
Reliable Data Transfer II

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

November 10, 2016



Outline

Performance of the stop-and-wait protocol

Go-Back-N

Selective repeat



Back to Reliable Data Tranfer



Back to Reliable Data Tranfer

S0 ACK0

S1ACK1

u_recv(pkt)

r_send(data)

data_pkt = [0, data]∗

u_send(data_pkt)
start_timer()

timeout

u_send(data_pkt)
start_timer()

u_recv(pkt)
and (pkt is corrupted
or pkt = (ACK, 1))

u_send(data_pkt)
start_timer()

u_recv(pkt)
and pkt is good
and pkt = (ACK, 0)

u_recv(pkt)

r_send(data)

data_pkt = [1, data]∗

u_send(data_pkt)
start_timer()

timeout

u_send(data_pkt)
start_timer()

u_recv(pkt)
and (pkt is corrupted
or pkt = (ACK, 0))

u_send(data_pkt)
start_timer()

u_recv(pkt)
and pkt is good
and pkt = (ACK, 1)



Back to Reliable Data Tranfer

S0 ACK0

S1ACK1

u_recv(pkt)

r_send(data)

data_pkt = [0, data]∗

u_send(data_pkt)
start_timer()

timeout

u_send(data_pkt)
start_timer()

u_recv(pkt)
and (pkt is corrupted
or pkt = (ACK, 1))

u_send(data_pkt)
start_timer()

u_recv(pkt)
and pkt is good
and pkt = (ACK, 0)

u_recv(pkt)

r_send(data)

data_pkt = [1, data]∗

u_send(data_pkt)
start_timer()

timeout

u_send(data_pkt)
start_timer()

u_recv(pkt)
and (pkt is corrupted
or pkt = (ACK, 0))

u_send(data_pkt)
start_timer()

u_recv(pkt)
and pkt is good
and pkt = (ACK, 1)



Back to Reliable Data Tranfer

S0 ACK0

S1ACK1

u_recv(pkt)

r_send(data)

data_pkt = [0, data]∗

u_send(data_pkt)
start_timer()

timeout

u_send(data_pkt)
start_timer()

u_recv(pkt)
and (pkt is corrupted
or pkt = (ACK, 1))

u_send(data_pkt)
start_timer()

u_recv(pkt)
and pkt is good
and pkt = (ACK, 0)

u_recv(pkt)

r_send(data)

data_pkt = [1, data]∗

u_send(data_pkt)
start_timer()

timeout

u_send(data_pkt)
start_timer()

u_recv(pkt)
and (pkt is corrupted
or pkt = (ACK, 0))

u_send(data_pkt)
start_timer()

u_recv(pkt)
and pkt is good
and pkt = (ACK, 1)



Back to Reliable Data Tranfer

S0 ACK0

S1ACK1

u_recv(pkt)

r_send(data)

data_pkt = [0, data]∗

u_send(data_pkt)
start_timer()

timeout

u_send(data_pkt)
start_timer()

u_recv(pkt)
and (pkt is corrupted
or pkt = (ACK, 1))

u_send(data_pkt)
start_timer()

u_recv(pkt)
and pkt is good
and pkt = (ACK, 0)

u_recv(pkt)

r_send(data)

data_pkt = [1, data]∗

u_send(data_pkt)
start_timer()

timeout

u_send(data_pkt)
start_timer()

u_recv(pkt)
and (pkt is corrupted
or pkt = (ACK, 0))

u_send(data_pkt)
start_timer()

u_recv(pkt)
and pkt is good
and pkt = (ACK, 1)



Back to Reliable Data Tranfer

S0 ACK0

S1ACK1

u_recv(pkt)

r_send(data)

data_pkt = [0, data]∗

u_send(data_pkt)
start_timer()

timeout

u_send(data_pkt)
start_timer()

u_recv(pkt)
and (pkt is corrupted
or pkt = (ACK, 1))

u_send(data_pkt)
start_timer()

u_recv(pkt)
and pkt is good
and pkt = (ACK, 0)

u_recv(pkt)

r_send(data)

data_pkt = [1, data]∗

u_send(data_pkt)
start_timer()

timeout

u_send(data_pkt)
start_timer()

u_recv(pkt)
and (pkt is corrupted
or pkt = (ACK, 0))

u_send(data_pkt)
start_timer()

u_recv(pkt)
and pkt is good
and pkt = (ACK, 1)



Back to Reliable Data Tranfer

S0 ACK0

S1ACK1

u_recv(pkt)

r_send(data)

data_pkt = [0, data]∗

u_send(data_pkt)
start_timer()

timeout

u_send(data_pkt)
start_timer()

u_recv(pkt)
and (pkt is corrupted
or pkt = (ACK, 1))

u_send(data_pkt)
start_timer()

u_recv(pkt)
and pkt is good
and pkt = (ACK, 0)

u_recv(pkt)

r_send(data)

data_pkt = [1, data]∗

u_send(data_pkt)
start_timer()

timeout

u_send(data_pkt)
start_timer()

u_recv(pkt)
and (pkt is corrupted
or pkt = (ACK, 0))

u_send(data_pkt)
start_timer()

u_recv(pkt)
and pkt is good
and pkt = (ACK, 1)



Back to Reliable Data Tranfer

S0 ACK0

S1ACK1

u_recv(pkt)

r_send(data)

data_pkt = [0, data]∗

u_send(data_pkt)
start_timer()

timeout

u_send(data_pkt)
start_timer()

u_recv(pkt)
and (pkt is corrupted
or pkt = (ACK, 1))

u_send(data_pkt)
start_timer()

u_recv(pkt)
and pkt is good
and pkt = (ACK, 0)

u_recv(pkt)

r_send(data)

data_pkt = [1, data]∗

u_send(data_pkt)
start_timer()

timeout

u_send(data_pkt)
start_timer()

u_recv(pkt)
and (pkt is corrupted
or pkt = (ACK, 0))

u_send(data_pkt)
start_timer()

u_recv(pkt)
and pkt is good
and pkt = (ACK, 1)



Back to Reliable Data Tranfer

S0 ACK0

S1ACK1

u_recv(pkt)

r_send(data)

data_pkt = [0, data]∗

u_send(data_pkt)
start_timer()

timeout

u_send(data_pkt)
start_timer()

u_recv(pkt)
and (pkt is corrupted
or pkt = (ACK, 1))

u_send(data_pkt)
start_timer()

u_recv(pkt)
and pkt is good
and pkt = (ACK, 0)

u_recv(pkt)

r_send(data)

data_pkt = [1, data]∗

u_send(data_pkt)
start_timer()

timeout

u_send(data_pkt)
start_timer()

u_recv(pkt)
and (pkt is corrupted
or pkt = (ACK, 0))

u_send(data_pkt)
start_timer()

u_recv(pkt)
and pkt is good
and pkt = (ACK, 1)



Back to Reliable Data Tranfer

S0 ACK0

S1ACK1

u_recv(pkt)

r_send(data)

data_pkt = [0, data]∗

u_send(data_pkt)
start_timer()

timeout

u_send(data_pkt)
start_timer()

u_recv(pkt)
and (pkt is corrupted
or pkt = (ACK, 1))

u_send(data_pkt)
start_timer()

u_recv(pkt)
and pkt is good
and pkt = (ACK, 0)

u_recv(pkt)

r_send(data)

data_pkt = [1, data]∗

u_send(data_pkt)
start_timer()

timeout

u_send(data_pkt)
start_timer()

u_recv(pkt)
and (pkt is corrupted
or pkt = (ACK, 0))

u_send(data_pkt)
start_timer()

u_recv(pkt)
and pkt is good
and pkt = (ACK, 1)



Back to Reliable Data Tranfer

S0 ACK0

S1ACK1

u_recv(pkt)

r_send(data)

data_pkt = [0, data]∗

u_send(data_pkt)
start_timer()

timeout

u_send(data_pkt)
start_timer()

u_recv(pkt)
and (pkt is corrupted
or pkt = (ACK, 1))

u_send(data_pkt)
start_timer()

u_recv(pkt)
and pkt is good
and pkt = (ACK, 0)

u_recv(pkt)

r_send(data)

data_pkt = [1, data]∗

u_send(data_pkt)
start_timer()

timeout

u_send(data_pkt)
start_timer()

u_recv(pkt)
and (pkt is corrupted
or pkt = (ACK, 0))

u_send(data_pkt)
start_timer()

u_recv(pkt)
and pkt is good
and pkt = (ACK, 1)



Network Usage

sender receiver
r_send(pkt1)



Network Usage

sender receiver
r_send(pkt1)

u_send([pkt1,0])



Network Usage

sender receiver
r_send(pkt1)

u_send([pkt1,0]) [pkt1 ,0]



Network Usage

sender receiver
r_send(pkt1)

u_send([pkt1,0]) [pkt1 ,0]

u_send([ACK,0])

r_recv(pkt1)



Network Usage

sender receiver
r_send(pkt1)

u_send([pkt1,0]) [pkt1 ,0]

u_send([ACK,0])

r_recv(pkt1)[ACK
,0]



Network Usage

sender receiver
r_send(pkt1)

u_send([pkt1,0]) [pkt1 ,0]

u_send([ACK,0])

r_recv(pkt1)[ACK
,0]

r_send(pkt2)



Network Usage

sender receiver
r_send(pkt1)

u_send([pkt1,0]) [pkt1 ,0]

u_send([ACK,0])

r_recv(pkt1)[ACK
,0]

r_send(pkt2)

u_send([pkt2,1])



Network Usage

sender receiver
r_send(pkt1)

u_send([pkt1,0]) [pkt1 ,0]

u_send([ACK,0])

r_recv(pkt1)[ACK
,0]

r_send(pkt2)

u_send([pkt2,1]) [pkt2 ,1]



Network Usage

sender receiver
r_send(pkt1)

u_send([pkt1,0]) [pkt1 ,0]

u_send([ACK,0])

r_recv(pkt1)[ACK
,0]

r_send(pkt2)

u_send([pkt2,1]) [pkt2 ,1]

u_send([ACK,1])

r_recv(pkt2)



Network Usage

sender receiver
r_send(pkt1)

u_send([pkt1,0]) [pkt1 ,0]

u_send([ACK,0])

r_recv(pkt1)[ACK
,0]

r_send(pkt2)

u_send([pkt2,1]) [pkt2 ,1]

u_send([ACK,1])

r_recv(pkt2)[ACK
,1]



Network Usage

sender receiver

[pkt1 ,0]

[ACK
,0]

[pkt2 ,1]

[ACK
,1]



Network Usage

sender receiver

[pkt1 ,0]

[ACK
,0]

[pkt2 ,1]

[ACK
,1]



Network Usage

sender receiver

[pkt1 ,0]

[ACK
,0]

[pkt2 ,1]

[ACK
,1]

d



Network Usage

sender receiver

[pkt1 ,0]

[ACK
,0]

[pkt2 ,1]

[ACK
,1]

d

ℓpkt1
/R



Network Usage

sender receiver

[pkt1 ,0]

[ACK
,0]

[pkt2 ,1]

[ACK
,1]

d

ℓpkt1
/R

d



Network Usage

sender receiver

[pkt1 ,0]

[ACK
,0]

[pkt2 ,1]

[ACK
,1]

d

ℓpkt1
/R

d

utilization
factor

U =
ℓpkt/R

2d+ℓpkt/R



Improving Network Usage

How do we achieve a better utilization factor?



Improving Network Usage

How do we achieve a better utilization factor?

sender receiver

[pkt1 ,0]

[ACK
,0]



Improving Network Usage

How do we achieve a better utilization factor?

sender receiver

[pkt1 ,0]

[ACK
,0]

[ACK
,1]

[pkt2 ,1]



Improving Network Usage

How do we achieve a better utilization factor?

sender receiver

[pkt1 ,0]

[ACK
,0]

[ACK
,1]

[pkt2 ,1]

· · ·

· · ·



Improving Network Usage

How do we achieve a better utilization factor?

sender receiver

[pkt1 ,0]

[ACK
,0]

[ACK
,1]

[pkt2 ,1]

· · ·

· · ·

[ACK
,w −

1]

[pktw ,w − 1]



Go-Back-N

Idea: the sender transmits multiple packets without waiting
for an acknowledgement



Go-Back-N

Idea: the sender transmits multiple packets without waiting
for an acknowledgement

Sender has up toW unacknowledged packets in the pipeline

◮ the sender’s state machine gets very complex
◮ we represent the sender’s state with its queue of
acknowledgements



Go-Back-N

Idea: the sender transmits multiple packets without waiting
for an acknowledgement

Sender has up toW unacknowledged packets in the pipeline

◮ the sender’s state machine gets very complex
◮ we represent the sender’s state with its queue of
acknowledgements



Go-Back-N

Idea: the sender transmits multiple packets without waiting
for an acknowledgement

Sender has up toW unacknowledged packets in the pipeline

◮ the sender’s state machine gets very complex
◮ we represent the sender’s state with its queue of
acknowledgements

acknowledged pending available unavailable



Go-Back-N

Idea: the sender transmits multiple packets without waiting
for an acknowledgement

Sender has up toW unacknowledged packets in the pipeline

◮ the sender’s state machine gets very complex
◮ we represent the sender’s state with its queue of
acknowledgements

acknowledged pending available unavailable

first pending
acknowledgement

(base)



Go-Back-N

Idea: the sender transmits multiple packets without waiting
for an acknowledgement

Sender has up toW unacknowledged packets in the pipeline

◮ the sender’s state machine gets very complex
◮ we represent the sender’s state with its queue of
acknowledgements

acknowledged pending available unavailable

first pending
acknowledgement

(base)

next available
sequence number
(next_seq_num)



Go-Back-N

Idea: the sender transmits multiple packets without waiting
for an acknowledgement

Sender has up toW unacknowledged packets in the pipeline

◮ the sender’s state machine gets very complex
◮ we represent the sender’s state with its queue of
acknowledgements

acknowledged pending available unavailable

first pending
acknowledgement

(base)

next available
sequence number
(next_seq_num)

window size (W)



Sliding Window Protocol: Sender

base

sliding window

next_seq_num



Sliding Window Protocol: Sender

base

sliding window

next_seq_num

r_send(pkt1)



Sliding Window Protocol: Sender

base

sliding window

next_seq_num

r_send(pkt1)

◮ u_send([pkt1,next_seq_num])



Sliding Window Protocol: Sender

base

sliding window

next_seq_num

r_send(pkt1)

◮ u_send([pkt1,next_seq_num])

◮ next_seq_num = next_seq_num + 1



Sliding Window Protocol: Sender

base

sliding window

next_seq_num

A

r_send(pkt1)

◮ u_send([pkt1,next_seq_num])

◮ next_seq_num = next_seq_num + 1

u_recv([ACK,A])



Sliding Window Protocol: Sender

base

sliding window

next_seq_num

A

r_send(pkt1)

◮ u_send([pkt1,next_seq_num])

◮ next_seq_num = next_seq_num + 1

u_recv([ACK,A])

◮ base = A + 1



Sliding Window Protocol: Sender

base

sliding window

next_seq_num

A

r_send(pkt1)

◮ u_send([pkt1,next_seq_num])

◮ next_seq_num = next_seq_num + 1

u_recv([ACK,A])

◮ base = A + 1

◮ notice that acknewledgements are “cumulative”



Sliding Window Protocol: Sender



Sliding Window Protocol: Sender

The sender remembers the first sequence number that has
not yet been acknowledged

◮ or the highest acknowledged sequence number

The sender remembers the first available sequence number

◮ or the highest used sequence number (i.e., sent to the receiver)

The sender responds to three types of events



Sliding Window Protocol: Sender

The sender remembers the first sequence number that has
not yet been acknowledged

◮ or the highest acknowledged sequence number

The sender remembers the first available sequence number

◮ or the highest used sequence number (i.e., sent to the receiver)

The sender responds to three types of events

◮ r_send(): invocation from the application layer: send more data
if a sequence number is available



Sliding Window Protocol: Sender

The sender remembers the first sequence number that has
not yet been acknowledged

◮ or the highest acknowledged sequence number

The sender remembers the first available sequence number

◮ or the highest used sequence number (i.e., sent to the receiver)

The sender responds to three types of events

◮ r_send(): invocation from the application layer: send more data
if a sequence number is available

◮ ACK: receipt of an acknowledgement: shift the window (it’s a
“cumulative” ACK)



Sliding Window Protocol: Sender

The sender remembers the first sequence number that has
not yet been acknowledged

◮ or the highest acknowledged sequence number

The sender remembers the first available sequence number

◮ or the highest used sequence number (i.e., sent to the receiver)

The sender responds to three types of events

◮ r_send(): invocation from the application layer: send more data
if a sequence number is available

◮ ACK: receipt of an acknowledgement: shift the window (it’s a
“cumulative” ACK)

◮ timeout: “Go-Back-N.” I.e., resend all the packets that have
been sent but not acknowledged



Sliding Window Protocol: Sender

init

base = 1
next_seq_num = 1



Sliding Window Protocol: Sender

init

base = 1
next_seq_num = 1

r_send(data)

if next_seq_num < base + W :
pkt[next_seq_num] =[next_seq_num, data]∗

u_send(pkt[next_seq_num])
if next_seq_num == base:

start_timer()
next_seq_num = next_seq_num + 1

else:
refuse_data(data) // block the sender



Sliding Window Protocol: Sender

u_recv(pkt) and pkt is corrupted



Sliding Window Protocol: Sender

u_recv(pkt) and pkt is corrupted

u_recv(ACK,ack_num)

base = ack_num + 1 // resume the sender
if next_seq_num == base:

stop_timer()
else:

start_timer()



Sliding Window Protocol: Sender

u_recv(pkt) and pkt is corrupted

u_recv(ACK,ack_num)

base = ack_num + 1 // resume the sender
if next_seq_num == base:

stop_timer()
else:

start_timer()

timeout

start_timer()
foreach i in base . . . next_seq_num − 1:

u_send(pkt[i])



Sliding Window Protocol: Receiver



Sliding Window Protocol: Receiver

Simple: as in the stop-and-wait case, the receiver maintains a
counter representing the expected sequence number



Sliding Window Protocol: Receiver

Simple: as in the stop-and-wait case, the receiver maintains a
counter representing the expected sequence number

The receiver waits for a (good) data packet with the expected
sequence number



Sliding Window Protocol: Receiver

Simple: as in the stop-and-wait case, the receiver maintains a
counter representing the expected sequence number

The receiver waits for a (good) data packet with the expected
sequence number

◮ acknowledges the expected sequence number



Sliding Window Protocol: Receiver

Simple: as in the stop-and-wait case, the receiver maintains a
counter representing the expected sequence number

The receiver waits for a (good) data packet with the expected
sequence number

◮ acknowledges the expected sequence number

◮ delivers the data to the application



Sliding Window Protocol: Receiver

init

expected_seq_num = 1
ackpkt = [ACK, 0]∗



Sliding Window Protocol: Receiver

init

expected_seq_num = 1
ackpkt = [ACK, 0]∗

u_recv([data, seq_num]) and good
and seq_num = expected_seq_num

r_recv(data)
ackpkt = [ACK, expected_seq_num]∗

expected_seq_num = expected_seq_num + 1
u_send(ackpkt)



Sliding Window Protocol: Receiver

init

expected_seq_num = 1
ackpkt = [ACK, 0]∗

u_recv([data, seq_num]) and good
and seq_num = expected_seq_num

r_recv(data)
ackpkt = [ACK, expected_seq_num]∗

expected_seq_num = expected_seq_num + 1
u_send(ackpkt)

u_recv([data, seq_num])
and (corrupted or seq_num , expected_seq_num)

u_send(ackpkt)



Comments

Concepts



Comments

Concepts

◮ sequence numbers



Comments

Concepts

◮ sequence numbers

◮ sliding window



Comments

Concepts

◮ sequence numbers

◮ sliding window

◮ cumulative acknowledgements



Comments

Concepts

◮ sequence numbers

◮ sliding window

◮ cumulative acknowledgements

◮ checksums, timeouts, and sender-initiated retransmission



Comments

Concepts

◮ sequence numbers

◮ sliding window

◮ cumulative acknowledgements

◮ checksums, timeouts, and sender-initiated retransmission

Advantages: simple



Comments

Concepts

◮ sequence numbers

◮ sliding window

◮ cumulative acknowledgements

◮ checksums, timeouts, and sender-initiated retransmission

Advantages: simple

◮ the sender maintains two counters and one timer

◮ the receiver maintains one counter



Comments

Concepts

◮ sequence numbers

◮ sliding window

◮ cumulative acknowledgements

◮ checksums, timeouts, and sender-initiated retransmission

Advantages: simple

◮ the sender maintains two counters and one timer

◮ the receiver maintains one counter

Disadvantages: not optimal, not adaptive



Comments

Concepts

◮ sequence numbers

◮ sliding window

◮ cumulative acknowledgements

◮ checksums, timeouts, and sender-initiated retransmission

Advantages: simple

◮ the sender maintains two counters and one timer

◮ the receiver maintains one counter

Disadvantages: not optimal, not adaptive

◮ the sender can fill the window without filling the pipeline



Comments

Concepts

◮ sequence numbers

◮ sliding window

◮ cumulative acknowledgements

◮ checksums, timeouts, and sender-initiated retransmission

Advantages: simple

◮ the sender maintains two counters and one timer

◮ the receiver maintains one counter

Disadvantages: not optimal, not adaptive

◮ the sender can fill the window without filling the pipeline

◮ the receiver may buffer out-of-order packets. . .



Performance Analysis

What is a good value forW?



Performance Analysis

What is a good value forW?

◮ W that achieves themaximum utilization of the connection



Performance Analysis

What is a good value forW?

◮ W that achieves themaximum utilization of the connection

ℓ = stream
d = 500ms
R = 1Mb/s
W = ?



Performance Analysis

What is a good value forW?

◮ W that achieves themaximum utilization of the connection

ℓ = stream
d = 500ms
R = 1Mb/s
W = ?

The problem may seem a bit underspecified. What is the
(average) packet size?

ℓpkt = 1Kb
d = 500ms
R = 1Mb/s

W = 2d×R
ℓpkt

= 1000



Performance Analysis

The RTT–throughput product (2d × R) is the crucial factor



Performance Analysis

The RTT–throughput product (2d × R) is the crucial factor

◮ W × ℓpkt ≤ 2d × R

◮ whyW × ℓpkt > 2d × R doesn’t make much sense?



Performance Analysis

The RTT–throughput product (2d × R) is the crucial factor

◮ W × ℓpkt ≤ 2d × R

◮ whyW × ℓpkt > 2d × R doesn’t make much sense?

◮ maximum channel utilization whenW × ℓpkt = 2d × R

◮ 2d × R can be thought of as the capacity of a connection



Problems with Go-Back-N

Let’s consider a fully utilized connection



Problems with Go-Back-N

Let’s consider a fully utilized connection

ℓpkt = 1Kb
d = 500ms
R = 1Mb/s

W = R×d
ℓpkt

= 1000



Problems with Go-Back-N

Let’s consider a fully utilized connection

ℓpkt = 1Kb
d = 500ms
R = 1Mb/s

W = R×d
ℓpkt

= 1000

What happens if the first packet (or acknowledgement) is lost?



Problems with Go-Back-N

Let’s consider a fully utilized connection

ℓpkt = 1Kb
d = 500ms
R = 1Mb/s

W = R×d
ℓpkt

= 1000

What happens if the first packet (or acknowledgement) is lost?

Sender retransmits the entire content of its buffers



Problems with Go-Back-N

Let’s consider a fully utilized connection

ℓpkt = 1Kb
d = 500ms
R = 1Mb/s

W = R×d
ℓpkt

= 1000

What happens if the first packet (or acknowledgement) is lost?

Sender retransmits the entire content of its buffers

◮ W × ℓpkt = 2d × R = 1Mb

◮ retransmitting 1Mb to recover 1Kb worth of data isn’t exactly
the best solution. Not to mention conjestions. . .



Problems with Go-Back-N

Let’s consider a fully utilized connection

ℓpkt = 1Kb
d = 500ms
R = 1Mb/s

W = R×d
ℓpkt

= 1000

What happens if the first packet (or acknowledgement) is lost?

Sender retransmits the entire content of its buffers

◮ W × ℓpkt = 2d × R = 1Mb

◮ retransmitting 1Mb to recover 1Kb worth of data isn’t exactly
the best solution. Not to mention conjestions. . .

Is there a better way to deal with retransmissions?



Selective Repeat

Idea: have the sender retransmit only those packets that it
suspects were lost or corrupted



Selective Repeat

Idea: have the sender retransmit only those packets that it
suspects were lost or corrupted

◮ sender maintains a vector of acknowledgement flags



Selective Repeat

Idea: have the sender retransmit only those packets that it
suspects were lost or corrupted

◮ sender maintains a vector of acknowledgement flags

◮ receiver maintains a vector of acknowledged falgs



Selective Repeat

Idea: have the sender retransmit only those packets that it
suspects were lost or corrupted

◮ sender maintains a vector of acknowledgement flags

◮ receiver maintains a vector of acknowledged falgs

◮ in fact, receiver maintains a buffer of out-of-order packets



Selective Repeat

Idea: have the sender retransmit only those packets that it
suspects were lost or corrupted

◮ sender maintains a vector of acknowledgement flags

◮ receiver maintains a vector of acknowledged falgs

◮ in fact, receiver maintains a buffer of out-of-order packets

◮ sender maintains a timer for each pending packet



Selective Repeat

Idea: have the sender retransmit only those packets that it
suspects were lost or corrupted

◮ sender maintains a vector of acknowledgement flags

◮ receiver maintains a vector of acknowledged falgs

◮ in fact, receiver maintains a buffer of out-of-order packets

◮ sender maintains a timer for each pending packet

◮ sender resends a packet when its timer expires



Selective Repeat

Idea: have the sender retransmit only those packets that it
suspects were lost or corrupted

◮ sender maintains a vector of acknowledgement flags

◮ receiver maintains a vector of acknowledged falgs

◮ in fact, receiver maintains a buffer of out-of-order packets

◮ sender maintains a timer for each pending packet

◮ sender resends a packet when its timer expires

◮ sender slides the window when the lowest pending sequence
number is acknowledged



Selective Repeat: Sender

base

sliding window

next_seq_num



Selective Repeat: Sender

base

sliding window

next_seq_num

r_send(pkt1)



Selective Repeat: Sender

base

sliding window

next_seq_num

r_send(pkt1)

◮ u_send([pkt1,next_seq_num])

◮ start_timer(next_seq_num)



Selective Repeat: Sender

base

sliding window

next_seq_num

r_send(pkt1)

◮ u_send([pkt1,next_seq_num])

◮ start_timer(next_seq_num)

◮ next_seq_num = next_seq_num + 1



Selective Repeat: Sender

base

sliding window

next_seq_num

A

r_send(pkt1)

◮ u_send([pkt1,next_seq_num])

◮ start_timer(next_seq_num)

◮ next_seq_num = next_seq_num + 1

u_recv([ACK,A])



Selective Repeat: Sender

base

sliding window

next_seq_num

A

r_send(pkt1)

◮ u_send([pkt1,next_seq_num])

◮ start_timer(next_seq_num)

◮ next_seq_num = next_seq_num + 1

u_recv([ACK,A])

◮ acks[A] = 1 // remember that A was ACK’d



Selective Repeat: Sender

base

sliding window

next_seq_num

A

r_send(pkt1)

◮ u_send([pkt1,next_seq_num])

◮ start_timer(next_seq_num)

◮ next_seq_num = next_seq_num + 1

u_recv([ACK,A])

◮ acks[A] = 1 // remember that A was ACK’d

◮ acknewledgements are no longer “cumulative”



Selective Repeat: Receiver



Selective Repeat: Receiver

received acceptable not usable

rcv_base

sliding window



Selective Repeat: Receiver

received acceptable not usable

rcv_base

sliding window

X1

u_recv([pkt1,X1]) and rcv_base ≤ X1 < rcv_base + W



Selective Repeat: Receiver

received acceptable not usable

rcv_base

sliding window

X1

u_recv([pkt1,X1]) and rcv_base ≤ X1 < rcv_base + W

◮ buffer[X1] = pkt1
◮ u_send([ACK, X1]

∗) // no longer a “cumulative” ACK



Selective Repeat: Receiver

received acceptable not usable

rcv_base

sliding window



Selective Repeat: Receiver

received acceptable not usable

rcv_base

sliding window

X2

u_recv([pkt2,X2]) and rcv_base ≤ X2 < rcv_base + W
◮ buffer[X2] = pkt2
◮ u_send([ACK, X2]

∗)



Selective Repeat: Receiver

received acceptable not usable

rcv_base

sliding window

X2

u_recv([pkt2,X2]) and rcv_base ≤ X2 < rcv_base + W
◮ buffer[X2] = pkt2
◮ u_send([ACK, X2]

∗)

◮ if X2 == rcv_base:



Selective Repeat: Receiver

received acceptable not usable

rcv_base

sliding window

X2 B

u_recv([pkt2,X2]) and rcv_base ≤ X2 < rcv_base + W
◮ buffer[X2] = pkt2
◮ u_send([ACK, X2]

∗)

◮ if X2 == rcv_base:
B = first_missing_seq_num()
foreach i in rcv_base . . . B − 1:

r_recv(buffer[i])



Selective Repeat: Receiver

received acceptable not usable

rcv_base

sliding window

u_recv([pkt2,X2]) and rcv_base ≤ X2 < rcv_base + W
◮ buffer[X2] = pkt2
◮ u_send([ACK, X2]

∗)

◮ if X2 == rcv_base:
B = first_missing_seq_num()
foreach i in rcv_base . . . B − 1:

r_recv(buffer[i])
rcv_base = B



Selective Repeat: Sender



Selective Repeat: Sender

base

sliding window

next_seq_num



Selective Repeat: Sender

base

sliding window

next_seq_num

T

Timeout for sequence number T



Selective Repeat: Sender

base

sliding window

next_seq_num

T

Timeout for sequence number T
◮ u_send([pkt[T], T]∗)



Selective Repeat: Sender

base

sliding window

next_seq_num



Selective Repeat: Sender

base

sliding window

next_seq_num

A

u_recv([ACK,A])



Selective Repeat: Sender

base

sliding window

next_seq_num

A

u_recv([ACK,A])
◮ acks[A] = 1



Selective Repeat: Sender

base

sliding window

next_seq_num

A

u_recv([ACK,A])
◮ acks[A] = 1
◮ if A == base:



Selective Repeat: Sender

base

sliding window

next_seq_num

u_recv([ACK,A])
◮ acks[A] = 1
◮ if A == base:

base = first_missing_ack_num()


