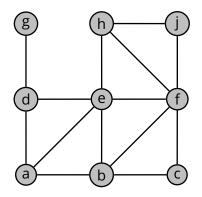
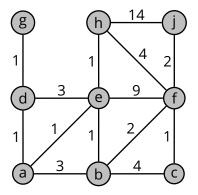
Basics of Routing and Link-State Routing

Antonio Carzaniga

Faculty of Informatics Università della Svizzera italiana


December 6, 2016

Outline


- Routing problem
- Graph model
- Classes of routing algorithms
- Broadcast routing
- Link-state routing
- Dijkstra's algorithm

Finding paths through a network

Finding paths through a network

Finding paths through a network

• Example: $a \rightarrow j$?

The network is modeled as a graph

G = (V, E)

The network is modeled as a graph

G = (V, E)

V is a set of vertices representing the routers

The network is modeled as a graph

G = (V, E)

- V is a set of vertices representing the routers
- $E \subseteq V \times V$ is a set of *edges* representing communication links
 - e.g., $(u, v) \in E$ iff router *u* is on the same subnet as *v*

The network is modeled as a graph

G=(V,E)

- V is a set of vertices representing the routers
- $E \subseteq V \times V$ is a set of *edges* representing communication links
 - e.g., $(u, v) \in E$ iff router *u* is on the same subnet as *v*
- G is assumed to be an *undirected graph*, meaning that *links are bidirectional*
 - i.e., $(u, v) \in E \Leftrightarrow (v, u) \in E$ for all $u, v \in N$

■ The network is modeled as a graph

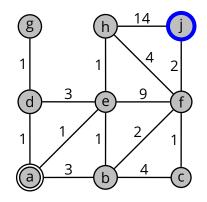
G=(V,E)

- V is a set of vertices representing the routers
- $E \subseteq V \times V$ is a set of *edges* representing communication links
 - e.g., $(u, v) \in E$ iff router u is on the same subnet as v
- G is assumed to be an *undirected graph*, meaning that *links are bidirectional*
 - i.e., $(u, v) \in E \Leftrightarrow (v, u) \in E$ for all $u, v \in N$
- A *cost* function $c : E \to \mathbb{R}$
 - costs are always positive: c(e) > 0 for all $e \in E$
 - ► links are symmetric: c(u, v) = c(v, u) for all $u, v \in N$

For every router $u \in V$, for every other router $v \in V$, compute the path $P_{u \to v} = u, x_1, x_2, \dots, x_n, v$ such that

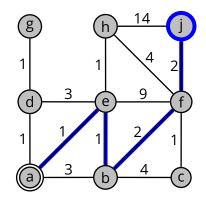
- For every router $u \in V$, for every other router $v \in V$, compute the path $P_{u \to v} = u, x_1, x_2, \dots, x_n, v$ such that
 - ► $P_{u \to v}$ is completely contained in the network graph *G*. I.e., $(u, x_1) \in V, (x_1, x_2) \in V, \dots, (x_n, v) \in V$

- For every router $u \in V$, for every other router $v \in V$, compute the path $P_{u \to v} = u, x_1, x_2, \dots, x_n, v$ such that
 - ► $P_{u \to v}$ is completely contained in the network graph *G*. I.e., $(u, x_1) \in V, (x_1, x_2) \in V, \dots, (x_n, v) \in V$
 - ► $P_{u \to v}$ is a *least-cost path*, where the cost of the path is $c(P_{u \to v}) = c(u, x_1) + c(x_1, x_2) + \ldots + c(x_n, v)$

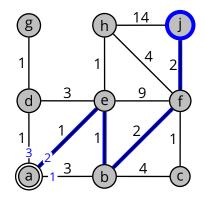

- For every router $u \in V$, for every other router $v \in V$, compute the path $P_{u \to v} = u, x_1, x_2, \ldots, x_n, v$ such that
 - ► $P_{u \to v}$ is completely contained in the network graph *G*. I.e., $(u, x_1) \in V, (x_1, x_2) \in V, \dots, (x_n, v) \in V$
 - $P_{u \to v}$ is a *least-cost path*, where the cost of the path is $c(P_{u \to v}) = c(u, x_1) + c(x_1, x_2) + \ldots + c(x_n, v)$

■ Compile *u*'s forwarding table by adding the following entry:

$$A(v) \to I_u(x_1)$$


- ► *A*(*v*) is the address (or set of addresses) of router *v*
- $I_u(x_1)$ is the interface that connects u to the first next-hop router x_1 in $P_{u \to v} = u, x_1, x_2, \dots, x_n, v$

Back To The Example


Back To The Example

Example: $a \rightarrow j$

• least-cost path is $P_{a \rightarrow j} = a, e, b, f, j$

Back To The Example

Example: $a \rightarrow j$

- least-cost path is $P_{a \rightarrow j} = a, e, b, f, j$
- *a*'s forwarding table will contain an entry $j \rightarrow 2$ since $I_a(e) = 2$

■ There are two main strategies to implement a routing algorithm

- There are two main strategies to implement a routing algorithm
- Link-state routing

■ There are two main strategies to implement a routing algorithm

Link-state routing

- global view of the network
- Iocal computation of least-cost paths

■ There are two main strategies to implement a routing algorithm

Link-state routing

- global view of the network
- Iocal computation of least-cost paths

Distance-vector routing

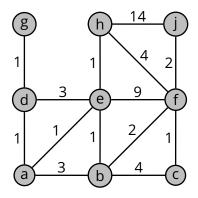
■ There are two main strategies to implement a routing algorithm

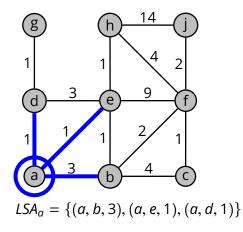
Link-state routing

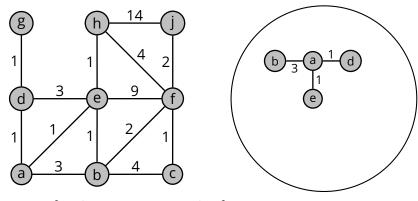
- global view of the network
- Iocal computation of least-cost paths

Distance-vector routing

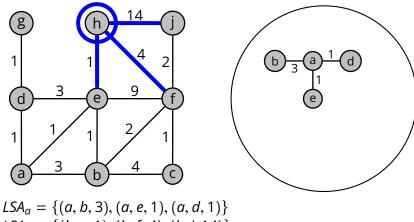
- Iocal view of the network
- global computation of least-cost paths

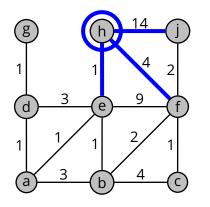

Router u maintains a complete view of the network graph G (including all links and their costs)

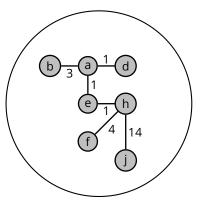

- Router u maintains a complete view of the network graph G (including all links and their costs)
 - every router v advertises its adjacent links (their costs) to every other router in the network; this information is called *link state*
 - *link-state advertisements (LSAs)* are broadcast through the entire network


- Router u maintains a complete view of the network graph G (including all links and their costs)
 - every router v advertises its adjacent links (their costs) to every other router in the network; this information is called *link state*
 - *link-state advertisements (LSAs)* are broadcast through the entire network
 - routers collect link-state advertisements from other routers, and they use them to compile and maintain a complete view of G

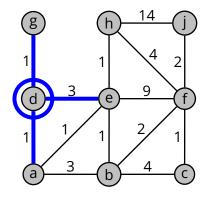
- Router u maintains a complete view of the network graph G (including all links and their costs)
 - every router v advertises its adjacent links (their costs) to every other router in the network; this information is called *link state*
 - *link-state advertisements (LSAs)* are broadcast through the entire network
 - routers collect link-state advertisements from other routers, and they use them to compile and maintain a complete view of G
- Using its local representation of *G*, router *u* computes the least-cost paths from *u* to every other router in the network

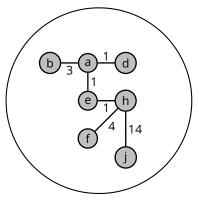

- Router u maintains a complete view of the network graph G (including all links and their costs)
 - every router v advertises its adjacent links (their costs) to every other router in the network; this information is called *link state*
 - *link-state advertisements (LSAs)* are broadcast through the entire network
 - routers collect link-state advertisements from other routers, and they use them to compile and maintain a complete view of G
- Using its local representation of G, router u computes the least-cost paths from u to every other router in the network
 - the computation is local

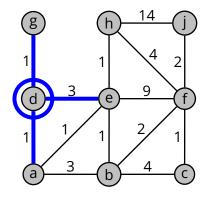


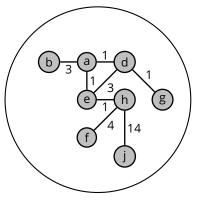


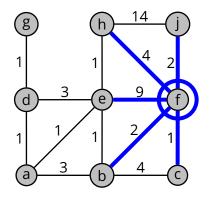
 $LSA_a = \{(a, b, 3), (a, e, 1), (a, d, 1)\}$

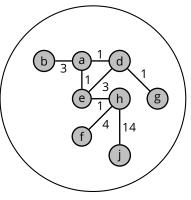



 $LSA_{h} = \{(h, e, 1), (h, f, 4), (h, j, 14)\}$

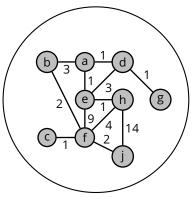



 $LSA_a = \{(a, b, 3), (a, e, 1), (a, d, 1)\}$ $LSA_h = \{(h, e, 1), (h, f, 4), (h, j, 14)\}$



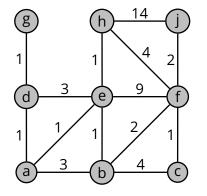

 $LSA_a = \{(a, b, 3), (a, e, 1), (a, d, 1)\}$ $LSA_h = \{(h, e, 1), (h, f, 4), (h, j, 14)\}$ $LSA_d = \{(d, a, 1), (d, g, 1), (d, e, 3)\}$


 $LSA_a = \{(a, b, 3), (a, e, 1), (a, d, 1)\}$ $LSA_h = \{(h, e, 1), (h, f, 4), (h, j, 14)\}$ $LSA_d = \{(d, a, 1), (d, g, 1), (d, e, 3)\}$

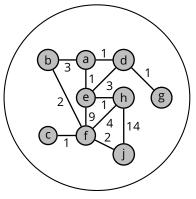


 $LSA_{a} = \{(a, b, 3), (a, e, 1), (a, d, 1)\}$ $LSA_{h} = \{(h, e, 1), (h, f, 4), (h, j, 14)\}$ $LSA_{d} = \{(d, a, 1), (d, g, 1), (d, e, 3)\}$ $LSA_{f} = \{(f, c, 1), (f, b, 1), (f, e, 3), (f, h, 4), (f, j, 2)\}$

Link-State Advertisements


$$LSA_{a} = \{(a, b, 3), (a, e, 1), (a, d, 1)\}$$

$$LSA_{h} = \{(h, e, 1), (h, f, 4), (h, j, 14)\}$$


$$LSA_{d} = \{(d, a, 1), (d, g, 1), (d, e, 3)\}$$

$$LSA_{f} = \{(f, c, 1), (f, b, 1), (f, e, 3), (f, h, 4), (f, j, 2)\}$$

Link-State Advertisements

. . .

$$LSA_{a} = \{(a, b, 3), (a, e, 1), (a, d, 1)\}$$

$$LSA_{h} = \{(h, e, 1), (h, f, 4), (h, j, 14)\}$$

$$LSA_{d} = \{(d, a, 1), (d, g, 1), (d, e, 3)\}$$

$$LSA_{f} = \{(f, c, 1), (f, b, 1), (f, e, 3), (f, h, 4), (f, j, 2)\}$$

Link-State Routing Ingredients

What do we need to implement link-state routing?

Link-State Routing Ingredients

What do we need to implement link-state routing?

Every router sends its LSA to every other router in the network, so we need a broadcast routing scheme

Link-State Routing Ingredients

What do we need to implement link-state routing?

- Every router sends its LSA to every other router in the network, so we need a broadcast routing scheme
- Once we have all the LSAs from every router, and therefore we complete knowledge of G, we need an *algorithm to compute least-cost paths in a graph*

Flooding

 every router forwards a broadcast packet to every adjacent router, except the one that sent the packet

- every router forwards a broadcast packet to every adjacent router, except the one that sent the packet
- Simple and elegant

- every router forwards a broadcast packet to every adjacent router, except the one that sent the packet
- Simple and elegant
- Correct w.r.t. the broadcast requirement: a broadcast packet will eventually reach every router

- every router forwards a broadcast packet to every adjacent router, except the one that sent the packet
- Simple and elegant
- Correct w.r.t. the broadcast requirement: a broadcast packet will eventually reach every router
- Any problem with this solution?

- every router forwards a broadcast packet to every adjacent router, except the one that sent the packet
- Simple and elegant
- Correct w.r.t. the broadcast requirement: a broadcast packet will eventually reach every router
- Any problem with this solution?
 - cycles in the network create packet storms

- every router forwards a broadcast packet to every adjacent router, except the one where it received the packet router
- a router u accepts a broadcast packet p originating at router s only if p arrives on the link that is on the direct (unicast) path from u to s

Reverse-path broadcast

- every router forwards a broadcast packet to every adjacent router, except the one where it received the packet router
- a router u accepts a broadcast packet p originating at router s only if p arrives on the link that is on the direct (unicast) path from u to s

Correct w.r.t. the broadcast requirement: a broadcast packet will eventually reach every router

- every router forwards a broadcast packet to every adjacent router, except the one where it received the packet router
- a router u accepts a broadcast packet p originating at router s only if p arrives on the link that is on the direct (unicast) path from u to s
- Correct w.r.t. the broadcast requirement: a broadcast packet will eventually reach every router
- No packet storms even in the presence of cycles in *G*

- every router forwards a broadcast packet to every adjacent router, except the one where it received the packet router
- a router u accepts a broadcast packet p originating at router s only if p arrives on the link that is on the direct (unicast) path from u to s
- Correct w.r.t. the broadcast requirement: a broadcast packet will eventually reach every router
- No packet storms even in the presence of cycles in *G*
- Any problem with this solution?

- every router forwards a broadcast packet to every adjacent router, except the one where it received the packet router
- a router u accepts a broadcast packet p originating at router s only if p arrives on the link that is on the direct (unicast) path from u to s
- Correct w.r.t. the broadcast requirement: a broadcast packet will eventually reach every router
- No packet storms even in the presence of cycles in *G*
- Any problem with this solution?
 - it requires (unicast) routing information
 - so it is obviously useless to implement a routing algorithm

Sequence-number controlled flooding

• the originator s of a broadcast packet marks the packet with a sequence number n_s

- the originator s of a broadcast packet marks the packet with a sequence number n_s
- every router u stores the most recent sequence number seen from each source router. Let's assume that u has seen sequence numbers from s up to n_s

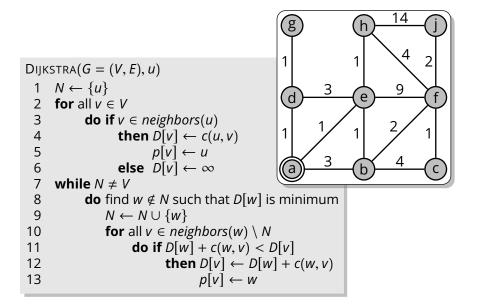
- the originator s of a broadcast packet marks the packet with a sequence number n_s
- every router u stores the most recent sequence number seen from each source router. Let's assume that u has seen sequence numbers from s up to n_s
- ► a router accepts a broadcast packet p originating at s only if p carries a sequence number seq(p) that is higher than the most recent one seen from s: seq(p) > n_s

- the originator s of a broadcast packet marks the packet with a sequence number n_s
- every router u stores the most recent sequence number seen from each source router. Let's assume that u has seen sequence numbers from s up to n_s
- ► a router accepts a broadcast packet *p* originating at *s* only if *p* carries a sequence number seq(*p*) that is higher than the most recent one seen from *s*: seq(*p*) > n_s
- accepted packets are forwarded to every adjacent router, except the previous-hop router

- the originator s of a broadcast packet marks the packet with a sequence number n_s
- every router u stores the most recent sequence number seen from each source router. Let's assume that u has seen sequence numbers from s up to n_s
- ► a router accepts a broadcast packet *p* originating at *s* only if *p* carries a sequence number seq(*p*) that is higher than the most recent one seen from *s*: seq(*p*) > n_s
- accepted packets are forwarded to every adjacent router, except the previous-hop router
- *u* updates its table of sequence numbers $n_s \leftarrow seq(p)$

Executing locally at node *u*

- Executing locally at node *u*
- Variables storing values known at each iteration


- Executing locally at node *u*
- Variables storing values known at each iteration
 - ► *D*[*v*], cost of the least-cost path from *u* to *v*

- Executing locally at node *u*
- Variables storing values known at each iteration
 - ► *D*[*v*], cost of the least-cost path from *u* to *v*
 - p[v], node preceding v (neighbor of v) on the least-cost path from u to v

- Executing locally at node *u*
- Variables storing values known at each iteration
 - ► *D*[*v*], cost of the least-cost path from *u* to *v*
 - p[v], node preceding v (neighbor of v) on the least-cost path from u to v
 - ► *N*, nodes of *G* whose least-cost path from *u* is definitely known

DIJKSTRA(G = (V, E), u) $N \leftarrow \{u\}$ 1 2 for all $v \in V$ 3 **do if** $v \in neighbors(u)$ then $D[v] \leftarrow c(u, v)$ 4 $p[v] \leftarrow u$ 5 6 else $D[v] \leftarrow \infty$ 7 while $N \neq V$ **do** find $w \notin N$ such that D[w] is minimum 8 9 $N \leftarrow N \cup \{w\}$ 10 for all $v \in neighbors(w) \setminus N$ **do if** D[w] + c(w, v) < D[v]11 12 then $D[v] \leftarrow D[w] + c(w, v)$ 13 $p[v] \leftarrow w$

Example

