# A Few Basic Elements of Communication Security 

Antonio Carzaniga<br>Faculty of Informatics<br>Università della Svizzera italiana

December 22, 2017

Some Advice

Some Advice

- Make backups of your data

■ Do NOT trust the network!
■ Use HTTPS instead of HTTP

- Make backups of your data

■ Do NOT trust the network!
■ Use HTTPS instead of HTTP

■ Understand the basics of public-key cryptography
■ Communicate with end-to-end encryption (e.g., e-mail)
■ use trusted certificates
■ Encrypt your confidential data (and make backups)
■ use strong passwords
■ You might as well encrypt all your data
■ Tools/technologies: ssh, pgp (or gpg)

■ Communication security model
■ Information-theoretic privacy
■ Substitution ciphers

- Intro to modern cryptography

■ One-time pad
■ Block siphers
■ Cryptographic hash functions
■ Public-key cryptosystems

Communication Security

# Communication Security 

■ Communication model: Alice sends a message $m$ to Bob

# Communication Security 

■ Communication model: Alice sends a message $m$ to Bob


# Communication Security 

■ Communication model: Alice sends a message $m$ to Bob


Eve

■ Communication model: Alice sends a message $m$ to Bob


Eve

■ Communication model: Alice sends a message $m$ to Bob


- Passive adversary

Eve

- can read the message
- Active adversary
- can modify the message

Goals

Goals


# Goals 

■ Confidentiality (a.k.a., privacy): Alice wants to make sure that only Bob sees the message

■ Confidentiality (a.k.a., privacy): Alice wants to make sure that only Bob sees the message

- Message Integrity: Bob wants to make sure that the message he reads was exactly what Alice wrote

Goals (2)



■ End-point Authentication: Bob wants to make sure he is communicating with Alice


■ End-point Authentication: Bob wants to make sure he is communicating with Alice

■ Operational/system security: Alice and Bob want to maintain full control of their networks

What is Privacy, Exactly?

What is Privacy, Exactly?


- Alice wants to make sure that only Bob "sees" the message

What is Privacy, Exactly?


■ Alice wants to make sure that only Bob "sees" the message
■ What if Eve can guess the message?
"Shift" Cipher

■ The ciphertext is
BUUBDL BU EBXO

■ The ciphertext is

> BUUBDL BU EBXO

- Plaintext is

ATTACK AT DAWN

■ The ciphertext is

> BUUBDL BU EBXO

- Plaintext is

ATTACK AT DAWN

■ How many possible ciphers?

- How many key bits?

Substitution Cipher

- Substitution cipher

Substitution Cipher

■ Substitution cipher

- alphabet $\Sigma=\left\{{ }^{\prime} A^{\prime},{ }^{\prime} B^{\prime}, \ldots,{ }^{\prime} Z^{\prime},{ }^{\prime}\right.$ ' $\}$
- Substitution cipher
- alphabet $\Sigma=\left\{A^{\prime},{ }^{\prime} \mathrm{B}^{\prime}, \ldots,{ }^{\prime} \mathrm{Z}^{\prime},{ }^{\prime}\right.$ ' $\}$
- encryption function: a permutation

$$
E: \Sigma \rightarrow \Sigma
$$

- Substitution cipher
- alphabet $\Sigma=\left\{{ }^{\prime} A^{\prime},{ }^{\prime} B^{\prime}, \ldots,{ }^{\prime} \mathrm{Z}^{\prime},{ }^{\prime}\right.$ ' $\}$
- encryption function: a permutation

$$
E: \Sigma \rightarrow \Sigma
$$

## Example:

$$
\begin{aligned}
& \text { A B C DEFGHI JKLMNOPQRSTUVWXYZ } \\
& \text { VZLQXT_RDUCOJNFMGEHWPISYABK }
\end{aligned}
$$

- Substitution cipher
- alphabet $\Sigma=\left\{{ }^{\prime} A^{\prime},{ }^{\prime} B^{\prime}, \ldots,{ }^{\prime} \mathrm{Z}^{\prime},{ }^{\prime}\right.$ ' $\}$
- encryption function: a permutation

$$
E: \Sigma \rightarrow \Sigma
$$

## Example:

$$
\begin{aligned}
& \text { ABCDEFGHIJKLMNOPQRSTUVWXYZ_ } \\
& \text { VZLQXT_ RDUCOJNFMGEHWPISYABK }
\end{aligned}
$$

How many possible permutations?

- Substitution cipher
- alphabet $\Sigma=\left\{{ }^{\prime} A^{\prime},{ }^{\prime} B^{\prime}, \ldots,{ }^{\prime} \mathrm{Z}^{\prime},{ }^{\prime}\right.$ ' $\}$
- encryption function: a permutation

$$
E: \Sigma \rightarrow \Sigma
$$

## Example:

$$
\begin{aligned}
& \text { ABCDEFGHIJKLMNOPQRSTUVWXYZ_ } \\
& \text { VZLQXT_ RDUCOJNFMGEHWPISYABK }
\end{aligned}
$$

How many possible permutations?

- Substitution cipher
- alphabet $\Sigma=\left\{{ }^{\prime} A^{\prime},{ }^{\prime} B^{\prime}, \ldots,{ }^{\prime} \mathrm{Z}^{\prime},{ }^{\prime}\right.$ ' $\}$
- encryption function: a permutation

$$
E: \Sigma \rightarrow \Sigma
$$

## Example:

$$
\begin{aligned}
& \text { ABCDEFGHIJKLMNOPQRSTUVWXYZ_ } \\
& \text { VZLQXT_RDUCOJNFMGEHWPISYABK }
\end{aligned}
$$

How many possible permutations?

$$
27!=10888869450418352160768000000 \approx 2^{93}
$$

■ Encrypting some text using a substitution cipher
plaintext C I A O_M A M M A

■ Encrypting some text using a substitution cipher


■ Problems?

■ Encrypting some text using a substitution cipher


- Problems?
- easy to break just by guessing!

■ Decrypt this ciphertext obtained by encrypting an English text with a substitution-cipher:
gbafoduayfbhbayvpyfhayoanbahbdl-brcubqyayfkyakddaibqakvbaxvbkybuabzpkd yfkyayfbwakvbabquogbuanwayfbcvaxvbkyovagcyfaxbvykcqapqkdcbqkndbavctfyh yfkyakioqtayfbhbakvbadclbadcnbvywakquayfbampvhpcyaolafkmmcqbhh yfkyayoahbxpvbayfbhbavctfyhatorbvqibqyhakvbacqhycypybuakioqtaibq ubvcrcqtayfbcvajphyamogbvhalvoiayfbaxoqhbqyaolayfbatorbvqbu yfkyagfbqbrbvakqwaloviaolatorbvqibqyanbxoibhaubhyvpxycrbaolayfbhbabquh cyachayfbavctfyaolayfbambomdbayoakdybvaovayoaknodchfacy

# From Black Magic to Mathematics 

History: secret algorithms, poorly undestood security properties

History: secret algorithms, poorly undestood security properties

## Modern cryptology

■ Open and clear models
■ Open algorithms (the only secret part is the key material)
■ Well-defined provable security properties

What is "Provable" Security?
The old way

The old way

1. somebody (re-)designs a cryptosystem or protocol

The old way

1. somebody (re-)designs a cryptosystem or protocol
2. somebody brakes it

The old way

1. somebody (re-)designs a cryptosystem or protocol
2. somebody brakes it
3. go back to step 1

What is "Provable" Security?
The new way (provable security)

What is "Provable" Security?
The new way (provable security)

1. Define formal security goals and adversarial models

The new way (provable security)

1. Define formal security goals and adversarial models
2. Design a few primitives

- based on public and time-tested algorithms and/or well-studied hard mathematical problems

The new way (provable security)

1. Define formal security goals and adversarial models
2. Design a few primitives

- based on public and time-tested algorithms and/or well-studied hard mathematical problems

3. Design a protocol (using primitives) with a proof of security

The new way (provable security)

1. Define formal security goals and adversarial models
2. Design a few primitives

- based on public and time-tested algorithms and/or well-studied hard mathematical problems

3. Design a protocol (using primitives) with a proof of security

- prove this implication:
primitive is secure $\Rightarrow$ protocol is secure

Let $N=p q$ for two prime factors $p$ and $q$
Problem: given $N$, find $p$ and $q$

Let $N=p q$ for two prime factors $p$ and $q$
Problem: given $N$, find $p$ and $q$
Solution: (trivial)

| $\operatorname{FACTOR}(N)$ |  |
| :--- | :--- |
| 1 | for $i \leftarrow 2$ to $\lfloor\sqrt{N}\rfloor$ |
| 2 | do if $i$ divides $N$ |
| 3 | then return $i, N / i$ |

Let $N=p q$ for two prime factors $p$ and $q$
Problem: given $N$, find $p$ and $q$
Solution: (trivial)

```
FACTOR(N)
fori
do if }i\mathrm{ divides N
3 then return i,N/i
```

Complexity: exponential in the size of $N$ (number of digits of $N$ )

Let $N=p q$ for two prime factors $p$ and $q$
Problem: given $N$, find $p$ and $q$
Solution: (trivial)

```
FACTOR(N)
1 for i}\leftarrow2\mathrm{ to \}\lfloor\sqrt{}{N}
2 do if }i\mathrm{ divides }
3 then return i,N/i
```

Complexity: exponential in the size of $N$ (number of digits of $N$ )
... we don't know how to do better!
Not even Gauss could figure that out!

Example: RSA,... $\Rightarrow$ SSH

## Example: the RSA cryptosystem (primitive) and SSH (protocol)

## Example: RSA,... $\Rightarrow$ SSH

Example: the RSA cryptosystem (primitive) and SSH (protocol)

- RSA is based on the hardness of factoring

■ Is RSA secure?

## Example: RSA,... $\Rightarrow$ SSH

Example: the RSA cryptosystem (primitive) and SSH (protocol)

- RSA is based on the hardness of factoring

■ Is RSA secure? We don't know!

## Example: RSA,... $\Rightarrow$ SSH

Example: the RSA cryptosystem (primitive) and SSH (protocol)

- RSA is based on the hardness of factoring

■ Is RSA secure? We don't know!
... but if you can break RSA (efficiently) then you can also factor a product of two large primes (efficiently)
...you are smarter than Gauss!

## Example: RSA,... $\Rightarrow$ SSH

Example: the RSA cryptosystem (primitive) and SSH (protocol)

■ RSA is based on the hardness of factoring
■ Is RSA secure? We don't know!
... but if you can break RSA (efficiently) then you can also factor a product of two large primes (efficiently)
...you are smarter than Gauss!

■ SSH uses the RSA public-key system (possibly, not only)
■ Is SSH secure?

## Example: RSA,... $\Rightarrow$ SSH

Example: the RSA cryptosystem (primitive) and SSH (protocol)

■ RSA is based on the hardness of factoring
■ Is RSA secure? We don't know!
... but if you can break RSA (efficiently) then you can also factor a product of two large primes (efficiently)
...you are smarter than Gauss!

■ SSH uses the RSA public-key system (possibly, not only)
■ Is SSH secure? Yes!

## Example: RSA,... $\Rightarrow$ SSH

Example: the RSA cryptosystem (primitive) and SSH (protocol)

- RSA is based on the hardness of factoring

■ Is RSA secure? We don't know!
... but if you can break RSA (efficiently) then you can also factor a product of two large primes (efficiently)
...you are smarter than Gauss!

■ SSH uses the RSA public-key system (possibly, not only)
■ Is SSH secure? Yes!
....in the sense that, if you can break SSH (efficiently) then you can also break RSA
...you are smarter than Gauss!

■ Basic ingredients: cryptographic primitives

- secret-key (symmetric) cryptography (e.g., AES)
- public-key (asymmetric) cryptography (e.g., RSA)
- cryptographic hash functions (e.g., SHA-1)
- stream ciphers (e.g., RC4)

■ Basic ingredients: cryptographic primitives

- secret-key (symmetric) cryptography (e.g., AES)
- public-key (asymmetric) cryptography (e.g., RSA)
- cryptographic hash functions (e.g., SHA-1)
- stream ciphers (e.g., RC4)

■ Recipes: cryptographic protocols

- certificates (e.g., X.509)
- secure transport (e.g., TLS, IPSec)
- ...
- Basic ingredients: cryptographic primitives
- secret-key (symmetric) cryptography (e.g., AES)
- public-key (asymmetric) cryptography (e.g., RSA)
- cryptographic hash functions (e.g., SHA-1)
- stream ciphers (e.g., RC4)

■ Recipes: cryptographic protocols

- certificates (e.g., X.509)
- secure transport (e.g., TLS, IPSec)
- ...
- Applications
- electronic commerce
- secure shell
- secure electronic mail
- virtual private networks
- ...

Symmetric Encryption
randomness

randomness


S
R
randomness







| $\mathbf{S}$ | sender |
| :--- | :--- |
| $\mathbf{R}$ | receiver |
| $\mathbf{A}$ | adversary |
| $E$ | encryption algorithm |
| $D$ | dencryption algorithm |
| $M$ | plaintext message |
| $C$ | ciphertext message |
| $K$ | key |

One-Time Pad

■ Assumptions: the message $M$ and the key $K$ are two $n$-bit strings

$$
M \in\{0,1\}^{n} ; \quad K \stackrel{\$}{\leftarrow}\{0,1\}^{n}
$$

■ Assumptions: the message $M$ and the key $K$ are two $n$-bit strings

$$
M \in\{0,1\}^{n} ; \quad K \stackrel{\$}{\leftarrow}\{0,1\}^{n}
$$

the key $K$ is chosen uniformly at random from $\{0,1\}^{n}$

■ Assumptions: the message $M$ and the key $K$ are two $n$-bit strings

$$
M \in\{0,1\}^{n} ; \quad K \stackrel{\$}{\leftarrow}\{0,1\}^{n}
$$

the key $K$ is chosen uniformly at random from $\{0,1\}^{n}$
■ Scheme

- encryption:

$$
E(K, M):=M \oplus K
$$

the key $K$ is then thrown away an never reused

- decryption:

$$
D(K, C):=C \oplus K
$$

■ Assumptions: the message $M$ and the key $K$ are two $n$-bit strings

$$
M \in\{0,1\}^{n} ; \quad K \stackrel{\$}{\leftarrow}\{0,1\}^{n}
$$

the key $K$ is chosen uniformly at random from $\{0,1\}^{n}$
■ Scheme

- encryption:

$$
E(K, M):=M \oplus K
$$

the key $K$ is then thrown away an never reused

- decryption:

$$
D(K, C):=C \oplus K
$$

■ Example: $\quad M \quad 0110010110111011$

■ Assumptions: the message $M$ and the key $K$ are two $n$-bit strings

$$
M \in\{0,1\}^{n} ; \quad K \stackrel{\$}{\leftarrow}\{0,1\}^{n}
$$

the key $K$ is chosen uniformly at random from $\{0,1\}^{n}$
■ Scheme

- encryption:

$$
E(K, M):=M \oplus K
$$

the key $K$ is then thrown away an never reused

- decryption:

$$
D(K, C):=C \oplus K
$$

■ Example: $\quad M \quad 0110010110111011$

■ Assumptions: the message $M$ and the key $K$ are two $n$-bit strings

$$
M \in\{0,1\}^{n} ; \quad K \stackrel{\$}{\leftarrow}\{0,1\}^{n}
$$

the key $K$ is chosen uniformly at random from $\{0,1\}^{n}$
■ Scheme

- encryption:

$$
E(K, M):=M \oplus K
$$

the key $K$ is then thrown away an never reused

- decryption:

$$
D(K, C):=C \oplus K
$$

■ Example:
K 1011000101000101
C 1101010011111110

Symmetric Encryption (2)

Symmetric Encryption (2)



| $\mathbf{S}$ | sender |
| :--- | :--- |
| $\mathbf{R}$ | receiver |
| $\mathbf{A}$ | adversary |
| $E$ | encryption algorithm |
| $D$ | dencryption algorithm |
| $M$ | plaintext message |
| $C$ | ciphertext message |
| $K$ | key |

Rules of the game:

- Kgen, $E$ and $D$ are public algorithms

■ A can not "steal" the key $K$
■ A can not "break into" S or $\mathbf{R}$
■ A might know something about $M$
A must guess $M$ correctly to win the game

So, What is Privacy Exactly?

So, What is Privacy Exactly?

■ A scheme is secure if we learn nothing from the ciphertext $C$

■ A scheme is secure if we learn nothing from the ciphertext $C$

- A more formal definition:
let $K \stackrel{\$}{\leftarrow} \mathcal{K}$; for every $m_{1} \neq m_{2} \in \mathcal{M}$, and for any $C$

■ A scheme is secure if we learn nothing from the ciphertext $C$

- A more formal definition:
let $K \stackrel{\$}{\leftarrow} \mathcal{K}$; for every $m_{1} \neq m_{2} \in \mathcal{M}$, and for any $C$

$$
\operatorname{Pr}_{K \in \mathcal{K}}\left[E_{K}\left(m_{1}\right)=C\right]=\operatorname{Pr}_{K \in \mathcal{K}}\left[E_{K}\left(m_{2}\right)=C\right]
$$

- A scheme is secure if we learn nothing from the ciphertext $C$
- A more formal definition:
let $K \stackrel{\$}{\leftarrow} \mathcal{K}$; for every $m_{1} \neq m_{2} \in \mathcal{M}$, and for any $C$

$$
\operatorname{Pr}_{K \in \mathcal{K}}\left[E_{K}\left(m_{1}\right)=C\right]=\operatorname{Pr}_{K \in \mathcal{K}}\left[E_{K}\left(m_{2}\right)=C\right]
$$

- Given a ciphertext $C$, every plaintext $m$ is equiprobable
- so, seeing any particular $C=E_{K}(M)$ tells us nothing about $M$
- A scheme is secure if we learn nothing from the ciphertext $C$
- A more formal definition:
let $K \stackrel{\$}{\leftarrow} \mathcal{K}$; for every $m_{1} \neq m_{2} \in \mathcal{M}$, and for any $C$

$$
\operatorname{Pr}_{K \in \mathcal{K}}\left[E_{K}\left(m_{1}\right)=C\right]=\operatorname{Pr}_{K \in \mathcal{K}}\left[E_{K}\left(m_{2}\right)=C\right]
$$

- Given a ciphertext $C$, every plaintext $m$ is equiprobable
- so, seeing any particular $C=E_{K}(M)$ tells us nothing about $M$

■ Is a shift cipher perfectly secure?

- A scheme is secure if we learn nothing from the ciphertext $C$
- A more formal definition:
let $K \stackrel{\$}{\leftarrow} \mathcal{K}$; for every $m_{1} \neq m_{2} \in \mathcal{M}$, and for any $C$

$$
\operatorname{Pr}_{K \in \mathcal{K}}\left[E_{K}\left(m_{1}\right)=C\right]=\operatorname{Pr}_{K \in \mathcal{K}}\left[E_{K}\left(m_{2}\right)=C\right]
$$

- Given a ciphertext $C$, every plaintext $m$ is equiprobable
- so, seeing any particular $C=E_{K}(M)$ tells us nothing about $M$

■ Is a shift cipher perfectly secure?
■ Is a substitution cipher perfectly secure?

- A scheme is secure if we learn nothing from the ciphertext $C$
- A more formal definition:
let $K \stackrel{\$}{\leftarrow} \mathcal{K}$; for every $m_{1} \neq m_{2} \in \mathcal{M}$, and for any $C$

$$
\operatorname{Pr}_{K \in \mathcal{K}}\left[E_{K}\left(m_{1}\right)=C\right]=\operatorname{Pr}_{K \in \mathcal{K}}\left[E_{K}\left(m_{2}\right)=C\right]
$$

- Given a ciphertext $C$, every plaintext $m$ is equiprobable
- so, seeing any particular $C=E_{K}(M)$ tells us nothing about $M$

■ Is a shift cipher perfectly secure?
■ Is a substitution cipher perfectly secure?
■ Is one-time-pad perfectly secure?

The Cost of Perfect Privacy

The Cost of Perfect Privacy

- Perfect privacy implies that

$$
|\mathcal{K}| \geq|\mathcal{M}|
$$

- Perfect privacy implies that

$$
|\mathcal{K}| \geq|\mathcal{M}|
$$

- Proof: assume not.

Fix a possible ciphertext $C$, i.e., there is a message $m$ and a key $k$ such that $E_{K}(m)=C$, and $\operatorname{Pr}_{K \in \mathcal{K}}\left[E_{K}(m)=C\right]>0$
Let $P_{C}=\left\{m \in \mathcal{M}\right.$ such that $E_{k}(m)=C$ for some $\left.k\right\}$
Since every $k$ maps exactly one message $m$ to $C$, and since we have fewer keys than messages, then there is an $m^{\prime} \notin P_{C}$ such that no key $k$ maps $m^{\prime}$ to $C$; therefore $\operatorname{Pr}_{K \in \mathcal{K}}\left[E_{K}\left(m^{\prime}\right)=C\right]=0$, which violates the perfect-secrecy condition that for all $m$ and $m^{\prime}, \operatorname{Pr}_{K \in \mathcal{K}}\left[E_{K}(m)=C\right]=\operatorname{Pr}_{K \in \mathcal{K}}\left[E_{K}\left(m^{\prime}\right)=C\right]$

Message Authenticity

Message Authenticity

## S

R
$\mathbf{S} \xrightarrow{M} R$

Message Authenticity






## Message Authenticity



| $\sigma$ | message authentication code (MAC) |
| :--- | :--- |
| $K$ | key |
| $\$$ | randomness |
| MAC gen. | MAC generation algorithm |
| MAC ver. | MAC verification algorithm |

$\mathbf{S} \xrightarrow{M} E$
R



## Asymmetric Encryption



Asymmetric Encryption



| $P K_{R}$ | receiver's public key |
| :--- | :--- |
| $S K_{R}$ | receiver's secret key |
| $M$ | plaintext message |
| $C$ | ciphertext message |

Digital Signatures

Digital Signatures



Digital Signatures




| $\sigma$ | digital signature |
| :--- | :--- |
| $S K_{S}$ | sender's secret key |
| $P K_{S}$ | sender's public key |
| $\$$ | randomness |
| sign | signing algorithm |
| verify | verification algorithm |

Primitives vs. Protocols

# Primitives vs. Protocols 

- Protocol
- an algorithm
- solves a specific security problem (e.g., signing a message)


# Primitives vs. Protocols 

■ Protocol

- an algorithm
- solves a specific security problem (e.g., signing a message)

■ Primitive

## Primitives vs. Protocols

■ Protocol

- an algorithm
- solves a specific security problem (e.g., signing a message)

■ Primitive

- also an algorithm
- the elementary subroutines of protocols
- implement (try to approximate) well-defined mathematical object
- embody "hard problems"

Stream Ciphers

■ A stream cipher is a generator of a pseudo-random streams

- A stream cipher is a generator of a pseudo-random streams
- given an initialization key $K$
- generates an infinite pseudo-random sequence of bits

■ A stream cipher is a generator of a pseudo-random streams

- given an initialization key $K$
- generates an infinite pseudo-random sequence of bits

■ E.g., RC4

Padding with a Stream Cipher
$\square$ Assumptions: $S$ and $R$ share a secret key $K$ and agree to use a stream cipher $S_{K}$

- $S$ and $R$ maintain some state: position $s$ initialized to $s=0$
- Assumptions: $S$ and $R$ share a secret key $K$ and agree to use a stream cipher $S_{K}$
- $S$ and $R$ maintain some state: position $s$ initialized to $s=0$
- Encryption protocol

1. $S$ computes $C \leftarrow M \oplus S_{K}[s \ldots s+|M|-1]$
2. $s$ updates its position $s \leftarrow s+|M|$

■ Assumptions: $S$ and $R$ share a secret key $K$ and agree to use a stream cipher $S_{K}$

- $S$ and $R$ maintain some state: position $s$ initialized to $s=0$
- Encryption protocol

1. $S$ computes $C \leftarrow M \oplus S_{K}[s \ldots s+|M|-1]$
2. $S$ updates its position $s \leftarrow s+|M|$

- Dencryption protocol

1. $R$ computes $M \leftarrow C \oplus S_{K}[s \ldots s+|C|-1]$
2. $R$ updates its position $s \leftarrow s+|C|$

■ Block Cipher: $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

■ Block Cipher: $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$


■ Block Cipher: $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$


- $E_{K}(\cdot)$ is a permutation, so $E_{K}^{-1}(\cdot)$ is always defined

■ Block Cipher: $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$


- $E_{K}(\cdot)$ is a permutation, so $E_{K}^{-1}(\cdot)$ is always defined
- fixed-length input and output ( $n$ )

■ Block Cipher: $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$


- $E_{K}(\cdot)$ is a permutation, so $E_{K}^{-1}(\cdot)$ is always defined
- fixed-length input and output ( $n$ )
- fixed-length key (k)

■ Block Cipher: $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$


- $E_{K}(\cdot)$ is a permutation, so $E_{K}^{-1}(\cdot)$ is always defined
- fixed-length input and output ( $n$ )
- fixed-length key (k)
- e.g., DES, AES


## An Encryption Protocol

- Symmetric encryption
- Input: $k$-bit key $K$, $N$-bit message $M$
- Output: $N$-bit ciphertext $C$


## An Encryption Protocol

- Symmetric encryption
- Input: $k$-bit key $K, N$-bit message $M$
- Output: $N$-bit ciphertext $C$
- Cipher Block Chaining (CBC)
- use a block cipher $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
- split $M$ into $n$-bit blocks $M=M_{0}\left\|M_{1}\right\| \ldots \| M_{\ell} \quad(\ell=\lfloor N / n\rfloor)$


## An Encryption Protocol

- Symmetric encryption
- Input: $k$-bit key $K, N$-bit message $M$
- Output: $N$-bit ciphertext $C$
- Cipher Block Chaining (CBC)
- use a block cipher $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
- split $M$ into $n$-bit blocks $M=M_{0}\left\|M_{1}\right\| \ldots \| M_{\ell} \quad(\ell=\lfloor N / n\rfloor)$

```
CBC \((K, M)\)
\(1 \quad x \leftarrow 0^{n}\)
2 for \(i \leftarrow 0\) to \(\lfloor|M| / n\rfloor\)
    do \(C[n i \ldots n i+n-1] \leftarrow E_{K}(x \oplus M[n i \ldots n i+n-1])\)
        \(x \leftarrow C[n i \ldots n i+n-1]\)
    return \(C\)
```


## An Encryption Protocol

■ Symmetric encryption

- Input: $k$-bit key $K, N$-bit message $M$
- Output: $N$-bit ciphertext $C$
- Cipher Block Chaining (CBC)
- use a block cipher $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
- split $M$ into $n$-bit blocks $M=M_{0}\left\|M_{1}\right\| \ldots \| M_{\ell} \quad(\ell=\lfloor N / n\rfloor)$


Exercise

- Write the decryption algorithm for CBC
- Write the decryption algorithm for CBC

```
CBC-DECRYPT \((K, C)\)
\(1 x \leftarrow 0^{n}\)
2 for \(i \leftarrow 0\) to \(\lfloor|C| / n\rfloor\)
3 do \(M[n i \ldots n i+n-1] \leftarrow x \oplus E_{K}^{-1}(C[n i \ldots n i+n-1])\)
\(4 \quad x \leftarrow C[n i \ldots n i+n-1]\)
5 return \(M\)
```


## An Encryption Protocol (2)

- Is this CBC protocol secure?


# An Encryption Protocol (2) 

■ Is this CBC protocol secure?

- any deterministic stateless protocol is insecure
- we need state and/or randomness
- Is this CBC protocol secure?
- any deterministic stateless protocol is insecure
- we need state and/or randomness
- What if $|M| \neq 0 \bmod n$ ?
- Is this CBC protocol secure?
- any deterministic stateless protocol is insecure
- we need state and/or randomness

■ What if $|M| \neq 0 \bmod n$ ?
■ Is CBC parallelizable?

CBC With Random IV

■ CBC\$: cipher block chaining with random IV

■ CBC\$: cipher block chaining with random IV

```
CBC\$-EnCRYPT( \(K, M\) )
\(1 \quad\) if \(|M|=0 \vee|M| \neq 0 \bmod n\)
        then return \(\perp\)
\(3 M[1] \cdot M[2] \cdots M[\ell] \leftarrow M\)
\(\begin{array}{ll}4 & I V \stackrel{\$}{\leftarrow}\{0,1\}^{n} \\ 5 & C[0] \leftarrow I V\end{array}\)
    for \(i \leftarrow 1\) to \(\ell\)
        do \(C[i] \leftarrow E_{K}(C[i-1] \oplus M[i])\)
\(8 \quad C \leftarrow C[1] \cdot C[2] \cdots C[\ell]\)
9 return \(\langle I V, C\rangle\)
```

■ CBC\$: cipher block chaining with random IV (decryption)

■ CBC\$: cipher block chaining with random IV (decryption)

$$
\begin{aligned}
& \text { CBC\$-DECRYPT }(K, I V, C) \\
& 1 \text { if }|C|=0 \vee|C| \neq 0 \bmod n \\
& \text { then return } \perp \\
& 3 C[1] \cdot C[2] \cdots C[\ell] \leftarrow C \\
& 4 \quad C[0] \leftarrow I V \\
& 5 \text { for } i \leftarrow 1 \text { to } \ell \\
& \text { do } M[i] \leftarrow C[i-1] \oplus E_{K}(C[i]) \\
& M \leftarrow M[1] \cdot M[2] \cdots M[\ell] \\
& 8 \text { return } M
\end{aligned}
$$

# CBC With Stateful Counter 

■ CBCC: cipher block chaining with stateful counter

■ CBCC: cipher block chaining with stateful counter

$$
\begin{array}{|ll|}
\hline \text { CBCC-ENCRYPT }(K, M) \\
1 & \text { static } \operatorname{ctr} \leftarrow 0 \\
2 & \text { if } c t r \geq 2^{n} \vee|M|=0 \vee|M| \neq 0 \bmod n \\
3 & \text { then return } \perp \\
4 & M[1] \cdot M[2] \cdots M[\ell] \leftarrow M \\
5 & N V \leftarrow[\operatorname{tr}]_{n} \\
6 & C[0] \leftarrow[\operatorname{ctr}]_{n} \\
7 & \text { for } i \leftarrow 1 \text { to } \ell \\
8 & \text { do } C[i] \leftarrow E_{K}(C[i-1] \oplus M[i]) \\
9 & C \leftarrow C[1] \cdot C[2] \cdots C[\ell] \\
10 & \text { ctr } \leftarrow \operatorname{ctr}+1 \\
11 & \text { return }\langle I V, C\rangle
\end{array}
$$

■ CBCC: cipher block chaining with stateful counter

■ CBCC: cipher block chaining with stateful counter

$$
\begin{array}{|l}
\hline \text { CBCC-DECRYPT }(K, I V, C) \\
1 \\
\text { if } I V+|C| \geq 2^{n} \vee|C|=0 \vee|C| \neq 0 \bmod n \\
2
\end{array} \quad \text { then return } \perp \text {. }
$$

■ CTR\$: counter mode with random initial counter

■ CTR\$: counter mode with random initial counter

- family of functions: $F:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

■ CTR\$: counter mode with random initial counter

- family of functions: $F:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

$$
\begin{aligned}
& \text { CTR\$-EnCRYPT }(K, M) \\
& 1 \quad R \stackrel{\$}{\leftarrow}\{0,1\}^{n} \\
& 2 \mathrm{Pad} \leftarrow F_{K}\left([R]_{n}\right) \\
& 3 \text { for } i \leftarrow 1 \text { to }\lceil|M| / n\rceil-1 \\
& 4 \quad \text { do } \operatorname{Pad} \leftarrow \operatorname{Pad} \cdot F_{K}\left([R+i]_{n}\right) \\
& 5 \text { Pad } \leftarrow \text { first }|M| \text { bits of Pad } \\
& 6 \quad C \leftarrow M \oplus \text { Pad } \\
& 7 \text { return }\langle R, C\rangle
\end{aligned}
$$

■ CTR\$: counter mode with random initial counter (decryption)

- family of functions: $F:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

■ CTR\$: counter mode with random initial counter (decryption)

- family of functions: $F:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

$$
\begin{aligned}
& \text { CTR\$-DECRYPT }(K, R, C) \\
& 1 \mathrm{Pad} \leftarrow F_{K}\left([R]_{n}\right) \\
& 2 \text { for } i \leftarrow 1 \text { to }\lceil|C| / n\rceil-1 \\
& 3 \text { do Pad } \leftarrow \operatorname{Pad} \cdot F_{K}\left([R+i]_{n}\right) \\
& 4 \text { Pad } \leftarrow \text { first }|C| \text { bits of Pad } \\
& 5 M \leftarrow C \oplus P a d \\
& 6 \text { return } M
\end{aligned}
$$

■ CTRC: counter mode with stateful counter

- family of functions: $F:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

■ CTRC: counter mode with stateful counter

- family of functions: $F:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

$$
\begin{array}{ll}
\text { CTRC }(K, M) \\
1 & \text { static } R \leftarrow 0 \\
2 & \ell \leftarrow\lceil|M| / n\rceil \\
3 & \text { if } R+\ell-1 \geq 2^{n} \\
4 & \text { then return } \perp \\
5 & \text { Pad } \leftarrow F_{K}\left([R]_{n}\right) \\
6 & \text { for } i \leftarrow 1 \text { to } \ell-1 \\
7 & \text { do Pad } \leftarrow \text { Pad } \cdot F_{K}\left([R+i]_{n}\right) \\
8 & \text { Pad } \leftarrow \text { first }|M| \text { bits of Pad } \\
9 & C \leftarrow M \oplus \text { Pad } \\
10 & R \leftarrow R+\ell \\
11 & \text { return }\langle R-\ell, C\rangle
\end{array}
$$

Counter Mode (4)

■ CTRC: counter mode with stateful counter (decryption)

- family of functions: $F:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

■ CTRC: counter mode with stateful counter (decryption)

- family of functions: $F:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

$$
\begin{aligned}
& \text { CTRC-DECRYPT }(K, R, C) \\
& 1 \mathrm{Pad} \leftarrow F_{K}\left([R]_{n}\right) \\
& 2 \text { for } i \leftarrow 1 \text { to }\lceil|C| / n\rceil-1 \\
& 3 \text { do Pad } \leftarrow \operatorname{Pad} \cdot F_{K}\left([R+i]_{n}\right) \\
& 4 \text { Pad } \leftarrow \text { first }|C| \text { bits of Pad } \\
& 5 \quad M \leftarrow C \oplus P a d \\
& 6 \text { return } M
\end{aligned}
$$

- MAC generation
- Input: $k$-bit key $K, N$-bit message $M$
- Output: $n$-bit message authentication code $\sigma$


## Authentication Protocol

- MAC generation
- Input: $k$-bit key $K, N$-bit message $M$
- Output: $n$-bit message authentication code $\sigma$

■ CBC with random IV

- use a block cipher $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
- split $M$ into $n$-bit blocks $M=M_{0}\left\|M_{1}\right\| \ldots \| M_{\ell} \quad(\ell=\lfloor N / n\rfloor)$

$$
\begin{aligned}
& \operatorname{MAC}(K, M) \\
& I V \stackrel{\$}{\leftarrow}\{0,1\}^{n} \\
& C \leftarrow I V \\
& \text { for } i \leftarrow 0 \text { to }\lfloor|M| / n\rfloor \\
& \text { do } C \leftarrow E_{K}(C \oplus M[n i \ldots n i+n-1]) \\
& 5 \text { return }\langle I V, C\rangle
\end{aligned}
$$

## Authentication Protocol

- MAC generation
- Input: $k$-bit key $K, N$-bit message $M$
- Output: $n$-bit message authentication code $\sigma$
- CBC with random IV
- use a block cipher $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
- split $M$ into $n$-bit blocks $M=M_{0}\left\|M_{1}\right\| \ldots \| M_{\ell} \quad(\ell=\lfloor N / n\rfloor)$


■ CBC MAC: cipher block chaining MAC with random IV

■ CBC MAC: cipher block chaining MAC with random IV

| $C B C-M A C \$(K, M)$ |  |
| :--- | :--- |
| 1 | if $\|M\|=0 \vee\|M\| \neq 0 \bmod n$ |
| 2 | then return $\perp$ |
| 3 | $M[1] \cdot M[2] \cdots M[\ell] \leftarrow M$ |
| 4 | $I V \$\{0,1\}^{n}$ |
| 5 | $C \leftarrow I V$ |
| 6 | for $i \leftarrow 1$ to $\ell$ |
| 7 | do $C \leftarrow E_{K}(C \oplus M[i])$ |
| 8 | return $\langle I V, C\rangle$ |

## CBC MAC: Verification

■ CBC MAC: cipher block chaining MAC with random IV

■ CBC MAC: cipher block chaining MAC with random IV

$$
\begin{aligned}
& \text { CBC-MAC\$-VERIFY }(K, I V, \sigma, M) \\
& 1 \text { if }|M|=0 \vee|M| \neq 0 \bmod n \\
& 2 \text { then return } \perp \\
& M[1] \cdot M[2] \cdots M[\ell] \leftarrow M \\
& C \leftarrow I V \\
& 5 \text { for } i \leftarrow 1 \text { to } \ell \\
& 6 \quad \text { do } C \leftarrow E_{K}(C \oplus M[i]) \\
& 7 \text { if } C=\sigma \\
& 8 \text { then return ACCEPT } \\
& 9 \text { else return REJECT }
\end{aligned}
$$

# Cryptographic Hash Functions 

■ Cryptographic Hash: $H:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$

■ Cryptographic Hash: $\mathrm{H}:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$


■ Cryptographic Hash: $\mathrm{H}:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$

- $H(\cdot)$ is a good hash function when (informally)

$$
\forall m \in\{0,1\}^{*}, h \in\{0,1\}^{n}, \operatorname{Pr}[H(m)=h]=\frac{1}{2^{n}}
$$

■ Cryptographic Hash: $\mathrm{H}:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$

- $H(\cdot)$ is a good hash function when (informally)

$$
\forall m \in\{0,1\}^{*}, h \in\{0,1\}^{n}, \operatorname{Pr}[H(m)=h]=\frac{1}{2^{n}}
$$

- it is "difficult" to find collisions

$$
\text { find } m_{1}, m_{2} \in\{0,1\}^{*}: m_{1} \neq m_{2}, H\left(m_{1}\right)=H\left(m_{2}\right)
$$

■ Cryptographic Hash: $\mathrm{H}:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$

- $H(\cdot)$ is a good hash function when (informally)

$$
\forall m \in\{0,1\}^{*}, h \in\{0,1\}^{n}, \operatorname{Pr}[H(m)=h]=\frac{1}{2^{n}}
$$

- it is "difficult" to find collisions

$$
\text { find } m_{1}, m_{2} \in\{0,1\}^{*}: m_{1} \neq m_{2}, H\left(m_{1}\right)=H\left(m_{2}\right)
$$

- it is "difficult" to find a preimage

$$
\text { given } m \in\{0,1\}^{*}, \text { find } m^{\prime}: H\left(m^{\prime}\right)=m
$$

■ Cryptographic Hash: $\mathrm{H}:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$

- $H(\cdot)$ is a good hash function when (informally)

$$
\forall m \in\{0,1\}^{*}, h \in\{0,1\}^{n}, \operatorname{Pr}[H(m)=h]=\frac{1}{2^{n}}
$$

- it is "difficult" to find collisions

$$
\text { find } m_{1}, m_{2} \in\{0,1\}^{*}: m_{1} \neq m_{2}, H\left(m_{1}\right)=H\left(m_{2}\right)
$$

- it is "difficult" to find a preimage

$$
\text { given } m \in\{0,1\}^{*}, \text { find } m^{\prime}: H\left(m^{\prime}\right)=m
$$

- e.g., SHA-1


## Summary

- Basic ingredients: cryptographic primitives
- secret-key (symmetric) cryptography (e.g., AES)
- public-key (asymmetric) cryptography (e.g., RSA)
- cryptographic hash functions (e.g., SHA-1)
- stream ciphers (e.g., RC4)

■ Basic ingredients: cryptographic primitives

- secret-key (symmetric) cryptography (e.g., AES)
- public-key (asymmetric) cryptography (e.g., RSA)
- cryptographic hash functions (e.g., SHA-1)
- stream ciphers (e.g., RC4)

■ Recipes: cryptographic protocols

- certificates (e.g., X.509)
- secure transport (e.g., TLS, IPSec)
- ...

■ Basic ingredients: cryptographic primitives

- secret-key (symmetric) cryptography (e.g., AES)
- public-key (asymmetric) cryptography (e.g., RSA)
- cryptographic hash functions (e.g., SHA-1)
- stream ciphers (e.g., RC4)

■ Recipes: cryptographic protocols

- certificates (e.g., X.509)
- secure transport (e.g., TLS, IPSec)
- ...
- Applications
- electronic commerce
- secure shell
- secure electronic mail
- virtual private networks
- ...

