
IPv4 Addressing and IPv6

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

November 29, 2017

Outline

IPv4 Addressing

◮ network addresses

◮ classless interdomain routing

◮ address allocation and routing

◮ longest-prefix matching

Outline

IPv4 Addressing

◮ network addresses

◮ classless interdomain routing

◮ address allocation and routing

◮ longest-prefix matching

IPv6

◮ motivations and design goals

◮ datagram format

◮ comparison with IPv4

◮ extensions

Interconnection of Networks

1
2
3
.1
.2
.1

1
2
3
.1
.2
.2

123.1.1.1 123.1.1.2 123.1.1.3

123.1.1.4

1
2
3
.1
.2
.3 101.0.1.2

101.0.1.1

111.3.3.1111.3.3.2

111.3.3.3

Interconnection of Networks

1
2
3
.1
.2
.1

1
2
3
.1
.2
.2

123.1.1.1 123.1.1.2 123.1.1.3

123.1.1.4

1
2
3
.1
.2
.3 101.0.1.2

101.0.1.1

111.3.3.1111.3.3.2

111.3.3.3

subnet 111.3.3.–

IPv4 Addressing

32-bit addresses

IPv4 Addressing

32-bit addresses

An IP address is associated with an interface, not a host

◮ a host with more than one interface may have more than one IP address

IPv4 Addressing

32-bit addresses

An IP address is associated with an interface, not a host

◮ a host with more than one interface may have more than one IP address

The assignment of addresses over an Internet topology is crucial to limit the
complexity of routing and forwarding

IPv4 Addressing

32-bit addresses

An IP address is associated with an interface, not a host

◮ a host with more than one interface may have more than one IP address

The assignment of addresses over an Internet topology is crucial to limit the
complexity of routing and forwarding

The key idea is to assign addresses with the same prefix to interfaces that are
on the same subnet

Classless Interdomain Routing

Classless Interdomain Routing

All interfaces in the same subnet share the same address prefix

◮ e.g., in the previous example we have
123.1.1.—, 123.1.2.—, 101.0.1.—, and 111.3.3.—

Classless Interdomain Routing

All interfaces in the same subnet share the same address prefix

◮ e.g., in the previous example we have
123.1.1.—, 123.1.2.—, 101.0.1.—, and 111.3.3.—

Network addresses prefix-length notation: address/prefix-length

Classless Interdomain Routing

All interfaces in the same subnet share the same address prefix

◮ e.g., in the previous example we have
123.1.1.—, 123.1.2.—, 101.0.1.—, and 111.3.3.—

Network addresses prefix-length notation: address/prefix-length

◮ e.g., 123.1.1.0/24, 123.1.1.0/24, 101.0.1.0/24, and 111.3.3.0/24

Classless Interdomain Routing

All interfaces in the same subnet share the same address prefix

◮ e.g., in the previous example we have
123.1.1.—, 123.1.2.—, 101.0.1.—, and 111.3.3.—

Network addresses prefix-length notation: address/prefix-length

◮ e.g., 123.1.1.0/24, 123.1.1.0/24, 101.0.1.0/24, and 111.3.3.0/24

◮ 123.1.1.0/24 means that all the addresses share the same leftmost 24 bits with
address 123.1.1.0

Classless Interdomain Routing

All interfaces in the same subnet share the same address prefix

◮ e.g., in the previous example we have
123.1.1.—, 123.1.2.—, 101.0.1.—, and 111.3.3.—

Network addresses prefix-length notation: address/prefix-length

◮ e.g., 123.1.1.0/24, 123.1.1.0/24, 101.0.1.0/24, and 111.3.3.0/24

◮ 123.1.1.0/24 means that all the addresses share the same leftmost 24 bits with
address 123.1.1.0

This addressing scheme is not limited to entire bytes. For example, a network
address might be 128.138.207.160/27

Examples

Network address 128.138.207.160/27

Examples

Network address 128.138.207.160/27

subnet
︷ ︸︸ ︷

10000000 10001010 11001111 101 00000two

Examples

Network address 128.138.207.160/27

subnet
︷ ︸︸ ︷

10000000 10001010 11001111 101 00000two

128.138.207.185?

Examples

Network address 128.138.207.160/27

subnet
︷ ︸︸ ︷

10000000 10001010 11001111 101 00000two

128.138.207.185?

10000000 10001010 11001111 10111001two

Examples

Network address 128.138.207.160/27

subnet
︷ ︸︸ ︷

10000000 10001010 11001111 101 00000two

128.138.207.185?

10000000 10001010 11001111 10111001two

128.138.207.98?

Examples

Network address 128.138.207.160/27

subnet
︷ ︸︸ ︷

10000000 10001010 11001111 101 00000two

128.138.207.185?

10000000 10001010 11001111 10111001two

128.138.207.98?

10000000 10001010 11001111 01100010two

Examples

Network address 128.138.207.160/27

subnet
︷ ︸︸ ︷

10000000 10001010 11001111 101 00000two

128.138.207.185?

10000000 10001010 11001111 10111001two

128.138.207.98?

10000000 10001010 11001111 01100010two

128.138.207.194?

Examples

Network address 128.138.207.160/27

subnet
︷ ︸︸ ︷

10000000 10001010 11001111 101 00000two

128.138.207.185?

10000000 10001010 11001111 10111001two

128.138.207.98?

10000000 10001010 11001111 01100010two

128.138.207.194?

10000000 10001010 11001111 11000010two

Ranges

What is the range of addresses in 128.138.207.160/27?

Ranges

What is the range of addresses in 128.138.207.160/27?

subnet
︷ ︸︸ ︷

10000000 10001010 11001111 101 00000two

Ranges

What is the range of addresses in 128.138.207.160/27?

subnet
︷ ︸︸ ︷

10000000 10001010 11001111 101 00000two

10000000 10001010 11001111 10100000two
10000000 10001010 11001111 10100001two
10000000 10001010 11001111 10100010two
10000000 10001010 11001111 10100011two

.

.

.

10000000 10001010 11001111 10111111two

Ranges

What is the range of addresses in 128.138.207.160/27?

subnet
︷ ︸︸ ︷

10000000 10001010 11001111 101 00000two

10000000 10001010 11001111 10100000two
10000000 10001010 11001111 10100001two
10000000 10001010 11001111 10100010two
10000000 10001010 11001111 10100011two

.

.

.

10000000 10001010 11001111 10111111two

128.138.207.160–128.138.207.191

Net Mask

Network addresses,mask notation: address/mask

Net Mask

Network addresses,mask notation: address/mask

A prefix of length p corresponds to a mask

M =

p times
︷ ︸︸ ︷

11 · · · 1

32−p times
︷ ︸︸ ︷

00 · · · 0 two

◮ e.g., 128.138.207.160/27=128.138.207.160/255.255.255.224

Net Mask

Network addresses,mask notation: address/mask

A prefix of length p corresponds to a mask

M =

p times
︷ ︸︸ ︷

11 · · · 1

32−p times
︷ ︸︸ ︷

00 · · · 0 two

◮ e.g., 128.138.207.160/27=128.138.207.160/255.255.255.224

◮ 127.0.0.1/8=?

Net Mask

Network addresses,mask notation: address/mask

A prefix of length p corresponds to a mask

M =

p times
︷ ︸︸ ︷

11 · · · 1

32−p times
︷ ︸︸ ︷

00 · · · 0 two

◮ e.g., 128.138.207.160/27=128.138.207.160/255.255.255.224

◮ 127.0.0.1/8=127.0.0.1/255.0.0.0

Net Mask

Network addresses,mask notation: address/mask

A prefix of length p corresponds to a mask

M =

p times
︷ ︸︸ ︷

11 · · · 1

32−p times
︷ ︸︸ ︷

00 · · · 0 two

◮ e.g., 128.138.207.160/27=128.138.207.160/255.255.255.224

◮ 127.0.0.1/8=127.0.0.1/255.0.0.0

◮ 192.168.0.3/24=?

Net Mask

Network addresses,mask notation: address/mask

A prefix of length p corresponds to a mask

M =

p times
︷ ︸︸ ︷

11 · · · 1

32−p times
︷ ︸︸ ︷

00 · · · 0 two

◮ e.g., 128.138.207.160/27=128.138.207.160/255.255.255.224

◮ 127.0.0.1/8=127.0.0.1/255.0.0.0

◮ 192.168.0.3/24=192.168.0.3/255.255.255.0

Net Mask

Network addresses,mask notation: address/mask

A prefix of length p corresponds to a mask

M =

p times
︷ ︸︸ ︷

11 · · · 1

32−p times
︷ ︸︸ ︷

00 · · · 0 two

◮ e.g., 128.138.207.160/27=128.138.207.160/255.255.255.224

◮ 127.0.0.1/8=127.0.0.1/255.0.0.0

◮ 192.168.0.3/24=192.168.0.3/255.255.255.0

◮ 195.176.181.11/32=?

Net Mask

Network addresses,mask notation: address/mask

A prefix of length p corresponds to a mask

M =

p times
︷ ︸︸ ︷

11 · · · 1

32−p times
︷ ︸︸ ︷

00 · · · 0 two

◮ e.g., 128.138.207.160/27=128.138.207.160/255.255.255.224

◮ 127.0.0.1/8=127.0.0.1/255.0.0.0

◮ 192.168.0.3/24=192.168.0.3/255.255.255.0

◮ 195.176.181.11/32=195.176.181.11/255.255.255.255

Net Mask

Network addresses,mask notation: address/mask

A prefix of length p corresponds to a mask

M =

p times
︷ ︸︸ ︷

11 · · · 1

32−p times
︷ ︸︸ ︷

00 · · · 0 two

◮ e.g., 128.138.207.160/27=128.138.207.160/255.255.255.224

◮ 127.0.0.1/8=127.0.0.1/255.0.0.0

◮ 192.168.0.3/24=192.168.0.3/255.255.255.0

◮ 195.176.181.11/32=195.176.181.11/255.255.255.255

In Java:

Net Mask

Network addresses,mask notation: address/mask

A prefix of length p corresponds to a mask

M =

p times
︷ ︸︸ ︷

11 · · · 1

32−p times
︷ ︸︸ ︷

00 · · · 0 two

◮ e.g., 128.138.207.160/27=128.138.207.160/255.255.255.224

◮ 127.0.0.1/8=127.0.0.1/255.0.0.0

◮ 192.168.0.3/24=192.168.0.3/255.255.255.0

◮ 195.176.181.11/32=195.176.181.11/255.255.255.255

In Java:

int match(int address, int network, int mask) {

return (address & mask) == (network & mask);

}

Classless Interdomain Routing

Classless Interdomain Routing

This any-length prefix scheme is also called classless interdomain routing (CIDR)

◮ as opposed to the original scheme which divided the address space in “classes”

address class prefix length
A 8
B 16
C 24

Classless Interdomain Routing

This any-length prefix scheme is also called classless interdomain routing (CIDR)

◮ as opposed to the original scheme which divided the address space in “classes”

address class prefix length
A 8
B 16
C 24

Why is the idea of the common prefix so important?

Classless Interdomain Routing

This any-length prefix scheme is also called classless interdomain routing (CIDR)

◮ as opposed to the original scheme which divided the address space in “classes”

address class prefix length
A 8
B 16
C 24

Why is the idea of the common prefix so important?

Routers outside a (sub)network can ignore the specifics of each address within
the network

◮ there might be some 64 thousands hosts in 128.138.0.0/16, but they all appear as
one address from the outside

Example: Good Address Allocation

1
2
3
.1
.2
.1

1
2
3
.1
.2
.2

123.1.1.1 123.1.1.2 123.1.1.3

1

2 3

2

111.3.3.1111.3.3.2

1

Example: Bad Address Allocation

7
6
.3
.4
.9
1

8
9
.1
1
.1
4
5
.1

89.31.2.7 119.91.4.89 231.98.2.1

1

2 3

2

89.5.22.1129.58.12.10

1

Allocation of Address Blocks

Allocation of Address Blocks

ISP X

Internet

123.4.0.0/16

thedude.org
123.4.0.0/24

maude.com

123.4.1.0/24

bowling.edu
123.4.20.0/24

Allocation of Address Blocks

ISP X

Internet

123.4.0.0/16

thedude.org
123.4.0.0/24

maude.com

123.4.1.0/24

bowling.edu
123.4.20.0/24

ISP X2
98.7.1.0/16

margie.net

98.7.1.0/24

Allocation of Address Blocks

ISP X

Internet

123.4.0.0/16

thedude.org
123.4.0.0/24

maude.com

123.4.1.0/24

bowling.edu

ISP X2
98.7.1.0/16
123.4.20.0/24margie.net

98.7.1.0/24

123.4.20.0/24

Longest-Prefix Matching

Longest-Prefix Matching

In choosing where to forward a datagram, a router chooses the entry that
matches the destination address with the longest prefix

Longest-Prefix Matching

In choosing where to forward a datagram, a router chooses the entry that
matches the destination address with the longest prefix
E.g.,

forwarding table

network port

123.4.0.0/16 1

98.7.1.0/16 2

123.4.20.0/24 2

128.0.0.0/1 3

66.249.0.0/16 3

0.0.0.0/1 4

128.138.0.0/16 4

Longest-Prefix Matching

In choosing where to forward a datagram, a router chooses the entry that
matches the destination address with the longest prefix
E.g.,

◮ 123.4.1.69→? forwarding table

network port

123.4.0.0/16 1

98.7.1.0/16 2

123.4.20.0/24 2

128.0.0.0/1 3

66.249.0.0/16 3

0.0.0.0/1 4

128.138.0.0/16 4

Longest-Prefix Matching

In choosing where to forward a datagram, a router chooses the entry that
matches the destination address with the longest prefix
E.g.,

◮ 123.4.1.69→1 forwarding table

network port

123.4.0.0/16 1

98.7.1.0/16 2

123.4.20.0/24 2

128.0.0.0/1 3

66.249.0.0/16 3

0.0.0.0/1 4

128.138.0.0/16 4

Longest-Prefix Matching

In choosing where to forward a datagram, a router chooses the entry that
matches the destination address with the longest prefix
E.g.,

◮ 123.4.1.69→1

◮ 68.142.226.44→?

forwarding table

network port

123.4.0.0/16 1

98.7.1.0/16 2

123.4.20.0/24 2

128.0.0.0/1 3

66.249.0.0/16 3

0.0.0.0/1 4

128.138.0.0/16 4

Longest-Prefix Matching

In choosing where to forward a datagram, a router chooses the entry that
matches the destination address with the longest prefix
E.g.,

◮ 123.4.1.69→1

◮ 68.142.226.44→4

forwarding table

network port

123.4.0.0/16 1

98.7.1.0/16 2

123.4.20.0/24 2

128.0.0.0/1 3

66.249.0.0/16 3

0.0.0.0/1 4

128.138.0.0/16 4

Longest-Prefix Matching

In choosing where to forward a datagram, a router chooses the entry that
matches the destination address with the longest prefix
E.g.,

◮ 123.4.1.69→1

◮ 68.142.226.44→4

◮ 98.7.2.71→?

forwarding table

network port

123.4.0.0/16 1

98.7.1.0/16 2

123.4.20.0/24 2

128.0.0.0/1 3

66.249.0.0/16 3

0.0.0.0/1 4

128.138.0.0/16 4

Longest-Prefix Matching

In choosing where to forward a datagram, a router chooses the entry that
matches the destination address with the longest prefix
E.g.,

◮ 123.4.1.69→1

◮ 68.142.226.44→4

◮ 98.7.2.71→2

forwarding table

network port

123.4.0.0/16 1

98.7.1.0/16 2

123.4.20.0/24 2

128.0.0.0/1 3

66.249.0.0/16 3

0.0.0.0/1 4

128.138.0.0/16 4

Longest-Prefix Matching

In choosing where to forward a datagram, a router chooses the entry that
matches the destination address with the longest prefix
E.g.,

◮ 123.4.1.69→1

◮ 68.142.226.44→4

◮ 98.7.2.71→2

◮ 200.100.2.1→?

forwarding table

network port

123.4.0.0/16 1

98.7.1.0/16 2

123.4.20.0/24 2

128.0.0.0/1 3

66.249.0.0/16 3

0.0.0.0/1 4

128.138.0.0/16 4

Longest-Prefix Matching

In choosing where to forward a datagram, a router chooses the entry that
matches the destination address with the longest prefix
E.g.,

◮ 123.4.1.69→1

◮ 68.142.226.44→4

◮ 98.7.2.71→2

◮ 200.100.2.1→3

forwarding table

network port

123.4.0.0/16 1

98.7.1.0/16 2

123.4.20.0/24 2

128.0.0.0/1 3

66.249.0.0/16 3

0.0.0.0/1 4

128.138.0.0/16 4

Longest-Prefix Matching

In choosing where to forward a datagram, a router chooses the entry that
matches the destination address with the longest prefix
E.g.,

◮ 123.4.1.69→1

◮ 68.142.226.44→4

◮ 98.7.2.71→2

◮ 200.100.2.1→3

◮ 128.138.207.167→?

forwarding table

network port

123.4.0.0/16 1

98.7.1.0/16 2

123.4.20.0/24 2

128.0.0.0/1 3

66.249.0.0/16 3

0.0.0.0/1 4

128.138.0.0/16 4

Longest-Prefix Matching

In choosing where to forward a datagram, a router chooses the entry that
matches the destination address with the longest prefix
E.g.,

◮ 123.4.1.69→1

◮ 68.142.226.44→4

◮ 98.7.2.71→2

◮ 200.100.2.1→3

◮ 128.138.207.167→4

forwarding table

network port

123.4.0.0/16 1

98.7.1.0/16 2

123.4.20.0/24 2

128.0.0.0/1 3

66.249.0.0/16 3

0.0.0.0/1 4

128.138.0.0/16 4

Longest-Prefix Matching

In choosing where to forward a datagram, a router chooses the entry that
matches the destination address with the longest prefix
E.g.,

◮ 123.4.1.69→1

◮ 68.142.226.44→4

◮ 98.7.2.71→2

◮ 200.100.2.1→3

◮ 128.138.207.167→4

◮ 123.4.20.11→?

forwarding table

network port

123.4.0.0/16 1

98.7.1.0/16 2

123.4.20.0/24 2

128.0.0.0/1 3

66.249.0.0/16 3

0.0.0.0/1 4

128.138.0.0/16 4

Longest-Prefix Matching

In choosing where to forward a datagram, a router chooses the entry that
matches the destination address with the longest prefix
E.g.,

◮ 123.4.1.69→1

◮ 68.142.226.44→4

◮ 98.7.2.71→2

◮ 200.100.2.1→3

◮ 128.138.207.167→4

◮ 123.4.20.11→2

forwarding table

network port

123.4.0.0/16 1

98.7.1.0/16 2

123.4.20.0/24 2

128.0.0.0/1 3

66.249.0.0/16 3

0.0.0.0/1 4

128.138.0.0/16 4

Longest-Prefix Matching

In choosing where to forward a datagram, a router chooses the entry that
matches the destination address with the longest prefix
E.g.,

◮ 123.4.1.69→1

◮ 68.142.226.44→4

◮ 98.7.2.71→2

◮ 200.100.2.1→3

◮ 128.138.207.167→4

◮ 123.4.20.11→2

◮ 123.4.21.10→?

forwarding table

network port

123.4.0.0/16 1

98.7.1.0/16 2

123.4.20.0/24 2

128.0.0.0/1 3

66.249.0.0/16 3

0.0.0.0/1 4

128.138.0.0/16 4

Longest-Prefix Matching

In choosing where to forward a datagram, a router chooses the entry that
matches the destination address with the longest prefix
E.g.,

◮ 123.4.1.69→1

◮ 68.142.226.44→4

◮ 98.7.2.71→2

◮ 200.100.2.1→3

◮ 128.138.207.167→4

◮ 123.4.20.11→2

◮ 123.4.21.10→1

forwarding table

network port

123.4.0.0/16 1

98.7.1.0/16 2

123.4.20.0/24 2

128.0.0.0/1 3

66.249.0.0/16 3

0.0.0.0/1 4

128.138.0.0/16 4

Special Addresses

IPv4 defines a number of special addresses or address blocks

Special Addresses

IPv4 defines a number of special addresses or address blocks

“Private,” non-routable address blocks
10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16

Special Addresses

IPv4 defines a number of special addresses or address blocks

“Private,” non-routable address blocks
10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16

Default route
0.0.0.0/0

Special Addresses

IPv4 defines a number of special addresses or address blocks

“Private,” non-routable address blocks
10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16

Default route
0.0.0.0/0

Loopback (a.k.a., localhost)
127.0.0.0/8

Special Addresses

IPv4 defines a number of special addresses or address blocks

“Private,” non-routable address blocks
10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16

Default route
0.0.0.0/0

Loopback (a.k.a., localhost)
127.0.0.0/8

IP Multicast
224.0.0.0/4

Special Addresses

IPv4 defines a number of special addresses or address blocks

“Private,” non-routable address blocks
10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16

Default route
0.0.0.0/0

Loopback (a.k.a., localhost)
127.0.0.0/8

IP Multicast
224.0.0.0/4

Broadcast
255.255.255.255/32

IPv6

“New-generation IP”

IPv6

“New-generation IP”

Why?

IPv6

“New-generation IP”

Why?

◮ the IPv4 address space is too small

IPv6

“New-generation IP”

Why?

◮ the IPv4 address space is too small

Given the obvious difficulty of replacing IPv4, the short-term benefits of IPv6 are
debatable

IPv6

“New-generation IP”

Why?

◮ the IPv4 address space is too small

Given the obvious difficulty of replacing IPv4, the short-term benefits of IPv6 are
debatable

Nobody questions the long-term vision

IPv6

“New-generation IP”

Why?

◮ the IPv4 address space is too small

Given the obvious difficulty of replacing IPv4, the short-term benefits of IPv6 are
debatable

Nobody questions the long-term vision

Also, IPv6 improves various design aspects of IPv4

IPv6 Datagram Format

0 31

IPv6 Datagram Format

0 31

vers.

IPv6 Datagram Format

0 31

vers. traffic class

IPv6 Datagram Format

0 31

vers. traffic class flow label

IPv6 Datagram Format

0 31

vers. traffic class flow label

payload length

IPv6 Datagram Format

0 31

vers. traffic class flow label

payload length next hdr

IPv6 Datagram Format

0 31

vers. traffic class flow label

payload length next hdr hop limit

IPv6 Datagram Format

0 31

vers. traffic class flow label

payload length next hdr hop limit

source address

IPv6 Datagram Format

0 31

vers. traffic class flow label

payload length next hdr hop limit

source address

destination address

IPv6 Datagram Format

0 31

vers. traffic class flow label

payload length next hdr hop limit

source address

destination address

. . .

IPv6 Main Design Features

Expanded addressing

IPv6 Main Design Features

Expanded addressing

◮ 128-bit addresses

IPv6 Main Design Features

Expanded addressing

◮ 128-bit addresses

◮ anycast address

IPv6 Main Design Features

Expanded addressing

◮ 128-bit addresses

◮ anycast address

Header format simplification

IPv6 Main Design Features

Expanded addressing

◮ 128-bit addresses

◮ anycast address

Header format simplification

◮ efficiency: reducing the processing cost for the common case

IPv6 Main Design Features

Expanded addressing

◮ 128-bit addresses

◮ anycast address

Header format simplification

◮ efficiency: reducing the processing cost for the common case

◮ bandwidth: reducing overhead due to header bytes

IPv6 Main Design Features

Expanded addressing

◮ 128-bit addresses

◮ anycast address

Header format simplification

◮ efficiency: reducing the processing cost for the common case

◮ bandwidth: reducing overhead due to header bytes

Improved support for extensions and options

IPv6 Main Design Features

Expanded addressing

◮ 128-bit addresses

◮ anycast address

Header format simplification

◮ efficiency: reducing the processing cost for the common case

◮ bandwidth: reducing overhead due to header bytes

Improved support for extensions and options

Flow labeling

IPv6 Main Design Features

Expanded addressing

◮ 128-bit addresses

◮ anycast address

Header format simplification

◮ efficiency: reducing the processing cost for the common case

◮ bandwidth: reducing overhead due to header bytes

Improved support for extensions and options

Flow labeling

◮ special handling and non-default quality of service

IPv6 Main Design Features

Expanded addressing

◮ 128-bit addresses

◮ anycast address

Header format simplification

◮ efficiency: reducing the processing cost for the common case

◮ bandwidth: reducing overhead due to header bytes

Improved support for extensions and options

Flow labeling

◮ special handling and non-default quality of service

◮ e.g., video, voice, real-time traffic, etc.

What is Missing from IPv4?

What is Missing from IPv4?

Fragmentation

What is Missing from IPv4?

Fragmentation

◮ IPv6 pushes fragmentation onto the end-systems

What is Missing from IPv4?

Fragmentation

◮ IPv6 pushes fragmentation onto the end-systems

◮ efficiency

What is Missing from IPv4?

Fragmentation

◮ IPv6 pushes fragmentation onto the end-systems

◮ efficiency

Header checksum

What is Missing from IPv4?

Fragmentation

◮ IPv6 pushes fragmentation onto the end-systems

◮ efficiency

Header checksum

◮ efficiency
◮ how does the checksum in IPv4 behave with respect to the time-to-live field?

What is Missing from IPv4?

Fragmentation

◮ IPv6 pushes fragmentation onto the end-systems

◮ efficiency

Header checksum

◮ efficiency
◮ how does the checksum in IPv4 behave with respect to the time-to-live field?
◮ the checksummust be recomputed at every hop, so IPv6 avoids that by getting rid of
the checksum altogether

What is Missing from IPv4?

Fragmentation

◮ IPv6 pushes fragmentation onto the end-systems

◮ efficiency

Header checksum

◮ efficiency
◮ how does the checksum in IPv4 behave with respect to the time-to-live field?
◮ the checksummust be recomputed at every hop, so IPv6 avoids that by getting rid of
the checksum altogether

◮ avoid redundancy: both link-layer protocols and transport protocols already
provide error-detection features

What is Missing from IPv4?

Fragmentation

◮ IPv6 pushes fragmentation onto the end-systems

◮ efficiency

Header checksum

◮ efficiency
◮ how does the checksum in IPv4 behave with respect to the time-to-live field?
◮ the checksummust be recomputed at every hop, so IPv6 avoids that by getting rid of
the checksum altogether

◮ avoid redundancy: both link-layer protocols and transport protocols already
provide error-detection features

Options

What is Missing from IPv4?

Fragmentation

◮ IPv6 pushes fragmentation onto the end-systems

◮ efficiency

Header checksum

◮ efficiency
◮ how does the checksum in IPv4 behave with respect to the time-to-live field?
◮ the checksummust be recomputed at every hop, so IPv6 avoids that by getting rid of
the checksum altogether

◮ avoid redundancy: both link-layer protocols and transport protocols already
provide error-detection features

Options

◮ efficiency: a fixed-length header is easier to process

What is Missing from IPv4?

Fragmentation

◮ IPv6 pushes fragmentation onto the end-systems

◮ efficiency

Header checksum

◮ efficiency
◮ how does the checksum in IPv4 behave with respect to the time-to-live field?
◮ the checksummust be recomputed at every hop, so IPv6 avoids that by getting rid of
the checksum altogether

◮ avoid redundancy: both link-layer protocols and transport protocols already
provide error-detection features

Options

◮ efficiency: a fixed-length header is easier to process

◮ better modularity for extensions and options

Higher-Level Protocol and Extensions

Higher-Level Protocol and Extensions

0 31

vers. traffic class flow label

payload length next hdr hop limit

source and destination addresses
40B

Higher-Level Protocol and Extensions

0 31

vers. traffic class flow label

payload length TCP hop limit

source and destination addresses
40B

Higher-Level Protocol and Extensions

0 31

vers. traffic class flow label

payload length TCP hop limit

source and destination addresses
40B

source port destination port

sequence number

acknowledgment number

. . .

Higher-Level Protocol and Extensions

0 31

vers. traffic class flow label

payload length extx hop limit

source and destination addresses
40B

Higher-Level Protocol and Extensions

0 31

vers. traffic class flow label

payload length extx hop limit

source and destination addresses
40B

next hdr next-hdr len

Higher-Level Protocol and Extensions

0 31

vers. traffic class flow label

payload length extx hop limit

source and destination addresses
40B

TCP next-hdr len

source port destination port

. . .

