A Quantitative View: Delay, Throughput, Loss

Antonio Carzaniga

Faculty of Informatics University of Lugano

September 29, 2016

Outline

- Quantitative analysis of data transfer concepts for network applications
- Propagation delay and transmission rate
- Multi-hop scenario

■ How do we measure the "speed" and "capacity" of a network connection?

- How do we measure the "speed" and "capacity" of a network connection?
- Intuition
 - water moving in a pipeline
 - cars moving on a road

■ How do we measure the "speed" and "capacity" of a network connection?

Intuition

- water moving in a pipeline
- cars moving on a road

Delay or Latency

the time it takes for one bit to go through the connection (from one end to the other)

How do we measure the "speed" and "capacity" of a network connection?

Intuition

- water moving in a pipeline
- cars moving on a road

Delay or Latency

the time it takes for one bit to go through the connection (from one end to the other)

■ Transmission rate or Throughput

 the amount of information that can get into (or out of) the connection in a time unit

Propagation **Delay**
$$d_{prop} = t_1 - t_0$$
 sec

Propagation **Delay**
$$d_{prop} = t_1 - t_0$$
 sec

$$R = \frac{\ell}{t_2 - t_2}$$
 bits/sec

$$d_{prop} = t_1 - t_0$$
 sec

Transmission **Rate**
$$R = \frac{\ell}{t_2 - t_1}$$
 bits/sec

Total transfer time
$$d_{end\text{-}end} = d + \frac{\ell}{R}$$
 sec

■ How long does it take to tranfer a file between, say, Lugano and Zürich?

- How long does it take to tranfer a file between, say, Lugano and Zürich?
- How big is this file? And how fast is our connection?

- How long does it take to tranfer a file between, say, Lugano and Zürich?
- How big is this file? And *how fast* is our connection?

E.g., a (short) e-mail message

```
\ell = 4Kb

d_{prop} = 500ms

R = 1Mb/s

d_{end-end} = ?
```

- How long does it take to tranfer a file between, say, Lugano and Zürich?
- How big is this file? And *how fast* is our connection?

E.g., a (short) e-mail message

```
\ell = 4Kb

d_{prop} = 500ms

R = 1Mb/s

d_{end-end} = 500ms + 4ms = 504ms
```

■ How about a big file? (E.g., a music collection of 50 songs)

■ How about a big file? (E.g., a music collection of 50 songs)

```
\ell = 400Mb

d_{prop} = 500ms

R = 1Mb/s

d_{end\text{-}end} = ?
```

■ How about a big file? (E.g., a music collection of 50 songs)

```
\ell = 400Mb

d_{prop} = 500ms

R = 1Mb/s

d_{end-end} = 500ms + 400s = 400.5s = 6'40''
```

■ How about a big file? (E.g., a music collection of 50 songs)

```
\ell = 400Mb

d_{prop} = 500ms

R = 1Mb/s

d_{end-end} = 500ms + 400s = 400.5s = 6'40''
```

■ How about a bigger file? (E.g., a 32 Gb SSD)

■ How about a big file? (E.g., a music collection of 50 songs)

```
\ell = 400Mb

d_{prop} = 500ms

R = 1Mb/s

d_{end-end} = 500ms + 400s = 400.5s = 6'40''
```

■ How about a bigger file? (E.g., a 32 Gb SSD)

```
\ell = 32Gb

d_{prop} = 500ms

R = 1Mb/s

d_{end-end} = ?
```

■ How about a big file? (E.g., a music collection of 50 songs)

```
\ell = 400Mb

d_{prop} = 500ms

R = 1Mb/s

d_{end-end} = 500ms + 400s = 400.5s = 6'40''
```

■ How about a bigger file? (E.g., a 32 Gb SSD)

```
\begin{array}{lcl} \ell & = & 32Gb \\ d_{prop} & = & 500ms \\ R & = & 1Mb/s \\ d_{end\text{-}end} & = & \epsilon + 32000s = 8h 53'20'' \end{array}
```

■ How about going to Zürich on a Vespa?

- How about going to Zürich on a Vespa?
 - you carry 500, 32-Gb memory cards in your backpack
 - four seconds to take the cards out of your backpack

- How about going to Zürich on a Vespa?
 - you carry 500, 32-Gb memory cards in your backpack
 - four seconds to take the cards out of your backpack

```
\begin{array}{lll} \boldsymbol{\ell} & = & 32Gb \\ d_{prop} & = & ? \\ R & = & \\ d_{end\text{-}end} & = & \end{array}
```

- How about going to Zürich on a Vespa?
 - you carry 500, 32-Gb memory cards in your backpack
 - four seconds to take the cards out of your backpack

```
\begin{array}{lll} \boldsymbol{\ell} & = & 32Gb \\ d_{prop} & = & 6h \\ R & = & ? \\ d_{end\text{-}end} & = & \end{array}
```

- How about going to Zürich on a Vespa?
 - you carry 500, 32-Gb memory cards in your backpack
 - four seconds to take the cards out of your backpack

```
\ell = 32Gb

d_{prop} = 6h

R = 4Tb/s

d_{end-end} = ?
```

- How about going to Zürich on a Vespa?
 - you carry 500, 32-Gb memory cards in your backpack
 - four seconds to take the cards out of your backpack

```
\ell = 32Gb

d_{prop} = 6h

R = 4Tb/s

d_{end\text{-}end} = 6h
```

- How about going to Zürich on a Vespa?
 - you carry 500, 32-Gb memory cards in your backpack
 - four seconds to take the cards out of your backpack

```
\begin{array}{rcl}
\ell & = & 32Gb \\
d_{prop} & = & 6h \\
R & = & 4Tb/s \\
d_{end-end} & = & 6h
\end{array}
```

If you need to transfer a couple of SSD cards from Lugano to Zürich, and time is crucial...then you might be better off riding your Vespa to Zürich rather than using the Internet.

For more than 5 cards, you might also prefer the Post office!

Two Hops (Stream)

 H_1 \mathcal{X} H_2

Two Hops (Stream)

$$H_1$$
 d_1, R_1 d_2, R_2

Two Hops (Stream)

$$d_1, R_1$$
 d_2, R_2

$$d_1, R_1$$
 d_2, R_2 H_1

$$(R_1 < R_2) \qquad d_{end-end} \qquad = d_1 + \frac{\ell}{R_1}$$

$$d_1, R_1$$
 d_2, R_2 H

$$(R_1 < R_2) \qquad d_{end-end} \qquad = d_1 + \frac{\ell}{R_1} + d_x$$

sec

$$d_1, R_1$$
 d_2, R_2 H_2

 $=d_1+\frac{\ell}{R_1}+d_X+d_2$

 $(R_1 < R_2)$

 $d_{end-end}$

sec

$$d_1, R_1$$
 d_2, R_2 H_2

$$n_1$$
 n_2

$$(R_1 < R_2) \qquad d_{end-end} \qquad = d_1 + \frac{\ell}{R_1} + d_x + d_2$$

 $(R_1 < R_2)$

 $(R_1 \geq R_2)$

 $d_{end-end}$

$$d_1, R_1$$
 d_2, R_2 H_2

$$(R_1 < R_2)$$
 $d_{end-end}$ $= d_1 + \frac{\ell}{R_1} + d_x + d_2$ sec $(R_1 \ge R_2)$ $d_{end-end}$ $= d_1 + d_x + d_2 + \frac{\ell}{R_2}$ sec

$$(R_1 \ge R_2)$$
 $d_{end\text{-}end}$ $= d_1 + d_x + d_2 + \frac{\ell}{R_2}$ sec $d_{end\text{-}end}$ $= d_1 + d_x + d_2 + \frac{\ell}{\min\{R_1, R_2\}}$ sec

 H_1

,

$$H_1$$
 d_1, R_1 d_2, R_2 H

$$d_1, R_1$$
 d_2, R_2

$$d_1, R_1$$
 d_2, R_2

$$d_{end\text{-}end} = d_1 + \frac{\ell}{R_1}$$

$$d_1, R_1$$
 d_2, R_2

$$d_{end\text{-}end} = d_1 + \frac{\ell}{R_1} + d_X$$

$$d_1, R_1$$
 d_2, R_2

$$d_{end\text{-}end} = d_1 + \frac{\ell}{R_1} + d_x + \frac{\ell}{R_2}$$

$$d_1, R_1$$
 d_2, R_2 H_1

$$d_{end-end} = d_1 + \frac{\ell}{R_1} + d_x + \frac{\ell}{R_2} + d_2$$

$$H_1$$
 d_1, R_1 d_2, R_2 H_2

$$d_{end-end} = d_1 + \frac{\ell}{R_1} + d_x + \frac{\ell}{R_2} + d_2$$

$$H_1$$
 d_1, R_1 d_2, R_2 H_2

$$d_{end-end} = d_1 + \frac{\ell}{R_1} + d_x + \frac{\ell}{R_2} + d_2$$

$$d_p, R \xrightarrow{d_x} d_p, R \xrightarrow{d_x} d_p, R \xrightarrow{d_x} d_x \xrightarrow{Q_x} \underbrace{d_x} \underbrace{d$$

$$d_{end\text{-}end} = N\left(d_p + \frac{\ell}{R} + d_X\right)$$

Consider a router with processing rate R_x and total delay d_x

What happens with an arrival rate $\lambda_{in} > R_x$?

Consider a router with processing rate R_x and total delay d_x . What happens with an arrival rate $\lambda_{in} > R_x$?

The router can not process packets fast enough, so the router puts packets in a queue:

$$d_X = d_{cpu} + d_{queue}$$

where

$$d_{queue} = |q|/R_x$$

Consider a router with processing rate R_x and total delay d_x . What happens with an arrival rate $\lambda_{in} > R_x$?

The router can not process packets fast enough, so the router puts packets in a queue:

where $d_{x} = d_{cpu} + d_{queue} \label{eq:dx}$ queue length $d_{queue} = |q|/R_{x} \label{eq:dx}$ output rate

Consider a router with processing rate R_X and total delay d_X What happens with an arrival rate $\lambda_{in} > R_X$?

The router can not process packets fast enough, so the router puts packets in a queue:

where $d_{x} = d_{cpu} + d_{queue}$ $queue \ length$ $d_{queue} = |q|/R_{x}$ output rate

 $\dots R_X$ is also the rate at which packets get out of the queue

■ *Ideal case:* constant input data rate

$$\lambda_{in} < R_{x}$$

In this case the $d_{queue} = 0$, because |q| = 0

■ *Ideal case:* constant input data rate

$$\lambda_{in} < R_{x}$$

In this case the $d_{queue} = 0$, because |q| = 0

Extreme case: constant input data rate

$$\lambda_{in} > R_{x}$$

In this case $|q| = (\lambda_{in} - R_x)t$ and therefore

$$d_{queue} = \frac{\lambda_{in} - R_{x}}{R_{x}}t$$

Steady-state queuing delay

$$d_{queue} = \begin{cases} 0 & \lambda_{in} < R_{\chi} \\ \frac{\lambda_{in} - R_{\chi}}{R_{\chi}} t & \lambda_{in} > R_{\chi} \end{cases}$$

■ Steady-state queuing delay

$$d_{queue} = \begin{cases} 0 & \lambda_{in} < R_X \\ \frac{\lambda_{in} - R_X}{R_X} t & \lambda_{in} > R_X \end{cases}$$

ideal input flow λ_{in} constant

■ Steady-state queuing delay

$$d_{queue} = \begin{cases} 0 & \lambda_{in} < R_{\chi} \\ \frac{\lambda_{in} - R_{\chi}}{R_{\chi}} t & \lambda_{in} > R_{\chi} \end{cases}$$

$$d_{queue}$$

$$d_{queue}$$

$$d_{queue}$$

$$d_{queue}$$

$$d_{queue}$$

$$d_{queue}$$

$$d_{queue}$$

$$\lambda_{in}$$

$$d_{queue}$$

$$\lambda_{in}$$
realistic input flow
$$\lambda_{in}$$
 variable

■ Conclusion: as the input rate λ_{in} approaches the maximum throughput R_x , packets will experience very long delays

- Conclusion: as the input rate λ_{in} approaches the maximum throughput R_x , packets will experience very long delays
- More realistic assumptions and models
 - finite queue length (buffers) in routers
 - ⇒ packets are dropped

- **Conclusion:** as the input rate λ_{in} approaches the maximum throughput R_x , packets will experience very long delays
- More realistic assumptions and models
 - finite queue length (buffers) in routers
 - \Rightarrow packets are dropped

- **Conclusion:** as the input rate λ_{in} approaches the maximum throughput R_x , packets will experience very long delays
- More realistic assumptions and models
 - finite queue length (buffers) in routers
 - \Rightarrow packets are dropped

