Basic Concepts In Computer Networking

Antonio Carzaniga

Faculty of Informatics University of Lugano

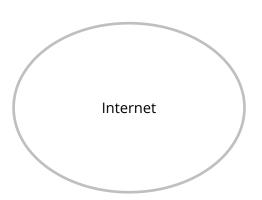
September 26, 2016

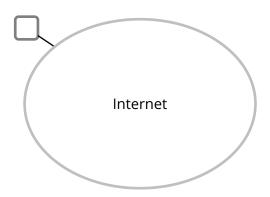
Goal of this Lecture

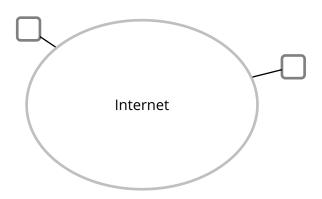
- Understand what packet switching is
- Understand what circuit switching is
- Understand their differences
- Understand what a protocol is

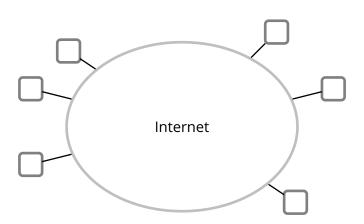
Outline

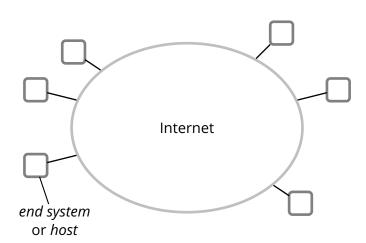
- What is the Internet?
- Types of network
- Types of service
- Protocols
- The Internet protocol stack


History






History



■ End system or host ()

- End system or host ()
 - a computer

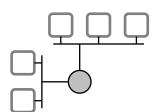
- End system or host ()
 - a computer
 - a phone (more or less "smart")

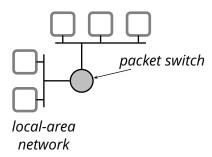
- End system or host ()
 - a computer
 - a phone (more or less "smart")
 - a server (well, that would also be a computer)

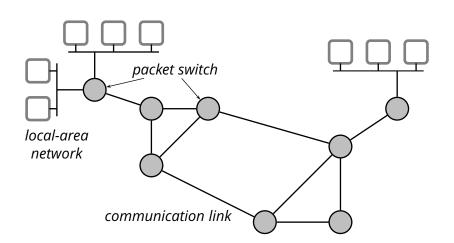
- End system or host ()
 - a computer
 - a phone (more or less "smart")
 - a server (well, that would also be a computer)
 - a camera (a.k.a., webcam)

- End system or host ()
 - a computer
 - a phone (more or less "smart")
 - a server (well, that would also be a computer)
 - a camera (a.k.a., webcam)
 - a temperature sensor

- End system or host ()
 - a computer
 - a phone (more or less "smart")
 - a server (well, that would also be a computer)
 - a camera (a.k.a., webcam)
 - a temperature sensor
 - a PDA


■ *End system* or *host* ()


- a computer
- a phone (more or less "smart")
- a server (well, that would also be a computer)
- a camera (a.k.a., webcam)
- a temperature sensor
- a PDA
- ▶ ...
- a car
- a television set
- a picture frame
- a toaster
- **>** ...


■ End system or host ()

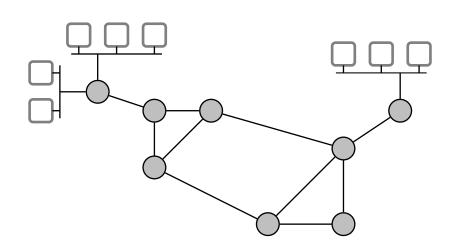
- a computer
- a phone (more or less "smart")
- a server (well, that would also be a computer)
- a camera (a.k.a., webcam)
- a temperature sensor
- a PDA
- a car
- a television set
- a picture frame
- a toaster
- **...**
- a toilet seat?
- a toothpick?
- **>** ...

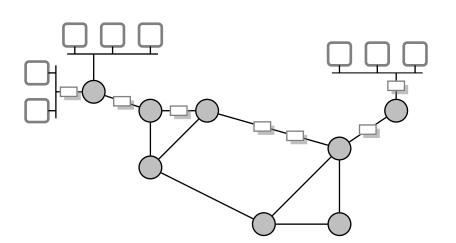
■ The Internet uses *packet switching*

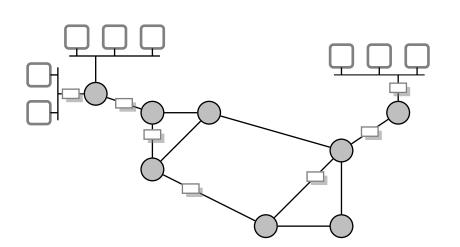
- The Internet uses *packet switching*
- **Packet switch:** a link-layer switch or a **router**

- The Internet uses *packet switching*
- **Packet switch:** a link-layer switch or a **router**
- Communication link: a connection between packet switches and/or end systems

- The Internet uses *packet switching*
- **Packet switch:** a link-layer switch or a **router**
- Communication link: a connection between packet switches and/or end systems
- Route: sequence of switches that a packet goes through (a.k.a. path)

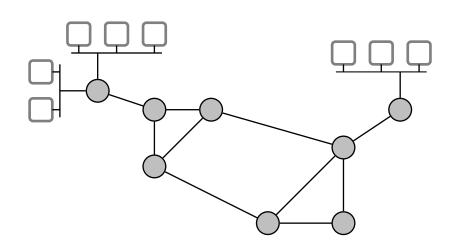

- The Internet uses *packet switching*
- **Packet switch:** a link-layer switch or a **router**
- Communication link: a connection between packet switches and/or end systems
- Route: sequence of switches that a packet goes through (a.k.a. path)
- Protocol: control the sending and receiving of information to and from end systems and packet switches

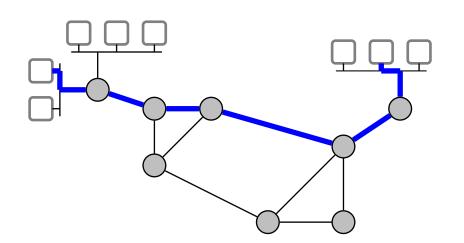

Communication Links


■ Various types and forms of medium

Communication Links

- Various types and forms of medium
 - Fiber-optic cable
 - Twisted-pair copper wire
 - Coaxial cable
 - Wireless local-area links (e.g., 802.11, Bluetooth)
 - Satellite channel
 - ▶ ...

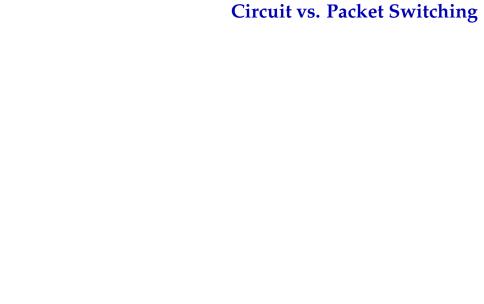

■ The Internet is a *packet-switched* network


- The Internet is a packet-switched network
- Information is transmitted in *packets*

- The Internet is a *packet-switched* network
- Information is transmitted in *packets*
- Switches operate on individual packets

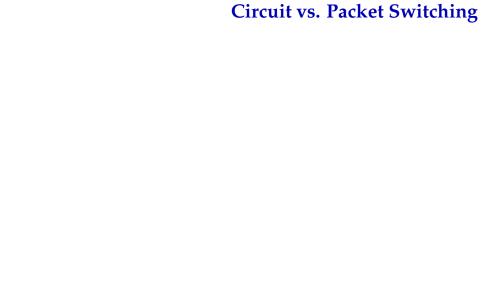
- The Internet is a *packet-switched* network
- Information is transmitted in *packets*
- Switches operate on individual packets
- A switch (router) receives packets and *forwards* them along to other switches or to end systems

- The Internet is a *packet-switched* network
- Information is transmitted in *packets*
- Switches operate on individual packets
- A switch (router) receives packets and forwards them along to other switches or to end systems
- Every forwarding decision is taken on the basis of the information contained in the packet



- The telephone network is a typical circuit-switched network
 - not any more, really, but still...

- The telephone network is a typical circuit-switched network
 - not any more, really, but still...
- Communication requires a *connection setup* phase in which the network reserves all the necessary resources for that connection (links, buffers, switches, etc.)


- The telephone network is a typical circuit-switched network
 - not any more, really, but still...
- Communication requires a *connection setup* phase in which the network reserves all the necessary resources for that connection (links, buffers, switches, etc.)
- After a successful setup, the communicating systems are connected by a set of links dedicated to the connection for the entire duration of their conversation

- The telephone network is a typical circuit-switched network
 - not any more, really, but still...
- Communication requires a *connection setup* phase in which the network reserves all the necessary resources for that connection (links, buffers, switches, etc.)
- After a successful setup, the communicating systems are connected by a set of links dedicated to the connection for the entire duration of their conversation
- When the conversation ends, the network tears down the connection, freeing the corresponding resources (links, buffers, etc.) for other connections

Circuit vs. Packet Switching

Circuit vs. Packet Switching

- Circuit switching requires an expensive setup phase
 - however, once the connection is established, little or no processing is required

Circuit vs. Packet Switching

- Circuit switching requires an expensive setup phase
 - however, once the connection is established, little or no processing is required
- Packet switching does not incur any setup cost
 - however, it always incurs a significant processing and space overhead, on a per-packet basis
 - processing cost for forwarding
 - space overhead because every packet must be self-contained

Circuit vs. Packet Switching (2)

- Circuit switching admits a straightforward implementation of quality-of-service guarantees
 - network resources are reserved at connection setup time

Circuit vs. Packet Switching (2)

- Circuit switching admits a straightforward implementation of quality-of-service guarantees
 - network resources are reserved at connection setup time
- Guaranteeing any quality of service with packet switching is very difficult
 - no concept of a "connection"
 - and again, processing, space overhead, etc.

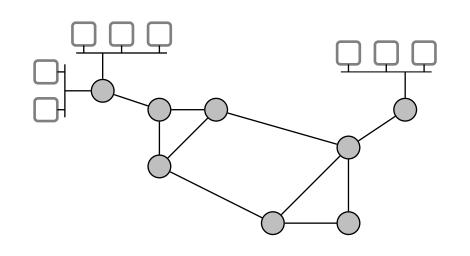
Circuit vs. Packet Switching (3)

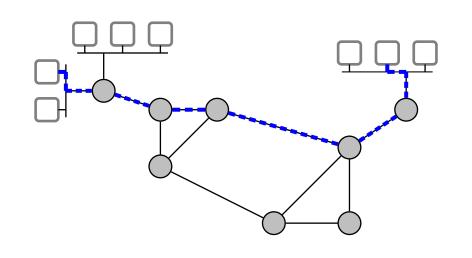
- Circuit switching allows only a limited sharing of communication resources
 - once a connection is established, the resources are blocked even though there might be long silence periods
 - ► i.e., circuit switching is an inefficient way to use the network

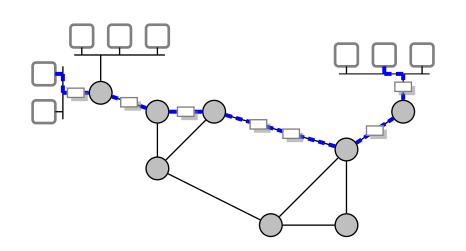
Circuit vs. Packet Switching (3)

- Circuit switching allows only a limited sharing of communication resources
 - once a connection is established, the resources are blocked even though there might be long silence periods
 - ► i.e., circuit switching is an inefficient way to use the network
- Packet switching achieves a much better utilization of network resources
 - it is designed specifically to share links

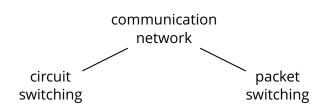
■ Idea: combine the advantages of circuit switching and packet switching

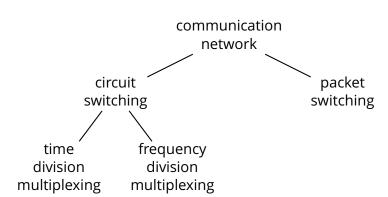

- Idea: combine the advantages of circuit switching and packet switching
- There is a connection setup phase

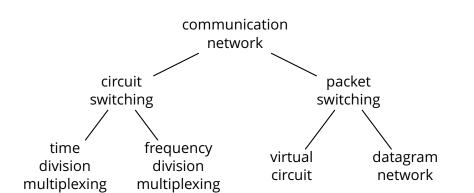

- Idea: combine the advantages of circuit switching and packet switching
- There is a connection setup phase
- The connection does not create a physical circuit, but rather a "virtual circuit"

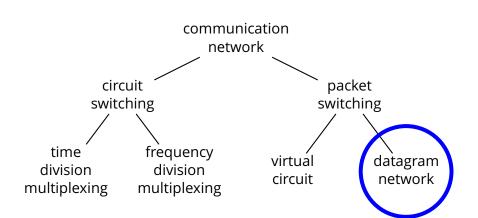

- Idea: combine the advantages of circuit switching and packet switching
- There is a connection setup phase
- The connection does not create a physical circuit, but rather a "virtual circuit"
- Information is sent in packets, so links can be shared more effectively

- Idea: combine the advantages of circuit switching and packet switching
- There is a connection setup phase
- The connection does not create a physical circuit, but rather a "virtual circuit"
- Information is sent in packets, so links can be shared more effectively
- Packets carry a virtual circuit identifier instead of the destination address


- Idea: combine the advantages of circuit switching and packet switching
- There is a connection setup phase
- The connection does not create a physical circuit, but rather a "virtual circuit"
- Information is sent in packets, so links can be shared more effectively
- Packets carry a *virtual circuit identifier* instead of the destination address
 - Important observation: at any given time there are much fewer connections than destinations
 - much faster per-packet processing (forwarding)
 - lower per-packet space overhead







communication network

Service Perspective

Service Perspective

■ What kind of *service* does the Internet offer to end systems?

Type of Service

■ Two end systems can communicate through the Internet, but exactly what kind of communication service is that of the Internet?

Type of Service

Two end systems can communicate through the Internet, but exactly what kind of communication service is that of the Internet?

■ Connectionless, "best effort"

- the network accepts "datagrams" for delivery—this is conceptually similar to the postal service
- ▶ "best effort" really means *unreliable* though not malicious

Type of Service

■ Two end systems can communicate through the Internet, but exactly what kind of communication service is that of the Internet?

■ Connectionless, "best effort"

- the network accepts "datagrams" for delivery—this is conceptually similar to the postal service
- ▶ "best effort" really means *unreliable* though not malicious

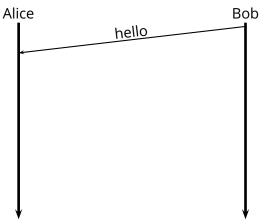
■ Connection-oriented, reliable

- ▶ virtual duplex communication channel ($A \leftrightarrow B$)—conceptually similar to a telephone service
- information is transmitted "reliably" and in order

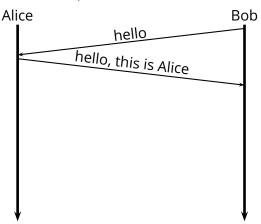
Type of Service (2)

■ How reliable is a "reliable" service?

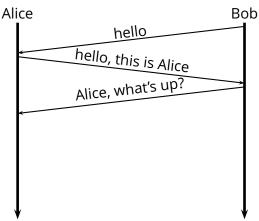
Type of Service (2)

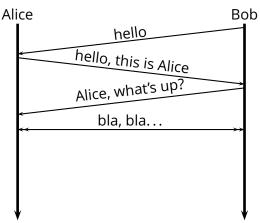

- How reliable is a "reliable" service?
- The term "reliable" means that information will eventually reach its destination if a route is viable within a certain amount of time

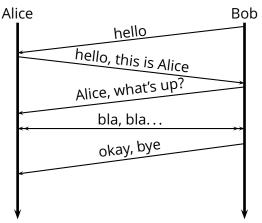
Type of Service (2)

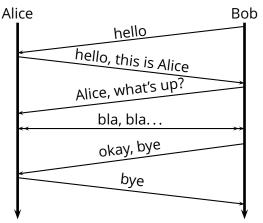

- How reliable is a "reliable" service?
- The term "reliable" means that information will eventually reach its destination if a route is viable within a certain amount of time
- The network makes absolutely no guarantees on *latency* (i.e., the time it takes to transmit some information from a source to a destination)

■ End systems as well as packet switches run *protocols*. What is a protocol?


■ End systems as well as packet switches run *protocols*. What is a protocol?


■ End systems as well as packet switches run *protocols*. What is a protocol?


■ End systems as well as packet switches run *protocols*. What is a protocol?


■ End systems as well as packet switches run *protocols*. What is a protocol?

■ End systems as well as packet switches run *protocols*. What is a protocol?

■ End systems as well as packet switches run *protocols*. What is a protocol?

- Phases of the protocol
 - handshake: establishes the identities and/or the context
 - conversation: free-form exchange
 - closing: terminates the conversation

- Phases of the protocol
 - handshake: establishes the identities and/or the context
 - conversation: free-form exchange
 - closing: terminates the conversation
- This protocol assumes a connection-oriented medium
- The protocol involves two parties (Alice and Bob)

. . . .

Another example: air traffic control

- Another example: air traffic control
 - ▶ ... United 971, turn left heading 2-7-0

- Another example: air traffic control
 - ... United 971, turn left heading 2-7-0
 - left to 2-7-0, United 971

- Another example: air traffic control
 - ... United 971, turn left heading 2-7-0
 - left to 2-7-0, United 971
 - ► ... Alitalia 631, contact Malpensa approach at 119.20

- Another example: air traffic control
 - ... United 971, turn left heading 2-7-0
 - left to 2-7-0, United 971
 - ▶ ...Alitalia 631, contact Malpensa approach at 119.20
 - **.** . . .

- Another example: air traffic control
 - ... United 971, turn left heading 2-7-0
 - left to 2-7-0, United 971
 - ...Alitalia 631, contact Malpensa approach at 119.20
 - **...**
 - ...Alitalia 631, contact Malpensa approach at 119.20

- Another example: air traffic control
 - ... United 971, turn left heading 2-7-0
 - left to 2-7-0, United 971
 - ...Alitalia 631, contact Malpensa approach at 119.20
 - **...**
 - ... Alitalia 631, contact Malpensa approach at 119.20
 - ▶ 1-1-9 point 2-0, Alitalia 631, ciao

- Another example: air traffic control
 - ... United 971, turn left heading 2-7-0
 - left to 2-7-0, United 971
 - ...Alitalia 631, contact Malpensa approach at 119.20
 - **.** . . .
 - ... Alitalia 631, contact Malpensa approach at 119.20
 - ▶ 1-1-9 point 2-0, Alitalia 631, ciao
 - ... Center, request, Delta 800

- Another example: air traffic control
 - ... United 971, turn left heading 2-7-0
 - left to 2-7-0, United 971
 - ... Alitalia 631, contact Malpensa approach at 119.20
 - **.** . . .
 - ... Alitalia 631, contact Malpensa approach at 119.20
 - ▶ 1-1-9 point 2-0, Alitalia 631, ciao
 - ...Center, request, Delta 800
 - United 971, climb and maintain flight level 3-7-0

- Another example: air traffic control
 - ... United 971, turn left heading 2-7-0
 - left to 2-7-0, United 971
 - ... Alitalia 631, contact Malpensa approach at 119.20
 - **.** . . .
 - ... Alitalia 631, contact Malpensa approach at 119.20
 - ▶ 1-1-9 point 2-0, Alitalia 631, ciao
 - ...Center, request, Delta 800
 - United 971, climb and maintain flight level 3-7-0
 - flight level 3-7-0, United 971

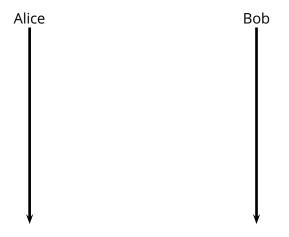
- Another example: air traffic control
 - ... United 971, turn left heading 2-7-0
 - left to 2-7-0, United 971
 - ... Alitalia 631, contact Malpensa approach at 119.20
 - **.** . . .
 - ... Alitalia 631, contact Malpensa approach at 119.20
 - ▶ 1-1-9 point 2-0, Alitalia 631, ciao
 - ... Center, request, Delta 800
 - United 971, climb and maintain flight level 3-7-0
 - flight level 3-7-0, United 971
 - ... Delta 800, go ahead

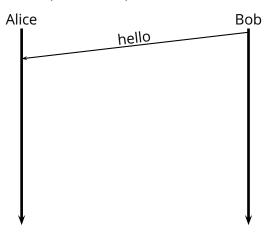
- Another example: air traffic control
 - ... United 971, turn left heading 2-7-0
 - left to 2-7-0, United 971
 - ... Alitalia 631, contact Malpensa approach at 119.20
 - **...**
 - ... Alitalia 631, contact Malpensa approach at 119.20
 - ▶ 1-1-9 point 2-0, Alitalia 631, ciao
 - ...Center, request, Delta 800
 - ... United 971, climb and maintain flight level 3-7-0
 - flight level 3-7-0, United 971
 - ... Delta 800, go ahead
 - requesting flight level 3-5-0, Delta 800

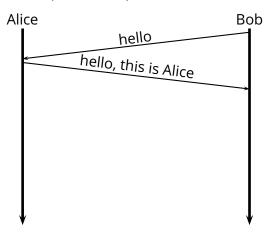
- Another example: air traffic control
 - ... United 971, turn left heading 2-7-0
 - left to 2-7-0, United 971
 - ... Alitalia 631, contact Malpensa approach at 119.20
 - **.** . . .
 - ... Alitalia 631, contact Malpensa approach at 119.20
 - ▶ 1-1-9 point 2-0, Alitalia 631, ciao
 - ...Center, request, Delta 800
 - United 971, climb and maintain flight level 3-7-0
 - flight level 3-7-0, United 971
 - ... Delta 800, go ahead
 - requesting flight level 3-5-0, Delta 800
 - ▶ Delta 800, unable at the moment

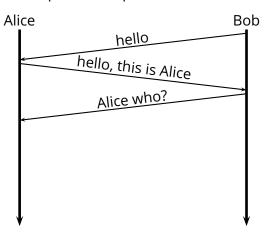
A connectionless protocol

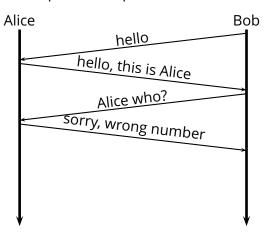
- A connectionless protocol
- Multi-party communication

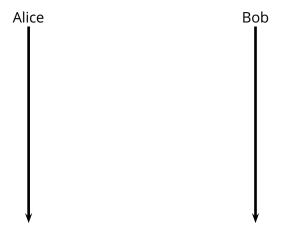

- A connectionless protocol
- Multi-party communication
- Medium access control (MAC) protocol

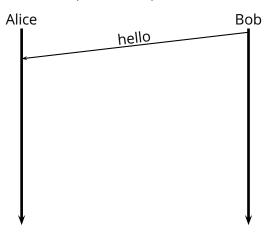

- A connectionless protocol
- Multi-party communication
- Medium access control (MAC) protocol
- Interleaved communication

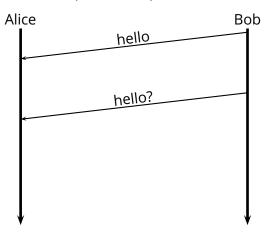

- A connectionless protocol
- Multi-party communication
- Medium access control (MAC) protocol
- Interleaved communication
- Acknowledgements

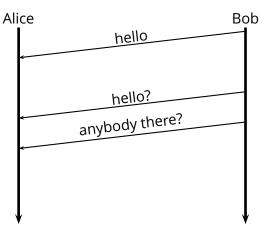

- A connectionless protocol
- Multi-party communication
- Medium access control (MAC) protocol
- Interleaved communication
- Acknowledgements
- Timeout and retransmission

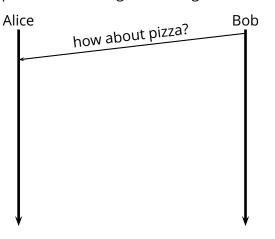

- A connectionless protocol
- Multi-party communication
- Medium access control (MAC) protocol
- Interleaved communication
- Acknowledgements
- Timeout and retransmission
- "Master" role

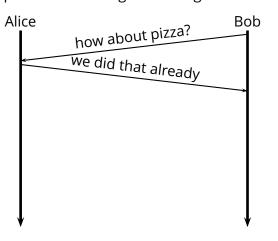


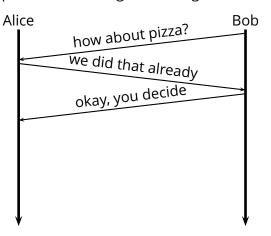


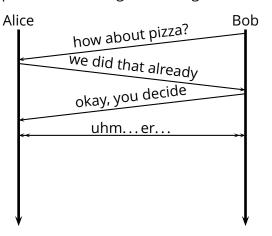


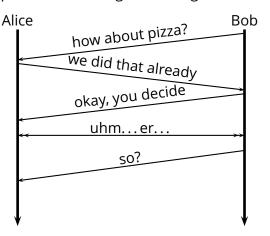


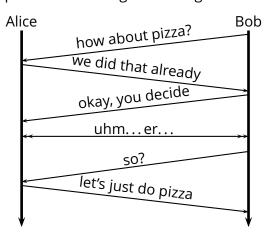

- A protocol is a lot like a program
 - ▶ in fact, it is a *distributed program*, where different processes can send messages to each other

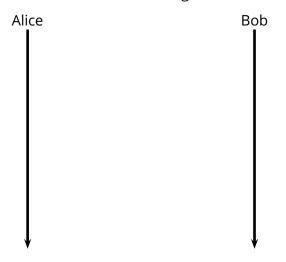

- A protocol is a lot like a program
 - ▶ in fact, it is a *distributed program*, where different processes can send messages to each other
- It is an *executable* specification

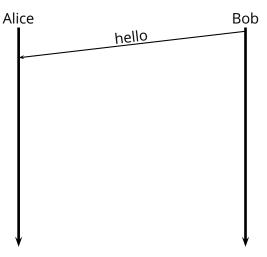

- A protocol is a lot like a program
 - ► in fact, it is a *distributed program*, where different processes can send messages to each other
- It is an *executable* specification
- It must be *unambiguous*

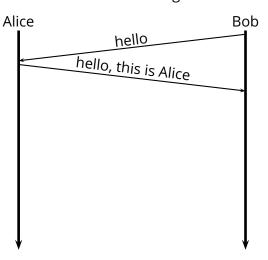

- A protocol is a lot like a program
 - ▶ in fact, it is a *distributed program*, where different processes can send messages to each other
- It is an executable specification
- It must be *unambiguous*
- It must be complete
 - i.e., it must include actions and/or responses for all possible situations and all possible messages

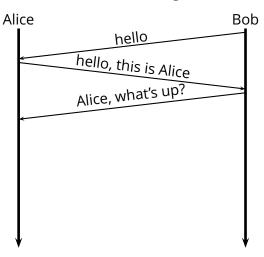

- A protocol is a lot like a program
 - ▶ in fact, it is a *distributed program*, where different processes can send messages to each other
- It is an executable specification
- It must be *unambiguous*
- It must be complete
 - i.e., it must include actions and/or responses for all possible situations and all possible messages
- A network protocol must also define all the necessary message formats

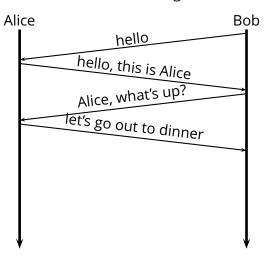


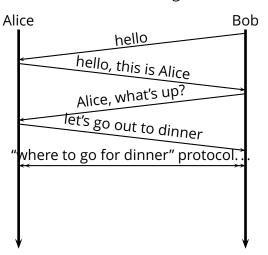


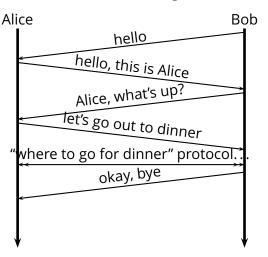


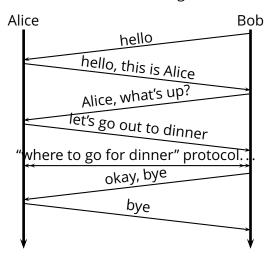












■ Alice calls Bob to decide where to go for dinner

phone call protocol

■ Alice calls Bob to decide where to go for dinner

"where to go for dinner" protocol

phone call protocol

"where to go for dinner" protocol
phone call protocol
call setup

"where to go for dinner" protocol
phone call protocol
call setup
voice over IP

"where to go for dinner" protocol
phone call protocol
call setup
voice over IP

application

application transport

application
transport
network

application	
transport	
network	
link	

application	
transport	
network	
link	
physical	

- Application (e.g., HTTP, SMTP, and DNS)
 - application functionalities
 - application messages

- Application (e.g., HTTP, SMTP, and DNS)
 - application functionalities
 - application messages
- *Transport* (e.g., TCP and UDP)
 - application multiplexing, reliable transfer (TCP), congestion control (TCP)
 - datagrams (UDP) or segments (TCP)

- Application (e.g., HTTP, SMTP, and DNS)
 - application functionalities
 - application messages
- *Transport* (e.g., TCP and UDP)
 - application multiplexing, reliable transfer (TCP), congestion control (TCP)
 - datagrams (UDP) or segments (TCP)
- Network (IP)
 - end to end datagram, best-effort service, routing, fragmentation
 - packets (IP)

- Application (e.g., HTTP, SMTP, and DNS)
 - application functionalities
 - application messages
- *Transport* (e.g., TCP and UDP)
 - application multiplexing, reliable transfer (TCP), congestion control (TCP)
 - datagrams (UDP) or segments (TCP)
- Network (IP)
 - end to end datagram, best-effort service, routing, fragmentation
 - packets (IP)
- Link (e.g., Ethernet and PPP)
 - point-to-point or local broadcast communication
 - frames (or packets)

- *Application* (e.g., HTTP, SMTP, and DNS)
 - application functionalities
 - application messages
- Transport (e.g., TCP and UDP)
 - application multiplexing, reliable transfer (TCP), congestion control (TCP)
 - datagrams (UDP) or segments (TCP)
- Network (IP)
 - end to end datagram, best-effort service, routing, fragmentation
 - packets (IP)
- Link (e.g., Ethernet and PPP)
 - point-to-point or local broadcast communication
 - frames (or packets)
- Physical