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Outline

m Quantitative analysis of data transfer concepts for network
applications

m Propagation delay and transmission rate

m Multi-hop scenario
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Quantifying Data Transfer

m How do we measure the “speed” and “capacity” of a network
connection?

m Intuition

» water moving in a pipeline
» cars moving on a road

m Delay or Latency

» the time it takes for one bit to go through the connection (from
one end to the other)

m Transmission rate or Throughput

» the amount of information that can get into (or out of) the
connection in a time unit
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Examples

m How long does it take to tranfer a file between, say, Lugano

and Zurich?

m How big is this file? And how fast is our connection?

E.g., a (short) e-mail message

¢

dprop
R

dend-end

4Kb

500ms

1Mb/s

500ms + 4ms = 504ms
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Examples

m How about a big file? (E.g., a music collection of 50 songs)

¢ = 400Mb
Aprop = 500ms
R = 1Mb/s
dend-end = 500ms + 400s = 400.5s = 640"

m How about a bigger file? (E.g., a 32 Gb SSD)

4 = 32Gb
Aprop = 500ms
= 1Mb/s

€ + 32000s = 8h 53'20"

dend-end
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Examples

m How about going to Zurich on a Vespa?

» you carry 500, 32-Gb memory cards in your backpack
» four seconds to take the cards out of your backpack

¢ = 32Gb
R = 4Thb/s
dend-end = 6h

If you need to transfer a couple of SSD cards from Lugano to
Zirich, and time is crucial.. . then you might be better off
riding your Vespa to Ziirich rather than using the Internet.

For more than 5 cards, you might also prefer the Post office!
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dq, Ry X d>, R
9 f-\ 9
X )
4
end-end =dp + A + dy + d> sec
1
¢
dend-end =dy+dy+dy + — sec
R>
4
dend-end = d1 + dx + d2 + sec

min{Ry, R2}
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¢
dend-end = N (dp + E + dx)
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Queuing Delay

Consider a router with processing rate R, and total delay dy

What happens with an arrival rate A, > R,?

The router can not process packets fast enough, so the router
puts packets in a queue:

dyx = dcpu + dqueue

where —

queue = |CI|/R

queue length

output rate

..Ry is also the rate at which packets get out of the queue
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m /deal case: constant input data rate
Ain < RX

In this case the dguese = 0, because |g| = 0

m Extreme case: constant input data rate
Ain > RX
In this case |q| = (Ain — Ry)t and therefore

Ain - th
Rx

dqueue =
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Queuing Delay

m Steady-state queuing delay

d _ O A,n < RX
queue A,-nR:RXt Ain > Rx
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ideal input flow realistic input flow
Ajn constant Ain variable
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Queuing Delay

m Conclusion: as the input rate A;, approaches the maximum
throughput Ry, packets will experience very long delays

m More realistic assumptions and models
» finite queue length (buffers) in routers
= packets are dropped

RX __________ ===

congestion




