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IPv6

◮ motivations and design goals

◮ datagram format

◮ comparison with IPv4

◮ extensions
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IPv4 Addressing

32-bit addresses

An IP address is associated with an interface, not a host

◮ a host with more than one interface may have more than one IP address

The assignment of addresses over an Internet topology is crucial to limit the
complexity of routing and forwarding

The key idea is to assign addresses with the same prefix to interfaces that are
on the same subnet
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Classless Interdomain Routing

All interfaces in the same subnet share the same address prefix

◮ e.g., in the previous example we have
123.1.1.—, 123.1.2.—, 101.0.1.—, and 111.3.3.—

Network addresses prefix-length notation: address/prefix-length

◮ e.g., 123.1.1.0/24, 123.1.1.0/24, 101.0.1.0/24, and 111.3.3.0/24

◮ 123.1.1.0/24 means that all the addresses share the same leftmost 24 bits with
address 123.1.1.0

This addressing scheme is not limited to entire bytes. For example, a network
address might be 128.138.207.160/27
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Examples

Network address 128.138.207.160/27

subnet
︷                                               ︸︸                                               ︷

10000000 10001010 11001111 101 00000two

128.138.207.185?

10000000 10001010 11001111 10111001two

128.138.207.98?

10000000 10001010 11001111 01100010two

128.138.207.194?

10000000 10001010 11001111 11000010two
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Ranges

What is the range of addresses in 128.138.207.160/27?

subnet
︷                                               ︸︸                                               ︷

10000000 10001010 11001111 101 00000two

10000000 10001010 11001111 10100000two
10000000 10001010 11001111 10100001two
10000000 10001010 11001111 10100010two
10000000 10001010 11001111 10100011two

.

.

.

10000000 10001010 11001111 10111111two

128.138.207.160–128.138.207.191
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Net Mask

Network addresses,mask notation: address/mask

A prefix of length p corresponds to a mask

M =

p times
︷  ︸︸  ︷

11 · · · 1

32−p times
︷  ︸︸  ︷

00 · · · 0 two

◮ e.g., 128.138.207.160/27=128.138.207.160/255.255.255.224

◮ 127.0.0.1/8=127.0.0.1/255.0.0.0

◮ 192.168.0.3/24=192.168.0.3/255.255.255.0
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A prefix of length p corresponds to a mask

M =

p times
︷  ︸︸  ︷

11 · · · 1

32−p times
︷  ︸︸  ︷

00 · · · 0 two

◮ e.g., 128.138.207.160/27=128.138.207.160/255.255.255.224

◮ 127.0.0.1/8=127.0.0.1/255.0.0.0

◮ 192.168.0.3/24=192.168.0.3/255.255.255.0

◮ 195.176.181.11/32=?



Net Mask

Network addresses,mask notation: address/mask

A prefix of length p corresponds to a mask

M =

p times
︷  ︸︸  ︷

11 · · · 1

32−p times
︷  ︸︸  ︷

00 · · · 0 two

◮ e.g., 128.138.207.160/27=128.138.207.160/255.255.255.224

◮ 127.0.0.1/8=127.0.0.1/255.0.0.0

◮ 192.168.0.3/24=192.168.0.3/255.255.255.0

◮ 195.176.181.11/32=195.176.181.11/255.255.255.255



Net Mask

Network addresses,mask notation: address/mask
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M =
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Net Mask

Network addresses,mask notation: address/mask

A prefix of length p corresponds to a mask

M =

p times
︷  ︸︸  ︷

11 · · · 1

32−p times
︷  ︸︸  ︷

00 · · · 0 two

◮ e.g., 128.138.207.160/27=128.138.207.160/255.255.255.224

◮ 127.0.0.1/8=127.0.0.1/255.0.0.0

◮ 192.168.0.3/24=192.168.0.3/255.255.255.0

◮ 195.176.181.11/32=195.176.181.11/255.255.255.255

In Java:

int match(int address, int network, int mask) {

return (address & mask) == (network & mask);

}
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Classless Interdomain Routing

This any-length prefix scheme is also called classless interdomain routing (CIDR)

◮ as opposed to the original scheme which divided the address space in “classes”

address class prefix length
A 8
B 16
C 24

Why is the idea of the common prefix so important?

Routers outside a (sub)network can ignore the specifics of each address within
the network

◮ there might be some 64 thousands hosts in 128.138.0.0/16, but they all appear as
one address from the outside
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Allocation of Address Blocks

ISP X

Internet

123.4.0.0/16

thedude.org
123.4.0.0/24

maude.com

123.4.1.0/24

bowling.edu

ISP X2
98.7.1.0/16
123.4.20.0/24margie.net

98.7.1.0/24

123.4.20.0/24
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In choosing where to forward a datagram, a router chooses the entry that
matches the destination address with the longest prefix
E.g.,
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E.g.,

◮ 123.4.1.69→1

◮ 68.142.226.44→4
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◮ 123.4.20.11→?

forwarding table

network port

123.4.0.0/16 1
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123.4.20.0/24 2

128.0.0.0/1 3

66.249.0.0/16 3

0.0.0.0/1 4
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In choosing where to forward a datagram, a router chooses the entry that
matches the destination address with the longest prefix
E.g.,

◮ 123.4.1.69→1

◮ 68.142.226.44→4

◮ 98.7.2.71→2

◮ 200.100.2.1→3

◮ 128.138.207.167→4

◮ 123.4.20.11→2

forwarding table

network port

123.4.0.0/16 1
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Longest-Prefix Matching

In choosing where to forward a datagram, a router chooses the entry that
matches the destination address with the longest prefix
E.g.,

◮ 123.4.1.69→1

◮ 68.142.226.44→4

◮ 98.7.2.71→2

◮ 200.100.2.1→3

◮ 128.138.207.167→4

◮ 123.4.20.11→2

◮ 123.4.21.10→?

forwarding table

network port

123.4.0.0/16 1

98.7.1.0/16 2

123.4.20.0/24 2

128.0.0.0/1 3

66.249.0.0/16 3
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Longest-Prefix Matching

In choosing where to forward a datagram, a router chooses the entry that
matches the destination address with the longest prefix
E.g.,

◮ 123.4.1.69→1

◮ 68.142.226.44→4

◮ 98.7.2.71→2

◮ 200.100.2.1→3

◮ 128.138.207.167→4

◮ 123.4.20.11→2

◮ 123.4.21.10→1

forwarding table

network port

123.4.0.0/16 1

98.7.1.0/16 2

123.4.20.0/24 2

128.0.0.0/1 3

66.249.0.0/16 3

0.0.0.0/1 4

128.138.0.0/16 4
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Special Addresses

IPv4 defines a number of special addresses or address blocks

“Private,” non-routable address blocks
10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16

Default route
0.0.0.0/0

Loopback (a.k.a., localhost)
127.0.0.0/8

IP Multicast
224.0.0.0/4

Broadcast
255.255.255.255/32
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IPv6

“New-generation IP”

Why?

◮ the IPv4 address space is too small

Given the obvious difficulty of replacing IPv4, the short-term benefits of IPv6 are
debatable

Nobody questions the long-term vision

Also, IPv6 improves various design aspects of IPv4
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IPv6 Main Design Features

Expanded addressing

◮ 128-bit addresses

◮ anycast address

Header format simplification

◮ efficiency: reducing the processing cost for the common case

◮ bandwidth: reducing overhead due to header bytes

Improved support for extensions and options

Flow labeling

◮ special handling and non-default quality of service

◮ e.g., video, voice, real-time traffic, etc.
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What is Missing from IPv4?

Fragmentation

◮ IPv6 pushes fragmentation onto the end-systems

◮ efficiency

Header checksum

◮ efficiency
◮ how does the checksum in IPv4 behave with respect to the time-to-live field?
◮ the checksummust be recomputed at every hop, so IPv6 avoids that by getting rid of
the checksum altogether

◮ avoid redundancy: both link-layer protocols and transport protocols already
provide error-detection features

Options

◮ efficiency: a fixed-length header is easier to process

◮ better modularity for extensions and options
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TCP next-hdr len

source port destination port

. . .


