downl oaded: 20.5.2020

.org/10. 7892/ boris. 104477 |

https://doi

source:

168 Stéphane Ducasse and Oliver Ciupke

or smaller elements (like number of characters of a method definition), while dif-
ferent coupling metrics were used which represent different intensities of mutual
uses of system components. The measures and links between the hyperdocu-
ments which our tool has to generate are configurable. They have the form of
parameterised SQL-statements in an HTML-skeleton file. The SQL statements
are used to extract the relevant information from a database which represents
the symbol-table information of a CASE-Tool (cf. [LeSi98]).

We developed the thesis that the understandability of a large software system
can be improved by adding this type of explicit documentation to the system. A
small exploratory student experiment with ten participants was performed which
was used to validate our approach; in this experiment, both our tool and other
approaches were used to restructure given software systems into subsystems, i.e.
the systems were given as flat sets of files which were to be grouped into several
subsystems (cf. [AbPeS098]). To be able to compare the results with respect to
the effort spent, we restricted the time for each restructuring to 120 minutes.
This was our way to operationalise understandability. Each student restructured
two systems (each with about 60 classes), one with the information presented
by our tool and one without, in which source-code analysis was performed in
any other way the students chose to. We collected information about which kind
of information the students used in the projects, and we compared the different
results, e.g. with respect to forgotten classes. Our basic assumptions were con-
firmed, e.g. when our tool was used, the students used more different types of
information in the same time than when it was not used. Students reported that
the extra data presented by our tool was helpful for their understanding.

References

[AbPeS098] F. B. e Abreu, C. Pereira, P. Sousa. ” Reengineering the Modularity of Object Oriented
Systems”, in Workshop ”Techniques, Tools and Formalisms for Capturing and Assessing the
Architectural Quality in Object Oriented Software”, ECOOP’98.

[LeSi98] C. Lewerentz, F. Simon. ” A Product Metrics Tool Integrated into a Software Development
Environment”, in Proceedings of Workshop on Object-Oriented Product Metrics for Software
Quality Assessment, ECOOP’98, CRIM Montréal 1998.

[K6RuSi98] G. Kohler, H. Rust, F. Simon. ”An Assessment of Large Object Oriented Software
Systems”, in Proceedings of Workshop on Object-Oriented Product Metrics for Software Quality
Assessment, ECOOP’98, CRIM Montréal 1998.

Reverse Engineering Based on Metrics and Program Visualization
Authors: Michele Lanza, Stéphane Ducasse and Serge Demeyer

Emails: {lanza,ducasse,demeyer}@iam.unibe.ch

URLs: http://www.iam.unibe.ch/"{lanza, ducasse,demeyer}/

The reverse engineering of large scale object-oriented legacy systems is a chal-
lenging task with a definite need for approaches providing a fast overview and
focussing on the problematic parts. We investigate a hybrid approach, combining
the immediate appeal of visualizations with the scalability of metrics. Moreover,
we impose ourselves the extra constraint of simplicity: i.e. (a) that the graph
layout should be quite trivial and (b) that the extracted metrics should be sim-
ple to compute. Indeed, our goal is to identify useful combinations of graphs
and metrics that can be easily reproduceable by reverse engineers using some



Experiences in Object-Oriented Re-engineering 169

scriptable reengineering toolset. We validate such a hybrid approach by showing
how CodeCrawler —the experimental platform we built— allowed us to reverse
engineer a small to medium software system.

Principle. We enrich a simple graph with metric information of the object-

oriented entities it represents. In a two-dimensional graph we render up to five
metrics on a single node at the same time.
| I

meolg

Fig. 1. Inheritance Tree; node width = NIV, node height = NOM and color =
NCV.

As an example 1 shows an inheritance tree graph of CodeCrawler. The nodes
represent the classes, the edges represent the inheritance relationships. The size
of the nodes reflects the number of instance variables (width) and the number
of methods (height) of the class, while the color tone represent the number of
class variables. The position of a node does not reveal a metric as it is used to
show the location in the inheritance tree.

CodeCrawler. CODECRAWLER is developed within the VISUALWORKS 2.0
SMALLTALK environment, relying on the HotDraw framework [John92] for its
visualization. Moreover, it uses the facilities provided by the VISUALWORKS
2.0 environment for the SMALLTALK code parsing, whereas for other languages
like C++ and Java it relies on Sniff+ to generate code representation coded
using the FAMIX Model [Tich98]. For more information see
http://www.iam.unibe.ch/"lanza/codecrawler/

References

[Duca99] S. Ducasse, S. Demeyer and M. Lanza, A Hybrid Reverse Engineering Approach Com-
bining Metrics and Program Visualization, Accepted to WCRE’99.

[Lanz99] M. Lanza, Master thesis, Combining Metrics and Graphs to Reverse Engineer OO Appli-
cations, University of Berne, 1999.



