Antonio Carzaniga

Faculty of Informatics Università della Svizzera italiana

December 15, 2016

Outline

- Recap on link-state routing
- Distance-vector routing
- Bellman-Ford equation
- Distance-vector algorithm
- Examples

■ Every router broadcast a *link-state advertisement (LSA)* containing the costs of its adjacent links

- Every router broadcast a *link-state advertisement (LSA)* containing the costs of its adjacent links
- Routers use LSAs from other routers to compile an image of the entire network

- Every router broadcast a *link-state advertisement (LSA)* containing the costs of its adjacent links
- Routers use LSAs from other routers to compile an image of the entire network
- With a complete knowledge of the network topology, routers perform a local computation (Dijkstra's algorithm) to find the least-cost paths to every other router

- Every router broadcast a link-state advertisement (LSA) containing the costs of its adjacent links
- Routers use LSAs from other routers to compile an image of the entire network
- With a complete knowledge of the network topology, routers perform a local computation (Dijkstra's algorithm) to find the least-cost paths to every other router
- In essence
 - broadcast transmission of topology information
 - global knowledge of the network
 - local computation

Changes in Link Costs

- Routers monitor the state of their adjacent links
 - e.g., measuring the round-trip time using a local "ping" protocol

Changes in Link Costs

- Routers monitor the state of their adjacent links
 - e.g., measuring the round-trip time using a local "ping" protocol
- The measured costs are used to build LSAs, which are issued also at regular intervals

Changes in Link Costs

- Routers monitor the state of their adjacent links
 - e.g., measuring the round-trip time using a local "ping" protocol
- The measured costs are used to build LSAs, which are issued also at regular intervals
- Changes in link costs are propagated quickly to all routers
- Routers can then react by recomputing paths and by updating their forwarding tables accordingly
 - in fact, this "reaction" is not different from the normal behavior of the protocol

- Every router *u* maintains a "distance vector"
 - v is a destination node in the network
 - $\triangleright D_u[v]$ is the best known distance between u and v
 - $ightharpoonup n_{u}[v]$ is the next-hop router on the best known path to v

- Every router *u* maintains a "distance vector"
 - v is a destination node in the network
 - $\triangleright D_u[v]$ is the best known distance between u and v
 - $ightharpoonup n_u[v]$ is the next-hop router on the best known path to v
- Routers exchange their distance vectors with their neighbors

- Every router *u* maintains a "distance vector"
 - v is a destination node in the network
 - $\triangleright D_u[v]$ is the best known distance between u and v
 - $ho_u[v]$ is the next-hop router on the best known path to v
- Routers exchange their distance vectors with their neighbors
- If the distance vector of a neighbor leads to a better path to some destinations, the router updates its distance vector and sends it out again to its neighbors

- Every router *u* maintains a "distance vector"
 - v is a destination node in the network
 - $\triangleright D_u[v]$ is the best known distance between u and v
 - $ho_u[v]$ is the next-hop router on the best known path to v
- Routers exchange their distance vectors with their neighbors
- If the distance vector of a neighbor leads to a better path to some destinations, the router updates its distance vector and sends it out again to its neighbors
- After a number of iterations, the algorithm converges to a point where every router has a minimal distance vector

- Local transmission of topology information
 - routers exchange their distance vectors only with their neighbors
 - no broadcast protocol needed (a local broadcast can be useful)

- Local transmission of topology information
 - routers exchange their distance vectors only with their neighbors
 - no broadcast protocol needed (a local broadcast can be useful)
- Local knowledge of the network
 - router u knows its distance $D_u[v]$ and the first step along that path
 - router u does not know about any link cost except its adjacent links

- Local transmission of topology information
 - routers exchange their distance vectors only with their neighbors
 - no broadcast protocol needed (a local broadcast can be useful)
- Local knowledge of the network
 - router u knows its distance $D_u[v]$ and the first step along that path
 - router u does not know about any link cost except its adjacent links
- Global computation
 - the computation is actually distributed

Intuition

■ The main idea behind the distance-vector algorithm is expressed well by the *Bellman-Ford equation*

$$D'_{u}[v] = \min_{x \in neighbors(u)} (c(u, x) + D_{x}[v])$$

Intuition

■ The main idea behind the distance-vector algorithm is expressed well by the *Bellman-Ford equation*

$$D'_{u}[v] = \min_{x \in neighbors(u)} (c(u, x) + D_{x}[v])$$

Intuition

The main idea behind the distance-vector algorithm is expressed well by the Bellman-Ford equation

$$D'_{u}[v] = \min_{x \in neighbors(u)} (c(u, x) + D_{x}[v])$$

■ Executing locally at node *u*

- Executing locally at node *u*
- Variables storing values known at each iteration

- Executing locally at node u
- Variables storing values known at each iteration
 - ▶ $D_u[v]$, cost of the least-cost path from u to v (distance vector)

- Executing locally at node *u*
- Variables storing values known at each iteration
 - ► $D_u[v]$, cost of the least-cost path from u to v (distance vector)
 - ► $n_u[v]$, next-hop node (neighbor of u) on the least-cost path from u to v

- Executing locally at node u
- Variables storing values known at each iteration
 - ▶ $D_u[v]$, cost of the least-cost path from u to v (distance vector)
 - ► $n_u[v]$, next-hop node (neighbor of u) on the least-cost path from u to v
 - ▶ $D_x[v]$, distance vectors of every neighbor node x

Distance-Vector Algorithm: Initialization

```
▷ Initialization
    for v \in V
           do if v \in neighbors(u)
3
                   then D_{u}[v] \leftarrow c(u,v)
                           n_{\prime\prime}[v] \leftarrow v
5
                   else D_{\mu}[v] \leftarrow \infty
6
    for x \in neighbors(u)
            do for v \in V
8
                       do D_x[v] \leftarrow \infty
    send D_{ii} to all neighbor nodes
```

Distance-Vector Algorithm: Loop

```
when D'_{x} is received from neighbor x
           do D_x \leftarrow D'_x
 3
               for v \in N
 4
                     do D_u[v] \leftarrow \min_{x \in neighbors(u)} (c(u, x) + D_x[v])
 5
               if D_{ij} was updated
 6
                  then send D_{\mu} to all neighbor nodes
     when link cost c(u, x) changes
           do for v \in N
 8
                     do D_u[v] \leftarrow \min_{x \in neighbors(u)} (c(u, x) + D_x[v])
 9
               if D_{ij} was updated
10
11
                  then send D_u to all neighbor nodes
```

Distance-Vector Algorithm: D_u Update

(a)	а	b	С	d
Da	0	2	∞	4
D_b	∞	∞	∞	∞
D_d	∞	∞	∞	∞
b	а	b	С	d
D_b	2	0	1	∞
D_a	∞	∞	∞	∞
D_{c}	∞	∞	∞	∞
0	а	b	С	d
D _C	a ∞	b 1	c 0	d 6
C D _c D _b				
D _C	∞	1	0	6
D _c D _b	∞ ∞	1 ∞	0 ∞	6 ∞
$\begin{array}{c} D_{c} \\ D_{b} \\ D_{d} \\ \end{array}$	∞ ∞ ∞	1 ∞ ∞	0 ∞ ∞	6 ∞ ∞
D_c D_b D_d	∞ ∞ ∞	1 ∞ ∞	0 ∞ ∞	6 ∞ ∞

(a)	a	b	С	d	_	(a)	a	b	С	d	•
Da	0	2	∞	4		Da	0	2	3	4	-
D_b	∞	∞	∞	∞		D_b	2	0	1	∞	
D_d	∞	∞	∞	∞	_	D_d	4	∞	6	0	
b	а	b	С	d	_	b	а	b	С	d	(b)
D_b	2	0	1	∞	_	D_b	2	0	1	6	2
D_a	∞	∞	∞	∞		D_a	0	2	∞	4	-
D_{c}	∞	∞	∞	∞	_	D_{C}	∞	1	0	6	. (a
(C)	а	b	С	d	-	(c)	a	b	С	d	
D_{c}	∞	1	0	6	_	D_{c}	3	1	0	6	-
D_b	∞	∞	∞	∞		D_b	2	0	1	∞	
D_d	∞	∞	∞	∞	_	D_d	4	∞	6	0	_
d	а	b	С	d		d	а	b	С	d	•
D_d	4	∞	6	0	_	D_d	4	6	6	0	•
D_{α}	∞	∞	∞	∞		D_{a}	0	2	∞	4	
D_{c}	∞	∞	∞	∞		D_{c}	∞	1	0	6	
											•

(a)	а	b	C	d	(a)	а	b	C	d	(a)	а	b	С	d
Da	0	2	∞	4	Da	0	2	3	4	D_a	0	2	3	4
D_b	∞	∞	∞	∞	D_b	2	0	1	∞	D_b	2	0	1	6
D_d	∞	∞	∞	∞	D_d	4	∞	6	0	D_d	4	6	6	0
b	а	b	С	d	b	а	b	С	d	b	а	b	С	d
D_b	2	0	1	∞	D_b	2	0	1	6	D_b	2	0	1	6
D_a	∞	∞	∞	∞	D_{α}	0	2	∞	4	D_a	0	2	3	4
D_{C}	∞	∞	∞	∞	D_{c}	∞	1	0	6	D_{c}	3	1	0	6
(C)	а	b	С	d	(C)	а	b	С	d	(c)	а	b	С	d
D_{C}	∞	1	0	6	D_{c}	3	1	0	6	D_{c}	3	1	0	6
D_b	∞	∞	∞	∞	D_b	2	0	1	∞	D_b	2	0	1	6
D_d	∞	∞	∞	∞	D_d	4	∞	6	0	D_d	4	6	6	0
d	а	b	С	d	d	а	b	С	d	d	а	b	С	d
D_d	4	∞	6	0	D_d	4	6	6	0	D_d	4	6	6	0
D_a	∞	∞	∞	∞	D_{α}	0	2	∞	4	D_a	0	2	3	4
D_{c}	8	∞	∞	∞	D_{c}	∞	1	0	6	D_c	3	1	0	6
					-	•								

a	а	b	С	d
Da	0	2	∞	4
D_b	∞	∞	∞	∞
D_d	∞	∞	∞	∞
b	а	b	С	d
D_b	2	0	1	∞
D_{α}	∞	∞	∞	∞
D_{C}	∞	∞	∞	∞
(c)	a	b	C	d
D_c	a ∞	b 1	С О	d 9
D_c				
\sim	∞	1	0	9
D_c D_b	∞ ∞	1 ∞	0 ∞	9 ∞
$ \begin{array}{c} D_c \\ D_b \\ D_d \end{array} $	∞ ∞ ∞	1 ∞ ∞	0 ∞ ∞	9 ∞ ∞
$ \begin{array}{c} D_c \\ D_b \\ D_d \end{array} $ $ \begin{array}{c} D_d \\ D_d \\ D_a \end{array} $	∞ ∞ ∞	1 ∞ ∞	0 ∞ ∞	9 ∞ ∞ d
$ \begin{array}{c} D_c \\ D_b \\ D_d \end{array} $	∞ ∞ ∞ a 4	1 ∞ ∞ b ∞	0 ∞ ∞ c	9 ∞ ∞ d

d

a	а	b	С	d	a	а	b	C	d	a	а	b	C	d	
Da	0	2	∞	4	Da	0	2	3	4	Da	0	2	3	4	
D_b	∞	∞	∞	∞	D_b	2	0	1	∞	D_b	2	0	1	6	
D_d	∞	∞	∞	∞	D_d	4	∞	9	0	D_d	4	6	9	0	
b	а	b	С	d	b	а	b	С	d	b	а	b	С	d	
D_b	2	0	1	∞	D_b	2	0	1	6	D_b	2	0	1	6	
D_a	∞	∞	∞	∞	D_{a}	0	2	∞	4	D_a	0	2	3	4	
D_{C}	∞	∞	∞	∞	D_{C}	∞	1	0	9	D_{c}	3	1	0	9	
(C)	а	b	С	d	(C)	а	b	С	d	(c)	а	b	С	d	
D_{c}	∞	1	0	9	D_{c}	3	1	0	9	D_{c}	3	1	0	7	
D_b	∞	∞	∞	∞	D_b	2	0	1	∞	D_b	2	0	1	6	
D_d	∞	∞	∞	∞	D_d	4	∞	9	0	D_d	4	6	9	0	
d	а	b	С	d	d	а	b	С	d	d	а	b	С	d	
D_d	4	∞	9	0	D_d	4	6	9	0	D_d	4	6	7	0	
D_a	∞	∞	∞	∞	D_{a}	0	2	∞	4	D_a	0	2	3	4	
D_{c}	∞	∞	∞	∞	D_c	∞	1	0	9	D_c	3	1	0	9	