
High Throughput Forwarding for ICN
with Descriptors and Locators

Michele Papalini, Koorosh Khazaei, Antonio Carzaniga, Daniele Rogora
Faculty of Informatics

Università della Svizzera italiana (USI)
Lugano, Switzerland

ABSTRACT
Application-defined and location-independent addressing is
a founding principle of information centric networking (ICN)
that is inherently difficult to realize if one also wants scalable
routing and forwarding. We propose an ICN architecture,
called TagNet, intended to combine expressive application-
defined addressing with scalable routing and forwarding.
TagNet features two independent delivery services: one with
application-defined and possibly location-independent con-
tent descriptors, and one with network-defined host locators.
In this paper we develop and evaluate specialized forward-
ing algorithms for TagNet. We then implement and combine
these algorithms in a forwarding engine built on a general-
purpose commodity CPU, and show experimentally that,
thanks to the dual addressing, by descriptor or by locator,
this engine can achieve a throughput of over 20Gbps with
large forwarding tables corresponding to hundreds of mil-
lions of users.

CCS Concepts
•Networks → Data path algorithms; Naming and ad-
dressing; Network layer protocols;

Keywords
ICN; forwarding; algorithms; locators; content descriptors

1. INTRODUCTION
Addressing by name is a defining feature of information

centric networking that poses a crucial trade-off. On the
one hand, the network would serve applications better if
applications were allowed to choose names to refer directly
to information objects or other entities, such as servers or
users, without necessarily referring to the network hosts
where those entities are located. On the other hand, such
application-defined and possibly location-independent ad-
dresses may aggregate poorly, which fundamentally limits
the scalability of the network.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ANCS ’16, March 17-18, 2016, Santa Clara, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4183-7/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2881025.2881032

One solution could be to restrict applications to use names
with globally routable prefixes similar to DNS names. This
is the approach taken, for example, by the CCN architecture.
The data plane would still be more complex than IP, since
it requires longest name prefix matching, but fortunately
there are good solutions for that [7, 12, 13] and in any case
the approach would improve scalability, since names would
be forced to aggregate. However, from the application’s per-
spective, this solution amounts to turning names back into
network-chosen addresses. And even though the notion of
ICN could be beneficial in other ways, those benefits might
not be worth a radical redesign of the Internet.

We believe that a radically new network should offer a
richer communication service. So our goal is to design an in-
formation centric network that allows applications to choose
meaningful names, and our challenge is to engineer routing
and forwarding systems that can cope with such application-
chosen names. In prior work, we developed our design with
a network architecture called TagNet that, among other
things, supports application-defined addressing. In the same
prior work we also proposed and evaluated a scalable rout-
ing scheme for TagNet [6]. In this paper we develop the
TagNet data plane. In particular, we build a software for-
warder (matcher) on inexpensive general-purpose CPUs and
show that such a forwarder can sustain a throughput of over
20Gbps even with a large forwarding information base.

At the architectural level, our approach is first to disen-
tangle two network functions typically embodied in a single
name. Names are supposed to allow applications to refer to
content and application-level entities, and at the same time
they are the basis for routing and forwarding and therefore
they are supposed to allow the network to locate and reach
hosts. This double duty is problematic, so we designed a
network supporting two types of addresses: one based on
application-chosen and typically location independent con-
tent descriptors, which are intended to be expressive for ap-
plications although potentially expensive for routing; and
one based on network-chosen host locators that are instead
very efficient for routing but meaningless to applications.

In particular, we designed TagNet to support content de-
scriptors consisting of sets of tags. For example, a mu-
sic server might advertise its collection with the descrip-
tor {concert, classical} and a music player might request a
file for download with the descriptor {classical, Beethoven,
ninth, concert, 360bps}, and TagNet would forward the re-
quest by descriptor to the server. We then developed a rout-
ing scheme for TagNet that supports descriptors as well as
very efficient locators based on a compact routing scheme

43



by Thorup and Zwick [10]. Now we turn to forwarding, by
descriptor or locator.

Forwarding a packet using its descriptor Dp (a set of tags)
amounts to finding one or more subsets of Dp (possibly the
largest subset) in a descriptor FIB containing many tag sets.
This is analogous to longest-prefix matching in IP forward-
ing or to longest name prefix matching in name-based ICN,
except that subset matching is fundamentally more expres-
sive and therefore also more complex than prefix matching.
Our contribution is a descriptor matching algorithm that
performs well in practice, especially within a network that
supports efficient host locators.

We start by representing the descriptor forwarding table
with a trie over which we implement two subset-matching
algorithms: Find All Subsets and Find Largest Subset. We
then introduce specific improvements to speed-up both al-
gorithms. We do that by first compressing the trie and then
by laying out its structure in memory so as to maximize lo-
cality in the memory access patterns of the two algorithms.
We then implement and fine-tune the forwarding algorithm
for the Thorup and Zwick locators, and finally we integrate
descriptor-based and locator-based forwarding algorithms in
our TagNet forwarding engine.

We evaluate our TagNet forwarding engine under a variety
of workloads. This evaluation shows that the forwarding en-
gine is efficient, and in particular that the descriptor-based
matching algorithms perform well under different workloads,
and scale well with the size of the FIB as well as with the
number of threads. We also show that, thanks to the sep-
aration between descriptors and locators, the TagNet for-
warding engine can achieve a high throughput, since most
of the traffic can be forwarded based on extremely efficient
network-defined locators. For example, in the music down-
load flow exemplified above, except for the very first request
packet routed by descriptor, all the follow-up data and re-
quest packets exchanged between the music server and the
music player can be forwarded by their locators. In such
mixed flows, the forwarding engine takes advantage of the
excellent performance of locator-based matching, exceeding
20Gbps of throughput even with large FIBs.

2. BACKGROUND
We now briefly describe the TagNet architecture, focusing

on the formulation of the problems related to forwarding.
We then review existing algorithms and systems that solve
the same or related problems.

2.1 TagNet: Descriptors and Locators
TagNet is an ICN architecture designed to support push

and pull flows with two independent addressing and deliv-
ery methods: one with content descriptors, one with host
locators (hereafter simply descriptors and locators). De-
scriptors are sets of tags and are chosen by applications.
Locators are opaque bit strings and are chosen by the net-
work. More specifically, the network allows an application
to (1) advertise one or more descriptors A1, A2, . . .; (2) ob-
tain the application’s own network-assigned locators (one or
more); (3) send a packet addressed by descriptor B to up to
k applications that advertise a matching descriptor Ai ⊆ B;
(4) send a packet addressed by locator to the corresponding
application. The fan-out limit k, which controls the delivery
by descriptor (3), can be used to obtain an anycast (k = 1)
or multicast (k =∞) delivery semantics.

With these primitive operations, applications can commu-
nicate in various ways. For example, this is how a consumer
C could “pull” data from a producer P in a pattern typical
of ICN architectures such as CCN and NDN: producer P ad-
vertises a content object x with a descriptor Dx; consumer
C obtains its own locator LC and then sends an “interest”
packet I addressed by descriptor DI with fan-out limit k = 1
(i.e., anycast) and containing C’s locator LC ; assuming DI

matches Dx (DI ⊇ Dx), meaning that object x satisfies the
interest expressed by consumer C, the network delivers the
interest packet I to producer P ; producer P obtains its own
locator LP and sends a “data” packet, addressed by locator
LC , containing its locator LP and the requested object x
(or a chunk of x); the network delivers the data packet to
consumer C. At this point consumer C knows the locator of
the producer, LP , so C can send follow-up requests (e.g., for
other chunks of data) by addressing P directly by locator.

Consumer C could also use a fan-out limit k > 1 to try to
obtain the data from multiple producers at the same time,
or to choose one among many producers. Also, switching
roles, producer P could “push” content to C, and similarly a
producer could also push data to multiple consumers, either
directly pushing the data or by pushing a request to pull.

Descriptors are strictly more expressive than hierarchical
names (as in CCN or NDN). In fact, we can emulate the
semantics of a hierarchical name with a descriptor by enu-
merating the components of the name as separate tags. For
example, the name /org/gnu/software/ is equivalent to the
descriptor {1:org, 2:gnu, 3:software}. In Section 3.1.3 we de-
scribe a specific forwarding algorithm that can also emulate
the semantics of longest name prefix matching.

2.2 Forwarding in TagNet
In the TagNet data plane, we need to implement a for-

warding engine that supports both locator- and descriptor-
based forwarding. We describe the locator-based forward-
ing implementation later in Section 3.3, where we give an
overview of the Thorup and Zwick routing scheme. In this
section we focus on descriptors.

Descriptors expressed as sets of string tags may not be
ideal for network-level packet forwarding. So, in TagNet we
use Bloom filters to compress descriptors into fixed-size bit
vectors, which is what we then use for forwarding at the
network level. Notice that an individual descriptor is a rel-
atively small set of tags, so the corresponding Bloom filter
can also be small. Notice also that the inclusion relation be-
tween two Bloom filters (bitwise) corresponds to the subset
relation between the tag sets that they represent, except for
a controllable small false-positive probability. Concretely,
based on a conservative estimate on the typical number of
tags in descriptors, we choose to use Bloom filters of 192 bits
and 7 hash functions (see Papalini et. al [6] for details).

In summary, a packet addressed by descriptor carries a
Bloom filter B and a fan-out limit k, and a router’s FIB
maps Bloom filters A1, A2, . . . to interfaces. With that, for-
warding amounts to finding at most k entries Ai ⊆ B in
the FIB. This subset lookup problem is equivalent to and
therefore also known as the partial matching problem.

2.3 Forwarding in ICN
The problem of forwarding in ICN has been considered

mostly if not exclusively for hierarchical name-based ad-
dressing, and more specifically in forwarding interest pack-

44



ets in CCN or NDN. In these cases, forwarding amounts to
longest prefix matching (LPM) or more specifically longest
name prefix matching (LNPM).

One of the first systems for high-throughput interest for-
warding was developed by Wang et al. [12] and exploits the
high-parallelism of a GPU. Wang et al. implement LPM
on a character trie compressed in a data structure called
multi-aligned transition array (MATA). Wang et al. report
a throughput of 63.52Mpps with a FIB of 10 million entries
(we later refer to this FIB as 10M-CCN). However, this sys-
tem also incurs high latency [7], which is a common problem
for GPU-based systems.

Most ICN forwarding systems implement LNPM with a
hash-table: the algorithm stores the FIB in a hash table
and, for an input name of ` components, proceeds by first
looking up the prefix of length ` (the whole name), then the
prefix of length ` − 1, and so on. On this basis, authors
have built a number of variants. For example, Perino et al.
use Bloom filters to group multiple prefixes [7], Wang et al.
search prefixes in an order based on the distribution of prefix
lengths [11], and Yuan and Crowley use a binary search on
multiple hash tables organized by prefix lengths [13]. These
systems achieve a high throughput in the tens of million
packets per second on the 10M-CCN FIB, although notably
Yuan and Crowley evaluate their system on a FIB of 1 billion
entries, which is the largest FIB used so far to test an interest
forwarding algorithm for ICN.

In addition to interest forwarding, CCN and NDN also re-
quire a suitable implementation of the pending-interest table
(PIT) to forward data packets. We know of only two systems
that support both forwarding functions. The first, proposed
by So et al. [9], is based on hash tables and achieves 8.8Mpps
throughput on mixed traffic (interest and data packets) and
with FIBs of 64 million entries. Another one is BFAST by
Dai et al. [2], and consists of a unified index that supports
LNPM in the FIB and exact-match in the PIT and content
store, and that can achieve a throughput of up to 81.32Mpps
depending on the incoming traffic mix.

The eXpressive Internet Architecture (XIA) is a proposed
new Internet architecture [3] that supports a notion of flex-
ible addressing that, although not designed specifically for
ICN, relates to forwarding in ICN. In essence, flexible ad-
dressing in XIA means that each packet may specify multiple
addresses of different kinds together with a directed acyclic
graph that expresses alternatives or “fallback” relations be-
tween those addresses. Based on the partial order defined
by the graph, a router then selects the most appropriate
address it is capable of using for forwarding.

XIA provides a nice framework within which we could re-
alize the dual addressing of TagNet, by defining descriptors
and locators as two types of addresses. However, notice that
XIA and its fallback mechanism do not provide specific sup-
port for descriptors or locators. Furthermore, the duality of
locators and descriptors in TagNet is rather different from,
and to some extent incompatible with the flexible address-
ing of XIA. This is because locators are not intended to be
fallback addresses for descriptors, or vice-versa, and even
though a fallback relation may make sense in some cases,
both locators and descriptors are intended to be globally
routable in TagNet. Still, XIA is flexible enough to accom-
modate the dual addressing of TagNet, and possibly to ex-
tend it with alternative types of descriptors and locators.

2.4 Subset Matching
The systems discussed so far relate to our work because

of the domain (forwarding in ICN) and the nature of the so-
lution (algorithmic, general-purpose multi-core CPU). But
notice that they solve a different combinatorial problem,
namely prefix matching instead of subset matching. We now
review existing results for subset matching.

The theory on subset matching is well established, al-
though unfortunately not very useful in our case. Recall
that we are given n sets A1, A2, . . . , An ⊆ {1, . . . ,m} and
a query set B ⊆ {1, . . . ,m} (specifically m = 192) and we
want to find all (or up to k) sets Ai such that Ai ⊆ B.
There are two trivial solutions: one stores the answers for
all possible queries in an index, and requires O(m) time but
a prohibitive O(2m) space; one scans the sets linearly, which
requires linear (minimal) space but also linear time O(nm).
The first non-trivial improvements are due to Rivest [8], one
regarding the index solution that is irrelevant for us, and one
based on a trie that is quite similar to the one we develop in
this paper. Charikar et al. also propose two improvements
over the trivial solutions [1] but their results are not useful
in practice, as they either require too much memory or are
too slow for a real implementation of a matching engine.

Subset matching has concrete applications in many fields,
for example in networking for packet classification, and in
information retrieval to search documents containing a given
set of words. Most relevant for our purposes are applications
in databases, where the base of sets (the FIB in our case)
is typically very large. What is traditionally considered the
best algorithmic solution in databases and information re-
trieval is an inverted index that maps each element (tag) to
the list of sets the element appears in [4]. However, inverted
indexes perform well when the universe of elements is large
and the frequencies of individual elements are low, not when
the universe is small and therefore each element appears in
many sets. But this is precisely the problem we intend to
solve, since the Bloom filters already reduce our universe to
a small size (m = 192).

Perhaps the most relevant work in the database litera-
ture is a recent paper by Luo et al. [5] who propose two
set-containment algorithms based on tries. The first one,
called PATRICIA trie-based signature join (PTSJ), encodes
each set of tags with a hash-based signature, and then stores
the signatures in a trie. This is similar to what we do, but
there are also significant differences: in essence, we use a
more effective algorithm and layout, and we use more com-
pact Bloom filters. The second algorithm, called PRETTI+,
works on the actual elements of the sets (tags) and builds
what amounts to an inverted index. Interestingly, Luo et
al. evaluate their algorithms with real data sets. The most
relevant data set, which is also more similar to our typi-
cal workload, is a collection of 3.5 million tagged photos
from Flickr with an average of 5.36 tags per photo. Under
this workload, PRETTI+ outperforms PTSJ with an aver-
age throughput of 17.5K queries per second on a single Intel
Xeon 2.27GHz core. These results are interesting for us be-
cause we use comparable workloads with which we achieve a
throughput of 140K–319K queries (packets) per second, also
on a single thread, but on a collection (FIB) that is almost
three times larger. Notice however that, even though Luo
et al. use a hardware platform almost identical to ours, they
implement their algorithms in Java while we use C++.

45



3. FORWARDING ALGORITHMS
In this section we present the matching algorithms we im-

plement to realize the dual forwarding system of TagNet.
We start with the algorithms for descriptor-based forward-
ing, which we describe in detail, and then at the end of the
section we briefly present the algorithm for locator-based
forwarding. We do not spend much text to describe this
algorithm simply because we implement it directly from a
compact-routing scheme by Thorup and Zwick [10].

3.1 Descriptor-Based Matching Algorithms
We develop two algorithms to realize descriptor-based for-

warding in TagNet: Find All Subsets (FAS) and Find Largest
Subset (FLS). Both algorithms operate on the same data
structure that represents the FIB. We now describe this
structure and then detail each algorithm. Recall that we
encode descriptors (tag sets) as Bloom filters. Therefore,
for the purpose of forwarding and throughout this section,
the term descriptor refers to the Bloom filter that encodes
the descriptor.

3.1.1 FIB Data Structure
We use a prefix trie to store all the descriptors in the

FIB. The FIB represents a relation between descriptors and
interfaces, therefore we link each full descriptor from the
prefix trie to a list of output interfaces. Figure 1 shows an
example of this basic data structure. To be more precise, in
TagNet we route packets on multiple trees [6], so the FIB
represents a relation between filters, interfaces, and trees.
The FIB is still indexed by descriptor with a prefix trie, but
each full descriptor in the trie links to a list of tree–interface
pairs. This structure is only relevant for the very last phase
of the forwarding algorithm, which has little if any impact
on performance. Therefore, for the purpose of this paper
and for simplicity, we ignore trees altogether.

Descriptor
Out ifx

Bit String 1s Pos

1000100000 (1,5) i2
1010000100 (1,3,8) i4,i2
0110100000 (2,3,5) i3
0011100010 (3,4,5,9) i6,i2
0010101000 (3,5,7) i5,i2
0000100100 (5,8) i2

*

132 233 343 522

522 333 333 444 533 822

$22 833 533 544 733 $22

$33 $33 944 $33

$44

i2

i4
i2

i3

i6
i2

i5
i2

i2

Figure 1: FIB representation using a prefix trie

Each path in the trie from the root to a leaf represents a
descriptor in the FIB. In particular, the trie represents each
descriptor as a sequence of positions (from 1 to 10 in the fig-
ure, from 1 to 192 in the real implementation) corresponding
to the bits set to one in the descriptor (1-bits). Thus each
node in the trie represents either the position of a 1-bit in
one or more descriptors, or a terminator node, marked with
the ‘$’ position in the figure, that represents a full descrip-
tor and that links that descriptor to the output list. For
example, the FIB depicted in Figure 1 contains descriptor
0011100010 represented as the sequence 3, 4, 5, 9 in the trie
and associated with interfaces i6 and i2.

In each node we also store the maximum and minimum
depths reachable through that node. Depth values exclude
the terminator nodes, and therefore represent the Hamming
weight of a descriptor (the number of 1-bits). In Figure 1 we
write the maximum and minimum depths with superscripts
and subscripts, respectively. For example, the node marked
13
2 is the root of a subtree representing a set of descriptors

of Hamming weights between 2 and 3.
Given the descriptor trie, matching an incoming packet

with descriptor B amounts to finding one or more descrip-
tors in the trie that are subsets of B. This in essence can
be done by performing a walk over the prefix trie guided by
the 1-bits in B. This algorithmic structure is the basis for
the two algorithms we develop: Find All Subsets and Find
Largest Subset.

3.1.2 Find All Subsets
The forwarder invokes the Find All Subsets (FAS) algo-

rithm to forward packets with fan-out limit k > 1, and in
particular multicast packets with k = ∞. FAS takes an in-
put packet p and the fan-out limit k, and in its basic form
visits only nodes representing bit positions that correspond
to a 1-bit in the packet descriptor (p.descriptor). The FAS
algorithm is listed as Algorithm 1.

Algorithm 1 Find All Subsets (FAS)

Input: packet p, fan-out limit k, FIB trie root
Output: set of output interfaces

nodes to visit ← {root} // stack of nodes
out ← ∅
while nodes to visit 6= ∅ and |out | < k do
n← pop node from nodes to visit
if n is a terminator node then // subset found

out ← out ∪ n.interfaces // up to |out | = k
else if p.descriptor [n.pos] is a 1-bit then

for all children c of node n do
push c onto nodes to visit

end for
end if

end while
return out

FAS walks through the trie in depth-first order using an
explicit stack of nodes to visit. When the algorithm reaches
a terminator node, which means that there is a matching
descriptor, the algorithm processes the list of interfaces as-
sociated with that descriptor, adding those interfaces to the
set of output interfaces for the input packet. The walk ter-
minates immediately if the set of output interfaces reaches
a size greater than or equal to the fan-out limit k.

46



3.1.3 Find Largest Subset
When the fan-out limit is k = 1, which is typically used

to send anycast packets such as data or service requests, the
forwarder uses Find Largest Subset (FLS). This specialized
algorithm is intended to select the most relevant descriptor
among a potentially large number of matching descriptors.
FLS is also intended to provide the semantics of longest
name prefix matching with TagNet’s descriptors. The FLS
algorithm is listed as Algorithm 2.

Algorithm 2 Find Largest Subset (FLS)

Input: packet p, FIB trie root
Output: maximal FIB entry matching p.descriptor

nodes to visit ← {root} // stack of nodes
best ← null // leaf node of best match found
while nodes to visit 6= ∅ do
n← pop node from nodes to visit
if best is null or n.max depth > best .max depth then

if n is a terminator node then // subset found
best ← n

else if p.descriptor [n.pos] is a 1-bit then
for all children c of node n do

push c onto nodes to visit
end for

end if
end if

end while
return best

The FLS algorithm is conceptually similar to the FAS al-
gorithm, and therefore FLS also performs a trie walk limited
to matching descriptors. The main difference is that FLS
keeps track of the matching descriptor with maximal Ham-
ming weight found during the walk (variable best). Thus
FLS further limits the trie walk to the subtrees that may
contain matching descriptors larger than the current best.

3.1.4 Basic Algorithmic Improvements
Having defined the high-level structure of the descrip-

tor matching algorithms, we now introduce three additional
pruning strategies to further reduce the complexity of the
trie walk. These strategies are based on the Hamming weight
of the descriptors.

The first strategy exploits the fact that we search for sub-
sets, so the Hamming weight of the descriptor in the packet
must be greater than or equal to the Hamming weight (or
depth) of a matching descriptor in the FIB. Therefore, we
can check the minimum depth of a node before we push the
node onto the stack, and in case the minimum depth exceeds
the Hamming weight of the descriptor in the packet, we can
safely skip that node.

The second strategy is a refinement of the first one. Before
pushing a node c onto the nodes to visit stack, we compute
the number of remaining 1-bits in the input descriptor to
the right of the bit position of node c (c.pos). We then add
this number to the depth of node c in the trie, which rep-
resents the number of 1-bits already matched. The result is
the maximum potential matching weight. That is, the max-
imum possible Hamming weight of any matching descriptor
under node c. This also means that we can skip c when this
maximum weight is less than the minimum depth of c. For
example, consider matching input descriptor (1, 3, 5) against

the trie of Figure 1. In this case, the algorithm can skip the
descendants of the node labeled 34

3 (third child of the root).
In fact, the depth of node 34

3 is 1, and the number of 1-bits to
the right of position 3 in the input descriptor is 1, since there
is only one position left unchecked (position 5), which adds
up to a maximum potential matching weight of 2, which is
less than the minimum depth of 3 under node 34

3.
The third strategy is also based on the maximum potential

matching weight, and is applicable to the FLS algorithm
only. FLS remembers the maximal matching descriptor seen
in the walk (best). Therefore the algorithm can safely skip
subtrees that have a maximum potential matching weight
lower than best .

3.2 Improvements for Memory Usage
Tries, like other linked data structures, are notoriously

inefficient in their use and access of memory. A näıve im-
plementation of the FIB described in Section 3.1.1 requires
a lot of memory, and accesses that memory without locality
and therefore inefficiently. We now describe how we engineer
the FIB to make it efficient in terms of memory usage and
access. In summary, we apply four transformations: (1) we
permute the bits of the descriptors in the FIB according to
their popularity, (2) we factor out node chains (lists of nodes
with a single child) from the trie, (3) we implement the trie
with a single compact vector, and (4) we lay out the nodes in
the vector so as to improve locality in the search algorithms.

3.2.1 Bit Permutation
The first transformation we apply to the trie is global. In

essence, we sort the bits in decreasing order of frequency.
The effect is that we move the most popular 1-bits to the
leftmost positions in the descriptors. This in turn increases
the sharing of prefixes in the trie, which means that the
trie contains less nodes and also that a trie walk crosses less
nodes.

Bit Pos Bit Freq New Pos

1 2 3

2 1 5

3 4 2

4 1 6

5 5 1

6 0 9

7 1 7

8 2 4

9 1 8

10 0 10

Original

Descriptors

Permuted

Descriptors

(1,5) (1,3)

(1,3,8) (2,3,4)

(2,3,5) (1,2,5)

(3,4,5,9) (1,2,6,8)

(3,5,7) (1,2,7)

(5,8) (1,4)

*

142 233

243 322 422 333

533 644 733 $22 $22 433

$33 844 $33 $33

$44

Figure 2: Trie compression with bit popularity (the
original trie is the one presented in Figure 1)

47



Figure 2 shows the application of a bit permutation to
the trie of Figure 1. The top-left table in Figure 2 shows the
occurrences of each bit in the whole FIB together with the
resulting bit permutation. The top-right table then shows
the application of that permutation to the FIB. For example,
descriptor (2, 3, 5) becomes (1, 2, 5), because the permuted
position of 2 is 5, the new position of 3 is 2, and 5 goes to
position 1. This technique is very effective and gives us an
impressive compression. In order to use this technique we
have to permute all the incoming queries accordingly. This
overhead is linear in the number of 1-bits in the query and
is negligible in practice.

Compare the new trie obtained with the permutation, rep-
resented in the lower part of Figure 2, with that of Figure 1.
The permutation improves the sharing of prefixes and there-
fore reduces the size of the trie from 22 to 18 nodes. This
improvement might seem small. However, notice that in this
example the frequencies of the 1-bits in the FIBs are all small
and therefore very similar, necessarily since the trie is itself
very small. In large and realistic FIBs, the frequency distri-
bution tends to be much more skewed, as can be deduced
from the the popularity distributions for on-line content,
which are likely to remain the same in an ICN. And that
amplifies the benefits of the permutation transformation.

3.2.2 Chains Removal
To further reduce memory usage for the prefix trie, we re-

move chains from the data structure. With the term chain
we indicate a sequence of nodes with a single child that
amounts to a linked list of nodes. In our implementation we
transform only those chains that lead to a terminator node,
namely a node with position ‘$’. We also experimented with
chain removal throughout the trie, but that proved less ef-
fective. This is because chains at the top of the trie are
shared and there are far more terminal chains than interme-
diate ones. And crucially, operating on chains in the middle
of the trie requires additional checks in the basic trie-walk
algorithm that offset the cost savings of chain elimination.
Conversely, terminal chains do not require additional pro-
cessing in the trie walk.

Our intuition is that chains are at the same time costly
in terms of memory, and also redundant for the purpose of
the search algorithms. In fact, when we reach a chain we
can explore only one path, meaning a single descriptor. In
other words, a chain exercises the trie-walk algorithm for po-
tentially several iterations, only to produce a simple yes/no
answer: either the descriptor matches or it does not. Our
approach is therefore to extract each terminal chain from
the trie and to store it, together with the corresponding list
of output interfaces, in a separate compact data structure
that we check in the final stage of matching with a much
more efficient comparison operation. Figure 3 shows an ex-
ample of a terminal chain in the trie (left) and its compact
external representation (right).

To remove a chain we simply move the terminator node
that closes the chain to the head of the chain, and drop all
the other nodes. Notice that the minimum and maximum
depths are the same throughout the chain, which means that
the shortened trie behaves exactly as the original trie for
the purpose of the matching algorithms. We then link the
terminator node to a compact vector that represents all the
bit positions removed from the trie. See Figure 3 for an
explanatory example.

233

333

433

$33

i3

i6

$33

3

2

3

4

2

3

6

number of
positions
in the chain

positions
in the chain

number of
output
interfaces

output
interfaces

Figure 3: A chain in the trie (left) and its represen-
tation (right)

3.2.3 Vector Representation and Memory Layout
One of the main disadvantages in a näıve trie representa-

tion is the use of pointers and possibly of tables of pointers.
A common way to reduce the use of pointers is first to struc-
ture the trie as a binary trie in which each node “points to”
the node’s first child and the node’s next sibling, and then
to represent this binary trie within a vector so as to remove
one of the two pointers by implicitly linking a node with the
following one in the vector.

Figure 4 exemplifies this method by showing the represen-
tation of the trie of Figure 2 after chain removal as a binary
trie (top), and then the vector representation of the binary
trie (bottom). We draw the binary trie with solid arrows
to denote first-child links and with dashed arrows to denote
next-sibling links.

*

142 233

243 322 422 $33

533 644 733 $22 $22

$33 $44 $33

142 2
3
3 2

4
3 3

2
2 4

2
2 5

3
3 6

4
4 7

3
3 $

3
3 $

4
4 $

3
3 $

2
2 $

2
2 $

3
3

Figure 4: Trie represented as a vector

The binary trie can then be encoded as a vector in which
the next-sibling links are implicit in the sequence of nodes,
and the first-child links are represented as offsets in the vec-
tor. In particular, each node within the vector holds the
same data as in the trie (position, minimum and maximum
depths) plus an offset to point to the first child, which we
depict with a solid arrow in the figure. This, however, is
not enough to represent and walk through the trie, since the

48



walk algorithm would know how to start iterating through
the children of a given node, but it would not know where
to stop. So, to support the trie walk, we add a flag to a
node that indicates whether that node is the last child, or
in other words the last node in a contiguous sequence of sib-
lings. In Figure 4 we indicate that a node is a last child with
a vertical bar.

Having defined the vector representation of the FIB, we
also adapt the search algorithms to that representation. Al-
gorithm 3 is the specialization of the Find All Subset algo-
rithm that operates on the vector FIB. The structure is the
same for the Find Largest Subset algorithm.

Algorithm 3 Find All Subsets on FIB vector

Input: packet p, FIB vector FIB
Output: set of output interfaces

nodes to visit ← {FIB [0 ]} // stack of nodes
out ← ∅
while nodes to visit 6= ∅ and |out | < k do
n← pop node from nodes to visit
while true do // iteration through n’s children

if n is a terminator node then // subset found
out ← out ∪ n.interfaces // up to |out | = k

else if p.descriptor [n.pos] is a 1-bit then
push first child of node n onto nodes to visit

end if
if n is a last child then

break out of the loop // go to next-node loop
end if
n← next node in the FIB vector

end while
end while
return out

The vector representation we just described is generally
not unique (for a given tree). In fact, there are different
ways to lay out the nodes in the vector that, in combination
with the search algorithm, would induce different memory
access patterns. In the following we study two node layouts
and we compare them through a simple example.

Figure 5 shows the memory access pattern for the FAS
algorithm for two different layouts of the vector. In this
example we trace the nodes that the algorithm visits when
matching the input descriptor (1, 2, 4, 7). In particular, we
depict the pointers of the trie structure (first child) with thin
gray arrows below the vector, while we depict the sequence
of memory accesses with bold black arrows above vector.
Under each vector we also represent the evolution of the
stack during the search. The values in the stack are the
indexes of the vector cells indicated over each vector.

The first node-layout in Figure 5 is the same layout shown
in the example of Figure 4. We obtain this layout by storing
the descendants of a list of sibling nodes in the same order of
the siblings, which is by increasing bit positions. Therefore
we call this the Sibling Order Layout (SOL).

More specifically, we always store a list of siblings in in-
creasing order of bit position. For example, we store the two
sibling nodes in the first level of the trie of Figure 4, 14

2 and
23
3, at position 1 and 2, respectively. But then we have to

choose how to lay out the children of these two nodes, and
their children, etc. In the SOL layout we do it left-to-right
and with immediate recursion, so we start by visiting the

Packet Descriptor: {1,2,4,7,$}

SOL 132 2
3
3 2

4
3 3

2
2 4

2
2 5

3
3 6

4
4 7

3
3 $

3
3 $

4
4 $

3
3 $

2
2 $

2
2 $

3
3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

3 3

14

3 6 6 6

13

6 ∅ ∅ 11 ∅

SROL 132 2
3
3 $

3
3 2

4
3 3

2
2 4

2
2 $

2
2 $

2
2 5

3
3 6

4
4 7

3
3 $

3
3 $

4
4 $

3
3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

4 4

3

4 9 9 9

7

9 ∅ ∅ 12 ∅

Figure 5: Different node layouts and related mem-
ory access pattern

children of the first sibling node, and then recursively their
children until we lay out the entire subtree rooted at the
first sibling, and then we proceed in order of bit position
with the subtrees of the second sibling, the third, etc. So, as
shown in the top part of Figure 5, we first add the children
of node 14

2, at positions 3,4,5, then the entire subtree rooted
at 14

2, and then the child of node 23
3 at position 14.

The second layout, shown at the bottom of Figure 5, uses
the reverse ordering, and hence we call it Sibling Reverse
Order Layout (SROL). As usual, we store sibling nodes in
consecutive cells sorted by bit position. However, contrary
to SOL, with the SROL layout we visit the children of sibling
nodes in reverse order, starting from the last sibling node.
For example (see the lower part of Figure 5) after nodes 14

2

and 23
3, we start with the children of 23

3, and recursively their
children and the entire subtree rooted at 23

3, and after that
we lay out the children of node 14

2 and its entire subtree.
In our implementation we use this latter layout (SROL),

because it induces a much more linear and therefore cache-
efficient memory access pattern. In fact, as shown in Fig-
ure 5, the more natural SOL layout defines an almost ran-
dom memory access pattern. We first visit nodes 1 and 2,
then jump to position 14, then back to position 3, and so
on. Instead, the SROL layout produces a nicely sequential
memory access pattern that is optimal for caching.

3.3 Locator-Based Matching Algorithm
We now provide an overview of the labeling and forward-

ing scheme that we use for locators. Labeling is the process
by which the network assigns locators and locator FIBs to
nodes. In their seminal paper on stretch-3 compact rout-
ing schemes for general graphs [10], Thorup and Zwick also
propose a lesser-known but still practical compact routing
scheme for trees. Since we use trees as a basic routing struc-
ture for TagNet, we adopt this Thorup and Zwick scheme
for locator-based forwarding, and therefore we refer to the
implementation of our locators as TZ-labels. Here we review
the scheme only very briefly, without going through the de-
tails of the labeling algorithm and its associated forwarding
algorithm, and we refer our readers to Section 2 of Thorup
and Zwick [10].

49



The most compact scheme for trees by Thorup and Zwick
uses both labels and FIBs of (1 + o(1)) log2 n bits. We use a
simpler and less compact version of that scheme (described
in Section 2.1 of their paper) that uses 3.4 log2 n bits. Along
with the labeling algorithm for that scheme, Thorup and
Zwick provide a very efficient forwarding algorithm, which
is what we use in TagNet and that we reproduce in Figure 6.

To forward a message toward a destination node (on a
tree) each intermediate node needs only the TZ-label of the
destination node (on that tree) plus its own TZ-label, which
also serves as the node’s FIB.

1 struct TZ label {
2 uint16 t node id;

3 uint16 t ifx list;

4 uint16 t mask;

5 };
6 struct TZ label my label;

7 uint8 t k = leftmost bit(my label.mask);

8 uint16 t P[2] = {parent interface, heavy child interface};
9 uint16 t f = largest descendent id;

10 uint16 t h = heavy child id;

12 int forward(struct TZ label & dest) {
13 v = dest.node id;

14 L = dest.ifx list;

15 M = dest.mask;

16 return ((v >= my label.node id && v < h)

17 ? (L >> k) & ((M >> k) ˆ ((M >> k) −1))
18 : P[v >=h && v <=f]);

19 }

Figure 6: Locator-based forwarding algorithm

Figure 6 indicates the local variables that we need to store
at each node. A node stores its own label (my label), which
in turn contains the node identifier (node id), a list of in-
terfaces encoded in a bit string (ifx list), and a mask used
to extract them (mask). Each node also stores a constant k
that indicates the size of the local mask in bits, the identi-
fier f of the largest descendant, and the identifier h of the
node’s heavy child, which is the child through which it is
possible to reach the majority of the descendants. In addi-
tion, a node stores a vector P that contains the interfaces
where to forward packets for the parent node and the heavy
child.

The forward function extracts all the information needed
from the incoming TZ-label, and returns the output inter-
face. Notice that this forwarding decision is taken in a
single line of code that amounts to a handful of machine
instructions. Using this scheme, TZ-labels computed for
the AS-level network topology1 of 42113 nodes and 118040
edges, are at most 46-bits long and can be represented by
the TZ label struct defined in the code of Figure 6.

4. EVALUATION
The algorithmic complexity of our subset matching algo-

rithms conforms to an analysis of general partial-matching
algorithms on search tries developed by Rivest [8]. In our

1Internet AS-level topology archive (http://irl.cs.ucla.edu/
topology/), data retrieved 29/06/2012.

setting, assuming a random FIB, the expected running time
is O(nh/m), where n is the size of the FIB, h is the Hamming
weight of the input set, and m = 192 is the size of the Bloom
filters we use.2 For example, with an input set of four tags,
a basic subset search would run in time O(n0.15). In essence,
our subset matching algorithms are efficient with reasonably
small input sets, but their complexity grows with the size of
the input set.

This analysis is indicative at a high level but does not con-
sider algorithmic improvements, memory-usage, the specific
distribution of tag sets in a realistic FIB, and many other
issues that are important in practice. We therefore turn to
an experimental evaluation. In particular, we evaluate the
forwarding engine we developed for TagNet in order to ex-
amine the following research questions: (1) How effective
are the memory compression techniques that we propose?
(2) What are the differences in performance between the
SOL and SORL memory layouts? (3) How scalable is our
implementation in terms of number of CPU cores and FIB
size? (4) What is the effective throughput of our matcher
under different traffic workloads?

Our subject is a matcher written in C++ that implements
the three algorithms described in Section 3, namely the FAS,
which we run with fan-out limit k = ∞, and the FLS algo-
rithm, both operating on a vector FIB, plus the locator-
based forwarding algorithm of Thorup and Zwick. We run
all our experiments on a general-purpose machine equipped
with two Intel Xeon E5-2670 v3 processors, each with 12
cores and a clock frequency of 2.30GHz. The machine has
64GB of RAM.

With this subject and test-bed, we measure memory and
throughput of the forwarding engine. The throughput corre-
sponds to the total processing time of the forwarding engine,
which includes the parsing of the packet header to figure out
the type of address (descriptor or locator) and the fan-out
limit (for descriptors), the dispatching of the packet to the
appropriate algorithm (FAS, FLS, or TZ forwarding), and
the execution of that algorithm. In all our experiments,
we measure matching times and throughput as an aggre-
gate measure (average) over all the packets in a workload,
which is typically over one million packets. These average
measurements are extremely consistent over repeated trials,
therefore we never report any variance in the charts and in
the tables. In fact, time measurements (averages over all
packets) are so consistent that the full variability range for
repeated trials (maximum minus minimum) is never more
than 3% of the mean.

We begin our analysis by characterizing the data sets and
the workloads we use for the evaluation, and then we con-
tinue with a series of experiments to answer our research
questions.

4.1 FIB and Traffic Workloads
We test descriptor-based forwarding under three different

FIBs. The first FIB workload, labeled 63M, contains more
than 63 million unique descriptors. We generated this set of
descriptors for a previous analysis of the scalability of the

2See Section 4.3 of Rivest [8]. The general complexity is

O(nlog2 (2−s/k)), where s/k is the ratio of fixed bits over the
total number of bits in the partial-matching query. Since
s/k < 1, log2 (2− s/k) is approximately 1 − s/k, which is
the ratio of “don’t care” bits, which in our case is h/m, since
1-bits in the input Bloom filter play the role of “don’t care.”

50



routing protocol we proposed for TagNet [6]. In particular,
we derived the 63M FIB from the routing state generated
by 500 million users for a variety of classes of applications.
The second workload we use, labeled 10M, is a sample of
10 million descriptors taken from the 63M workload. The
third workload, labeled 10M-CCN, is composed of almost
10 million descriptors. This workload corresponds to the
FIBs used by Wang et al. to test their GPU-based matcher
for CCN hierarchical names [12], and was also used to test
other implementations [7, 11]. Notice that the workload by
Wang et al. consists of hierarchical names, not tag-set de-
scriptors. We therefore compile 10M-CCN by transforming
hierarchical names into descriptors as shown in Section 2.1.
We use this workload to show that our algorithms perform
well also when they emulate the semantics of hierarchical
names.

In addition to the FIB, the workload must provide a way
to feed traffic into the forwarder, specifically we need to de-
fine a way to create the descriptors in the packets. So, in
order to obtain valid results, we first analyze various options
for the traffic mix. The analysis shows that the matching
rate has a fundamentally negative impact on performance.
Figure 7 shows the matching time of the two descriptor
matching algorithms as a function of the matching rate, for
the 10M FIB and for a single thread.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  20  40  60  80  100

M
a
tc

h
in

g
 t
im

e
 (

µ
s
)

Matching rate (%)

FAS
FLS

Figure 7: Effect of the matching rate on perfor-
mance; matching rate is the percentage of messages
that match at least one descriptor in the FIB

Notice that even a single thread can handle on average
1.2Mpps (million packets per second) with the FAS algo-
rithm, and 1.3Mpps with FLS, when none of the packets
matches a single descriptor (0% matching rate). In fact,
non-matching packets can be discarded very quickly after a
few checks. However, the matching time grows quickly with
the matching rate, especially for the FAS algorithm. Based
on these results, to be conservative, in the rest of the eval-
uation we use workloads with 100% of matching packets.
To guarantee the high rate of matching, we generate packet
descriptors by drawing descriptors from the FIB itself and
then by adding extra tags to those descriptors.

The number of additional tags that we put in the packet
descriptors also plays a fundamental role in the performance
of our matcher, since it further increases the matching rate.
And even without more matches, having more tags and
therefore descriptors with higher Hamming weights means
more paths to visit in the trie. Figure 8 shows the impact
of the additional tags on the average matching time (in mi-
croseconds) for the FAS and FLS algorithms. In this ex-
periment we use again the 10M FIB and we run again the

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  1  2  3  4  5

M
a
tc

h
in

g
 t
im

e
 (

µ
s
)

Additional tags

FAS
FLS

Figure 8: Effect of the descriptor size on the perfor-
mance of the matcher

matcher with a single thread. It is clear from the figure
that the number of tags in the packet descriptors has a very
significant impact on the FAS algorithm, with the match-
ing time growing almost exponentially with the number of
additional tags, which is also consistent with the complex-
ity analysis discussed earlier. This effect, however, is much
less visible for the FLS algorithm. This is because increasing
the matching rate also increases the chance of finding a good
match at the beginning, which in turn allows the algorithm
to skip entire sub-trees. In the remainder of our evaluation
we use a workload where we introduce up to two additional
tags to the packet descriptors drawn from the FIB.

4.2 Trie Compression
We now present the results of a number of experiments in-

tended to test the effectiveness of our trie compression tech-
niques, namely bit permutation (Section 3.2.1) and chain
removal (Section 3.2.2), both in terms of memory usage and
in terms of the performance of the matching algorithms.

We start by analyzing the memory usage. We always use
the vector representation for the trie, but we apply different
combinations of compression. Figure 9a shows the results
for all the FIB workloads. The histogram shows the mem-
ory used by the trie with no compression (“no compression”),
when we apply the bit permutation (“bit perm”), and when
we also remove chains (“bit perm+chain”). The bit permu-
tation is quite effective on all the workloads, with a 48%
reduction in the FIB size for the 10M FIB, 42% for 10M-
CCN, and 46% for 63M. Chain removal is also effective in all
cases. In the end, the size of the FIB for 10M and 10M-CCN
is 171MB, while it is 1.06GB for 63M.

We then look at the effect of trie compression on matching
time. Figure 9b shows the matching time required by the
FAS and FLS algorithms using the different trie compression
techniques. We run our experiments using a single thread us-
ing the 10M workload. The results are in microseconds. We
label the different compression techniques as in Figure 9a.

The results show that trie compression is not only useful
to reduce the memory footprint of the FIB, but it also re-
duces the matching times for both FAS and FLS. The bit
permutation is the most effective optimization in terms of
matching time. This is due to the fact that it reduces the
number of prefixes to check, which reduces the search space.
Bit permutation alone yields a 29.2% performance improve-
ment for the FAS algorithm, and 16.8% for FLS. In addition
to that, chain removal also gives a good improvement, with
an additional 8% for FAS and 6.2% for FLS.

51



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

10M 10M-CCN 63M

M
e
m

o
ry

 u
s
a
g
e
 (

M
B

)
no compression
bit perm
bit perm+chain

 0

 10

 20

 30

 40

 50

 60

FAS FLS

M
a
tc

h
in

g
 t
im

e
 (

µ
s
)

no compression
bit perm

bit perm+chain

 20

 30

 40

 50

 60

 70

 80

 90

 100

10M 10M-CCN 63M

M
a
tc

h
in

g
 t
im

e
 (

µ
s
)

FAS+SOL
FAS+SROL
FLS+SOL
FLS+SROL

(a) (b) (c)

Figure 9: Memory usage for different FIBs with different types of trie compression (a); matching times with
the 10M workload with different types of trie compression (b), and with different node layouts (c)

4.3 Memory Layout
We now examine the performance of the matcher in terms

of average matching time using the two memory layouts dis-
cussed in Section 3.2.3. In Figure 9c we report the aver-
age matching time for the SOL and SROL memory layouts.
The histogram shows the matching time required by both
the FAS and FLS algorithms for all the FIB workloads. The
results are for a single thread.

What is immediately clear is that the SROL layout im-
proves performance in all cases. The relative improvements
vary. In the worst case, when we use the FAS algorithm with
the 10M-CCN and 63M FIBs, we gain 4.1%. However, with
the FLS algorithm we always gain more than 10%, with a
peak of 13.1% in the case of 10M.

These results are also particularly important to measure
the latency of our matcher, since the values reported in
Figure 9c represent the average latency introduced by the
matcher. In particular, the latency of our implementation
is the one of the SROL layout, shown in the histogram with
the diagonal pattern. According to Wang et al. the latency
should be lower than 100µs [12], and our implementation
satisfies this requirement with all the workloads we tested.

4.4 Implementation Scalability
We now test the scalability of our implementation with

respect to the number of threads and with respect to the
size of the FIB.

4.4.1 Number of Threads
With modern hardware architectures, it is particularly

important that algorithms be capable of exploiting paral-
lelism. In the following experiments we test the scalability
of our implementation with respect to the number of CPU
threads used within the matcher. In Figure 10a we show the
throughput in thousands of packets per second (Kpps) of the
FAS algorithm when we vary the number of threads. The
plot shows that the implementation scales almost perfectly
with higher numbers of threads for all three FIB workloads.
Every time we double the number of threads, we gain on
average 80.8% in throughput, with a peak of 98.3%, which
is very close to linear scaling. However, when we go from 16
to 32 threads, using the 63M FIB, we only obtain a 57.1%
improvement. We believe this is due to the fact that our
test machine has only 24 real cores, so the 32 threads run
using Intel’s Hyper-Threading technology. Using the FAS

algorithm, our router can forward on average 499Kpps with
10M, 307Kpps with 10M-CCN, and 183Kpps with 63M.

In Figure 10b we show the multi-threading scalability of
the FLS algorithm. Also in this case the implementation
scales well, since on average we obtain an incremental (dou-
bling) gain of 83.1%, with a peak of 98.4%. And again the
least incremental gain (59.3%) is when we use 32 threads
with the 63M FIB. The throughput in the case of FLS is
almost twice the throughput of the FAS algorithm. Our
matcher processes 914Kpps with 10M, 602Kpps in case of
10M-CCN and 272Kpps using 63M. The gain in the through-
put is due to the fact that using this algorithm we can skip
more checks and so we need less memory accesses.

Another interesting result visible both in Figure 10a and
Figure 10b is that, although the 10M and 10M-CCN work-
loads require the same amount of memory (see Figure 9a),
their performance differs significantly under the two work-
loads. This is due to the fact that 10M-CCN has more paths
in the top part of the trie as compared to 10M. For this rea-
son, the algorithm needs to explore more nodes, which in
turn requires more memory accesses.

4.4.2 FIB Size
A crucial measure of scalability for our matcher is the

ability to sustain a good throughput with large FIBs. We
already have some evidence of good scalability from the re-
sults of figures 10a and 10b, since the throughput achieved
with the 63M FIB is only 2.59 times lower (on average) than
the throughput with the 10M FIB, even though the 63M FIB
is more than 6 times larger than the 10M FIB.

To further test the scalability in the size of the FIB, we
conduct an experiment in which we vary the size of the FIB,
starting with 10 million entries and increasing the size up to
60 million entries in steps of 10 millions. We report the
results of this experiment in Figure 10c, where we show
the throughput of the matcher with the FAS and FLS al-
gorithms. The chart clearly shows that the throughput de-
creases, but does so with a flattening slope, which confirms
that our implementation scales well with the size of the FIB.

4.5 Performance with Mixed Traffic
So far we tested only the performance of the content-based

matcher. However our matcher can also forward packets by
locator and therefore benefit from their efficiency. To high-
light these benefits, but also to test the performance of the
matcher under more realistic workloads than the ones used

52



 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

1 2 4 8 16 32

T
h
ro

u
g
h
p
u

t 
(K

p
p
s
)

Threads

10M
10M-CCN
63M

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

1 2 4 8 16 32

T
h
ro

u
g
h
p
u

t 
(K

p
p
s
)

Threads

10M
10M-CCN
63M

 0

 100

 200

 300

 400

 500

 600

 700

 800

 10  20  30  40  50  60

T
h
ro

u
g
h
p
u

t 
(K

p
p
s
)

FIB entries (millions)

FAS
FLS

(a) (b) (c)

Figure 10: Throughput of FAS (a) and FLS (b) with multiple threads, and with different FIB sizes (c)

0 10 20 30 40 50 60 70 80 90 100

Pull flo
ws (%)

0/0
3/1.5

6/3
9/4.5

12/6
15/7.5

Follow-up interests (max/avg)

0
1
2
3
4
5
6

T
h

ro
u
g

h
p

u
t 

(M
p

p
s
)

0 10 20 30 40 50 60 70 80 90 100

Pull flo
ws (%)

0/0
3/1.5

6/3
9/4.5

12/6
15/7.5

Follow-up interests (max/avg)

0
1
2
3
4
5

T
h

ro
u
g

h
p

u
t 

(M
p

p
s
)

0 10 20 30 40 50 60 70 80 90 100

Pull flo
ws (%)

0/0
3/1.5

6/3
9/4.5

12/6
15/7.5

Follow-up interests (max/avg)

0
1
2
3
4
5

T
h

ro
u
g

h
p

u
t 

(M
p

p
s
)

10M 10M-CCN 63M

Figure 11: Throughput with different traffic mixes

so far, we create different traffic mixes. In particular, we
generate a traffic mix where we vary the percentage of push
and pull flows as described in Section 2.1. A push flow al-
ways consists of a single packet that we forward using the
FAS algorithm (k = ∞). A pull flow starts with an any-
cast “interest” packet addressed by descriptor, and therefore
forwarded with the FLS algorithm, and continues with a
sequence of follow-up interest packets addressed directly to
the producer by locator, and for each interest there is also a
data packet forwarded by locator in the opposite direction.
In each in pull flow, we choose the number of follow-up in-
terests uniformly at random in a range between 0 and a
maximum value that we set as the independent variable of
our experiments.

In these experiments we measure the throughput in Mpps
for the three different FIBs, varying the percentage of pull
traffic and the number of follow-up interests. We display the
results in Figure 11. In the charts we indicate the number
of follow-up interests on the x-axis, the percentage of pull
flows on the y-axis, and the measured throughput on z-axis.
Notice that on the x-axis we indicate both the maximum
and the average number of follow-up interests that we can
have in each pull flow. The results demonstrate that we can
easily forward millions of packets per second, even using
short pull flows averaging only 7.5 follow-up requests. The
throughput also depends on the push traffic, which is quite
costly for forwarding. For example, if we consider a traffic
mix where we have 80% of pull flows and 20% of push flows,
we can forward 2.89Mpps with 63M, 4.27Mpps with 10M,
and 3.79Mpps with 10M-CCN.

In this experiment we also estimate the throughput in
bits per second. To do that we compute the average packet

Table 1: Throughput (Mpps/Gbps) for different
traffic mixes using different FIBs

Throughput (Mpps/Gbps)
pull (%) pkt (B) 10M 10M-CCN 63M

0 1280 0.47/4.8 0.31/3.1 0.17/1.8
20 835 2.04/13.6 1.30/8.7 0.74/5.0
40 775 3.30/20.5 2.44/15.2 1.39/8.7
60 751 3.70/22.2 3.29/19.8 2.08/12.5
80 739 4.27/25.3 3.79/22.4 2.89/17.1
100 731 5.20/30.5 4.33/25.3 4.2/24.6

size for each traffic mix. We hypothesize that push packets
and data packets are quite large, since they would typically
carry data. In particular, for those packets we consider 1280
bytes, which is the minimum link MTU in IPv6.3 For the
first interest we consider the average size of an HTTP GET
header, which is around 800 bytes according to the Google
SPDY report.4 Finally we consider follow-up interests to be
small packets of 100 bytes. With these parameters, Table 1
reports the average packet size (in bytes, in the second col-
umn) for different percentages of pull traffic. In this table
we consider only the case where we have a maximum num-
ber of follow-up requests equal to 15. The table reports the
throughput in Mpps and in Gbps. Considering again the
case where we have 80% of pull flows and 20% of push flows,
our forwarder can achieve a throughput of 17.1Gbps using
63M, 22.4Gbps using 10M-CCN and 25.3Gbps with 10M.

3RFC2469: Internet Protocol, Version 6 (IPv6) Specifica-
tion. https://tools.ietf.org/html/rfc2460
4SPDY: An experimental protocol for a faster web. https:
//www.chromium.org/spdy/spdy-whitepaper

53



5. CONCLUSION
We presented and evaluated a data plane for TagNet, an

ICN architecture that features a dual addressing scheme and
two corresponding delivery services, one based on expressive,
application-defined descriptors, and one based on extremely
efficient, network-defined locators. We see this dual address-
ing, and the algorithms we developed to support it, as an
effective way or perhaps simply a first but essential step in
designing a true information centric network.

In prior work we proposed and evaluated a routing scheme
for TagNet. Here we developed the essential algorithms
to realize the TagNet data plane. In particular, we devel-
oped a forwarding engine that implements specialized subset
matching algorithms for descriptor forwarding and an ex-
tremely fast locator forwarding algorithm based on a com-
pact routing scheme for trees. The forwarding engine runs
on general purpose CPU, and yet it is capable of forward-
ing over 20Gbps of mixed traffic flows with large forwarding
tables corresponding to hundreds of millions of users.

One of our most immediate plans for future research in-
cludes the development of a forwarding engine built on mas-
sively parallel hardware to increase the throughput of even
the descriptor-based forwarding alone. Indeed we have a
GPU-based prototype that in a preliminary evaluation can
process almost one million descriptors per second with the
63M FIB and the same traffic workload we used in the eval-
uation presented in this paper.

6. ACKNOWLEDGMENTS
We thank Alessandro Margara and Gianpaolo Cugola for

their comments an insights in many useful discussions on the
subset matching problem. This work was supported in part
by the Swiss National Science Foundation under grant num-
ber 200021-132565 and under grant number 200021-157164.

7. REFERENCES
[1] M. Charikar, P. Indyk, and R. Panigrahy. New

algorithms for subset query, partial match, orthogonal
range searching, and related problems. In Proceedings
of the 29th International Colloquium on Automata,
Languages, and Programming (ICALP 2002), pages
451–462, July 2002.

[2] H. Dai, J. Lu, Y. Wang, and B. Liu. BFAST: Unified
and scalable index for NDN forwarding architecture.
In 2015 IEEE Conference on Computer
Communications (INFOCOM), pages 2290–2298,
Apr.–May 2015.

[3] D. Han, A. Anand, F. Dogar, B. Li, H. Lim,
M. Machado, A. Mukundan, W. Wu, A. Akella, D. G.
Andersen, J. W. Byers, S. Seshan, and P. Steenkiste.
Xia: Efficient support for evolvable internetworking.
In Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation
(NSDI’12), pages 309–322, Apr. 2012.

[4] S. Helmer and G. Moerkotte. Evaluation of main
memory join algorithms for joins with set comparison
predicates. In Proceedings of 23rd International
Conference on Very Large Data Bases (VLDB’97),
pages 386–395, Aug. 1997.

[5] Y. Luo, G. H. L. Fletcher, J. Hidders, and P. De Bra.
Efficient and scalable trie-based algorithms for
computing set containment relations. In 31st IEEE
International Conference on Data Engineering
(ICDE’15), pages 303–314, Apr. 2015.

[6] M. Papalini, A. Carzaniga, K. Khazaei, and A. L.
Wolf. Scalable routing for tag-based
information-centric networking. In Proceedings of the
1st International Conference on Information-centric
Networking (ICN’14), pages 17–26, Sept. 2014.

[7] D. Perino, M. Varvello, L. Linguaglossa, R. Laufer,
and R. Boislaigue. Caesar: A content router for
high-speed forwarding on content names. In
Proceedings of the Tenth ACM/IEEE Symposium on
Architectures for Networking and Communications
Systems (ANCS’14), pages 137–148, Oct. 2014.

[8] R. L. Rivest. Partial-match retrieval algorithms. SIAM
Journal on Computing, 5(1):19–50, Mar. 1976.

[9] W. So, A. Narayanan, and D. Oran. Named data
networking on a router: Fast and dos-resistant
forwarding with hash tables. In Proceedings of the
Ninth ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS’13),
pages 215–226, Oct. 2013.

[10] M. Thorup and U. Zwick. Compact routing schemes.
In Proceedings of the thirteenth annual ACM
symposium on Parallel algorithms and architectures
(SPAA’01), pages 1–10, July 2001.

[11] Y. Wang, B. Xu, D. Tai, J. Lu, T. Zhang, H. Dai,
B. Zhang, and B. Liu. Fast name lookup for named
data networking. In 2014 IEEE 22nd International
Symposium of Quality of Service (IWQoS), pages
198–207, May 2014.

[12] Y. Wang, Y. Zu, T. Zhang, K. Peng, Q. Dong, B. Liu,
W. Meng, H. Dai, X. Tian, Z. Xu, H. Wu, and
D. Yang. Wire speed name lookup: A gpu-based
approach. In Proceedings of the 10th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI’13), pages 199–212, Apr. 2013.

[13] H. Yuan and P. Crowley. Reliably scalable name prefix
lookup. In Proceedings of the Eleventh ACM/IEEE
Symposium on Architectures for Networking and
Communications Systems (ANCS’15), pages 111–121,
May 2015.

54




