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Abstract. A key requirement for many distributed systems is to be
resilient toward partial failures, allowing a system to progress despite
the failure of some components. This makes programming of such sys-
tems daunting, particularly in regards to avoiding inconsistencies due
to failures and asynchrony. This work introduces a formal model for
crash failure handling in asynchronous distributed systems featuring a
lightweight coordinator, modeled in the image of widely used systems
such as ZooKeeper and Chubby. We develop a typing discipline based
on multiparty session types for this model that supports the specifica-
tion and static verification of multiparty protocols with explicit failure
handling. We show that our type system ensures subject reduction and
progress in the presence of failures. In other words, in a well-typed system
even if some participants crash during execution, the system is guaran-
teed to progress in a consistent manner with the remaining participants.

1 Introduction

Distributed programs, partial failures, and coordination. Developing
programs that execute across a set of physically remote, networked processes
is challenging. The correct operation of a distributed program requires correctly
designed protocols by which concurrent processes interact asynchronously, and
correctly implemented processes according to their roles in the protocols. This
becomes particularly challenging when distributed programs have to be resilient
to partial failures, where some processes crashes while others remain operational.
Partial failures affect both safety and liveness of applications. Asynchrony is the
key issue, resulting in the inability to distinguish slow processes from failed ones.
In general, this makes it impossible for processes to reach agreement, even when
only a single process can crash [20].

In practice, such impasses are overcome by making appropriate assumptions
for the considered infrastructure and applications. One common approach is to
assume the presence of a highly available coordination service [28] – realized
using a set of replicated processes large enough to survive common rates of



process failures (e.g., 1 out of 3, 2 out of 5) – and delegating critical decisions
to this service. While this coordinator model has been in widespread use for
many years (cf. consensus service [23]), the advent of cloud computing has re-
cently brought it further into the mainstream, via instances like Chubby [4] and
ZooKeeper [28]. Such systems are used not only by end applications but also by
a variety of frameworks and middleware systems across the layers of the protocol
stack [11,21,33,44].

Typing disciplines for distributed programs. Typing disciplines for dis-
tributed programs is a promising and active research area towards addressing
the challenges in the correct development of distributed programs. See Hüttel et
al. [29] for a broad survey. Session types are one of the established typing disci-
plines for message passing systems. Originally developed in the π-calculus [24],
these have been later successfully applied to a range of practical languages, e.g.,
Java [27,45], Scala [43], Haskell [38,42], and OCaml [30,41]. Multiparty session
types (MPSTs) [15,25] generalize session types beyond two participants. In a
nutshell, a standard MPST framework takes (1) a specification of the whole
multiparty message protocol as a global type; from which (2) local types, describ-
ing the protocol from the perspective of each participant, are derived; these are
in turn used to (3) statically type check the I/O actions of endpoint programs
implementing the session participants. A well-typed system of session endpoint
programs enjoys important safety and liveness properties, such as no reception
errors (only expected messages are received) and session progress. A basic in-
tuition behind MPSTs is that the design (i.e., restrictions) of the type language
constitutes a class of distributed protocols for which these properties can be
statically guaranteed by the type system.

Unfortunately, no MPST work supports protocols for asynchronous distributed
programs dealing with partial failures due to process crashes, so the aforemen-
tioned properties no longer hold in such an event. Several MPST works have
treated communication patterns based on exception messages (or interrupts)
[6,7,26]. In these works, such messages may convey exceptional states in an ap-
plication sense; from a protocol compliance perspective, however, these messages
are the same as any other message communicated during a normal execution of
the session. This is in contrast to process failures, which may invalidate already
in-transit (orphan) messages, and where the task of agreeing on the concerted
handling of a crash failure is itself prone to such failures.

Outside of session types and other type-based approaches, there have been a
number of advances on verifying fault tolerant distributed protocols and appli-
cations (e.g., based on model checking [31], proof assistants [47]); however, little
work exists on providing direct compile-time support for programming such ap-
plications in the spirit of MPSTs.

Contributions and challenges. This paper puts forward a new typing dis-
cipline for safe specification and implementation of distributed programs prone
to process crash failures based on MPSTs. The following summarizes the key
challenges and contributions.



Multiparty session calculus with coordination service. We develop an ex-
tended multiparty session calculus as a formal model of processes prone to
crash failures in asynchronous message passing systems. Unlike standard
session calculi that reflect only “minimal” networking infrastructures, our
model introduces a practically-motivated coordinator artifact and explicit,
asynchronous messages for run-time crash notifications and failure handling.

MPSTs with explicit failure handling. We introduce new global and local
type constructs for explicit failure handling, designed for specifying proto-
cols tolerating partial failures. Our type system carefully reworks many of the
key elements in standard MPSTs to manage the intricacies of handling crash
failures. These include the well-formedness of failure-prone global types, and
the crucial coherence invariant on MPST typing environments to reflect the
notion of system consistency in the presence of crash failures and the re-
sulting errors. We show safety and progress for a well-typed MPST session
despite potential failures.

To fit our model to practice, we introduce programming constructs similar
to well-known and intuitive exception handling mechanisms, for handling con-
current and asynchronous process crash failures in sessions. These constructs
serve to integrate user-level session control flow in endpoint processes and the
underlying communications with the coordination service, used by the target
applications of our work to outsource critical failure management decisions (see
Fig. 1). It is important to note that the coordinator does not magically solve
all problems. Key design challenges are to ensure that communication with it
is fully asynchronous as in real-life, and that it is involved only in a “minimal”
fashion. Thus we treat the coordinator as a first-class, asynchronous network
artifact, as opposed to a convenient but impractical global “oracle” (cf. [6]),
and our operational semantics of multiparty sessions remains primarily chore-
ographic in the original spirit of distributed MPSTs, unlike works that resort
to a centralized orchestrator to conduct all actions [5,8]. As depicted in Fig. 1,
application-specific communication does not involve the coordinator. Our model
lends itself to common practical scenarios where processes monitor each other
in a peer-based fashion to detect failures, and rely on a coordinator only to
establish agreement on which processes have failed, and when.

We also developed a prototype implementation in Scala, that uses ZooKeeper
for coordination. Due to space limitations we present it in the appendix.

Example. As a motivating example, Fig. 2 gives a global formal specification for
a big data streaming task between a distributed file system (DFS) dfs, and two
workers w1 ,2 . The DFS streams data to two workers, which process the data and
write the result back. Most DFSs have built-in fault tolerance mechanisms [21],
so we consider dfs to be robust, denoted by the annotation [[dfs]]; the workers,
however, may individually fail. In the try-handle construct t(...)h(...), the try-
block t(...) gives the normal (i.e., failure-free) flow of the protocol, and h(...)
contains the explicit handlers for potential crashes. In the try-block, the workers
receive data from the DFS (dfs→wi), perform local computations, and send back
the result (wi→dfs). If a worker crashes ({wi} : ...), the other worker will also take
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Fig. 1: Coordinator model for asynchronous
distributed systems. The coordinator is im-
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nals omitted).

[[dfs]]G = t(µt .
dfs→w1 ld1(S).dfs→w2 ld2(S).
w1→dfs lr1(S′).w2→dfs lr2(S′).t

)h(
{w1} :µt ′.dfs→w2 l

′
d1

(S).
w2→dfs l′r1(S′)t ′,

{w2} : ..., {w1 ,w2} :end)

Fig. 2: Global type for a big data
streaming task with failure han-
dling capabilities.

over the computation of the crashed worker, allowing the system to still produce
a valid result. If both workers crash (by any interleaving of their concurrent
crash events), the global type specifies that the DFS should safely terminate its
role in the session.

We shall refer to this basic example, that focuses on the new failure handling
constructs, in explanations in later sections. See App. A.1 for examples of larger
protocols featuring multiparty choices and recursion with explicit failure han-
dling. We also give many further examples throughout the following sections to
illustrate the potential session errors due to failures exposed by our model, and
how our framework resolves them to recover MPST safety and progress.

Roadmap. Sec. 2 describes the adopted system and failure model. Sec. 3
introduces global types for guiding failure handling. Sec. 4 introduces our process
calculus with failure handling capabilities and a coordinator. Sec. 5 introduces
local types, derived from global types by projection. Sec. 6 describes typing
rules, and defines coherence of session environments with respect to endpoint
crashes. Sec. 7 states properties of our model. Sec. 8 discusses related work. Sec. 9
draws conclusions. App. B contains further formal definitions. App. A contains
additional examples. App. C provides details of our prototype implementation
in Scala using ZooKeeper. App. D gives full proofs of properties.

2 System and Failure Model

In distributed systems care is required to avoid partial failures affecting liveness
(e.g., waiting on messages from crashed processes) or safety (e.g., when processes
manage to communicate with some peers but not others before crashing) prop-
erties of applications. Based on the nature of the infrastructure and application,
appropriate system and failure models are chosen along with judiciously made
assumptions to overcome such impasses in practice.

We pinpoint the key characteristics of our model, according to our practical
motivations and standard distributed systems literature, that shape the design
choices we make later for the process calculus and types. As it is common we



augment our system with a failure detector (FD) to allow for distinguishing slow
and failed processes. The advantage of the FD (1) in terms of reasoning is that
it concentrates all assumptions to solve given problems and (2) implementation-
wise it yields a single main module where time-outs are set and used.

Concretely we make the following assumptions on failures and the system:

(1) Crash-stop failures: Application processes fail by crashing (halting), and
do not recover.

(2) Asynchronous system: Application processes and the network are asyn-
chronous, meaning that there are no upper bounds on processes’ relative
speeds or message transmission delays.

(3) Reliable communication: Messages transmitted between correct (i.e., non-
failed) participants are eventually received.

(4) Robust coordinator: The coordinator (coordination service) is perma-
nently available.

(5) Asynchronous reliable failure detection: Application processes have
access to local FDs which eventually detect all failed peers and do not falsely
suspect peers.

(1)–(3) are standard in literature on fault-tolerant distributed systems [20].
Note that processes can still recover but will not do so within sessions (or

will not be re-considered for those). Other failure models, e.g., network parti-
tions [19,22] or Byzantine failures [35], are subject of future work. The former
are not tolerated by ZooKeeper et al., and the latter have often been argued to
be a too generic failure model (e.g., [3]).

The assumption on the coordinator (4) implicitly means that the number of
concomitant failures among the coordinator replicas is assumed to remain within
a minority, and that failed replicas are replaced in time (to tolerate further
failures). Without loss of validity, the coordinator internals can be treated as a
blackbox (e.g., ZooKeeper uses a variant of Paxos [34]). The final assumption (5)
on failure detection is backed in practice by the concept of program-controlled
crash [10,36], which consists in communicating decisions to disregard supposedly
failed processes also to those processes, prompting them to reset themselves upon
false suspicion. In practice systems can be configured to minimize the probability
of such events, and by a “two-level” membership consisting in evicting processes
from individual sessions (cf. recovery above) more quickly than from a system
as a whole; several authors have also proposed network support to entirely avoid
false suspicions (e.g., [37]).

These assumptions do not make handling of failures trivial, let alone mask
them. For instance, the network can arbitrarily delay messages and thus reorder
them with respect to their real sending times, and (so) different processes can
detect failures at different points in time and in different orders.

3 Global Types for Explicit Handling of Partial Failures

Based on the foundations of MPSTs, we develop global types to formalize spec-
ifications of distributed protocols with explicit handling of partial failures due



(Global type) G ::= p→ q{li(Si).Gi}i∈I | µt .G | t | end | t(G1)h(H )κ.G2

(Handling env.) H ::= F :G | H ,H (Handler sig.) F ::= {pi}i∈I

Fig. 3: Syntax of global types with explicit handling of partial failures.

to role crashes, simply referred to as failures. We present global types before
introducing the process calculus to provide a high-level intuition of how failure
handling works in our model.

The syntax of global types is depicted in Fig. 3. We use the following base
notations: p, q , ... for role (i.e., participant) names; l1, l2, ... for message labels;
and t , t ′, ... for type variables. Base types S may range over, bool, int, etc.

Global types are denoted by G. We first summarize the constructs from
standard MPST [15,25]. A branch type p → q{li(Si).Gi}i∈I means that p can
send to q one of the messages of type Sk with label lk, where k is a member of the
non-empty index set I. The protocol then proceeds according to the continuation
Gk. When I is a singleton, we may simply write p→q l(S).G. We use t for type
variables and take an equi-recursive view, i.e., µt .G and its unfolding [µt .G/t ]
are equivalent. We assume type variable occurrences are bound and guarded
(e.g., µt .t is not permitted). end is for termination.

We now introduce our extensions for partial failure handling. A try-handle
t(G1)h(H )κ.G2 describes a “failure-atomic” protocol unit: all live (i.e., non-
crashed) roles will eventually reach a consistent protocol state, despite any con-
current and asynchronous role crashes. The try-block G1 defines the default
protocol flow, and H is a handling environment. Each element of H maps a han-
dler signature F , that specifies a set of failed roles {pi}i∈I , to a handler body
specified by a G. The handler body G specifies how the live roles should proceed
given the failure of roles F . The protocol then proceeds (for live roles) according
to the continuation G2 after the default block G1 or failure handling defined in
H has been completed as appropriate.

To simplify later technical developments, we annotate each try-handle term
in a given G by a unique κ ∈ N that lexically identifies the term within G. These
annotations may be assigned mechanically. As a short hand, we refer to the try-
block and handling environment of a particular try-handle by its annotation;
e.g., we use κ to stand for t(G1)h(H )κ. In the running examples (e.g., Fig. 2), if
there exists only one try-handle, we omit κ for simplicity.

Top-level global types and robust roles. We use the term top-level global
type to mean the source protocol specified by a user, following a typical top-down
interpretation of MPST frameworks [15,25]. We allow top-level global types to
be optionally annotated [[p̃]]G, where [[p̃]] specifies a set of robust roles—i.e., roles
that can be assumed to never fail. In practice, a participant may be robust if
it is replicated or is made inherently fault tolerant by other means (e.g., the
participant that represents the distributed file system in Fig. 2).

Well-formedness. The first stage of validation in standard MPSTs is to check
that the top-level global type satisfies the supporting criteria used to ensure the



desired properties of the type system. We first list basic syntactic conditions
which we assume on any given G: (i) each F is non-empty; (ii) a role in a F
cannot occur in the corresponding handler body (a failed role cannot be involved
in the handling of its own failure); and (iii) every occurrence of a non-robust
role p must be contained within a, possibly outer, try-handle that has a handler
signature {p} (the protocol must be able to handle its potential failure). Lastly,
to simplify the presentation without loss of generality, we impose that separate
branch types not defined in the same default block or handler body must have
disjoint label sets. This can be implicitly achieved by combining label names
with try-handle annotations.

Assuming the above, we define well-formedness for our extended global types.
We write G′ ∈ G to mean that G′ syntactically occurs in G (∈ is reflexive); sim-
ilarly for the variations κ ∈ G and κ ∈ κ′. Recall κ is shorthand for t(G1)h(H )κ.
We use a lookup function outerG(κ) for the set of all try-handles in G that en-
close a given κ, including κ itself, defined by outerG(κ) = {κ′ | κ ∈ κ′∧κ′ ∈ G}.
Full definitions for all the above are presented in App. B.1.

Definition 1 (Well-formedness). Let κ stand for t(G1)h(H )κ, and κ′ for
t(G′1)h(H ′)κ

′
. A global type G is well-formed if both of the following conditions

hold. For all κ ∈ G:

1. ∀F1 ∈ dom(H ).∀F2 ∈ dom(H ).∃κ′ ∈ outerG(κ) s.t. F1 ∪ F2 ∈ dom(H ′)
2. @F ∈ dom(H ).∃κ′ ∈ outerG(κ).∃F ′ ∈ dom(H ′) s.t. κ′ 6= κ ∧ F ′ ⊆ F

The first condition asserts that for any two separate handler signatures of
a handling environment of κ, there always exists a handler whose handler sig-
nature matches the union of their respective failure sets – this handler is either
inside the handling environment of κ itself, or in the handling environment of
an outer try-handle. This ensures that if roles are active in different handlers of
the same try-handle then there is a handler whose signature corresponds to the
union over the signatures of those different handlers. Example 2 together with
Example 3 in Sec. 4 illustrate a case where this condition is needed. The second
condition asserts that if the handling environment of a try-handle contains a
handler for F , then there is no outer try-handle with a handler for F ′ such that
F ′ ⊆ F . The reason for this condition is that in the case of nested try-handles,
our communication model allows separate try-handles to start failure handling
independently (the operational semantics will be detailed in the next section; see
(TryHdl) in Fig. 6). The aim is to have the relevant roles eventually converge on
performing the handling of the outermost try-handle, possibly by interrupting
the handling of an inner try-handle. Consider the following example:

Example 1. G = t(t(G′)h({p1 , p2} : G1)2)h({p1} : G′1)1 violates condition 2 be-
cause, when p1 and p2 both failed, the handler signature {p1} will still be
triggered (i.e., the outer try-handle will eventually take over). It is not sensible
to run G′1 instead of G1 (which is for the crashes of p1 and p2 ).

App. B.1 gives examples of well-formed and ill-formed global types, and fur-
ther elaborates on issues with the latter.
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Fig. 4: Challenges under pure asynchronous interactions with a coordinator. Be-
tween time (1) and time (2), the task φ = (κ, ∅) is interrupted by the crash of
Pa. Between time (3) and time (4), due to asynchrony and multiple crashes, Pc
starts handling the crash of {Pa, Pd} without handling the crash of {Pa}. Finally
after (4) Pb and Pc finish their common task.

4 A Process Calculus for Coordinator-based Failure
Handling

Fig. 4 depicts a scenario that can occur in practical asynchronous systems
with coordinator-based failure handling through frameworks such as ZooKeeper
(Sec. 2). Using this scenario, we first illustrate challenges, formally define our
model, and then develop a safe type system.

The scenario corresponds to a global type of the form t(G)h({Pa} :Ga, {Pa, Pd} :
Gad, ...)

κ, with processes Pa..d and a coordinator Ψ . We define a task to mean
a unit of interactions, which includes failure handling behaviors. Initially all
processes are collaborating on a task φ, which we label (κ, ∅) (identifying the
task context, and the set of failed processes). The shaded boxes signify which
task each process is working on. Dotted arrows represent notifications between
processes and Ψ related to task completion, and solid arrows for failure notifica-
tions from Ψ to processes. During the scenario, Pa first fails, then Pd fails: the
execution proceeds through failure handling for {Pa} and {Pa, Pd}.

(I) When Pb reaches the end of its part in φ, the application has Pb notify Ψ . Pb
then remains in the context of φ (the continuation of the box after notifying)
in consideration of other non-robust participants still working on φ—Pb may
yet need to handle their potential failure(s).

(II) The processes of synchronizing on the completion of a task or performing fail-
ure handling are themselves subject to failures that may arise concurrently.



(Expression) e ::=v | x | e+ e | − e | ... (Channel) c ::= s[p] | y
(Process) P ::=a[p](y).P | c : η (Level) φ ::=(κ, F )

(Statement) η ::= t(η)h(H)φ.η | 0 | 0 | p! l(e).η (Declaration) D ::=X(x) = η
| p?{li(xi).ηi}i∈I | X〈e〉 (Handling) H ::=F : η | H,H
| def D in η | if e η else η

(Application) N::=P | N |N | s : h (Queue) h ::=∅ | h ·m
(Message) m::= 〈p, q , l(v)〉 | 〈[p, crash F ]〉 | dn (Done) dn::= 〈p, q〉φ
(System) S ::= Ψ�N | (νs)S | S |S (Coordinator) Ψ ::=G : (F , d)

(Context) E ::=t(E)h(H)φ.η | def D in E | [ ] (Done Queue) d ::=∅ | d · dn

Fig. 5: Grammar for processes, applications, systems, and evaluation contexts.

In Fig. 4, all processes reach the end of φ (i.e., four dotted arrows from φ),
but Pa fails. Ψ determines this failure and it initiates failure handling at
time (1), while done notifications for φ continue to arrive asynchronously
at time (2). The failure handling for crash of Pa is itself interrupted by the
second failure at time (3).

(III) Ψ can receive notifications that are no longer relevant. For example, at time
(2), Ψ has received all done notifications for φ, but the failure of Pa has
already triggered failure handling from time (1).

(IV) Due to multiple concurrent failures, interacting participants may end up in
different tasks: around time (2), Pb and Pd are in task φ′ = (κ, {Pa}), whereas
Pc is still in φ (and asynchronously sending or receiving messages with the
others). Moreover, Pc never executes φ′ because of delayed notifications, so
it goes from φ directly to (κ, {Pa, Pd}).

Processes. Fig. 5 defines the grammar of processes and (distributed) applica-
tions. Expressions e, ei, .. can be values v, vi, ..., variables x, xi, ..., and standard
operations. (Application) processes are denoted by P, Pi, .... An initialization
a[p](y).P agrees to play role p via shared name a and takes actions defined in P ;
actions are executed on a session channel c : η, where c ranges over s[p] (session
name and role name) and session variables y; η represents action statements.
A try-handle t(η)h(H)φ attempts to execute the local action η, and can handle
failures occurring therein as defined in the handling environment H, analogously
to global types. H thus also maps a handler signature F to a handler body η
defining how to handle F . Annotation φ = (κ, F ) is composed of two elements:
an identity κ of a global try-handle, and an indication of the current handler sig-
nature which can be empty. F = ∅ means that the default try-block is executing,
whereas F 6= ∅ means that the handler body for F is executing. Term 0 only
occurs in a try-handle during runtime. It denotes a yielding for a notification
from a coordinator (introduced shortly).

Other statements are similar to those defined in [15,25]. Term 0 represents
an idle action. For convention, we omit 0 at the end of a statement. Action
p! l(e).η represents a sending action that sends p a label l with content e, then
it continues as η. Branching p?{li(xi).ηi}i∈I represents a receiving action from p



with several possible branches. When label lk is selected, the transmitted value
v is saved in xk, and ηk{v/xk} continues. For convenience, when there is only
one branch, the curly brackets are omitted, e.g., c : p?l(x).P means there is only
one branch l(x). X〈e〉 is for a statement variable with one parameter e, and
def D in η is for recursion, where declaration D defines the recursive body that
can be called in η. The conditional statement is standard.

The structure of processes ensures that failure handling is not interleaved
between different sessions. However, we note that in standard MPSTs [15,25],
session interleaving must anyway be prohibited for the basic progress property.
Since our aim will be to show progress, we disallow session interleaving within
process bodies. Our model does allow parallel sessions at the top-level, whose
actions may be concurrently interleaved during execution.

(Distributed) systems. A (distributed) system in our programming frame-
work is a composition of an application, which contains more than one process,
and a coordinator (cf. Fig. 1). A system can be running within a private ses-
sion s, represented by (νs)S, or S | S ′ for systems running in different sessions
independently and in parallel (i.e., no session interleaving). The job of the co-
ordinator is to ensure that even in the presence of failures there is consensus on
whether all participants in a given try-handle completed their local actions, or
whether failures need to be handled, and which ones. We use Ψ = G : (F , d) to
denote a (robust) coordinator for the global type G, which stores in (F , d) the
failures F that occurred in the application, and in d done notifications sent to
the coordinator. The coordinator is denoted by ψ when viewed as a role.

A (distributed) application6 is a process P , a parallel composition N |N ′, or
a global queue carrying messages s : h. A global queue s : h carries a sequence
of messages m, sent by participants in session s. A message is either a regular
message 〈p, q , l(v)〉 with label l and content v sent from p to q or a notifica-
tion. A notification may contain the role of a coordinator. There are done and
failure notifications with two kinds of done notifications dn used for coordina-
tion: 〈p, ψ〉φ notifies ψ that p has finished its local actions of the try-handle
φ; 〈ψ, p〉φ is sent from ψ to notify p that ψ has received all done notifications
for the try-handle φ so that p shall end its current try-handle and move to its
next task. For example, in Fig. 4 at time (4) the coordinator will inform Pb and
Pc via 〈ψ,Pb〉(κ,{Pa,Pd}).〈ψ,Pc〉(κ,{Pa,Pd}) that they can finish the try-handle
(κ, {Pa, Pd}). Note that the appearance of 〈ψ, p〉φ implies that the coordinator
has been informed that all participants in φ have completed their local actions.
We define two kinds of failure notifications: 〈[ψ, crash F ]〉 notifies ψ that F oc-
curred, e.g., {q} means q has failed; 〈[p, crash F ]〉 is sent from ψ to notify p about
the failure F for possible handling. We write 〈[p̃, crash F ]〉, where p̃ = p1 , ..., pn

short for 〈[p1 , crash F ]〉 · ... · 〈[pn , crash F ]〉; similarly for 〈ψ, p̃〉φ. Following the
tradition of other MPST works the global queue provides an abstraction for
multiple FIFO queues, each queue being between two endpoints (cf. TCP) with

6 Other works use the term network which is the reason why we use N instead of,
e.g., A. We call it application to avoid confusion with the physical network which
interconnects all processes as well as the coordinator.



a[p1 ](y1).P1 | ... | a[pn ](yn).Pn →
(νs)(G : (∅, ∅)�P1{s[p1 ]/y1} | ... | Pn{s[pn ]/yn} | s : ∅) a : G

(Link)

s[p] : E[q! l(e).η] | s : h→ s[p] : E[η] | s : h · 〈p, q , l(v)〉 e ⇓ v (Snd)

s[p] : E[q?{li(xi).ηi}i∈I ] | s : 〈q , p, lk(vk)〉 · h→
s[p] : E[ηk{vk/xk}] | s : h k ∈ I (Rcv)

s[p] : E[def X(x) = η in X〈e〉]→ s[p] : E[def X(x) = η in η{v/x}] e ⇓ v (Rec)

N1 ≡ N3 → N4 ≡ N2
N1 → N2

N1 → N2

N1|N → N2|N (Str, Par)

N1 → N2
ψ�N1 → ψ�N2

S → S ′
(νs)S → (νs)S ′ (Sys, New)

N | s : h→ N \ s[p] : η | s : remove(h, p) · 〈[ψ, crash {p}]〉
s[p] : η non-robust (Crash)

Fig. 6: Operational semantics of distributed applications, for local actions.

no global ordering. Therefore mi ·mj can be permuted to mj ·mi in the global
queue if the sender or the receiver differ. For example the following messages
are permutable: 〈p, q , l(v)〉 · 〈p, q ′, l(v)〉 if q 6= q′ and 〈p, q , l(v)〉 · 〈ψ, p〉φ and
〈p, q , l(v)〉 · 〈[q , crash F ]〉. But 〈ψ, p〉φ · 〈[p, crash F ]〉 is not permutable, both have
the same sender and receiver (ψ is the sender of 〈[p, crash F ]〉). The formal defi-
nition of message permutation is in App. B Def. 13.

Basic dynamic semantics for applications. Fig. 6 shows the operational
semantics of applications. We use evaluation contexts as defined in Fig. 5. Con-
text E is either a hole [ ], a default context t(E)h(H)φ.η, or a recursion context
def D in E. We write E[η] to denote the action statement obtained by filling the
hole in E[·] with η.

Rule (Link) says that (local) processes who agree on shared name a, obeying
to some protocol (global type), playing certain roles pi represented by a[pi ](yi).P ,
together will start a private session s; this will result in replacing every variable
yi in Pi and, at the same time, creating a new global queue s : ∅, and appointing
a coordinator G : (∅, ∅), which is novel in our work.

Rule (Snd) in Fig. 6 reduces a sending action q! l(e) by emitting a message
〈p, q , l(v)〉 to the global queue s : h. Rule (Rcv) reduces a receiving action if the
message arriving at its end is sent from the expected sender with an expected
label. Rule (Rec) is for recursion. When the recursive body, defined inside η, is
called byX〈e〉 where e is evaluated to v, it reduces to the statement η{v/x} which
will again implement the recursive body. Rule (Str) says that processes which
are structurally congruent have the same reduction. Processes, applications, and
systems are considered modulo structural congruence, denoted by ≡, along with
α-renaming. Since the definition of structural congruence is mostly standard, we
leave the full definition in App. B.2. Rule (Par) and (Str) together state that a
parallel composition has a reduction if its sub-application can reduce. Rule (Sys)



states that a system has a reduction if its application has a reduction, and (New)

says a reduction can proceed under a session. Rule (Crash) states that a process
on channel s[p] can fail at any point in time. (Crash) also adds a notification
〈[ψ, crash F ]〉 which is sent to ψ (the coordinator). This is an abstraction for
the failure detector described in Sec. 2 (5), the notification 〈[ψ, crash F ]〉 is the
first such notification issued by a participant based on its local failure detector.
Adding the notification into the global queue instead of making the coordinator
immediately aware of it models that failures are only detected eventually. Note
that a failure is not annotated with a level because failures transcend all levels,
and asynchrony makes it impossible to identify “where” exactly they occurred.
As a failure is permanent it can affect multiple try-handles. The (Crash) rule
does not apply to participants which are robust, i.e., that conceptually cannot
fail (e.g., dfs in Fig. 2). Rule (Crash) removes channel s[p] (the failed process)
from application N , and removes messages and notifications delivered from, or
heading to, the failed p by function remove(h, p). Function remove(h, p) returns
a new queue after removing all regular messages and notifications that contain p,
e.g., let h = 〈p2 , p1 , l(v)〉·〈p3 , p2 , l

′(v′)〉·〈p3 , p4 , l
′(v′)〉·〈p2 , ψ〉φ·〈[p2 , crash {p3}]〉·

〈ψ, p2 〉φ then remove(h, p2 ) = 〈p3 , p4 , l
′(v′)〉. Messages are removed to model

that in a real system send/receive does not constitute an atomic action.

Handling at processes. Failure handling, defined in Fig. 7, is based on the
observations that (i) a process that fails stays down, and (ii) multiple processes
can fail. As a consequence a failure can trigger multiple failure handlers either
because these handlers are in different (subsequent) try-handles or because of
additional failures. Therefore a process needs to retain the information of who
failed. For simplicity we do not model state at processes, but instead processes
read but do not remove failure notifications from the global queue. We define
Fset(h, p) to return the union of failures for which there are notifications heading
to p, i.e., 〈[p, crash F ]〉, issued by the coordinator in queue h up to the first done
notification heading to p:

Definition 2 (Union of Existing Failures Fset(h, p)).

Fset(∅, p) = ∅ Fset(h, p) =


F ∪ Fset(h′, p) if h = 〈[p, crash F ]〉 · h′

∅ if h = 〈ψ, p〉φ · h′

Fset(h′, p) otherwise

In short, if the global queue is ∅, then naturally there are no failure notifications.
If the global queue contains a failure notification sent from the coordinator, say
〈[p, crash F ]〉, we collect the failure. If the global queue contains done notification
〈ψ, p〉φ sent from the coordinator then all participants in φ have finished their
local actions, which implies that the try-handle φ can be completed.

Our failure handling semantics, (TryHdl), allows a try-handle φ = (κ, F ) to
handle different failures or sets of failures by allowing a try-handle to switch
between different handlers. F thus denotes the current set of handled failures.
For simplicity we refer to this as the current(ly handled) failure set. This is
a slight abuse of terminology, done for brevity, as obviously failures are only



F ′ = ∪{A | A ∈ dom(H) ∧ F ⊂ A ⊆ Fset(h, p)} F ′:η′ ∈ H

s[p] : E[t(η)h(H)(κ,F ).η′′] | s : h→ s[p] : E[t(η′)h(H)(κ,F
′).η′′] | s : h

(TryHdl)

s[p] : E[t(0)h(H)φ.η] | s : h→ s[p] : E[t(0)h(H)φ.η] | s : h · 〈p, ψ〉φ (SndDone)

〈ψ, p〉φ ∈ h
s[p] : E[t(0)h(H)φ.η] | s : h→ s[p] : E[η] | s : h \ {〈ψ, p〉φ}

(RcvDone)

s[p] : E[η] | s : 〈q , p, l(v)〉 · h→ s[p] : E[η] | s : h l 6∈ labels(E[η]) (Cln)

〈ψ, p〉φ ∈ h φ 6∈ E[η]

s[p] : E[η] | s : h→ s[p] : E[η] | s : h \ 〈ψ, p〉φ
(ClnDone)

Fig. 7: Operational semantics of distributed applications, for endpoint handling.

detected with a certain lag. The handling strategy for a process is to handle
the — currently — largest set of failed processes that this process has been
informed of and is able to handle. This largest set is calculated by ∪{A | A ∈
dom(H)∧F ⊂ A ⊆ Fset(h, p)}, that selects all failure sets which are larger than
the current one (A ∈ dom(H) ∧ F ⊂ A) if they are also triggered by known
failures (A ⊆ Fset(h, p)). Condition F ′ : η′ ∈ H in (TryHdl) ensures that there
exists a handler for F ′. The following example shows how (TryHdl) is applied to
switch handlers.

Example 2. Take h such that Fset(h, p) = {p1} and H = {p1} : η1, {p2} :
η2, {p1, p2} : η12 in process P = s[p] : t(η1)h(H)(κ,{p1}), which indicates that
P is handling failure {p1}. Assume now one more failure occurs and results in a
new queue h′ such that Fset(h′, p) = {p1, p2}. By (TryHdl), the process acting at
s[p] is handling the failure set {p1, p2} such that P = s[p] : t(η12)h(H)(κ,{p1,p2})

(also notice the η12 inside the try-block). A switch to only handling {p2} does
not make sense, since, e.g., η2 can contain p1. Fig. 2 shows a case where the
handling strategy differs according to the number of failures.

In Sec. 3 we formally define well-formedness conditions, which guarantee that
if there exist two handlers for two different handler signatures in a try-handle,
then a handler exists for their union. The following example demonstrates why
such a guarantee is needed.

Example 3. Assume a slightly different P compared to the previous examples
(no handler for the union of failures): P = s[p] : E[t(η)h(H)(κ,∅)] with H =
{p1} : η1, {p2} : η2. Assume also that Fset(h, p) = {p1, p2}. Here (TryHdl) will
not apply since there is no failure handling for {p1, p2} in P . If we would allow
a handler for either {p1} or {p2} to be triggered we would have no guarantee
that other participants involved in this try-handle will all select the same failure
set. Even with a deterministic selection, i.e., all participants in that try-handle
selecting the same handling activity, there needs to be a handler with handler
signature = {p1, p2} since it is possible that p1 is involved in η2. Therefore the



type system will ensure that there is a handler for {p1, p2} either at this level or
at an outer level.

(I) explains that a process finishing its default action (Pb) cannot leave its
current try-handle (κ, ∅) immediately because other participants may fail (Pa
failed). Below Eq. (1) also shows this issue from the perspective of semantics:

(1) s[p] : t(0)h(F :q!l(10).q?l′〈x〉)(κ,∅).η′ |
s[q ] : t(p?l(x′).p!l′〈x′ + 10〉)h(H )(κ,F ).η′′ | s : 〈[q , crash F ]〉 · 〈[p, crash F ]〉 · h

In Eq. (1) the process acting on s[p] ended its try-handle (i.e., the action is 0
in the try-block), and if s[p] finishes its try-handle the participant acting on s[q ]
which started handling F would be stuck.

To solve the issue, we use (SndDone) and (RcvDone) for completing a local
try-handle with the help of a coordinator. The rule (SndDone) sends out a done
notification 〈p, ψ〉φ if the current action in φ is 0 and sets the action to 0,
indicating that a done notification from the coordinator is needed for ending the
try-handle.

Assume process on channel s[p] finished its local actions in the try-block (i.e.,
as in Eq. (1) above), then by (SndDone), we have

(1)→ s[p] : t(0)h(F :q!l(10).q?l′〈x〉)(κ,∅).η′ |
s[q ] : t(p?l(x′).p!l′〈x′ + 10〉)h(H )(κ,F ).η′′ |
s : 〈[q , crash F ]〉 · 〈[p, crash F ]〉 · 〈p, ψ〉(κ,∅) · h

where notification 〈p, ψ〉(κ,∅) is added to inform the coordinator. Now the process
on channel s[p] can still handle failures defined in its handling environment. This
is similar to the case described in (II).

Rule (RcvDone) is the counterpart of (SndDone). Once a process receives
a done notification for φ from the coordinator it can finish the try-handle φ
and reduces to the continuation η. Consider Eq. (2) below, which is similar to
Eq. (1) but we take a case where the try-handle can be reduced with (RcvDone).
In Eq. (2) (SndDone) is applied:

(2) s[p] : t(0)h(F :q!l(10).q?l′〈x〉)(κ,∅).η′ |
s[q ] : t(0)h(F :p?l(x′).p!l′〈x′ + 10〉)(κ,∅).η′′ | s : h

With h = 〈ψ, q〉(κ,∅) ·〈ψ, p〉(κ,∅) ·〈[q , crash F ]〉·〈[p, crash F ]〉 both processes can ap-
ply (RcvDone) and safely terminate the try-handle of (κ, ∅). Note that Fset(h, p) =
Fset(h, q) = ∅ (by Def. 2), i.e., rule (TryHdl) can not be applied since a done
notification suppresses the failure notification. Thus Eq. (2) will reduce to:

(2)→∗ s[p] : η′ | s[q ] : η′′ | s : 〈[q , crash F ]〉 · 〈[p, crash F ]〉

It is possible that η′ or η′′ have handlers for F . Note that once a queue
contains 〈ψ, p〉(κ,∅), all non-failed process in the try-handle of (κ, ∅) have sent
done notifications to ψ (i.e. applied rule (SndDone)). The coordinator which
will be introduced shortly ensures this.



p̃ = roles(G) \ F ′ F ′ = F ∪ {p} m = 〈[p̃, crash {p}]〉
G : (F , d)�N | s : 〈[ψ, crash {p}]〉 · h→ G : (F ′, d)�N | s : h ·m (F)

d′ = d · 〈p, ψ〉φ

G : (F , d)�s : 〈p, ψ〉φ · h→ G : (F , d′)�s : h
(CollectDone)

roles(d, φ) ⊇ roles(G,φ) \ F ∀F ′ ∈ hdl(G,φ).(F ′ 6⊆ F )

G : (F , d)�s : h→ G : (F , remove(d, φ))�s : h · 〈ψ, roles(G, φ) \ F 〉φ
(IssueDone)

Fig. 8: Operational semantics for the coordinator.

Rule (Cln) removes a normal message from the queue if the label in the
message does not exist in the target process, which can happen when a failure
handler was triggered. The function labels(η) returns all labels of receiving ac-
tions in η which are able to receive messages now or possible later. (The function
is formally defined in App. B. Def. 14). This removal based on the syntactic
process is safe because in a global type separate branch types not defined in the
same default block or handler body must have disjoint sets of labels (c.f., Sec. 3)
Let φ ∈ P if try-handle φ appears inside P . Rule (ClnDone) removes a done
notification of φ from the queue if no try-handle φ exists, which can happen in
case of nesting when a handler of an outer try-handle is triggered.

Handling at coordinator. Fig. 8 defines the semantics of the coordinator.
We firstly give the auxiliary definition of roles(G) which gives the set of all roles
appearing in G.

In rule (F), F represents the failures that the coordinator is aware of. This rule
states that the coordinator collects and removes a failure notification 〈[ψ, crash p]〉
heading to it, retains this notification by G : (F ′, d), F ′ = F ∪ {p}, and issues
failure notifications to all non-failed participants.

Rules (CollectDone, IssueDone), in short inform all participants in φ = (κ, F )
to finish their try-handle φ if the coordinator has received sufficient done noti-
fications of φ and did not send out failure notifications that interrupt the task
(κ, F ) (e.g. see (III)). Rule (CollectDone) collects done notifications, i.e., 〈p, ψ〉φ,
from the queue and retains these notification; they are used in (IssueDone). For
introducing (IssueDone), we first introduce hdl(G, (κ, F )) to return a set of han-
dler signatures which can be triggered with respect to the current handler:

Definition 3. hdl(G, (κ, F )) = dom(H ) \ P(F ) if t(G0)h(H )κ ∈ G where P(F )
represents a powerset of F .

Also, we abuse the function roles to collect the non-coordinator roles of φ in d,
written roles(d, φ); similarly, we write roles(G,φ) where φ = (κ, F ) to collect the
roles appearing in the handler body of F in the try-handle of κ in G. Remember
that d only contains done notifications sent by participants.

Rule (IssueDone) is applied for some φ when conditions ∀F ′ ∈ hdl(G,φ).(F ′ 6⊆
F ) and roles(d, φ) ⊇ roles(G,φ) \F are both satisfied, where F contains all fail-
ures the coordinator is aware of. Intuitively, these two conditions ensure that



(1) the coordinator only issues done notifications to the participants in the try-
handle φ if it did not send failure notifications which will trigger a handler of
the try-handle φ; (2) the coordinator has received all done notifications from all
non-failed participants of φ.

We further explain both conditions in the following examples, starting from
condition ∀F ′ ∈ hdl(G,φ).(F ′ 6⊆ F ), which ensures no handler in φ can be
triggered based on the failure notifications F sent out by the coordinator.

Example 4. Assume a process playing role pi is Pi = s[pi] : t(ηi)h(Hi)
φi . where

i ∈ {1, 2, 3} and Hi = {p2} : ηi2, {p3} : ηi3, {p2, p3} : ηi23 and the coordinator
is G : ({p2, p3}, d) where t(...)h(H )κ ∈ G and dom(H ) = dom(Hi) for any
i ∈ {1, 2, 3} and d = 〈p1 , ψ〉(κ,{p2}) · 〈p1 , ψ〉(κ,{p2,p3}) · d′. For any φ in d, the
coordinator checks if it has issued any failure notification that can possibly
trigger a new handler of φ:

1. For φ = (κ, {p2}) the coordinator issued failure notifications that can inter-
rupt a handler since

hdl(G, (κ, {p2})) = dom(H ) \ P({p2}) = {{p3}, {p2, p3}}

and e.g. {p2, p3} ⊆ {p2, p3}. That means the failure notifications issued by
the coordinator, i.e., {p2, p3}, can trigger the handler with signature {p2, p3}.
Thus the coordinator will not issue done notifications for φ = (κ, {p2}). A
similar case is visualized in Fig. 4 at time (2).

2. For φ = (κ, {p2, p3}) the coordinator did not issue failure notifications that
can interrupt a handler since

hdl(G, (κ, {p2, p3})) = dom(H ) \ P({p2, p3}) = ∅

so that ∀F ′ ∈ hdl(G, (κ, {p2, p3})).(F ′ 6⊆ {p2, p3}) is true. The coordinator
will issue done notifications for φ = (κ, {p2, p3}).

Another condition roles(d, φ) ⊇ roles(G,φ) \ F states that only when the
coordinator sees sufficient done notifications (in d) for φ, it issues done notifi-
cations to all non-failed participants in φ, i.e., 〈ψ, roles(G , φ) \ F 〉φ. Recall that
roles(d, φ) returns all roles which have sent a done notification for the handling of
φ and roles(G,φ) returns all roles involving in the handling of φ. Intuitively one
might expect the condition to be roles(d, φ) = roles(G,φ); the following example
shows why this would be wrong.

Example 5. Consider a process P acting on channel s[p] and {q} 6∈ dom(H):

P = s[p] : t(...t(...)h(q :η,H′)φ
′
.η′)h(H)φ

Assume P has already reduced to:

P = s[p] : t(0)h(H)φ

We show why roles(d, φ) ⊇ roles(G,φ) \F is necessary. We start with the simple
cases and then move to the more involving ones.



T ::=p!{li(Si).Ti}i∈I | p?{li(Si).Ti}i∈I | t | µt .T | end | end | t(T )h(H)φ.T
H ::=F :T | H,H

Fig. 9: The grammar of local types.

(a) Assume q did not fail, the coordinator is G : (∅, d), and all roles in φ issued
a done notification. Then roles(d, φ) = roles(G,φ) and F = ∅.

(b) Assume q failed in the try-handle φ′, the coordinator is G : ({q}, d), and
all roles except q in φ issued a done notification. roles(d, φ) 6= roles(G,φ)
however roles(d, φ) = roles(G,φ) \ {q}. Cases like this are the reason why
(IssueDone) only requires done notifications from non-failed roles.

(c) Assume q failed after it has issued a done notification for φ (i.e., q finished
try-handle φ′) and the coordinator collected it (by (CollectDone)), so we
have G : ({q}, d) and q ∈ roles(b, φ). Then roles(d, φ) ⊃ roles(G,φ)\{q}. i.e.
(IssueDone) needs to consider done notifications from failed roles.

Thus rule (IssueDone) has the condition roles(d, φ) ⊇ roles(G,φ) \F because
of cases like (b) and (c).

The interplay between issuing of done notification (IssueDone) and issuing
of failure notifications (F) is non-trivial. The following proposition clarifies that
the participants in the same try-handle φ will never get confused with handling
failures or completing the try-handle φ.

Proposition 1. Given s : h with h = h′ · 〈ψ, p〉φ · h′′ and Fset(h, p) 6= ∅, the
rule (TryHdl) is not applicable for the try-handle φ at the process playing role p.

Proof see App. D.1

5 Local Types

Fig. 9 defines local types for typing behaviors of endpoint processes with failure
handling. Type p! is the primitive for a sending type, and p? is the primitive for
a receiving type, derived from global type p → q{li(Si).Gi}i∈I by projection.
Others correspond straightforwardly to process terms. Note that type end only
appears in runtime type checking. Below we define G�p to project a global type
G on p, thus generating p’s local type.

Definition 4 (Projection). Consider a well-formed top-level global type [[q̃ ]]G.
Then G�p is defined as follows:

(1) G�p where G = t(G0)h(F1 :G1, ..., Fn :Gn)κ.G′ ={
t(G0�p)h(F1 :G1�p, ..., Fn :Gn�p)(κ,∅).G′�p if p ∈ roles(G)

G′�p otherwise

(2) p1 → p2{li(Si).Gi}i∈I�p =

p2!{li(Si).Gi�p}i∈I if p = p1

p1?{li(Si).Gi�p}i∈I if p = p2

G1�p if ∀i, j ∈ I.Gi�p = Gj�p



(3) (µt .G)�p = µt .(G�p) if 6 ∃t(G′)h(H ) ∈ G and G�p 6= t ′ for any t ′

(4) t�p = t (5) end�p = end

Otherwise it is undefined.

The main rule is (1): if p appears somewhere in the target try-handle global
type then the endpoint type has a try-handle annotated with κ and the default
logic (i.e., F = ∅). Note that even if G0�p = end the endpoint still gets such a
try-handle because it needs to be ready for (possible) failure handling; if p does
not appear anywhere in the target try-handle global type, then the projection
skips to the continuation.

Rule (2) produces local types for interaction endpoints. If the endpoint is a
sender (i.e., p = p1), then its local type abstracts that it will send something from
one of the possible internal choices defined in {li(Si)}i∈I to p2, then continue as
Gk�p, gained from the projection, if k ∈ I is chosen. If the endpoint is a receiver
(i.e., p = p2), then its local type abstracts that it will receive something from
one of the possible external choices defined in {li(Si)}i∈I sent by p1; the rest is
similarly as for the sender. However, if p is not in this interaction, then its local
type starts from the next interaction which p is in; moreover, because p does
not know what choice that p1 has made, every path Gi�p lead by branch li shall
be the same for p to ensure that interactions are consistent. For example, in
G = p1 → p2{l1(S1).p3 → p1 l3(S), l2(S2).p3 → p1 l4(S)}, interaction p3 → p1

continues after p1 → p2 takes place. If l3 6= l4, then G is not projectable for p3

because p3 does not know which branch that p1 has chosen; if p1 chose branch
l1, but p3 (blindly) sends out label l4 to p1, for p1 it is a mistake (but it is
not a mistake for p3) because p1 is expecting to receive label l3. To prevent
such inconsistencies, we adopt the projection algorithm proposed in [25]. Other
session type works [17,43] provide ways to weaken the classical restriction on
projection of branching which we use.

Rule (3) forbids a try-handle to appear in a recursive body, e.g., µt .t(G)h(F :
t)κ.G is not allowed, but t(µt .G)h(H )κ and t(G)h(F : µt .G′,H )κ are allowed.
This is because κ is used to avoid confusion of messages from different try-
handles. If a recursive body contains a try-handle, we have to dynamically gen-
erate different levels to maintain interaction consistency, so static type checking
does not suffice. We are investigating alternative runtime checking mechanisms,
but this is beyond the scope of this paper. Other rules are straightforward.

Example 6. Recall the global type G from Fig. 2 in Sec. 1. Applying projection
rules defined in Def. 4 to G on every role in G we obtain the following:

Tdfs = G�dfs = t(µt .w1 !ld1(S).w2 !ld2(S).w1?lr1(S′).w2?lr2(S′).t)h(Hdfs)
(1,∅)

Hdfs = {w1} :µt ′.w2 !l′d1(S).w2?l′r1(S′).t ′, {w2} :µt ′′.w1 !l′d2(S).w1?l′r2(S′).t ′′,
{w1 ,w2} :end

Tw1 = G�w1 = t(µt .dfs?ld1(S).dfs!lr1(S′).t)h(Hw1 )(1,∅)

Hw1 = {w1} :end, {w2} :µt ′.dfs?l′d2(S).dfs!l′r2(S′).t ′, {w1 ,w2} :end

Tw2 = G�w2 = t(dfs?ld2(S).dfs!lr1(S′))h(Hw2 )(1,∅)

Hw2 = {w1} :µt ′′.dfs?l′d1(S).dfs!l′r1(S′).µt ′′, {w2} :end, {w1 ,w2} :end



Γ ` a : 〈G〉
Γ ` P B {c : G�p}
Γ ` a[p].P B ∅

k ∈ I Γ ` e : Sk
Γ ` c : ηk B {c : Tk}

Γ ` c : p! lk(e).ηk B {c : p! {li(Si).Ti}i∈I} bT-ini/T-sndc

∀i ∈ I. Γ, xi : Si ` c : ηi B {c : Ti}
Γ ` c : p? {li(xi).ηi}i∈I B {c : p? {li(Si).Ti}i∈I} bT-rcvc

∆ end-only
Γ ` c : 0B ∆

Γ ` c : η B {c : end}
Γ ` c : 0.η B {c : end.end} bT-0/T-ydc

Γ ` e : bool
∀i ∈ {1, 2}. Γ ` c : ηi B ∆
Γ ` c : if e η1 else η2 B ∆

Γ ` e : S
Γ,X : S T ` c : X〈e〉B {c : T} bT-if/T-varc

Γ,X : S t , x : S ` c : η1 B {c : T ′}
Γ,X : S µt .T ′ ` c : η2 B {c : T}

Γ ` c : def X(x) = η1 in η2 B {c : T} bT-defc

Γ ` c : η B {c : T} Γ ` c : η′ B {c : T ′} dom(H) = dom(H)
∀F ∈ dom(H). Γ ` c : H(F )B {c : H(F )}
Γ ` c : t(η)h(H)φ.η′ B {c : t(T )h(H)φ.T ′}

bT-thc

Fig. 10: Typing rules for processes

6 Type System

Next we introduce our type system for typing processes. Fig. 10 and Fig. 11
present typing rules for endpoints processes, and typing judgments for applica-
tions and systems respectively.

We define shared environments Γ to keep information on variables and the
coordinator, and session environments ∆ to keep information on endpoint types:

Γ ::= ∅ | Γ,X : S T | Γ, x : S | Γ, a : G | Γ,Ψ ∆ ::= ∅ | ∆, c : T | ∆, s : h
m ::= 〈p, q , l(S)〉 | 〈[p, crash F ]〉 | 〈p, q〉φ h ::= ∅ | h · m

Γ maps process variables X and content variables x to their types, shared names
a to global types G, and a coordinator Ψ = G : (F , d) to failures and done
notifications it has observed. ∆ maps session channels c to local types and session
queues to queue types. We write Γ, Γ ′ = Γ∪Γ ′ when dom(Γ )∩dom(Γ ′) = ∅; same
for ∆,∆′. Queue types h are composed of message types m. Their permutation is
defined analogously to the permutation for messages. The typing judgment for
local processes Γ ` P B ∆ states that process P is well-typed by ∆ under Γ .

Since we do not define sequential composition for processes, our type system
implicitly forbids session interleaving by bT-inic. This is different from other ses-
sion type works [15,25], where session interleaving is prohibited for the progress
property; here the restriction is inherent to the type system.



Γ ` s : ∅B {s : ∅} Γ ` s : hB {s : h} Γ ` e : S
Γ ` s : h · 〈p, q , l(e)〉B {s : h · 〈p, q , l(S)〉} bT-∅/T-mc

(p1, p2) ∈ {(p, ψ), (ψ, p)} Γ ` s : hB {s : h}
Γ ` s : h · 〈p1 , p2 〉φ B {s : h · 〈p1 , p2 〉φ}

bT-Dc

p ∈ {q , ψ} m = 〈[p, crash F ]〉
Γ ` s : hB {s : h}

Γ ` s : h · 〈[p, crash F ]〉B {s : h · m}

Γ ` N1 B ∆1 Γ ` N2 B ∆2

dom(∆1) ∩ dom(∆2) = ∅
Γ ` N1 | N2 B ∆1,∆2

bT-F/T-pac

Γ ` S B ∆
Γ ` ∆s coherent

Γ ` (νs)S B ∆ \∆s

Γ ′ = Γ,Ψ Γ ` N B ∆

Γ ′ ` Ψ�N B ∆
bT-s/T-sysc

Fig. 11: Typing rules for applications and systems.

Fig. 10 lists our typing rules for endpoint processes. Rule bT-inic says that
if a process’s set of actions is well-typed by G�p on some c, this process can
play role p in a, which claims to have interactions obeying behaviors defined in
G. 〈G〉 means that G is closed, i.e., devoid of type variables. This rule forbids
a[p].b[q ].P because a process can only use one session channel. Rule bT-sndc
states that an action for sending is well-typed to a sending type if the label and
the type of the content are expected; bT-rcvc states that an action for branching
(i.e., for receiving) is well-typed to a branching type if all labels and the types of
contents are as expected. Their follow-up actions shall also be well-typed. Rule
bT-0c types an idle process. Predicate end-only ∆ is defined as stating whether
all endpoints in ∆ have type end:

Definition 5 (End-only ∆). We say ∆ is end-only if and only if ∀s[p] ∈
dom(∆), ∆(s[p]) = end.

Rule bT-ydc types yielding actions, which only appear at runtime. Rule bT-ifc is
standard in the sense that the process is well-typed by ∆ if e has boolean type
and its sub-processes (i.e., η1 and η2) are well-typed by ∆. Rules bT-var,T-defc
are based on a recent summary of MPSTs [14]. Note that bT-defc forbids the
type µt .t . Rule bT-thc states that a try-handle is well-typed if it is annotated
with the expected level φ, its default statement is well-typed, H and H have the
same handler signatures, and all handling actions are well-typed.

Fig. 11 shows typing rules for applications and systems. Rule bT-∅c types an
empty queue. Rules bT-m,T-D,T-Fc simply type messages based on their shapes.
Rule bT-pac says two applications composed in parallel are well-typed if they
do not share any session channel. Rule bT-sc says a part of a system S can
start a private session, say s, if S is well-typed according to a Γ ` ∆s that is
coherent (defined shortly). The system (νs)S with a part becoming private in s
is well-typed to ∆ \∆s, that is, ∆ after removing ∆s.



Definition 6 (A Session Environment Having s Only: ∆s).

∆s = {s[p] : T | s[p] ∈ dom(∆)} ∪ {s : h | s ∈ dom(∆)}

Rule bT-sysc says that a system Ψ�N is well-typed if application N is well-typed
and there exists a coordinator Ψ for handling this application. We say Γ ` ∆ is
coherent under Γ if the local types of all endpoints are dual to each other after
their local types are updated because of messages or notifications in s : h.

Coherence. We say that a session environment is coherent if, at any time, given
a session with its latest messages and notifications, every endpoint participating
in it is able to find someone to interact with (i.e., its dual party exists) right
now or afterwards.

Example 7. Continuing with Example 6 – the session environment Γ ` ∆ is
coherent even if w2 will not receive any message from dfs at this point. The only
possible action to take in ∆ is that dfs sends out a message to w1 . When this
action fires, ∆ is reduced to ∆′ under a coordinator. (The reduction relation
Γ ` ∆ →T Γ ′ ` ∆′, where Γ = Γ0,Ψ and Γ ′ = Γ0,Ψ

′, is defined based on
the rules of operational semantics of applications in Sec. 4, Fig. 6 and Fig. 7.
Due to space limitations we put the complete rules into App. D.2). In ∆′, which
abstracts the environment when dfs sends a message to w1 , w2 will be able to
receive this message.

∆ = s[dfs] : Tdfs , s[w1 ] : Tw1 , s[w2 ] : Tw2 , s : ∅
∆′ = s[dfs] : t(w2 !ld2(S).w1?lr1(S′).w2?lr2(S′).T )h(H)(1,∅),

s[w1 ] : Tw1 , s[w2 ] : Tw2 , s : 〈dfs,w1 , ld1(S)〉
where T = µt .w1 !ld1(S).w2 !ld2(S).w1?lr1(S′).w2?lr2(S′).t

We write s[p] : T ./ s[q ] : T ′ to state that actions of the two types are dual:

Definition 7 (Duality). We define s[p] : T ./ s[q ] : T ′ as follows:

s[p] : end ./ s[q ] : end s[p] : end ./ s[q ] : end s[p] : end ./ s[q ] : end

s[p] : end ./ s[q ] : end s[p] : t ./ s[q ] : t
s[p] : T ./ s[q ] : T ′

s[p] : µt .T ./ s[q ] : µt .T ′

∀i ∈ I. s[p] : Ti ./ s[q ] : T ′i
s[p] : q! {li(Si).Ti}i∈I ./ s[q ] : p? {li(Si).T ′i}i∈I

s[p] : T1 ./ s[q ] : T2 s[p] : T ′1 ./ s[q ] : T ′2 dom(H1) = dom(H2)
∀F ∈ dom(H1). s[p] : H1(F ) ./ s[q ] : H2(F )

s[p] : t(T1)h(H1)φ.T ′1 ./ s[q ] : t(T2)h(H2)φ.T ′2

Due to space limitations, we provide the following formal definitions in App. B.3.
Operation T �p is to filter T to get the partial type which only contains actions
of p. For example, p1!l′(S′).p2!l(S)�p2 = p2!l(S) and p1!{T1, T2}�p2 = p2?l(S).
where T1 = l1(S1).p2?l(S) and T2 = l2(S2).p2?l(S). Next we define (h)p→q to
filter h to generate (1) the normal message types sent from p heading to q , and
(2) the notifications heading to q . For example (〈p, q , l(S)〉·〈[q , crash F ]〉·〈ψ, q〉φ ·



〈[p, crash F ]〉)p→q = p?l(S) · 〈[F ]〉 · 〈ψ〉φ. The message types are abbreviated to
contain only necessary information.

We define T–ht to mean the effect of ht on T . Its concept is similar to the
session remainder defined in [39], which returns new local types of participants
after participants consume messages from the global queue. Since failure noti-
fications will not be consumed in our system, and we only have to observe the
change of a participant’s type after receiving or being triggered by some message
types in ht, we say that T–ht represents the effect of ht on T . The behaviors
follows our operational semantics of applications and systems defined in Fig. 6,
Fig. 7, and Fig. 8. For example t(q?{li(Si).Ti}i∈I)h(H)φ.T ′–q?lk(Sk) · ht =
t(Tk)h(H)φ.T ′–ht where k ∈ I.

Now we define what it means for ∆ to be coherent under Γ :

Definition 8 (Coherence). Γ ` ∆ coherent if the following conditions hold:

1. If s : h ∈ ∆, then ∃G : (F , d) ∈ Γ and {p | s[p] ∈ dom(∆)} ⊆ roles(G) and
G is well-formed and ∀p ∈ roles(G), G�p is defined.

2. If 〈[ψ, crash F ]〉 6∈ h, then ∀s[p] : T, s[q ] : T ′ ∈ ∆, s[p] : T � q–(h)q→p ./ s[q ] :
T ′ �p–(h)p→q .

In condition 1, we require a coordinator for every session so that when a failure
occurs, the coordinator can announce failure notifications to ask participants to
handle the failure.

In condition 2, if a failure occurs and the coordinator has not yet observed
such a failure (i.e. 〈[ψ, crash F ]〉 ∈ h), the interactions are not dual to each other
at this moment. However, if there exists a coordinator for s, eventually it will
observe failures and issue failure notifications to participants for handling them;
then the interactions in ∆s should be again be dual to each other. Equation
s[p] : T � q–(h)q→p ./ s[q ] : T ′ � p–(h)p→q asserts that interactions of s[p] and
s[q ] are dual to each other after testing all possible s : h in s.

7 Properties

We show that our type system ensures properties of subject congruence, subject
reduction, and progress. All auxiliary definitions and proof details are in App. D.

The property of subject congruence states that if S (a system containing an
application and a coordinator) is well-typed by some session environment, then
a S ′ that is structurally congruent to it is also well-typed by the same session
environment:

Theorem 1 (Subject Congruence). Γ ` S B ∆ and S ≡ S ′ imply Γ `
S ′ B ∆.

Subject reduction states that a well-typed S (coherent session environment
respectively) is always well-typed (coherent respectively) after reduction:



Theorem 2 (Subject Reduction).

– Γ ` SB∆ with Γ ` ∆ coherent and S →∗ S ′ imply that ∃∆′, Γ ′ such that
Γ ′ ` S ′ B ∆′ and Γ ` ∆→∗T Γ ′ ` ∆′ or ∆ ≡ ∆′ and Γ ′ ` ∆′ coherent.

– Γ ` S B ∅ and S →∗ S ′ imply that Γ ′ ` S ′ B ∅ for some Γ ′.

We allow sessions to run in parallel at the top level, e.g., S = (νs1)(Ψ1�N1) |
... | (νsn)(Ψn�Nn) and also allow S = (νs)(Ψ�N) | N ′ and s 6∈ fn(N ′). For the
latter case, it means that participants in N ′ do not in s but later create another
session; however, if N ′ cannot apply rule (Link), N ′ cannot reduce. To prevent
this kind of situation, we require S to be initializable such that, ∀a[p].P ∈ S,
(Link) is applicable.

The following property states that S never gets stuck (property of progress):

Theorem 3 (Progress). If Γ ` S B ∅ and S is initializable, then either
S →∗ S ′ and S ′ is initializable or S ′ = Ψ�s : h | ... | Ψ ′�s′ : h′ and h, ..., h′ only
contain failure notifications sent by coordinators.

After all processes in S terminate, failure notifications sent by coordinators are
left; thus the final system can be of the form Ψ�s : h | ... | Ψ ′�s′ : h′, where
h, ..., h′ only have failure notifications sent by coordinators and thus reduction
rules (CollectDone), (IssueDone), and (F) will not be applied.

Minimality. The following proposition points out that, when all roles defined in
a global type, sayG, are robust, then the application obeying toG will never have
interaction with a coordinator (i.e., interactions of the application are equivalent
to those without a coordinator). This is an important property, as it states that
our model does not incur coordination overhead when all participants are robust,
or in failure-agnostic contexts as considered in previous MPST works.

Proposition 2. Assume ∀p ∈ roles(G) = {p1, ..., pn}, p is robust and Pi =
s[pi] : ηi for i ∈ {1..n} and S = (ν s)(Ψ�P1|...|Pn|s : h) where Pi, i ∈ {1..n}
contains no try-handle. Then we have Γ ` S B ∅ and whenever S →∗ S ′ we
have Ψ ∈ S ′,Ψ = G : (∅, ∅).

Proof. Immediately by typing rules bT-ini,T-s,T-sysc, Def. 4 (Projection), and
the operational semantics defined in Fig. 6, Fig. 7, and Fig. 8.

8 Related Work

Several session type works study exception handling [7,9,16,32]. However, to the
best of our knowledge this is the first theoretical work to develop a formalism
and typing discipline for the coordinator-based model of crash failure handling
in practical asynchronous distributed systems.

Structured interactional exceptions [7] study exception handling for binary
sessions. The work extends session types with a try-catch construct and a throw
instruction, allowing participants to raise runtime exceptions. Global escape [6]



extends previous works on exception handling in binary session types to MPSTs.
It supports nesting and sequencing of try-catch blocks with restrictions. Reduc-
tion rules for exception handling are of the form Σ ` P → Σ′ ` P ′, where Σ is
the exception environment. This central environment at the core of the semantics
is updated synchronously and atomically. Furthermore, the reduction of a try-
catch block to its continuation is done in a synchronous reduction step involving
all participants in a block. Lastly this work can only handle exceptions, i.e.,
explicitly raised application-level failures. These do not affect communication
channels [6], unlike participant crashes.

Similarly, our previous work [13] only deals with exceptions. An interaction
p → q : S ∨ F defines that p can send a message of type S to q. If F is not
empty then instead of sending a message p can throw F . If a failure is thrown
only participants that have casual dependencies to that failure are involved in
the failure handling. No concurrent failures are allowed therefore all interaction
which can raise failures is executed in a lock step fashion. As a consequence, the
model can not be used to deal with crash failures.

Adameit et al. [1] propose session types for link failures, which extend session
types with an optional block which surrounds a process and contains default
values. The default values are used if a link failure occurs. In contrast to our
work, the communication model is overall synchronous whereas our model is
asynchronous; the optional block returns default values in case of a failure but
it is still the task of the developer to do something useful with it.

Demangeon et al. study interrupts in MPSTs [16]. This work introduces an
interruptible block {|G|}c〈l by r〉;G′ identified by c; here the protocol G can be
interrupted by a message l from r and is continued by G′ after either a normal
or an interrupted completion of G. Interrupts are more a control flow instruction
like exceptions than an actual failure handling construct, and the semantics can
not model participant crashes.

Neykova and Yoshida [40] show that MPSTs can be used to calculate safe
global states for a safe recovery in Erlang’s let it crash model [2]. That work
is well suited for recovery of lightweight processes in an actor setting. However,
while it allows for elaborate failure handling by connecting (endpoint) processes
with runtime monitors, the model does not address the fault tolerance of run-
time monitors themselves. As monitors can be interacting in complex manners
replication does not seem straightforwardly applicable, at least not without po-
tentially hampering performance (just as with strainghtforward replication of
entire applications).

Failure handling is studied in several process calculi and communication-
centered programming languages without typing discipline. The conversation
calculus [46] models exception behavior in abstract service-based systems with
message-passing based communication. The work does not use channel types but
studies the behavioral theory of bisimilarity. Error recovery is also studied in a
concurrent object setting [48]; interacting objects are grouped into coordinated
atomic actions (CAs) which enable safe error recovery. CAs can however not
be nested. PSYNC [18] is a domain specific language based on the heard-of



model of distributed computing [12]. Programs written in PSYNC are structured
into rounds which are executed in a lock step manner. PSYNC comes with
a state-based verification engine which enables checking of safety and liveness
properties; for that programmers have to define non-trivial inductive invariants
and ranking functions. In contrast to the coordinator model, the heard-of model
is not widely deployed in practice. Verdi [47] is a framework for implementing
and verifying distributed systems in Coq. It provides the possibility to verify
the system against different network models. Verdi enables the verification of
properties in an idealized fault model and then transfers the guarantees to more
realistic fault models by applying transformation functions. Verdi supports safety
properties but no liveness properties.

9 Final Remarks

Implementation. Based on our presented calculus we developed a domain-
specific language and corresponding runtime system in Scala, using ZooKeeper
as the coordinator. Specifically our implementation provides mechanisms for (1)
interacting with ZooKeeper as coordinator, (2) done and failure notification de-
livery and routing, (3) practical failure detection and dealing with false suspicions
and (4) automatically inferring try-handle levels (see more in App. C).

Conclusions. This work introduces a formal model of verified crash failure han-
dling featuring a lightweight coordinator as common in many real-life systems.
The model carefully exposes potential problems that may arise in distributed
applications due to partial failures, such as inconsistent endpoint behaviors and
orphan messages. Our typing discipline addresses these challenges by building on
the mechanisms of MPSTs, e.g., global type well-formedness for sound failure
handling specifications, modeling asynchronous permutations between regular
messages and failure notifications in sessions, and the type-directed mechanisms
for determining correct and orphaned messages in the event of failure. We adapt
coherence of session typing environments (i.e., endpoint consistency) to consider
failed roles and orphan messages, and show that our type system statically en-
sures subject reduction and progress in the presence of failures.

Future work. We plan to expand our implementation and develop further
applications. We believe dynamic role participation and role parameterization
would be valuable for failure handling. Also, we are investigating options to
enable addressing the coordinator as part of the protocol so that pertinent run-
time information can be persisted by the coordinator. We plan to add support
to our language and calculus for solving various explicit agreement tasks (e.g.,
consensus, atomic commit) via the coordinator.
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A Examples

This section provides interesting examples which are not included in the main
content. We first give examples which are based on MPST and are extended
with our explicit failure handling structure. Then we provide more examples of
coordinator-based failure handling to show several non-trivial cases.

A.1 Examples of MPST Types and Processes with
Coordinator-based Failure Handling

We give versions of the main motivating examples in standard MPST litera-
ture [25] extended to support partial failures.

Two-buyers protocol. The Two-Buyers Protocol [25, § 2.3,3.4] derives from
a Web services use case. In the original protocol specification, the roles Buyer1
(B1) and Buyer2 (B2) carry out a joint transaction to buy a book from an online
Seller (S). The role of B1 is to offer to pay some share of the total price to B2.
B2 makes the final choice whether to proceed with the purchase (by paying the
remaining amount) or not.

GTB = t(
t(
B2→S l1(string).
S→B1 l2(int).
S→B2 l3(int).
B1→B2 l4(int).

B2→ S

{
ok1().B2→S l5(string).S→B2 l6(date).end

quit1().end

)h(
{B1} :S→B2 l7(int).

B2→ S

{
ok2().B2→S l8(string).S→B2 l9(date).end

quit2().end

)2.end
)h(
{B2} :end,
{B1, B2} :end

)1.
end

Fig. 12: The Two-Buyers Protocol [25, § 3.4] extended with partial failure han-
dling.

Fig. 12 extends the original global type to a fault tolerant version of this
application protocol, bearing in mind the asymmetry of the B1 and B2 roles. We
shall assume S is robust.



In the initial exchanges, given by the inner try-block, B2 sends S the name of
the book (l1), S sends B1 and B2 the price (l2), and B1 sends B2 the amount it is
willing to contribute (l3) (as in the original protocol). If B1 crashes during this
part, then S acknowledges this event by resending the price to B2 (l7) in the inner
handling enviroment—asynchrony and inherent concurrency of the interactions
between S and the Buyers and this potential failure means that S cannot be
certain about the order of the relevant messages arriving at B2.

Whether or not B1 crashes, B2 and S proceed to the choice of B2 to buy (ok)
or not buy (quit) the book (this segment is also as in the original protocol).
However, if B2 crashes at any point of the protocol, then the protocol must
simply end for S, and also for B1 if it is live, as given by the outer handling
environment.

Regarding the unique κ-annotations condition of well-formedness (Def. 1), as
noted in Sec. 3, and implemented in App. C, it is straightforward to mechanically
infer identifiers for an “unannotated” global type to satisfy this condition. As for
many protocols, it is also straightforward to add labels to non-explicitly labelled
interactions to satisfy the labelling condition. In this example, it would have
been sufficient to use just three labels in total to distinguish the interactions
in the try-block, the inner handler, and the choice construct; however, we used
unique labels throughout to clarify the explanations given above.

Projection to local types. The local type projection (Def. 4) of GTB onto
B1, GTB�B1, is:

t(
t(S?l2(int).B2!l4(int).end)h({B1} :end)(2,∅).end

)h({B2} :end, {B1, B2} :end)(1,∅).end

The projection onto B2, GTB�B2, is:

t(
t(
S!l1(string).S?l3(int).B1?l4(int).

S!

{
ok1().S!l5(string).S?l6(date).end

quit1().end

)h(
{B1} :S?l7(int).

S!

{
ok2().S!8(string).S?l9(date).end

quit2().end

)(2,∅)

)h({B2} :end, {B1, B2} :end)(1,∅).end

The projection onto S, GTB�S, is:



t(
t(
B2?l1(string).B1!l2(int).B2!l3(int).

B2?

{
ok().B2?l5(string).B2!l6(date).end

quit().end

)h(
{B1} :B2!l7(int).end

B2?

{
ok().B2?l8(string).B2!l9(date).end

quit().end

)(2,∅)

)h({B2} :end, {B1, B2} :end)(1,∅).end

Processes. We give example of well-typed processes implementing each of roles.
For B1:

a[B1](y).y : t(
t(S?l2(x2).B2!l4(x2 ÷ 2).0)h({B1} :0)(2,∅).0

)h({B2} :0, {B1, B2} :0)(1,∅).0

For B2:

a[B2](y).y : def X(z) = if z < 100 S!ok().S!l5(“addr”).S?l6(x6).0
else S!quit().0

in t(
t(S!l1(“title”).S?l2(x2).B1?l4(x4).X〈x2 − x4〉)
h({B1} :S?l7(x7).X〈x7〉)(2,∅).0)

)h({B2} :0, {B1, B2} :0)(1,∅).0

For S, assuming some helper functions getPrice and getData on data:

a[S](y).y : def X() = B2?{ok().B2?l5(x5).S?l6(getDate(x5)).0, quit().0}
in t(
t(B2?l1(x1).B1!l2(getPrice(x1)).B2!l4(getPrice(x1)).X〈〉)
h({B1} :B1!l7(getPrice(x1)).X〈〉)(2,∅).0

)h({B2} :0, {B1, B2} :0)(1,∅).0

Streaming protocol. The original Streaming Protocol [25, § 3.4] demonstrated
a recursive global type for a continuous stream of messages, where two producer
roles (DP, KP) independently send to a middleman role (K) in a join pattern,
followed by K forwarding a message to a consumer role (C). (The role names are
taken from the original protocol.)

Fig. 13 extends the protocol to handle the potential failures of the DP and
KP; we assume the other two roles are robust. The idea is if just one of the
producers crashes, the now fault tolerant protocol should attempt to continue



t(
µt .
DP→K l1(bool).
KP→K l2(bool).
K→C l3(bool).
DP→K l1(bool).
KP→K l2(bool).
K→C l3(bool).
t

)h(
{DP} : µt ′.KP→K l4(bool).K→C l5(bool).t ′

{KP} : µt ′′.DP→K l6(bool).K→C l7(bool).t ′′

{KP, KP} : end
)1

Fig. 13: The Stream Protocol [25, § 3.4] extended with partial failure handling.

with the other producer. We keep the “once-unfolded” specification from the
original protocol definition in the try-block, but use the shorter folded versions
in the handling activities.

This example also gives some intuition for the complexity in the design of our
failure handling constructs: without any explicit choice construct, adding failure
handling naturally introduces a safe notion of choice into the protocol between
distinct paths, and also allows the normally recursive protocol to end (if both
producers crash).

A.2 Examples of Coordinator-based Failure Handling

In this part, we give more handling examples for readers who are interested in
the coordinator-based failure handling.

Handling failure notifications. The following example shows handling mech-
anism of (TryHdl) and (F):

Example 8. Let Pi play role pi in session s and h does not contain any notifica-
tions. In this example both P2 and P3 fail and it shows a reduction for P1 with
a focus on failure handling. Assume we start with:

... G : (F , ∅)� P1 | P2 | P3 | s : h · 〈p2 , p1 , l(v)〉
(Crash) G : (F , ∅)� P1 | P3 | s : h1 · 〈[ψ, crash {p2}]〉

where h1 = remove(h · 〈p2 , p1 , l(v)〉, p2)
≡ G : (F , ∅)� P1 | P3 | s : 〈[ψ, crash {p2}]〉 · h1

(F) G : (F ∪ {p2}, ∅)� P1 | P3 | s : h1 · 〈[{p1 , p3}, crash {p2}]〉

Note that, by Definition 13 (Permutable Messages), because h (therefore also
h1) does not contain any notification message the notification 〈[ψ, crash {p2}]〉
can be permuted to the top of queue. Next the the coordinator receives notifi-
cation 〈[ψ, crash {p2}]〉 and issues the failure notification 〈[{p1 , p3}, crash {p2}]〉
to P1 and P3 for handling the failure of P2 by applying (F).



Assume (possible concurrently) that P3 fails, i.e. (Crash) is applied to P3

(Crash) G : (F ∪ {p2}, ∅)� P1 | s : h2 · 〈[p1 , crash {p2}]〉 · 〈[ψ, crash {p3}]〉
where h2 · 〈[{p1}, crash {p2}]〉 = remove(h1 · 〈[{p1 , p3}, crash {p2}]〉, p3)

Assume we have P1 = s[p1] : t(η)h(H)(φ,∅)) and
H = {p2} :η2, {p3} :η3 {p1, p3} :η13. The reduction shows P1 starts handling the
failure {p2} (P1 is not aware of the failure of P3), then the coordinator will pick
up the notification that P3 has failed and forward it. Lastly P1 will perform the
handling for both failures:

(TryHdl) G : (F ∪ {p2}, ∅)� s[p1] : t(η2)h(H)(φ,{p2 }) |
s : h2 · 〈[p1 , crash {p2}]〉 · 〈[ψ, crash {p3}]〉

≡, (F) G : (F ∪ {p2, p3}, ∅)� s[p1] : t(η2)h(H)(φ,{p2 }) |
s : h2 · 〈[p1 , crash {p2}]〉 · 〈[p1 , crash {p3}]〉

(TryHdl) G : (F ∪ {p2, p3}}, ∅)� s[p1] : t(η23)h(H)(φ,{p2,p3}) |
s : h2 · 〈[p1 , crash {p2}]〉 · 〈[p1 , crash {p3}]〉

...

The rest of the reduction is straight forward by using (SndDone), (CollectDone),
(IssueDone) and (RcvDone).

Handling mixed notifications. We illustrate the hardness of consistent han-
dling of mixed notifications (i.e., done and failure notifications), and the need
for a coordinator.

Example 9. Assume we have processes P1, P2, P3 acting respectively on channels
s[p1], s[p2] and s[p3]. Given Eq. (1), in which they have finished their respective
actions in the try-handle of φ = (κ, ∅), and the queue contains the done notifi-
cations sent to the coordinator

(1) s[p1 ] : t(0)h(Hp1 )φ.η1 | s[p2 ] : t(0)h(Hp2 )φ.η2 | s[p3 ] : t(0)h(Hp3 )φ.η3 |
s : 〈p2 , ψ〉φ · 〈p1 , ψ〉φ · 〈p3 , ψ〉φ

where Hp1
= {p2} :η1,H

′
p1

and Hp3
= {p2} :η3,H

′
p3

. The coordinator is the key in
ensuring consistency in the presence of concurrent done and failure notifications.
If no participant fails, the coordinator collects 〈p2 , ψ〉φ, ... with (CollectDone);
and the coordinator issues done notifications 〈ψ, {p1 , p2 , p3}〉φ via (IssueDone).
All participants will then finish the try-handle of φ and move to their next
actions, as shown by (1)→∗ (2)

(2) s[p1 ] : t(0)h(Hp1 )φ.η1 | s[p2 ] : t(0)h(Hp2 )φ.η2 | s[p3 ] : t(0)h(Hp3 )φ.η3 |
s : 〈ψ, p1 〉φ · 〈ψ, p2 〉φ · 〈ψ, p3 〉φ

→∗ s[p1 ] : η1 | s[p2 ] : η2 | s[p3 ] : η3 | s : ∅

If P2 fails at the moment of Eq. (1), notification 〈p2 , ψ〉φ is removed from the
queue and therefore the try-handle of φ cannot finish, as shown by (1)→∗ (3)

(3) s[p1 ] : t(0)h(Hp1 )φ.η1 | s[p3 ] : t(0)h(Hp3 )φ.η3 | s : 〈p1 , ψ〉φ · 〈p3 , ψ〉φ · 〈[ψ, crash {p2}]〉



and a notification for the failure of p2 is added to the queue. When the coordi-
nator receives the failure notification 〈[ψ, crash {p2}]〉, it issues 〈[p1 , crash {p2}]〉
and 〈[p3 , crash {p2}]〉 to P1 and P3. Now P1 and P3 will perform the handling
and change the level of the try-handle to φ′ = (κ, {p2}), as shown by (3)→∗ (4)

(4) s[p1 ] : t(η1)h(Hp1 )φ
′
.η1 | s[p3 ] : t(η3)h(Hp3 )φ

′
.η3 |

s : 〈[p1 , crash {p2}]〉 · 〈[p3 , crash {p2}]〉

B Detailed Formal Definitions

This section contains additional detailed formal definitions.

B.1 Definitions for Section 3 (Global Types)

Well-formedness. In the following we provide formal definitions for those
used inexplaining well-formed global tyeps in Section 3. We formally define the
syntactical well-formedness conditions.

For the well-formedness definition we need to address nesting of try-handles.
We define the global contexts G as follows:

G ::= [ ] | t(G)h(H )κ.G | t(G)h(F :G,H )κ.G′ |
t(G)h(H )κ.G | p→ q{li(Si).Gi, l(S).G}i∈I | µt .G

Such contexts allow us to reason about parts of global types. Based on these
contexts we define a containment relation on global types as follows:

Definition 9 (G′ ∈ G). If ∃G s.t. G = G[G′], then G′ ∈ G

G′ ∈ G means G′ is a part of global type G. Analogously to G′ ∈ G, we write
G ∈ H if the handling environment H contains G; κ ∈ G if G contains κ
(remember κ is shorthand for t(G1)h(H )κ); κ ∈ κ′; l ∈ G if the label l appears
inside G; and l ∈ G if the label l appears inside G. We use a lookup function
outerG(κ) for the set of all try-handles in G that enclose a given κ (including κ
itself):

Definition 10 (outerG(κ)). outerG(κ) = {κ′ | κ ∈ κ′ ∧ κ′ ∈ G}.

As we mentioned in Sec. 3, we require that all κ are unique.
Based on Def. 9 and Def. 10, we define well-formedness of global types where
Conditions 1 and 2 are the same as those stated in Sec. 3 Def. 1, and Condi-
tions 3–5 define other conditions informally described in Sec. 3.

Definition 11 (Well-formedness (Full Version)). Let κ stand for t(G1)h(H )κ,
and κ′ for t(G′1)h(H ′)κ

′
. A top-level [[p̃]]G is well-formed if it fulfills all following

conditions. For all κ ∈ G:



1. For any two separate handler signatures of a handling environment of κ,
there always exists a handler whose handler signature matches the union of
the respective failure sets. This handler is either inside the handling envi-
ronment of κ itself, or in the handling environment of an outer try-handle:

∀F1 ∈ dom(H ).∀F2 ∈ dom(H ).∃κ′ ∈ outerG(κ) s.t. F1 ∪ F2 ∈ dom(H ′)

2. If the handling environment of a try-handle κ contains a handler for F , then
there is no outer try-handle κ′ with a handler for F ′ such that F ′ ⊆ F :

@F ∈ dom(H ).∃κ′ ∈ outerG(κ).∃F ′ ∈ dom(H ′) s.t. κ′ 6= κ ∧ F ′ ⊆ F

3. All κ in G are unique. In addition all labels which appear inside a default
try-body or any handler body do not occur outside of the default block/the
handler body:

G = G[t(G1)h(H )κ.G2]⇒
∀l ∈ G1.l 6∈ G, G2,H and
∀F, F ′ ∈ H . s.t. F 6= F ′ ∀l′ ∈ H (F ).l′ 6∈ G, G1, G2,H (F ′)

4. A role does not appear in the handling activity of its own failure:

∀F ∈ dom(H ).∀p ∈ F ⇒ p 6∈ roles(H (F ))

5. All branching types of non-robust participants (p 6∈ p̃) must be handled
in G, i.e., must be enclosed by try-handles which can handle the potential
failures of p:

∀q → q′{li(Si).Gi}i∈I ∈ G.∀p ∈ {q , q ′}.p 6∈ p̃ ⇒
∃κ′ ∈ G.q → q′{li(Si).Gi}i∈I ∈ κ′ ∧ {p} ∈ dom(H ′)

Condition 1 ensures that if roles are active in different handlers of the same
try-handle, there is a handler whose signature corresponds to the union over the
signatures of those different handlers. Example 2 together with Example 3 in
Sec. 4 show why this condition is needed. The reason for Condition 2 is that in
case of nested try-handles the operational semantics (see (TryHdl) in Sec. 4 Fig. 6)
allows multiple try-handles to start failure handling; eventually the outer-most
try-handle will perform the handling and may interrupt failure handling at an
inner try-handle. G = t(t(G′)h({p1 , p2} : G1)2)h({p1} : G′1)1 violates condition
2 because, when p1 and p2 both failed, the handler signature {p1} will still be
triggered (i.e., the outer try-handle will eventually take over). It is not sensible
to run G′1 instead of G1 (which is for the crashes of p1 and p2 ). The reason for
Condition 3 is that a try-handle is our handling basis, and we shall not confuse
normal messages or done notifications from different try-handles. Condition 4
is straightforward. Condition 5 is also straightforward as we can only handle
failures occurring in a try-handle therefore interaction that involves non-robust
roles needs to be inside try-handles.



Examples of well-formed and ill-formed global types.

Example 10. Gko = t(t(G′)h({p1} : G1)2)h({p1} :G′1) violates Condition 2 be-
cause there are two different handling activities for {p1} at different nesting
levels. Since the outer try-handle will eventually take over, it is not sensible to
have the handling activity {p1} at the inner one.

Example 11. Gko = t(p1→p2 l1(S1))h({p1} :p1→p2 l2(S2)) violates Condition
4. It is not well-formed since the handling activity of {p1} has p1→p2 l2(S2)
in which p1 is expected to output a message, yet p1 would have failed at that
point.

Example 12. Consider

Gko = t(p1→p2 l1(S1))h({p1} :p2→p3 l3(S3)).p1→p3 l2(S2)
Gok = t(p1→p2 l1(S1).p1→p3 l2(S2))h({p1} : p2→p3 l3(S3))

Gko violates Condition 5 since the non-robust p1 is expected to perform a mes-
sage send p1→p3 l2(S2) which is not enclosed by any try-handle. This is not safe
because, if p1 crashes before p1→p3 l2(S2) completes, then p3 will get stuck.
On the other hand, Gok is well-formed because all interactions containing the
non-robust participant p1 are enclosed in appropriate t(..)h(..) blocks and all
other properties hold.

B.2 Definitions for Section 4 (Process Calculus)

In the following we provide formal definitions for those we have used in Sec. 4
but have not yet formally defined.

Structural congruence. Processes, applications, and systems are considered
modulo structural equivalence, denoted by ≡, and defined by the rules in Def. 12
along with α-renaming.

Definition 12 (Structural Congruence).

h ≡ ∅ · h ≡ h · ∅ h1 · (h2 · h3) ≡ (h1 · h2) · h3
m ·m′ y m′ ·m

h ·m ·m′ · h′ ≡ h ·m′ ·m · h′
h ≡ h′

s : h ≡ s : h′

def D in 0 ≡ 0

def D in (def D′ in η) ≡ def D′ in (def D in η)
if dpv(D) ∩ (dpv(D′) ∪ fpv(η)) = dpv(D′) ∩ (dpv(D) ∪ fpv(η)) = ∅

Ψ�0 ≡ 0 N ≡ N ′
Ψ�N ≡ Ψ�N ′

(νs)(νs′)S ≡ (νs′)(ν s)S (νs)S|N ≡ (νs)(S|N) if s 6∈ fn(N)

The rule (Str) in Fig. 6 in Sec. 4 uses this definition.



In Def. 12, the rules in the first two lines allow the permutation of messages.
m · m′ y m′ · m means that the order of m · m′ can be switched to m′ · m.
Permutation is detailed below. The rules in the next two lines gives structural
congruence over recursions. Function dpv(D) gives the set of process variables in
declarations, and fpv(η) gives the set of process variables which occur free in η.
The final two line of rules state structural congruence of systems, each of which
combines an application N and a coordinator Ψ . Function fn(N) gives the set
of free names in N . The structural congruence rules for restriction and scope
extension are standard.

Permutation is possible, in short, as soon as messages and notifications have
different sources or destinations they can be permuted; also the order of done
notifications from different levels (e.g., φ 6= φ′) can be permuted.

Definition 13 (Permutable Messages). We define mi ·mj y mj ·mi, i 6= j,
saying mi ·mj can be permuted to mj ·mi, if none of the following conditions
holds:

– mi = 〈p, q , l(v)〉 and mj = 〈p, q , l′(v′)〉 for some l, l′, v, v′.
– mi = 〈ψ, q〉φ and mj = 〈[q , crash F ]〉 for some φ, F .

Extracting labels. Rule (Cln) in Fig. 7 in Sec. 4 removes messages if the
messages contains a label which cannot be reached. (This situation could happen
if the process applied (TryHdl)).

Def. 14 labels(η) extracts all labels of receiving actions in η which potentially
can receive messages. The only receiving actions which cannot and never will
be able to receive messages in η are those in a handler with signature F in a
try-handle (κ, F ′) where F ⊆ F ′ ((TryHdl) cannot switch the handling to F ).

Definition 14 (Extracting Reachable Labels in η).

labels(p!{li(ei).ηi}i∈I) =
⋃
i∈I labels(ηi)

labels(p?{li(ei).ηi}i∈I) =
⋃
i∈I({li} ∪ labels(ηi))

labels(t(η)h(H)(κ,∅).η′) = labels(η) ∪ labels(η′)
⋃

(F :η′′)∈H labels(η′′)

labels(t(η)h(H)(κ,F ).η′) = labels(η) ∪ labels(η′)
⋃

(F ′:η′′)∈H∧F⊂F ′ labels(η′′)

labels(0) = ∅
labels(0) = ∅

labels(X〈e〉) = ∅
labels(def D in η) = labels(η) ∪ labels(D)

labels(if e η else η′) = labels(η) ∪ labels(η′)
labels(X(x) = η) = labels(η)

B.3 Definitions for Section 6 (Type System)

We define T �p in Def. 15 as a filter to get the partial type which only contains
actions of p in T . For example

p1!l′(S′).p2!l(S)�p2 = p2!l(S)



and
p1!{l1(S1).p2?l(S), l2(S2).p2?l(S)}�p2 = p2?l(S)

Definition 15 (Behaviors for p in T ).

t(T )h(F1 :T1, ..., Fn :Tn)φ.T ′ �p ={
t(T �p)h(F1 :T1 �p, ..., Fn :Tn �p)φ.T ′ �p if p ∈ roles(T ) ∪

⋃n
i=1 roles(Ti)

T ′ �p otherwise

q !{li(Si).Ti}i∈I �p =

{
p!{li(Si).Ti �p}i∈I if p = q

Ti �p otherwise

q?{li(Si).Ti}i∈I �p =

{
p?{li(Si).Ti �p}i∈I if p = q

Ti �p otherwise

end�p = end t �p = t µt .T �p =

{
µt .T �p if T �p 6= t ′for any t ′

end otherwise

roles(T ) is used (again by slight abuse of notation) to represent the set of roles
appearing in T . By the final case of Def. 4 (Projection).(2) if p does not select
or receive a label, then the action of p shall be the same for any branch.

Next we define (h)p→q in Def. 16 to generate (1) the normal message types
sent from p heading to q , and (2) the notifications heading to q :

Definition 16 (Message Types to q). We define (h)p→q by selecting message
types and notifications in h which are (sent from p) heading to q . Let

mt ::= p?l(S) | 〈[F ]〉 | 〈ψ〉φ

and
ht ::= ∅ | mt · mt

and ht range over by (h)p→q

(∅)p→q = ∅ (m · h)p→q =


p?l(S) · (h)p→q if m = 〈p, q , l(S)〉 · h
〈[F ]〉 · (h)p→q if m = 〈[q , crash F ]〉 · h
〈ψ〉φ · (h)p→q if m = 〈ψ, q〉φ · h
(h)p→q otherwise

We define T–ht in Def. 17, meaning the effect of ht on T . Its concept is
similar to the session remainder defined in [39], which returns new local types
of participants after participants consume messages in the global queue. Since
failure notifications will not be consumed in our system, and we only have to
observe the change of a participant’s type after receiving or being triggered by
some messages types or notifications in ht, we say that T–ht represents the
effect of ht on T .

First we define session environment contexts E ::= [ ] | t(E)h(H)φ.T | µt .E
and define Fset(ht, p) similarly to Def. 2 by replacing queues with ht. The
permutation of ht is similarly defined as Def. 13 for queues.



Definition 17 (The Effect of ht on T ). We define T–ht as follows:

T–∅ = T
l 6∈ labels(T )

T–q?l(Sk) · ht = T–ht
φ 6∈ T 〈ψ〉φ ∈ ht

T–ht = T–ht \ 〈ψ〉φ

F ′ = ∪{A | A ∈ dom(H) ∧ F ⊂ A ⊆ Fset(ht, p)} F ′ :T ′ ∈ H
E [t(T )h(H)(κ,F ).T ′′]–ht = E [t(T ′)h(H)(κ,F

′).T ′′]–ht
〈ψ〉φ ∈ ht

E [t(end)h(H)φ.T ′]–ht = E [T ′]–(ht \ 〈ψ〉φ)

k ∈ I
E [q?{li(Si).Ti}i∈I ]–q?lk(Sk) · ht =

E [Tk]–ht

ht ≡ p?l(S) · ht′ ∃k ∈ I.l = lk
E [q !{li(Si).Ti}i∈I ]–ht =

E [q !{li(Si).(Ti–p?l(S))}i∈I ]–ht′

Other cases are undefined.

Notice that those rules are for general session environments (i.e., ∆), not
particularly for coherent session environments. Here we use the following example
to explain the final rule particularly.

Example 13. Assume in ∆ we have s[p] : T ∈ ∆ such that

T = p1!{l1(int).p2?l(str).p1?l3(int), l2(str).p2?l(str).p1?l4(str)}

Then, for analyzing the interactions of s[p] and s[p1] only, we focus on p1’s actions
by applying Def. 15: T �p1 = p1!{l1(int).p1?l3(int), l2(str).p1?l4(str)}.

Assume now we have messages 〈p2, p, l(str)〉 · 〈p1, p, l3(int)〉 heading to s[p].
By applying Def. 16, we simplify those messages to only p1?l3(int) and ignore
the other one because it is sent by p2. Because an output action p1! is not able
to consume any message, we leave this message to be consumed by the type
following p1!, which is either p1?l3(int) or p1?l4(str). So the result after consum-
ing 〈p1, p, l3(int)〉, we have p1!{l1(int).p1?l3(int), l2(str).p1?l4(str)}–p1?l3(int) =
p1!{l1(int).end, l2(str).end}.

However, very importantly, the existence of 〈p1, p, l3(int)〉 and T at the same
time shall never happen in any coherent session environment. Duality, defined
in Def. 7 in Sec. 6, makes sure that a coherent session environment can never
have this case: If we can have 〈p1, p, l3(int)〉 before T executes the output p1!, it
implies that the local type of s[p1] is T1 = p!{l3(int).p?l1(int), l4(str).p?l2(str)}
so that s[p] : p1!.T ′–∅ 6./ s[p1] : p!.T ′1–∅ from the beginning!

Other rules are trivially defined based on our operational semantics of applica-
tions and the system in Fig. 6, Fig. 7, and Fig. 8.

C Implementation Details

Based on the calculus presented previously we developed a domain-specific lan-
guage (DSL) and corresponding runtime system in Scala, using ZooKeeper as the
coordinator. In the following we show that our introduced abstractions match
our implementation. In particular we show that Zookeeper together with our



runtime system provide the coordinator abstraction and that our failure detec-
tor assumption (which in practice can be weakened by program-controlled crash)
is reasonable.

ZooKeeper as coordinator. Like the global queue which is an abstraction
for pairwise channels (e.g., TCP sockets) and can not model a message that is
currently in the network vs a message that is in an endpoint buffer, our coordi-
nator is also an abstraction. Before describing how ZooKeeper and our runtime
implement the coordinator abstraction we provide a high level description of
important ZooKeeper functionalities we use. In essence ZooKeeper provides a
hierarchical name space similar to a classical file system which guarantees se-
quential consistency and atomicity among other things. Clients that work with
ZooKeeper enter into a ZooKeeper session (the runtime system ensures that dur-
ing (Link) every linking process enters a ZooKeeper session). ZooKeeper sessions
are important for so-called ephemeral nodes, which allow clients to save non-
persistent data for as long as their ZooKeeper session is running, in contrast
to normal nodes which are persisted. ZooKeeper exchanges heartbeats with all
clients and if it does not receive heartbeats from a client for a configuration
timespan it disconnects that clients (i.e., ends the ZooKeeper session of that
client and removes all its ephemeral nodes).

When participants create a new session via the (Link) rule the runtime system
creates a unique name space for this session and saves the following information
in it (amont other): (i) a persistent queue (the notification queue) for all done
and failure notification sent to the coordinator, which ensure that all participant
see notifications sent to that queue in the same order; (ii) for every participant
a node which contains the information whether that participant has terminated
(i.e., successfully finished its involvement in the session); (iii) an ephemeral node
for every participant that indicates if the participant has an active ZooKeeper
session.

Done and failure notification. ZooKeeper by itself does not directly imple-
ment the reduction rules (CollectDone),(IssueDone) and (F), however ZooKeeper
ensures that every participant sees the done and failure notification in the same
order. That makes it straightforward for the runtime system to provide the co-
ordinator behavior by applying these rules in order of the notifications in the
notification queue. The rules (CollectDone),(IssueDone) and (F) provide a deter-
ministic outcome. In cases where more then one of these rules is applicable, the
runtime system selects a rule based on the following order: (CollectDone) over
(IssueDone) over (F).

Failure detection and false suspicions. The operational semantics model a
perfect asynchronous failure detector, in that upon a process crash the (Crash)

rule adds a failure notification to the queue which the coordinator eventually
processes. In practice false suspicions (i.e., non-perfect failure detection) can
happen. The failure detection in our implementation works as follows: if the
runtime system of a participant p suspects that participant q has failed it only
issues a failure notification if participant q has no active ZooKeeper session (the
ephemeral node of q does not exist) and the saved status of q in ZooKeeper is



not terminated. The key point here is that a failure notification for a participant
q will only be issued if q lost its ZooKeeper session.

However it is possible that a participant q loses its connection with ZooKeeper
without failing, e.g., the network drops too many heartbeat messages. After q
loses its ZooKeeper session other participants can issue failure notification for q
therefore q realizes that it was suspected and stops, i.e., it performs a controlled
crash. As mentioned, this occurs very infrequently in practice but is a feature
used in many distributed systems as last resort.

If a participant finishes its actions inside a session it sets its status to termi-
nated before disconnecting from ZooKeeper. This ensures that other participants
can not detect it as failed.

Automatically inferring try-handle levels and semi-unique labels. For
the simplification of the technique developed we require well-formed global types
which require that every try-handle is annotated with a unique level. For the
formal development we believe those are reasonable assumptions, however our
runtime system provides functionalities to remove this burden from the pro-
grammer. Concretely, we implemented a deterministic traversal for global types
which assigns unique and deterministic levels to all try-handle in a given global
type and we allow writing a global type which only contains labels required for
branching, adding others automatically.
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Fig. 14: Here two workers implemented in our DSL read data from
ZooKeeper, simulate work on it, and write a result back. We inject a
failure during the processing of batch number 3, which is clearly visible
in the spike. At that point the first worker starts handling the failure of
worker two, performing both works.

Evaluation. We evaluated our prototype on a microbenchmark, derived from
the big data task shown in Fig. 2. For the evaluation all participants and the
different ZooKeeper replicas run on different nodes. In all evaluation ZooKeeper
runs in a three-server setting, i.e., we have three different nodes which all have a



ZooKeeper replica running and therefore the ZooKeeper setup can tolerate one
process crash while still remaining operational. In this task two workers (w1 , w2 )
read data from a distributed file system (dfs), simulate working on the data and
then writes data back into the file system. The ZooKeeper setup provides reliable
data source and sink (dfs) used in the benchmarks and the runtime systems are
extended so that it can treat ZooKeeper like a regular robust participant. In order
to measure the overhead of our system we deployed all nodes in distinct virtual
machines on the same server, with the following spec: Intel(R) Xeon(R) CPU E5-
2680 v3 2.50GHz and 126 GB of RAM; each node has 4 cores assigned and 8 GB
of RAM. In addition ZooKeeper is configured to keep ZooKeeper session for at
least 1000 milliseconds alive after the last successfully exchanged heartbeat. Our
benchmark differs from the global type in Fig. 2 in that the workers read data,
i.e., we have two communication steps instead of one. For evaluation purposes
the actions inside the try-block and the handlers are repeated 10 times. Every
repetition uses a distinct data batch and each worker reads one partition from
this batch. Each batch contains two partitions, the worker w1 works on partition
one and worker w2 work on partition two. In case of a failure the non-crashed
worker processes both partitions.

The microbenchmark measures the cost of handling and recovering from a
failure if work is performed. We simulate the processing of a partition of a batch
as taking 1000 milliseconds. In this evaluation we manually stop the node of w2

(the Linux system in which w2 runs) when w2 is processing the data from the
batch. The graph in Fig. 14 shows a spike at batch three where the crash is
injected. This spike shows the combined time of: crash detection, involvement of
coordinator and worker on doing the processing of the entire batch three (i.e.,
also doing the work of w2 ). For batches 4 to 10 the processing time doubles
since w1 also does the work of w2 . Apart from the time where failure handling
is triggered one can see that the runtime is entirely dominated by the work, i.e.,
the overhead in the non-failure case is negligible.



D Proofs of Properties

This part of appendix provides the proofs and auxiliary definitions and lemmas
for the proposition and theorems in the paper.

D.1 Proof for Section 4 (Process Calculus)

Proposition 1. Given s : h with h = h′ · 〈ψ, p〉φ · h′′ and Fset(h, p) 6= ∅, the
rule (TryHdl) is not applicable for the try-handle φ at the process playing role p.

Proof. W.o.l.g. assume the coordinator is Ψ = G : (Fq, d). Since the failure
and done notifications sent by Ψ to the same participant have an order (not
permutable by Def. 13), we have the following two cases:

1. If ∃〈[p, crash F ′′]〉 ∈ h′, then we prove the statement by contradiction. Assume
we have F ∈ hdl(G,φ) and F = ∪{A | A ∈ dom(H)∧Fs′ ⊂ A ⊆ Fset(h, p)}.
Since Fset(h, p) ⊆ Fq, immediately rule (IssueDone) is violated.

2. If ∃〈[p, crash F ′′]〉 ∈ h′′, then we prove the statement by Def. 2 (Fset). By
Def. 2, 〈[p, crash F ′′]〉 6∈ Fset(h, p), therefore F ′′ 6∈ ∪{A | A ∈ dom(H)∧Fs′ ⊂
A ⊆ Fset(h, p)}.

D.2 Proofs for Section 7 (Properties)

To prove the properties of subject congruence, subject reduction, and progress,
we need to first prove one theorem, Theorem 4 (Preservation of Coherence),
which is the basis for proving those properties. This section goes as follows: we
prove Theorem 4 (Preservation of Coherence), then prove Theorem 1 (Subject
Congruence) and Theorem 2 (Subject Reduction), and finally prove Theorem 3
(Progress). For each proof, several auxiliary formal definitions are introduced,
and useful lemmas are stated and proved.

Preservation of Coherence. Before stating and proving preservation of co-
herence, we first define the reduction relation over session environments

Ψ ` ∆→T Ψ ′ ` ∆′

which is defined based on the operational semantics of applications and systems
defined in Sec. 4.



Definition 18 (Reduction relation over session environments).

s[p] : E [q !{li(Si).Ti}i∈I ], s : h→T s[p] : E [Tk], s : h · 〈p, q , lk(Sk)〉 k ∈ I [[Snd]]

s[p] : E [q?{li(Si).Ti}i∈I ], s : 〈q , p, lk(Sk)〉 · h→T s[p] : E [Tk], s : h k ∈ I [[Rcv]]

∆, {s : h} → ∆ \ {s[p] : T}, {s : remove(h, p) · 〈[ψ, crash p]〉} p non-robust [[Crash]]

F ′ = ∪{A | A ∈ dom(H) ∧ F ⊂ A ⊆ Fset(h, p)} F ′ :T ′ ∈ H
s[p] : E [t(T )h(H)(κ,F ).T ′′], s : h→ s[p] : E [t(T ′)h(H)(κ,F

′).T ′′], s : h
[[TryHdl]]

s[p] : E [t(end)h(H)φ.T ], s : h→ s[p] : E [t(end)h(H)φ.T ], s : h · 〈p, ψ〉φ [[SndDone]]

〈ψ, p〉φ ∈ h

s[p] : E [t(end)h(H)φ.T ], s : h→ s[p] : E [T ], s : h \ {〈ψ, p〉φ}
[[RcvDone]]

s[p] : E [T ], s : 〈q , p, l(S)〉 · h→ s[p] : E [T ], s : h l 6∈ labels(E [T ]) [[Cln]]

〈ψ, p〉φ ∈ h φ 6∈ E [T ]

s[p] : E [T ], s : h→ s[p] : E [T ] | s : h \ {〈ψ, p〉φ}
[[ClnDone]]

p̃ = roles(G) \ (F ∪ {p}) h′ = h · 〈[p̃, crash {p}]〉
G : (F, d) ` N | s : 〈[ψ, crash {p}]〉 · h→T G : (F ∪ {p}, d) ` N | s : h′

[[F]]

d′ = d · 〈p, ψ〉φ

G : (F, d) ` s : 〈p, ψ〉φ · h→T G : (F, d′) ` s : h
[[CollectDone]]

roles(d, φ) ⊇ roles(G,φ) \ F ∀F ′ ∈ hdl(G,φ).(F ′ 6⊆ F ) d′ = remove(d, φ)

G : (F, d) ` s : h→T G : (F, d′) ` s : h · 〈ψ, roles(G, φ) \ F 〉φ
[[IssueDone]]

∆→T ∆
′

∆,∆0 →T ∆
′,∆0

[[Str]]

When Ψ is not changed during reduction, i.e., Ψ ` ∆ →T Ψ ` ∆′, we simply
write the reduction relation as ∆→T ∆

′. If Ψ ` ∆→T Ψ ′ ` ∆′ and Γ = Γ0,Ψ
and Γ ′ = Γ0,Ψ

′, then we write Γ ` ∆→T Γ
′ ` ∆′. Remember we have defined

the context of local types in App. B.3 E ::= [ ] | t(E)h(H)φ.T | µt .E .
Assume G is well-formed and there is a session s such that ∆ = {s[p1] : G�

p1 , ..., s[pn] : G�pn}∪{s : ∅} and roles(G) = {p1 , ..., pn}. The immediate question
for Def. 8 (Coherence) is whether this definition ensures the interactions among
endpoints do progress with the guidance of G or not.

It is not trivial because, for the endpoints, they can take actions concurrently,
failures can occur randomly, and message types/notifications are transmitted in
an asynchronous manner. Consider a simple example:

G = p1 → p2 l1(int).p3 → p2 l2(str)

for a s that obeys to G, we will have

∆ = {s[p1 ] : p2!l1(int).end, s[p2 ] : p1?l1(int).p3?l2(str).end,
s[p3 ] : p2!l2(str).end, s : ∅}

and ∆→T ∆
′ such that

∆′ = {s[p1 ] : p2!l1(int).end, s[p2 ] : p1?l1(int).p3?l2(str).end,
s[p3 ] : end, s : 〈p3 , p2 , l2(str)〉}



At this step, 〈p3 , p2 , l2(str)〉 cannot trigger its receiver s[p2 ] because the corre-
sponding receiving action p3?l2(str) is guarded by p1?l1(int).

Note that, ∆′ is still able to reduce because s[p1 ] can take action. When
s[p1 ] takes action and outputs 〈p1 , p2 , l2(int)〉, its receiver s[p2 ] can absorb
〈p3 , p2 , l2(str)〉 immediately.

Then in the next reduction, s[p2 ] will absorb 〈p3 , p2 , l2(str)〉 .

We observe that, not every sending action fired by a well-typed behavior can
trigger its expected receiver immediately; but this will happen eventually.

The following simple lemmas and definitions will be used in the proof for
Theorem 4 (Preservation of Coherence).

Lemma 1. If T � p = E [p w {li(Si).Ti}i∈I ] and w ∈ {!, ?} for some E and
Ti, i ∈ I, then for any p′ 6= p we have for any j, k ∈ I, j 6= k, E [Tj ]�p′ = E [Tk]�p′.

Proof. Immediately by Def. 4 and Def. 7 (Duality).

Lemma 2. For any G, p ∈ roles(G) and q 6∈ roles(G) imply end = G�q � p ./
G�p �q = end.

Proof. Immediately by Def. 4 (Projection) and Def. 15.

The next lemma states that, given a session environment, if each of its end-
point’s type is projected from a well-formed global type, then this session envi-
ronment is coherent.

Lemma 3. Given G is well-formed and ∆s = {s[p1] : T1, ..., s[pn] : Tn, s : ∅} and
{p1, ..., pn} = roles(G) and Ti = G�pi for i ∈ {1..n}. Then Γ,G : (∅, ∅) ` ∆s is
coherent.

Proof. By the structure of a well-formed G, the proof is immediate by Def. 4
(Projection), Def. 7 (Duality), and Def. 8 (Coherence).

And, after a failure occurs, if a coordinator has not yet issued failure noti-
fications to endpoints in a coherent ∆ for handling this failure, the types of all
non-failed endpoints are still dual to each other in ∆.

Lemma 4. Assuming ∆ = ∆0, {s : h} is coherent and ∆→T ∆0 \{s[p] : T}, {s :
remove(h, p) · 〈[ψ, crash p]〉} = ∆′. Then ∀s[p] : T ∈ ∆, if s[q ] : T ′ ∈ ∆ then
s[p] : T �q–(h)q→p ./ s[q ] : T ′ �p–(h)p→q .

Proof. Assume the non-failed endpoints are {s[pi] : Ti}i∈I . Since ∆ is coherent,
{s[pi] : Ti}i∈I in ∆ are dual to each other after considering the effect of h on each
of them. By the rules defined in Def. 17, we know 〈[ψ, crash p]〉 will not affect
any non-failed endpoints. So the endpoints of {s[pi] : Ti}i∈I in ∆′ are still dual
to each other after considering the effect of remove(h, p) · 〈[ψ, crash p]〉 on each
of them.



To reason about asynchrony in ∆, we define message types permutation,
which is very similar to Def. 13.

Definition 19 (Permutable Message Types). We define mi · mj y mj · mi,
i 6= j, saying mi ·mj can be permuted to mj ·mi, if none of the following conditions
holds:

– mi = 〈p, q , l(S)〉 and mj = 〈p, q , l′(S′)〉 for some l, l′, S, S′.
– mi = 〈ψ, q〉φ and mj = 〈[q , crash F ]〉 for some φ, F .

For convenience we say that participants currently performing actions in try-
handle φ are partners. We also give the following function HdlLogic to extract a
particular try-handle for a handler. This function is used for proving Case [[F]] in
Theorem 4.

When t(G0�p)h(F1 G1�p, ..., Fn Gn�p)(κ,∅) is generated by Def. 4 (Projec-
tion), for other handler signatures in the try-handle of κ can be automatically
generated by

Definition 20. Given t(T )h(H)(κ,∅) and H = F1 T1, ..., Fn Tn. We define

HdlLogic(t(T )h(H)(κ,∅), F ) = t(Ti)h(H)(κ,F ) if F = Fi, i ∈ {1..n}

Also for convenience, we define

notify(p) ::= 〈[p, crash F ]〉 | 〈[ψ, crash F ]〉 | 〈ψ, p〉φ | 〈p, ψ〉φ

The following proof states that a coherent session environment will reduce
to another coherent session environment.

Theorem 4 (Preservation of Coherence). Γ ` ∆ coherent and Γ = G :
(F, d), Γ ′ andG : (F, d) ` ∆→T G : (F ′, d′) ` ∆′ imply that Γ ′, G : (F ′, d′) ` ∆′
is coherent.

Proof. We prove the statement by mechanically proving each cases.

1. Case s : ∅. We have the following subcases.

(I) Case [[Snd]], there exists s[p] : T ∈ ∆,T = E [q !{li(Si).Ti}i∈I ].

W.o.l.g. assume
∆ = ∆0, s[p] : T, s : ∅

such that

G : (Fq, d) ` ∆0, s[p] : T, s : ∅ →T G : (Fq, d) ` ∆0, s[p] : E [Tk], s : 〈p, q , lk(Sk)〉

for some k ∈ I. Let ∆′ = ∆0, s[p] : E [Tk], s : 〈p, q , lk(Sk)〉.

In ∆, by Def. 8.(2), for any s[q ′] : T ′ ∈ ∆, we have

s[p] : T �q ′ ./ s[q ′] : T ′ �p



In ∆, if q ′ = q , then let T � q = E ′′[q !{li(Si).T ′′i }i∈I ] for some E ′′ and
T ′′i , i ∈ I. By Def. 7 T ′ �p = E ′[p?{li(Si).T ′i}i∈I ] for some E ′ and T ′i , i ∈ I
and

∀i ∈ I. s[p] : E ′′[T ′′i ] ./ s[q ] : E ′[T ′i ].
In ∆′, by Def. 17 (The Effect of ht) and Def. 7 (Duality), we have
s[p] : E [Tk] and s[q ] : T ′ such that

s[p] : E [Tk]�q − (〈p, q , lk(Sk)〉)q→p = s[p] : E ′′[T ′′k ]
./ s[q ] : E ′[T ′k]
= s[q ] : T ′ �p − (〈p, q , lk(Sk)〉)p→q

In ∆, for any q ′ 6= q , q ′ ∈ roles(G) and s[q ′] : T ′′ ∈ ∆, by Lemma 1, the
fact that T � q ′ = E [q !{li(Si).Ti}i∈I ] � q ′ is defined implies that for any
j, k ∈ I, j 6= k, we have E [Tj ]�q ′ = E [Tk]�q ′ and

s[p] : T �q ′ = s[p] : E [Tj ]�q ′ ./ s[q ′] : T ′′ �p

In ∆′ , by Def. 17 (The Effect of ht) and Def. 7 (Duality), we have
s[p] : E [Tk] and s[q ′] : T ′′ such that

s[p] : E [Tk]�q ′ − (〈p, q , lk(Sk)〉)q′→p = s[p] : E [Tk]�q ′

./ s[q ′] : T ′′ �p − (〈p, q , lk(Sk)〉)p→q′

= s[q ′] : T ′′ �p

Since the types of other endpoints are not changed, Γ ′, G : (Fq, d) ` ∆′

is coherent.

(II) Case [[Crash]], some endpoint in ∆ crashes. W.o.l.g. assume ∆ = ∆0, s[p] :
T, s : ∅ such that

G : (Fq, d) ` ∆0, s[p] : T, s : ∅ →T G : (Fq, d) ` ∆0, s : 〈[ψ, crash F ]〉

Let ∆′ = ∆0, s : 〈[ψ, crash F ]〉.

By Def. 8. (1), there exists G : (Fq, d) ∈ Γ , so that Γ ` ∆′ is coherent
since now ∆′ contains a crash, and the coordinator G : (Fq, d) will han-
dle it.

(III) Case [[SndDone]], some endpoint in ∆ finishes its default action. W.o.l.g.
assume ∆ = ∆0, s[p] : T, s : ∅ and T = E [t(end)h(H)φ.T ′] such that

G : (Fq, d) ` ∆0, s[p] : T, s : ∅
→T G : (Fq, d) ` ∆0, s[p] : E [t(end)h(H)φ.T ′], s : 〈p, ψ〉φ

Let ∆′ = ∆0, s[p] : E [t(end)h(H)φ.T ′], s : 〈p, ψ〉φ.

Since this kind of message type will not affect any endpoints in ∆0 and
by Def. 8.(2) for any s[q ] : T ′ ∈ ∆ we have s[p] : T � q ./ s[q ] : T ′ � p so
Γ ` ∆′ is coherent.



2. Case s : h 6= ∅ and Γ ` ∆ is coherent.

(I) Case [[Snd]], there exists s[p] : T ∈ ∆,T = E [q !{li(Si).Ti}i∈I ].

W.o.l.g. assume

∆ = ∆0, s[p] : T, s : h

such that

G : (Fq, d) ` ∆0, s[p] : T, s : h
→T G : (Fq, d) ` ∆0, s[p] : E [Tk], s : h · 〈p, q , lk(Sk)〉

for some k ∈ I. Let ∆′ = ∆0, s[p] : E [Tk], s : h · 〈p, q , lk(Sk)〉.

Then we have the following cases:

(A) Case ∀p ∈ roles(G). notify(p) 6∈ h and 〈[ψ, crash F ]〉 6∈ h (i.e. h con-
tains only normal message types).

In ∆, by Def. 17 (The Effect of ht) and Def. 8 (2). (a), for any
s[q ′] : T ′ ∈ ∆ we have

s[p] : T �q ′ − (h)q′→p = s[p] : E [q !{li(Si).Ti}i∈I ]�q ′ − (h)q′→p

./ s[q ′] : T ′ �p − (h)p→q′

In ∆, if q ′ = q , we have

T �q−(h)q→p = E [q !{li(Si).Ti}i∈I ]�q−(h)q→p = E ′′[q !{li(Si).T ′′′i }i∈I ]

for some E ′′ and T ′′′i , i ∈ I and by Def. 7 (Duality), we have T ′ �
p − (h)p→q = E ′[p?{li(Si).T ′i}i∈I ] for some E ′ and

∀i ∈ I. s[p] : E ′′[T ′′′i ] ./ s[q ] : E ′[T ′i ].

By Def. 17 (The Effect of ht) and Def. 7 (Duality)

s[p] : E [Tk]�q − (h · 〈p, q , lk(Sk)〉)q→p

= s[p] : E [Tk]�q
= s[p] : E ′′[T ′′′k ]
./ s[q ] : E ′[T ′k]
= s[q ] : T ′ �p − (h · 〈p, q , lk(Sk)〉)p→q

In ∆, for any q ′ 6= q , let s[q ′] : T ′′ ∈ ∆. By Lemma 1, ∀j, k ∈ I,
j 6= k we have E [Tj ]�q ′ − (h)q′→p = E [Tk]�q ′ − (h)q′→p and

s[p] : T �q ′ − (h)q′→p = s[p] : E [q !{li(Si).Ti}i∈I ]�q ′ − (h)q′→p

= s[p] : E [Tj ]�q ′ − (h)q′→p

./ s[q ′] : T ′′ �p − (h)p→q′



Thus in ∆′ we have

s[p] : E [Tk]�q ′ − (h · 〈p, q , lk(Sk)〉)q′→p

= s[p] : E [Tk]�q ′ − (h)q′→p

./ s[q ′] : T ′′ �p − (h)p→q′

= s[q ′] : T ′′ �p − (h · 〈p, q , lk(Sk)〉)p→q′

Since the types of other endpoints are not changed, Γ ` ∆′ is co-
herent.

(B) Case ∃〈[p0 , crash F
′]〉 ∈ h for some F ′ and p0 .

Since 〈[p0 , crash F ]〉 is issued by [[F]], we have ∀s[pi ] ∈ dom(∆s),
〈[pi , crash F ]〉 ∈ h (by [[Crash]], only the alive endpoints).

W.o.l.g assume ∆ = ∆0, s[p] : T, s[q ] : T ′, s : h and assume T =
E [q!{li(Si).T ′′i }i∈I ] and

G : (Fq, d) ` ∆0, s[p] : T, s[q ] : T ′, s : h→T

G : (Fq, d) ` ∆0, s[p] : E [Tk], s[q ] : T ′, s : h · 〈p, q , lk(Sk)〉

In ∆ we observe

∗ If T = E ′′′[t(E ′′[q!{li(Si).T ′′i }i∈I ])h(F : TF )(κ,Fs)], where TF is
the handler bodyfor F , and F = ∪{A | A ∈ dom(H) ∧ Fs ⊂
A ⊆ Fset(h, p)} (notice that 〈ψ, p〉(κ,Fs) 6∈ h because endpoint
s[p] who is still taking actions in φ), then by Def. 8 and Def. 7
(Duality) and Def. 17 (The Effect of ht), we have

s[p] : T �q − (h)q→p

= s[p] : E ′′′[t(E ′′[q!{li(Si).T ′′i }i∈I ])h(F :TF )(κ,Fs)]�q − (h)q→p

= s[p] : E ′′′[t(E ′′[TF ])h(F :TF )(κ,F )]�q − (h)q→p

./ s[q ] : T ′ �p − (h)p→q

= s[q ] : E ′′′′[t(E ′′′[T ′F ])h(F :T ′F )(κ,F )]�p − (h)p→q

where TF ./ T
′
F by Def. 7.

Now lk 6∈ T ′ due to the occurrence of failure

In ∆′ we observe

s[p] : E [Tk]�q − (h · 〈p, q , lk(Sk)〉)q→p

= s[p] : E ′′′[t(E ′′[TF ])h(F :TF )(κ,F )]�q − (h)q→p

./ s[q ] : E ′′′′[t(E ′′′[T ′F ])h(F :T ′F )(κ,F )]�p − (h)p→q

= s[q ] : T ′ �p − (h)p→q

= s[q ] : T ′ �p − (h · 〈p, q , lk(Sk)〉)p→q

because 〈p, q , lk(Sk)〉 is removed by Def. 11 (Well-formedness).(3)
and rule [[Cln]] since lk 6∈ labels(T ′) (i.e., 〈p, q , lk(Sk)〉 is a mes-
sage sent out after failures which can be handled by s[p] and s[q ]



occur).

∗ If T = E ′′′[t(E ′′[q!{li(Si).T ′′i }i∈I ])h(F :TF )(κ,Fs)] and 〈ψ, p〉(κ,Fs) ∈
h, by Proposition 1 (which is also true for the session environ-
ment because they share the same operation), T is not able to
handle more failures in h, so it goes to the next case.

∗ Otherwise (i.e., T cannot handle failures in h), it goes to Case
(2).(I).(A) or Case (2).(I).(C): Case (2).(I).(A) is for no any
done notifications sent from the coordinator in h, while Case
(2).(I).(C) is for some done notifications sent from the coordina-
tor in h.

For other endpoints the proof is similar as above.

Thus G : (Fq, d) ` ∆ is coherent.

(C) Case ∃〈ψ, p′〉φ ∈ h for some p′ and φ = (κ, Fs).

Let the try-handle of κ in G be t(G0)h(H )κ. If 〈ψ, pi〉φ ∈ h, then
pi ∈ roles(t(G0)h(H )κ).

W.o.l.g assume ∆ = ∆0, s[p] : T, s[q ] : T ′, s : h and assume T =
E [q!{li(Si).T ′′i }i∈I ]

G : (Fq, d) ` ∆0, s[p] : T, s[q ] : T ′, s : h→T

G : (Fq, d) ` ∆0, s[p] : E [T ′′k ], s[q ] : T ′, s : h · 〈p, q , lk(Sk)〉

Let Labels(T, φ) as a set of labels appearing in the try-handle of
φ = (κ, Fs) in T . If lk ∈ Labels(T, φ), by [[IssueDone]] it leads to contra-
diction because the actions in the try-handle of φ is not yet finished.

So we have lk 6∈ Labels(T, φ), which implies that p, q 6∈ roles(t(G0)h(H )κ).

In ∆, for any p′ ∈ roles(t(G0)h(H )κ), they are dual to each other
after being affected by h.

In ∆′, since 〈p, q , lk(Sk)〉 does not affect any of them, they are still
dual to each other after being affected by h.

In ∆, for any q ′ 6= q and s[q ′] : T ′′ ∈ ∆,

∗ if q ′ ∈ roles(t(G0)h(H )κ), we have

s[p] : T �q ′ − (h)q′→p ./ s[q
′] : T ′′ �p − (h)p→q′

s[q ] : T �q ′ − (h)q′→q ./ s[q
′] : T ′′ �q − (h)q→q′



because, assuming w.o.l.g. G = G[t(G0)h(H )κ], we have T ′′ = G�
q ′ and the new message will not affect G�q ′ (which is outside of
try-handle of κ).

In ∆′, we have

s[p] : E [T ′′k ]�q ′ − (h · 〈p, q , lk(Sk)〉)q′→p

= s[p] : E [T ′′k ]�q ′ − (h)q′→p

./ s[q ′] : T ′′ �p − (h)p→q′

= s[q ′] : T ′′ �p − (h · 〈p, q , lk(Sk)〉)p→q′

∗ if q ′ 6∈ roles(t(G0)h(H )κ), in ∆′, either Case 2. (I) or Case 2. (II)
can be applied to prove that s[p] : E [T ′′k ] and s[q ] : T ′ and those
endpoints who are not in roles(G,φ) are dual after being affected
by h.

Thus Γ ` ∆′ is coherent.

(D) Case ∃〈[ψ, crash F ]〉 ∈ h for some F .

By Def. 8.(1), G : (Fq, d) ∈ Γ .

W.o.l.g assume ∆ = ∆0, s[p] : T, s[q ] : T ′, s : h.

By assumption, we have

G : (Fq, d) ` ∆0, s[p] : T, s[q ] : T ′, s : h→T

G : (Fq, d) ` ∆0, s[p] : T, s[q ] : T ′, s : h · 〈p, q , lk(Sk)〉

and ∆′ = ∆0, s[p] : T, s[q ] : T ′, s : h · 〈p, q , lk(Sk)〉 which means co-
ordinator s(G) : Fq for handling 〈[ψ, crash F ]〉 is not yet affected, so
that ∆′ is coherent by Def. 8.(1).

Note that, in ∆, if the reduction comes from [[Snd]] (by the assumption
of this case), then p 6∈ F and q 6∈ F .

For the case that coordinator G : (Fq, d) is affected, it is Case 2. (V),
where [[F]] is applied.

(E) Case ∃〈p′, ψ〉φ ∈ h for some p′ and φ.

By Def. 17, this kind of message type will not trigger any endpoints,
the proof goes back to Cases 2.(I).(A,B,C,D).

(II) Case [[Crash]], there exists some s[p] : T ∈ ∆ that crashes, and failure no-
tification 〈[ψ, crash {p}]〉 is sent to the coordinator. The proof is similar



to Case 1.(II) and Case 2.(I). (D).

Note that, this failure at this moment, which is abstracted as 〈[ψ, crash {p}]〉,
is not able to affect any endpoints; moreover, the coordinator G : (Fq, d)
will eventually handle this failure by rule (F) and make Def. 8.(2) (Co-
herence) again satisfied.

(III) Case [[SndDone]], there exists s[p] : T ∈ ∆,T = E [t(end)h(H)φ.T ′] and the
reduction sends done notification 〈p, ψ〉φ to the coordinator. The proof
is similar to Case 1.(III).

Note that, this notification at this moment, which is abstracted as 〈p, ψ〉φ,
is not able to affect any endpoints; moreover, the coordinator G : (Fq, d)
will eventually handle this notification by rules (CollectDone, IssueDone)

and make Def. 8.(2) (Coherence) again satisfied.

(V) Case [[Rcv]]. Every receiving case is trivial because the coherence has been
ensured when every message/notification is sent out. We only prove the
standard receiving case [[Rcv]], where a reduction comes from an endpoint
receives a message in the queue.

W.o.l.g. assume s[p] : E [q?{li(Si).Ti}i∈I ] ∈ ∆ and h = 〈q , p, lk(Sk)〉 · h′
and k ∈ I and ∆′ = ∆′0, s : h′ such that s[p] : E [Tk] ∈ ∆′.

By Def. 8.(2) and Def. 17 (The Effect of ht), for any p′ 6= p, s[p′] : T ′ ∈ ∆,
we have

s[p] : E [q?{li(Si).Ti}i∈I ]�p′ − (〈q , p, lk(Sk)〉 · h′)p′→p

= s[p] : E [Tk]�p′ − (h′)p′→p

./ s[p′] : T ′ �p − (〈q , p, lk(Sk)〉 · h′)p→p′

= s[p′] : T ′ �p − (h′)p→p′

Thus in ∆′, we immediately have

s[p] : E [Tk]�p′ − (h′)p′→p ./ s[p
′] : T ′ �p − (h′)p→p′

Thus Γ ` ∆′ is coherent.

(VI) Case [[F]]. If the reduction comes from [[F]], in which the coordinator adds
a notification 〈[p, crash F ]〉 into the queue type to notify the endpoint
acting as role p that F occurs.

Note that, before this reduction, the session environment, say ∆, con-
tains some failure, so only point 1 in Def. 8 (Coherence) is applicable.
The following proof is for reasong that the reduced one, i.e., ∆ →T ∆′

is also coherent. Also, note that Lemma 4 is generally applied in the
reasoning. (Recall: Lemma 4 states that after a failure occurs, if a coor-
dinator has not yet issued failure notifications to endpoints in a coherent



∆, the types of all non-failed endpoints are still dual to each other in ∆).

This case, particularly, gives reasons for
(a) Def. 11 (Well-formedness).(5) ensures either F will be handled or

there is no more interactions involving ∀q ∈ F .

(b) Def. 11 (Well-formedness).(1),(2) work for avoiding any confusion
among partners for handling some F .

(c) With the above reasons, a coordinator needs to keep a well-formed
G as a global guidance.

In the following we give our proofs for (a) and (b).

By Def. 8.(1) and [[F]], G : (Fq, d) ∈ Γ and h = h′′ · h′ such that
∀p′ ∈ roles(G) \ Fq and ∀m ∈ h′, m = 〈[p′, crash F ]〉 for some F and the re-
duction comes from 〈[p′, crash F ]〉 triggers some handlers appearing in G.

(a) If G is well-formed 〈[p, crash F ]〉 ∈ h means ∀q ∈ F is non-robust, so
a well-formed G shall take care of it (somewhere) by Def. 11.5.

Moreover, by Def. 4 (Projection), every alive partners (this is ensured
by Def. 11 (Well-formedness).(1)) in a handler (for some try-handle
of φ) has
∗ The same set of handler signature and
∗ The same try-handles of φ and
∗ They are dual to each other in the handler body by given Def. 8.(b)

holds.
They imply that, once a participant is triggered for handling F , all
partners will soon or later be triggered for handling F too.

(b) By Def. 11 (Well-formedness).(1) and rules (TryHdl) and [[TryHdl]], a
participant always gets triggered by the largest set of failures which
currently it is able to handle.

Moreover, Def. 11 (Well-formedness).(2) ensures that the structure
of G never results in some partners are handling F in an inner try
block but some are handling F in the outer try-handle. The following
is reasoning about this point.

By Def. 11 (Well-formedness), we know the possible shapes of G are
as follows:

(1) There is only one handler for F : ∃t(G0)h(H )κ ∈ G,F ∈ dom(H )
and H (F ) = G′ and ∀t(G′0)h(H ′)κ

′ ∈ G, κ′ 6= κ. F 6∈ dom(H ′).



(2) There are two handlers for F such that

G = G[t(G0)h(F :G′0,H0)κ].G′[t(G1)h(F :G′1,H1)κ
′
]]

Note that, by Def. 11 (Well-formedness), the following shape

G = G[t(G′[t(G0)h(F :G′0,H0)κ])h(F :G′1,H1)κ
′
]

is forbidden.

(3) There are more than two handlers for F . This case is by induc-
tively applying Case (2).

In the following we prove (1) and (2) respectively.

For (1)

(i) If ∀m ∈ h, m 6= 〈[p, crash F ′]〉, m 6= 〈ψ, p〉φ for some p, φ, F ′. We
can have m = 〈p′, q ′, l(S)〉 for some p′, q ′, l, S, then the proof
firstly goes back to Case 2.(V).(A) (h 6= ∅, the reduction is from
a normal sending action, and there is no failure/done notifica-
tion when the sending action takes place) to check all outputted
messages, then the proof goes back to this case. Remember that
a normal message can be permuted with a notification (either
a failure or a done notification). In the following we apply this
permutation attributes.

Consider G = G[t(...)h(F :G′,H )κ]. Let G′′ = t(...)h(F :G′,H )κ.
Since G is well-formed, every G′ ∈ G is also well-formed, so that
G′′ is well-formed.

In ∆, for any p, q ∈ roles(G′′), let ∆(s[p]) = T and ∆(s[q ]) = T ′.
By Def. 8 (Coherence).(2), we have

s[p] : T �q − (h′′ · h′)q→p = s[p] : (E [G′′�p.T ′′])�q
./ s[q ] : (E [[G′′�q .T ′′′])�p
= s[q ] : T ′ �p − (h′′ · h′)p→q

In ∆′, for those p, q ∈ roles(G′′), by Def. 20 and Def. 7 (Duality),
we have

s[p] : (HdlLogic(G′′�p, F ).T ′′)�q ./ s[q ] : (HdlLogic(G′′�q , F ).T ′′′)�p



In ∆, for any p, q 6∈ roles(G′′), they will not be affected by F , so
they remain being dual to each other and so as their endpoint
types in ∆′.

In ∆, for any p ∈ roles(G′′), q 6∈ roles(G′′), they do not interact
with each other when p is affected by F , so by Lemma 2,

s[p] : T �q − (h · h′)q→p = s[p] : end
./ s[q ] : end
= s[q ] : T ′ �p − (h · h′)p→q

In ∆′, their endpoint types hold this relation because they still
do not interact to each other in κ.

(ii) If ∃m ∈ h′′, m = 〈[p, crash F ′]〉 for some p and for some F ′ 6= F ,
but ∀m ∈ h′′, m 6= 〈ψ, p′〉φ for some p′ and some φ.

Then we consider G with the following shapes:

· G = G[t(G′[t(G0)h(F :G′,H0)κ])h(F ′ :G′′,H1)κ
′
].

In ∆, for any p, q ∈ roles(t(G′[t(G0)h(F : G′,H0)κ])h(F ′ :
G′′,H1)κ

′
]), let s[p] : E [T0] and s[q ] : E ′[T ′0] such that T0 and

T ′0 both have the try-handle of (κ′, Fs) for some Fs.

When 6 existsF ′′ ⊃ F ∪ F ′ such that F ′′ ∈ G, then by Def. 8
(Coherence).(2) and Def. 20, we have

s[p] : E [T0]�q − (h′′ · h′)q→p

= s[p] : E [HdlLogic(T0, F
′)]�q − (h′′′ · h′)q→p

./ s[q ] : E ′[T ′0]�p − (h′′ · h′)p→q

= s[q ] : E ′[HdlLogic(T ′0, F
′)]�p − (h′′′ · h′)p→q

This case shows that, if there exists failure notifications to
trigger outer and inner handler, the outer one takes over.

In ∆′ their endpoint types hold

s[p] : E [HdlLogic(T0, F
′)]�q − (h′′′ · h′)q→p

./ s[q ] : E ′[HdlLogic(T ′0, F
′)]�p − (h′′′ · h′)p→q

When existsF ′′ ⊃ F ∪ F ′ such that F ′′ ∈ G, by Def. 11. (2),
F ′′ must be in a try-handle of encloseingTrysGκ′ (i.e., F ′′

is in an outer try-handle or the same try-handle of F ′). The
proof is similar to the previous case.



· G = G[t(G′[t(G0)h(F ′ :G′′,H0)κ])h(F :G′,H1)κ
′
].

In ∆, for any p, q ∈ roles(t(G′[t(G0)h(F ′ : G′′,H0)κ])h(F :
G′,H1)κ

′
), let s[p] : E [T0] and s[q ] : E ′[T ′0] such that T0 and T ′0

both have the try-handle of (κ′, Fs) for some Fs.

By Def. 17 (The Effect of ht) and Def. 7 (Duality),

s[p] : T0 �q − (h · h′)q→p

= s[p] : E [HdlLogic(T0, F )]�q − (h′′ · h′)q→p

./ s[q ] : T ′0 �p − (h · h′)p→q

= s[q ] : E ′[HdlLogic(T ′0, F )]�p − (h′′ · h′)p→q

Again, in ∆′ their endpoint types hold

s[p] : E [HdlLogic(T0, F )]�q − (h′′ · h′)q→p

./ s[q ] : E ′[HdlLogic(T ′0, F )]�p − (h′′ · h′)p→q

(iii) If ∃m ∈ h′′, m = 〈ψ, p〉φ for some p and some φ = (κ, Fs).

Then we consider G having the following shapes:

· G = G[t(G′[t(G0)h(H0)κ])h(F :G′,H1)κ
′
] and Fs ∈ dom(H0)

Since ∀p ∈ roles(G), 〈[p, crash F ]〉 takes over eventually:

s[p] : (G�p.T )�q − (h′′ · h′)q→p

= (G′�p.T )�q − (h′′ · h \ 〈ψ, p〉φ)q→p

the proof goes back to the beginning of (b).(1) when F is trig-
gered.

· G = G[t(G0)h(F :G′,H )κ] and Fs ∈ dom(H ).

In this case Fset(h, p) (Def. 2 second condition) will not collect
〈[p, crash F ]〉 to trigger p’s handler in the try-handle of κ. Done
notification 〈ψ, p〉φ, φ = (κ, Fs), will finish the try-handle of κ.

For (b).(2), there are two handlers for F , say

G = G[t(G0)h(F :G′,H0)κ].G′[t(G1)h(F :G′′,H1)κ
′
]]

If roles(t(G0)h(F : G′,H0)κ) ∩ roles(t(G1)h(F : G′′,H1)κ
′
) = ∅, the

proof is the same as the part in (b).(1).



Otherwise, if p, q ∈ roles(t(G0)h(F : G′,H0)κ) ∩ roles(t(G1)h(F :
G′′,H1)κ

′
), in ∆, let ∆(s[p]) = T and ∆(s[q ]) = T ′. By Def. 4 (Pro-

jection) we have

T = E [t(G0�p)h(F :G′�p,H′)(κ,∅).E ′[t(G1�p)h(F :G′′�p,H′′)(κ
′,∅)]]

and similarly

T ′ = E ′′[t(G0�q)h(F :G′�q ,H′′′)(κ,∅).E ′′′[t(G1�q)h(F :G′′�q ,H′′′′)(κ
′,∅)]]

for some E , E ′, E ′′, E ′′′,H′,H′′,H′′′,H′′′′ and by Def. 8 (Coherence).(2)
we have

s[p] : T �q − (h′′ · h′)q→p ./ s[q ] : T ′ �p − (h′′ · h′)p→q

With the same strategy we used in (b).(1).(i) (by using Def. 20), in
∆′ their endpoint types are still dual after affected by h′′ · h′. The
relation is either if there does not exist 〈ψ, p〉(κ,Fs) and 〈ψ, q〉(κ,Fs)

for some Fs

s[p] : E [HdlLogic(t(G1�p)h(F :G′′�p,H′′′′)(κ
′,∅), F ).T ′′]�q − (h′′ · h′)q→p

./ s[q ] : E ′′[HdlLogic(t(G1�q)h(F :G′′�q ,H′′′′)(κ
′,∅), F ).T ′′′]�p − (h′′ · h′)p→q

or, if there exists 〈ψ, p〉(κ,Fs) and 〈ψ, q〉(κ,Fs) for some Fs

s[p] : E [E ′[HdlLogic(t(G1�p)h(F :G′′�p,H′′′)(κ
′,∅), F )]]�q − (h′′ · h′)q→p

./ s[q ] : E ′′[E ′′′[HdlLogic(t(G1�q)h(F :G′′�q ,H′′′′)(κ
′,∅), F )]]�p − (h′′ · h′)p→q

Otherwise, if p, q ∈ roles(t(G0)h(F :G′,H0)κ) and p, q ′ ∈ roles(t(G1)h(F :
G′′,H1)κ

′
) and q 6= q ′, in ∆, let ∆(s[p]) = T and ∆(s[q ]) = T ′ and

∆(s[q ′]) = T ′′. By Def. 4 (Projection) we have T as the case above,
and

T ′ = E ′′[t(G0�q)h(F :G′�q ,H′′′)(κ,∅).E ′′′′[end]]

and
T ′′ = E ′′′′[E ′′′′′[t(G1�q

′)h(F :G′′�q ′,H′′′′)(κ
′,∅)]]

for some E ′′, E ′′′, E ′′′′, E ′′′′′,H′′′,H′′′′ and we have

s[p] : T �q ./ s[q ] : T ′ �p
s[p] : T �q ′ ./ s[q ′] : T ′′ �p
s[q ] : T �q ′ ./ s[q ′] : T ′ �q

With the same strategy we used in (b).(1).(i) (by using Def. 20), In
∆′ their endpoint types are still dual after affected by h′′ · h′.

Thus overall, Γ ′, G : (Fq
′, d) ` ∆′ is coherent.



(C) Case [[CollectDone]]. This case is trivial because only the coordinator collects
done notifications sent from participants; no endpoints will be affected.

(D) Case [[IssueDone]]. By [[IssueDone]],

G : (Fq, d) ` ∆ = ∆0, s : h→T G : (Fq, d
′) ` ∆′ = ∆0, s : h′′ · h′

such that h′′ contains no 〈p′′, ψ〉(κ,Fs) for some p′′ and ∀m ∈ h′, m =
〈ψ, p′〉(κ,Fs) and, let t(...)h(H )κ ∈ G, we have p′ ∈ roles(H (Fs)).

(a) If there exists 〈[p, crash F ]〉 ∈ h′′ ·h′ such that p ∈ roles(H (Fs)), then
by Proposition 1, endpoint s[p] : T will not be affected by failures in
h′′ · h′. Therefore, 〈ψ, p′〉(κ,Fs) is the one that will affect s[p] : T and
finishes T ’s try-handle of (κ, Fs).

(b) If there exists 〈q , p, l(S)〉 ∈ h, then by the structure of try-handles,
this message type have the following relation with the try-handle of
φ = (κ, Fs):

• if it comes from a try-handle of φ′ = (κ′, Fs
′) such that κ ∈

outerG(κ′) or κ = κ′ then it becomes orphan; by Def. 11 (Well-
formedness).(3) , [[Cln]] wil be applied.

• if it comes from a try-handle of φ′ = (κ′, Fs
′) such that κ′ ∈

outerG(κ′), then by rule [[RcvDone]], 〈ψ, p′〉(κ,Fs) will finish T ’s try-
handle of Fs.

Then the rest of proof is similar to Case 2.(V).(B).

(E) Case [[TryHdl]]. In Case [[F]], we prove that the failure notifications sent out
by the coordinator with a well-formed G can trigger endpoints who are
able to handle failures; moreover, Def. 8(Coherence).(2) ensures that the
handler for any F are coherent in the sense that every participant has a
dual interacting party to handle failures.

After triggering handler(s), the prove is as same as the one in Case
1.(I).(B).

(F) Case [[RcvDone]]. The proof is similar to Case 1.(I).(C).

Subject congruence and subject reduction. We first state the inversion
lemma and several auxiliary lemmas which will be used in our proofs.

Lemma 5 (Inversion Lemma).

1. If Γ ` c : 0B ∆, then ∆ is end-only.



2. If Γ ` c : if e η1 else η2 B ∆, then Γ ` e : bool and ∀i ∈ {1, 2} we have
Γ ` c : ηi B ∆.

3. If Γ ` a[p](y).P B ∆, then ∆ = ∅ and Γ ` a : 〈G〉 and Γ ` P B {c : G�p}.
4. If Γ ` c : p! l(e).η B ∆, then ∆ = {c : T} l = lk and k ∈ I and T =
p! {li(Si).T ′i}i∈I and Γ ` e : Sk and Γ ` c : ηk B {c : T ′k}.

5. If Γ ` c : p? {li(ei).ηi}i∈I B ∆, then ∆ = {c : T} and T = p? {li(Si).Ti}i∈I
and ∀i ∈ I. Γ, xi : Si ` c : ηi B {c : Ti}.

6. If Γ ` c : 0.ηB ∆, then ∆ = {c : T} and T = end.end and Γ ` c : ηB {c :
end}.

7. If Γ ` c : X〈e〉B ∆, then ∆ = {c : T} and Γ = Γ ′, X : S T and Γ ′ ` e : S.
8. If Γ ` c : def D in η2 B ∆ and X(x) = η1 ∈ D, then ∆ = {c : T} and
Γ,X : S µt .T ′ ` c : η2 B {c : T} and Γ,X : S t , x : S ` c : η1 B {c : T ′}.

9. If Γ ` c : t(η)h(H)φ.η′ B ∆, then ∆ = {c : T} and T = t(T ′)h(H)φ.T ′′ and
Γ ` c : η B {c : T ′} and Γ ` c : η′ B {c : T ′′} and dom(H) = dom(H)
and ∀F ∈ dom(H) we have Γ ` c : H(F )B {c : H(F )}.

10. If Γ ` s : ∅B ∆, then ∆ = {s : ∅}.
11. If Γ ` s : h · 〈p, q , l(e)〉 B ∆, then ∆ = {s : h · 〈p, q , l(S)〉} and Γ ` s :

hB {s : h} and Γ ` e : S.
12. If Γ ` s : h · 〈p1 , p2 〉φ B ∆, then (p1, p2) ∈ {(p, ψ), (ψ, p)} for some p and

∆ = {s : h · 〈p1 , p2 〉φ} and Γ ` s : hB {s : h}.
13. If Γ ` s : h · 〈[q , crash F ]〉B ∆, then ∆ = {s : h · 〈[q , crash F ]〉} and q ∈ {p, ψ}

and Γ ` s : hB {s : h}.
14. If Γ ` N1|N2B ∆, then Γ ` N1B ∆1 and Γ ` N2B ∆2 and ∆ = ∆1, ∆2

such that dom(∆1) ∩ dom(∆2) = ∅.
15. If Γ ` (νs)S B ∆, then Γ ` S B ∆′ and and ∆ = ∆′ \∆′s and Γ ` ∆′s is

coherent.
16. If Γ ` Ψ�N B ∆, then Γ = Γ ′,Ψ and Γ ′ ` N B ∆.

Proof. By induction on derivations.

Lemma 6 (Substitution Lemma).

1. If Γ, x : S ` S B ∆ and Γ ` v : S, then Γ ` S{v/x}B ∆.
2. If Γ ` S B ∆, y : T , then Γ ` S{s[p]/y}B ∆, s[p] : T .

Proof.

1 The proof is by induction on derivation of Γ, x : S ` B ∆.

2 The proof is by induction on derivation of Γ ` B ∆, y : T .

Lemma 7 (Types of Queues).

1. If Γ ` s : 〈p, q , l(v)〉 · h B ∆, then ∆ = {s : 〈p, q , l(S)〉 · h} and Γ ` s :
hB {s : h}.

2. If Γ ` s : 〈[role, crash F ]〉 · h B ∆, then role ∈ {p, ψ} for some p and
∆ = {s : 〈[role, crash F ]〉 · h} and Γ ` s : hB {s : h}.



3. If Γ ` s : 〈role, role′〉φ · h B ∆, then (role, role′) ∈ {(p, ψ), (ψ, p)} for some
p and ∆ = {s : 〈role, role′〉φ · h} and Γ ` s : hB {s : h}.

Proof. For all cases, the first step follows from Lemma 5.10. The induction step
follows from Lemma 5.11.

Lemma 8. If Γ ` c : E[η]B {c : T} and Γ ` c : ηB {c : T ′}, then T = E [T ′]
for some E .

Proof. The proof is by structural induction on contexts E.

– E = [ ], then immediately E = [ ].

– E = def D in E′ and X(x) = η′ ∈ D and Γ ` c : ηB {c : T ′}. By applying
Lemma 5.8 to

Γ ` c : def D in E′[η]B {c : T}

we have

Γ,X : S µt .T ′′ ` c : E′[η]B {c : T} and Γ,X : S t , x : S ` c : η′B {c : T ′′}

Since Γ,X : S µt .T ′′ ` c : η B {c : T ′}, by induction, we have T = E [T ′].

– E = t(E′)h(H)φ.η′ and Γ ` c : η B {c : T ′}. By applying Lemma 5.9 to

Γ ` c : t(E′[η])h(H)φ.η′ B {c : T}

we have

T = t(T ′′)h(H)φ.T ′′′ and Γ ` c : E′[η]B {c : T ′′}

By induction, we have T ′′ = E ′[T ′] for some E ′. So we have

T = t(E ′[T ′])h(H)φ.T ′′′ = t(T ′′)h(H)φ.T ′′′

such that E = t(E ′)h(H)φ.T ′′′.

Theorem 1 (Subject Congruence)

(1) Γ ` N B ∆ and N ≡ N ′ imply Γ ` N ′ B ∆
(2) Γ ` S B ∆ and S ≡ S ′ imply Γ ` S B ∆.

Proof. Both proofs are by induction on ≡. We only list the interesting cases.

– h ≡ h′
s : h ≡ s : h′

.

Given h ≡ h′, we firstly prove that Γ ` s : hB ∆ implies Γ ` s : h′ B ∆.



Then by N ≡ N ′
Ψ G N ≡ Ψ G N ′

(which is proved in the next case) and bT-sysc,

we have Γ,G : (Fq, d) ` Ψ G s : hB ∆ then Γ ′, G : (Fq, d) ` Ψ G s : h′B ∆
and G : (Fq, d) ∈ Ψ .

Let h ≡ h′ and Γ ` s : h B ∆. The equivalence h ≡ h′ should come from
one of the following cases: (1) h ≡ h · ∅ ≡ h′ or (2) h ≡ ∅ · h ≡ h′ or (3)
h ≡ h1·(h2·h3) ≡ (h1·h2)·h3 ≡ h′ or (4) h ≡ h1·m·m′·h2 ≡ h1·m′·m·h2 ≡ h′
by given m ·m′ y m′ ·m.

If the structural congruence comes from cases (1), (2), or (3), since the mes-
sages in h and h′ are the same and they are in the same order, then by
Lemma 7, Γ ` s : h′ B ∆.

If the structural congruence comes from case (4), given m · m′ y m′ · m,
then by Lemma 5.11, Lemma 5.12, Lemma 5.13 and Lemma 7,

Γ ` s : h1 ·m ·m′ · h2 B {s : h1 · m · m′ · h2}

imply Γ ` s : h1B {s : h1} and Γ ` s : mB {s : m} and Γ ` s : m′B {s : m′}
and Γ ` s : h2 B {s : h2}.

By bT-mc or bT-Dc or bT-Fc, we derive

Γ ` s : h1 ·m′ ·m · h2 B {s : h1 · m′ · m · h2}.

By Definition 19 (Permutable Message Types),

{s : h1 · m′ · m · h2} ≡ {s : h1 · m · m′ · h2} = ∆

Thus we conclude this case.

– N ≡ N ′
Ψ�N ≡ Ψ�N ′

.

By Lemma 5.16, then G : (Fq, d) ∈ ψ and Γ = Γ ′, G : (Fq, d) and Γ ′ `
N B ∆.

By induction on ≡, we have Γ ` N ′ B ∆. By bT-sysc, we have

Γ ` Ψ�N ′ B ∆

We conclude this case.

Before proving Theorem 2 (Subject Reduction), we give the following lemma
for a special case that when N → S:

Lemma 9. Γ ` N B ∆ with Γ ` ∆ coherent and N → S imply that Γ, ψ `
S B ∆.



Proof. The only case is (Link). Assume Γ ` a[p1 ](y1).P1 | ... | a[pn ](yn).PnB ∆
and a : G and roles(G) = {p1 , ..., pn}.

By applying Lemma 5.(14) n times, we have

∆ = {∆i}i∈{1..n} and ∀i ∈ {1..n}. Γ ` a[pi ](yi).Pi B ∆i (1)

By applying Lemma 5.(3) on Eq. (1), we have

∆i = ∅ ⇒ ∆ = ∅ (2)

∀i ∈ {1..n}. Γ ` Pi B {yi : G�pi} and Γ ` a : 〈G〉

By applying bT-pac n times on Eq. (2), we derive

Γ ` P1 | ... | Pn B {y1 : G�p1 , ..., yn : G�pn} (3)

By applying Lemma 6.(2) to Eq. (3), we derive

Γ ` P1{s[p1 ]/y1} | ... | Pn{s[pn ]/yn}B {s[p1 ] : G�p1 , ..., s[pn ] : G�pn} (4)

By applying bT-pac n and bT-∅c to Eq. (4), we derive

Γ ` P1{s[p1 ]/y1} | ... | Pn{s[pn ]/yn} | s : ∅B (5)

{s[p1 ] : G�p1 , ..., s[pn ] : G�pn , {s : ∅}}

By applying bT-sysc to Eq. (5), we have

Γ,G : (∅, ∅) ` G : (∅, ∅)�P1{s[p1 ]/y1} | ... | Pn{s[pn ]/yn} | s : ∅B
{s[p1 ] : G�p1 , ..., s[pn ] : G�pn , {s : ∅}} (6)

By applying Lemma 3 to Eq. (6), we have

Γ,G : (∅, ∅) ` {s[p1 ] : G�p1 , ..., s[pn ] : G�pn , {s : ∅}} coherent (7)

By applying bT-sc to Eq. (7) we derive

Γ,G : (∅, ∅) ` (νs)(G : (∅, ∅)�P1{s[p1 ]/y1} | ... | Pn{s[pn ]/yn} | s : ∅)B ∅

Thus ∆′ = ∅ = ∆. We conclude this case.

Now we prove subject reduction theorem.

Theorem 2 (Subject Reduction)

(a). Γ ` SB∆ with Γ ` ∆ coherent and S →∗ S ′ imply that ∃∆′ such that Γ ′ `
S ′ B ∆′ and Γ ` ∆→∗T Γ ′ ` ∆′ or ∆ ≡ ∆′ and Γ ′ ` ∆′ coherent.

(b). Γ ` S B ∅ and S → S ′ imply that Γ ` S ′ B ∅.



Proof. For (a).

The proof is by induction on the derivation of S → S ′. We list rules in Fig. 6
(operational semantics of applications and system).

– (Snd). Assume Γ ` s[p] : E[q! l(e).η] | s : hB ∆ and e ⇓ v and Γ ` ∆ is
coherent.

By applying Lemma 5.(14), we have

∆ = ∆1, ∆2 and Γ ` s[p] : E[q! l(e).η]B ∆1 and Γ ` s : hB ∆2 (8)

By applying Lemma 7 and Eq. (8) and bT-mc, we have

∆2 = {s : h} and Γ ` v : S and Γ ` s : h · 〈p, q , l(v)〉B {s : h · 〈p, q , l(S)〉} (9)

By applying Lemma 5.(4) and Lemma 8 to Eq. (8), we have

∆1 = {s[p] : E [q! l(S).T ′]} and Γ ` s[p] : E[η]B {s[p] : E [T ′]} (10)

By bT-pac and Eq. (9) and Eq. (10), we derive

Γ ` s[p] : E[η] | s : h · 〈p, q , l(v)〉B {s[p] : E [T ′], s : h · 〈p, q , l(S)〉} (11)

Let ∆′ = {s[p] : E [T ′], s : h · 〈p, q , l(S)〉}. By [[Snd]], we have

G : (Fq, d) ` ∆→T G : (Fq, d) ` ∆′

and by Theorem 4 Γ ` ∆′ is coherent. We conclude this case.

– (Rcv). Assume Γ ` s[p] : E[q?{li(xi) : ηi}i∈I ] | s : 〈q , p, l(v)〉 · hB ∆ and
Γ ` ∆ is coherent.

By applying Lemma 5.(14), we have ∆ = ∆1, ∆2

Γ ` s[p] : E[q?{li(xi) : ηi}i∈I ]B ∆1 and Γ ` s : 〈q , p, l(v)〉 · hB ∆2(12)

By applying Lemma 7 and Eq. (12), we have

∆2 = {s : 〈q , p, l(v)〉 · h} and Γ ` v : S and Γ ` s : hB {s : h} (13)

By applying Lemma 5.(5) and Lemma 8 to Eq. (12) we have

Γ ` s[p] : E[q?{li(xi) : ηi}i∈I ]B {s[p] : E [q? {li(Si).Ti}i∈I ]} (14)

∀i ∈ I. Γ, xi : Si ` s[p] : E[ηi]B {s[p] : E [Ti]}

By applying Lemma 6 (Substitution) and Eq. (14),

Γ ` s[p] : E[ηk{vk/xk}]B {s[p] : E [Tk]} (15)



By bT-pac and Eq. (13) and Eq. (15), we derive

Γ ` s[p] : E[ηk{vk/xk}] | s : h · 〈q , p, l(v)〉B {s[p] : E [Tk], s : h}

Let ∆′ = {s[p] : E [Tk], s : h}. By [[Rcv]], we have

G : (Fq, d) ` ∆→T G : (Fq, d) ` ∆′

and by Theorem 4 Γ ` ∆′ is coherent. We conclude this case.

– (Rec). Assume Γ ` s[p] : def X(x) = η in X〈e〉B ∆.

By applying Lemma 5.(8), we have

∆ = {s[p] : T} (16)

Γ,X : S µt .T ′ ` s[p] : X〈e〉B ∆

Γ,X : S t , x : S ` s[p] : η B {s[p] : T ′}

By applying Lemma 5.(8) to Eq. (16), we have

Γ = Γ ′, X : S T and Γ ′ ` e : S (17)

By applying bT-defc to Eq. (16) and Eq. (17), we derive

Γ, x : S ` s[p] : def X(x) = η in X〈e〉B ∆ (18)

By applying Lemma 6.(1) to Eq. (18), we have

Γ ` s[p] : def X(x) = η in η{v/x}B ∆ where e ⇓ v

Thus we conclude this case.

– (TryHdl). Assume Γ ` s[p] : E[t(η)h(F : η′,H)(κ,Fs).η′′] | s : h B ∆ and
F = ∪{A | A ∈ dom(H) ∧ Fs ⊂ A ⊆ Fset(h, p)} and Γ ` ∆ is coherent.

By applying Lemma 5.(14), we have

∆ = ∆1, ∆2 and

Γ ` s[p] : E[t(η)h(F :η′,H)(κ,Fs).η′′]B ∆1 and

Γ ` s : hB ∆2 (19)

By applying Lemma 8 and Lemma 5.(9) to Eq. (19), we have

∆1 = {s[p] : T} (20)

Γ ` s[p] : E[t(η)h(F :η′,H)(κ,Fs).η′′]B {s[p] : T}
T = E [t(T ′)h(F :T ′′,H)(κ,Fs).T ′′′]

Γ ` s[p] : η B {s[p] : T ′} and Γ ` s[p] : η′′ B {s[p] : T ′′′} and

dom(H) = dom(H) and ∀F ∈ dom(H). Γ ` s[p] : η′ B {s[p] : T ′′}



By applying Lemma 7 to Eq. (19), we have

∆2 = {s : h} and Γ ` s : hB {s : h} (21)

By bT-thc and Eq. (20), we have

Γ ` s[p] : E[t(η′)h(F :η′,H)(κ,F ).η′′]B (22)

{s[p] : E [t(T ′′)h(F :T ′′,H)(κ,F ).T ′′′]}

By bT-pac and Eqs. (20), (21), (22), we derive

Γ ` s[p] : E[t(η′)h(F :η′,H)(κ,F ).η′′] | s : h (23)

B {s[p] : E [t(T ′′)h(F :T ′′,H)(κ,F ).T ′′′], s : h}

Let ∆′ = {s[p] : E [t(T ′′)h(F :T ′′,H)(κ,F ).T ′′′], s : h}. By [[TryHdl]] we have

G : (Fq, d) ` ∆→T G : (Fq, d) ` ∆′

and by Theorem 4, Γ ` ∆′ is coherent. We conclude this case.

– (Cln). Assume Γ ` s[p] : E[η] | s : 〈q , p, l(v)〉 · hB ∆ and l 6∈ labels(E[η])
and ∆ is coherent. (Note that, Def. 17 (The Effect of ht) defines that this
kind of 〈q , p, l(v)〉 will not affect any endpoints in ∆).

By applying Lemma 5.(14), we have

∆ = ∆1,∆2 and Γ ` s[p] : E[η]B ∆1 and Γ ` s : 〈q , p, l(v)〉 · hB ∆2 (24)

By applying Lemma 7 and Eq. (24), we have

∆2 = {s : 〈q , p, l(e)〉 · h} and Γ ` v : S and Γ ` s : hB {s : h} (25)

By bT-pac and Eq. (24) and Eq. (25), we have

Γ ` s[p] : E[η] | s : hB ∆1, {s : h} (26)

Let ∆′ = ∆1, {s : h}. By [[Cln]], we have

G : (Fq, d) ` ∆→T G : (Fq, d) ` ∆′

and by Theorem 4 Γ ` ∆′ is coherent. We conclude this case.

– (ClnDone). The proof is similar to the case (Cln).

– (Crash). Assume Γ ` s[p] : η | N | s : hB ∆.

By applying Lemma 5.(14) two times, we have

∆ = ∆1, ∆2, ∆3 and Γ ` s[p] : η B ∆1 and (27)

Γ ` N B ∆2 and Γ ` s : hB ∆3



By applying Lemma 7 and bT-mc to Eq. (27), we have

∆3 = {s : h} and h = h0 · m1 · h1...hn−1 · mn · hn where p ∈ mi, i ∈ {1..n} (28)

Let msg(h, p) collect messages. By applying Lemma 7 and bT-mc to Eq. (28),
we have

Γ ` s : remove(h, p)B {s : (remove(h, p)} (29)

By bT-pac and bT-Fc to Eq. (27) and Eq. (29), we derive

Γ ` N | s : remove(h, p) · 〈[ψ, crash p]〉B (30)

∆2, {s : remove(h, p) · 〈[ψ, crash p]〉} (31)

Let ∆′ = ∆2, {s : h \msg(h, p) · 〈[ψ, crash p]〉}. By [[Crash]] we have

G : (Fq, d) ` ∆→T G : (Fq, d) ` ∆′

and by Theorem 4, Γ ` ∆′ is coherent. We conclude this case.

– (SndDone). Assume Γ ` s[p] : E[t(0)h(H)φ.η′] | s : hB ∆

By applying Lemma 5.(14), we have

∆ = ∆1, ∆2 and

Γ ` s[p] : E[t(0)h(H)φ.η′]B ∆1 and

Γ ` s : hB ∆2 (32)

By applying Lemma 8 and Lemma 5.(9) and Lemma 5.(1) to Eq. (32), we
have

∆1 = {s[p] : T} (33)

T = E [t(end)h(H)φ.T ′] and

Γ ` s[p] : 0B {s[p] : end} and Γ ` s[p] : η′ B {s[p] : T ′} and

dom(H) = dom(H) and

∀F ∈ dom(H). Γ ` s[p] : H(F )B {s[p] : H(F )} (34)

By applying Lemma 7 and Eq. (32), we have

∆2 = {s : h} (35)

By bT-ydc and bT-thc and Eq. (33), we have

Γ ` s[p] : E[t(0)h(H)φ.η′]B {s[p] : E [t(0)h(H)φ.T ′]} (36)

By bT-Dc and Eq. (35), we derive

Γ ` s : h · 〈p, ψ〉φ B {s : h · 〈p, ψ〉φ} (37)



By bT-pac and Eqs. (33), (35), (36), (37), we derive

Γ ` s[p] : E[t(0)h(H)φ.η′] | s : h · 〈p, ψ〉φ B
{s[p] : E [t(0)h(H)φ.T ′], s : h · 〈p, ψ〉φ}

Let
∆′ = {s[p] : E [t(0)h(H)φ.T ′], s : h · 〈p, ψ〉φ}.

By [[SndDone]] we have

G : (Fq, d) ` ∆→T G : (Fq, d) ` ∆′

and by Theorem 4, Γ ` ∆′ is coherent. We conclude this case.

– (RcvDone). Assume Γ ` s[p] : E[t(0)h(H)φ.η] | s : hB ∆ and 〈ψ, p〉φ ∈ h.

By applying Lemma 5.(14), we have

∆ = ∆1, ∆2 and

Γ ` s[p] : E[t(0)h(H)φ.η′]B ∆1 and

Γ ` s : hB ∆2 (38)

By applying Lemma 8 and Lemma 5.(6) to Eq. (38), we have

∆1 = {s[p] : T} (39)

T = E [t(end)h(H)φ.T ′] and

Γ ` s[p] : 0B {s[p] : end} and Γ ` s[p] : η′ B {s[p] : T ′} and

dom(H) = dom(H) and ∀F ∈ dom(H). Γ ` H(F )B H(F ) (40)

By Lemma 7 and bT-Dc and Eq. (38) and the condition that 〈ψ, p〉φ ∈ h, we
have

∆2 = {s : h} and h = h′ · 〈ψ, p〉φ · h′′ (41)

By applying Lemma 8 to Eq. (39), we have

Γ ` s[p] : E[η′]B {s[p] : E [T ′]} (42)

By applying Eq. (41), we derive

Γ ` s : h \ 〈ψ, p〉φ B {s : h′ · h′′} (43)

By bT-pac and Eqs. (42), (43), we derive

Γ ` s[p] : E[η′] | s : h \ 〈p, ψ〉φ B {s[p] : E [T ′], s : h′ · h′′}

Let ∆′ = {s[p] : E [T ′], s : h′ · h′′}. By [[RcvDone]] we have

G : (Fq, d) ` ∆→T G : (Fq, d) ` ∆′

and by Theorem 4, Γ ` ∆′ is coherent.



– (F). Assume Γ ` G : (Fq, d)�s : 〈[ψ, crash F ]〉 · hB ∆ and ∃t(...)h(H )κ ∈ G
such that F ∈ dom(H ).

By applying Lemma 5.(16), we have

G : (Fq, d) ∈ Γ and Γ ′ ` s : 〈[ψ, crash F ]〉 · hB ∆ (44)

such that Γ = Γ ′, G : (Fq, d)

By applying Lemma 7 and Eq. (44), we have

∆ = {s : 〈[ψ, crash F ]〉 · h} and Γ ′ ` s : hB {s : h} (45)

By bT-sysc and bT-Fc and Eq. (45), we derive

Γ ′, G : (Fq ∪ F, d) ` G : (Fq ∪ F, d)�s :

h · 〈[roles(G) \ (Fq ∪ F ), crash F ]〉 ·B
{s : h · 〈[roles(G) \ (Fq ∪ F ), crash F ]〉} (46)

Let
∆′ = {s : h · 〈[roles(G) \ (Fq ∪ F ), crash F ]〉}

By [[F]] we have

G : (Fq, d) ` ∆→T G : (Fq ∪ F, d) ` ∆′

and by Theorem 4, Γ ′, G : (Fq∪F, d) ` ∆′ is coherent. We conclude this case.

– (CollectDone). The proof is trivial.

– (IssueDone). Assume Γ�s : hB ∆ and Γ = Γ ′, G : (Fq, d) and there exists φ
such that roles(d, φ) ⊇ roles(G,φ) \ Fq and ∀F ∈ hdl(G,φ).(F 6⊆ Fq)

By applying Lemma 5.(16), we have

Γ ′ ` s : hB ∆ (47)

By applying Lemma 7 and Eq. (47) and bT-Dc, we have

∆ = {s : h} (48)

h = h0 · 〈p1 , ψ〉φ · h1 · ... · 〈pn , ψ〉φ · hn where roles(d, φ) = {p1, ..., pn}

By bT-sysc and bT-Dc and Eq. (48), we derive

Γ ′, G : (Fq, remove(d, φ)) ` G : (Fq, remove(d, φ))�s :

h · 〈ψ, roles(G , φ) \ (Fq)〉φ

B {s : (h · 〈ψ, roles(G , φ) \ (Fq)〉φ} (49)

Let
∆′ = {s : {s : (h · 〈ψ, roles(G , φ) \ (Fq)〉φ}



By [[IssueDone]] we have

G : (Fq, d) ` ∆→T G : (Fq, d
′) ` ∆′

where d′ = remove(d, φ) and by Theorem 4, Γ,G : (Fq, d
′) ` ∆′ is coherent.

We conclude this case.

For (b).

The proof is immediately because Γ ` ∅ is always coherent.

Progress. This section proves the property of progress. We first state the
following auxiliary lemmas which will be used in our proof.

Lemma 10. If Γ ` ∆ is coherent and s : h ∈ ∆ and Γ = Γ ′, G : (Fq, d), then
Γ ′, G : (Fq, d) ` ∆→T Γ

′, G : (Fq
′, d′) ` ∆′ for some Fq

′, d′.

Proof.

(A) Firstly, if ∆ is not end-only, by [[Crash]], it is always possible that some
s[p] ∈ dom(∆) crashes. Then G : (Fq, d) ` ∆→T G : (Fq, d) ` ∆′.

If h ≡ 〈[ψ, crash F ]〉 · h′, it implies crash F has happened; then either

(a) ∃t(G′)h(H )κ ∈ G.F ∈ dom(H ), then by [[F]], G : (Fq, d) ` ∆ →T G :
(Fq, d) ` ∆′ such that ∆′ is the result of the trigger of some handler;

(b) Otherwise, it violates rule [[Crash]].

(B) If no processes crash and ∆ is not end-only, we mechanically prove all cases
in Fig. 18. By the structure of local types (defined in Section 5), we have the
following possible types at endpoints in ∆:

1. There exists s[p] : E [q !{li(Si).Ti}i∈I ]. By [[Snd]], G : (Fq, d) ` ∆ →T G :
(Fq, d) ` ∆′.

2. There exists s[p] : E [t(end)h(H)φ.T ′]. By [[SndDone]], G : (Fq, d) ` ∆ →T

G : (Fq, d) ` ∆′.

4. h ≡ 〈q , p, lk(Sk)〉 · h′. Because Γ ` ∆ is coherent, then either by [[Rcv]] or
[[Cln]], G : (Fq, d) ` ∆→T G : (Fq, d) ` ∆′.

5. 〈ψ, p〉φ ∈ h.
(a) If roles(d, φ) ⊇ roles(G,φ) \ Fq and ∀F ∈ hdl(G,φ) we have F 6⊆

Fq, then [[IssueDone]] is applied and G : (Fq, d) ` ∆, s : h →T G :
(Fq, remove(d, φ)) ` ∆, s : h · 〈ψ, roles(G , φ) \ Fq〉φ;



(b) otherwise, by [[CollectDone]], G : (Fq, d) ` ∆, s : h →T G : (Fq, d ∪
{〈ψ, p〉φ}) ` ∆, s : h \ {〈ψ, p〉φ}.

6. 〈ψ, p〉φ ∈ h. Because Γ ` ∆ is coherent, so we have G : (Fq, d) ∈ Γ
and there exists G′ = t(G′′)h(H )φ, G′ ∈ G and p ∈ roles(G′) \ Fq and
〈ψ, p〉φ is issued only when s[p] has sent out 〈p, ψ〉φ, which means, by
[[SndDone]], there exists s[p] : E [t(end)h(H)φ.T ]. Moreover, p ∈ roles(G′)\Fq
implies that s[p] is alive at the moment. Thus we have s[p] exists to ap-
ply [[RcvDone]] such that G : (Fq, d) ` ∆, s[p] : E [t(end)h(H)φ.T ] →T G :
(Fq, d) ` ∆, s[p] : T .

7. h ≡ 〈[ψ, crash F ]〉 · h′. Then [[F]] is applied and G : (Fq, d) ` ∆, s : h →T

G : (Fq ∪ F, d) ` ∆, s : h \ {〈[ψ, crash F ]〉}

8. h ≡ 〈[p, crash F ]〉 · h′. Then either
(a) there exists s[p] : E [t(T )h(F ′ :T ′,H)φ.T ′′] such that F ′ = ∪{A | A ∈

dom(H) ∧ Fs ⊂ A ⊆ Fset(h, p)}. Then by [[TryHdl]], we have G :
(Fq, d) ` ∆→T G : (Fq, d) ` ∆′; or

(b) s[p] : T and ∀t(T ′)h(H)φ ∈ T , F 6∈ dom(H). Then we shall have
either T = end or T is one of Cases 1–8.

(C) If ∆ is end-only, then we the statement is true.

We conclude the proof after checking all cases.

Lemma 11. If Γ ` S B ∆ and G : (Fq, d) ∈ Γ and G : (Fq, d) ` ∆s →T G :
(Fq
′, d′) ` ∆′s, then there exists S ′ such that S → S ′.

Proof. W.l.o.g, assume S = Ψ�N |N ′ and Γ ` Ψ�N B ∆s. By Lemma 5
and typing rules defined in Fig. 10 and Fig. 11, G : (Fq, d) ` ∆s →T G :
(Fq
′, d′) ` ∆′s implies that there exists some s[p] : η ∈ N and s : h ∈ N such

that N = s[p] : η | s : h | N0 and s[p] : η | s : h → s[p] : η′ | s : h′ Thus there
exists S ′ = Ψ�s[p] : η′ | s : h′ | N0 | N ′.

Given S = (ν s)(Ψ�N) | N ′ and s 6∈ fn(N ′) is possible, we can have some
participants in N ′ which do not join session s but may later or immediately
create another session concurrently.

To cater this kind of of situation, we define an initializable S such that,
∀a[p].P ∈ S, (Link) is applicable:

Definition 21 (Initializable S). Given Γ ` SB ∅. S is initializable under Γ if
∃a[p].P ∈ S implies that Γ ` a : G for some G and ∀pi ∈ roles(G), a[pi ].Pi ∈ S.

Theorem 3(Progress) If Γ ` SB ∅ and S is initializable, then either S →∗ S ′
and S ′ is initializable or S ′ = Ψ�s : h | ... | Ψ ′�s′ : h′ and h, ..., h′ only contain
failure notifications sent by coordinators.



Proof. The proof is by Lemma 10 and Theorem 1 and Theorem 2.

For convenience, we also use Q to range over processes.

1. Assume no sessions in S have started, for example

Ψ�a[p1].P1 | ... | a[pn].Pn | N

Since S is initializable, S either terminates (with only global queue left) or
S → S ′ and S ′ is initializable and Γ ` S ′ B ∅ by Theorem 2. (2).

2. Assume some session, say s, has started its communication.

W.o.l.g. assume S = (νs)(Ψ�N) | N ′ and s 6∈ fn(N ′), i.e., N ′ has no any
session running in it.

For all P ∈ N and Q ∈ N ′, we have P 6= Q. E.g.

(νs)(s[p] : η | s[p′] : η′ | s : h) | a[q ].Q | a[q ′].Q′

where a is a shared name ready to start another session. For the processes in
N ′, the proof goes to Case (1), which says that due to initializability those
processes will start a session without interfering the existing s; for the pro-
cesses in N , the proof goes to Case (3).

3. If all sessions in S have started by (Link).

W.o.l.g. assume S = (νs)(Ψ�N) | S ′′.

Since (νs)(Ψ�N) and S ′ do not interfere each other, we can analyze them
independently:

(a) For the part of (νs)(Ψ�N), by applying Lemma 5.(15) to S, we have

Γ ` (νs)(Ψ�N)B ∅
Γ ` Ψ�N B ∆ = ∆s

Γ ` ∆s coherent (50)

By Lemma 10, we have

Γ ` ∆→∗T Γ ` ∆′

where ∆′ is end-only for session s.

By Lemma 11 and Theorem 2, there exists N ′ such that

Ψ�N →∗ Ψ�N ′ and Γ ` Ψ�N ′ B ∆′ and S →∗ (νs)(Ψ�N ′) = S ′(51)



By applying bT-sc to Eq. (51), we have Γ ` (νs)S ′ = S ′′ B ∅.

Since ∆′ is end-only for session s, it implies all interactions at endpoint
processes in s have finished.

Moreover, based on (CollectDone), (IssueDone), and (F), since a coordi-
nator always consume notifications of 〈p, ψ〉φ and 〈[ψ, crash F ]〉 for any
p, φ, F , so if there is any this kind of message left, the coordinator will
consume so S ′ → S ′′ until there is no more such messages in S ′′.

(b) For the part of S ′′, since all participants have joined some sessions (by
assumption), the proof is as same as the above.
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