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Transmission Control Protocol

The Internet’s primary transport protocol

◮ defined in RFC 793, RFC 1122, RFC 1323, RFC 2018, and RFC 2581

Connection-oriented service

◮ endpoints “shake hands” to establish a connection

◮ not a circuit-switched connection, nor a virtual circuit

Full-duplex service

◮ both endpoints can both send and receive, at the same time
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Preliminary Definitions

TCP segment: envelope for TCP data

◮ TCP data are sent within TCP segments

◮ TCP segments are usually sent within an IP packet

Maximum segment size (MSS):maximum amount of application data
transmitted in a single segment

◮ typically related to the MTU of the connection, to avoid network-level
fragmentation (we’ll talk about all of this later)

Maximum transmission unit (MTU): largest link-layer frame available to the
sender host

◮ path MTU: largest link-layer frame that can be sent on all links from the sender
host to the receiver host



TCP Segment Format

0 31

source port destination port

sequence number

acknowledgment number

hdrlen unused U A P R S F receive window

Internet checksum urgent data pointer

options field

data



TCP Header Fields



TCP Header Fields

Source and destination ports: (16-bit each) application identifiers



TCP Header Fields

Source and destination ports: (16-bit each) application identifiers

Sequence number: (32-bit) used to implement reliable data transfer

Acknowledgment number: (32-bit) used to implement reliable data transfer



TCP Header Fields

Source and destination ports: (16-bit each) application identifiers

Sequence number: (32-bit) used to implement reliable data transfer

Acknowledgment number: (32-bit) used to implement reliable data transfer

Receive window: (16-bit) size of the “window” on the receiver end



TCP Header Fields

Source and destination ports: (16-bit each) application identifiers

Sequence number: (32-bit) used to implement reliable data transfer

Acknowledgment number: (32-bit) used to implement reliable data transfer

Receive window: (16-bit) size of the “window” on the receiver end

Header length: (4-bit) size of the TCP header in 32-bit words



TCP Header Fields

Source and destination ports: (16-bit each) application identifiers

Sequence number: (32-bit) used to implement reliable data transfer

Acknowledgment number: (32-bit) used to implement reliable data transfer

Receive window: (16-bit) size of the “window” on the receiver end

Header length: (4-bit) size of the TCP header in 32-bit words

Optional and variable-length options field: may be used to negotiate protocol
parameters
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TCP Header Fields

ACK flag: (1-bit) signals that the value contained in the acknowledgment number
represents a valid acknowledgment

SYN flag: (1-bit) used during connection setup and shutdown

RST flag: (1-bit) used during connection setup and shutdown

FIN flag: (1-bit) used during connection shutdown

PSH flag: (1-bit) “push” flag, used to solicit the receiver to pass the data to the
application immediately

URG flag: (1-bit) “urgent” flag, used to inform the receiver that the sender has
marked some data as “urgent”. The location of this urgent data is marked by
the urgent data pointer field

Checksum: (16-bit) used to detect transmission errors
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Sequence Numbers

Sequence numbers are associated with bytes in the data stream
◮ not with segments, as we have used them before

The sequence number in a TCP segment indicates the sequence number of the
first byte carried by that segment

application data stream

4Kb

MSS=1024b

1. . . . . . 1024 1025. . . 2048 2049. . . 3072 3073. . . 4096

a TCP segment

2
0
4
9

sequence number
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Acknowledgment Numbers

An acknowledgment number represents the first sequence number not yet
seen by the receiver

◮ TCP acknowledgments are cumulative

A B

[Seq# = 1200, . . .], size(data) = 1000

[Seq# = 2200, . . .], size(data) = 500

[Seq# = . . . , Ack# = 2700]



Sequence Numbers and ACK Numbers



Sequence Numbers and ACK Numbers

Notice that a TCP connection is a full-duplex link

◮ therefore, there are two streams

◮ two different sequence numbers



Sequence Numbers and ACK Numbers

Notice that a TCP connection is a full-duplex link

◮ therefore, there are two streams

◮ two different sequence numbers

E.g., consider a simple “Echo” application:

A B



Sequence Numbers and ACK Numbers

Notice that a TCP connection is a full-duplex link

◮ therefore, there are two streams

◮ two different sequence numbers

E.g., consider a simple “Echo” application:

A B

[Seq# = 100, Data =“C”]



Sequence Numbers and ACK Numbers

Notice that a TCP connection is a full-duplex link

◮ therefore, there are two streams

◮ two different sequence numbers

E.g., consider a simple “Echo” application:

A B

[Seq# = 100, Data =“C”]

[Ack# = 101, Seq# = 200, Data =“C”]



Sequence Numbers and ACK Numbers

Notice that a TCP connection is a full-duplex link

◮ therefore, there are two streams

◮ two different sequence numbers

E.g., consider a simple “Echo” application:

A B

[Seq# = 100, Data =“C”]

[Ack# = 101, Seq# = 200, Data =“C”]

[Seq# = 101, Ack# = 201, Data =“i”]



Sequence Numbers and ACK Numbers

Notice that a TCP connection is a full-duplex link

◮ therefore, there are two streams

◮ two different sequence numbers

E.g., consider a simple “Echo” application:

A B

[Seq# = 100, Data =“C”]

[Ack# = 101, Seq# = 200, Data =“C”]

[Seq# = 101, Ack# = 201, Data =“i”]

[Seq# = 201, Ack# = 102, Data =“i”]



Sequence Numbers and ACK Numbers

Notice that a TCP connection is a full-duplex link

◮ therefore, there are two streams

◮ two different sequence numbers

E.g., consider a simple “Echo” application:

A B

[Seq# = 100, Data =“C”]

[Ack# = 101, Seq# = 200, Data =“C”]

[Seq# = 101, Ack# = 201, Data =“i”]

[Seq# = 201, Ack# = 102, Data =“i”]

Acknowledgments are “piggybacked” on data segments
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Reliability and Timeout

TCP provides reliable data transfer using a timer to detect lost segments

◮ timeout without an ACK→ lost packet→ retransmission

How long to wait for acknowledgments?

Retransmission timeouts should be larger than the round-trip time RTT = 2L

◮ as close as possible to the RTT

TCP controls its timeout by continuously estimating the current RTT
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Round-Trip Time Estimation

RTT is measured using ACKs

◮ only for packets transmitted once

Given a single sample S at any given time

Exponential weighted moving average (EWMA)

RTT = (1 − α)RTT
′

+ αS

◮ RFC 2988 recommends α = 0.125

TCP also measures the variability of RTT

DevRTT = (1 − β )DevRTT
′

+ β `RTT
′

− S`

◮ RFC 2988 recommends β = 0.25
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Timeout Value

The timeout interval T must be larger than the RTT
◮ so as to avoid unnecessary retransmission

However, T should not be too far from RTT
◮ so as to detect (and retransmit) lost segments as quickly as possible

TCP sets its timeouts using the estimated RTT (RTT) and the variability estimate

DevRTT :

T = RTT + 4DevRTT
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Reliable Data Transfer (Sender)

A simplified TCP sender

r_send(data)

if (timer not running)
start_timer()

u_send([data,next_seq_num])
next_seq_num← next_seq_num + length(data)

timeout

u_send(pending segment with smallest sequence number)
start_timer()

u_recv([ACK,y])

if (y > base)
base← y
if (there are pending segments)
start_timer()

else . . .
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Acknowledgment Generation (Receiver)

Arrival of in-order segment with expected sequence number; all data up to
expected sequence number already acknowledged
◮ Delayed ACK: wait 500ms for another in-order segment; If that does not arrive,
send ACK

Arrival of in-order segment with expected sequence number. One other
in-order segment waiting for ACK (see above)
◮ Cumulative ACK: immediately send cumulative ACK (for both segments)

Arrival of out of order segment with higher-than-expected sequence number
(gap detected)
◮ Duplicate ACK: immediately send duplicate ACK

Arrival of segment that (partially or completely) fills a gap in the received data
◮ Immediate ACK: immediately send ACK if the packet start at the lower end of the
gap
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Reaction to ACKs (Sender)

u_recv([ACK,y])

if (y > base)
base← y
if (there are pending segments)
start_timer()

else

ack_counter[y]← ack_counter[y] + 1
if (ack_counter[y] = 3)
u_send(segment with sequence number y)
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Connection Setup

Three-way handshake

client server

[SYN, Seq# = cli_init_seq]

[SYN, ACK, Ack# = cli_init_seq + 1, Seq# = srv_init_seq]

[ACK, Seq# = cli_init_seq + 1, Ack# = srv_init_seq + 1]
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“This is it.”
“Okay, Bye now.”
“Bye.”

client server

[FIN]
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[FIN]

[ACK]
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The TCP State Machine (Client)

CLOSED

SYN_SENT

application
opens connection

send SYN

ESTABLISHED

receive SYN,ACK

send ACK

FIN_WAIT_1

application
closes connection

send FIN

FIN_WAIT_2

receive ACK

TIME_WAIT

receive FIN

send ACK

wait 30 seconds
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LISTEN

application
opens server socket

SYN_RCVD

receive SYN

send SYN,ACK
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receive ACK

CLOSE_WAIT
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LAST_ACK

send FIN
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