
A Few Basic Elements of

Communication Security

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

December 22, 2016

Some Advice

Some Advice

Make backups of your data

Do NOT trust the network!

Use HTTPS instead of HTTP

Some Advice

Make backups of your data

Do NOT trust the network!

Use HTTPS instead of HTTP

Understand the basics of public-key cryptography

Communicate with end-to-end encryption (e.g., e-mail)

use trusted certificates

Encrypt your confidential data (and make backups)

use strong passwords

You might as well encrypt all your data

Tools/technologies: ssh, pgp (or gpg)

Outline

Communication security model

Information-theoretic privacy

Substitution ciphers

Intro to modern cryptography

One-time pad

Block siphers

Cryptographic hash functions

Public-key cryptosystems

Communication Security

Communication Security

Communication model: Alice sends a messagem to Bob

Communication Security

Communication model: Alice sends a messagem to Bob

Alice Bob

m

Communication Security

Communication model: Alice sends a messagem to Bob

Alice Bob

m

Eve

Communication Security

Communication model: Alice sends a messagem to Bob

Alice Bob

m

Eve
Passive adversary

◮ can read the message

Communication Security

Communication model: Alice sends a messagem to Bob

Alice Bob

m

Eve
Passive adversary

◮ can read the message

Active adversary

◮ can modify the message

Goals

Goals

Alice Bob

m

Goals

Alice Bob

m

Confidentiality (a.k.a., privacy): Alice wants to make sure
that only Bob sees the message

Goals

Alice Bob

m

Confidentiality (a.k.a., privacy): Alice wants to make sure
that only Bob sees the message

Message Integrity: Bob wants to make sure that the message
he reads was exactly what Alice wrote

Goals (2)

Goals (2)

Alice Bob

m

Goals (2)

Alice Bob

m

End-point Authentication: Bob wants to make sure he is
communicating with Alice

Goals (2)

Alice Bob

m

End-point Authentication: Bob wants to make sure he is
communicating with Alice

Operational/system security: Alice and Bob want to maintain
full control of their networks

What is Privacy, Exactly?

What is Privacy, Exactly?

Alice Bob

m

Alice wants to make sure that only Bob “sees” the message

What is Privacy, Exactly?

Alice Bob

m

Alice wants to make sure that only Bob “sees” the message

What if Eve can guess the message?

“Shift” Cipher

“Shift” Cipher

The ciphertext is

BUUBDL BU EBXO

“Shift” Cipher

The ciphertext is

BUUBDL BU EBXO

Plaintext is

ATTACK AT DAWN

“Shift” Cipher

The ciphertext is

BUUBDL BU EBXO

Plaintext is

ATTACK AT DAWN

How many possible ciphers?

◮ How many key bits?

Substitution Cipher

Substitution Cipher

Substitution cipher

Substitution Cipher

Substitution cipher

◮ alphabet Σ = {‘A’, ‘B’, . . . , ‘Z’, ‘ ’}

Substitution Cipher

Substitution cipher

◮ alphabet Σ = {‘A’, ‘B’, . . . , ‘Z’, ‘ ’}

◮ encryption function: a permutation

E : Σ → Σ

Substitution Cipher

Substitution cipher

◮ alphabet Σ = {‘A’, ‘B’, . . . , ‘Z’, ‘ ’}

◮ encryption function: a permutation

E : Σ → Σ

Example:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _

V Z L Q X T _ R D U C O J N F M G E H W P I S Y A B K

Substitution Cipher

Substitution cipher

◮ alphabet Σ = {‘A’, ‘B’, . . . , ‘Z’, ‘ ’}

◮ encryption function: a permutation

E : Σ → Σ

Example:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _

V Z L Q X T _ R D U C O J N F M G E H W P I S Y A B K

How many possible permutations?

Substitution Cipher

Substitution cipher

◮ alphabet Σ = {‘A’, ‘B’, . . . , ‘Z’, ‘ ’}

◮ encryption function: a permutation

E : Σ → Σ

Example:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _

V Z L Q X T _ R D U C O J N F M G E H W P I S Y A B K

How many possible permutations?

27!

Substitution Cipher

Substitution cipher

◮ alphabet Σ = {‘A’, ‘B’, . . . , ‘Z’, ‘ ’}

◮ encryption function: a permutation

E : Σ → Σ

Example:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _

V Z L Q X T _ R D U C O J N F M G E H W P I S Y A B K

How many possible permutations?

27! = 10888869450418352160768000000 ≈ 293

Substitution Cipher

Encrypting some text using a substitution cipher

plaintext C I A O _ M A M M A

Substitution Cipher

Encrypting some text using a substitution cipher

plaintext C I A O _ M A M M A

E E E E E E E E E E

ciphertext L D V F K J V J J V

Problems?

Substitution Cipher

Encrypting some text using a substitution cipher

plaintext C I A O _ M A M M A

E E E E E E E E E E

ciphertext L D V F K J V J J V

Problems?

◮ easy to break just by guessing!

◮ . . .

Problem

Decrypt this ciphertext obtained by encrypting an English text
with a substitution-cipher:

gbafoduayfbhbayvpyfhayoanbahbdl-brcubqyayfkyakddaibqakvbaxvbkybuabzpkd
yfkyayfbwakvbabquogbuanwayfbcvaxvbkyovagcyfaxbvykcqapqkdcbqkndbavctfyh
yfkyakioqtayfbhbakvbadclbadcnbvywakquayfbampvhpcyaolafkmmcqbhh
yfkyayoahbxpvbayfbhbavctfyhatorbvqibqyhakvbacqhycypybuakioqtaibq
ubvcrcqtayfbcvajphyamogbvhalvoiayfbaxoqhbqyaolayfbatorbvqbu
yfkyagfbqbrbvakqwaloviaolatorbvqibqyanbxoibhaubhyvpxycrbaolayfbhbabquh
cyachayfbavctfyaolayfbambomdbayoakdybvaovayoaknodchfacy

From Black Magic to Mathematics

History: secret algorithms, poorly undestood security properties

From Black Magic to Mathematics

History: secret algorithms, poorly undestood security properties

Modern cryptology

Open and clear models

Open algorithms (the only secret part is the key material)

Well-defined provable security properties

From Black Magic to Mathematics

History: secret algorithms, poorly undestood security properties

From Black Magic to Mathematics

History: secret algorithms, poorly undestood security properties

Modern cryptology

Open and clear models

Open algorithms (the only secret part is the key material)

Well-defined provable security properties

What is “Provable” Security?

The old way

What is “Provable” Security?

The old way

1. somebody (re-)designs a cryptosystem or protocol

What is “Provable” Security?

The old way

1. somebody (re-)designs a cryptosystem or protocol

2. somebody brakes it

What is “Provable” Security?

The old way

1. somebody (re-)designs a cryptosystem or protocol

2. somebody brakes it

3. go back to step 1

What is “Provable” Security?

The new way (provable security)

What is “Provable” Security?

The new way (provable security)

1. Define formal security goals and adversarial models

What is “Provable” Security?

The new way (provable security)

1. Define formal security goals and adversarial models

2. Design a few primitives

◮ based on public and time-tested algorithms and/or
well-studied hard mathematical problems

What is “Provable” Security?

The new way (provable security)

1. Define formal security goals and adversarial models

2. Design a few primitives

◮ based on public and time-tested algorithms and/or
well-studied hard mathematical problems

3. Design a protocol (using primitives) with a proof of security

What is “Provable” Security?

The new way (provable security)

1. Define formal security goals and adversarial models

2. Design a few primitives

◮ based on public and time-tested algorithms and/or
well-studied hard mathematical problems

3. Design a protocol (using primitives) with a proof of security

◮ prove this implication:

primitive is secure⇒ protocol is secure

Example: Factoring

Let N = pq for two prime factors p and q

Problem: given N, find p and q

Example: Factoring

Let N = pq for two prime factors p and q

Problem: given N, find p and q

Solution: (trivial)

FACTOR(N)

1 for i← 2 to ⌊
√
N⌋

2 do if i divides N
3 then return i,N/i

Example: Factoring

Let N = pq for two prime factors p and q

Problem: given N, find p and q

Solution: (trivial)

FACTOR(N)

1 for i← 2 to ⌊
√
N⌋

2 do if i divides N
3 then return i,N/i

Complexity: exponential in the size of N (number of digits of N)

Example: Factoring

Let N = pq for two prime factors p and q

Problem: given N, find p and q

Solution: (trivial)

FACTOR(N)

1 for i← 2 to ⌊
√
N⌋

2 do if i divides N
3 then return i,N/i

Complexity: exponential in the size of N (number of digits of N)

. . .we don’t know how to do better!

Not even Gauss could figure that out!

Example: RSA,. . .⇒ SSH

Example: the RSA cryptosystem (primitive) and SSH (protocol)

Example: RSA,. . .⇒ SSH

Example: the RSA cryptosystem (primitive) and SSH (protocol)

RSA is based on the hardness of factoring

Is RSA secure?

Example: RSA,. . .⇒ SSH

Example: the RSA cryptosystem (primitive) and SSH (protocol)

RSA is based on the hardness of factoring

Is RSA secure? We don’t know!

Example: RSA,. . .⇒ SSH

Example: the RSA cryptosystem (primitive) and SSH (protocol)

RSA is based on the hardness of factoring

Is RSA secure? We don’t know!

. . . but if you can break RSA (efficiently) then you can also
factor a product of two large primes (efficiently)

. . . you are smarter than Gauss!

Example: RSA,. . .⇒ SSH

Example: the RSA cryptosystem (primitive) and SSH (protocol)

RSA is based on the hardness of factoring

Is RSA secure? We don’t know!

. . . but if you can break RSA (efficiently) then you can also
factor a product of two large primes (efficiently)

. . . you are smarter than Gauss!

SSH uses the RSA public-key system (possibly, not only)

Is SSH secure?

Example: RSA,. . .⇒ SSH

Example: the RSA cryptosystem (primitive) and SSH (protocol)

RSA is based on the hardness of factoring

Is RSA secure? We don’t know!

. . . but if you can break RSA (efficiently) then you can also
factor a product of two large primes (efficiently)

. . . you are smarter than Gauss!

SSH uses the RSA public-key system (possibly, not only)

Is SSH secure? Yes!

Example: RSA,. . .⇒ SSH

Example: the RSA cryptosystem (primitive) and SSH (protocol)

RSA is based on the hardness of factoring

Is RSA secure? We don’t know!

. . . but if you can break RSA (efficiently) then you can also
factor a product of two large primes (efficiently)

. . . you are smarter than Gauss!

SSH uses the RSA public-key system (possibly, not only)

Is SSH secure? Yes!

. . . in the sense that, if you can break SSH (efficiently) then you
can also break RSA

. . . you are smarter than Gauss!

The Big Picture

Basic ingredients: cryptographic primitives
◮ secret-key (symmetric) cryptography (e.g., AES)
◮ public-key (asymmetric) cryptography (e.g., RSA)
◮ cryptographic hash functions (e.g., SHA-1)
◮ stream ciphers (e.g., RC4)

The Big Picture

Basic ingredients: cryptographic primitives
◮ secret-key (symmetric) cryptography (e.g., AES)
◮ public-key (asymmetric) cryptography (e.g., RSA)
◮ cryptographic hash functions (e.g., SHA-1)
◮ stream ciphers (e.g., RC4)

Recipes: cryptographic protocols
◮ certificates (e.g., X.509)
◮ secure transport (e.g., TLS, IPSec)
◮ . . .

The Big Picture

Basic ingredients: cryptographic primitives
◮ secret-key (symmetric) cryptography (e.g., AES)
◮ public-key (asymmetric) cryptography (e.g., RSA)
◮ cryptographic hash functions (e.g., SHA-1)
◮ stream ciphers (e.g., RC4)

Recipes: cryptographic protocols
◮ certificates (e.g., X.509)
◮ secure transport (e.g., TLS, IPSec)
◮ . . .

Applications
◮ electronic commerce
◮ secure shell
◮ secure electronic mail
◮ virtual private networks
◮ . . .

Symmetric Encryption

Symmetric Encryption

S R

Symmetric Encryption

S R
M

E

Symmetric Encryption

S R
M

E

K

Symmetric Encryption

S R
M

E

K

randomness
or state

Symmetric Encryption

S R
M

E

K

randomness
or state

D

K

MC

Symmetric Encryption

S R
M

E

K

randomness
or state

D

K

MC

A

Symmetric Encryption

S R
M

E

K

randomness
or state

D

K

MC

A

S sender
R receiver
A adversary

E encryption algorithm
D dencryption algorithm

M plaintext message
C ciphertext message
K key

One-Time Pad

One-Time Pad

Assumptions: the message M and the key K are two n-bit
strings

M ∈ {0, 1}n; K
$←{0, 1}n

One-Time Pad

Assumptions: the message M and the key K are two n-bit
strings

M ∈ {0, 1}n; K
$←{0, 1}n

the key K is chosen uniformly at random from {0, 1}n

One-Time Pad

Assumptions: the message M and the key K are two n-bit
strings

M ∈ {0, 1}n; K
$←{0, 1}n

the key K is chosen uniformly at random from {0, 1}n

Scheme

◮ encryption:
E(K,M) := M ⊕ K

the key K is then thrown away an never reused

◮ decryption:
D(K, C) := C ⊕ K

One-Time Pad

Assumptions: the message M and the key K are two n-bit
strings

M ∈ {0, 1}n; K
$←{0, 1}n

the key K is chosen uniformly at random from {0, 1}n

Scheme

◮ encryption:
E(K,M) := M ⊕ K

the key K is then thrown away an never reused

◮ decryption:
D(K, C) := C ⊕ K

Example: M 0110010110111011

One-Time Pad

Assumptions: the message M and the key K are two n-bit
strings

M ∈ {0, 1}n; K
$←{0, 1}n

the key K is chosen uniformly at random from {0, 1}n

Scheme

◮ encryption:
E(K,M) := M ⊕ K

the key K is then thrown away an never reused

◮ decryption:
D(K, C) := C ⊕ K

Example: M 0110010110111011
K 1011000101000101

One-Time Pad

Assumptions: the message M and the key K are two n-bit
strings

M ∈ {0, 1}n; K
$←{0, 1}n

the key K is chosen uniformly at random from {0, 1}n

Scheme

◮ encryption:
E(K,M) := M ⊕ K

the key K is then thrown away an never reused

◮ decryption:
D(K, C) := C ⊕ K

Example: M 0110010110111011
K 1011000101000101
C 1101010011111110

So, What is Privacy Exactly?

So, What is Privacy Exactly?

A scheme is secure if we learn nothing from the ciphertext C

So, What is Privacy Exactly?

A scheme is secure if we learn nothing from the ciphertext C

A more formal definition:

let K
$←K ; for every m1 , m2 ∈ M , and for any C

So, What is Privacy Exactly?

A scheme is secure if we learn nothing from the ciphertext C

A more formal definition:

let K
$←K ; for every m1 , m2 ∈ M , and for any C

PrK∈K [EK (m1) = C] = PrK∈K [EK(m2) = C]

So, What is Privacy Exactly?

A scheme is secure if we learn nothing from the ciphertext C

A more formal definition:

let K
$←K ; for every m1 , m2 ∈ M , and for any C

PrK∈K [EK (m1) = C] = PrK∈K [EK(m2) = C]

Given a ciphertext C, every plaintextm is equiprobable

◮ so, seeing any particular C = EK (M) tells us nothing about M

So, What is Privacy Exactly?

A scheme is secure if we learn nothing from the ciphertext C

A more formal definition:

let K
$←K ; for every m1 , m2 ∈ M , and for any C

PrK∈K [EK (m1) = C] = PrK∈K [EK(m2) = C]

Given a ciphertext C, every plaintextm is equiprobable

◮ so, seeing any particular C = EK (M) tells us nothing about M

Is a shift cipher perfectly secure?

So, What is Privacy Exactly?

A scheme is secure if we learn nothing from the ciphertext C

A more formal definition:

let K
$←K ; for every m1 , m2 ∈ M , and for any C

PrK∈K [EK (m1) = C] = PrK∈K [EK(m2) = C]

Given a ciphertext C, every plaintextm is equiprobable

◮ so, seeing any particular C = EK (M) tells us nothing about M

Is a shift cipher perfectly secure?

Is a substitution cipher perfectly secure?

So, What is Privacy Exactly?

A scheme is secure if we learn nothing from the ciphertext C

A more formal definition:

let K
$←K ; for every m1 , m2 ∈ M , and for any C

PrK∈K [EK (m1) = C] = PrK∈K [EK(m2) = C]

Given a ciphertext C, every plaintextm is equiprobable

◮ so, seeing any particular C = EK (M) tells us nothing about M

Is a shift cipher perfectly secure?

Is a substitution cipher perfectly secure?

Is one-time-pad perfectly secure?

The Cost of Perfect Privacy

The Cost of Perfect Privacy

Perfect privacy implies that

`K ` ≥ `M `

The Cost of Perfect Privacy

Perfect privacy implies that

`K ` ≥ `M `

Proof: assume not.
Fix a possible ciphertext C, i.e., there is a messagem and a
key k such that EK (m) = C, and PrK∈K [EK(m) = C] > 0

Let PC = {m ∈ M such that Ek(m) = C for some k}

Since every k maps exactly one messagem to C, and since we
have fewer keys than messages, then there is anm′ < PC such
that no key k mapsm′ to C; therefore PrK∈K [EK(m

′) = C] = 0,
which violates the perfect-secrecy condition that for allm and
m′, PrK∈K [EK (m) = C] = PrK∈K [EK(m

′) = C]

Message Authenticity

Message Authenticity

S R

Message Authenticity

S R
M

Message Authenticity

S R
M

A

Message Authenticity

S R
M

A

M′

Message Authenticity

S R
M

A

M′

MAC
gen.

K$ or state

Message Authenticity

S R
M

A

M′

MAC
gen.

K$ or state

σ σ
′

MAC
ver.

K

Message Authenticity

S R
M

A

M′

MAC
gen.

K$ or state

σ σ
′

MAC
ver.

K

{

accept

reject

Message Authenticity

S R
M

A

M′

MAC
gen.

K$ or state

σ σ
′

MAC
ver.

K

{

accept

reject

σ message authentication code (MAC)
K key
$ randomness

MAC gen. MAC generation algorithm
MAC ver. MAC verification algorithm

Asymmetric Encryption

Asymmetric Encryption

S R

Asymmetric Encryption

S R
M

E

Asymmetric Encryption

S R
M

E

PKR

Asymmetric Encryption

S R
M

E

PKR

$

Asymmetric Encryption

S R
M

E

PKR

$

D

SKR

MC

Asymmetric Encryption

S R
M

E

PKR

$

D

SKR

MC

A

Asymmetric Encryption

S R
M

E

PKR

$

D

SKR

MC

A

PKR receiver’s public key
SKR receiver’s secret key

M plaintext message
C ciphertext message

Digital Signatures

Digital Signatures

S R
M

A

M′

Digital Signatures

S R
M

A

M′

sign

SKS$

Digital Signatures

S R
M

A

M′

sign

SKS$

σ σ
′
verify

PKS

Digital Signatures

S R
M

A

M′

sign

SKS$

σ σ
′
verify

PKS

{

accept

reject

Digital Signatures

S R
M

A

M′

sign

SKS$

σ σ
′
verify

PKS

{

accept

reject

σ digital signature
SKS sender’s secret key
PKS sender’s public key
$ randomness

sign signing algorithm
verify verification algorithm

Primitives vs. Protocols

Primitives vs. Protocols

Protocol

◮ an algorithm

◮ solves a specific security problem (e.g., signing a message)

Primitives vs. Protocols

Protocol

◮ an algorithm

◮ solves a specific security problem (e.g., signing a message)

Primitive

Primitives vs. Protocols

Protocol

◮ an algorithm

◮ solves a specific security problem (e.g., signing a message)

Primitive

◮ also an algorithm

◮ the elementary subroutines of protocols

◮ implement (try to approximate) well-definedmathematical
object

◮ embody “hard problems”

Stream Ciphers

Stream Ciphers

A stream cipher is a generator of a pseudo-random streams

Stream Ciphers

A stream cipher is a generator of a pseudo-random streams

◮ given an initialization key K

◮ generates an infinite pseudo-random sequence of bits

Stream Ciphers

A stream cipher is a generator of a pseudo-random streams

◮ given an initialization key K

◮ generates an infinite pseudo-random sequence of bits

E.g., RC4

Padding with a Stream Cipher

Padding with a Stream Cipher

Assumptions: S and R share a secret key K and agree to use a
stream cipher SK
◮ S and Rmaintain some state: position s initialized to s = 0

Padding with a Stream Cipher

Assumptions: S and R share a secret key K and agree to use a
stream cipher SK
◮ S and Rmaintain some state: position s initialized to s = 0

Encryption protocol

1. S computes C ← M ⊕ SK[s . . . s + `M` − 1]
2. S updates its position s← s + `M`

Padding with a Stream Cipher

Assumptions: S and R share a secret key K and agree to use a
stream cipher SK
◮ S and Rmaintain some state: position s initialized to s = 0

Encryption protocol

1. S computes C ← M ⊕ SK[s . . . s + `M` − 1]
2. S updates its position s← s + `M`

Dencryption protocol

1. R computes M← C ⊕ SK[s . . . s + `C` − 1]
2. R updates its position s← s + `C`

Block Ciphers

Block Cipher: E : {0, 1}k × {0, 1}n → {0, 1}n

Block Ciphers

Block Cipher: E : {0, 1}k × {0, 1}n → {0, 1}n

M

K E

EK(M)

Block Ciphers

Block Cipher: E : {0, 1}k × {0, 1}n → {0, 1}n

M

K E

EK(M)

◮ EK(·) is a permutation, so E−1K (·) is always defined

Block Ciphers

Block Cipher: E : {0, 1}k × {0, 1}n → {0, 1}n

M

K E

EK(M)

n

n

◮ EK(·) is a permutation, so E−1K (·) is always defined
◮ fixed-length input and output (n)

Block Ciphers

Block Cipher: E : {0, 1}k × {0, 1}n → {0, 1}n

M

K E

EK(M)

k

n

n

◮ EK(·) is a permutation, so E−1K (·) is always defined
◮ fixed-length input and output (n)

◮ fixed-length key (k)

Block Ciphers

Block Cipher: E : {0, 1}k × {0, 1}n → {0, 1}n

M

K E

EK(M)

k

n

n

◮ EK(·) is a permutation, so E−1K (·) is always defined
◮ fixed-length input and output (n)

◮ fixed-length key (k)

◮ e.g., DES, AES

An Encryption Protocol

An Encryption Protocol

Symmetric encryption

◮ Input: k-bit key K , N-bit message M

◮ Output: N-bit ciphertext C

An Encryption Protocol

Symmetric encryption

◮ Input: k-bit key K , N-bit message M

◮ Output: N-bit ciphertext C

Cipher Block Chaining (CBC)

◮ use a block cipher E : {0, 1}k × {0, 1}n → {0, 1}n

◮ splitM into n-bit blocksM = M0``M1`` . . . ``Mℓ (ℓ = ⌊N/n⌋)

An Encryption Protocol

Symmetric encryption

◮ Input: k-bit key K , N-bit message M

◮ Output: N-bit ciphertext C

Cipher Block Chaining (CBC)

◮ use a block cipher E : {0, 1}k × {0, 1}n → {0, 1}n

◮ splitM into n-bit blocksM = M0``M1`` . . . ``Mℓ (ℓ = ⌊N/n⌋)

CBC(K,M)

1 x ← 0n

2 for i ← 0 to ⌊`M`/n⌋
3 do C[ni . . . ni + n − 1]← EK (x ⊕ M[ni . . . ni + n − 1])
4 x ← C[ni . . . ni + n − 1]
5 return C

An Encryption Protocol

Symmetric encryption

◮ Input: k-bit key K , N-bit message M

◮ Output: N-bit ciphertext C

Cipher Block Chaining (CBC)

◮ use a block cipher E : {0, 1}k × {0, 1}n → {0, 1}n

◮ splitM into n-bit blocksM = M0``M1`` . . . ``Mℓ (ℓ = ⌊N/n⌋)

M0

⊕0n

K E

C0

M1

⊕

K E

C1

M2

⊕

K E

C2

· · ·

· · ·

· · ·

Mℓ

⊕

K E

Cℓ

Exercise

Write the decryption algorithm for CBC

Exercise

Write the decryption algorithm for CBC

CBC-DECRYPT(K, C)

1 x ← 0n

2 for i← 0 to ⌊`C`/n⌋

3 do M[ni . . . ni + n − 1]← x ⊕ E−1K (C[ni . . . ni + n − 1])
4 x ← C[ni . . . ni + n − 1]
5 return M

An Encryption Protocol (2)

An Encryption Protocol (2)

Is this CBC protocol secure?

An Encryption Protocol (2)

Is this CBC protocol secure?

◮ any deterministic stateless protocol is insecure

◮ we need state and/or randomness

An Encryption Protocol (2)

Is this CBC protocol secure?

◮ any deterministic stateless protocol is insecure

◮ we need state and/or randomness

What if `M` , 0 mod n?

An Encryption Protocol (2)

Is this CBC protocol secure?

◮ any deterministic stateless protocol is insecure

◮ we need state and/or randomness

What if `M` , 0 mod n?

Is CBC parallelizable?

CBC With Random IV

CBC$: cipher block chaining with random IV

CBC With Random IV

CBC$: cipher block chaining with random IV

CBC$-ENCRYPT(K,M)

1 if `M` = 0 ∨ `M` , 0 mod n
2 then return ⊥
3 M[1] · M[2] · · ·M[ℓ]← M

4 IV
$←{0, 1}n

5 C[0]← IV
6 for i← 1 to ℓ

7 do C[i]← EK(C[i − 1] ⊕ M[i])
8 C ← C[1] · C[2] · · · C[ℓ]
9 return 〈IV, C〉

CBC With Random IV (2)

CBC$: cipher block chaining with random IV (decryption)

CBC With Random IV (2)

CBC$: cipher block chaining with random IV (decryption)

CBC$-DECRYPT(K, IV, C)

1 if `C` = 0 ∨ `C` , 0 mod n
2 then return ⊥
3 C[1] · C[2] · · · C[ℓ]← C
4 C[0]← IV
5 for i← 1 to ℓ

6 do M[i]← C[i − 1] ⊕ EK(C[i])
7 M← M[1] · M[2] · · ·M[ℓ]
8 return M

CBC With Stateful Counter

CBCC: cipher block chaining with stateful counter

CBC With Stateful Counter

CBCC: cipher block chaining with stateful counter

CBCC-ENCRYPT(K,M)

1 static ctr ← 0
2 if ctr ≥ 2n ∨ `M` = 0 ∨ `M` , 0 mod n
3 then return ⊥
4 M[1] · M[2] · · ·M[ℓ]← M
5 IV ← [ctr]n
6 C[0]← [ctr]n
7 for i ← 1 to ℓ

8 do C[i]← EK (C[i − 1] ⊕ M[i])
9 C ← C[1] · C[2] · · · C[ℓ]
10 ctr ← ctr +1
11 return 〈IV, C〉

CBC With Stateful Counter (2)

CBCC: cipher block chaining with stateful counter

CBC With Stateful Counter (2)

CBCC: cipher block chaining with stateful counter

CBCC-DECRYPT(K, IV, C)

1 if IV +`C` ≥ 2n ∨ `C` = 0 ∨ `C` , 0 mod n
2 then return ⊥
3 C[1] · C[2] · · · C[ℓ]← C
4 IV ← [ctr]n
5 C[0]← IV
6 for i ← 1 to ℓ

7 do M[i]← C[i − 1] ⊕ E−1K (C[i])
8 M← M[1] · M[2] · · ·M[ℓ]
9 return M

Counter Mode

CTR$: counter mode with random initial counter

Counter Mode

CTR$: counter mode with random initial counter

◮ family of functions: F : {0, 1}k × {0, 1}n → {0, 1}n

Counter Mode

CTR$: counter mode with random initial counter

◮ family of functions: F : {0, 1}k × {0, 1}n → {0, 1}n

CTR$-ENCRYPT(K,M)

1 R
$←{0, 1}n

2 Pad ← FK([R]n)
3 for i← 1 to ⌈`M`/n⌉ − 1
4 do Pad ← Pad ·FK([R + i]n)
5 Pad ← first `M` bits of Pad
6 C ← M ⊕ Pad
7 return 〈R, C〉

Counter Mode (2)

CTR$: counter mode with random initial counter (decryption)

◮ family of functions: F : {0, 1}k × {0, 1}n → {0, 1}n

Counter Mode (2)

CTR$: counter mode with random initial counter (decryption)

◮ family of functions: F : {0, 1}k × {0, 1}n → {0, 1}n

CTR$-DECRYPT(K, R, C)

1 Pad ← FK([R]n)
2 for i← 1 to ⌈`C`/n⌉ − 1
3 do Pad ← Pad ·FK([R + i]n)
4 Pad ← first `C` bits of Pad
5 M← C ⊕ Pad
6 return M

Counter Mode (3)

CTRC: counter mode with stateful counter

◮ family of functions: F : {0, 1}k × {0, 1}n → {0, 1}n

Counter Mode (3)

CTRC: counter mode with stateful counter

◮ family of functions: F : {0, 1}k × {0, 1}n → {0, 1}n

CTRC(K,M)

1 static R← 0
2 ℓ ← ⌈`M`/n⌉
3 if R+ℓ − 1 ≥ 2n

4 then return ⊥
5 Pad ← FK([R]n)
6 for i ← 1 to ℓ − 1
7 do Pad ← Pad ·FK([R + i]n)
8 Pad ← first `M` bits of Pad
9 C ← M ⊕ Pad
10 R← R + ℓ

11 return 〈R − ℓ , C〉

Counter Mode (4)

CTRC: counter mode with stateful counter (decryption)

◮ family of functions: F : {0, 1}k × {0, 1}n → {0, 1}n

Counter Mode (4)

CTRC: counter mode with stateful counter (decryption)

◮ family of functions: F : {0, 1}k × {0, 1}n → {0, 1}n

CTRC-DECRYPT(K, R, C)

1 Pad ← FK([R]n)
2 for i← 1 to ⌈`C`/n⌉ − 1
3 do Pad ← Pad ·FK([R + i]n)
4 Pad ← first `C` bits of Pad
5 M← C ⊕ Pad
6 return M

Authentication Protocol

MAC generation

◮ Input: k-bit key K , N-bit message M

◮ Output: n-bit message authentication code σ

Authentication Protocol

MAC generation

◮ Input: k-bit key K , N-bit message M

◮ Output: n-bit message authentication code σ

CBC with random IV

◮ use a block cipher E : {0, 1}k × {0, 1}n → {0, 1}n

◮ splitM into n-bit blocksM = M0``M1`` . . . ``Mℓ (ℓ = ⌊N/n⌋)

MAC(K,M)

1 IV
$←{0, 1}n

2 C ← IV
3 for i ← 0 to ⌊`M`/n⌋
4 do C ← EK(C ⊕ M[ni . . . ni + n − 1])
5 return 〈IV, C〉

Authentication Protocol

MAC generation

◮ Input: k-bit key K , N-bit message M

◮ Output: n-bit message authentication code σ

CBC with random IV

◮ use a block cipher E : {0, 1}k × {0, 1}n → {0, 1}n

◮ splitM into n-bit blocksM = M0``M1`` . . . ``Mℓ (ℓ = ⌊N/n⌋)

M0

⊕IV

K E

M1

⊕

K E

M2

⊕

K E

· · ·

· · ·

Mℓ

⊕

K E

MACK (M)

CBC MAC: Generation

CBC MAC: cipher block chaining MAC with random IV

CBC MAC: Generation

CBC MAC: cipher block chaining MAC with random IV

CBC-MAC$(K,M)

1 if `M` = 0 ∨ `M` , 0 mod n
2 then return ⊥
3 M[1] · M[2] · · ·M[ℓ]← M

4 IV
$←{0, 1}n

5 C ← IV
6 for i ← 1 to ℓ

7 do C ← EK (C ⊕ M[i])
8 return 〈IV, C〉

CBC MAC: Verification

CBC MAC: cipher block chaining MAC with random IV

CBC MAC: Verification

CBC MAC: cipher block chaining MAC with random IV

CBC-MAC$-VERIFY(K, IV,σ,M)

1 if `M` = 0 ∨ `M` , 0 mod n
2 then return ⊥
3 M[1] · M[2] · · ·M[ℓ]← M
4 C ← IV
5 for i ← 1 to ℓ

6 do C ← EK (C ⊕ M[i])
7 if C = σ

8 then return ACCEPT
9 else return REJECT

Cryptographic Hash Functions

Cryptographic Hash: H : {0, 1}∗ → {0, 1}n

Cryptographic Hash Functions

Cryptographic Hash: H : {0, 1}∗ → {0, 1}n

M

H

H(M)

∗

n

Cryptographic Hash Functions

Cryptographic Hash: H : {0, 1}∗ → {0, 1}n

◮ H(·) is a good hash function when (informally)

[m ∈ {0, 1}∗, h ∈ {0, 1}n, Pr[H(m) = h] =
1

2n

Cryptographic Hash Functions

Cryptographic Hash: H : {0, 1}∗ → {0, 1}n

◮ H(·) is a good hash function when (informally)

[m ∈ {0, 1}∗, h ∈ {0, 1}n, Pr[H(m) = h] =
1

2n

◮ it is “difficult” to find collisions

findm1,m2 ∈ {0, 1}∗ : m1 , m2, H(m1) = H(m2)

Cryptographic Hash Functions

Cryptographic Hash: H : {0, 1}∗ → {0, 1}n

◮ H(·) is a good hash function when (informally)

[m ∈ {0, 1}∗, h ∈ {0, 1}n, Pr[H(m) = h] =
1

2n

◮ it is “difficult” to find collisions

findm1,m2 ∈ {0, 1}∗ : m1 , m2, H(m1) = H(m2)

◮ it is “difficult” to find a preimage

givenm ∈ {0, 1}∗, find m′ : H(m′) = m

Cryptographic Hash Functions

Cryptographic Hash: H : {0, 1}∗ → {0, 1}n

◮ H(·) is a good hash function when (informally)

[m ∈ {0, 1}∗, h ∈ {0, 1}n, Pr[H(m) = h] =
1

2n

◮ it is “difficult” to find collisions

findm1,m2 ∈ {0, 1}∗ : m1 , m2, H(m1) = H(m2)

◮ it is “difficult” to find a preimage

givenm ∈ {0, 1}∗, find m′ : H(m′) = m

◮ e.g., SHA-1

Summary

Basic ingredients: cryptographic primitives
◮ secret-key (symmetric) cryptography (e.g., AES)
◮ public-key (asymmetric) cryptography (e.g., RSA)
◮ cryptographic hash functions (e.g., SHA-1)
◮ stream ciphers (e.g., RC4)

Summary

Basic ingredients: cryptographic primitives
◮ secret-key (symmetric) cryptography (e.g., AES)
◮ public-key (asymmetric) cryptography (e.g., RSA)
◮ cryptographic hash functions (e.g., SHA-1)
◮ stream ciphers (e.g., RC4)

Recipes: cryptographic protocols
◮ certificates (e.g., X.509)
◮ secure transport (e.g., TLS, IPSec)
◮ . . .

Summary

Basic ingredients: cryptographic primitives
◮ secret-key (symmetric) cryptography (e.g., AES)
◮ public-key (asymmetric) cryptography (e.g., RSA)
◮ cryptographic hash functions (e.g., SHA-1)
◮ stream ciphers (e.g., RC4)

Recipes: cryptographic protocols
◮ certificates (e.g., X.509)
◮ secure transport (e.g., TLS, IPSec)
◮ . . .

Applications
◮ electronic commerce
◮ secure shell
◮ secure electronic mail
◮ virtual private networks
◮ . . .

