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f P
ro

je
ct

s

Twitter
Facebook
Instagram
TikTok

(B) Documentation Landscape of Social Media

20
00

-0
1

20
02

-0
7

20
05

-0
1

20
07

-0
7

20
10

-0
1

20
12

-0
7

20
15

-0
1

20
17

-0
7

20
20

-0
1

20
22

-0
7

20
23

-0
9

Date

0

500

1000

1500

2000

Nu
m

be
r o

f P
ro

je
ct

s

Custom Community Platform
Social Media
Instant Messaging
Media Sharing

(C) Documentation Landscape of Community Platforms

20
00

-0
1

20
02

-0
7

20
05

-0
1

20
07

-0
7

20
10

-0
1

20
12

-0
7

20
15

-0
1

20
17

-0
7

20
20

-0
1

20
22

-0
7

20
23

-0
9

Date

0

1000

2000

3000

4000

5000

6000

7000

8000

Nu
m

be
r o

f P
ro

je
ct

s

Bitbucket
GitHub
SourceForge
Weblate
Launchpad

(D) Documentation Landscape of Repository

FIGURE 6.5: Documentation Landscape of Community Platforms and its Subcategories

6.3 Conclusions

In this chapter, we have seen how the aggregate documentation landscape has evolved over time. We have
been able to see that the documentation landscape has been in constant growth during the past twenty
years. While it more stable now, some older sources are far less popular than they used to be and, instead,
newer and faster platforms are taking over the landscape. We cannot know what kinds of software will be
developed, but it is not unreasonable to imagine that these newer documentation sources will one day be
replaced by even better ones. Let us now take a closer look at specific case studies.

61

Chapter 7

Case Studies

In this chapter, we present 3 case studies to show interesting and various shapes that the documentation
landscape of a project can take over time. Some of the following projects present an empty landscape when
they were created. Please, refer to Figure 7.1 for an example. In fact, it is not uncommon for the first commit
on a repository to be a project setup file (e.g., .gitignore file), a small source file, or a short README file
that has not yet evolved to reference sources.

In addition, in Section 5.2.1, we mentioned how we perform a recovery step for sources. We will see
how this step can affect the documentation landscape either by completing it or by damaging it.

FIGURE 7.1: Empty Documentation Landscape for Reference

7.1 An Explosion of Sources: scikit-learn

The scikit-learn project1 on GitHub is a popular open-source Python module that provides a comprehen-
sive collection of tools for various machine learning tasks. With this case study, we aim to show how the
documentation landscape of the project evolves and presents a rapid growth in documentation sources in
recent years.

1https://github.com/scikit-learn/scikit-learn

https://github.com/scikit-learn/scikit-learn

62 Chapter 7. Case Studies

7.1.1 Overview

At the time of mining, the project has 70 README histories and 30,155 commits. We also present the
number of unique documentation sources and categories on the latest version that we have mined with
and without recovered documentation sources (Table 7.1). The amount of sources and categories are very
close to each other in each case, this means that we capture most of the landscape via clear identification
(i.e., live or dead sources) and that the small number of recovered sources may potentially expose additional
insight.

With Recovered Without Recovered
Total Number of Unique Sources 74 60
Number of Source Categories 28 27

TABLE 7.1: Descriptive Statistics of scikit-learn

The scikit-learn library has existed for little over a decade at the time of writing and, throughout its life,
it presents a gradual growth in the documentation sources that it contains (Figure 7.2a). Furthermore, we
observe that the landscape already presents documentation sources at the beginning of the project, along
with a rather steep growth in the categories that it covers during its most recent years (7.2b).

(A) Unique Documentation Sources over Time for scikit-learn (B) Unique Source Categories over Time of scikit-learn

FIGURE 7.2: Documentation Landscape over Time of scikit-learn

7.1.2 Beginnings

The landscape of scikit-learn starts empty, with only a text file being referenced on the first commit (Figure
7.3a). Minutes after the first commit (Figure 7.3b), the documentation landscape grows quickly referencing
files across the repository, SourceForge and some external websites. The SciPy website2 is mentioned as
scikit-learn is built upon it, SourceForge mentions the Windows installation for the ctypes library and, on
the following day, the main README file of the project is created for the first time. The README mentions
SourceForge, but in this case it was not a project, but a mailing list hosted on SourceForge.3

2https://scipy.org/
3https://sourceforge.net/projects/scikit-learn/lists/scikit-learn-general

https://scipy.org/
https://sourceforge.net/projects/scikit-learn/lists/scikit-learn-general

7.1. An Explosion of Sources: scikit-learn 63

Only three months later, a Git mirror of the scikit-learn project4 is referenced in the README file along
with a custom wiki entry5 about the Git mirrors for NumPy and SciPy. Unfortunately, this wiki entry is now
unavailable. Both these entries will disappear in an update to the README two months later. In June of
2010, the #scikit-learn IRC channel on irc.freenode.net is first mentioned in the README. Within this
short timespan, the README has also now become a README.rst in the reStructuredText mark-up syntax.
GitHub also reappears in the landscape as it is now mentioned for cloning instead of the SourceForge
repository of the project. In November, a reference to the homepage of scikit-learn appears for the first
time.

In March of 2011, the project’s landscape includes many documentation sources, as well as the GitHub
issue tracking system that is mentioned in the README for bug reporting (Figure 7.4).

4https://github.com/yarikoptic/scikit-learn
5http://projects.scipy.org/numpy/wiki/GitMirror

https://github.com/yarikoptic/scikit-learn

64 Chapter 7. Case Studies

(A) scikit-learn on its First Commit in 2010

(B) scikit-learn Three Hours After its First Commit

(C) scikit-learn Three Months After its First Commit

FIGURE 7.3: Initial Documentation Landscape of scikit-learn

7.1. An Explosion of Sources: scikit-learn 65

FIGURE 7.4: scikit-learn in 2011 After One Year

7.1.3 Growth Over the Years

In August of 2012, some images are added to a secondary README file as examples of the dataset and
the landscape stabilizes until 2013, when a custom blog appears. Despite the path looking seemingly sec-
ondary: doc/themes/scikit-learn/static/ML_MAPS_README.txt, this blog entry references instructions
to edit the README according to the commit message (Figure 7.5). This post gives instructions on how
to edit a machine learning cheat sheet of the scikit-learn algorithms, making it relevant to the landscape.
The landscape now remains dormant until 2016, when the old mailing list from SourceForge that we were
not able to identify via our tool is swapped for a Mailman mailing list. The project had been using a mail-
ing list since it started, and now switched its source. In addition the README also mentions questions
tagged with scikit-learn on Stack Overflow.6 The current landscape will not change until 2020 (Figure
7.6), when the number of source types increases dramatically.

FIGURE 7.5: Commit Referencing the Blog Entry

6http://stackoverflow.com/questions/tagged/scikit-learn

http://stackoverflow.com/questions/tagged/scikit-learn

66 Chapter 7. Case Studies

FIGURE 7.6: scikit-learn in 2016

7.1.4 Explosion of Sources

In July of 2020, both Gitter and Twitter appear in the landscape of the project (Figure 7.7a). One year
later IRC is removed from the main README, and GitHub Discussions makes its appearance as a forum
along with it. At the end of 2021, five more sources make an appearance all at once. These sources are:
the official YouTube channel, a Twitter account for the commits made on the repository, an Instagram
account, a Facebook account, and a LinkedIn account which remains uncategorized in the taxonomy. In
2022, a TikTok account is referenced and, in 2023, the Twitter account dedicated to commits is removed.
The documentation landscape of scikit-learn changed significantly in the span of only three years and
maintained a rapid evolution throughout this period.

What should be noticed about some of these sources is that, while they are present and referenced, we
do not know to what degree they are used. A good example for this is the Instagram page of scikit-learn.7

In this case, the page exists, but it can hardly be considered active. At the time of writing, the most recent
post was made two months prior, in June, with the second most recent post being a year ago. The page is
inactive and with a small following. While it exists in the landscape, it does not contribute to it as much.

7.1.5 Conclusion

Within the span of 13 years, the documentation landscape of scikit-learn has grown steadily and has main-
tained a stable structure for the first half of its lifespan. From 2020 onwards, the landscape evolves rapidly,
covering almost twice as many categories in the taxonomy. Thanks to the landscape view on RagnaDok,
we can clearly see the landscape being taken over throughout the years and, in particular, we can see how
many of these sources are in a light shade of orange, indicating the presence of a single source per category.
When a source appears only once, the view lets us know that it is likely the project’s official source. Sources
that appear in a larger number, are likely to point to a larger set of documentation sources, such as source
files or other repositories. The one exception is the homepage category. We can see it is packed with docu-
mentation sources. It is not uncommon to reference external websites, and we can clearly see how specific
subsections of the project’s homepage are referenced over time, saturating the category.

7https://www.instagram.com/scikitlearnofficial/

https://www.instagram.com/scikitlearnofficial/

7.1. An Explosion of Sources: scikit-learn 67

(A) scikit-learn in 2020

(B) scikit-learn in 2021

(C) scikit-learn in May 2023

FIGURE 7.7: The Explosion of the Documentation Landscape

68 Chapter 7. Case Studies

7.2 fish-shell/fish-shell: A Simple Landscape

Fish shell8 is a modern, user-friendly command-line shell for Unix-like operating systems. It stands out for
its interactive features, syntax highlighting, and extensive auto-suggestions that enhance the command-
line experience. Fish aims to make the terminal more accessible for both beginners and experienced users.
Its powerful scripting capabilities, combined with a vast collection of plugins and extensions, make Fish
shell a popular choice for those seeking a more productive and user-friendly command-line environment.

7.2.1 Overview and Evolution

Fish shell has existed for 16 years at the time of writing. It presents 17,412 commits and 10 total README
histories. This is a simple case study, where we see how RagnaDok keeps track of the landscape as it
evolves. We can observe that, without recovered sources, the number of unique documentation sources
drops dramatically severely affecting the number of categories in the landscape. Because of this, we will
view this landscape without the recovered sources.

With Recovered Without Recovered
Total Number of Unique Sources 98 17
Number of Source Categories 18 17

TABLE 7.2: Descriptive Statistics of fish-shell

In the Fish shell project, we can see a gradual growth both in documentation sources and categories
within its documentation landscape, with two larger spikes in 2016 and 2021 respectively (Figure 7.8).
These two spikes match two separate updates to the README of a library used by the project. Because of
this, we can ignore the spikes as they do not belong to the real landscape, but to their own landscape for
the library that its README represents.

(A) Unique Documentation Sources over Time for Fish Shell (B) Unique Source Categories over Time of Fish Shell

FIGURE 7.8: Documentation Landscape over Time of Fish Shell without Recovered Sources

One peculiar thing that is noticed right away when looking at the documentation landscape of Fish
shell, is that the project is created in 2005 and its README is not updated until 2012 (Figure 7.9). This is

8https://github.com/fish-shell/fish-shell/

https://github.com/fish-shell/fish-shell/

7.2. fish-shell/fish-shell: A Simple Landscape 69

because the README9, through this seven-year gap, has been referencing the official documentation via a
command to be executed in the terminal. By running this command, the user can view the relevant doc-
umentation. In 2012, we now see SourceForge and a third-party homepage. In this case, the SourceForge
documentation sources really points to a mailing list hosted on SourceForge. The third-party homepage in
question is actually the project’s own homepage. We do not find this because the project’s name does not
match the project’s homepage domain. Fish shell used to reference its website under a different domain
that is now unused.10

Soon after, in 2015, we see GitHub being mentioned, both with its wiki and via actual repositories. We
also see Mailman appearing in another sub-README for a library.

FIGURE 7.9: Fish Shell in 2012 when the First Sources Appeared

In 2017, we find a Launchpad archive in the main README of the repository and the landscape stabi-
lizes for the next three years. Through the years, the project began referencing GitHub issues and, in 2020,
the official Gitter channel for Fish shell and Stack Overflow posts tagged fish make an appearance in the
README. In the final stage of the landscape, we see Stack Overflow disappearing. If we look deeper into
this, we see that it was replaced in favour of fish tagged posts on Stack Exchange.

7.2.2 Conclusion

The Fish shell project presents a very simple landscape that is slightly affected by README files of external
libraries. Nonetheless, we are able to observe the evolution of its documentation landscape over time with
ease. Most of its sources appear in the top-level README file, giving us a genuine landscape that is not
too noisy.

9https://github.com/fish-shell/fish-shell/blob/149594f974350bb364a76c73b91b1d5ffddaa1fa/README
10https://ridiculousfish.com/shell/

https://github.com/fish-shell/fish-shell/blob/149594f974350bb364a76c73b91b1d5ffddaa1fa/README
https://ridiculousfish.com/shell/

70 Chapter 7. Case Studies

(A) Fish Shell in 2017

(B) Fish Shell in 2020

(C) Fish Shell in 2023

FIGURE 7.10: Evolution of the Documentation Landscape of Fish Shell

7.3. GCC: Hidden Landscape 71

7.3 GCC: Hidden Landscape

The GNU Compiler Collection (GCC) stands as a cornerstone within the realm of software development.
It serves as an open-source suite of compilers that facilitate the translation of high-level programming
languages into machine code, enabling software to run on various hardware architectures. Initiated by
Richard Stallman and developed by the Free Software Foundation (FSF), GCC exemplifies the principles
of free and open-source software. With its extensive history and widespread adoption, GCC remains a
pivotal tool for developers across the globe, supporting the foundation of many software projects and
technological advancements.

7.3.1 Overview

Through its numerous years of existence, the project has over 200,000 (202,236 at the time of mining) com-
mits on GitHub at the time of writing and 320 total separate README histories. We present the total
number of README histories and commits, along with the amount of unique documentation sources and
categories that they cover on the most recent version of the project that we have analyzed both with and
without recovered documentation sources (Table 7.3).

With Recovered Without Recovered
Total Number of Unique Sources 915 488
Number of Source Categories 32 26

TABLE 7.3: Descriptive Statistics of GCC

We observe that the GCC project presented an empty documentation landscape during its first years of
development until 1993 (Figure 7.11). The number of categories that the documentation landscape covers
has increased gradually through the years with a spike in 2022-2023 (Figure 7.12b), while the number of
documentation sources peaks early on and then oscillates between 600 and 800 unique sources (Figure
7.12a).

(A) Unique Documentation Sources over Time for GCC (B) Unique Source Categories over Time of GCC

FIGURE 7.11: Documentation Landscape over Time of GCC

We also present that, when we remove sources that we recover, the documentation landscape shrinks
dramatically in size, while it still contains a similar number of categories over time. From this, given that
the number of categories is not too different, we can begin to assume that the recovered sources are bloating
the documentation landscape of the project.

72 Chapter 7. Case Studies

(A) Unique Documentation Sources over Time for GCC without
Recovered Sources

(B) Unique Source Categories over Time of GCC without Recov-
ered Sources

FIGURE 7.12: Documentation Landscape over Time of GCC without Recovered Sources

7.3.2 Initial State

The GCC project presented README files, but it did not have any documentation source during its first
three years of maintenance.

In 1993 we see the first documentation sources of GCC in the file gcc/README.ALTOS (Figure 7.13a).
It contains only four sources, which we were not able to verify via pinging, but that we find through
our recovery step. At this point in time, we find that the initial sources were one source file and three
occurrences of specific subsection. The documentation sources contained in gcc/README.ALTOS are:

• jkp@sauna.hut.fi

• info-gcc@prep.ai.mit.edu

• jkp@cs.hut.fi

• os/exec.c

In this case, upon manual inspection, we can see that the file content contains e-mail addresses that are
not detectable via pinging. One of these is a mailing list, but we are not able to find it with the address
alone. We do not consider e-mail addresses as documentation sources in our taxonomy. Therefore, in
reality, there is only one source file as a documentation source at this point in time. In addition, because
these are sources that we recover, and that we do not identify directly, we also look at the landscape without
recovered sources, giving us an empty landscape (Figure 7.1).

In 1997, we notice a large spike in the number of documentation sources, with a total of 386. Despite
this rapid growth (that is only at its beginning), the documentation landscape presents hardly any new
categories (Figure 7.15). We find various file types, and we see a drastic increase in homepages and source
files.

In fact, when we exclude the documentation sources that we recover, we can observe in 1995 the very
first actual documentation source of the documentation landscape of GCC (Figure 7.16). With this, we find
the very first source in the gcc/README.FRESCO file pointing to http://www.faslab.com/fresco/HomePag-
e.html, a dead documentation source on a currently for-sale domain (Figure 7.13b).

We now established that the documentation sources that we recover bloat the documentation landscape
of the project. For this reason, we are going to strictly focus on the landscape that includes sources that we
could clearly identify as either live or dead during the mining process.

7.3. GCC: Hidden Landscape 73

(A) First Appearance of Documentation Sources for GCC (B) First Real Documentation Source in the GCC Project

FIGURE 7.13: SourceForge and Bugzilla Appearances in the Landscape of GCC

FIGURE 7.14: GCC in 1993

FIGURE 7.15: GCC in 1997

74 Chapter 7. Case Studies

FIGURE 7.16: GCC in 1995 without Recovered Sources

7.3.3 First Documentation Sources

Our next main points of interest are present between the years 2000 and 2004, where we can observe a
gradual and steep growth in documentation sources, respectively (Figure 7.12).

In fact, with a total of 54 documentation sources in the landscape, we can find a new README:
zlib/README in 1999 (Figure 7.17). The file contains 10 sources (31 if we count recovered sources), one
of which looks to be the first mailing list that is explicitly mentioned in the landscape (Figure 7.19). Text
files are now mentioned as well.

Upon closer investigation in the zlib/README file, we find that the “mailing list” that we were referring
to points to a now dead URL: http://web2.airmail.net/markn/articles/zlibtool/zlibtool.htm. Sat-
isfying the criteria for a custom mailing list, it is categorized as one due to our priority rules for conflict
solving (Section 4.1). From a direct excerpt of the README file:

Mark Nelson <markn@tiny.com> wrote an article about zlib for the Jan. 1997 issue of Dr. Dobb’s
Journal; a copy of the article is available in http://web2.airmail.net/markn/articles/zlibtool/zlibtool.htm

We find that, in reality, this URL used to point to an article. Only one year later, we identify the first
occurrence of SourceForge being mentioned in the landscape. The file fastjar/README appears (Figure
7.18a) and quotes its own project on SourceForge, that is still alive to this day11.

In 2004, we find the first occurrence of Bugzilla being mentioned in the README file: libjava/README
(Figure 7.18b). The commit message reveals that obsolete information was removed from the README
file. In a prior version, the content of the README used to read:

Please submit bug reports via this URL: http://gcc.gnu.org/cgi-bin/gnatsweb.pl?database=gcc

And it was updated to reference Bugzilla for bug reports instead:

Please submit bug reports via this URL: http://gcc.gnu.org/bugzilla

11https://fastjar.sourceforge.net/

https://fastjar.sourceforge.net/

7.3. GCC: Hidden Landscape 75

We can also notice how the false positive mailing list disappears from the landscape. In addition to
Bugzilla, despite it not appearing in the landscape, we have reason to believe that IRC was already present
in the landscape of GCC in 2002 at its earliest. Our heuristics may fail to capture this, or it may not be
referenced in README files. But thanks to the internet archive, we are able to find the earliest version of
the IRC node for GCC.12 Together with IRC existing in 2002, the wayback machine also allows us to see
that mailing lists were indeed used already in 2000.13 Some of these relevant documentation sources are
not quoted in README files, they are instead present on the main website of the project and, therefore, not
easily identifiable.

In its first decade of life, GCC presents a rather stable landscape, with very few new documentation
source types appearing.

FIGURE 7.17: First Occurrence of a Mailing List in the Landscape

(A) First Occurrence of SourceForge in the Landscape (B) First Occurrence of Bugzilla in the Landscape

FIGURE 7.18: SourceForge and Bugzilla Appearances in the Landscape of GCC

12http://web.archive.org/web/20020720151422/irc://irc.oftc.net/
13http://web.archive.org/web/20000817013350/https://gcc.gnu.org/lists.html

http://web.archive.org/web/20020720151422/irc://irc.oftc.net/
http://web.archive.org/web/20000817013350/https://gcc.gnu.org/lists.html

76 Chapter 7. Case Studies

FIGURE 7.19: GCC in 1999

FIGURE 7.20: GCC in 2004

7.3.4 Modern Landscape

The documentation landscape remains stable without any radical changes in the categories that it covers
until 2010, where a custom wiki is referenced in the file libffi/README (Figure 7.21a).

In 2011, the only occurrence of Bugzilla that existed in the landscape since it appeared in 2004 is gone.
In fact, we can see it in the commit message itself (Figure 7.21b). The README now points to the generic
bug reporting page. In a version of this page from February 21st 201114, we notice how the bug reporting
page points to the GCC bug database. Bugzilla is still in use at the time, it disappears from the documen-
tation landscape of the project because it is no longer referenced on the repository. Instead, it is indirectly
referenced by the official project website.

14http://web.archive.org/web/20110221073604/http://gcc.gnu.org:80/bugs/

http://web.archive.org/web/20110221073604/http://gcc.gnu.org:80/bugs/

7.3. GCC: Hidden Landscape 77

In 2013, a custom forum appears in the README: libcilkrts/README (Figure 7.22a). The source in
question points to the forums for a new library that was added to GCC at http://software.intel.com/en-
us/forums/intel-cilk-plus/. GitHub is referenced for the first time in 2015, in the libffi/README (Figure
7.22b), referencing the libffi project.15 The README mentions that details on a merge can be seen at the
git log of this project. In 2018, the libcilkrts/README file is deleted and, with it, the only occurrence of
a forum in the documentation landscape so far.

In 2021, we see three new source categories rise all in the same commit: GitHub Issue Tracker, Cus-
tom Forum and Mailman. The old libffi/README file has been updated to a new markdown file format
libffi/README.md with new documentation sources that are explicitly mentioned. We see the issue tracker
of the libffi project16, along with two separate mailing lists:

• https://sourceware.org/mailman/listinfo/libffi-announce

• https://sourceware.org/mailman/listinfo/libffi-discuss

The second of these was erroneously categorized as a custom forum due to the word “discuss” being
present in the name of the mailing list. On top of the GCC mailing list, which we do not directly find in
README files, we now have clear lists referenced within the landscape.

GCC has existed over the course of three decades. Throughout its lifespan, it covers a rather small slice
of the taxonomy, and the size of the landscape begins growing only past the 2000s. Especially in recent
times, we observe a behaviour similar to scikit-learn, where the documentation landscape “explodes” with
new documentation sources, albeit in a much more contained matter. Older projects, such as GCC and the
Apache projects, tend to have their own website where sources are organized and mentioned there, rather
than in a README file. Because of this, the landscape can be harder to determine. Many of the sources
that we mention during the evolution of GCC come from README files of libraries, not belonging to the
project itself. In fact, the GCC project originally had already 60 pages of written documentation when it
was first created. This documentation is contained in many .texi files17 that must be processed in order to
be readable. Because of this, we could say that the documentation landscape of GCC has always existed,
but it was not easily traceable via README files.

(A) First Occurrence of a Wiki in the Landscape (B) Disappearance of Bugzilla from the Landscape

FIGURE 7.21: Wiki Appearance and Bugzilla Disappearance in the Landscape of GCC

15http://github.com/atgreen/libffi
16https://github.com/libffi/libffi/issues
17https://github.com/gcc-mirror/gcc/tree/master/gcc/doc

https://sourceware.org/mailman/listinfo/libffi-announce
https://sourceware.org/mailman/listinfo/libffi-discuss
http://github.com/atgreen/libffi
https://github.com/libffi/libffi/issues
https://github.com/gcc-mirror/gcc/tree/master/gcc/doc

78 Chapter 7. Case Studies

(A) First Occurrence of a Forum in the Landscape (B) First Occurrence of GitHub in the Landscape

FIGURE 7.22: Forum and Github Appearances in the Landscape of GCC

Especially with the GCC project, we have been able to see how our tool is limited and can completely
fail at capturing the documentation landscape of certain projects. GCC is an extremely large project that
had already established its documentation ahead of its versioning in Git. Because of this, we were not able
to uncover what lay underneath. Instead, we have seen the evolution of the libraries that GCC employed
via their README files. The project’s landscape, due to this hidden nature, is undetected in our tool and,
instead, we mostly see the evolution via the README of the libraries it uses.

7.4 Limitations

Our thesis presents many limitations. These limitations can be external (Section 7.4.1), as they come from
the source of our data and we cannot control it, or internal (Section 7.4.2), as they depend on our imple-
mentation and approach.

7.4.1 Hic Sunt Leones

The data that we extracted from GitHub presents a large amount of arbitrary content. The content of
README files is human-generated, making it unpredictable and non-trivial to parse accurately. What we
present is the result of curated data that is still far from perfect.

We previously specified (Section 5.2) that our heuristics for README files were limited and would
not be able to capture all possible README names. Despite that, we are able to identify 4,117 unique file
extensions for README files, only four of which actually represent a meaningful percentage in the dataset
(Table 7.4). Because of this, we focus on markdown and reStructuredText files, while treating any other
extension as a plain text file.

Extension Occurrence Percentage
.md 601,217 74.38%
No Extension 88,894 11.00%
.txt 55,524 6.87%
Others 52,565 6.50%
.rst 10,091 1.25%
Total 808,291 100.00%

TABLE 7.4: Occurrences of README Extensions Across All README Histories

7.5. Conclusions 79

7.4.2 Threats to Validity

While other extensions in total represent roughly 6% of the dataset, there is no extension in that category
that occurs more than 1% of the times. Many times, these extensions appear in the order of magnitude of
single digits, making them more unique than rare. Such as the .luigi extension with three occurrences.

This only affects file extensions, but it is already a good example that really represents how arbitrary
human-generated content can be. If the extensions already show anomalies at this level, the content of a
textual file has the potential to be far more complex.

We use the content of README files to find potential documentation sources that we then ping to
determine their status. Due to the arbitrary nature of the content, this can be insufficient. There are cases
in which URLs are not typed in their entirety (e.g., example.com instead of https://example.com). This
simple case we can deal with by prepending the necessary keywords.

But this is not all, we can find source files that are referenced that do not exist on the project repository
and that require context to know what they point to. Human error or README files that were not updated
can cause relative URLs to point somewhere where the file does not exist anymore. Even a fully functioning
URL cannot be guaranteed to be a documentation source; the URL could point to a domain that has been
hijacked or taken, or even the URL could be alive and well, but it could point to social media page that has
been inactive and, effectively, dead for a long time.

To curate this, we introduced the concept of “recovered” sources. This, too, is a limited approach. It
scans the sources that we rejected during the pinging step and, if it satisfies some more lax requirements,
we recover them. Recovered sources, other than opening the data to more false positives, also have no way
to confirm whether they are live, dead, or non-documentation sources without manual intervention. We
can see how this can put a bias on the landscape in the GCC case study (Section 7.3). We add an option to
view the landscape without the recovered sources for this reason. On one hand, we can observe a landscape
that is saturated by potential rejects, while on the other we observe a more curated but possibly incomplete
landscape.

The manual inspection that we used to generate the taxonomy might not be sufficient to develop a true
complete taxonomy. This is because we put emphasis on those documentation sources that the taxonomy
would fail to capture during the iterative process. If we found uncategorized sources, we would modify the
taxonomy to include them. Because of this, did not consider false positives for category detection as much.
In particular, the Homepage category has a very broad detection method, and some of the uncategorized
sources may wrongfully fall under this category.

7.5 Conclusions

This chapter outlines how our approach and tool allow us to map and view the documentation landscape
of software repositories. We are able to see what documentation sources appear and disappear over time.
The scikit-learn project shows us clearly how our mapping works when the landscape of a project contains
a small number of documentation sources, and when the most important ones appear only once in the
top-level README. We are also able to see how our approach can fail when it comes to particularly tricky
cases. The GCC project does not present many documentation sources that we can find via our taxonomy.
The ones we do identify do not even belong to the landscape of the project, but are instead found in the
README files of libraries that the project uses. Having seen how our approach can succeed and fail, we
can now draw our conclusions on our thesis.

81

Chapter 8

Conclusions

In this chapter, we summarize our contributions and propose possible avenues for future work.
This thesis presents an evolutionary analysis of the content of README files in open-source projects,

and a taxonomy that maps documentation sources to the landscape that they constitute. From our analysis,
we can observe that the documentation landscape has been expanding during the past decades. Despite
some sources being stable, we have been able to capture the rise of many new types of platforms. Following
this pattern, we can hypothesize that the documentation landscape will keep expanding as it has been so
far. But this is not the only outlook on the future of the documentation landscape. Robillard et al. have
introduced the concept of on-demand developer documentation [47]. With the advent of advanced large
language models such as ChatGPT 1, documentation can be generated on the fly, with little to no effort.
Something of the sort may also push the documentation landscape backwards, causing it to shrink and
implode as documentation sources become less useful when actually usable on-demand documentation
will rise.

8.1 Contributions

In this thesis, we provide an approach and tool to mine, process, and visualize the evolution of README
files and the documentation landscape of software repositories. We map the documentation landscape of
projects and offer a comprehensive taxonomy of its documentation sources that compose it. We use this
mapping to reconstruct the documentation landscape of a project from its creation and view the evolution
of its documentation sources. We summarize our contributions as follows:

— Mining of Evolutionary Data of the README Files of Git Repositories and Their Documentation
Sources

We reconstruct the history of README files stored in a Git repository by traversing the project’s
commits. With the commits, we focus on those that specifically modified a README file to extract
information about the commit and its sources. We use these data model and map the documentation
landscape through our taxonomy.

— Approach to Trace and Chain the Histories of README Files via Mimir

We can build the history of each unique README file within a Git repository. We create Mimir
to oversee the repository’s README histories, and we improve this history reconstruction step via
history chaining. Files on a Git repository can be renamed, moved, or duplicated. In these cases,
history chaining allows us to link different README histories that represent the same file even when
their filenames differ.

— Comprehensive Taxonomy of the Documentation Landscape

1https://chat.openai.com/

https://chat.openai.com/

82 Chapter 8. Conclusions

We present a taxonomy of the documentation landscape that categorizes the documentation sources
across eight main categories that distinguish themselves in their attributes. With this taxonomy we
are able to outline the documentation landscape of software systems and view its evolution over time.

8.2 Future Work

Introduce Aging to READMEs and Sources

Through an improved evolutionary modeling of the system, we could better represent the aging of a
README file and of the documentation sources. With aging, we would be able to determine how old
a documentation source is. This has the potential to lead to active monitoring of live sources, to determine
if they present any changes (e.g., redirecting to a new domain, dying). These changes could tell us more
about what happens to the documentation landscape of a system (e.g., the system is renovating, the system
is abandoned).

Further Visualizations

Additional visualizations could help understand the documentation landscape of a software system with
further ease. Such visualizations may include spider charts that summarize to which extent a documenta-
tion source appears in the landscape, or a multi-level doughnut chart that subdivides the landscape into
sectors for each category, adding a layer for each level of the hierarchy that we reach. With these visual-
izations, we can compare the documentation landscape of projects in a much more compact way, leading
into further investigation on the health of its documentation sources. For instance, we could see right away
if a project contains a specific type of documentation source, and how much of the landscape that source
occupies.

Improve Storage

The processed data is stored in pickle 2 files. On top of not being a secure file, these files can be problematic
when they are used to store objects that evolve and change over time, failing to open when a feature they
used has been removed, for instance. A more backward-compatible approach would greatly improve the
speed at which the model can be developed.

In addition, SQLite does not scale well when it comes to many concurrent accesses. The SQLite database
has been a synchronization point during the mining. Switching to a database server that is built to deal
with high levels of concurrency could help prevent the bottle neck that the SQLite database has been during
the mining process.

Improve the Chaining Algorithm

The chaining algorithm for history chaining is extremely computationally expensive. A large number of
histories with particularly large files can slow it down significantly. Optimizing this algorithm could speed
up mining drastically. The chaining algorithm uses text similarity to chain README histories. By setting
a threshold, the algorithm decides if a pair of histories must be chained. Evaluating the algorithm by
manually establishing a ground truth would determine its accuracy and would allow for fine-tuning of the
threshold for best results. Furthermore, experimenting with other techniques to determine text similarity
(e.g., cosine similarity, language models), could further improve the algorithm in accurately chaining the
histories.

2https://docs.python.org/3/library/pickle.html

https://docs.python.org/3/library/pickle.html

8.3. Final Words 83

Introduce Formal Concept Analysis

“Formal concept analysis has been developed as a field of applied mathematics based on the
mathematization of concept and concept hierarchy. It thereby allows us to mathematically rep-
resent, analyze, and construct conceptual structures.” [12]

By introducing formal concept analysis to the taxonomy and its categories, we can produce concepts that
describe the categories of the taxonomy. Through this, we can derive attributes of the documentation
source categories to better describe the documentation landscape. These attributes can allow us to explore
more deeply what characteristics of the sources are best-suited for developers. We have already observed a
shift from more static, slow sources to faster, more volatile ones. If we could investigate the more popular
attributes, we could find a medium to better support developers and the documentation that they produce.

8.3 Final Words

In this thesis, we presented an approach to explore the documentation landscape of software systems.
Through the evolution of their README files, we are able to better understand what kinds of sources
developers use to generate documentation. In these sources, we find a lack of standard in the way that
they are presented, and this made this thesis a perilous voyage through caveats, exceptions and trade-offs.
By producing a taxonomy of the documentation landscape, we believe that it will benefit the understanding
of how documentation is used and evolves over time. We ultimately aim at shaping the future of a more
structured and automatically explorable documentation landscape.

85

Appendix A

SCC and CLOC Comparison

CLOC is consistently outperformed by SCC, with the number of comments not differing too much between
in most of the cases (Table A.1).

Repository Name CLOC Output SCC Output CLOC Time SCC Time

scikit-learn/scikit-learn 124,729 40,654 2.12s 0.07s
tensorflow/tensorflow 851,187 679,415 27.14s 0.7s
facebook/react 43,336 43,372 1.4s 0.09s
angular/angular.js 38,066 37,624 2.32s 0.04
google/guava 129,398 186,743 2.99s 0.08s
apache/spark 464,610 357,699 13.81s 0.26s
arduino/Arduino 128,803 73,804 0.78 0.03s
apache/tomcat 194,728 188,052 3.15s 0.06s
jquery/jquery 4,764 4,899 1.30s 0.01s
spring-projects/spring-boot 192,772 186,394 8.57s 0.13s
netty/netty 113,370 113,237 2.42s 0.04s
elastic/elasticsearch 364,733 346,224 20.91s 0.29s
square/okhttp 20,663 20,616 0.46s 0.021s
vuejs/vue 5,265 5,178 0.35s 0.01s
freeCodeCamp/freeCodeCamp 4,991 3,546 24.00s 0.57s
flutter/flutter 236,231 238,214 4.53s 0.11s
torvalds/linux 4,228,780 4,137,871 1m 16.88s 2.27s
TheAlgorithms/Python 37,523 25,139 1.01s 0.02s
microsoft/vscode 126,482 127,893 14.82s 0.10s
ohmyzsh/ohmyzsh 5,628 5,276 0.35s 0.02s

TABLE A.1: CLOC and SCC Output Comparison

87

Appendix B

Inconsistency from GitHub Search

We summarize the projects that cannot be found on GitHub or that are forks in our dataset (Table B.1). We
have 31 total projects, 23 of which do not exist and 8 of which are forks. The inconsistencies can manifest
when the database of GitHub Search is outdated or when an alias is used to call the GitHub API. Find more
information at https://github.com/seart-group/ghs/issues/166.

Project Name Exclusion Reason

ADBSQL/AntDB Does not Exist
XLabsProject/iw4x-client Does not Exist
bitnami/bitnami-docker-kafka Does not Exist
bitnami/bitnami-docker-laravel Does not Exist
bitnami/bitnami-docker-mariadb Does not Exist
bitnami/bitnami-docker-mongodb Does not Exist
bitnami/bitnami-docker-moodle Does not Exist
bitnami/bitnami-docker-nginx Does not Exist
bitnami/bitnami-docker-postgresql Does not Exist
bitnami/bitnami-docker-redis Does not Exist
bitnami/bitnami-docker-redmine Does not Exist
bitnami/bitnami-docker-wordpress Does not Exist
burtonator/polar-bookshelf Does not Exist
chinnkarahoi/jd_scripts Does not Exist
freedesktop/poppler Does not Exist
getferdi/ferdi Does not Exist
glimpse-editor/Glimpse Does not Exist
hove-io/mimirsbrunn Does not Exist
taigaio/taiga-back Does not Exist
wappalyzer/wappalyzer Does not Exist
wayland-project/wayland Does not Exist
wayland-project/weston Does not Exist
wix/ricos Does not Exist
WorldDbs/lotus Fork
anurodhp/VaxProj Fork
github/super-linter Fork
iDevision/enhanced-discord.py Fork
krassowski/jupyterlab-lsp Fork
pliablepixels/zmNinja Fork
qaprosoft/carina Fork
terraform-providers/terraform-provider-oci Fork

TABLE B.1: List of Projects Excluded from the Analysis

https://github.com/seart-group/ghs/issues/166

89

Bibliography

[1] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez, Laura Moreno,
Gabriele Bavota, and Michele Lanza. Software Documentation Issues Unveiled. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE), pages 1199–1210. IEEE, 2019.

[2] Emad Aghajani, Csaba Nagy, Mario Linares-Vásquez, Laura Moreno, Gabriele Bavota, Michele Lanza,
and David C. Shepherd. Software Documentation: The Practitioners’ Perspective. In 2020 IEEE/ACM
42nd International Conference on Software Engineering (ICSE), pages 590–601. IEEE, 2020.

[3] Emad Aghajani, Gabriele Bavota, Mario Linares-Vásquez, and Michele Lanza. Automated Documen-
tation of Android Apps. IEEE Transactions on Software Engineering, 47(1):204–220, 2021.

[4] Navid Ahmadi, Mehdi Jazayeri, Francesco Lelli, and Sasa Nesic. A Survey of Social Software Engi-
neering. In 2008 23rd IEEE/ACM International Conference on Automated Software Engineering - Workshops,
pages 1–12. IEEE, 2008.

[5] Christian Bird, Peter C. Rigby, Earl T. Barr, David J. Hamilton, Daniel M. German, and Prem Devanbu.
The Promises and Perils of Mining Git. In 2009 6th IEEE International Working Conference on Mining
Software Repositories, pages 1–10. IEEE, 2009.

[6] Ned Chapin, Joanne E. Hale, Khaled Md. Khan, Juan F. Ramil, and Wui-Gee Tan. Types of Software
Evolution and Software Maintenance. Journal of Software Maintenance and Evolution: Research and Prac-
tice, 13(1):3–30, 2001.

[7] Preetha Chatterjee, Kostadin Damevski, Lori Pollock, Vinay Augustine, and Nicholas A. Kraft. Ex-
ploratory Study of Slack Q&A Chats as a Mining Source for Software Engineering Tools. In 2019
IEEE/ACM 16th International Conference on Mining Software Repositories (MSR), pages 490–501. IEEE,
2019.

[8] Timothy Clem and Patrick Thomson. Static Analysis at GitHub: An Experience Report. Queue, 19(4):
42–67, sep 2021.

[9] Ozren Dabic, Emad Aghajani, and Gabriele Bavota. Sampling Projects in GitHub for MSR Studies.
In 2021 IEEE/ACM 18th International Conference on Mining Software Repositories, pages 560–564. IEEE,
2021.

[10] Osama Ehsan, Safwat Hassan, Mariam El Mezouar, and Ying Zou. An Empirical Study of Developer
Discussions in the Gitter Platform. ACM Transactions on Software Engineering and Methodology, 30(1),
2021.

[11] Andrew Forward and Timothy C. Lethbridge. The Relevance of Software Documentation, Tools and
Technologies: A Survey. In Proceedings of the 2002 ACM Symposium on Document Engineering, page
26–33. ACM, 2002.

[12] Bernhard Ganter, Gerd Stumme, and Rudolf Wille. Formal Concept Analysis: Foundations and Applica-
tions, volume 3626. springer, 2005.

90 BIBLIOGRAPHY

[13] Tudor Adrian Girba. Modeling history to understand software evolution. PhD thesis, University of Bern,
2005.

[14] Gillian J. Greene and Bernd Fischer. CVExplorer: Identifying Candidate Developers by Mining and
Exploring Their Open Source Contributions. In Proceedings of the 31st IEEE/ACM International Confer-
ence on Automated Software Engineering, page 804–809. ACM, 2016.

[15] Anja Guzzi, Alberto Bacchelli, Michele Lanza, Martin Pinzger, and Arie van Deursen. Communica-
tion in Open Source Software Development Mailing Lists. In 2013 10th Working Conference on Mining
Software Repositories (MSR), pages 277–286. IEEE, 2013.

[16] Tudor Gîrba, Jean-Marie Favre, and Stéphane Ducasse. Using Meta-Model Transformation to Model
Software Evolution. Electronic Notes in Theoretical Computer Science, 137(3):57–64, 2005.

[17] Mark Handel and James D. Herbsleb. What is Chat Doing in the Workplace? In Proceedings of the 2002
ACM Conference on Computer Supported Cooperative Work, page 1–10. ACM, 2002.

[18] Foyzul Hassan and Xiaoyin Wang. Mining Readme Files to Support Automatic Building of Java
Projects in Software Repositories. In 2017 IEEE/ACM 39th International Conference on Software Engi-
neering Companion (ICSE-C), pages 277–279. IEEE, 2017.

[19] Claudia Hauff and Georgios Gousios. Matching GitHub Developer Profiles to Job Advertisements. In
2015 IEEE/ACM 12th Working Conference on Mining Software Repositories, pages 362–366. IEEE, 2015.

[20] James D. Herbsleb, David L. Atkins, David G. Boyer, Mark Handel, and Thomas A. Finholt. Introduc-
ing Instant Messaging and Chat in the Workplace. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, page 171–178. ACM, 2002.

[21] Jialun Aaron Jiang, Charles Kiene, Skyler Middler, Jed R. Brubaker, and Casey Fiesler. Modera-
tion Challenges in Voice-Based Online Communities on Discord. Proceedings of the ACM on Human-
Computer Interaction, 3(CSCW), 2019.

[22] Brian Johnson and Ben Shneiderman. Tree-maps: A Space-filling Approach to the Visualization of
Hierarchical Information Structures. In Proceeding Visualization ’91, pages 284–291, 1991.

[23] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M. German, and Daniela
Damian. The Promises and Perils of Mining GitHub. In Proceedings of the 11th Working Conference on
Mining Software Repositories, page 92–101. ACM, 2014.

[24] Andreas M. Kaplan and Michael Haenlein. Users of the World, Unite! The Challenges and Opportu-
nities of Social Media. Business Horizons, 53(1):59–68, 2010.

[25] Michele Lanza and Stephane Ducasse. Polymetric Views - A Lightweight Visual Approach to Reverse
Engineering. IEEE Transactions on Software Engineering, 29(9):782–795, 2003.

[26] Meir M. Lehman. On Understanding Laws, Evolution, and Conservation in the Large-Program Life
Cycle. Journal of Systems and Software, 1:213–221, 1979.

[27] Meir M. Lehman. Programs, Life Cycles, and Laws of Software Evolution. Proceedings of the IEEE, 68
(9):1060–1076, 1980.

[28] Meir M. Lehman and Laszlo A. Belady. Program Evolution: Processes of Software Change. Academic
Press Professional, Inc., 1985.

[29] Meir M. Lehman and Juan F. Ramil. An Approach to a Theory of Software Evolution. In Proceedings
of the 4th International Workshop on Principles of Software Evolution, page 70–74. ACM, 2001.

BIBLIOGRAPHY 91

[30] Timothy C. Lethbridge, Janice Singer, and Andrew Forward. How Software Engineers Use Documen-
tation: The State of the Practice. IEEE Software, 20(6):35–39, 2003.

[31] Bin Lin, Alexey Zagalsky, Margaret-Anne Storey, and Alexander Serebrenik. Why Developers Are
Slacking Off: Understanding How Software Teams Use Slack. In Proceedings of the 19th ACM Conference
on Computer Supported Cooperative Work and Social Computing Companion, page 333–336. ACM, 2016.

[32] Mariam El Mezouar, Feng Zhang, and Ying Zou. Are Tweets Useful in the Bug Fixing Process? An
Empirical Study on Firefox and Chrome. Empirical Software Engineering, 23(3):1704–1742, 2018.

[33] Alan S. Neal and Roger M. Simons. Playback: A Method for Evaluating the Usability of Software and
Its Documentation. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
page 78–82. ACM, 1983.

[34] David Lorge Parnas. Software Aging. In Proceedings of 16th International Conference on Software Engi-
neering, pages 279–287. IEEE, 1994.

[35] David Lorge Parnas and Jan Madey. Functional Documents for Computer Systems. Science of Computer
Programming, 25(1):41–61, 1995.

[36] Chris Parnin, Christoph Treude, Lars Grammel, and Margaret-Anne Storey. Crowd Documentation:
Exploring the Coverage and the Dynamics of API Discussions on Stack Overflow. Technical report,
Georgia Institute of Technology, 2012.

[37] Esteban Parra, Ashley Ellis, and Sonia Haiduc. GitterCom: A Dataset of Open Source Developer Com-
munications in Gitter. In Proceedings of the 17th International Conference on Mining Software Repositories,
page 563–567. ACM, 2020.

[38] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Michele Lanza.
Prompter: A self-confident recommender system. In 2014 IEEE International Conference on Software
Maintenance and Evolution, pages 577–580. IEEE, 2014.

[39] Roxana Lisette Quintanilla Portugal and Julio Cesar Sampaio do Prado Leite. Extracting Require-
ments Patterns from Software Repositories. In 2016 IEEE 24th International Requirements Engineering
Conference Workshops (REW), pages 304–307. IEEE, 2016.

[40] Gede Artha Prana, Christoph Treude, Ferdian Thung, Thushari Atapattu, and David Lo. Categorizing
the Content of GitHub README Files. Empirical Software Engineering, 24(3):1296–1327, 2019.

[41] Marco Raglianti. Topology of the Documentation Landscape. In 2022 IEEE/ACM 44th International
Conference on Software Engineering: Companion Proceedings (ICSE-Companion), pages 297–299. ACM,
2022.

[42] Marco Raglianti, Roberto Minelli, Csaba Nagy, and Michele Lanza. Visualizing Discord Servers. In
2021 Working Conference on Software Visualization (VISSOFT), pages 150–154. IEEE, 2021.

[43] Marco Raglianti, Csaba Nagy, Roberto Minelli, Bin Lin, and Michele Lanza. On the Rise of Modern
Software Documentation. In 37th European Conference on Object-Oriented Programming (ECOOP 2023).
Dagstuhl: Schloss Dagstuhl, 2023.

[44] Juan F. Ramil and Meir M. Lehman. Metrics of Software Evolution as Effort Predictors - A Case Study.
In Proceedings 2000 International Conference on Software Maintenance, pages 163–172. IEEE, 2000.

[45] H. Rudy Ramsey, Michael E. Atwood, and James R. Van Doren. A Comparative Study of Flowcharts
and Program Design languages for the detailed procedural specification of Computer Programs. Tech-
nical report, Science APPLICATIONS INC ENGLEWOOD CO, 1978.

92 BIBLIOGRAPHY

[46] Martin P. Robillard. What Makes APIs Hard to Learn? Answers from Developers. IEEE Software, 26
(6):27–34, 2009.

[47] Martin P. Robillard, Andrian Marcus, Christoph Treude, Gabriele Bavota, Oscar Chaparro, Neil Ernst,
Marco Aurélio Gerosa, Michael Godfrey, Michele Lanza, Mario Linares-Vásquez, Gail C. Murphy,
Laura Moreno, David Shepherd, and Edmund Wong. On-demand Developer Documentation. In 2017
IEEE International Conference on Software Maintenance and Evolution, pages 479–483, 2017.

[48] Marc J. Rochkind. The Source Code Control System. IEEE Transactions on Software Engineering, SE-1
(4):364–370, 1975.

[49] Nayan B. Ruparelia. The History of Version Control. SIGSOFT Software Engineering Notes, 35(1):5–9,
jan 2010.

[50] Hareem Sahar, Abram Hindle, and Cor-Paul Bezemer. How are Issue Reports Discussed in Gitter
Chat Rooms? Journal of Systems and Software, 172:110852, 2021.

[51] Vitalis Salis and Diomidis Spinellis. RepoFS: File System View of Git Repositories. SoftwareX, 9:288–
292, 2019.

[52] Sylvia B. Sheppard, Elizabeth Kruesi, and John W. Bailey. An Empirical Evaluation of Software Docu-
mentation Formats. In Proceedings of the 1982 Conference on Human Factors in Computing Systems, page
121–124. ACM, 1982.

[53] Lin Shi, Xiao Chen, Ye Yang, Hanzhi Jiang, Ziyou Jiang, Nan Niu, and Qing Wang. A First Look at
Developers’ Live Chat on Gitter. In Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, page 391–403. ACM,
2021.

[54] Ben Shneiderman, Richard Mayer, Don McKay, and Peter Heller. Experimental Investigations of the
Utility of Detailed Flowcharts in Programming. Communications of the ACM, 20(6):373–381, 1977.

[55] Davide Spadini, Maurício Aniche, and Alberto Bacchelli. PyDriller: Python Framework for Mining
Software Repositories. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2018, page 908–911.
ACM, 2018.

[56] Margaret-Anne Storey, Christoph Treude, Arie van Deursen, and Li-Te Cheng. The Impact of Social
Media on Software Engineering Practices and Tools. In Proceedings of the FSE/SDP Workshop on Future
of Software Engineering Research, page 359–364. ACM, 2010.

[57] Margaret-Anne Storey, Leif Singer, Brendan Cleary, Fernando Figueira Filho, and Alexey Zagalsky.
The (R)Evolution of Social Media in Software Engineering. In Future of Software Engineering Proceed-
ings, page 100–116. ACM, 2014.

[58] Viktoria Stray and Nils Moe. Understanding Coordination in Global Software Engineering: A Mixed-
methods Study on the Use of Meetings and Slack. Journal of Systems and Software, 170:110717, 2020.

[59] Robert C. Tausworthe. Standard Classification of Software Documentation. Technical report, NASA,
1976.

[60] Christoph Treude and Martin P. Robillard. Augmenting API Documentation with Insights from Stack
Overflow. In 2016 IEEE/ACM 38th International Conference on Software Engineering, pages 392–403.
IEEE, 2016.

	Abstract
	Acknowledgements
	Introduction
	Thesis Contributions
	Document Structure

	State of the Art
	Documentation
	Early Work
	The 90s and Early 2000s
	The Current Scenario

	Mining Software Repositories
	Conclusion

	Mapping the Documentation Landscape
	Documentation Landscape
	Dataset Generation and Overview
	Sourcing and Retrieving the Data
	Evolutionary Modeling
	Building README Histories

	Piecing Histories Together
	Mimir: The Historian

	Documentation Source Identification
	Parsing the README
	History Chaining
	Manual Inspection

	Conclusion

	Taxonomy of Documentation Sources
	Conflicts Between Categories
	Blog
	Medium
	Wordpress
	Custom Blog

	Forum
	Custom Forum
	GitHub Discussions
	StackOverflow

	Mailing List
	Custom Mailing List
	Google Groups
	Mailman

	Wiki
	Custom Wiki
	GitHub Wiki
	Wikipedia

	Document
	Multimedia Document
	Audio
	Image
	Video

	Textual Document
	Book
	Text File

	Homepage
	Homepage Detection
	Project Homepage
	Third-Party Project Homepage
	Specific Subsection

	Repository-Related
	Bug Tracker
	Bugzilla
	Jira

	Issue Tracker
	Pull Request
	Relative File
	Repository
	Bitbucket
	GitHub
	Launchpad
	SourceForge
	Weblate

	Source File

	Community Platform
	Custom Community Platform
	Instant Messaging
	Discord
	Gitter
	IRC
	Slack
	Telegram

	Media Sharing
	Imgur
	Vimeo
	YouTube

	Social Media
	Facebook
	Instagram
	TikTok
	Twitter

	Conclusion

	RagnaDok Implementation
	System Architecture
	Data and History Mining
	Using the Log
	Filtering Commits
	Building Histories

	Post-Mining Processing
	Finding Documentation Sources
	Rejected Sources Recovery

	History Chaining

	Visualization
	README History Visualization
	Documentation Landscape Visualization
	Documentation Landscape of a Project
	Aggregate Documentation Landscape
	Summary View
	Mining View

	Conclusions

	Analysis and Discussion
	Dataset
	Quantitative Analysis
	Outlier Projects

	Documentation Landscape in the Wild
	Early Years
	Towards Modern Sources
	The Current Landscape
	Documentation Landscape of the Subcategories

	Conclusions

	Case Studies
	An Explosion of Sources: scikit-learn
	Overview
	Beginnings
	Growth Over the Years
	Explosion of Sources
	Conclusion

	fish-shell/fish-shell: A Simple Landscape
	Overview and Evolution
	Conclusion

	GCC: Hidden Landscape
	Overview
	Initial State
	First Documentation Sources
	Modern Landscape

	Limitations
	Hic Sunt Leones
	Threats to Validity

	Conclusions

	Conclusions
	Contributions
	Future Work
	Final Words

	SCC and CLOC Comparison
	Inconsistency from GitHub Search

