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m Every router broadcast a link-state advertisement (LSA)
containing the costs of its adjacent links

m Routers use LSAs from other routers to compile an image of
the entire network

m With a complete knowledge of the network topology, routers
perform a local computation (Dijkstra’s algorithm) to find the
least-cost paths to every other router

m In essence

» broadcast transmission of topology information
» global knowledge of the network

» local computation
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Changes in Link Costs

m Routers monitor the state of their adjacent links
» e.g., measuring the round-trip time using a local “ping” protocol

B The measured costs are used to build LSAs, which are issued
also at regular intervals

m Changes in link costs are propagated quickly to all routers

m Routers can then react by recomputing paths and by
updating their forwarding tables accordingly

» in fact, this “reaction” is not different from the normal behavior
of the protocol
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m Every router u maintains a “distance vector”

» v is a destination node in the network
» Dy[v] is the best known distance between u and v
» ny[v]is the next-hop router on the best known path to v

m Routers exchange their distance vectors with their neighbors

m If the distance vector of a neighbor leads to a better path to
some destinations, the router updates its distance vector and
sends it out again to its neighbors

m After a number of iterations, the algorithm converges to a point
where every router has a minimal distance vector
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m Local transmission of topology information

» routers exchange their distance vectors only with their
neighbors

» no broadcast protocol needed (a local broadcast can be useful)

m Local knowledge of the network

» router u knows its distance D,[v] and the first step along that
path

» router u does not know about any link cost except its adjacent
links

m Global computation

» the computation is actually distributed
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Distance-Vector Algorithm

m Executing locally at node u
m Variables storing values known at each iteration

» Dy[v], cost of the least-cost path from u to v (distance vector)

» ny[v], next-hop node (neighbor of u) on the least-cost path
fromutov

» Dy[v], distance vectors of every neighbor node x



Distance-Vector Algorithm: Initialization

Ooo~NOUTLE, WN =

> Initialization
forveV
do if v € neighbors(u)
then D,[v] « c(u,v)
nylv] « v
else D,[v] « o
for x € neighbors(u)
do forv eV
do D,[v] « o0
send D, to all neighbor nodes
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Distance-Vector Algorithm: Loop

when Dj is received from neighbor x
do D, < Dj,
forveN
do Dy[v] « MiNyeneighbors(u) (C(U, X) + Dy[v])
if D, was updated
then send D, to all neighbor nodes

when link cost c(u, x) changes
do forveN
do Dy[v] « MiNyeneighbors(u) (C(U, X) + Dy[v])
if D, was updated
then send D, to all neighbor nodes
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Distance-Vector Algorithm: D, Update

> updating D,:
> Vv € N : Dy[v] < minyeneighborsu)(c(U, X) + Dx[v])
updated < FALSE
forveN
do for x € neighbors(u)
do if Dy[v] > c(u, x) + Dy[v]
then D,[v] « c(u, x) + Dy|v]
nylv] < x
updated <« TRUE
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