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IPv4 Addressing

m 32-bit addresses

m An IP address is associated with an interface, not a host

» a host with more than one interface may have more than one
IP address

m The assignment of addresses over an Internet topology is
crucial to limit the complexity of routing and forwarding

m The key idea is to assign addresses with the same prefix to
interfaces that are on the same subnet
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Classless Interdomain Routing

m All interfaces in the same subnet share the same address
prefix

» e.g., inthe previous example we have
123.1.1.—,123.1.2.—,101.0.1.—, and 111.3.3.—

m Network addresses prefix-length notation:
address/prefix-length
» e.g, 123.1.1.0/24, 123.1.1.0/24, 101.0.1.0/24, and 111.3.3.0/24

» 123.1.1.0/24 means that all the addresses share the same
leftmost 24 bits with address 123.1.1.0

m This addressing scheme is not limited to entire bytes. For
example, a network address might be 128.138.207.160/27
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Network address 128.138.207.160/27

subnet

Examples

10000000 10001010 11001111

128.138.207.185?

10000000 10001010 11001111

128.138.207.98?

10000000 10001010 11001111

128.138.207.194?

10000000 10001010 11001111

107 000000

1100001 0o
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m What is the range of addresses in 128.138.207.160/27?
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subnet

Ranges

m What is the range of addresses in 128.138.207.160/27?

10000000

10000000
10000000
10000000
10000000

10000000

10001010

10001010
10001010
10001010
10001010

10001010

11001111

11001111
11001111
11001111
11001111

11001111

107 000000

1010000040
10100001 o
1010007 0o
1010001110

1011111 T ewo

128.138.207.160-128.138.207.191
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m Network addresses, mask notation: address/mask
m A prefix of length p corresponds to a mask
p times 32—p times

—_——
M=11"'1 OO"'OtWO

> e.g, 128.138.207.160/27=128.138.207.160/255.255.255.224
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> 192.168.0.3/24=192.168.0.3/255.255.255.0
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Net Mask

m Network addresses, mask notation: address/mask
m A prefix of length p corresponds to a mask

p times 32—p times
—_——
M=11 "'1 OO"'OtWO

v

e.g., 128.138.207.160/27=128.138.207.160/255.255.255.224
127.0.0.1/8=127.0.0.1/255.0.0.0
192.168.0.3/24=192.168.0.3/255.255.255.0
195.176.181.11/32=195.176.181.11/255.255.255.255

v

v

v

m InJava:
int match(int address, int network, int mask) {
return (address & mask) == (network & mask);
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Classless Interdomain Routing
m This any-length prefix scheme is also called classless
interdomain routing (CIDR)

» as opposed to the original scheme which divided the address
space in “classes”

address class | prefix length
A 8
B 16
C 24

m Why is the idea of the common prefix so important?

m Routers outside a (sub)network can ignore the specifics of
each address within the network

» there might be some 64 thousands hosts in 128.138.0.0/16,
but they all appear as one address from the outside
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Allocation of Address Blocks

thedude.org

123.4.0.0/24

123.4.1.0/24

maude.com

bowling.edu

123.4.20.0/24

123.4.0.0/16

98.7.1.0/24

margie.net

98.7.1.0/16
123.4.20.0/24
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m In choosing where to forward a datagram, a router chooses
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Longest-Prefix Matching

m In choosing where to forward a datagram, a router chooses
the entry that matches the destination address with the
longest prefix

E.g.,

» 123.4.1.69—1 forwarding table
> 68.142.226.44—4 network | port

123.4.0.0/16 1

98.7.2.71=2 98.7.1.0/16 2

> 200.100.2.1—3 123.4.20.0/24 | 2
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m In choosing where to forward a datagram, a router chooses
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Longest-Prefix Matching

m In choosing where to forward a datagram, a router chooses
the entry that matches the destination address with the
longest prefix

Eg.,

» 123.4.1.69—1 forwarding table
> 68.142.226.44—4 network | port

123.4.00/16 | 1

» 08.7.2.71—>2

- 98.7.1.0/16 2

> 200.100.2.1—3 123.4.20.0/24 | 2

> 128.138.207.167—4 128.0.0.0/1 3

123420112 66.249.0.0/16 | 3

0.0.0.0/1 a

> 123.4.21.10-1 128.138.0.0/16 | 4
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Special Addresses
IPv4 defines a number of special addresses or address blocks

m “Private,” non-routable address blocks
10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16

m Default route
0.0.0.0/0

m Loopback (a.k.a., localhost)
127.0.0.0/8

m |IP Multicast
224.0.0.0/4

m Broadcast
255.255.255.255/32
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IPv6

m “New-generation IP”
m Why?

» the IPv4 address space is too small

m Given the obvious difficulty of replacing IPv4, the short-term
benefits of IPv6 are debatable

m Nobody questions the long-term vision

m Also, IPv6 improves various design aspects of IPv4
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IPv6 Datagram Format

0 31
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vers. | traffic class | flow label
payload length | next hdr | hop limit

| source address

| destination address
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IPv6 Main Design Features

m Expanded addressing

» 128-bit addresses
» anycast address

m Header format simplification

» efficiency: reducing the processing cost for the common case
» bandwidth: reducing overhead due to header bytes

m Improved support for extensions and options

m Flow labeling

» special handling and non-default quality of service
» e.g., video, voice, real-time traffic, etc.
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What is Missing from IPv4?

m Fragmentation

» IPv6 pushes fragmentation onto the end-systems
» efficiency

m Header checksum

» efficiency
> how does the checksum in IPv4 behave with respect to the
time-to-live field?
> the checksum must be recomputed at every hop, so IPv6 avoids
that by getting rid of the checksum altogether

» avoid redundancy: both link-layer protocols and transport
protocols already provide error-detection features

m Options
» efficiency: a fixed-length header is easier to process
» better modularity for extensions and options
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