Distance-Vector Routing

Antonio Carzaniga

Faculty of Informatics
Universita della Svizzera italiana

December 15, 2016

Recap on link-state routing
Distance-vector routing
Bellman-Ford equation
Distance-vector algorithm

Examples

Outline

Recap on Routing

m Goal: each router u must be able to compute, for each other
router v, the next-hop neighbor x that is on the least-cost
path fromu tov

Recap on Routing

m Goal: each router u must be able to compute, for each other
router v, the next-hop neighbor x that is on the least-cost

path fromu tov

Recap on Routing

m Goal: each router u must be able to compute, for each other
router v, the next-hop neighbor x that is on the least-cost

path fromu tov

Recap on Routing

m Goal: each router u must be able to compute, for each other
router v, the next-hop neighbor x that is on the least-cost
path fromu tov

"__y®

&

Recap on Link-State Routing

Recap on Link-State Routing

m Every router broadcast a link-state advertisement (LSA)
containing the costs of its adjacent links

Recap on Link-State Routing

m Every router broadcast a link-state advertisement (LSA)
containing the costs of its adjacent links

m Routers use LSAs from other routers to compile an image of
the entire network

Recap on Link-State Routing

m Every router broadcast a link-state advertisement (LSA)
containing the costs of its adjacent links

m Routers use LSAs from other routers to compile an image of
the entire network

m With a complete knowledge of the network topology, routers
perform a local computation (Dijkstra’s algorithm) to find the
least-cost paths to every other router

Recap on Link-State Routing

m Every router broadcast a link-state advertisement (LSA)
containing the costs of its adjacent links

m Routers use LSAs from other routers to compile an image of
the entire network

m With a complete knowledge of the network topology, routers
perform a local computation (Dijkstra’s algorithm) to find the
least-cost paths to every other router

m In essence

» broadcast transmission of topology information
» global knowledge of the network

» local computation

Changes in Link Costs

Changes in Link Costs

m Routers monitor the state of their adjacent links
» e.g., measuring the round-trip time using a local “ping” protocol

Changes in Link Costs

m Routers monitor the state of their adjacent links
» e.g., measuring the round-trip time using a local “ping” protocol

B The measured costs are used to build LSAs, which are issued
also at regular intervals

Changes in Link Costs

m Routers monitor the state of their adjacent links
» e.g., measuring the round-trip time using a local “ping” protocol

B The measured costs are used to build LSAs, which are issued
also at regular intervals

m Changes in link costs are propagated quickly to all routers

m Routers can then react by recomputing paths and by
updating their forwarding tables accordingly

» in fact, this “reaction” is not different from the normal behavior
of the protocol

Distance-Vector Routing

Distance-Vector Routing

m Every router u maintains a “distance vector”

» v is a destination node in the network
» Dy[v] is the best known distance between u and v
» ny[v]is the next-hop router on the best known path to v

Distance-Vector Routing

m Every router u maintains a “distance vector”

» v is a destination node in the network
» Dy[v] is the best known distance between u and v
» ny[v]is the next-hop router on the best known path to v

m Routers exchange their distance vectors with their neighbors

Distance-Vector Routing

m Every router u maintains a “distance vector”

» v is a destination node in the network
» Dy[v] is the best known distance between u and v
» ny[v]is the next-hop router on the best known path to v

m Routers exchange their distance vectors with their neighbors

m If the distance vector of a neighbor leads to a better path to
some destinations, the router updates its distance vector and
sends it out again to its neighbors

Distance-Vector Routing

m Every router u maintains a “distance vector”

» v is a destination node in the network
» Dy[v] is the best known distance between u and v
» ny[v]is the next-hop router on the best known path to v

m Routers exchange their distance vectors with their neighbors

m If the distance vector of a neighbor leads to a better path to
some destinations, the router updates its distance vector and
sends it out again to its neighbors

m After a number of iterations, the algorithm converges to a point
where every router has a minimal distance vector

Distance-Vector Routing

Distance-Vector Routing

m Local transmission of topology information

» routers exchange their distance vectors only with their
neighbors

» no broadcast protocol needed (a local broadcast can be useful)

Distance-Vector Routing

m Local transmission of topology information

» routers exchange their distance vectors only with their
neighbors

» no broadcast protocol needed (a local broadcast can be useful)

m Local knowledge of the network

» router u knows its distance D,[v] and the first step along that
path

» router u does not know about any link cost except its adjacent
links

Distance-Vector Routing

m Local transmission of topology information

» routers exchange their distance vectors only with their
neighbors

» no broadcast protocol needed (a local broadcast can be useful)

m Local knowledge of the network

» router u knows its distance D,[v] and the first step along that
path

» router u does not know about any link cost except its adjacent
links

m Global computation

» the computation is actually distributed

Intuition

Intuition
m The main idea behind the distance-vector algorithm is
expressed well by the Bellman-Ford equation

D/[vl= min (c(u,x) + Dy[v])
xeneighbors(u)

Intuition

m The main idea behind the distance-vector algorithm is
expressed well by the Bellman-Ford equation

D/[vl= min (c(u,x) + Dy[v])

xeneighbors(u)

Intuition

m The main idea behind the distance-vector algorithm is
expressed well by the Bellman-Ford equation

D/[vl= min (c(u,x) + Dy[v])
xeneighbors(u)

Distance-Vector Algorithm

m Executing locally at node u

Distance-Vector Algorithm

m Executing locally at node u

m Variables storing values known at each iteration

Distance-Vector Algorithm

m Executing locally at node u
m Variables storing values known at each iteration

» Dy[v], cost of the least-cost path from u to v (distance vector)

Distance-Vector Algorithm

m Executing locally at node u
m Variables storing values known at each iteration

» Dy[v], cost of the least-cost path from u to v (distance vector)

» ny[v], next-hop node (neighbor of u) on the least-cost path
fromutov

Distance-Vector Algorithm

m Executing locally at node u
m Variables storing values known at each iteration

» Dy[v], cost of the least-cost path from u to v (distance vector)

» ny[v], next-hop node (neighbor of u) on the least-cost path
fromutov

» Dy[v], distance vectors of every neighbor node x

Distance-Vector Algorithm: Initialization

Ooo~NOUTLE, WN =

> Initialization
forveV
do if v € neighbors(u)
then D,[v] « c(u,v)
nylv] « v
else D,[v] « o
for x € neighbors(u)
do forv eV
do D,[v] « o0
send D, to all neighbor nodes

OOk, WN —

—_—
- O VW o0

Distance-Vector Algorithm: Loop

when Dj is received from neighbor x
do D, < Dj,
forveN
do Dy[v] « MiNyeneighbors(u) (C(U, X) + Dy[v])
if D, was updated
then send D, to all neighbor nodes

when link cost c(u, x) changes
do forveN
do Dy[v] « MiNyeneighbors(u) (C(U, X) + Dy[v])
if D, was updated
then send D, to all neighbor nodes

NoubhwN =

Distance-Vector Algorithm: D, Update

> updating D,:
> Vv € N : Dy[v] < minyeneighborsu)(c(U, X) + Dx[v])
updated < FALSE
forveN
do for x € neighbors(u)
do if Dy[v] > c(u, x) + Dy[v]
then D,[v] « c(u, x) + Dy|v]
nylv] < x
updated <« TRUE

Example

Example

<~ 88||o|8 88|08 8|T|e8 8
88 8|l v|—88||we88|vle8S8
NgElaeB8|lal—88|||8838
©8 8|l ©NB8|o|88 | ©|+ 88

Example

ot §o © < 0 g o o< w
ol —w - 8o o—uw © g o
ol~no g O N — -0 3 © N -
oo~ ~o g N <to 8
O © SN O NSO AN
o<t 8 8 8 88 o g8 8 © 88
v|l8 8 8 — 8 8 o8 8 o g 8
o~ 8 8 o8 8 — 8 8 888
oo 8 8 ~N 8 8 8 8 8 < 88
O O SN OIS OSSN

Example

< 0 o

M — O

N O O

o ©

o mo

O N —

<o m

S QT Q T o U9 T TS S v
QQQ QQQ QQQ QQQ
< 8 8 g8 88 o g 8 © 8 8
8 8 8 - 88 © 88 © 8 8
N8 8 © 88 — 8 8 888
o8 8 ~N g8 8 8 8 < 8 8
S QT Q T v U QT R BK=KS]
QaQQ QQQ QQQ QaQQ

Example (2)

Example (2)

< 88|08 8 8||olo8 8 o 8 83
88 8|l vl— 88 o 8 8 o 8 8
Nggllaolo8 8|l 8 8 88 8
o8 3| ml~ g8 88 8 < 8 8
s&3(@sss|Or ss@sss

Example (2)

s£3@sseOsss@Psss
< 88|08 8 8||olo8 8 o 8 83
88 8|l vl— 88 o 8 8 o 8 8
Nggllaolo8 8|l 8 8 88 8
o8 3| ml~ g8 88 8 < 8 8
s&3(@sss|Or ss@sss

Example (2)

< 0 o

M — O

N O O

[« N e

NMOo

O N —

<o m

S QT Q T o U9 T TS S v
QQQ QQQ QQQ QQQ
< 8 8 g8 88 o8 8 © 8 8
8 8 8 - 88 © 88 o8 8
N8 8 © 88 — 8 8 888
o8 8 ~N g8 8 8 8 < 8 8
S QT Q T v U QT R BK=KS]
QaQQ QQQ QQQ QaQQ

