Inter-Autonomous-System Routing: Border Gateway Protocol

Antonio Carzaniga

Faculty of Informatics Università della Svizzera italiana

December 19, 2016

Outline

- Hierarchical routing
- BGP

Routing

■ Goal: each router *u* must be able to compute, for each other router *v*, the next-hop neighbor *x* that is on the least-cost path from *u* to *v*

Routing

■ Goal: each router *u* must be able to compute, for each other router *v*, the next-hop neighbor *x* that is on the least-cost path from *u* to *v*

Network Model

■ So far we have studied routing over a "flat" network model

Network Model

■ So far we have studied routing over a "flat" network model

Network Model

■ So far we have studied routing over a "flat" network model

Also, our objective has been to find the least-cost paths between sources and destinations

More Realistic Topologies

Even More Realistic

An Internet Map

- Scalability
 - hundreds of millions of hosts in today's Internet

Scalability

- hundreds of millions of hosts in today's Internet
- transmitting routing information (e.g., LSAs) would be too expensive

Scalability

- hundreds of millions of hosts in today's Internet
- transmitting routing information (e.g., LSAs) would be too expensive
- forwarding would also be too expensive

- Scalability
 - hundreds of millions of hosts in today's Internet
 - transmitting routing information (e.g., LSAs) would be too expensive
 - forwarding would also be too expensive
- Administrative autonomy

Scalability

- hundreds of millions of hosts in today's Internet
- transmitting routing information (e.g., LSAs) would be too expensive
- forwarding would also be too expensive

Administrative autonomy

 one organization might want to run a distance-vector routing protocol, while another might want to run a link-state protocol

Scalability

- hundreds of millions of hosts in today's Internet
- transmitting routing information (e.g., LSAs) would be too expensive
- forwarding would also be too expensive

Administrative autonomy

- one organization might want to run a distance-vector routing protocol, while another might want to run a link-state protocol
- an organization might not want to expose its internal network structure

- Today's Internet is organized in *autonomous systems (ASs)*
 - independent administrative domains

- Today's Internet is organized in *autonomous systems (ASs)*
 - independent administrative domains
- Gateway routers connect an autonomous system with other autonomous systems

- Today's Internet is organized in *autonomous systems (ASs)*
 - independent administrative domains
- Gateway routers connect an autonomous system with other autonomous systems
- An intra-autonomous system routing protocol runs within an autonomous system (e.g., OSPF)
 - this protocol determines internal routes
 - internal router ↔ internal router
 - internal router ↔ gateway router
 - gateway router ↔ gateway router

■ An *inter-autonomous system routing protocol* determines routing at the autonomous-system level

■ An *inter-autonomous system routing protocol* determines routing at the autonomous-system level

At AS3: AS1 \rightarrow

■ An *inter-autonomous system routing protocol* determines routing at the autonomous-system level

At AS3: AS1 \rightarrow AS1;

■ An *inter-autonomous system routing protocol* determines routing at the autonomous-system level

At AS3: AS1 \rightarrow AS1; AS2 \rightarrow

■ An *inter-autonomous system routing protocol* determines routing at the autonomous-system level

At AS3: AS1 \rightarrow AS1; AS2 \rightarrow AS2;

■ An *inter-autonomous system routing protocol* determines routing at the autonomous-system level

At AS3: AS1 \rightarrow AS1; AS2 \rightarrow AS2; AS4 \rightarrow

■ An *inter-autonomous system routing protocol* determines routing at the autonomous-system level

At AS3: AS1 \rightarrow AS1; AS2 \rightarrow AS2; AS4 \rightarrow AS1.

Hierarchical Routing

- All routers within an AS compute their *intra-AS* routing information
 - using an intra-doman routing protocol

Hierarchical Routing

- All routers within an AS compute their *intra-AS* routing information
 - using an intra-doman routing protocol
 - Gateway routers figure out inter-AS routing information
 - using an inter-domain routing protocol

- All routers within an AS compute their intra-AS routing information
 - using an intra-doman routing protocol
- Gateway routers figure out inter-AS routing information
 - using an inter-domain routing protocol
- inter-AS routing information is propagated within an AS
 - using an appropriate protocol

- All routers within an AS compute their intra-AS routing information
 - using an intra-doman routing protocol
- Gateway routers figure out inter-AS routing information
 - using an inter-domain routing protocol
- inter-AS routing information is propagated within an AS
 - using an appropriate protocol
- Both inter-AS and intra-AS routing information is used to compile the forwarding tables

■ Destinations within the same autonomous system are reached as usual

- Destinations within the same autonomous system are reached as usual
- What about a destination *x* outside the autonomous system?

- Destinations within the same autonomous system are reached as usual
- What about a destination *x* outside the autonomous system?
 - *inter-AS* information is used to figure out that x is reachable through gateway G_x

- Destinations within the same autonomous system are reached as usual
- What about a destination *x* outside the autonomous system?
 - inter-AS information is used to figure out that x is reachable through gateway G_x
 - intra-AS information is used to figure out how to reach G_x within the AS

- Destinations within the same autonomous system are reached as usual
- What about a destination *x* outside the autonomous system?
 - ► *inter-AS* information is used to figure out that x is reachable through gateway G_x
 - *intra-AS* information is used to figure out how to reach G_x within the AS
 - what if x is reachable through multiple gateway routers G_x, G'_x, \ldots ?

- Destinations within the same autonomous system are reached as usual
- What about a destination *x* outside the autonomous system?
 - ► inter-AS information is used to figure out that x is reachable through gateway G_x
 - *intra-AS* information is used to figure out how to reach G_x within the AS
 - what if x is reachable through multiple gateway routers G_x, G'_y, \ldots ?
 - use *intra-AS* routing information to determine the costs of the (least-cost) paths to G_X , G'_Y , . . .
 - "hot-potato" routing: send it through the closest gateway

Administrative autonomy

- Administrative autonomy
 - each autonomous system decides what intra-AS routing to use

- Administrative autonomy
 - each autonomous system decides what intra-AS routing to use
 - an autonomous system needs to expose only minimal information about the internal structure of its network
 - essentially only (sub)net addresses

- Administrative autonomy
 - each autonomous system decides what intra-AS routing to use
 - an autonomous system needs to expose only minimal information about the internal structure of its network
 - essentially only (sub)net addresses
- Scalability

- Administrative autonomy
 - each autonomous system decides what intra-AS routing to use
 - an autonomous system needs to expose only minimal information about the internal structure of its network
 - essentially only (sub)net addresses

Scalability

 routers within an autonomous system need to know very little about the internal structure of other autonomous systems

- Administrative autonomy
 - each autonomous system decides what intra-AS routing to use
 - an autonomous system needs to expose only minimal information about the internal structure of its network
 - essentially only (sub)net addresses

Scalability

- routers within an autonomous system need to know very little about the internal structure of other autonomous systems
 - essentially only (sub)net addresses

- Administrative autonomy
 - each autonomous system decides what intra-AS routing to use
 - an autonomous system needs to expose only minimal information about the internal structure of its network
 - essentially only (sub)net addresses
- Scalability
 - routers within an autonomous system need to know very little about the internal structure of other autonomous systems
 - essentially only (sub)net addresses
- External subnet addresses are likely to "aggregate" in groups that admit compact representations
 - this process is called supernetting

■ The **Border Gateway Protocol (BGP)** is the inter-AS routing protocol in today's Internet

- The *Border Gateway Protocol (BGP)* is the inter-AS routing protocol in today's Internet
 - provides reachability information from neighbor ASs

- The **Border Gateway Protocol (BGP)** is the inter-AS routing protocol in today's Internet
 - provides reachability information from neighbor ASs
 - transmits reachability information to all internal routers within an AS

- The *Border Gateway Protocol (BGP)* is the inter-AS routing protocol in today's Internet
 - provides reachability information from neighbor ASs
 - transmits reachability information to all internal routers within an AS
 - determines good routes to all outside subnets

- The **Border Gateway Protocol (BGP)** is the inter-AS routing protocol in today's Internet
 - provides reachability information from neighbor ASs
 - transmits reachability information to all internal routers within an AS
 - determines good routes to all outside subnets
 - based on reachability information

- The **Border Gateway Protocol (BGP)** is the inter-AS routing protocol in today's Internet
 - provides reachability information from neighbor ASs
 - transmits reachability information to all internal routers within an AS
 - determines good routes to all outside subnets
 - based on reachability information
 - based on policies

- The **Border Gateway Protocol (BGP)** is the inter-AS routing protocol in today's Internet
 - provides reachability information from neighbor ASs
 - transmits reachability information to all internal routers within an AS
 - determines good routes to all outside subnets
 - based on reachability information
 - based on policies
 - BGP is a path-vector protocol

■ **BGP session:** a semi-permanent connection between two routers

- *BGP session:* a semi-permanent connection between two routers
- **BGP peers:** two routers engaged in a BGP session
 - BGP sessions are established over TCP

- *BGP session:* a semi-permanent connection between two routers
- **BGP peers:** two routers engaged in a BGP session
 - BGP sessions are established over TCP
- **BGP external session (eBGP):** a session across two autonomous systems

- *BGP session:* a semi-permanent connection between two routers
- **BGP peers:** two routers engaged in a BGP session
 - BGP sessions are established over TCP
- **BGP external session (eBGP):** a session across two autonomous systems
- **BGP internal session (iBGP):** a session within an autonomous system
 - ▶ note that internal sessions carry *inter-AS* information
 - intra-AS routing uses a separate protocol (e.g., OSPF)

Gateway Routers and eBGP

- *BGP advertisement:* a router advertises routes to networks, much like an entry in a distance-vector
 - destinations are denoted by address prefixes

- *BGP advertisement:* a router advertises routes to networks, much like an entry in a distance-vector
 - destinations are denoted by address prefixes
 - an AS may or may not forward an advertisement for a foreign network; doing so means being willing to carry traffic for that network

- *BGP advertisement:* a router advertises routes to networks, much like an entry in a distance-vector
 - destinations are denoted by address prefixes
 - an AS may or may not forward an advertisement for a foreign network; doing so means being willing to carry traffic for that network
 - this is where a router may aggregate prefixes (a.k.a., "supernetting")
 E.g.,

```
 \begin{array}{c} 128.138.242.0/24 \\ 128.138.243.0/24 \end{array} \right\} \rightarrow 128.138.242.0/23
```

- *BGP advertisement:* a router advertises routes to networks, much like an entry in a distance-vector
 - destinations are denoted by address prefixes
 - an AS may or may not forward an advertisement for a foreign network; doing so means being willing to carry traffic for that network
 - this is where a router may aggregate prefixes (a.k.a., "supernetting")
 E.g.,

$$\left. \begin{array}{c} 128.138.242.0/24 \\ 128.138.243.0/24 \end{array} \right\} \rightarrow 128.138.242.0/23$$

```
\left. \begin{array}{l} 191.224.128.0/22 \\ 191.224.136.0/21 \\ 191.224.132.0/22 \end{array} \right\} \rightarrow
```

- *BGP advertisement:* a router advertises routes to networks, much like an entry in a distance-vector
 - destinations are denoted by address prefixes
 - an AS may or may not forward an advertisement for a foreign network; doing so means being willing to carry traffic for that network
 - this is where a router may aggregate prefixes (a.k.a., "supernetting")
 E.g.,

$$\left. \begin{array}{c} 128.138.242.0/24 \\ 128.138.243.0/24 \end{array} \right\} \rightarrow 128.138.242.0/23$$

$$\left. \begin{array}{l} 191.224.128.0/22 \\ 191.224.136.0/21 \\ 191.224.132.0/22 \end{array} \right\} \rightarrow 191.224.128.0/20$$

■ Autonomous system number (ASN): a unique identifier for each AS (with more than one gateway)

- **Autonomous system number (ASN):** a unique identifier for each AS (with more than one gateway)
- **BGP attributes:** a route advertisement includes a number of attributes
 - AS-PATH: sequence of ASNs through which the advertisement has been sent

- Autonomous system number (ASN): a unique identifier for each AS (with more than one gateway)
- **BGP attributes:** a route advertisement includes a number of attributes
 - AS-PATH: sequence of ASNs through which the advertisement has been sent
 - NEXT-HOP: specifies the interface (IP address) to use to forward packets towards the advertised destination
 - used to resolve ambiguous cases where an AS can be reached through multiple gateways (interfaces)

- **Autonomous system number (ASN):** a unique identifier for each AS (with more than one gateway)
- **BGP attributes:** a route advertisement includes a number of attributes
 - ► AS-PATH: sequence of ASNs through which the advertisement has been sent
 - ► NEXT-HOP: specifies the interface (IP address) to use to forward packets towards the advertised destination
 - used to resolve ambiguous cases where an AS can be reached through multiple gateways (interfaces)
- **BGP import policy:** used to decide whether to accept or reject the route advertisement
 - e.g., a router may not want to send its traffic through one of the AS listed in AS-PATH

- 1. Router preference: routes are ranked according to a *preference* value
 - configured at the router
 - or learned from another router within the same AS
 - essentially a configuration parameter for the AS

- 1. Router preference: routes are ranked according to a *preference* value
 - configured at the router
 - or learned from another router within the same AS
 - essentially a configuration parameter for the AS
- Shortest AS-PATH

- 1. Router preference: routes are ranked according to a *preference* value
 - configured at the router
 - or learned from another router within the same AS
 - essentially a configuration parameter for the AS
- Shortest AS-PATH
- Closest NEXT-HOP router

- 1. Router preference: routes are ranked according to a preference value
 - configured at the router
 - or learned from another router within the same AS
 - essentially a configuration parameter for the AS
- Shortest AS-PATH
- Closest NEXT-HOP router
- 4. ...