
Content-Based Publish/Subscribe Networking and
Information-Centric Networking

Antonio Carzaniga
University of Lugano
Lugano, Switzerland

antonio.carzaniga@usi.ch

Michele Papalini
University of Lugano
Lugano, Switzerland

michele.papalini@usi.ch

Alexander L. Wolf
Imperial College London
London, United Kingdom

a.wolf@imperial.ac.uk

ABSTRACT
On-line information comes in different forms and is accessed
in different ways and for different purposes. For example,
a recording of Beethoven’s Ninth Symphony differs from a
storm warning from the local weather service. Beethoven’s
Ninth is a large media file with perpetual validity that is typ-
ically accessed on demand by users. By contrast, a storm
warning is a small ephemeral message typically pushed by
the weather service to all users in a specific geographic area.
We argue that both should and would be well supported by
an information-centric network. More specifically we argue
three points. First, modern applications, reflecting the na-
ture of human communications, use and transmit large and
long-lived files as well as small ephemeral messages. Sec-
ond, accessing those two types of information involves sig-
nificantly different operations within the network. Third,
despite their differences, both types of information would
benefit from an addressing scheme based on content rather
than on more or less flat identifiers, which means that both
should be integrated to some extent within a unified content-
based routing infrastructure.

Categories and Subject Descriptors
C.2.6 [Computer Systems Organization]: Computer-
Communication Networks—Internetworking

General Terms
Design

Keywords
Content-based networking, publish/subscribe, information-
centric networking, content-centric networking, named-data
networking

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICN ’11, August 19, 2011, Toronto, Ontario, Canada.
Copyright 2011 ACM 978-1-4503-0801-4/11/08 ...$10.00.

1. INTRODUCTION
The notion of content-centric networking is based on an

addressing scheme wherein the send and receive communi-
cation primitives identify content rather than network lo-
cations. This addressing scheme is motivated by social,
application-level considerations, as much as by technical,
network-level considerations. At a high-level, communica-
tion would be more effective if consumers could simply spec-
ify what content they intend to receive as opposed to from
where that content might be retrieved. At the network-
level, an addressing scheme that identifies content as op-
posed to location would allow the network to operate more
efficiently by duplicating and caching content around the
network, since it is the delivery of content that matters, not
where that content resides. Simply put, content-centric net-
working can be seen as a fresh and principled approach to
the problem of content distribution, especially for the com-
mon usage pattern in which users request named content.

Delivering named content upon demand is only one im-
portant form of content-based communication. Another,
equally important form is publish/subscribe event notifica-
tion. We argue that both forms should be natively sup-
ported features of a truly information-centric network [1].
Going further, we give a first design for a network service
supporting both forms of communication.

Publish/subscribe event notification is a form of content-
based communication in the sense that the content of a mes-
sage (i.e., the information concerning an event) determines
where the message is delivered [2]: senders simply “pub-
lish” messages, while receivers “subscribe” for their content.
That is, senders send messages without any explicit desti-
nation address, but with some structured content (possibly
the entire message) visible to the network, while receivers
declare a predicate (a kind of query) that, when applied
to the structured content of a message, tells whether the
message matches the receiver’s interests. The network then
transmits each message to any and all receivers interested in
its content, that is, to all receivers whose declared predicate
is matched by the content of the message. This notion of
content-based communication and a corresponding network
architecture [3, 5, 6] was developed independently from the
notion of content-centric (or named-data) networking [8].

Apart from their separate histories, these two forms of
communication differ fundamentally along three dimensions:
(1) the validity (or value) over time of the content; (2) the
initiator of the content flow; and (3) the expressiveness of
names versus predicates. In this paper, we consider only the
first two dimensions.

56

In terms of validity, information can be persistent or tran-
sient, where persistent means valuable for a long period of
time, while transient means short-lived, or perhaps long-
lived but most valuable only for a short period of time. In
terms of initiator, a flow can be consumer initiated or pro-
ducer initiated. In the first case, a consumer (or receiver
or sink) requests some information that might be available
from multiple producers (or senders or sources); in the sec-
ond case, a producer “pushes” some information that might
be delivered to multiple consumers.

The primary focus of research in content-centric net-
working has been the delivery of named content upon
demand, which is characterized by persistent information
and consumer-initiated flows. An example would be a
request for an MPEG-formatted file containing a record-
ing of Beethoven’s Ninth Symphony. By contrast, pub-
lish/subscribe event notification is characterized by tran-
sient information and producer-initiated flows. Common ex-
amples are news announcements or weather-service alarms.
In practice, of course, validity/value and flow initiator are
not completely independent variables: persistent informa-
tion may be pushed by producers, but is more typically re-
quested by consumers, while transient information is typi-
cally pushed by producers, simply because consumers may
not become aware of its availability within the limited period
of validity.

In this paper we examine three questions concerning pub-
lish/subscribe event notification and its relationship to on-
demand content delivery. First, is publish/subscribe event
notification a heavily used form of communication? Second,
if it is indeed heavily used, should it be implemented on top
of an on-demand content delivery service or provided as a
native feature of a more general information-centric network
service? In other words, is publish/subscribe event notifica-
tion different enough from on-demand content delivery that
its implementation should be based on specialized network-
level primitives? If it is the case that an information-centric
network should directly support publish/subscribe event no-
tification, then the third question is how should this im-
plementation interact with the implementation of the on-
demand content delivery service? In other words, can the
two services be synergistic within an information-centric net-
work? In the following sections we provide answers to these
questions, presenting a high-level architecture for a common
content-based layer within an information-centric network.

2. THE CASE FOR PUBLISH/SUBSCRIBE
EVENT NOTIFICATION

Looking at the landscape of modern communication
modalities, publish/subscribe event notification appears to
have established itself as one of the principal building
blocks of computer-mediated communication. Evidence
for this claim can be found in the numerous applications
in existence today that make extensive use of transient,
producer-initiated messaging. Typical examples are news
and information-sharing systems, such as those based on
RSS feeds (e.g., PubSubHubbub1) and aggregators (e.g.,
FeedBurner2), Twitter, and their integration.3 Various
other types of messaging and notification services are used

1http://code.google.com/p/pubsubhubbub/
2http://feedburner.google.com
3http://twitter.com/feedburner

for presence, real-time communication, and workflow man-
agement [10, 11]. Examples of more structured applica-
tions include financial data processing (e.g., the NYSE Data
Fabric4), analysis tools based on complex event streams,
network management, and application management. Pub-
lish/subscribe communication is also used with specialized
network technologies, such as sensors networks [7], and with
mass-market applications, such as those targeting smart
phones (e.g., the Deacon Project5).

Of course, the volume of data traffic for publish/subscribe
event notification cannot possibly approach that of on-
demand content delivery, simply because of the sheer size
of bulk content, nor is the issue of caching and cache man-
agement of particular relevance to event notification as op-
posed to content delivery. Nevertheless, the critical obser-
vation made here is that the high-volume publish/subscribe
applications mentioned above represent a substantial, sig-
nificant, and growing amount of control traffic (to establish
and spread subscriptions), as well as message processing (to
determine message content and subscription matches) that
is arguably comparable in load to similar functions (content
advertisement and query matching) performed in support of
on-demand content delivery.

3. IS ON-DEMAND CONTENT DELIVERY
THE ONLY PRIMITIVE?

We argue that a communication primitive designed specif-
ically for on-demand content delivery—something that sup-
ports consumer-initiated requests for named data followed
by replies that transmit the actual data—is not an appro-
priate basis for publish/subscribe event notification. Fur-
thermore, we argue that the opposite—implementing on-
demand content delivery on top of publish/subscribe event
notification—is not a viable solution either. The two com-
munication functions are different enough that it makes little
sense to implement one with the other and, although concep-
tually feasible, it is not the best technical solution. In order
to establish the basis for this technical argument, we refer
to the content-centric networking (CCN) architecture intro-
duced by Jacobson et al. [8] as a reference implementation
of an on-demand content delivery service.

In CCN, data transfer is initiated by a consumer who
sends out an “interest” packet to request a specific block
of data. Interests are forwarded hop by hop towards one or
more potential sources of the data using the Forwarding In-
formation Base (FIB) available at each router. The FIBs are
compiled on the basis of the announcements made by pro-
ducer nodes in which a producer declares that it is a source
for some named data. Such announcements are transmit-
ted and processed through a more-or-less standard routing
protocol (e.g., IS-IS).

Along their paths towards one or more producers, interest
packets leave a trail of pending-interest entries stored in a
Pending Interest Table (PIT) at each visited router. These
“bread crumbs” serve two purposes. First, they cut loops in
the process of forwarding interests, and second, they define
the return path for the replies. As soon as an interest reaches
a node capable of satisfying that interest—meaning that the
node is either the original producer of the data or the node
has a cached copy of the data from a previous reply—the

4http://www.nyse.com/pdfs/Data-Fabric-product-sheet.pdf
5http://deacon.daverea.com/

57

node transmits the data in a reply packet that follows the
trail left by the interest all the way back to the consumer.
Also, the first reply consumes the corresponding pending
interest, which means that further (duplicate) replies are
dropped. Pending interests that are not consumed by a reply
expire after some time.

One might try to support event notification using the same
CCN architecture. Since transient event notifications are
“pushed” by producers, one way to support them within the
CCN infrastructure would be for the consumer to contin-
ually issue interests at more or less regular intervals, and
for the producer to reply with a null data packet when no
notification is immediately pending, or with a notification
packet when a notification is issued (by an application on
the producer node). This method, however, is problematic.

A first problem is that polling the producer by continu-
ously issuing interests is likely to generate a lot of traffic
(interest packets) and network state (pending interests) for
only a few effective transmissions. Depending on the rate of
publication and on the maximum latency accepted by the
consumer, which would determine the frequency at which
the consumer issues interests, the overhead might simply be
too high.

A second and crucial problem is that the caching seman-
tics of interests and data packets are fundamentally at odds
with the semantics of transient event notifications. In fact,
in order to get the latest notification each time one is pro-
duced, the consumer cannot issue the same request over and
over again, since that would retrieve the same (most proba-
bly cached) data packet. Even assuming an interest that im-
plicitly refers to the latest notification, there would have to
be some mechanism by which the data packet satisfying that
interest would have to expire at just the right time (proba-
bly immediately). Other solutions are possible, for example
by having the consumer issue interests for the data repre-
senting an event notification with ever-increasing sequence
numbers. However, this solution would also be problematic,
since it would require some level of synchronization between
producer and consumer, lest the consumer be stuck in the
past, always asking for an obsolete notification, or stuck in
the future, always asking for notifications that are yet to be
produced.

An alternative to polling is to use CCN primitives so that
the transmission is initiated by the producer. This can be
done by having the producer send an interest packet that
is not intended to return any data, but that carries what
amounts to a call-back prefix, effectively triggering a polling
interaction by one or more interested consumers. This is a
general protocol that can be used to implement producer-
initiated exchanges in CCN, such as posting an e-mail mes-
sage or sending a document to a printer.6 Although the
protocol is functional, it is not optimal in terms of delay
and resource usage, especially for event notification. One
problem is that the protocol requires a three-way exchange
for what amounts to a one-way message. This may not be
a significant problem, since short notifications could be car-
ried entirely with a single interest packet, and also because
the polling phase works well within the CCN architecture,
even for multiple receivers.

The more serious problem is due to the overloaded use of
interests as one-way notifications. The problem is that in-

6http://www.named-data.net/faq.html

terests leave a trail of in-network state, so the most efficient
way to use them is to forward them along a unicast path
to the origin of the data or (better) to a closer node that
caches the same data. However, when used as notifications,
interests must be forwarded along all matching paths and all
the way to the corresponding consumer applications. In the
case of notifications with several interested receivers, this
would create a large amount of network state for no useful
purpose. Furthermore, without additional information, in-
termediate routers would not be able to distinguish interest
packets used to transfer data from those used to trigger a
transfer; to support both, they would have to forward every
interest packet through all matching interfaces. The archi-
tecture we propose in this paper resolves this problem by
distinguishing these two functions explicitly.

Another approach to supporting event notification on top
of a CCN architecture is to augment CCN with some sort
of “long-lived interests”. Such a notion does not yet exist in
CCN, but one can imagine implementing a form of standing
interest that would be forwarded just like ordinary imme-
diate interests but that, once they reach a producer, would
stay active for some time waiting for the producer to send
matching data. However, this solution would also pose a
series of problems.

One obvious problem is that long-lived interests would
only amplify the problem of maintaining in-network state
by locking valuable PIT entries for a long period of time.
Related to this, another problem is that the current CCN ar-
chitecture was not designed to support partially overlapping
interests—that is, interests sent by two or more consumers
for prefixes that identify overlapping sets of names—so each
interest would still be managed independently. However,
while this design choice makes sense for immediate inter-
ests, the same design would be inefficient in the presence
of long-lived interests. In practice, this means that two or
more consumers with overlapping long-lived interests would
use two or more entries in each PIT on the way to the corre-
sponding producers. Also, each data packet matching multi-
ple long-lived interests would be sent in multiple copies back
to the consumers, with each copy being sent and forwarded
independently by each router.

Yet another problem with this notion of long-lived inter-
ests is that they would still not be completely functional
as an implementation of an event notification service. In
fact, assuming that long-lived interests would be consumed
by data packets like normal interests, there could be cases
in which a number of events sent very quickly after the first
event that consumes a standing interest would be lost before
a new interest, supposedly reissued by the consumer, could
eventually reach the producer.

Finally, notice that a long-lived interest is almost exactly
equivalent to a subscription for publish/subscribe event no-
tification, so a solution that relies on long-lived interests
implemented within CCN would amount to implementing
event notification as a native network service, which is es-
sentially what we argue in this paper.

In summary, we conclude that the semantics of pub-
lish/subscribe event notification and on-demand content de-
livery are sufficiently different that each requires some level
of specialized support in an underlying network fabric.

58

4. ONE CONTENT-BASED NETWORK
Although each form of communication requires some spe-

cial support from the network, there exists a fundamental
point of commonality that can be synergistically leveraged
by both. We now sketch the architecture of a foundational
content-based network layer. The main idea behind this
shared layer stems from a correspondence between interests
in on-demand content delivery (as defined, for example, in
the CCN architecture [8]) and publish/subscribe event no-
tifications.

On-demand content delivery (Figure 1) requires producers
to register the prefixes of the names of content they intend
to produce. The registered prefixes are then effectively used
as addresses, or more appropriately address prefixes, with a
standard routing protocol (e.g., IS-IS) to populate the FIB in
each router. As with IP addresses, the routing protocol may
combine individual prefixes into successively more generic
prefixes. Correspondingly, in publish/subscribe event notifi-
cation (Figure 2), consumers subscribe by declaring a pred-
icate that expresses their interests, and those predicates are
used as the addresses given to a routing protocol that pop-
ulates the FIBs. As with IP addresses and name prefixes,
predicates can be aggregated according to the topological
(often hierarchical) structure of the network [2].

producer consumer

register(prefixes)

〈interest:name〉
〈data:content〉

forwarding
tables

Figure 1: On-Demand Content Delivery

producer consumer

subscribe(predicate)

〈notification:
attributes〉

forwarding
tables

Figure 2: Publish/Subscribe Event Notification

Most publish/subscribe systems support expressive sub-
scriptions that amount to SQL-like queries over semi-
structured message content formed as a set of attributes of
various data types (e.g., strings, integers, and dates). We see
no conceptual obstacle in supporting this kind of useful and
general content-based addressing for both on-demand con-
tent delivery and publish/subscribe event notification. How-
ever, to simplify the discussion in this short paper and more
easily draw a comparison to existing naming schemes for on-
demand content delivery, we consider only a limited form
of publish/subscribe message content consisting of a single
attribute—a character string name—and consider a limited
form of predicate consisting of name (i.e., string) prefixes
that have an identical semantics to the prefix-matching used
in IP and CCN.

Given this starting point, the difference between on-
demand content delivery and publish/subscribe event no-

tification in terms of routing protocols and forwarding state
is simply the source of the routing information, namely pro-
ducers in on-demand content-delivery and consumers in pub-
lish/subscribe event notification, since both advertise “ad-
dresses” that are name prefixes. This suggests that the two
communication primitives could use both a common routing
protocol and a common FIB, as we describe below.

In terms of data traffic, the difference between the two
primitives is a bit more involved. Both interests and event
notifications are forwarded along paths toward matching
prefixes. However, an interest is expected to generate a
corresponding reply, while an event notification is a one-
way message. Furthermore, the caching semantics are dif-
ferent. An interest that can be satisfied by cached content
will not be forwarded downstream toward the original pro-
ducer node, while an event notification must be forwarded
all the way to interested consumers (although the event no-
tifications might be cached for reliability purposes). This
suggests that a common content-based layer must handle
three separate types of messages: one-way messages, mes-
sages that expect a reply, and reply messages (Figure 3).

node A node B

set-address(prefixes)

〈message:
name〉
〈request:
name〉〈reply: content〉

forwarding
tables

Figure 3: Unified Content-Based Network Layer

4.1 Node Interface and Packet Formats
The interface of a node in a content-based network imple-

ments the abstract service interface depicted in Figure 3. In
order to avoid ambiguities between primitives in this layer
and the corresponding ones in specific layers that implement
on-demand content delivery or publish/subscribe event noti-
fication, we adopt a third and separate terminology. Each of
the two forms of communication maps in a straightforward
way onto the common content-based network layer. We dis-
cuss this mapping in Section 4.4 after first introducing the
concepts underlying the common layer.

The node interface consists of a method to set its content-
based address and methods to send one-way messages (or
simply messages), requests, and replies. The content-based
address of a node is defined by a set of prefixes, where a
prefix might match a name contained in either a message
or a request. A message behaves much like an IP multicast
datagram, in the sense that it is intended to reach one or
more destinations. A request, on the other hand, is intended
to reach a data block or a cached copy of that block, and
therefore results in a reply carrying the requested content or
a segment of that content if found.

Figure 4 shows the high-level structure of each packet type
used in the common content-based network layer. Address
advertisements associate a predicate to a node, and are the
primary source of routing information. In this paper we do

59

not discuss routing in detail, and simply assume that address
advertisements are transported and processed throughout
the network by means of a standard link-state routing pro-
tocol.

address advertisement

node
prefixes

. . .

message

forwarding information
. . .

name
opaque content

. . .

request

forwarding information
. . .

request ID
name

source/fork node
segment/byte-range

reply

request ID
name

destination/fork node
segment/byte-range

data
. . .

Figure 4: Packet Formats

4.2 Forwarding Messages and Requests
Both one-way messages and requests are forwarded toward

nodes that advertise prefixes matching their names. There-
fore, at a high level, forwarding is controlled by prefixes, and
amounts to matching prefixes with names. In addition, for-
warding might be controlled by other parameters, including
policies of the sending node and/or of the forwarding node.
For example, the sending node might want to limit fan out,
since the communication is inherently multicast.

In general, the headers of messages and requests are meant
to carry the information necessary to implement forwarding
decisions that deliver messages and requests to nodes with
matching prefixes while avoiding loops. Forwarding can be
realized in a number of ways.

One strategy is to compare names against prefixes at each
hop, typically with prefixes becoming progressively more
specific as the message or request is forwarded downstream.
Such a forwarding process can avoid loops, for example, by
maintaining some soft state at each router, as in CCN [8],
or by using a network-level broadcast layer [3]. In this case,
the forwarding information could consist of a simple unique
packet identifier used in short-term packet caches.

Another forwarding strategy is to use a form of source
routing. Messages and requests can be evaluated against
prefixes once as they enter the network. As a result, this
evaluation produces a forwarding plan that is then attached
to the message or request and consulted at each intermediate
node. This general strategy is implemented, for example, in
the B-DRP scheme, where the forwarding plan consists of a
list of final destinations [4], and in the LIPSIN scheme, where
the forwarding plan consists of a compact representation of
the complete forwarding tree [9].

Rather than adopting a specific forwarding scheme, our
primary intent in this paper is to propose an architecture in
which both messages and requests can be forwarded using
exactly the same scheme.

4.3 Handling Replies
The difference between one-way messages and requests is

that requests require additional processing and soft state

to allow the corresponding replies to flow backward toward
consumers. We now outline the process by which requests
are handled at intermediate nodes.

Once again, we sketch an architecture and protocol based
on CCN [8]. However, in this case we propose a different
model in an attempt to reduce the space overhead incurred
by CCN with its use of the pending-interest tables (PITs).
CCN forwards interests (i.e., requests) by installing a PIT
entry in each node through which the interest packet tra-
verses. The advantage of this method is that the forwarding
process can be simplified and effectively reduced to almost
the same used in IP forwarding. This is because the for-
warding can simply follow any number of matching prefixes
without worrying about preventing loops, since those can be
avoided when the same request is found in the PIT. The dis-
advantage of this method is the cost of storing (and looking
up) every request in every router the request goes through.

We propose a heterogeneous forwarding scheme that com-
bines content-based forwarding with traditional unicast IP
forwarding. This scheme can cope with multiple requests
and can also support negative replies (i.e., replies that carry
no data, effectively stating that no such data exist). In this
paper we only describe the basic behavior of a single request.
This scheme is realized with four tables in each node: (1) an
IP forwarding table that provides the traditional IP unicast
network service; (2) a content-based forwarding table that
associates prefixes to interfaces; (3) a pending-interest table
conceptually similar to the PIT in CCN; and (4) a content
store (i.e., a content cache) that is identical to the corre-
sponding content store in CCN. Of these tables, the PIT
is the only one that differs significantly from traditional for-
warding tables or other tables in CCN, and that has a crucial
role in the handling of requests and replies.

The PIT at node x associates a pending request (identi-
fied by the request id) with a number of downstream requests
(forwarded by x) and a list of upstream requests. The main
idea of this forwarding scheme for requests is to create a
PIT entry only at the source node of the request and wher-
ever a request is duplicated over two or more downstream
paths. In particular, a request that is sent on a single (uni-
cast) path generates only one PIT entry in its source node.
The idea is that the PIT entries for a given request record
the forwarding tree of that request but without superfluous
intermediate nodes. Since such backward paths are very
short—one or very few hops for most requests—the mem-
ory overhead is much reduced, but at the same time the
path cannot be followed directly hop-by-hop. We solve this
problem by sending replies upstream using standard IP for-
warding. This scheme is depicted in Figure 5.

When a node v receives a request, it checks whether it
can satisfy the request with a content segment cached in its
content store, and if not, whether the same request is al-
ready in the PIT. If the request is already in the PIT the
source address of the request is added to the upstream list of
the PIT entry as in CCN. If the request cannot be satisfied
and the entry is not in the PIT, v proceeds to forward the
request according to the forwarding scheme. If the forward-
ing decision is to send the request along multiple interfaces,
then v records the request in its PIT. This is what happens
in node h in Figure 5. Notice that the PIT entry records
the upstream link by copying the source/fork address from
the request packet (labeled “src” in Figure 5) as well as the
number of downstream packets (two, in the example). All

60

a

b

c

d

e

f

g

h

i

j

k

l

1
set-address(“/path/*”)

2

set-address(“/path/*”)

3

request(“/path/x”)

〈request:id=36,“/path/x”,src= j ,. . . 〉

〈request:id=36,“/path/x”,src= h ,. . . 〉

PIT

req. id prefix down up

36 “/path/x” 2 j

Figure 5: Requests and Replies

forwarded packets then carry v’s address (h in the example)
in their source/fork header.

When a node v receives a request that it is able to sat-
isfy, either because it hosts the application that advertised a
matching prefix, or because a content segment with a match-
ing prefix is cached in the content store, v produces a reply
that is sent back following its branch in the tree of PIT en-
tries towards the source of the request. The first hop of
the reply is to the “source/fork node” address taken from
the header of the request. Then, from there, if that is not
already the source of the request, the reply follows the up-
stream link towards the source. After forwarding a reply
upstream, v also removes the corresponding entry from the
PIT so that no other (duplicate) replies will be sent that
way. If the reply does not carry any content, then the reply
is interpreted as signaling that no content is available on the
path from which the reply comes. Upon receiving such a re-
ply, v simply decrements the counter of pending downstream
requests in the corresponding PIT entry (labeled “down” in
Figure 5). When that counter drops to zero, it means that all
requests forwarded downstream are negative. Therefore, v
itself transmits a negative reply upstream and then removes
the PIT entry.

4.4 Discussion
Both on-demand content delivery and publish/subscribe

event notification map directly onto the common content-
based network layer. For on-demand content delivery, a pro-
ducer registration is implemented by setting the address of
the producer, and interest and data packets map to requests
and replies, respectively. For publish/subscribe event notifi-
cation, a subscription is implemented by setting the content-
based address of the subscriber, and an event notification is
implemented as a one-way message.

The main benefit of this common layer is that the two
forms of communication share the forwarding tables and,
therefore, require only a single routing infrastructure. The
architecture we propose is also modular with respect to for-
warding, in the sense that it can be implemented with a
variety of existing and new forwarding schemes. This mod-

ular forwarding scheme is assumed to avoid loops, which
means that requests do not have to be recorded at each hop,
which in turn means that the overhead for in-network state
can be greatly reduced.

5. ACKNOWLEDGMENTS
This work was supported in part by the Swiss National

Science Foundation under grant number 200021-132565.

6. REFERENCES
[1] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher,

and B. Ohlman. A Survey of Information-Centric
Networking (Draft). In B. Ahlgren, H. Karl,
D. Kutscher, B. Ohlman, S. Oueslati, and I. Solis,
editors, Information-Centric Networking, number
10492 in Dagstuhl Seminar Proceedings, Dagstuhl,
Germany, 2011.

[2] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf.
Design and evaluation of a wide-area event
notification service. ACM Transactions on Computer
Systems, 19(3):332–383, Aug. 2001.

[3] A. Carzaniga, M. J. Rutherford, and A. L. Wolf. A
routing scheme for content-based networking. In
Proceedings of IEEE INFOCOMM, Mar. 2004.

[4] A. Carzaniga, G. Toffetti Carughi, C. Hall, and A. L.
Wolf. Practical high-throughput content-based routing
using unicast state and probabilistic encodings.
Technical Report 2009/06, Faculty of Informatics,
University of Lugano, Aug. 2009.

[5] A. Carzaniga and A. L. Wolf. Content-based
networking: A new communication infrastructure. In
NSF Workshop on an Infrastructure for Mobile and
Wireless Systems, number 2538 in Lecture Notes in
Computer Science, pages 59–68. Springer-Verlag, Oct.
2001.

[6] A. Carzaniga and A. L. Wolf. Forwarding in a
content-based network. In Proceedings of the ACM
SIGCOMM Conference on Data Communication,
pages 163–174, Aug. 2003.

[7] C. Intanagonwiwat, R. Govindan, D. Estrin,
J. Heidemann, and F. Silva. Directed diffusion for
wireless sensor networking. IEEE/ACM Transactions
on Networking, 11(1), 2003.

[8] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F.
Plass, N. H. Briggs, and R. L. Braynard. Networking
named content. In Proceedings of the 5th International
Conference on Emerging Networking Experiments and
Technologies, pages 1–12, 2009.

[9] P. Jokela, A. Zahemszky, C. Esteve Rothenberg,
S. Arianfar, and P. Nikander. LIPSIN: line speed
publish/subscribe inter-networking. In Proceedings of
the ACM SIGCOMM Conference on Data
Communication, pages 195–206, 2009.

[10] P. Millard, P. Saint-Andre, and R. Meijer. XEP-0060:
Publish-subscribe. Draft Standard of the XMPP
Standards Foundation, July 2010.
http://xmpp.org/extensions/xep-0060.html.

[11] P. Saint-Andre. Extensible messaging and presence
protocol (XMPP): Core. RFC 3920, Oct. 2004.

61

