
Miler: A Toolset for Exploring Email Data

Alberto Bacchelli, Michele Lanza, Marco D’Ambros
REVEAL @ Faculty of Informatics - University of Lugano, Switzerland

ABSTRACT
Source code is the target and final outcome of software develop-
ment. By focusing our research and analysis on source code only,
we risk forgetting that software is the product of human efforts,
where communication plays a pivotal role. One of the most used
communications means are emails, which have become vital for
any distributed development project. Analyzing email archives is
non-trivial, due to the noisy and unstructured nature of emails, the
vast amounts of information, the unstandardized storage systems,
and the gap with development tools.

We present Miler, a toolset that allows the exploration of this
form of communication, in the context of software maintenance and
evolution. With Miler we can retrieve data from mailing list reposi-
tories in different formats, model emails as first-class entities, and
transparently store them in databases. Miler offers tools and support
for navigating the content, manually labelling emails with discussed
source code entities, automatically linking emails to source code,
measuring code entities’ popularity in mailing lists, exposing struc-
tured content in the unstructured content, and integrating email
communication in an IDE.

Categories and Subject Descriptors
D.2.7 [Distribution, Maintenance, and Enhancement]: Enhance-
ment

General Terms
Data Analysis, Human Factors, Tool Demonstration

Keywords
Toolset, Unstructured Data, Email Communication

1. INTRODUCTION
Teamwork has become the norm, rather than the exception, in

software development [16]. Indeed, software is the product of
human effort, which involves various activities other than writing
source code. The actual code is the result of activities, such as
information seeking, reflection, domain analysis, or design [11].

Copyright is held by the author/owner(s).
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

When developers work in teams, these activities—which revolve
around the production of source code—are pervaded by communi-
cation. For example, by studying how programmers spend their
time at work, Perry et al. discovered that only 40% of programmers’
working time is devoted to the assigned tasks, i.e., coding [13], while
most of their time is spent in communication [14]. Communication
is how developers form and exchange their entire knowledge about
the software systems they are developing [11,12]. For these reasons,
the investigation of communication and social aspects of software
engineering is becoming an increasingly important field of research.

Developers’ communication takes place either in face-to-face
meetings or in electronic form, using means such as instant messag-
ing, wikis, forums or emails. We focus on email communication,
which is effectively used in both co-located [12] and distributed
development teams and, according to Fogel, the “bread and butter”
of communications in open source software (OSS) projects [10]. To
our knowledge, there are no widely accepted methodologies, well-
detailed and generalizable approaches, or comprehensive tools to
conduct analyses and research on email data pertaining to software
systems. While researchers enumerated the risks of using “off-the-
shelf” techniques for processing mailing list data and showed how
noise affects email content [8], most research dealing with emails
employs ad hoc techniques tailored to specific research questions.
Not only are these techniques scarcely described in the papers, but
also their implementations are not publicly available, since they
often consist of throwaway scripts, which do not offer the wider
breadth and longer vision of full-fledged tools.

Our goal is to devise an approach for exploring email data pertain-
ing to software projects, to investigate different facets of software
evolution and development. We present the Miler toolset, which
allows us to: (1) import mailing list archives from different formats;
(2) model emails as first-class entities of a system, according to an
extensible meta-model we devised [4]; (3) manually interact with
emails and, for example, label them to create benchmarks for as-
sessing the accuracy of mining methods [3]; (4) automatically find
the traceability links between email and code entities, using various
linking techniques [3, 7]; (5) automatically recognize emails and
lines containing source code [2]; (6) export manual benchmarks and
code metrics computed from mailing lists, such as “popularity” [1];
and (7) integrate email communication in the IDE [5, 6].

2. A WALK THROUGH MILER
Miler is a toolset to import, process, store, and analyze both

email and source code data. Figure 1 presents the architecture:
It shows the data sources from which Miler retrieves emails, the
external components, the importers, the kernel, and the processing
and analysis tools. Miler offers the following features:

Importing email data: Different software systems use different

External
components Miler

miler core

Linking
inference
engine

IR engine

Miler
Game

Target
System

MarkMail
Service

Popularity
metrics

extractor

Data
exporter

DBMS

System
Models

Traceability
links

E-Mails

Mbox
files
Mbox
files
MBox
files

Versioning
System

Source
Code

MarkMail
Importer

Mbox
Importer

Importer

Island
grammar
engine

Kernel

Mailing
Lists

MOOSE

Structured
fragments
detector

Figure 1: The architecture of Miler

applications to manage mailing lists, without offering a consistent
data access. Also, a system can change mailing list application
in its lifetime, i.e., it might be necessary to write multiple email
data importers per software system. We tackled this issue by using
MarkMail1, an online service for searching among more than 8,000
up-to-date mailing lists. Our importer crawls the MarkMail website,
extracts the selected emails, and instantiates them as objects in the
Miler kernel. We also devised an importer for the MBox format.

Importing source code: Miler is implemented in Smalltalk and
handles software systems written in many programming languages
through specialized importers. For Java systems, we use inFusion2,
for parsing the source code, and Moose [9], for extracting code
metrics. The models created by inFusion and enriched by Moose are
imported in the Miler kernel as System Models. We implemented an
island grammar engine to import systems written in other languages.
By using the concept of island parsing [17] and the Smalltalk parser
generator PetitParser [15], our engine parses Actionscript, Php, and
C systems, and consistently stores their models in the Miler kernel.

Interacting with emails: Using the Smalltalk web framework
Seaside, we implemented the Miler Game (MG), a web tool to
interact with emails stored in the Miler kernel. Figure 2 shows MG
main interface.

1 2

Figure 2: The Miler Game

MG has a modular structure organized in panels. Point 1 marks
the main panel, which displays the selected email, with metadata
on top and the whole body colored according to quotation levels to
1http://markmail.org
2http://www.intooitus.com/inFusion.html

enhance readability. Within the MG, one can plug any number of
panels to interact with the stored systems and emails. For example,
on the left of the main panel, we see: the navigation panel, to read a
specific email, given its id; the system panel, to switch to another
system; the mails panel, with statistics on emails.

Linking code and emails: Even though development emails of-
ten discuss about source code artifacts, establishing actual links to
the referenced entities is “left as an exercise to the reader”. More-
over, the links are one way, there is no visible link from source code
to emails. We implemented a linking inference engine to automat-
ically infer these traceability links and persist them in the Miler
kernel. The engine can use either lightweight text-matching tech-
niques we devised [3], or the information retrieval (IR) techniques
implemented in our IR engine (i.e., LSI and tf-idf). With different
case studies, we studied whether one of the techniques better han-
dles this linking task [7]. To perform such a comparison, we needed
an oracle, i.e., a dataset in which emails are already linked to the
correct code artifacts. Since it did not exist, we created it manually
by reading thousands of emails. This task was completed with a
specialized panel implemented for MG (Point 2, Figure 2). It allows
the reader to annotate the email with the chosen links and supports
the linking process in the following way: When users find a link,
they can type the first letters of the artifact name in an autocomple-
tion field; this triggers a menu that shows each entity, whose name
includes the letters typed, colored following a special convention
to display its time relation with the email. Users click on the right
artifact to persist the link (this also avoids typos).

Detecting structured fragments: Development emails often
contain structured content, e.g., stack traces, patches, or code snip-
pets. Separating structured fragments from natural language in email
messages brings several benefits, such as better characterization of
mailing list usage, improved authors’ behavior analysis, or recon-
struction of alternative system models [2]. Miler offers a Structured
fragments detector tool, which implements a lightweight technique
we devised for classifying emails and lines containing structured
data. We created a benchmark to evaluate the effectiveness of a
number of candidate techniques for detecting structured fragments
in email content. This task was completed with a specialized panel
for MG: It allows the reader to label email parts as structured, simply
by selecting them with the mouse and using a keyboard shortcut.

Computing metrics and exporting data: From emails modeled
in the Miler kernel, we can extract a number of metrics, ranging from
simple measures (e.g., number of email authors, or the lines of text
in the contents), up to more complex ones (e.g., number of emails
with code). The Miler toolset offers a Popularity metrics extractor,
which—by combining link data, system model, and email model—
extracts various metrics to seize the “popularity” of code artifacts in
mailing lists discussions [1]. Extracted metrics can be exported with
the Data exporter component, into XML and CSV files. We used it
to export the benchmarks manually created for testing our email-to-
code linking techniques and structured fragments detection.

3. REMAIL IN A NUTSHELL
Remail is an Eclipse plugin to integrate emails in the IDE and

allow developers to interact with them while programming. It distills
the Miler toolset for software development and comprehension [6].

Figure 3 shows Remail at work. We can click on any entity in the
augmented package explorer (Point 1) to see all the emails related
to it in the e-mails panel, organized in threads and sorted by date
(Point 2). Once an email is selected, we can read it in the e-mail
content panel (Point 3), where colors denote quotation levels and
emphasize the related entity. In the package explorer, numbers close
to entities are one “popularity” metric—total related emails. Remail

http://markmail.org
http://www.intooitus.com/inFusion.html

1

2

3

4

Figure 3: The Remail plugin for the Eclipse IDE

also enriches the code editor: When classes are mentioned in the
source code, side markers give information about related emails.
For example (Point 4), the mouse cursor hovers a marker in a line
of code that uses the class Fields, and Remail informs us about the
existence of 8 emails concerning this entity.

Figure 4 shows Remail’s architecture: Remail can use email data
stored in the database created by Miler, or in MBox files via an
embedded importer; it embeds the linking inference engine and
popularity metrics extractor to provide all their functionalities; and
it takes advantage of the Eclipse IDE to access the system model.

Eclipse

Remail

Kernel

Traceability
links

E-Mails

Eclipse
system model

Linking
inference
engine

Popularity
metrics

extractor

Miler
DBMS

Mbox
files
Mbox
files
MBox
files

MBox
importer

Figure 4: The architecture of Remail

4. CONCLUSION
We created Miler as a consistent, flexible, and extensible toolset

for exploring email data. To our knowledge, Miler offers the most
comprehensive and extensible solution for dealing with emails per-
taining to software development. A video of our toolset is available
at: http://www.youtube.com/watch?v=MspFmsA1p_A

Acknowledgements: The Swiss National Science foundation’s
support for the project “SOSYA” (SNF Project No. 132175) and the
European Smalltalk User Group (www.esug.org).

5. REFERENCES
[1] A. Bacchelli, M. D’Ambros, and M. Lanza. Are popular classes more

defect prone? In Proc. of FASE 2010 (13th Int’l Conf. on Fundamental
Approaches to Software Engineering), pages 59–73, 2010.

[2] A. Bacchelli, M. D’Ambros, and M. Lanza. Extracting source code
from e-mails. In Proc. of ICPC 2010 (18th IEEE Int’l Conf. on
Program Comprehension), pages 24–33, 2010.

[3] A. Bacchelli, M. D’Ambros, M. Lanza, and R. Robbes. Benchmarking
lightweight techniques to link e-mails and source code. In Proc. of
WCRE 2009, pages 205–214. IEEE CS Press, 2009.

[4] A. Bacchelli, M. Lanza, and M. D’Ambros. Miler - a tool
infrastructure to analyze mailing lists. In Proc. of FAMOOSr 2009 (3rd
Int’l Workshop on FAMIX and Moose in Reengineering), 2009.

[5] A. Bacchelli, M. Lanza, and V. Humpa. Towards integrating e-mail
communication in the IDE. In Proc. of SUITE 2010 (2nd Int’l
Workshop on Search-driven Development), pages 1–4, 2010.

[6] A. Bacchelli, M. Lanza, and V. Humpa. Rtfm (read the factual mails) -
augmenting program comprehension with remail. In Proc. of CSMR
2011 (15th IEEE European Conf. on Software Maintenance and
Reengineering), page to be published, 2011.

[7] A. Bacchelli, M. Lanza, and R. Robbes. Linking e-mails and source
code artifacts. In Proc. of ICSE 2010 (32nd Int’l Conf. on Software
Engineering), pages 375–384. ACM, 2010.

[8] N. Bettenburg, E. Shihab, and A. Hassan. An empirical study on the
risks of using off-the-shelf techniques for processing mailing list data.
In Proc. of ICSM 2009 (25th Int’l Conf. on Software Maintenance),
pages 539 –542. IEEE CS, 2009.

[9] S. Ducasse, T. Gîrba, M. Lanza, and S. Demeyer. Moose: a
collaborative and extensible reengineering environment. In Tools for
Software Maintenance and Reengineering, RCOST / Software
Technology Series, pages 55–71. Franco Angeli, 2005.

[10] K. Fogel. Producing Open Source Software. O’Reilly, 2005.
[11] A. J. Ko, R. DeLine, and G. Venolia. Information needs in collocated

software development teams. In Proc. of ICSE 2007, pages 344–353.
ACM, 2007.

[12] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining mental models:
a study of developer work habits. In Proc. of ICSE 2006, pages
492–501. ACM, 2006.

[13] D. E. Perry, N. Staudenmayer, and L. G. Votta. People, organizations,
and process improvement. IEEE Software, 11:36–45, July 1994.

[14] D. E. Perry, N. Staudenmayer, and L. G. Votta. Understanding and
improving time usage in software development. In Process-Centered
Environments. John Wiley and Sons, 1996.

[15] L. Renggli, S. Ducasse, Gîrba, and O. Nierstrasz. Practical dynamic
grammars for dynamic languages. In Proc. of DYLA 2010 (4th
Workshop on Dynamic Languages and Applications), 2010.

[16] A. Sarma, G. Bortis, and A. van der Hoek. Towards supporting
awareness of indirect conflicts across software configuration
management workspaces. In Proc. of ASE 2007 (22nd Int’l Conf. on
Automated Software Engineering), pages 94–103. ACM, 2007.

[17] O. Stock, R. Falcone, and P. Insinnamo. Island parsing and
bidirectional charts. In Proc. of the 12th Conf. on Computational
Linguistics, pages 636–641, 1988.

http://www.youtube.com/watch?v=MspFmsA1p_A
www.esug.org

	Introduction
	A Walk Through Miler
	Remail in a nutshell
	Conclusion
	References

