A Few Basic Elements of Communication Security

Antonio Carzaniga

Faculty of Informatics Università della Svizzera italiana

December 19, 2018

Some Advice

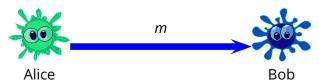
- *Make backups* of your data
- Do NOT trust the network!
- Use *HTTPS* instead of HTTP (very common now)

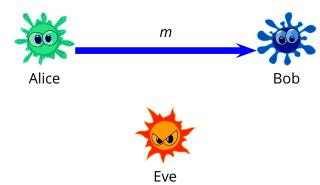
Some Advice

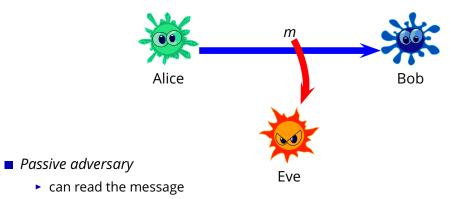
- *Make backups* of your data
- Do NOT trust the network!
- Use *HTTPS* instead of HTTP (very common now)
- Understand the basics of public-key cryptography
- Communicate with **end-to-end encryption** (e.g., e-mail)
- Use trusted certificates
- *Encrypt your confidential data* (and make backups)
- Use **strong passwords**
- You might as well encrypt *all* your data
- Tools/technologies: *ssh*, *pgp* (or *gpg*)

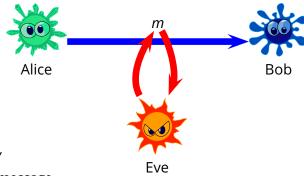
Outline

- Communication security model
- Information-theoretic privacy
- Substitution ciphers
- Intro to modern cryptography
- One-time pad
- Block siphers
- Cryptographic hash functions
- Public-key cryptosystems



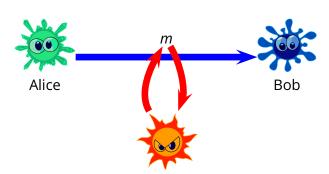




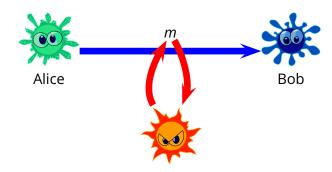


- Passive adversary
 - can read the message
- Active adversary
 - can modify the message

Goals

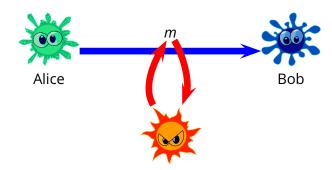


Goals



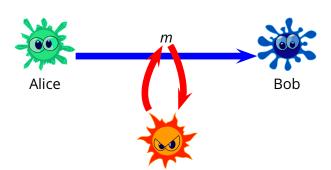
■ *Confidentiality (a.k.a., privacy):* Alice wants to make sure that only Bob sees the message

Goals

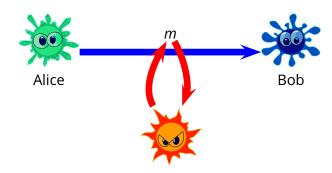


- *Confidentiality (a.k.a., privacy):* Alice wants to make sure that only Bob sees the message
- *Message Integrity:* Bob wants to make sure that the message he reads was exactly what Alice wrote

Goals (2)

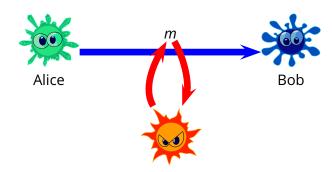


Goals (2)



■ *End-point Authentication:* Bob wants to make sure he is communicating with Alice

Goals (2)



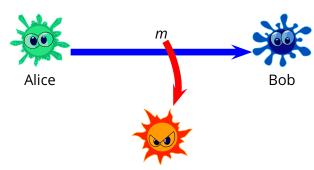
- *End-point Authentication:* Bob wants to make sure he is communicating with Alice
- *Operational/system security:* Alice and Bob want to maintain full control of their networks

Goals of the Day

privacy

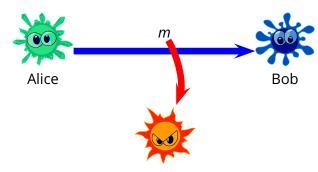
authentication

What is Privacy, Exactly?



■ Alice wants to make sure that *only Bob "sees" message m*

What is Privacy, Exactly?



- Alice wants to make sure that *only Bob "sees" message m*
- What if Eve can *guess* the message?

"Shift" Cipher

■ The ciphertext is

BUUBDL BU EBXO

"Shift" Cipher

■ The ciphertext is

BUUBDL BU EBXO

Plaintext is

ATTACK AT DAWN

"Shift" Cipher

■ The ciphertext is

BUUBDL BU EBXO

Plaintext is

ATTACK AT DAWN

- How many possible ciphers?
 - ► How many key bits?

■ Substitution cipher

- Substitution cipher
 - ▶ alphabet $\Sigma = \{'A', 'B', \ldots, 'Z', ''\}$

- Substitution cipher
 - ▶ alphabet $\Sigma = \{'A', 'B', \ldots, 'Z', ''\}$
 - encryption function: a *permutation*

$$E:\Sigma\to\Sigma$$

- Substitution cipher
 - ▶ alphabet $\Sigma = \{'A', 'B', \ldots, 'Z', ''\}$
 - encryption function: a *permutation*

$$E:\Sigma\to\Sigma$$

Example:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ V Z L Q X T _ R D U C O J N F M G E H W P I S Y A B K

- Substitution cipher
 - ▶ alphabet $\Sigma = \{'A', 'B', \ldots, 'Z', ''\}$
 - encryption function: a *permutation*

$$E: \Sigma \to \Sigma$$

Example:

How many possible permutations?

- Substitution cipher
 - ▶ alphabet $\Sigma = \{'A', 'B', \ldots, 'Z', ''\}$
 - encryption function: a permutation

$$E:\Sigma\to\Sigma$$

Example:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ V Z L Q X T _ R D U C O J N F M G E H W P I S Y A B K

How many possible permutations?

- Substitution cipher
 - ▶ alphabet $\Sigma = \{'A', 'B', \ldots, 'Z', ''\}$
 - encryption function: a permutation

$$E:\Sigma\to\Sigma$$

Example:

How many possible permutations?

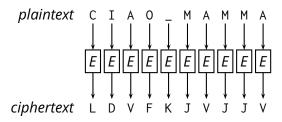
$$27! = 10888869450418352160768000000 \approx 2^{93}$$

■ Encrypting some text using a substitution cipher

plaintext C I A O _ M A M M A

Substitution Cipher

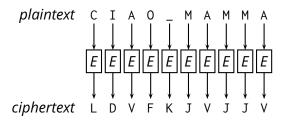
Encrypting some text using a substitution cipher



■ Problems?

Substitution Cipher

■ Encrypting some text using a substitution cipher



- Problems?
 - easy to break just by guessing!
 - **>** ...

Problem

■ Decrypt this ciphertext obtained by encrypting an English text with a substitution-cipher:

gbafoduayfbhbayvpyfhayoanbahbdl-brcubqyayfkyakddaibqakvbaxvbkybuabzpkd yfkyayfbwakvbabquogbuanwayfbcvaxvbkyovagcyfaxbvykcqapqkdcbqkndbavctfyh yfkyakioqtayfbhbakvbadclbadcnbvywakquayfbampvhpcyaolafkmmcqbhh yfkyayoahbxpvbayfbhbavctfyhatorbvqibqyhakvbacqhycypybuakioqtaibq ubvcrcqtayfbcvajphyamogbvhalvoiayfbaxoqhbqyaolayfbatorbvqbu yfkyagfbqbrbvakqwaloviaolatorbvqibqyanbxoibhaubhyvpxycrbaolayfbhbabquh cyachayfbavctfyaolayfbambomdbayoakdybvaovayoaknodchfacy

From Black Magic to Mathematics

History: secret algorithms, poorly undestood security properties

From Black Magic to Mathematics

History: secret algorithms, poorly undestood security properties

Modern cryptology

- Open and clear models
- Open algorithms (the only secret part is the key material)
- Well-defined *provable* security properties

The old way

The old way

1. somebody (re-)designs a cryptosystem or protocol

The old way

- 1. somebody (re-)designs a cryptosystem or protocol
- 2. somebody brakes it

The old way

- 1. somebody (re-)designs a cryptosystem or protocol
- 2. somebody brakes it
- 3. go back to step 1

The new way (provable security)

The new way (provable security)

1. Define formal **security goals** and **adversarial models**

The new way (provable security)

- 1. Define formal *security goals* and *adversarial models*
- 2. Design a few *primitives*
 - based on public and time-tested algorithms and/or well-studied hard mathematical problems

The new way (provable security)

- 1. Define formal *security goals* and *adversarial models*
- 2. Design a few primitives
 - based on *public* and *time-tested algorithms* and/or well-studied *hard mathematical problems*
- 3. Design a *protocol* (using primitives) with a *proof of security*

The new way (provable security)

- 1. Define formal *security goals* and *adversarial models*
- 2. Design a few primitives
 - based on public and time-tested algorithms and/or well-studied hard mathematical problems
- 3. Design a *protocol* (using primitives) with a *proof of security*
 - prove this implication:

primitive is secure \Rightarrow protocol is secure

- Setup:
 - Alice and Bob can meet securely and prepare for the game before the game starts
 - ► Eve knows that Alice agrees to go out to dinner 60% of the times

- Setup:
 - Alice and Bob can meet securely and prepare for the game before the game starts
 - ► Eve knows that Alice agrees to go out to dinner 60% of the times
- Adversary model:
 - Eve is a passive adversary
 - Eve has unlimited computational power

- Setup:
 - Alice and Bob can meet securely and prepare for the game before the game starts
 - ▶ Eve knows that Alice agrees to go out to dinner 60% of the times
- Adversary model:
 - Eve is a passive adversary
 - Eve has unlimited computational power
- Goal:
 - ▶ Eve wins the game if she can guess Alice's answer with probability better than 60%

Other Adversarial Models

- Adversary model:
 - Eve is an active adversary
 - Eve may also trick you into encrypting some chosen plaintext
 - ▶ Eve is computationally limited: she is an ordinary algorithm

game

security protocol \Rightarrow game

 $primitive \Rightarrow security \ protocol \Rightarrow \ game$

hard math problem \Rightarrow primitive \Rightarrow security protocol \Rightarrow game

Let N = pq for two large prime factors p and q

Problem: given N, find p and q

Let N = pq for two large prime factors p and q

Problem: given N, find p and q

Solution: (trivial)

```
FACTOR(N)

1 for i \leftarrow 2 to \lfloor \sqrt{N} \rfloor

2 do if i divides N

3 then return i, N/i
```

Let N = pq for two large prime factors p and q

Problem: given N, find p and q

Solution: (trivial)

FACTOR(
$$N$$
)

1 **for** $i \leftarrow 2$ **to** $\lfloor \sqrt{N} \rfloor$

2 **do if** i divides N

3 **then return** $i, N/i$

Complexity: exponential in the *size* of *N* (number of digits of *N*)

Let N = pq for two large prime factors p and q

Problem: given *N*, find *p* and *q*

Solution: (trivial)

```
FACTOR(N)

1 for i \leftarrow 2 to \lfloor \sqrt{N} \rfloor

2 do if i divides N

3 then return i, N/i
```

Complexity: exponential in the *size* of *N* (number of digits of *N*)

...we don't know how to do better!

Not even Gauss could figure that out!

■ Pick two large primes p and q and let N = pq

- Pick two large primes p and q and let N = pq
- \blacksquare Consider the group \mathbb{Z}_N^*

- Pick two large primes p and q and let N = pq
- \blacksquare Consider the group \mathbb{Z}_N^*
 - ▶ notice that *N* is not prime
 - the order of \mathbb{Z}_N^* is $|\mathbb{Z}_N^*| = \phi(N) = (p-1)(q-1)$

- Pick two large primes p and q and let N = pq
- \blacksquare Consider the group \mathbb{Z}_N^*
 - notice that N is not prime
 - ► the order of \mathbb{Z}_N^* is $|\mathbb{Z}_N^*| = \phi(N) = (p-1)(q-1)$
- Pick a small odd integer e and compute $d \equiv e^{-1} \mod \phi(N)$

- Pick two large primes p and q and let N = pq
- \blacksquare Consider the group \mathbb{Z}_N^*
 - notice that N is not prime
 - the order of \mathbb{Z}_N^* is $|\mathbb{Z}_N^*| = \phi(N) = (p-1)(q-1)$
- Pick a small odd integer e and compute $d \equiv e^{-1} \mod \phi(N)$
 - your *public key* is (N, e)

- Pick two large primes p and q and let N = pq
- \blacksquare Consider the group \mathbb{Z}_N^*
 - notice that N is not prime
 - the order of \mathbb{Z}_N^* is $|\mathbb{Z}_N^*| = \phi(N) = (p-1)(q-1)$
- Pick a small odd integer e and compute $d \equiv e^{-1} \mod \phi(N)$
 - ▶ your *public key* is (N, e)
 - ▶ your secret key is (N, d)

- Pick two large primes p and q and let N = pq
- \blacksquare Consider the group \mathbb{Z}_N^*
 - notice that N is not prime
 - the order of \mathbb{Z}_N^* is $|\mathbb{Z}_N^*| = \phi(N) = (p-1)(q-1)$
- Pick a small odd integer e and compute $d \equiv e^{-1} \mod \phi(N)$
 - ▶ your *public key* is (N, e)
 - ▶ your secret key is (N, d)
- **Encryption:** $C \leftarrow \mathsf{RSA}_{N,e}(M) := M^e \mod N$

From Factoring to RSA—in One Page!

- Pick two large primes p and q and let N = pq
- \blacksquare Consider the group \mathbb{Z}_N^*
 - notice that N is not prime
 - the order of \mathbb{Z}_N^* is $|\mathbb{Z}_N^*| = \phi(N) = (p-1)(q-1)$
- Pick a small odd integer e and compute $d \equiv e^{-1} \mod \phi(N)$
 - ▶ your *public key* is (N, e)
 - your **secret key** is (N, d)
- **Encryption:** $C \leftarrow \mathsf{RSA}_{N,e}(M) := M^e \mod N$
- **Decryption:** $M \leftarrow \mathsf{RSA}_{N,d}(C) := C^d \mod N$

■ Is RSA secure?

■ Is RSA secure? We don't know!

■ Is RSA secure? We don't know! But...

■ Is RSA secure? We don't know! But...

if you can break RSA (efficiently) then you can also factor a product of two large primes (efficiently)

... which means that you are smarter than Gauss!

■ Is RSA secure? We don't know! But...

if you can break RSA (efficiently) then you can also factor a product of two large primes (efficiently)

... which means that you are smarter than Gauss!

- SSH uses the RSA public-key system (possibly, not only)
- Is SSH secure?

■ Is RSA secure? We don't know! But...

if you can break RSA (efficiently) then you can also factor a product of two large primes (efficiently)

... which means that you are smarter than Gauss!

- SSH uses the RSA public-key system (possibly, not only)
- Is SSH secure? Yes!

■ Is RSA secure? We don't know! But...

if you can break RSA (efficiently) then you can also factor a product of two large primes (efficiently)

...which means that you are smarter than Gauss!

- SSH uses the RSA public-key system (possibly, not only)
- Is SSH secure? *Yes!*

...in the sense that, somebody *proved* the implication:

RSA is secure \Rightarrow SSH is secure

■ Is RSA secure? We don't know! But...

if you can break RSA (efficiently) then you can also factor a product of two large primes (efficiently)

...which means that you are smarter than Gauss!

- SSH uses the RSA public-key system (possibly, not only)
- Is SSH secure? Yes!

...in the sense that, somebody *proved* the implication:

RSA is secure \Rightarrow SSH is secure

so (counter-positive) if you can break SSH then you can also break RSA

...and you are smarter than Gauss!

The Big Picture

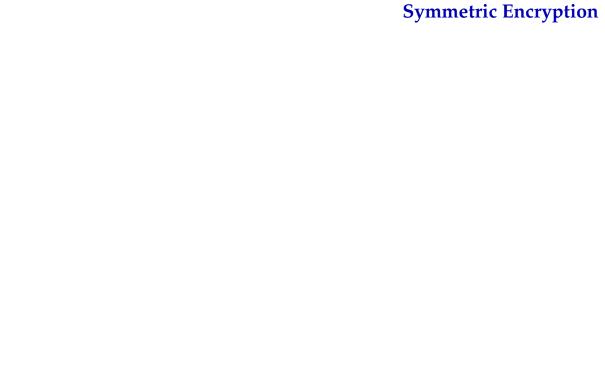
- Basic ingredients: cryptographic primitives
 - secret-key (symmetric) cryptography (e.g., AES)
 - public-key (asymmetric) cryptography (e.g., RSA)
 - cryptographic hash functions (e.g., SHA-1)
 - stream ciphers (e.g., RC4)

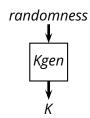
The Big Picture

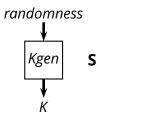
- Basic ingredients: cryptographic primitives
 - secret-key (symmetric) cryptography (e.g., AES)
 - public-key (asymmetric) cryptography (e.g., RSA)
 - cryptographic hash functions (e.g., SHA-1)
 - stream ciphers (e.g., RC4)
- Recipes: cryptographic protocols
 - certificates (e.g., X.509)
 - secure transport (e.g., TLS, IPSec)
 - **>** ...

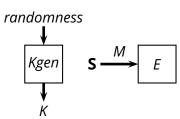
The Big Picture

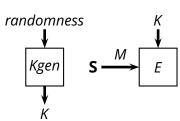
- Basic ingredients: cryptographic primitives
 - secret-key (symmetric) cryptography (e.g., AES)
 - public-key (asymmetric) cryptography (e.g., RSA)
 - cryptographic hash functions (e.g., SHA-1)
 - stream ciphers (e.g., RC4)
- Recipes: cryptographic protocols
 - certificates (e.g., X.509)
 - secure transport (e.g., TLS, IPSec)
 - **.** . . .
- Applications
 - electronic commerce
 - secure shell
 - secure electronic mail
 - virtual private networks
 - **>**

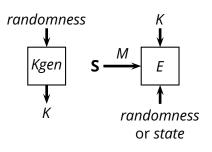


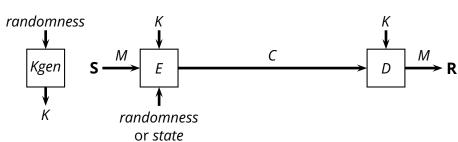


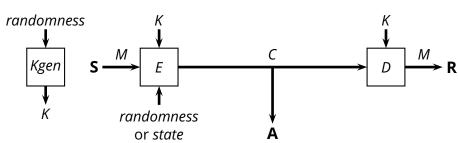


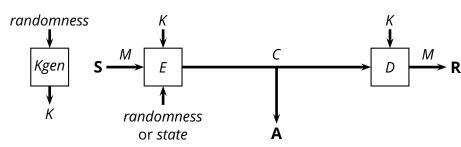












S	sender
R	receiver
Α	adversary
Ε	encryption algorithm
D	dencryption algorithm
М	plaintext message
C	ciphertext message
Κ	kev

One-Time Pad

■ Assumptions: the message M and the key K are two n-bit strings

$$M \in \{0,1\}^n$$
; $K \stackrel{\$}{\leftarrow} \{0,1\}^n$

One-Time Pad

■ Assumptions: the message M and the key K are two n-bit strings

$$M \in \{0,1\}^n; \qquad K \xleftarrow{\$} \{0,1\}^n$$

the key K is chosen uniformly at random from $\{0, 1\}^n$

■ Assumptions: the message M and the key K are two n-bit strings

$$M \in \{0,1\}^n; \qquad K \stackrel{\$}{\leftarrow} \{0,1\}^n$$

the key K is chosen uniformly at random from $\{0, 1\}^n$

- Scheme
 - encryption:

$$E(K, M) := M \oplus K$$

the key K is then thrown away an never reused

decryption:

$$D(K,C) := C \oplus K$$

■ Assumptions: the message M and the key K are two n-bit strings

$$M \in \{0,1\}^n; \qquad K \stackrel{\$}{\leftarrow} \{0,1\}^n$$

the key K is chosen uniformly at random from $\{0, 1\}^n$

- Scheme
 - encryption:

$$E(K, M) := M \oplus K$$

the key K is then thrown away an never reused

decryption:

$$D(K,C) := C \oplus K$$

Example: *M* 0110010110111011

■ Assumptions: the message M and the key K are two n-bit strings

$$M \in \{0,1\}^n; \qquad K \stackrel{\$}{\leftarrow} \{0,1\}^n$$

the key K is chosen uniformly at random from $\{0, 1\}^n$

- Scheme
 - encryption:

$$E(K, M) := M \oplus K$$

the key K is then thrown away an never reused

decryption:

$$D(K,C) := C \oplus K$$

■ **Example:** *M* 0110010110111011 *K* 101100010101000101

One-Time Pad

■ Assumptions: the message M and the key K are two n-bit strings

$$M \in \{0,1\}^n; \qquad K \stackrel{\$}{\leftarrow} \{0,1\}^n$$

the key K is chosen uniformly at random from $\{0, 1\}^n$

- Scheme
 - encryption:

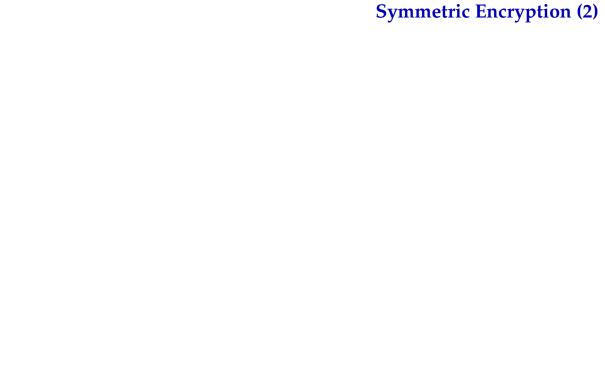
$$E(K, M) := M \oplus K$$

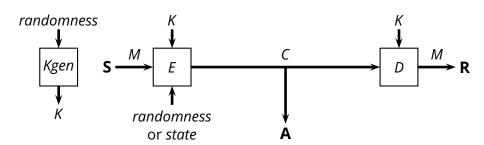
the key K is then thrown away an never reused

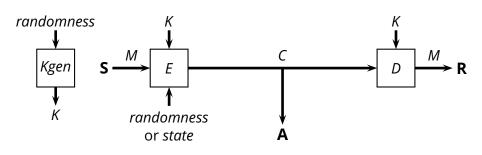
decryption:

$$D(K,C) := C \oplus K$$

■ Example: *M* 0110010110111011 *K* 1011000101000101 *C* 11010100111111110







_	Scride
R	receiver
Α	adversary
Ε	encryption algorithm
D	dencryption algorithm
M	nlaintext message

ciphertext message

sender

key

S

Rules of the game:

■ *Kgen*, *E* and *D* are *public* algorithms

■ **A** can not "steal" the key *K*

■ A can not "break into" S or R

■ **A** might know something about *M*

A must guess *M* correctly to win the game

■ A scheme is secure if **we learn nothing from the ciphertext** C

- A scheme is secure if **we learn nothing from the ciphertext** C
- A more formal definition:

let $K \stackrel{\$}{\leftarrow} \mathcal{K}$; for every $m_1 \neq m_2 \in \mathcal{M}$, and for any C

- A scheme is secure if **we learn nothing from the ciphertext** C
- A more formal definition:

let $K \stackrel{\$}{\leftarrow} \mathcal{K}$; for every $m_1 \neq m_2 \in \mathcal{M}$, and for any C

$$\Pr_{K \in \mathcal{K}}[E_K(m_1) = C] = \Pr_{K \in \mathcal{K}}[E_K(m_2) = C]$$

- A scheme is secure if **we learn nothing from the ciphertext** C
- A more formal definition:

let $K \stackrel{\$}{\leftarrow} \mathcal{K}$; for every $m_1 \neq m_2 \in \mathcal{M}$, and for any C

$$Pr_{K \in \mathcal{K}}[E_K(m_1) = C] = Pr_{K \in \mathcal{K}}[E_K(m_2) = C]$$

- \blacksquare Given a ciphertext C, every plaintext m is equiprobable
 - ▶ so, seeing any particular $C = E_K(M)$ tells us *nothing* about M

So, What is Privacy Exactly?

- A scheme is secure if **we learn nothing from the ciphertext** C
- A more formal definition:

let $K \stackrel{\$}{\leftarrow} \mathcal{K}$; for every $m_1 \neq m_2 \in \mathcal{M}$, and for any C

$$\Pr_{K \in \mathcal{K}}[E_K(m_1) = C] = \Pr_{K \in \mathcal{K}}[E_K(m_2) = C]$$

- \blacksquare Given a ciphertext C, every plaintext m is equiprobable
 - ▶ so, seeing any particular $C = E_K(M)$ tells us *nothing* about M
- Is a shift cipher perfectly secure?

So, What is Privacy Exactly?

- A scheme is secure if **we learn nothing from the ciphertext** C
- A more formal definition:

let $K \stackrel{\$}{\leftarrow} \mathcal{K}$; for every $m_1 \neq m_2 \in \mathcal{M}$, and for any C

$$Pr_{K \in \mathcal{K}}[E_K(m_1) = C] = Pr_{K \in \mathcal{K}}[E_K(m_2) = C]$$

- \blacksquare Given a ciphertext C, every plaintext m is equiprobable
 - ▶ so, seeing any particular $C = E_K(M)$ tells us *nothing* about M
- Is a shift cipher perfectly secure?
- Is a substitution cipher perfectly secure?

So, What is Privacy Exactly?

- A scheme is secure if **we learn nothing from the ciphertext** C
- A more formal definition:

let $K \stackrel{\$}{\leftarrow} \mathcal{K}$; for every $m_1 \neq m_2 \in \mathcal{M}$, and for any C

$$\Pr_{K \in \mathcal{K}}[E_K(m_1) = C] = \Pr_{K \in \mathcal{K}}[E_K(m_2) = C]$$

- \blacksquare Given a ciphertext C, every plaintext m is equiprobable
 - ▶ so, seeing any particular $C = E_K(M)$ tells us *nothing* about M
- Is a shift cipher perfectly secure?
- Is a substitution cipher perfectly secure?
- Is one-time-pad perfectly secure?

The Cost of Perfect Privacy

■ *Perfect privacy* implies that

$$|\mathcal{K}| \geq |\mathcal{M}|$$

The Cost of Perfect Privacy

Perfect privacy implies that

$$|\mathcal{K}| \ge |\mathcal{M}|$$

Proof: assume not.

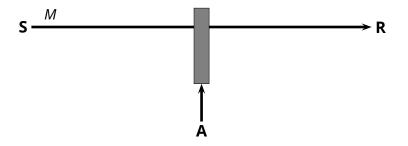
Fix a possible ciphertext C, i.e., there is a message m and a key k such that $E_K(m) = C$, and $\Pr_{K \in \mathcal{K}}[E_K(m) = C] > 0$

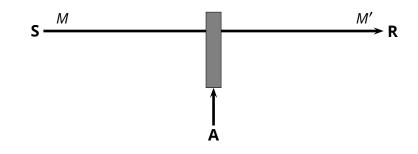
Let
$$P_C = \{m \in \mathcal{M} \text{ such that } E_k(m) = C \text{ for some } k\}$$

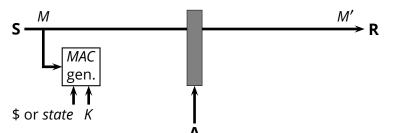
Since every k maps exactly one message m to C, and since we have fewer keys than messages, then there is an $m' \notin P_C$ such that no key k maps m' to C; therefore $\Pr_{K \in \mathcal{K}}[E_K(m') = C] = 0$, which violates the perfect-secrecy condition that for all m and m', $\Pr_{K \in \mathcal{K}}[E_K(m) = C] = \Pr_{K \in \mathcal{K}}[E_K(m') = C]$

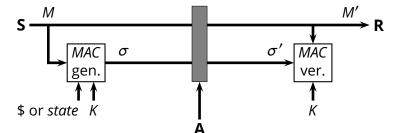
S R

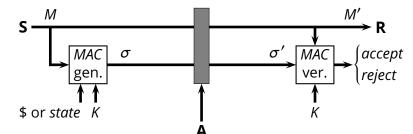
$$S \xrightarrow{M} R$$

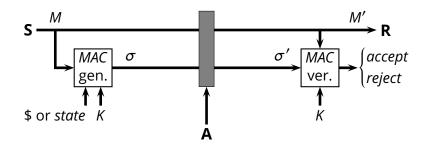










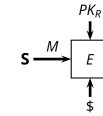


message authentication code (MAC)	
key	
randomness	
MAC generation algorithm	
MAC <i>verification</i> algorithm	

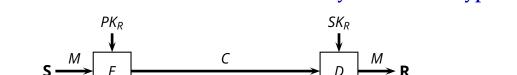
S R

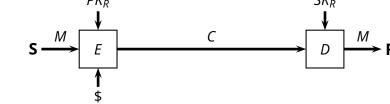
$$\stackrel{n}{\longrightarrow}$$
 E

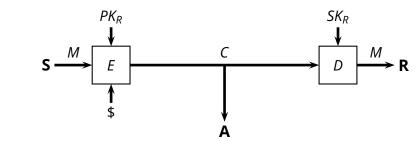
R

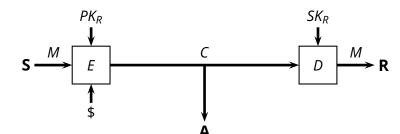


R

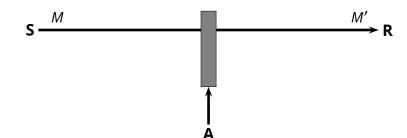


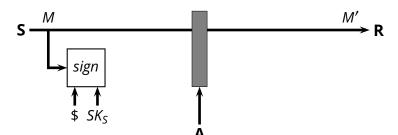


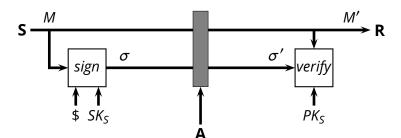


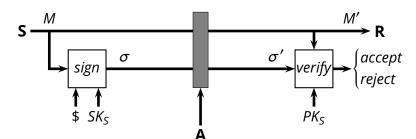


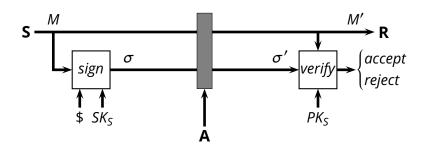
PK_R	receiver's <i>public ke</i> y
SK_R	receiver's secret key
М	plaintext message
C	ciphertext message











σ	digital signature		
SK_S	sender's <i>secret key</i>		
PK_S	sender's <i>public key</i>		
\$	randomness		
sign	signing algorithm		
verify	verification algorithm		

Primitives vs. Protocols

■ Protocol

- ► an *algorithm*
- solves a specific security problem (e.g., signing a message)

Primitives vs. Protocols

■ Protocol

- ► an algorithm
- solves a specific security problem (e.g., signing a message)

■ Primitive

Primitives vs. Protocols

■ Protocol

- ► an *algorithm*
- solves a specific security problem (e.g., signing a message)

Primitive

- also an algorithm
- the elementary subroutines of protocols
- ▶ implement (try to approximate) well-defined mathematical object
- embody "hard problems"

Stream Ciphers

■ A stream cipher is a generator of a pseudo-random streams

Stream Ciphers

- A stream cipher is a generator of a pseudo-random streams
 - ▶ given an initialization key *K*
 - generates an infinite pseudo-random sequence of bits

Stream Ciphers

- A stream cipher is a generator of a pseudo-random streams
 - ► given an initialization key *K*
 - generates an infinite pseudo-random sequence of bits
- E.g., RC4

Padding with a Stream Cipher

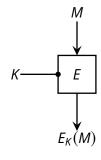
- Assumptions: S and R share a secret key K and agree to use a stream cipher S_K
 - S and R maintain some state: position s initialized to s = 0

Padding with a Stream Cipher

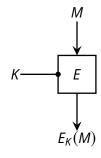
- Assumptions: S and R share a secret key K and agree to use a stream cipher S_K
 - ► S and R maintain some state: position s initialized to s = 0
- Encryption protocol
 - 1. S computes $C \leftarrow M \oplus S_K[s \dots s + |M| 1]$
 - 2. S updates its position $s \leftarrow s + |M|$

Padding with a Stream Cipher

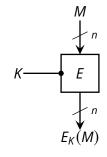
- Assumptions: S and R share a secret key K and agree to use a stream cipher S_K
 - ► S and R maintain some state: position s initialized to s = 0
- Encryption protocol
 - 1. S computes $C \leftarrow M \oplus S_K[s \dots s + |M| 1]$
 - 2. S updates its position $s \leftarrow s + |M|$
- Dencryption protocol
 - 1. R computes $M \leftarrow C \oplus S_K[s \dots s + |C| 1]$
 - 2. *R* updates its position $s \leftarrow s + |C|$



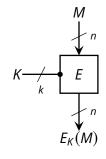
■ *Block Cipher:* $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$



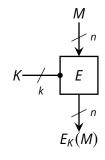
 $ightharpoonup E_{\it K}(\cdot)$ is a permutation, so $E_{\it K}^{-1}(\cdot)$ is always defined



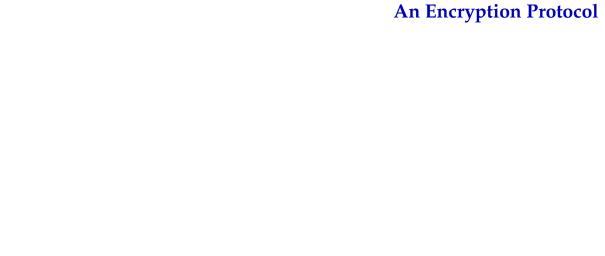
- $E_K(\cdot)$ is a *permutation*, so $E_K^{-1}(\cdot)$ is always defined
- ► fixed-length input and output (n)



- $E_K(\cdot)$ is a *permutation*, so $E_K^{-1}(\cdot)$ is always defined
- fixed-length input and output (n)
- ► fixed-length key (k)



- $E_K(\cdot)$ is a *permutation*, so $E_K^{-1}(\cdot)$ is always defined
- fixed-length input and output (n)
- ► fixed-length key (k)
- ▶ e.g., DES, AES



- Symmetric encryption
 - ► *Input: k*-bit key *K*, *N*-bit message *M*
 - ► Output: N-bit ciphertext C

- Symmetric encryption
 - ► Input: k-bit key K, N-bit message M
 - Output: N-bit ciphertext C
- Cipher Block Chaining (CBC)
 - use a block cipher $E : \{0, 1\}^k \times \{0, 1\}^n \to \{0, 1\}^n$
 - ▶ split *M* into *n*-bit blocks $M = M_0 ||M_1|| \dots ||M_{\ell}|$ ($\ell = \lfloor N/n \rfloor$)

- Symmetric encryption
 - ► Input: k-bit key K, N-bit message M
 - Output: N-bit ciphertext C
- Cipher Block Chaining (CBC)
 - use a block cipher $E: \{0, 1\}^k \times \{0, 1\}^n \to \{0, 1\}^n$
 - ▶ split *M* into *n*-bit blocks $M = M_0 ||M_1|| \dots ||M_{\ell}|$ ($\ell = \lfloor N/n \rfloor$)

```
CBC(K, M)

1 x \leftarrow 0^n

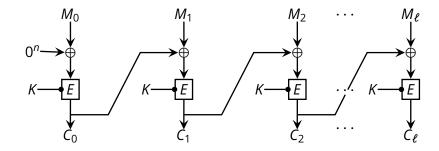
2 for i \leftarrow 0 to \lfloor |M|/n \rfloor

3 do C[ni \dots ni + n - 1] \leftarrow E_K(x \oplus M[ni \dots ni + n - 1])

4 x \leftarrow C[ni \dots ni + n - 1]

5 return C
```

- Symmetric encryption
 - ► Input: k-bit key K, N-bit message M
 - Output: N-bit ciphertext C
- Cipher Block Chaining (CBC)
 - use a block cipher $E: \{0, 1\}^k \times \{0, 1\}^n \to \{0, 1\}^n$
 - ▶ split *M* into *n*-bit blocks $M = M_0 ||M_1|| \dots ||M_{\ell}|$ ($\ell = \lfloor N/n \rfloor$)



Exercise

■ Write the decryption algorithm for CBC

■ Write the decryption algorithm for CBC

```
CBC-DECRYPT(K, C)

1  x \leftarrow 0^n

2  for i \leftarrow 0 to \lfloor |C|/n \rfloor

3  do M[ni ... ni + n - 1] \leftarrow x \oplus E_K^{-1}(C[ni ... ni + n - 1])

4  x \leftarrow C[ni ... ni + n - 1]

5  return M
```


■ Is this CBC protocol secure?

- Is this CBC protocol secure?
 - any deterministic stateless protocol is insecure
 - we need state and/or randomness

- Is this CBC protocol secure?
 - any deterministic stateless protocol is insecure
 - we need state and/or randomness
- What if $|M| \neq 0 \mod n$?

- Is this CBC protocol secure?
 - any deterministic stateless protocol is insecure
 - we need state and/or randomness
- What if $|M| \neq 0 \mod n$?
- Is CBC parallelizable?

CBC With Random IV

CBC\$: cipher block chaining with random IV

CBC With Random IV

CBC\$: cipher block chaining with random IV

```
CBC$-ENCRYPT(K, M)
1 if |M| = 0 \lor |M| \ne 0 \mod n

2 then return \bot

3 M[1] \cdot M[2] \cdots M[\ell] \leftarrow M

4 |V \leftarrow \{0,1\}^n

5 C[0] \leftarrow |V|

6 for i \leftarrow 1 to \ell

7 do C[i] \leftarrow E_K(C[i-1] \oplus M[i])

8 C \leftarrow C[1] \cdot C[2] \cdots C[\ell]
   9 return \langle IV, C \rangle
```

CBC With Random IV (2)

■ CBC\$: cipher block chaining with random IV (decryption)

CBC With Random IV (2)

CBC\$: cipher block chaining with random IV (decryption)

```
CBC$-DECRYPT(K, IV, C)

1 if |C| = 0 \lor |C| \ne 0 \mod n

2 then return \bot

3 C[1] \cdot C[2] \cdots C[\ell] \leftarrow C

4 C[0] \leftarrow IV

5 for i \leftarrow 1 to \ell

6 do M[i] \leftarrow C[i-1] \oplus E_K(C[i])

7 M \leftarrow M[1] \cdot M[2] \cdots M[\ell]

8 return M
```

CBC With Stateful Counter

■ CBCC: cipher block chaining with stateful counter

CBC With Stateful Counter

■ CBCC: cipher block chaining with stateful counter

```
CBCC-ENCRYPT(K, M)
     static ctr \leftarrow 0
 2 if ctr \ge 2^n \lor |M| = 0 \lor |M| \ne 0 \mod n
 3 then return \perp
 4 M[1] \cdot M[2] \cdots M[\ell] \leftarrow M
 5 IV \leftarrow [ctr]_n
 6 C[0] \leftarrow [ctr]_n
 7 for i \leftarrow 1 to \ell
 8 do C[i] \leftarrow E_K(C[i-1] \oplus M[i])
 9 C \leftarrow C[1] \cdot C[2] \cdots C[\ell]
10 ctr \leftarrow ctr + 1
11 return (IV, C)
```

CBC With Stateful Counter (2)

■ CBCC: cipher block chaining with stateful counter

CBC With Stateful Counter (2)

CBCC: cipher block chaining with stateful counter

```
CBCC-DECRYPT(K, IV, C)
   if |V + |C| \ge 2^n \lor |C| = 0 \lor |C| \ne 0 \mod n
   then return ot
3 C[1] \cdot C[2] \cdots C[\ell] \leftarrow C
4 IV \leftarrow [ctr]_n
5 C[0] \leftarrow IV
6 for i \leftarrow 1 to \ell
   \mathbf{do}\,\underline{M}[i] \leftarrow C[i-1] \oplus E_K^{-1}(C[i])
8 M \leftarrow M[1] \cdot M[2] \cdots M[\ell]
    return M
```

Counter Mode

CTR\$: counter mode with random initial counter

Counter Mode

- **CTR\$:** counter mode with random initial counter
 - family of functions: $F: \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n$

Counter Mode

- **CTR\$:** counter mode with random initial counter
 - ▶ family of functions: $F: \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n$

```
CTR$-ENCRYPT(K, M)

1 R \leftarrow \{0, 1\}^n

2 Pad \leftarrow F_K([R]_n)

3 for i \leftarrow 1 to \lceil |M|/n \rceil - 1

4 do Pad \leftarrow Pad \cdot F_K([R+i]_n)

5 Pad \leftarrow first |M| bits of Pad

6 C \leftarrow M \oplus Pad

7 return \langle R, C \rangle
```

Counter Mode (2)

- **CTR\$:** counter mode with random initial counter (decryption)
 - ► family of functions: $F : \{0, 1\}^k \times \{0, 1\}^n \to \{0, 1\}^n$

Counter Mode (2)

- **CTR\$:** counter mode with random initial counter (decryption)
 - ► family of functions: $F: \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n$

```
CTR$-DECRYPT(K, R, C)

1 Pad \leftarrow F_K([R]_n)

2 for i \leftarrow 1 to \lceil |C|/n \rceil - 1

3 do Pad \leftarrow Pad \cdot F_K([R+i]_n)

4 Pad \leftarrow \text{first } |C| \text{ bits of } Pad

5 M \leftarrow C \oplus Pad

6 return M
```

Counter Mode (3)

- **CTRC:** counter mode with stateful counter
 - family of functions: $F: \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n$

Counter Mode (3)

- **CTRC:** counter mode with stateful counter
 - family of functions: $F: \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n$

```
CTRC(K, M)
    static R \leftarrow 0
 2 \ell \leftarrow \lceil |M|/n \rceil
 3 if R + \ell - 1 \ge 2^n
 4 then return \perp
 5 Pad \leftarrow F_K([R]_n)
 6 for i \leftarrow 1 to \ell - 1
 7 do Pad \leftarrow Pad \cdot F_K([R+i]_n)
 8 Pad \leftarrow first |M| bits of Pad
 9 C \leftarrow M \oplus Pad
10 R \leftarrow R + \ell
11 return \langle R - \ell, C \rangle
```

Counter Mode (4)

- **CTRC:** counter mode with stateful counter (decryption)
 - family of functions: $F: \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n$

Counter Mode (4)

- **CTRC:** counter mode with stateful counter (decryption)
 - ► family of functions: $F: \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n$

```
CTRC-DECRYPT(K, R, C)

1 Pad \leftarrow F_K([R]_n)

2 \mathbf{for}\ i \leftarrow 1 \ \mathbf{to}\ [|C|/n] - 1

3 \mathbf{do}\ Pad \leftarrow Pad \cdot F_K([R+i]_n)

4 Pad \leftarrow \mathbf{first}\ |C|\ \mathbf{bits}\ \mathbf{of}\ Pad

5 M \leftarrow C \oplus Pad

6 \mathbf{return}\ M
```

Authentication Protocol

- MAC generation
 - ► *Input: k*-bit key *K*, *N*-bit message *M*
 - Output: n-bit message authentication code σ

Authentication Protocol

- MAC generation
 - Input: k-bit key K, N-bit message M
 - Output: n-bit message authentication code σ
- CBC with random IV
 - use a block cipher $E : \{0, 1\}^k \times \{0, 1\}^n \to \{0, 1\}^n$
 - ▶ split *M* into *n*-bit blocks $M = M_0 ||M_1|| \dots ||M_\ell|| (\ell = \lfloor N/n \rfloor)$

```
MAC(K, M)

1 IV \leftarrow \{0,1\}^n

2 C \leftarrow IV

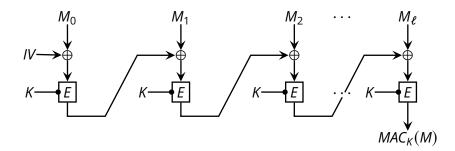
3 \mathbf{for} \ i \leftarrow 0 \ \mathbf{to} \ \lfloor |M|/n \rfloor

4 \mathbf{do} \ C \leftarrow E_K(C \oplus M[ni \dots ni + n - 1])

5 \mathbf{return} \ \langle IV, C \rangle
```

Authentication Protocol

- MAC generation
 - ► Input: k-bit key K, N-bit message M
 - Output: n-bit message authentication code σ
- CBC with random IV
 - use a block cipher $E: \{0, 1\}^k \times \{0, 1\}^n \to \{0, 1\}^n$
 - ▶ split *M* into *n*-bit blocks $M = M_0 ||M_1|| \dots ||M_{\ell}|$ ($\ell = \lfloor N/n \rfloor$)



CBC MAC: Generation

CBC MAC: Generation

```
CBC-MAC\$(K, M)
   \mathbf{if} |M| = 0 \lor |M| \ne 0 \mod n
    then return ot
3 M[1] \cdot M[2] \cdot \cdot \cdot M[\ell] \leftarrow M
   IV \stackrel{\$}{\leftarrow} \{0,1\}^n
5 C \leftarrow IV
6 for i \leftarrow 1 to \ell
          do C \leftarrow E_K(C \oplus M[i])
     return \langle IV, C \rangle
```

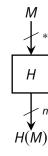
CBC MAC: Verification

CBC MAC: Verification

```
CBC-MAC$-VERIFY(K, IV, \sigma, M)
  if |M| = 0 \lor |M| \ne 0 \mod n
  then return ot
3 M[1] \cdot M[2] \cdots M[\ell] \leftarrow M
4 C \leftarrow IV
5 for i \leftarrow 1 to \ell
6 do C \leftarrow E_K(C \oplus M[i])
7 if C = \sigma
     then return ACCEPT
      else return Reject
```

■ Cryptographic Hash: $H: \{0,1\}^* \rightarrow \{0,1\}^n$

■ Cryptographic Hash: $H: \{0,1\}^* \rightarrow \{0,1\}^n$



- Cryptographic Hash: $H: \{0,1\}^* \rightarrow \{0,1\}^n$
 - $ightharpoonup H(\cdot)$ is a good hash function when (informally)

$$\forall m \in \{0, 1\}^*, h \in \{0, 1\}^n, \Pr[H(m) = h] = \frac{1}{2^n}$$

- Cryptographic Hash: $H: \{0,1\}^* \rightarrow \{0,1\}^n$
 - ► $H(\cdot)$ is a good *hash* function when (*informally*)

$$\forall m \in \{0, 1\}^*, h \in \{0, 1\}^n, \Pr[H(m) = h] = \frac{1}{2^n}$$

▶ it is "difficult" to find *collisions*

find
$$m_1, m_2 \in \{0, 1\}^* : m_1 \neq m_2, H(m_1) = H(m_2)$$

- Cryptographic Hash: $H: \{0,1\}^* \rightarrow \{0,1\}^n$
 - ► $H(\cdot)$ is a good *hash* function when (*informally*)

$$\forall m \in \{0, 1\}^*, h \in \{0, 1\}^n, \Pr[H(m) = h] = \frac{1}{2^n}$$

▶ it is "difficult" to find collisions

find
$$m_1, m_2 \in \{0, 1\}^* : m_1 \neq m_2, H(m_1) = H(m_2)$$

it is "difficult" to find a preimage

given
$$m \in \{0, 1\}^*$$
, find $m' : H(m') = m$

- Cryptographic Hash: $H: \{0,1\}^* \rightarrow \{0,1\}^n$
 - ► $H(\cdot)$ is a good *hash* function when (*informally*)

$$\forall m \in \{0, 1\}^*, h \in \{0, 1\}^n, \Pr[H(m) = h] = \frac{1}{2^n}$$

▶ it is "difficult" to find *collisions*

find
$$m_1, m_2 \in \{0, 1\}^* : m_1 \neq m_2, H(m_1) = H(m_2)$$

it is "difficult" to find a preimage

given
$$m \in \{0, 1\}^*$$
, find $m' : H(m') = m$

e.g., SHA-1

Summary

- Basic ingredients: cryptographic primitives
 - secret-key (symmetric) cryptography (e.g., AES)
 - public-key (asymmetric) cryptography (e.g., RSA)
 - cryptographic hash functions (e.g., SHA-1)
 - stream ciphers (e.g., RC4)

Summary

- Basic ingredients: cryptographic primitives
 - secret-key (symmetric) cryptography (e.g., AES)
 - public-key (asymmetric) cryptography (e.g., RSA)
 - cryptographic hash functions (e.g., SHA-1)
 - stream ciphers (e.g., RC4)
- Recipes: cryptographic protocols
 - certificates (e.g., X.509)
 - secure transport (e.g., TLS, IPSec)
 - ...

Summary

- Basic ingredients: cryptographic primitives
 - secret-key (symmetric) cryptography (e.g., AES)
 - public-key (asymmetric) cryptography (e.g., RSA)
 - cryptographic hash functions (e.g., SHA-1)
 - stream ciphers (e.g., RC4)
- Recipes: cryptographic protocols
 - certificates (e.g., X.509)
 - secure transport (e.g., TLS, IPSec)
 - ...
- Applications
 - electronic commerce
 - secure shell
 - secure electronic mail
 - virtual private networks
 - **•** ...