
Transmission Control Protocol (TCP)

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

November 10, 2017

Outline

Introduction to TCP

Sequence numbers and acknowledgment numbers

Timeouts and RTT estimation

Reliable data transfer in TCP

Connection management

Transmission Control Protocol

The Internet’s primary transport protocol

◮ defined in RFC 793, RFC 1122, RFC 1323, RFC 2018, and RFC 2581

Transmission Control Protocol

The Internet’s primary transport protocol

◮ defined in RFC 793, RFC 1122, RFC 1323, RFC 2018, and RFC 2581

Connection-oriented service

◮ endpoints “shake hands” to establish a connection

◮ not a circuit-switched connection, nor a virtual circuit

Transmission Control Protocol

The Internet’s primary transport protocol

◮ defined in RFC 793, RFC 1122, RFC 1323, RFC 2018, and RFC 2581

Connection-oriented service

◮ endpoints “shake hands” to establish a connection

◮ not a circuit-switched connection, nor a virtual circuit

Full-duplex service

◮ both endpoints can both send and receive, at the same time

Preliminary Definitions

Preliminary Definitions

TCP segment: envelope for TCP data

◮ TCP data are sent within TCP segments

◮ TCP segments are usually sent within an IP packet

Preliminary Definitions

TCP segment: envelope for TCP data

◮ TCP data are sent within TCP segments

◮ TCP segments are usually sent within an IP packet

Maximum segment size (MSS):maximum amount of application data
transmitted in a single segment

◮ typically related to the MTU of the connection, to avoid network-level
fragmentation (we’ll talk about all of this later)

Preliminary Definitions

TCP segment: envelope for TCP data

◮ TCP data are sent within TCP segments

◮ TCP segments are usually sent within an IP packet

Maximum segment size (MSS):maximum amount of application data
transmitted in a single segment

◮ typically related to the MTU of the connection, to avoid network-level
fragmentation (we’ll talk about all of this later)

Maximum transmission unit (MTU): largest link-layer frame available to the
sender host

◮ path MTU: largest link-layer frame that can be sent on all links from the sender
host to the receiver host

TCP Segment Format

0 31

source port destination port

sequence number

acknowledgment number

hdrlen unused U A P R S F receive window

Internet checksum urgent data pointer

options field

data

TCP Header Fields

TCP Header Fields

Source and destination ports: (16-bit each) application identifiers

TCP Header Fields

Source and destination ports: (16-bit each) application identifiers

Sequence number: (32-bit) used to implement reliable data transfer

Acknowledgment number: (32-bit) used to implement reliable data transfer

TCP Header Fields

Source and destination ports: (16-bit each) application identifiers

Sequence number: (32-bit) used to implement reliable data transfer

Acknowledgment number: (32-bit) used to implement reliable data transfer

Receive window: (16-bit) size of the “window” on the receiver end

TCP Header Fields

Source and destination ports: (16-bit each) application identifiers

Sequence number: (32-bit) used to implement reliable data transfer

Acknowledgment number: (32-bit) used to implement reliable data transfer

Receive window: (16-bit) size of the “window” on the receiver end

Header length: (4-bit) size of the TCP header in 32-bit words

TCP Header Fields

Source and destination ports: (16-bit each) application identifiers

Sequence number: (32-bit) used to implement reliable data transfer

Acknowledgment number: (32-bit) used to implement reliable data transfer

Receive window: (16-bit) size of the “window” on the receiver end

Header length: (4-bit) size of the TCP header in 32-bit words

Optional and variable-length options field: may be used to negotiate protocol
parameters

TCP Header Fields

TCP Header Fields

ACK flag: (1-bit) signals that the value contained in the acknowledgment number
represents a valid acknowledgment

TCP Header Fields

ACK flag: (1-bit) signals that the value contained in the acknowledgment number
represents a valid acknowledgment

SYN flag: (1-bit) used during connection setup and shutdown

TCP Header Fields

ACK flag: (1-bit) signals that the value contained in the acknowledgment number
represents a valid acknowledgment

SYN flag: (1-bit) used during connection setup and shutdown

RST flag: (1-bit) used during connection setup and shutdown

TCP Header Fields

ACK flag: (1-bit) signals that the value contained in the acknowledgment number
represents a valid acknowledgment

SYN flag: (1-bit) used during connection setup and shutdown

RST flag: (1-bit) used during connection setup and shutdown

FIN flag: (1-bit) used during connection shutdown

TCP Header Fields

ACK flag: (1-bit) signals that the value contained in the acknowledgment number
represents a valid acknowledgment

SYN flag: (1-bit) used during connection setup and shutdown

RST flag: (1-bit) used during connection setup and shutdown

FIN flag: (1-bit) used during connection shutdown

PSH flag: (1-bit) “push” flag, used to solicit the receiver to pass the data to the
application immediately

TCP Header Fields

ACK flag: (1-bit) signals that the value contained in the acknowledgment number
represents a valid acknowledgment

SYN flag: (1-bit) used during connection setup and shutdown

RST flag: (1-bit) used during connection setup and shutdown

FIN flag: (1-bit) used during connection shutdown

PSH flag: (1-bit) “push” flag, used to solicit the receiver to pass the data to the
application immediately

URG flag: (1-bit) “urgent” flag, used to inform the receiver that the sender has
marked some data as “urgent”. The location of this urgent data is marked by
the urgent data pointer field

TCP Header Fields

ACK flag: (1-bit) signals that the value contained in the acknowledgment number
represents a valid acknowledgment

SYN flag: (1-bit) used during connection setup and shutdown

RST flag: (1-bit) used during connection setup and shutdown

FIN flag: (1-bit) used during connection shutdown

PSH flag: (1-bit) “push” flag, used to solicit the receiver to pass the data to the
application immediately

URG flag: (1-bit) “urgent” flag, used to inform the receiver that the sender has
marked some data as “urgent”. The location of this urgent data is marked by
the urgent data pointer field

Checksum: (16-bit) used to detect transmission errors

Sequence Numbers

Sequence Numbers

Sequence numbers are associated with bytes in the data stream
◮ not with segments, as we have used them before

Sequence Numbers

Sequence numbers are associated with bytes in the data stream
◮ not with segments, as we have used them before

The sequence number in a TCP segment indicates the sequence number of the
first byte carried by that segment

Sequence Numbers

Sequence numbers are associated with bytes in the data stream
◮ not with segments, as we have used them before

The sequence number in a TCP segment indicates the sequence number of the
first byte carried by that segment

application data stream

4Kb

Sequence Numbers

Sequence numbers are associated with bytes in the data stream
◮ not with segments, as we have used them before

The sequence number in a TCP segment indicates the sequence number of the
first byte carried by that segment

application data stream

4Kb

MSS=1024b

Sequence Numbers

Sequence numbers are associated with bytes in the data stream
◮ not with segments, as we have used them before

The sequence number in a TCP segment indicates the sequence number of the
first byte carried by that segment

application data stream

4Kb

MSS=1024b

Sequence Numbers

Sequence numbers are associated with bytes in the data stream
◮ not with segments, as we have used them before

The sequence number in a TCP segment indicates the sequence number of the
first byte carried by that segment

application data stream

4Kb

MSS=1024b

1. 1024 1025. . . 2048 2049. . . 3072 3073. . . 4096

Sequence Numbers

Sequence numbers are associated with bytes in the data stream
◮ not with segments, as we have used them before

The sequence number in a TCP segment indicates the sequence number of the
first byte carried by that segment

application data stream

4Kb

MSS=1024b

1. 1024 1025. . . 2048 2049. . . 3072 3073. . . 4096

a TCP segment

Sequence Numbers

Sequence numbers are associated with bytes in the data stream
◮ not with segments, as we have used them before

The sequence number in a TCP segment indicates the sequence number of the
first byte carried by that segment

application data stream

4Kb

MSS=1024b

1. 1024 1025. . . 2048 2049. . . 3072 3073. . . 4096

a TCP segment

2
0
4
9

Sequence Numbers

Sequence numbers are associated with bytes in the data stream
◮ not with segments, as we have used them before

The sequence number in a TCP segment indicates the sequence number of the
first byte carried by that segment

application data stream

4Kb

MSS=1024b

1. 1024 1025. . . 2048 2049. . . 3072 3073. . . 4096

a TCP segment

2
0
4
9

sequence number

Acknowledgment Numbers

Acknowledgment Numbers

An acknowledgment number represents the first sequence number not yet
seen by the receiver

◮ TCP acknowledgments are cumulative

Acknowledgment Numbers

An acknowledgment number represents the first sequence number not yet
seen by the receiver

◮ TCP acknowledgments are cumulative

A B

Acknowledgment Numbers

An acknowledgment number represents the first sequence number not yet
seen by the receiver

◮ TCP acknowledgments are cumulative

A B

[Seq# = 1200, . . .], size(data) = 1000

Acknowledgment Numbers

An acknowledgment number represents the first sequence number not yet
seen by the receiver

◮ TCP acknowledgments are cumulative

A B

[Seq# = 1200, . . .], size(data) = 1000

[Seq# = 2200, . . .], size(data) = 500

Acknowledgment Numbers

An acknowledgment number represents the first sequence number not yet
seen by the receiver

◮ TCP acknowledgments are cumulative

A B

[Seq# = 1200, . . .], size(data) = 1000

[Seq# = 2200, . . .], size(data) = 500

[Seq# = . . . , Ack# = 2700]

Sequence Numbers and ACK Numbers

Sequence Numbers and ACK Numbers

Notice that a TCP connection is a full-duplex link

◮ therefore, there are two streams

◮ two different sequence numbers

Sequence Numbers and ACK Numbers

Notice that a TCP connection is a full-duplex link

◮ therefore, there are two streams

◮ two different sequence numbers

E.g., consider a simple “Echo” application:

A B

Sequence Numbers and ACK Numbers

Notice that a TCP connection is a full-duplex link

◮ therefore, there are two streams

◮ two different sequence numbers

E.g., consider a simple “Echo” application:

A B

[Seq# = 100, Data =“C”]

Sequence Numbers and ACK Numbers

Notice that a TCP connection is a full-duplex link

◮ therefore, there are two streams

◮ two different sequence numbers

E.g., consider a simple “Echo” application:

A B

[Seq# = 100, Data =“C”]

[Ack# = 101, Seq# = 200, Data =“C”]

Sequence Numbers and ACK Numbers

Notice that a TCP connection is a full-duplex link

◮ therefore, there are two streams

◮ two different sequence numbers

E.g., consider a simple “Echo” application:

A B

[Seq# = 100, Data =“C”]

[Ack# = 101, Seq# = 200, Data =“C”]

[Seq# = 101, Ack# = 201, Data =“i”]

Sequence Numbers and ACK Numbers

Notice that a TCP connection is a full-duplex link

◮ therefore, there are two streams

◮ two different sequence numbers

E.g., consider a simple “Echo” application:

A B

[Seq# = 100, Data =“C”]

[Ack# = 101, Seq# = 200, Data =“C”]

[Seq# = 101, Ack# = 201, Data =“i”]

[Seq# = 201, Ack# = 102, Data =“i”]

Sequence Numbers and ACK Numbers

Notice that a TCP connection is a full-duplex link

◮ therefore, there are two streams

◮ two different sequence numbers

E.g., consider a simple “Echo” application:

A B

[Seq# = 100, Data =“C”]

[Ack# = 101, Seq# = 200, Data =“C”]

[Seq# = 101, Ack# = 201, Data =“i”]

[Seq# = 201, Ack# = 102, Data =“i”]

Acknowledgments are “piggybacked” on data segments

Reliability and Timeout

TCP provides reliable data transfer using a timer to detect lost segments

◮ timeout without an ACK→ lost packet→ retransmission

Reliability and Timeout

TCP provides reliable data transfer using a timer to detect lost segments

◮ timeout without an ACK→ lost packet→ retransmission

How long to wait for acknowledgments?

Reliability and Timeout

TCP provides reliable data transfer using a timer to detect lost segments

◮ timeout without an ACK→ lost packet→ retransmission

How long to wait for acknowledgments?

Retransmission timeouts should be larger than the round-trip time RTT = 2L

◮ as close as possible to the RTT

Reliability and Timeout

TCP provides reliable data transfer using a timer to detect lost segments

◮ timeout without an ACK→ lost packet→ retransmission

How long to wait for acknowledgments?

Retransmission timeouts should be larger than the round-trip time RTT = 2L

◮ as close as possible to the RTT

TCP controls its timeout by continuously estimating the current RTT

Round-Trip Time Estimation

Round-Trip Time Estimation

RTT is measured using ACKs

◮ only for packets transmitted once

Given a single sample S at any given time

Exponential weighted moving average (EWMA)

RTT = (1 − α)RTT
′

+ αS

Round-Trip Time Estimation

RTT is measured using ACKs

◮ only for packets transmitted once

Given a single sample S at any given time

Exponential weighted moving average (EWMA)

RTT = (1 − α)RTT
′

+ αS

◮ RFC 2988 recommends α = 0.125

Round-Trip Time Estimation

RTT is measured using ACKs

◮ only for packets transmitted once

Given a single sample S at any given time

Exponential weighted moving average (EWMA)

RTT = (1 − α)RTT
′

+ αS

◮ RFC 2988 recommends α = 0.125

TCP also measures the variability of RTT

DevRTT = (1 − β)DevRTT
′

+ β `RTT
′

− S`

Round-Trip Time Estimation

RTT is measured using ACKs

◮ only for packets transmitted once

Given a single sample S at any given time

Exponential weighted moving average (EWMA)

RTT = (1 − α)RTT
′

+ αS

◮ RFC 2988 recommends α = 0.125

TCP also measures the variability of RTT

DevRTT = (1 − β)DevRTT
′

+ β `RTT
′

− S`

◮ RFC 2988 recommends β = 0.25

Timeout Value

Timeout Value

The timeout interval T must be larger than the RTT
◮ so as to avoid unnecessary retransmission

However, T should not be too far from RTT
◮ so as to detect (and retransmit) lost segments as quickly as possible

Timeout Value

The timeout interval T must be larger than the RTT
◮ so as to avoid unnecessary retransmission

However, T should not be too far from RTT
◮ so as to detect (and retransmit) lost segments as quickly as possible

TCP sets its timeouts using the estimated RTT (RTT) and the variability estimate

DevRTT :

T = RTT + 4DevRTT

Reliable Data Transfer (Sender)

A simplified TCP sender

r_send(data)

if (timer not running)
start_timer()

u_send([data,next_seq_num])
next_seq_num← next_seq_num + length(data)

Reliable Data Transfer (Sender)

A simplified TCP sender

r_send(data)

if (timer not running)
start_timer()

u_send([data,next_seq_num])
next_seq_num← next_seq_num + length(data)

timeout

u_send(pending segment with smallest sequence number)
start_timer()

Reliable Data Transfer (Sender)

A simplified TCP sender

r_send(data)

if (timer not running)
start_timer()

u_send([data,next_seq_num])
next_seq_num← next_seq_num + length(data)

timeout

u_send(pending segment with smallest sequence number)
start_timer()

u_recv([ACK,y])

if (y > base)
base← y
if (there are pending segments)
start_timer()

else . . .

Acknowledgment Generation (Receiver)

Acknowledgment Generation (Receiver)

Arrival of in-order segment with expected sequence number; all data up to
expected sequence number already acknowledged

Acknowledgment Generation (Receiver)

Arrival of in-order segment with expected sequence number; all data up to
expected sequence number already acknowledged
◮ Delayed ACK: wait 500ms for another in-order segment; If that does not arrive,
send ACK

Acknowledgment Generation (Receiver)

Arrival of in-order segment with expected sequence number; all data up to
expected sequence number already acknowledged
◮ Delayed ACK: wait 500ms for another in-order segment; If that does not arrive,
send ACK

Arrival of in-order segment with expected sequence number. One other
in-order segment waiting for ACK (see above)

Acknowledgment Generation (Receiver)

Arrival of in-order segment with expected sequence number; all data up to
expected sequence number already acknowledged
◮ Delayed ACK: wait 500ms for another in-order segment; If that does not arrive,
send ACK

Arrival of in-order segment with expected sequence number. One other
in-order segment waiting for ACK (see above)
◮ Cumulative ACK: immediately send cumulative ACK (for both segments)

Acknowledgment Generation (Receiver)

Arrival of in-order segment with expected sequence number; all data up to
expected sequence number already acknowledged
◮ Delayed ACK: wait 500ms for another in-order segment; If that does not arrive,
send ACK

Arrival of in-order segment with expected sequence number. One other
in-order segment waiting for ACK (see above)
◮ Cumulative ACK: immediately send cumulative ACK (for both segments)

Arrival of out of order segment with higher-than-expected sequence number
(gap detected)

Acknowledgment Generation (Receiver)

Arrival of in-order segment with expected sequence number; all data up to
expected sequence number already acknowledged
◮ Delayed ACK: wait 500ms for another in-order segment; If that does not arrive,
send ACK

Arrival of in-order segment with expected sequence number. One other
in-order segment waiting for ACK (see above)
◮ Cumulative ACK: immediately send cumulative ACK (for both segments)

Arrival of out of order segment with higher-than-expected sequence number
(gap detected)
◮ Duplicate ACK: immediately send duplicate ACK

Acknowledgment Generation (Receiver)

Arrival of in-order segment with expected sequence number; all data up to
expected sequence number already acknowledged
◮ Delayed ACK: wait 500ms for another in-order segment; If that does not arrive,
send ACK

Arrival of in-order segment with expected sequence number. One other
in-order segment waiting for ACK (see above)
◮ Cumulative ACK: immediately send cumulative ACK (for both segments)

Arrival of out of order segment with higher-than-expected sequence number
(gap detected)
◮ Duplicate ACK: immediately send duplicate ACK

Arrival of segment that (partially or completely) fills a gap in the received data

Acknowledgment Generation (Receiver)

Arrival of in-order segment with expected sequence number; all data up to
expected sequence number already acknowledged
◮ Delayed ACK: wait 500ms for another in-order segment; If that does not arrive,
send ACK

Arrival of in-order segment with expected sequence number. One other
in-order segment waiting for ACK (see above)
◮ Cumulative ACK: immediately send cumulative ACK (for both segments)

Arrival of out of order segment with higher-than-expected sequence number
(gap detected)
◮ Duplicate ACK: immediately send duplicate ACK

Arrival of segment that (partially or completely) fills a gap in the received data
◮ Immediate ACK: immediately send ACK if the packet start at the lower end of the
gap

Reaction to ACKs (Sender)

Reaction to ACKs (Sender)

u_recv([ACK,y])

if (y > base)
base← y
if (there are pending segments)
start_timer()

Reaction to ACKs (Sender)

u_recv([ACK,y])

if (y > base)
base← y
if (there are pending segments)
start_timer()

else

ack_counter[y]← ack_counter[y] + 1
if (ack_counter[y] = 3)
u_send(segment with sequence number y)

Connection Setup

Connection Setup

Three-way handshake

Connection Setup

Three-way handshake

client server

Connection Setup

Three-way handshake

client server

[SYN, Seq# = cli_init_seq]

Connection Setup

Three-way handshake

client server

[SYN, Seq# = cli_init_seq]

[SYN, ACK, Ack# = cli_init_seq + 1, Seq# = srv_init_seq]

Connection Setup

Three-way handshake

client server

[SYN, Seq# = cli_init_seq]

[SYN, ACK, Ack# = cli_init_seq + 1, Seq# = srv_init_seq]

[ACK, Seq# = cli_init_seq + 1, Ack# = srv_init_seq + 1]

Connection Shutdown

“This is it.”
“Okay, Bye now.”
“Bye.”

Connection Shutdown

“This is it.”
“Okay, Bye now.”
“Bye.”

client server

Connection Shutdown

“This is it.”
“Okay, Bye now.”
“Bye.”

client server

[FIN]

Connection Shutdown

“This is it.”
“Okay, Bye now.”
“Bye.”

client server

[FIN]

[ACK]

Connection Shutdown

“This is it.”
“Okay, Bye now.”
“Bye.”

client server

[FIN]

[ACK]

[FIN]

Connection Shutdown

“This is it.”
“Okay, Bye now.”
“Bye.”

client server

[FIN]

[ACK]

[FIN]

[ACK]

The TCP State Machine (Client)

CLOSED

The TCP State Machine (Client)

CLOSED

SYN_SENT

application
opens connection

send SYN

The TCP State Machine (Client)

CLOSED

SYN_SENT

application
opens connection

send SYN

ESTABLISHED

receive SYN,ACK

send ACK

The TCP State Machine (Client)

CLOSED

SYN_SENT

application
opens connection

send SYN

ESTABLISHED

receive SYN,ACK

send ACK

FIN_WAIT_1

application
closes connection

send FIN

The TCP State Machine (Client)

CLOSED

SYN_SENT

application
opens connection

send SYN

ESTABLISHED

receive SYN,ACK

send ACK

FIN_WAIT_1

application
closes connection

send FIN

FIN_WAIT_2

receive ACK

The TCP State Machine (Client)

CLOSED

SYN_SENT

application
opens connection

send SYN

ESTABLISHED

receive SYN,ACK

send ACK

FIN_WAIT_1

application
closes connection

send FIN

FIN_WAIT_2

receive ACK

TIME_WAIT

receive FIN

send ACK

The TCP State Machine (Client)

CLOSED

SYN_SENT

application
opens connection

send SYN

ESTABLISHED

receive SYN,ACK

send ACK

FIN_WAIT_1

application
closes connection

send FIN

FIN_WAIT_2

receive ACK

TIME_WAIT

receive FIN

send ACK

wait 30 seconds

The TCP State Machine (Server)

CLOSED

The TCP State Machine (Server)

CLOSED

LISTEN

application
opens server socket

The TCP State Machine (Server)

CLOSED

LISTEN

application
opens server socket

SYN_RCVD

receive SYN

send SYN,ACK

The TCP State Machine (Server)

CLOSED

LISTEN

application
opens server socket

SYN_RCVD

receive SYN

send SYN,ACK

ESTABLISHED

receive ACK

The TCP State Machine (Server)

CLOSED

LISTEN

application
opens server socket

SYN_RCVD

receive SYN

send SYN,ACK

ESTABLISHED

receive ACK

CLOSE_WAIT

receive FIN

send ACK

The TCP State Machine (Server)

CLOSED

LISTEN

application
opens server socket

SYN_RCVD

receive SYN

send SYN,ACK

ESTABLISHED

receive ACK

CLOSE_WAIT

receive FIN

send ACK

LAST_ACK

send FIN

The TCP State Machine (Server)

CLOSED

LISTEN

application
opens server socket

SYN_RCVD

receive SYN

send SYN,ACK

ESTABLISHED

receive ACK

CLOSE_WAIT

receive FIN

send ACK

LAST_ACK

send FIN

receive ACK

