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Some Advice

Make backups of your data

Do NOT trust the network!

Use HTTPS instead of HTTP

Understand the basics of public-key cryptography

Communicate with end-to-end encryption (e.g., e-mail)

use trusted certificates

Encrypt your confidential data (and make backups)

use strong passwords

You might as well encrypt all your data

Tools/technologies: ssh, pgp (or gpg)
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Communication model: Alice sends a messagem to Bob

Alice Bob

m

Eve
Passive adversary

◮ can read the message

Active adversary

◮ can modify the message
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Alice Bob

m

Confidentiality (a.k.a., privacy): Alice wants to make sure
that only Bob sees the message

Message Integrity: Bob wants to make sure that the message
he reads was exactly what Alice wrote
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Goals (2)

Alice Bob

m

End-point Authentication: Bob wants to make sure he is
communicating with Alice

Operational/system security: Alice and Bob want to maintain
full control of their networks
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What is Privacy, Exactly?

Alice Bob

m

Alice wants to make sure that only Bob “sees” the message

What if Eve can guess the message?
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“Shift” Cipher

The ciphertext is

BUUBDL BU EBXO

Plaintext is

ATTACK AT DAWN

How many possible ciphers?

◮ How many key bits?
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Substitution Cipher

Substitution cipher

◮ alphabet Σ = {‘A’, ‘B’, . . . , ‘Z’, ‘ ’}

◮ encryption function: a permutation

E : Σ → Σ

Example:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _

V Z L Q X T _ R D U C O J N F M G E H W P I S Y A B K

How many possible permutations?

27! = 10888869450418352160768000000 ≈ 293
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Substitution Cipher

Encrypting some text using a substitution cipher

plaintext C I A O _ M A M M A

E E E E E E E E E E

ciphertext L D V F K J V J J V

Problems?

◮ easy to break just by guessing!

◮ . . .



Problem

Decrypt this ciphertext obtained by encrypting an English text
with a substitution-cipher:

gbafoduayfbhbayvpyfhayoanbahbdl-brcubqyayfkyakddaibqakvbaxvbkybuabzpkd
yfkyayfbwakvbabquogbuanwayfbcvaxvbkyovagcyfaxbvykcqapqkdcbqkndbavctfyh
yfkyakioqtayfbhbakvbadclbadcnbvywakquayfbampvhpcyaolafkmmcqbhh
yfkyayoahbxpvbayfbhbavctfyhatorbvqibqyhakvbacqhycypybuakioqtaibq
ubvcrcqtayfbcvajphyamogbvhalvoiayfbaxoqhbqyaolayfbatorbvqbu
yfkyagfbqbrbvakqwaloviaolatorbvqibqyanbxoibhaubhyvpxycrbaolayfbhbabquh
cyachayfbavctfyaolayfbambomdbayoakdybvaovayoaknodchfacy
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From Black Magic to Mathematics

History: secret algorithms, poorly undestood security properties

Modern cryptology

Open and clear models

Open algorithms (the only secret part is the key material)

Well-defined provable security properties
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What is “Provable” Security?

The old way

1. somebody (re-)designs a cryptosystem or protocol

2. somebody brakes it

3. go back to step 1
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What is “Provable” Security?

The new way (provable security)

1. Define formal security goals and adversarial models

2. Design a few primitives

◮ based on public and time-tested algorithms and/or
well-studied hard mathematical problems

3. Design a protocol (using primitives) with a proof of security

◮ prove this implication:

primitive is secure⇒ protocol is secure
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Example: Factoring

Let N = pq for two prime factors p and q

Problem: given N, find p and q

Solution: (trivial)

FACTOR(N)

1 for i← 2 to ⌊
√
N⌋

2 do if i divides N
3 then return i,N/i

Complexity: exponential in the size of N (number of digits of N)

. . .we don’t know how to do better!

Not even Gauss could figure that out!
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Example: RSA,. . .⇒ SSH

Example: the RSA cryptosystem (primitive) and SSH (protocol)

RSA is based on the hardness of factoring

Is RSA secure? We don’t know!

. . . but if you can break RSA (efficiently) then you can also
factor a product of two large primes (efficiently)

. . . you are smarter than Gauss!

SSH uses the RSA public-key system (possibly, not only)

Is SSH secure? Yes!

. . . in the sense that, if you can break SSH (efficiently) then you
can also break RSA

. . . you are smarter than Gauss!
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The Big Picture

Basic ingredients: cryptographic primitives
◮ secret-key (symmetric) cryptography (e.g., AES)
◮ public-key (asymmetric) cryptography (e.g., RSA)
◮ cryptographic hash functions (e.g., SHA-1)
◮ stream ciphers (e.g., RC4)

Recipes: cryptographic protocols
◮ certificates (e.g., X.509)
◮ secure transport (e.g., TLS, IPSec)
◮ . . .

Applications
◮ electronic commerce
◮ secure shell
◮ secure electronic mail
◮ virtual private networks
◮ . . .
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Symmetric Encryption

S R
M

E

K

randomness
or state

D

K

MC

A

S sender
R receiver
A adversary

E encryption algorithm
D dencryption algorithm

M plaintext message
C ciphertext message
K key
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Scheme

◮ encryption:
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the key K is then thrown away an never reused
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One-Time Pad

Assumptions: the message M and the key K are two n-bit
strings

M ∈ {0, 1}n; K
$←{0, 1}n

the key K is chosen uniformly at random from {0, 1}n

Scheme

◮ encryption:
E(K,M) := M ⊕ K

the key K is then thrown away an never reused

◮ decryption:
D(K, C) := C ⊕ K

Example: M 0110010110111011
K 1011000101000101
C 1101010011111110
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So, What is Privacy Exactly?

A scheme is secure if we learn nothing from the ciphertext C

A more formal definition:

let K
$←K ; for every m1 , m2 ∈ M , and for any C

PrK∈K [EK (m1) = C] = PrK∈K [EK(m2) = C]

Given a ciphertext C, every plaintextm is equiprobable

◮ so, seeing any particular C = EK (M) tells us nothing about M

Is a shift cipher perfectly secure?

Is a substitution cipher perfectly secure?

Is one-time-pad perfectly secure?
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The Cost of Perfect Privacy

Perfect privacy implies that

`K ` ≥ `M `

Proof: assume not.
Fix a possible ciphertext C, i.e., there is a messagem and a
key k such that EK (m) = C, and PrK∈K [EK(m) = C] > 0

Let PC = {m ∈ M such that Ek(m) = C for some k}

Since every k maps exactly one messagem to C, and since we
have fewer keys than messages, then there is anm′ < PC such
that no key k mapsm′ to C; therefore PrK∈K [EK(m

′) = C] = 0,
which violates the perfect-secrecy condition that for allm and
m′, PrK∈K [EK (m) = C] = PrK∈K [EK(m

′) = C]
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Message Authenticity

S R
M

A

M′

MAC
gen.

K$ or state

σ σ
′

MAC
ver.

K

{

accept

reject

σ message authentication code (MAC)
K key
$ randomness

MAC gen. MAC generation algorithm
MAC ver. MAC verification algorithm
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Asymmetric Encryption

S R
M

E

PKR

$

D

SKR

MC

A

PKR receiver’s public key
SKR receiver’s secret key

M plaintext message
C ciphertext message
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Digital Signatures

S R
M

A

M′

sign

SKS$

σ σ
′
verify

PKS

{

accept

reject

σ digital signature
SKS sender’s secret key
PKS sender’s public key
$ randomness

sign signing algorithm
verify verification algorithm
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Primitives vs. Protocols

Protocol

◮ an algorithm

◮ solves a specific security problem (e.g., signing a message)

Primitive

◮ also an algorithm

◮ the elementary subroutines of protocols

◮ implement (try to approximate) well-definedmathematical
object

◮ embody “hard problems”



Stream Ciphers



Stream Ciphers

A stream cipher is a generator of a pseudo-random streams



Stream Ciphers

A stream cipher is a generator of a pseudo-random streams

◮ given an initialization key K

◮ generates an infinite pseudo-random sequence of bits



Stream Ciphers

A stream cipher is a generator of a pseudo-random streams

◮ given an initialization key K

◮ generates an infinite pseudo-random sequence of bits

E.g., RC4



Padding with a Stream Cipher



Padding with a Stream Cipher

Assumptions: S and R share a secret key K and agree to use a
stream cipher SK
◮ S and Rmaintain some state: position s initialized to s = 0



Padding with a Stream Cipher

Assumptions: S and R share a secret key K and agree to use a
stream cipher SK
◮ S and Rmaintain some state: position s initialized to s = 0

Encryption protocol

1. S computes C ← M ⊕ SK[s . . . s + `M` − 1]
2. S updates its position s← s + `M`



Padding with a Stream Cipher

Assumptions: S and R share a secret key K and agree to use a
stream cipher SK
◮ S and Rmaintain some state: position s initialized to s = 0

Encryption protocol

1. S computes C ← M ⊕ SK[s . . . s + `M` − 1]
2. S updates its position s← s + `M`

Dencryption protocol

1. R computes M← C ⊕ SK[s . . . s + `C` − 1]
2. R updates its position s← s + `C`
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Block Ciphers

Block Cipher: E : {0, 1}k × {0, 1}n → {0, 1}n

M

K E

EK(M)

k

n

n

◮ EK(·) is a permutation, so E−1K (·) is always defined
◮ fixed-length input and output (n)

◮ fixed-length key (k)

◮ e.g., DES, AES
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Symmetric encryption

◮ Input: k-bit key K , N-bit message M

◮ Output: N-bit ciphertext C

Cipher Block Chaining (CBC)

◮ use a block cipher E : {0, 1}k × {0, 1}n → {0, 1}n

◮ splitM into n-bit blocksM = M0``M1`` . . . ``Mℓ (ℓ = ⌊N/n⌋)

CBC(K,M)

1 x ← 0n

2 for i ← 0 to ⌊`M`/n⌋
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An Encryption Protocol

Symmetric encryption

◮ Input: k-bit key K , N-bit message M

◮ Output: N-bit ciphertext C

Cipher Block Chaining (CBC)

◮ use a block cipher E : {0, 1}k × {0, 1}n → {0, 1}n

◮ splitM into n-bit blocksM = M0``M1`` . . . ``Mℓ (ℓ = ⌊N/n⌋)

M0

⊕0n

K E

C0

M1

⊕

K E

C1

M2

⊕

K E

C2

· · ·

· · ·

· · ·

Mℓ

⊕

K E

Cℓ
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Exercise

Write the decryption algorithm for CBC

CBC-DECRYPT(K, C)

1 x ← 0n

2 for i← 0 to ⌊`C`/n⌋

3 do M[ni . . . ni + n − 1]← x ⊕ E−1K (C[ni . . . ni + n − 1])
4 x ← C[ni . . . ni + n − 1]
5 return M
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An Encryption Protocol (2)

Is this CBC protocol secure?

◮ any deterministic stateless protocol is insecure

◮ we need state and/or randomness

What if `M` , 0 mod n?

Is CBC parallelizable?
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CBC With Random IV

CBC$: cipher block chaining with random IV

CBC$-ENCRYPT(K,M)

1 if `M` = 0 ∨ `M` , 0 mod n
2 then return ⊥
3 M[1] · M[2] · · ·M[ℓ]← M

4 IV
$←{0, 1}n

5 C[0]← IV
6 for i← 1 to ℓ

7 do C[i]← EK(C[i − 1] ⊕ M[i])
8 C ← C[1] · C[2] · · · C[ℓ]
9 return 〈IV, C〉
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CBC With Random IV (2)

CBC$: cipher block chaining with random IV (decryption)

CBC$-DECRYPT(K, IV, C)

1 if `C` = 0 ∨ `C` , 0 mod n
2 then return ⊥
3 C[1] · C[2] · · · C[ℓ]← C
4 C[0]← IV
5 for i← 1 to ℓ

6 do M[i]← C[i − 1] ⊕ EK(C[i])
7 M← M[1] · M[2] · · ·M[ℓ]
8 return M
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CBC With Stateful Counter

CBCC: cipher block chaining with stateful counter

CBCC-ENCRYPT(K,M)

1 static ctr ← 0
2 if ctr ≥ 2n ∨ `M` = 0 ∨ `M` , 0 mod n
3 then return ⊥
4 M[1] · M[2] · · ·M[ℓ]← M
5 IV ← [ctr]n
6 C[0]← [ctr]n
7 for i ← 1 to ℓ

8 do C[i]← EK (C[i − 1] ⊕ M[i])
9 C ← C[1] · C[2] · · · C[ℓ]
10 ctr ← ctr +1
11 return 〈IV, C〉
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CBC With Stateful Counter (2)

CBCC: cipher block chaining with stateful counter

CBCC-DECRYPT(K, IV, C)

1 if IV +`C` ≥ 2n ∨ `C` = 0 ∨ `C` , 0 mod n
2 then return ⊥
3 C[1] · C[2] · · · C[ℓ]← C
4 IV ← [ctr]n
5 C[0]← IV
6 for i ← 1 to ℓ

7 do M[i]← C[i − 1] ⊕ E−1K (C[i])
8 M← M[1] · M[2] · · ·M[ℓ]
9 return M
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Counter Mode

CTR$: counter mode with random initial counter

◮ family of functions: F : {0, 1}k × {0, 1}n → {0, 1}n

CTR$-ENCRYPT(K,M)

1 R
$←{0, 1}n

2 Pad ← FK([R]n)
3 for i← 1 to ⌈`M`/n⌉ − 1
4 do Pad ← Pad ·FK([R + i]n)
5 Pad ← first `M` bits of Pad
6 C ← M ⊕ Pad
7 return 〈R, C〉
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Counter Mode (2)

CTR$: counter mode with random initial counter (decryption)

◮ family of functions: F : {0, 1}k × {0, 1}n → {0, 1}n

CTR$-DECRYPT(K, R, C)

1 Pad ← FK([R]n)
2 for i← 1 to ⌈`C`/n⌉ − 1
3 do Pad ← Pad ·FK([R + i]n)
4 Pad ← first `C` bits of Pad
5 M← C ⊕ Pad
6 return M
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Counter Mode (3)

CTRC: counter mode with stateful counter

◮ family of functions: F : {0, 1}k × {0, 1}n → {0, 1}n

CTRC(K,M)

1 static R← 0
2 ℓ ← ⌈`M`/n⌉
3 if R+ℓ − 1 ≥ 2n

4 then return ⊥
5 Pad ← FK([R]n)
6 for i ← 1 to ℓ − 1
7 do Pad ← Pad ·FK([R + i]n)
8 Pad ← first `M` bits of Pad
9 C ← M ⊕ Pad
10 R← R + ℓ

11 return 〈R − ℓ , C〉
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Counter Mode (4)

CTRC: counter mode with stateful counter (decryption)

◮ family of functions: F : {0, 1}k × {0, 1}n → {0, 1}n

CTRC-DECRYPT(K, R, C)

1 Pad ← FK([R]n)
2 for i← 1 to ⌈`C`/n⌉ − 1
3 do Pad ← Pad ·FK([R + i]n)
4 Pad ← first `C` bits of Pad
5 M← C ⊕ Pad
6 return M
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Authentication Protocol

MAC generation

◮ Input: k-bit key K , N-bit message M

◮ Output: n-bit message authentication code σ

CBC with random IV

◮ use a block cipher E : {0, 1}k × {0, 1}n → {0, 1}n

◮ splitM into n-bit blocksM = M0``M1`` . . . ``Mℓ (ℓ = ⌊N/n⌋)

MAC(K,M)

1 IV
$←{0, 1}n

2 C ← IV
3 for i ← 0 to ⌊`M`/n⌋
4 do C ← EK(C ⊕ M[ni . . . ni + n − 1])
5 return 〈IV, C〉



Authentication Protocol

MAC generation

◮ Input: k-bit key K , N-bit message M

◮ Output: n-bit message authentication code σ

CBC with random IV

◮ use a block cipher E : {0, 1}k × {0, 1}n → {0, 1}n

◮ splitM into n-bit blocksM = M0``M1`` . . . ``Mℓ (ℓ = ⌊N/n⌋)

M0

⊕IV

K E

M1

⊕

K E

M2

⊕

K E

· · ·

· · ·

Mℓ

⊕

K E

MACK (M)
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CBC MAC: Generation

CBC MAC: cipher block chaining MAC with random IV

CBC-MAC$(K,M)

1 if `M` = 0 ∨ `M` , 0 mod n
2 then return ⊥
3 M[1] · M[2] · · ·M[ℓ]← M

4 IV
$←{0, 1}n

5 C ← IV
6 for i ← 1 to ℓ

7 do C ← EK (C ⊕ M[i])
8 return 〈IV, C〉
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CBC MAC: Verification

CBC MAC: cipher block chaining MAC with random IV

CBC-MAC$-VERIFY(K, IV,σ,M)

1 if `M` = 0 ∨ `M` , 0 mod n
2 then return ⊥
3 M[1] · M[2] · · ·M[ℓ]← M
4 C ← IV
5 for i ← 1 to ℓ

6 do C ← EK (C ⊕ M[i])
7 if C = σ

8 then return ACCEPT
9 else return REJECT
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Cryptographic Hash: H : {0, 1}∗ → {0, 1}n

M

H

H(M)

∗

n
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Cryptographic Hash Functions

Cryptographic Hash: H : {0, 1}∗ → {0, 1}n

◮ H(·) is a good hash function when (informally)

[m ∈ {0, 1}∗, h ∈ {0, 1}n, Pr[H(m) = h] =
1

2n

◮ it is “difficult” to find collisions

findm1,m2 ∈ {0, 1}∗ : m1 , m2, H(m1) = H(m2)

◮ it is “difficult” to find a preimage

givenm ∈ {0, 1}∗, find m′ : H(m′) = m

◮ e.g., SHA-1
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Summary

Basic ingredients: cryptographic primitives
◮ secret-key (symmetric) cryptography (e.g., AES)
◮ public-key (asymmetric) cryptography (e.g., RSA)
◮ cryptographic hash functions (e.g., SHA-1)
◮ stream ciphers (e.g., RC4)

Recipes: cryptographic protocols
◮ certificates (e.g., X.509)
◮ secure transport (e.g., TLS, IPSec)
◮ . . .

Applications
◮ electronic commerce
◮ secure shell
◮ secure electronic mail
◮ virtual private networks
◮ . . .


