
End-to-End Congestion Control for Content-Based Networks

Amirhossein Malekpour, Antonio Carzaniga, and Fernando Pedone
University of Lugano
Lugano, Switzerland

{malekpoa,antonio.carzaniga,fernando.pedone}@usi.ch

Abstract—Publish/subscribe or “push” communication has
been proposed as a new network service. In particular, in
a content-based network, messages sent by publishers are
delivered to subscribers based on the message content and
on subscribers’ long-term interests (subscriptions). In most
systems that implement this form of communication, messages
are treated as datagrams transmitted without end-to-end or
in-network acknowledgments or without any form of flow
control. In such systems, publishers do not avoid or even
detect congestion, and brokers/routers respond to congestion
by simply dropping overflowing messages. These systems are
therefore unable to provide fair resource allocation and to
properly handle traffic anomalies, and therefore are not suit-
able for large-scale deployments. With this motivation, we
propose an end-to-end congestion control for content-based
networks. In particular, we propose a practical and effective
congestion-control protocol that is also content-aware, meaning
that it modulates specific content-based traffic flows along a
congested path. Inspired by an existing rate-control scheme for
IP multicast, this protocol uses an equation-based flow-control
algorithm that reacts to congestion in a manner similar to and
compatible with TCP. We demonstrate experimentally that the
protocol improves fairness among concurrent data flows and
also reduces message loss significantly.

Keywords-congestion control; content-based networking;
publish/subscribe;

I. INTRODUCTION

In content-based publish/subscribe communication, each
published message goes to the receivers that subscribed for
the content of the message. One common architecture to
implement this form of communication uses a network of
content-based routers (or “brokers”). Among other things,
content-based publish/subscribe communication systems dif-
fer in the ordering and reliability guarantees they offer.
Some systems offer end-to-end guarantees such as FIFO
and reliable delivery above and beyond what is provided
by the underlying communication primitives, and they do
so typically by operating as store-and-forward networks [3],
[14], [8], [12].

Other systems do not offer such additional guarantees and
instead try to maximize throughput and minimize end-to-
end delay by operating as best-effort networks [11], [6],
[17]. Such systems typically process and forward messages
as fast as they can, without taking into account the balance
between independent flows, and without feedback (acknowl-
edgments) or other flow-control mechanisms.

In short, on the one hand best-effort systems are simple
and fast, but on the other hand they offer little or no support
for fair resource utilization and congestion control.

Congestion and its adverse effects on traffic and applica-
tions have been studied extensively [4], [5], [19]. Congestion
manifests itself when router queues fill up and ultimately
overflow, which forces the router to drop packets. Conges-
tion may be caused by transient and typically harmless traffic
bursts, or by persistent high-rate flows that may cause severe
delays and disruptions and even the complete lock-out of
other flows [4]. In fact, network congestion is the primary
cause of packet loss and long end-to-end delays, and it is a
serious threat to the stability of a network. For this reason,
communication systems that are oblivious to congestion are
considered unfit for deployment in open networks such as the
Internet and in dedicated networks such as data centers [19].

These considerations motivate the work presented in this
paper. Our high-level goal is to develop a congestion control
mechanism for best-effort content-based publish/subscribe
systems. In essence, we would like to maintain the sim-
plicity and elasticity of the underlying best-effort network
of brokers, and at the same time provide applications with
a method and a mechanism to modulate message flows
according to available resources and in a fair manner.

We develop a congestion control protocol based on the
design of a protocol for IP multicast called TCP-friendly
multicast congestion control (TFMCC). We present the
rationale for this design and discuss the challenges of
implementing it in the context of content-based communi-
cation. In particular, we discuss the specificity of content-
based communication with respect to flow control. We then
describe our design, implementation, and the experimental
evaluation of a content-aware congestion control protocol.

In brief, our solution is an end-to-end protocol in which
each receiver (subscriber) measures the end-to-end delay and
loss rate within each message flow from a sender (publisher).
The receiver then uses these measures to determine a proper
maximal rate for that flow using a “TCP-response” function.
The receiver then feeds the prescribed maximal rate back to
the sender that in turn aggregates rate requests across flows
and adjusts its sending rates accordingly. Our protocol is
TCP friendly in that, under the same network dynamics,
it behaves like TCP in terms of fairness and long-term
throughput.



However, unlike the original TFMCC or any other con-
gestion control scheme for IP networks, we implement a
rate control algorithm that is content aware, in the sense
that traffic measurement and feedback by subscribers, as
well as feedback aggregation and rate control by pub-
lishers, are based upon and grouped by subscriptions and
message content. This protocol only assumes the existence
of an underlying content-based network with a common
publish/subscribe API, and hence it is a generic protocol
that can be applied to virtually any best-effort content-based
network without any modification to the router software and
in particular to its routing and forwarding algorithms.

In Section II we elaborate on the problem of congestion
control in the context of content-based networks and in the
wider context of traditional IP networks; we then detail
the internals of our protocol in Section III; we discuss its
salient features in Section III-C; we present an experimental
evaluation of the protocol in Section IV; and we conclude
with some final remarks in Section V.

II. CONTEXT AND HIGH-LEVEL DESIGN

Our problem is end-to-end congestion control in best-
effort publish/subscribe networks. For the publish/subscribe
network, we assume the following basic content-based pub-
lish/subscribe behavior: publishers publish messages whose
content is characterized by attributes; subscribers request
messages of interest by specifying constraints on the values
of their attributes. In particular, the term constraint refers to
an individual condition on an attribute value, the term filter
or subscription refers to a logical conjunctions of constraints,
and the term predicate is a logical disjunction of filters [6].
At each given time, the publish/subscribe communication
system is configured, and its behavior is fully determined
by the association of predicates to receivers, so that each
message published at that time should be delivered to all
receivers associated with a predicate matching the message.

As in traditional networking, controlling and avoiding
congestion in a publish/subscribe network amounts to with-
holding some publications on the part of publishers. More
specifically, it amounts to controlling message flows as they
are produced by publishers. Notice that, as is commonly
intended in the context of congestion control, the term flow
refers specifically to a stream of messages going from one
sender (publisher) to one receiver (subscriber), even if the
same stream in its entirety or in part might also reach other
receivers. In this case we distinguish separate and possibly
interdependent flows.

A. Related Work

Congestion control has not been studied extensively in
the context of content-based publish/subscribe systems. Piet-
zuch and Bhola [15] designed the first and only specific
congestion-control mechanism we know of. In essence, this
mechanism limits publication rates to the level of the slowest

link in the publish/subscribe network. Congestion is detected
on the subscriber side by measuring decreasing delivery
rates that do not correspond to decreased publishing rates.
Congestion then triggers rate-limitation requests that are
propagated upstream towards the publishers. This protocol
targets reliable broker-based publish/subscribe systems and
it involves every broker along the path between publisher
and subscriber in the congestion-control process, since each
broker aggregates the feedback sent from downstream bro-
kers. By contrast, our goal is end-to-end congestion control
over a best-effort network. Also, the protocol of Pietzuch
and Bhola does not provide fairness among concurrent flows
between separate endpoints that share the same path, nor
does it distinguish between different content-based portions
of the same flows. As we will see later, these are some of
the most salient features of the protocol we propose in this
paper.

Beyond publish/subscribe systems, congestion control has
been studied in great depth in traditional networking, with
some results that are very relevant to the work presented
here. In particular, since content-based communication is
a form of multicast communication (a message may be
delivered to multiple receivers), it is natural to consider
porting congestion-control protocols developed for IP multi-
cast to content-based communication. Summarizing, existing
congestion control protocols for IP multicast are designed so
that multicast flows would compete in a fair way with other
multicast or TCP flows, which are themselves designed to
avoid congestion and to share network resources in a fair
way. So in other words, the goal is to make multicast flows
behave like TCP flows.

The protocols that are most relevant to this paper can
be characterized as single-rate protocols: a receiver, usually
called the acker, measures end-to-end delay and message
loss, and sends feedback to multicast sources, which adjust
their transmission rate accordingly. These protocols differ
in the type of feedback messages and in the rate-limiting
algorithm. Some protocols take a TCP-like approach where
the control feedback is in the form of ACK/NACK, and rate
is limited by a transmission window [10], [16]. In other
protocols, receivers compute a desired rate on the basis of
measures such as the delay and loss rate using a TCP-
response function, and communicate the result to the source
that in turn limits its sending rate accordingly [2], [19].

An important representative of this latter category, which
we use as a basis for our protocol, is TCP friendly mul-
ticast congestion control (TFMCC). TFMCC is a single-
rate, equation-based multicast congestion control protocol,
and is an extension of TCP-Friendly rate control (TFRC),
a congestion control for unicast [9]. Basically, for each
flow (one sender) a receiver monitors the round-trip time
tRTT as well as the loss event rate p (discussed below)
and computes the maximum acceptable rate T for that flow
using the following “TCP-response” function (s is the packet



size) [19]:

T =
s

tRTT

(√
2p
3 + (12

√
3p
8 )p(1 + 32p2)

) (1)

The resulting rate T is the maximal rate for that flow
compatible with TCP behavior. When the receiver measures
a delivery rate exceeding the computed maximal rate, the
receiver communicates its desired rate to the sender. Each
sender then adjusts its transmission rate to the lowest re-
quested rate usually dictated by the receiver with the most
scarce network resources, called the current limiting receiver
(CLR). The sender always tracks the CLR, lowering its rate
in response to a rate feedback lower than the current rate
(possibly switching to a new CLR) and only increasing its
rate in response to a corresponding request from the CLR.

The parameter p in the TCP-response function is the loss
event rate and plays a central role in how the protocol
responds to message loss. A loss event is the loss of one
or more messages during one round-trip time, and a loss
interval, hereafter denoted by `, is the number of messages
received between two loss events. Accordingly, p (loss event
rate) is defined as 1/¯̀ where ¯̀ is the average loss interval
over the last i loss events.

B. Content-Aware Rate Control

In a content-based network, message flows are induced
by receiver predicates. The rate λA→B of a flow between a
publisher A and a subscriber B depends on the publisher’s
sending rate λA as well as on the matching rate ρA,B of the
subscriber’s predicate with respect to A’s output. In other
words, ρA,B can be seen as the probability that a message
published by A matches B’s predicate, and thus the rate of
the A→ B flow with sending rate λA is λA→B = λA ·ρA,B .

This combination of factors in the context of a content-
based network makes congestion control more complicated
but it also allows for more flexibility. In fact, a sender
A whose publications reach two receivers B and C could
modulate the rates λA→B and λA→C of the two flows inde-
pendently, whereas traditional rate limitation in IP multicast
would dictate that A reduce its overall sending rate λA. So,
with IP multicast, if only B is experiencing congestion,
C would also see a reduced flow from A. Instead, with
the proper knowledge of the specific content-based flows
A → B and A → C, A could reduce λA→B and thereby
avoid congestion while still maintaining a high rate λA→C .
In particular, this would be possible only if B’s predicate
does not cover C’s predicate, meaning that not all messages
that are of interest for C are also of interest for B. This
situation is illustrated in Figure 1.

In practice, content-based communication introduces two
requirements for an efficient and fair end-to-end congestion
control. First, rate-limitation must be applied (by the sender)
only to those messages that are part of intense flows on

messages published by A

messages of 
interest to C

messages
of interest to B

messages flowing
through bottleneck

A

bottleneck

C

B

Figure 1. Content-aware rate control

congested routes. Second, the rate-control algorithm should
account for the partial or total overlap between message
flows, which is determined by their content-based nature.
We also require such an algorithm to provide some level of
fairness among competing flows similar to TCP fairness.

In order to meet these requirements, the rate-control
algorithm must inspect message content on the publisher’s
side, and in particular it must be able to match messages
against the subscriptions of receivers on congested paths. In
essence, the congestion-control algorithm on both ends must
be informed by receiver predicates and message contents,
and hence we call it content-aware congestion control.

C. High-Level Design

We designed an equation-based congestion-control proto-
col in which the maximum allowed throughput is a function
of a set of measurable network dynamics. Three reasons
motivate our choice of an equation-based rate control instead
of a window-based one.

First, content-based communication does not allow for
precise loss detection (we discuss this problem in detail
later) and equation-based rate control is less sensitive to
errors in loss detection than window-based algorithms for
which correct negative acknowledgments are essential. Also,
irrespective of the efficiency of the loss detection method in
use, equation-based rate control protocols tend to exhibit a
smooth response to congestion relative to that of TCP [1] and
hence are better choices for controlling traffic with frequent
short bursts.

Second, we target networks with thousands of subscribers
where equation-based control would scale better than a
window-based control such as pragmatic multicast conges-
tion control (PGMCC) [16]. This is because, in PGMCC
each message must be acknowledged by an acker. In con-
trast, an equation-based protocol requires only one feedback
message per round trip time, which imposes a lower pro-
cessing and communication overhead on the publisher and
other network resources.

Third, equation-based rate control gives receivers good
flexibility. For example, having computed a maximal flow
rate, a receiver could prioritize some messages over others
within that flow. This could be done directly using the same
rate control feedback to the sender, by allocating a larger
portion of the flow to some filters over others, in effect by
distinguishing multiple sub-flows.



III. CONTENT-AWARE CONGESTION CONTROL

We now describe our content-aware congestion control
protocol in detail. In particular, we define the notion of
content-based flows and we detail the congestion control
headers and the operations of subscribers and publishers.

A. Content-Based Flows

As explained in Section II-A, in TFMCC, the current
limiting receiver (CLR) dictates the maximum sending rate
for a multicast group by sending feedback messages to the
sender in that group. (Multiple senders are already consid-
ered as different flows and are therefore treated separately.)
The sender considers the feedback messages from all group
members and elects the receiver with the lowest requested
rate as the CLR of that group, and then communicates the
identity of the CLR to all group members using a special
header in its outgoing messages. In essence, this means that
the CLR becomes a representative of the group, which makes
sense because all members of the group see the same flow of
messages from the sender to that group. Unfortunately, this
notion of a multicast group does not exist in content-based
communication, and different subscribers might see different
flows from the same publisher, and therefore no single
subscriber can meaningfully represent all the subscribers
in dictating a maximum sending rate. In other words, the
publisher can not identify a single flow within which it can
select a CLR and to which it would make sense to apply
rate control.

To address this fundamental difference, we define a
specific and more expressive notion of flow. We identify
a content-based flow f as the stream of messages orig-
inating at a publisher P and matching a given filter s.
Each subscriber may define multiple flows with the same
publisher P each associated with a requested maximum
rate. The publisher collects all the flow specifications sent
by subscribers through feedback messages, and it processes
them by merging flows from different subscribers whenever
possible. (Merging flows from the same subscriber is also
possible, although that can and should be done directly by
the subscriber.) For each flow, the publisher then elects a
CLR which also determines the rate limitation for that flow.

B. Congestion Control Protocol

1) Control Messages: Publishers and subscribers execute
and coordinate the rate control algorithm by exchanging two
types of control messages. Subscribers send ad-hoc feedback
messages to define content-based flows and to control their
rate. Depending on the network configuration, feedback mes-
sages could be transmitted through end-to-end IP primitives
(TCP or UDP) or through the primitives of the content-based
network itself. In this latter case, a sender would effectively
subscribe for feedback messages addressed to it. Publishers
on the other hand transmit congestion control information to

subscribers by attaching a congestion control header to each
publication that belongs to a controlled flow (see Figure 2).

2) Representation of Filters and Messages: Rate control
at the publisher amounts to evaluating the filters in each
flow specification against the messages the publisher in-
tends to publish, so as to recognize and rate-limit the flow
according to the demands of the corresponding CLR. To
reduce the overhead of this evaluation and also to reduce
the overhead of transmitting filters in feedback messages,
we take advantage of an encoding scheme that transforms
filters and messages into Bloom filters, and that admits to a
matching algorithm consisting of a simple bit-wise operation
between the two Bloom filters [7], [13]. This encoding also
allows for an equally fast evaluation of the covering relation
between filters. This efficiency in matching comes at the
cost of false positives. Yet our empirical evaluation shows
that the performance gains justify the lower precision. In
the following sections we explain how our protocol takes
advantage of this scheme. Notice however that the encoding
is an optimization and a modular part of the protocol, and
can be replaced or even removed altogether.

3) Loss Detection: Subscribers must measure the loss
event rate in order to compute the appropriate rate for
each flow. However, in content-based networking there is
no simple and effective way of detecting losses. Sequence
numbers, which are typically used in unicast and multicast
protocols to detect packet losses, are not applicable in the
case of content-based communication. This is because a gap
in the sequence does not necessarily evidence a message
loss, as it might well indicate that the missing messages
did not match the receiver’s interests. In our protocol, we
use a probabilistic loss detection method that we developed
in prior work [13]. Essentially, this method augments each
message (publication) with a publication record consisting
of an encoded summary of the latest k messages published
by the publisher. This summary is in fact produced using the
same message-encoding technique that transforms a message
into a Bloom filter. Figure 2 shows a message carrying a
publication record of size k = 4.

The publication record allows a receiver to determine
if any of the k previously published messages was of
interest for the receiver and therefore which of them was
lost. Unfortunately, this loss detection method is imprecise,
particularly when the matching probability is small (the
probability that a message matches a subscriber’s predicate),
and thus there are large gaps in the sequence of messages
delivered to the subscriber. In Section III-C we discuss the
effects of this approximate loss detection on the protocol’s
performance and we show how potential problems can be
mitigated.

4) Round-Trip Time: In addition to the loss event rate, the
subscriber must measure the round trip time (RTT) between
itself and the publisher. To measure the RTT, we adopt the
mechanism proposed in TFMCC, which is based on echo



publication
record

time
stamp

publish
rate

rate
controlled CLR δfeedback message body

m1 10100 · · · 10
m2 00011 · · · 10
m3 00110 · · · 01
m4 11100 · · · 00

917 2000 true Sm 120 . . .

Figure 2. Congestion control header in a publication message.

filter id Bloom filter CLR reception rate quota
F1 01110 · · · 11 true R1 Q1

F2 01100 · · · 01 true R2 Q2

F3 01101 · · · 11 false R3 Q3

F4 10101 · · · 00 false R4 Q4

Figure 3. Per-publisher state maintained by a subscriber.

request/response messages. In our protocol, an echo request
can be sent either directly or through the publish/subscribe
network (similar to feedback messages). However, the echo
response always goes through the publish/subscribe network,
since its purpose is to measure the latency at that level.

In TFMCC and also in our protocol, echo requests/replies
are used at the beginning of a session to compute the
RTT when a node joins the network. Then the RTT is
continuously estimated in cooperation with the publisher:
the publisher measures the travel time of the feedback
messages received from the CLR; it then transmits that to
subscribers using publications (δfeedback header in Figure 2);
at the same time, the subscriber measures the travel time
of the same publications using the publisher’s time stamp
(timestamp in Figure 2); finally, the subscriber adds the
publisher’s measured one-way delay with its own measure
for the opposite direction, obtaining an estimate of the RTT
in which clock differences cancel out.

5) Subscriber’s State and Operations: Subscribers main-
tain a session with each publisher from which they receive
publications. Figure 3 shows the information associated with
sessions. The subscriber stores the reception rate for each
filter that generates an incoming flow from that publisher,
and for each filter it maintains the measured reception rate
and the target rate (quota) and it also remembers whether the
subscriber itself is the CLR for that flow. Here again we use
Bloom filters for fast matching of incoming messages against
local subscriptions, though as stated before this mechanism
can be replaced by any matching algorithm.

The subscriber then runs its congestion control algorithm
(Algorithm 1) for each session (each publisher). Once every
RTT interval, the subscriber updates its measurements and in
particular the reception rates and, given the average RTT and
loss event rate measurements, it estimates a rate limit based
on the TCP response function (Line 2). Then, based on that
limit and on the current cumulative reception rate (over all
filters) the subscriber initiates its rate control operations.

If the current reception rate exceeds the limit, the sub-
scriber distributes the available rate to filters according to
its priorities. In our implementation we use a max-min

1: every tRTT time units
2: R← ESTIMATE RATE() {calculate the allowed throughput}
3: t← 0 {overall rate from this publisher}
4: for each entry e in the session state S do
5: t← t+ e.reception rate
6: if R < t then
7: DECREASE RATE(R) {request a rate decrease}
8: else if R > t then
9: INCREASE RATE(R) {request a rate increase}

10: SEND FEEDBACK() {send feedback to publisher if necessary}

11: procedure DECREASE RATE(R)
12: for each entry e in the session state S do
13: e.quota ← 0
14: ASSIGN QUOTA MAXMIN(S,R) {reassigns quotas based on R}

15: procedure INCREASE RATE(R)
16: t← 0 {total reception rate}
17: n← 0 {number of filters for which this subscriber is CLR}
18: for each entry e in the session state S do
19: t← t+ e.reception rate {calculate total reception rate}
20: e.quota ← e.reception rate
21: if e.clr = true then
22: n← n+ 1
23: if n = 0 then
24: return {not a CLR for any flow, no action required}
25: q ← (R− t)/n {divide unused quota by n. of throttled filters}
26: for each entry e in the session state S do
27: if e.clr = true then
28: e.quota ← e.quota + MIN(α · e.reception rate, q)

{increase quotas by at most α× current reception rate}

29: procedure SEND FEEDBACK()
30: M ← ∅ {set of filters in the feedback message}
31: for each entry e in the session state S do
32: if e.quota < e.reception rate or e.clr = true then
33: M ←M ∪ {〈e.filter , e.quota〉}
34: send M to the publisher

35: function ESTIMATE RATE()
36: r ← s

tRTT

(√
2p
3

+(12
√

3p
8

)p(1+32p2)

)
37: return r

Algorithm 1. Congestion monitoring and control run by a subscriber for
each publisher from which there is an incoming message flow.

algorithm (maximize the minimum rate) in order to favor
filters with lower reception rates. If on the other hand the
reception rate is lower than the limit, and if the subscriber
is the CLR for at least one of its filters, then the subscriber
proceeds with a rate increase. The subscriber assigns the
unused rate to the filters for which it is CLR, but it limits
each increase to at most a factor of α of current reception
rate. This limit is intended to prevent rapid changes and
therefore to reduce instability. Our experiments demonstrate
that a value of α between 0.5 and 1 is appropriate. Finally,



filter Bloom
filter CLR quota tokens feedback

time queue

F1 0101 · · · 00 S1 Q1 T1 t1 · · ·
F2 0010 · · · 10 S2 Q2 T2 t2 · · ·
F3 1001 · · · 01 S3 Q3 T3 t3 · · ·
F4 1011 · · · 00 S4 Q4 T4 t4 · · ·

Figure 4. A publisher’s congestion control state

1: upon receiving feedback message M from subscriber s do
2: for each flow f ∈M do
3: PROCESS FLOW REQUEST(f, s)

4: procedure PROCESS FLOW REQUEST(f, s)
5: for each flow g in the flow table F do
6: if f.filter = g.filter and g.clr = s then
7: g.quota ← f.quota {accept quota change request from CLR}
8: g.feedback time ← TIMESTAMP()
9: return

10: if g.filter covers f.filter and g.quota < f.quota then
11: return
12: if f.filter covers g.filter and f.quota < g.quota then
13: remove flow g from flow table F
14: F ← F ∪ {(f.filter , s, f.quota, TIMESTAMP())} {add f to the

flow table}

Algorithm 2. Processing feedback message M received from subscriber s

when the necessary changes are made in the local state,
the subscriber proceeds to send a corresponding feedback
message to the publisher.

6) Publisher’s State and Operations: A publisher pro-
cesses feedback messages and throttles message flows when
necessary. A publisher maintains state describing and con-
trolling its outgoing flows in a single table (see Figure 4).
For each filter, again stored as Bloom filters for efficiency,
the publisher stores the identity of the CLR, the current rate
limit (quota) and the current instantaneous available portion
of that quota (implemented as a token bucket). The publisher
also associates a filter with a feedback time, which is a time
stamp of the latest feedback message from the CLR (set
with the publisher’s clock). The feedback time serves two
purposes: first, it is used to compute the δfeedback header
for outgoing publications (see Figure 2) that is then used by
subscribers to estimate the RTT; and second, it allows the
subscriber to discard stale entries after a set timeout.

7) Processing Feedback Messages: A feedback message
carries a set of flow requests each defined by a subscription
and an associated rate limit. The publisher collects and
processes feedback messages using Algorithm 2, merging
overlapping flows in its flow table whenever possible. Each
flow f in the feedback message is processed individually.
The publisher checks whether (1) f already exists in the
flow table and s is already the CLR for that flow, in which
case the publisher simply updates the flow; (2) f is covered
by an existing flow with a lower rate limit, in which case
f is ignored; and (3) f covers existing flows with higher
rate limits, in which case the publisher removes those flows
from the table and then ultimately adds f to the table.

8) Rate Control: Rate control is implemented on a per-
flow basis with a token bucket. Tokens arrive at a rate
determined by the value of the quota. Each publication sent
by applications is first encoded as a Bloom filter that is
then compared against all filters in the flow table. If all
matching flows have enough tokens then a token is taken
from each bucket (one for each matching filter) and the
message is sent out, otherwise the message is queued until
tokens become available. Matching messages are also tagged
with the necessary congestion control headers (shown in
Figure 2) before transmission into the network.

C. Dealing with Imprecise Loss Detection

We now discus the effects of potential errors in the esti-
mation of the loss event rate p in the TCP response function
(Equation (1)) and how those effects can be mitigated. Recall
from Section II-A that, as is done in TFRC, the loss event
rate p is calculated as the inverse of the average loss interval
¯̀, which is the average number of correct deliveries between
consecutive losses. Thus, if the current loss interval is ` then
a correct delivery would increase ` by 1 and a loss would
insert the current ` into the average and then reset `← 1.

Consider now a subscriber that receives two consecutive
messages mi and mj with sequence numbers i < j and
therefore with a gap g = j− i− 1 in the sequence. Assume
that messages carry a publication record of size k. If g ≤ k
and therefore the publication record covers the gap, then
the subscriber can operate as in TFRC, increasing the loss
interval if the publication record does not reveal any loss, or
otherwise resetting the interval. And even if the publication
record does not cover the whole gap (g > k) but still reveals
a loss, then the subscriber should reset the loss interval. The
problem arises when the publication record does not cover
the whole gap and does not indicate any loss.

In this case we optimistically assume that no message
was lost. However, to account for the expected error of this
optimistic assumption, we increment the loss interval by a
value that is less than one. In particular, we use an increment
corresponding to the probability that the optimistic assump-
tion is correct, which is the probability that none of the
messages not covered by the publication record was relevant.
This probability is (1−ρP,S)g−k where ρP,S is the matching
probability, that is, the probability that each publication
of publisher P matches the subscriber’s predicate, which
we can estimate as the ratio ρP,S = RP /λP between the
reception rate RP seen by the subscriber and the publish
rate λP indicated by the publisher in the message header
(see Figure 2).

Qualitatively, the optimistic assumption is generally valid
in non congested and even in slightly congested network
conditions, but it does not necessarily hold in the presence
of persistent congestion. However, in such cases, where mes-
sage losses are frequent, the receivers with higher matching
ratios and hence high reception rates are likely to detect loss



0 20 40 60 80 100
Time (seconds)

0.00

0.05

0.10

0.05

0.10

Lo
ss

E
ve

nt
R

at
e

0.05

0.10
Ideal

k=5

k=2

0 20 40 60 80 100
Time (seconds)

0

500

1000

1500

500

1000

1500

Th
ro

ug
hp

ut
(K

bp
s)

500

1000

1500
Ideal

k=5

k=2

Figure 5. Loss event rate (left) and TCP response function (right) computed for the ideal receiver (top), publication record of size 5 (middle) and
publication record of size 2 (bottom).

Sn

S1

S2

Broker

Client

Pn

P1
P2

Ts Tr

Bottleneck link

B2B1

Figure 6. Experiment topology

events anyway and therefore react with their rate control.
This is because messages of a high-rate flow are more likely
to be lost in persistent congestion. Also, it is more probable
that the publication record covers at least one of the relevant
but lost messages of such a receiver.

In order to better understand the effectiveness of our
loss detection mechanism in estimating loss event rate
and throughput, we conducted a simulation analysis. We
simulated a simple scenario in which a flow of publications
goes through a link that is unable to sustain the intensity of
that flow. Figure 5 shows the estimated loss event rate (left)
and throughput (right) during 100 seconds of simulation for
three different sizes of the publication record: k =∞ (top)
corresponding to an ideal all-knowledgeable receiver, k = 5
(middle) and k = 2 (bottom). For a publication record of size
k = 2 many loss events are not detected (e.g., 15 seconds
into the simulation) and the estimated throughput is often
larger than that of the ideal receiver. However, with k = 5
loss detection is reasonably accurate, which in turn results
in an estimated throughput close to that of the ideal receiver.

IV. EVALUATION

In this section we present the results of the experimental
evaluation of our protocol. The focus of the experiments is
on the main functionality of the congestion control protocol.
In particular, we investigate the effectiveness of the protocol
in controlling congestion, responsiveness to changes in avail-
able bandwidth, fairness among concurrent content-based as
well as TCP flows, and optimality of link utilization. We first
analyze these quantities in a series of ad-hoc scenarios with

small networks, a few clients, and specifically controlled
workloads. We then demonstrate the effectiveness of the
protocol in a large-scale deployment.

A. Experimental Setup

We have fully implemented our congestion control pro-
tocol as a Java module that integrates into the client
middleware and could work with virtually any best-effort
publish/subscribe system. Most publish/subscribe systems
are capable of carrying a user payload which we use to
add congestion control headers to each message. For the
experiments presented in this section we have used a recent
version of the Siena system, which implements a best-effort
content-based publish/subscribe system [7].

Our testbed is a cluster of 46 physical machines, each
one having 4 cores and 4 Gigabytes of memory and running
the Linux 2.6.32 kernel. Connectivity is provided through
an isolated high-throughput Gigabit Ethernet switch. Broker
software and client (including congestion control protocol)
are implemented in Java and run on the 64-bit open-JDK
VM. We used the Linux traffic control tools to emulate
bottleneck links. Figure 6 shows the topology we setup for
all except the last (large scale) experiment. Ts and Tr are
a pair of TCP sender and receiver and Pi and Si represent
publishers and subscribers respectively. As explicitly stated
in each case below, different experiments use only a subset
of the client nodes, while the two brokers and the inter-
broker link (bottleneck) are present in all experiments.

We compare the results of experiments with and without
congestion control, so that we can better demonstrate the
necessity of a congestion control mechanism and the effec-
tiveness of our protocol in each case. In all experiments, the
size k of the publication record is set to 2, implying that
on average the congestion control header adds an extra 80
bytes to each message. To make the comparison meaningful
in terms of bytes per second, in experiments without con-
gestion control we increased the message size by adding a
payload of 80 bytes. This obviously introduces a penalty
that should be taken into consideration when evaluating the
maximum message throughput of the best-effort network



(a)

0 50 100 150 200 250
Time (seconds)

0

1000

2000

3000

4000

Publications
Notifications
Missed deliveries

250

500
K

bi
t/s

m
es

sa
ge

s/
s

(b)

0 50 100 150 200 250
Time (seconds)

0

1000

2000

3000

4000

Publications
Notifications
Missed deliveries

250

500

K
bi

t/s
m

es
sa

ge
s/

s

Figure 7. Effect of variable input load (a) without and (b) with congestion control. Top charts: traffic rate (Kbps) on the bottleneck link. Bottom charts:
aggregate publication, reception, and missed-delivery rates (messages per second).

(a)

0 50 100 150 200 250
Time (seconds)

0

1000

2000

3000

4000

Publications
Notifications
Missed deliveries

1000

2000

K
bi

t/s
m

es
sa

ge
s/

s

(b)

0 50 100 150 200 250
Time (seconds)

0

1000

2000

3000

4000

Publications
Notifications
Missed deliveries

1000

2000

K
bi

t/s
m

es
sa

ge
s/

s

Figure 8. Effects of variable bottleneck link capacity (a) without and (b) with congestion control. Top: traffic rate (Kbps) on the bottleneck link. Bottom:
aggregate publication, reception and missed-delivery rate (messages per second) during the experiment.

alone. However, the additional payload is relatively small
and in any case does not fundamentally change the behavior
of the system in terms of losses, especially in the relevant
case of congestion.

B. Effectiveness, Stability, Responsiveness

We start by investigating the basic properties of our
congestion control protocol in a unicast scenario with one
publisher and one subscriber (i.e., P1 and S1 in Figure 6).
Figure 7 (bottom chart) shows the publication rate, reception
rate, and missed-delivery rate in terms of messages per
second (mps) during 250 seconds of an experiment without
and with congestion control (figures 7a and 7b, respectively).
To demonstrate the optimality of resource utilization, the top
graph shows traffic (Kbps) on the bottleneck link whose
bandwidth is 500Kbps. To evaluate the protocol in the
presence of persistent as well as transient congestion, we
designed the workload so that the publisher generates traffic
with an increasing, then stable, and then bursty rate. The
publication rate starts at 400mps, then ramps up to 4000mps
where it stabilizes for 60 seconds, and then descends to
600mps continuing with short bursts of up to 2500mps. With
publication rates above 1000mps the network saturates its
link capacities and starts to experience message losses (re-
sulting in missed deliveries). In all three phases, congestion

control is able to mitigate persistent and transient congestion,
reducing the number of lost messages by a factor of 20×,
particularly during the period where congestion is persistent.

Figure 7 also shows that the congestion control protocol
uses the network almost to its maximum capacity. More
specifically, without congestion control in place the sub-
scriber receives nearly 46000 messages, a result that is
reduced only minimally when using congestion control, with
more than 45000 messages delivered correctly. Notice in
Figure 7b that, with congestion control, the fluctuations in
publication rate are still present while the rate of message
losses remains almost unchanged. This is a benefit of
content-aware congestion control, which limits only those
outgoing message flows that go through the bottleneck link.

We now examine the responsiveness of our protocol to
changes in bandwidth resources. More precisely, we want
to answer the following two questions: first, when available
bandwidth drops, how fast does the protocol reduce the send
rate to control message loss? Second, upon an increase in the
available bandwidth, how rapidly does the protocol saturate
the new resources while controlling message loss? Figure 8
shows the results of an experiment in which we control
the bandwidth of the bottleneck link by alternating between
1Mbps and 2Mbps in periods of 40 seconds. As Figure 8b
suggests, reaction to both decrease and increase in bottleneck



(a)

0 50 100 150 200 250
Time (seconds)

0

200

400

100

200

300

R
ec

ep
tio

n
ra

te
(m

es
sa

ge
s/

s)
100

200

(b)

0 50 100 150 200 250
Time (seconds)

0

200

400

100

200

300

R
ec

ep
tio

n
ra

te
(m

es
sa

ge
s/

s)

100

200

Figure 9. The solid lines show reception rates (mps) for 3 pairs of publishers and subscribers sharing the bottleneck link (a) without and (b) with
congestion control in effect. The dotted lines show the fair share of each flow.

(a)

0 50 100 150 200 250
Time (seconds)

0
200
400
600
800

1000
0

200
400
600
800

1000

R
ec

ep
tio

n
ra

te
(K

bi
t/s

)

TCP flow

CB flow

(b)

0 50 100 150 200 250
Time (seconds)

0
200
400
600
800

1000
0

200
400
600
800

1000

R
ec

ep
tio

n
ra

te
(K

bi
t/s

)

TCP flow

CB flow

Figure 10. TCP and content-based reception rate (Kbps) for a TCP flow and a publish/subscribe flow sharing a bottleneck link (a) without and (b) with
congestion control. The horizontal dotted lines show the ideal fair share.

link capacity is quite fast. Specifically, the flow adapts in less
than two seconds to the new bandwidth and reaches a stable
state while persistent message losses are barely noticeable.

C. Fairness Among Content-Based Flows

We now proceed to examine the fairness properties of our
congestion control protocol in the presence of concurrent
content-based flows. In such settings we expect the receivers
with higher reception rates to start controlling congestion
before low rate receivers. In this experiment we use 3
publishers and 3 subscribers (i.e., S1 to S3 and P1 to P3

in Figure 6) with each publisher sending messages at a
constant rate of 1000mps. Each subscriber receives messages
from only one publisher but with different matching rates,
inducing three content-based flows going through the bot-
tleneck link with different average rates (all messages are
of the same size). At the beginning of the experiment the
bottleneck link has a capacity of 2Mbps, which causes no
contention among the flows. Then at time t = 100 seconds
we cut the link bandwidth in half (1Mbps) and again we do
the same at time t = 200 seconds (to 500Kbps).

Figure 9 shows the reception rates (messages per second)
for the three receivers (solid lines) and compares them
with the fair share of each flow for the network configu-
ration at that time (dotted lines). Without congestion control
(Figure 9a) each reduction in link capacity results in a
proportional rate reduction for each receiver, which amounts

to an unfair allocation of resources. On the other hand, when
congestion control is in effect (Figure 9b), the available
link capacity is shared among the three separate flows so
as to follow the exact demands of each client when there
is enough bandwidth, and to share the available bandwidth
in a fair manner when bandwidth is limited. In particular,
when bandwidth is halved to 1Mbps at t = 100 seconds,
the high-rate receiver starts the congestion control process
by asking its corresponding sender to reduce its send rate.
As a result, the average reception rate at this subscriber
(Figure 9b, bottom) is reduced from 400mps to 140mps,
which is approximately the same as the other two receivers
(receiving messages at 150mps). At t = 200 seconds,
when link capacity is again halved to 500Kbps, all three
subscribers experience reduce their reception rate evenly.

D. TCP Friendliness

We conducted several experiments to investigate the TCP
friendliness of our congestion control protocol. In all cases,
we observed that the short- and long-term throughput of the
protocol does not exceed that of TCP when flows share a
bottleneck link. In Figure 10 we present the results of a
simple setup involving a TCP flow and a publish/subscribe
flow (i.e., Ts, Tr, S1 and P1 in Figure 6). The bottleneck
link has a bandwidth of 1Mbps. The TCP flow starts at time
60s (vertical dotted lines in Figure 10).

In the absence of congestion control (Figure 10a) the



(a)

0 20 40 60 80 100 120 140
Time (seconds)

0

1000

2000

3000

4000

Publications
Notifications
Missed deliveries

500

1000
K

bi
t/s

m
es

sa
ge

s/
s

(b)

0 20 40 60 80 100 120 140
Time (seconds)

0

1000

2000

3000

4000

Publications
Notifications
Missed deliveries

500

1000

K
bi

t/s
m

es
sa

ge
s/

s

Figure 11. Publication, reception and missed-delivery rate (mps) in a large scale network (a) without and (b) with congestion control in place.

(a)

0 20 40 60 80 100 120 140
Time (seconds)

0

30

60

90

120

m
es

sa
ge

/s

(b)

0 20 40 60 80 100 120 140
Time (seconds)

0

10

20

30

40

En
tri

es

Figure 12. (a) Feedback messages (mps) received by one of the publishers; (b) entries in the publisher’s state table.

content-based flow dominates the TCP flow, pushing more
than 900Kbps and almost saturating the link capacity. (Hor-
izontal dotted lines indicate an ideal fair share.) This result
shows the importance of a rate control scheme in deploy-
ments of best-effort content-based systems coupled with
TCP flows. With congestion control in place (Figure 10b)
the content-based flow adapts its rate within less than two
seconds from the start of the TCP flow. The average link
share is slightly higher for TCP, with a difference of about
5% of the total bandwidth. This is because equation-based
congestion control protocols tend to be more conservative
than TCP [18].

E. Large Scale Deployment
We conclude this evaluation by studying the performance

of the protocol in a large network with hundreds of clients.
Due to space limitations here we only focus on two im-
portant aspects of the protocol, namely its effectiveness and
the overhead it imposes on the publishers in a large scale
deployment. This experiment involves 46 physical machines
hosting 8 brokers and 760 clients where each broker runs
on a dedicated physical machine and the remaining 38
hosts run client applications (20 instances per machine). The
broker topology has a diameter of 3 and brokers have 1
to 3 neighbors. All inter-broker links have a bandwidth of
10Mbps except for one bottleneck link with a capacity of
1Mbps. Each broker serves 95 clients. In this setup, we have
only two publishers placed behind the bottleneck link and
each publishing at a constant rate of 2000mps. Each of the
758 subscribers has one filter with 1 to 5 constraints defined
by a Zipfian popularity distribution so that most subscribers
receive low rate flows while a few receive high-rate flows.

The bottom graphs of figures 11a and 11b juxtapose
the throughput and loss rate with and without congestion
control, while the top graphs show traffic that passes through
the bottleneck link. With congestion control, the rate of
missed deliveries drops to nearly zero within three seconds
and remains unchanged during the entire experiment. The
average throughput (message delivery) is only about 12%
lower with congestion control, with more than 90% utiliza-
tion of the link capacity during the experiment. Another
positive effect of congestion control is that the average
message delivery delay was 54 milliseconds, as compared to
102 milliseconds without congestion control, an advantage
that would presumably scale with the size of the network.

Now turning our attention to the publisher’s overhead,
figures 12a and 12b show the number of feedback messages
received (mps) and the number of entries in the flow
table for one of the publishers. Given that 760 subscribers
continuously receive messages from this publisher, the traffic
and state overhead for the publisher are negligible. In fact,
during the experiment we did not observe any tangible
increase in memory or CPU load on any of the hosts running
the publishers. Also, the relative stability of the number of
feedback messages and entries in the state table reflects a
stable functionality of the congestion control protocol.

Last, we consider the state maintained by publishers. It
might seem that publisher state would be the primary threat
to scalability. Indeed, since the idea is for publishers to mod-
ulate potentially many flows induced by the specific interests
of each subscriber, it might seem that a publisher would
have to keep track of all subscriber interests. However, note
that the publisher’s state (i.e., the table of Figure 4) grows



sub-linearly with the number of subscriptions that generate
message flows, and in practice we observed an overall low
overhead in terms of state. This is because, first, only high-
rate flows require rate control, and second, a high rate flow
that needs modulation is represented by a single filter (of
the CLR) irrespective of the number of filters that match
messages in that flow. Moreover, each entry in the state
table requires only a few bytes of memory. For instance,
with Bloom filters of 256 bits, 2000 entries in the state table
(an unrealistically large figure) consume less than 1 MB of
the publisher’s main memory.

V. CONCLUDING REMARKS

We presented an end-to-end content-aware congestion
control scheme for best-effort content-based networks. In
particular we adapted an equation based rate control scheme
to the specific context of content-based communication. We
did that by developing a specific notion of content-based
flow as well as a specific loss detection technique. We also
presented the results of the experimental evaluation of a full
implementation of our protocol. The results we obtained are
very good, and show that the protocol achieves its primary
objectives, namely effective resource usage, adaptability, and
fairness. As a natural way to complement these empirical
results, we would like to study the protocol and the problem
analytically, perhaps along the lines of Vojnovic and Le
Boudec [18]. We would also like to research the applicability
and effectiveness of window-based congestion control for
content-based networks.

More generally, we see best-effort content-based networks
as a scalable base for a diverse set of content-driven reactive
applications. This work is part of an effort to design an end-
to-end transport layer for best-effort content-based networks
to improve their quality of service and foster their deploy-
ment with minimal sacrifices in simplicity, performance, and
scalability.

REFERENCES

[1] D. Bansal, H. Balakrishnan, S. Floyd, and S. Shenker.
Dynamic behavior of slowly-responsive congestion control
algorithms. In proc. of SIGCOMM ’01, pages 263–274, New
York, NY, USA, 2001. ACM.

[2] S. Bhattacharyya, D. Towsley, and J. Kurose. The loss path
multiplicity problem in multicast congestion control. In Proc.
of INFOCOM 99, pages 856–863, 1999.

[3] S. Bhola, R. E. Strom, S. Bagchi, Y. Zhao, and J. S. Auerbach.
Exactly-once delivery in a content-based publish-subscribe
system. In Proc. of DSN ’02, pages 7–16, Washington, DC,
USA, 2002. IEEE Computer Society.

[4] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering,
D. Estrin, S. Floyd, V. Jacobson, G. Minshall, C. Partridge,
L. Peterson, K. Ramakrishnan, S. Shenker, J. Wroclawski,
and L. Zhang. Recommendations on Queue Management and
Congestion Avoidance in the Internet. The Internet Society,
1998. RFC 2309.

[5] J. W. Byers, G. Horn, M. Luby, M. Mitzenmacher, and
W. Shaver. FLID-DL: congestion control for layered mul-
ticast. In Proc. of NGC 2000, pages 71–81, 2000.

[6] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and
evaluation of a wide-area event notification service. ACM
Trans. Comput. Syst., 19(3):332–383, 2001.

[7] A. Carzaniga, G. Toffetti Carughi, C. Hall, and A. L. Wolf.
Practical high-throughput content-based routing using unicast
state and probabilistic encodings. Technical Report 2009/06,
Faculty of Informatics, University of Lugano, Aug. 2009.

[8] E. Fidler, H. A. Jacobsen, G. Li, and S. Mankovski. The
PADRES distributed publish/subscribe system. In 8th Inter-
national Conference on Feature Interactions in Telecommu-
nications and Software Systems, pages 12–30, 2005.

[9] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-
based congestion control for unicast applications. SIGCOMM
Comp. Comm. Rev., 30:43–56, Aug. 2000.

[10] S. Golestani and K. Sabnani. Fundamental observations on
multicast congestion control in the internet. In Proc. of
INFOCOM ’99, pages 990–1000, Mar. 1999.

[11] P. Jokela, A. Zahemszky, C. E. Rothenberg, S. Arianfar, and
P. Nikander. LIPSIN: Line Speed Publish/Subscribe Inter-
networking. In Proc. of SIGCOMM ’09, pages 195–206, New
York, NY, USA, 2009. ACM.

[12] R. S. Kazemzadeh and H.-A. Jacobsen. Reliable and highly
available distributed publish/subscribe service. In Proc. of
SRDS ’09, pages 41–50, Washington, DC, USA, 2009. IEEE
Computer Society.

[13] A. Malekpour, A. Carzaniga, F. Pedone, and G. T. Carughi.
End-to-end reliability for best-effort content-based pub-
lish/subscribe networks. In Proc. of DEBS ’11, pages 1–12,
New York, NY, USA, 2011. ACM.

[14] P. R. Pietzuch and J. Bacon. Hermes: A distributed event-
based middleware architecture. In Proc. of ICDCSW ’02,
pages 611–618, Washington, DC, USA, 2002. IEEE Com-
puter Society.

[15] P. R. Pietzuch and S. Bhola. Congestion control in a
reliable scalable message-oriented middleware. In Proc. of
Middleware ’03, pages 202–221, New York, NY, USA, 2003.
Springer-Verlag New York, Inc.

[16] L. Rizzo. pgmcc: a tcp-friendly single-rate multicast con-
gestion control scheme. SIGCOMM Comput. Commun. Rev.,
30(4):17–28, 2000.

[17] A. C. Snoeren, K. Conley, and D. K. Gifford. Mesh-
based content routing using xml. SIGOPS Oper. Syst. Rev.,
35(5):160–173, 2001.

[18] M. Vojnovic and J. Y. Le Boudec. On the Long-Run
Behavior of Equation-Based Rate Control. IEEE/ACM Trans.
on Networking, 13(3):568–581, June 2005.

[19] J. Widmer and M. Handley. Extending equation-based
congestion control to multicast applications. In Proc. of
SIGCOMM ’01, pages 275–285, New York, NY, USA, 2001.
ACM.


