
Congestion Control in TCP

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

November 28, 2016



Outline

Intro to congestion control

Input rate vs. output throughput

Congestion window

“Congestion avoidance”

“Slow start”

“Fast recovery”



Understanding Congestion

A router behaves a lot like a kitchen sink



Understanding Congestion

A router behaves a lot like a kitchen sink

max rate = R



Understanding Congestion

A router behaves a lot like a kitchen sink

λ1 = R/2

throughput = R/2

max rate = R



Understanding Congestion

A router behaves a lot like a kitchen sink

λ1 = R/2 λ2 = R/2

throughput = R

max rate = R



Understanding Congestion

A router behaves a lot like a kitchen sink

λ1 = R/2 λ2 = R/2

throughput = R

λ3 = R/2

max rate = R



Understanding Congestion

A router behaves a lot like a kitchen sink

λ1 = R/2 λ2 = R/2

throughput = R

λ3 = R/2

max rate = R



Understanding Congestion

A router behaves a lot like a kitchen sink

λ1 = R/2 λ2 = R/2

throughput = R

λ3 = R/2

max rate = R



Understanding Congestion

A router behaves a lot like a kitchen sink

λ1 = R/2 λ2 = R/2

throughput = R

λ3 = R/2

max rate = R



Understanding Congestion

A router behaves a lot like a kitchen sink

λ1 = R/2 λ2 = R/2

throughput = R

λ3 = R/2

max rate = R



Queuing Delay



Queuing Delay

Total latency is the sum of link latency, processing time, and
the time that a packet spends in the input queue

L = dTX + dCPU + dq where dq = `q`/R



Queuing Delay

Total latency is the sum of link latency, processing time, and
the time that a packet spends in the input queue

L = dTX + dCPU + dq where dq = `q`/R

Ideal case: constant input data rate

λin < R

In this case the dq = 0, because `q` = 0 (ideal input flow)



Queuing Delay

Total latency is the sum of link latency, processing time, and
the time that a packet spends in the input queue

L = dTX + dCPU + dq where dq = `q`/R

Ideal case: constant input data rate

λin < R

In this case the dq = 0, because `q` = 0 (ideal input flow)

Extreme case: constant input data rate

λin > R

In this case `q` = (λin − R)t and therefore

dq =
λin − R

R
t



Queuing Delay



Queuing Delay

Steady-state queuing delay

dq =

{

0 λin < R
λin−R

R
t λin > R



Queuing Delay

Steady-state queuing delay

dq =

{

0 λin < R
λin−R

R
t λin > R

dq

λin

R

ideal input flow
λin constant



Queuing Delay

Steady-state queuing delay

dq =

{

0 λin < R
λin−R

R
t λin > R

dq

λin

R

ideal input flow
λin constant

dq

λin

R

realistic input flow
λin variable



Queuing Delay



Queuing Delay

Conclusion: as the input rate λin approaches the maximum
throughput R, packets will experience very long delays



Queuing Delay

Conclusion: as the input rate λin approaches the maximum
throughput R, packets will experience very long delays

More realistic assumptions and models
◮ finite queue length (buffers) in routers

◮ effects of retransmission overhead

◮ full queues along multi-hops paths



Queuing Delay

Conclusion: as the input rate λin approaches the maximum
throughput R, packets will experience very long delays

More realistic assumptions and models
◮ finite queue length (buffers) in routers

◮ effects of retransmission overhead

◮ full queues along multi-hops paths

λout

λin

R



Queuing Delay

Conclusion: as the input rate λin approaches the maximum
throughput R, packets will experience very long delays

More realistic assumptions and models
◮ finite queue length (buffers) in routers

◮ effects of retransmission overhead

◮ full queues along multi-hops paths

λout

λin

R

congestion



What to Do?

What to do when the network is congested?

λ1 = R/2 λ2 = R/2

λ3 = R/2

max rate = R

throughput = R



What to Do?

What to do when the network is congested?

λ1 = R/4 λ2 = R/4

λ3 = R/4

max rate = R

throughput = R



What to Do?

What to do when the network is congested?

λ1 = R/4 λ2 = R/4

λ3 = R/4

max rate = R

throughput = R



What to Do?

What to do when the network is congested?

λ1 = R/4 λ2 = R/4

λ3 = R/4

max rate = R

throughput = R



What to Do?

What to do when the network is congested?

λ1 = R/4 λ2 = R/4

λ3 = R/4

max rate = R

throughput = R



Congestion Control (in TCP)



Congestion Control (in TCP)

Approach: the sender limits its output rate according to the
status of the network

◮ the sender output rate becomes (part of) the input rate for the
network (λin)



Congestion Control (in TCP)

Approach: the sender limits its output rate according to the
status of the network

◮ the sender output rate becomes (part of) the input rate for the
network (λin)

Issues



Congestion Control (in TCP)

Approach: the sender limits its output rate according to the
status of the network

◮ the sender output rate becomes (part of) the input rate for the
network (λin)

Issues

◮ how does the sender “measure” the status of the network?
◮ i.e., how does the sender detect congestion?



Congestion Control (in TCP)

Approach: the sender limits its output rate according to the
status of the network

◮ the sender output rate becomes (part of) the input rate for the
network (λin)

Issues

◮ how does the sender “measure” the status of the network?
◮ i.e., how does the sender detect congestion?

◮ how does the sender effectively limit its output rate?



Congestion Control (in TCP)

Approach: the sender limits its output rate according to the
status of the network

◮ the sender output rate becomes (part of) the input rate for the
network (λin)

Issues

◮ how does the sender “measure” the status of the network?
◮ i.e., how does the sender detect congestion?

◮ how does the sender effectively limit its output rate?

◮ how should the sender “modulate” its output rate?
◮ i.e., what algorithm should the sender use to decrease or
increase its output rate?



Detecting Congestion



Detecting Congestion

If all traffic is correctly acknowledged, then the sender
assumes (quite correctly) that there is no congestion



Detecting Congestion

If all traffic is correctly acknowledged, then the sender
assumes (quite correctly) that there is no congestion

Congestion means that the queue of one or more routers
between the sender and the receiver overflow

◮ the visible effect is that some segments are dropped



Detecting Congestion

If all traffic is correctly acknowledged, then the sender
assumes (quite correctly) that there is no congestion

Congestion means that the queue of one or more routers
between the sender and the receiver overflow

◮ the visible effect is that some segments are dropped

Therefore the server assumes that the network is congested
when it detects a segment loss

◮ time out (i.e., no ACK)

◮ multiple acknowledgements (i.e., NACK)



Congestion Window

The sender maintains a congestion window W



Congestion Window

The sender maintains a congestion window W

The congestion window limits the amount of bytes that the
sender pushes into the network before blocking waiting for
acknowledgments



Congestion Window

The sender maintains a congestion window W

The congestion window limits the amount of bytes that the
sender pushes into the network before blocking waiting for
acknowledgments

LastByteSent − LastByteAcked ≤ W

where

W = min (CongestionWindow, ReceiverWindow)



Congestion Window

The sender maintains a congestion window W

The congestion window limits the amount of bytes that the
sender pushes into the network before blocking waiting for
acknowledgments

LastByteSent − LastByteAcked ≤ W

where

W = min (CongestionWindow, ReceiverWindow)

The resulting maximum output rate is roughly

λ =
W

2L



Congestion Control

How does TCP “modulate” its output rate?



Congestion Control

How does TCP “modulate” its output rate?

Additive-increase and multiplicative-decrease



Congestion Control

How does TCP “modulate” its output rate?

Additive-increase and multiplicative-decrease

Slow start



Congestion Control

How does TCP “modulate” its output rate?

Additive-increase and multiplicative-decrease

Slow start

Reaction to timeout events



Additive-Increase/Multiplicative-Decrease



Additive-Increase/Multiplicative-Decrease

How W is reduced: at every loss event, TCP halves the
congestion window



Additive-Increase/Multiplicative-Decrease

How W is reduced: at every loss event, TCP halves the
congestion window

◮ e.g., suppose the window sizeW is currently 20Kb, and a loss is
detected

◮ TCP reducesW to 10Kb



Additive-Increase/Multiplicative-Decrease

How W is reduced: at every loss event, TCP halves the
congestion window

◮ e.g., suppose the window sizeW is currently 20Kb, and a loss is
detected

◮ TCP reducesW to 10Kb

How W is increased: at every (good) acknowledgment, TCP
incrementsW by 1MSS/W , so as to increase W by MSS every
round-trip time 2L. This process is called congestion
avoidance



Additive-Increase/Multiplicative-Decrease

How W is reduced: at every loss event, TCP halves the
congestion window

◮ e.g., suppose the window sizeW is currently 20Kb, and a loss is
detected

◮ TCP reducesW to 10Kb

How W is increased: at every (good) acknowledgment, TCP
incrementsW by 1MSS/W , so as to increase W by MSS every
round-trip time 2L. This process is called congestion
avoidance

◮ e.g., supposeW = 14600 and MSS = 1460, then the sender
increasesW to 16060 after 10 acknowledgments
acknowledgments



Additive-Increase/Multiplicative-Decrease

Window size W over time

W

Time



Slow Start

What is the initial value ofW?



Slow Start

What is the initial value ofW?

The initial value ofW is MSS, that is 1 segment, which is quite
low for modern networks



Slow Start

What is the initial value ofW?

The initial value ofW is MSS, that is 1 segment, which is quite
low for modern networks

To get quickly to a good throughput level, TCP increases its
sending rate exponentially for its first growth phase, up to a
slow-start threshold (ssthresh)



Slow Start

What is the initial value ofW?

The initial value ofW is MSS, that is 1 segment, which is quite
low for modern networks

To get quickly to a good throughput level, TCP increases its
sending rate exponentially for its first growth phase, up to a
slow-start threshold (ssthresh)

After the threshold, TCP proceeds with its linear push



Slow Start

What is the initial value ofW?

The initial value ofW is MSS, that is 1 segment, which is quite
low for modern networks

To get quickly to a good throughput level, TCP increases its
sending rate exponentially for its first growth phase, up to a
slow-start threshold (ssthresh)

After the threshold, TCP proceeds with its linear push

This process is called “slow start” because of the small initial
value ofW



Timeouts vs. NACKs

As we know, three duplicate ACKs are interpreted as a NACK



Timeouts vs. NACKs

As we know, three duplicate ACKs are interpreted as a NACK

Both timeouts and NACKs signal a loss, but they say different
things about the status of the network



Timeouts vs. NACKs

As we know, three duplicate ACKs are interpreted as a NACK

Both timeouts and NACKs signal a loss, but they say different
things about the status of the network

A timeout indicates congestion



Timeouts vs. NACKs

As we know, three duplicate ACKs are interpreted as a NACK

Both timeouts and NACKs signal a loss, but they say different
things about the status of the network

A timeout indicates congestion

Three (duplicate) ACKs suggest that the network is still able to
deliver segments along that path



Timeouts vs. NACKs

As we know, three duplicate ACKs are interpreted as a NACK

Both timeouts and NACKs signal a loss, but they say different
things about the status of the network

A timeout indicates congestion

Three (duplicate) ACKs suggest that the network is still able to
deliver segments along that path

So, TCP reacts differently to a timeout and to a triple
duplicate ACKs



Timeouts vs. NACKs

Assuming the current window size is W = W



Timeouts vs. NACKs

Assuming the current window size is W = W

Timeout

◮ go back to W = MSS

◮ set ssthresh = W/2

◮ run slow start up to W = ssthresh

◮ then proceed with congestion avoidance



Timeouts vs. NACKs

Assuming the current window size is W = W

Timeout

◮ go back to W = MSS

◮ set ssthresh = W/2

◮ run slow start up to W = ssthresh

◮ then proceed with congestion avoidance

NACK (i.e., triple duplicate-ack)

◮ set ssthresh = W/2

◮ cutW in half: W = W/2

◮ run congestion avoidance, ramping upW linearly

◮ This is called fast recovery



Sender Behavior

W

Time



Sender Behavior

W

Time

MSS



Sender Behavior

W

Time

MSS

NACK



Sender Behavior

W

Time

MSS

NACK



Sender Behavior

W

Time

MSS

NACK

timeout



Sender Behavior

W

Time

MSS

NACK

timeout



Sender Behavior

W

Time

MSS

NACK

timeout



Sender Behavior

W

Time

MSS

NACK

timeout



Sender Behavior

W

Time

MSS

NACK

timeout

NACK



Sender Behavior

W

Time

MSS

NACK

timeout

NACK

NACK



Sender Behavior

W

Time

MSS

NACK

timeout

NACK

NACK



Sender Behavior

W

Time

MSS

NACK

timeout

NACK

NACK



Sender Behavior

W

Time

MSS

NACK

timeout

NACK

NACK

SS CA SS CA CA CA

SS=slow start CA=congestion avoidance


